
Multi-objective optimization of transonic airfoils using variable-fidelity models,

co-kriging surrogates, and design space reduction

by

Anand Amrit

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Aerospace Engineering

Program of Study Committee:

Leifur Leifsson, Major Professor

Christina Bloebaum

Jonathan Regele

Iowa State University

Ames, Iowa

2016

Copyright c© Anand Amrit, 2016. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to my father Ajaya Kumar Nayak and to my mother

Narayani Nayak who gave me emotional and moral strength to overcome all hurdles during my

research. I would like to thank my advisor Dr. Leifur Leifsson whose ideas and efforts to make

my research successful was instrumental. At the end, I would also like to thank my POSC

committee members Dr. Christina Bloebaum and Dr. Jonathan Regele.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . x

NOMENCLATURE . xi

CHAPTER 1. INTRODUCTION . 1

1.1 Motivation and Challenges . 1

1.2 Research Objectives and Contributions . 4

1.3 Thesis Outline . 5

CHAPTER 2. BACKGROUND . 6

2.1 Definition and Formulation of Multi-Objective Optimization 6

2.2 Multi-Objective Optimization Strategies and Algorithms 7

2.2.1 Single-Objective Optimization using a Scalarized Objective Function . . 8

2.2.2 Evolutionary Algorithms . 8

2.2.3 Genetic Algorithms . 9

2.2.4 Particle Swarm Optimization . 10

2.3 Applications of Multi-Objective Optimization in Aerodynamic Design 10

CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION METHODOLOGY . 12

3.1 Multi-Objective Aerodynamic Design Formulation 12

3.2 Optimization Algorithm . 13

3.3 Variable-Fidelity Surrogate Model . 15

3.4 Design Space Reduction . 18

iv

3.5 Kriging Surrogate Construction . 19

3.5.1 Design of Experiments . 19

3.5.2 Kriging Interpolation . 20

3.5.3 Model Validation . 22

3.6 Co-kriging Surrogate Construction . 23

CHAPTER 4. NUMERICAL APPLICATIONS 25

4.1 Problem Description . 25

4.1.1 Formulation of the MOO Problem . 25

4.1.2 Design Space . 26

4.1.3 Training Points . 27

4.1.4 Computational Fluid Dynamics Modeling 28

4.1.5 Investigations . 29

4.2 Strategy 1 . 34

4.2.1 MOO Algorithm . 34

4.2.2 Results . 34

4.2.3 Computational Cost . 36

4.3 Strategy 2 . 36

4.3.1 Description . 36

4.3.2 Results . 37

4.3.3 Computational Cost . 37

4.4 Strategy 3 . 39

4.4.1 Description . 39

4.4.2 Results . 39

4.4.3 Computational Cost . 40

4.5 Comparison of the Strategies . 42

4.6 Comparison using Single-Objective Optimization and a Scalarized Objective . . 46

4.7 Parametric Study of Strategy 3 . 47

4.7.1 Description . 47

4.7.2 Results . 48

v

CHAPTER 5. CONCLUSION . 53

BIBLIOGRAPHY . 54

vi

LIST OF TABLES

Table 4.1 Results of the grid convergence study at M∞ = 0.734 and Cl = 0.824. 31

Table 4.2 Comparison of the computatioal cost of the three strategies. 42

Table 4.3 Relative root mean square error (RMSE) of the initial kriging model

in Step 4 of the MOO algorithm in Strategy 3 for different number of

samples. 49

Table 4.4 Relative root mean square error (RMSE) of the initial kriging model

in Step 4 of the MOO algorithm in Strategy 1 for different number of

samples. 49

Table 4.5 Comparison of the computatioal cost of the original three strategies,

with the refined Strategy 3 (indicated by 3∗). 52

vii

LIST OF FIGURES

Figure 1.1 Representation of the design space and the corresponding feasible ob-

jective space. Designs A, B, and C are non-optimal solutions. Design

D lies on the Pareto-optimal front. 2

Figure 1.2 PDE simulations (such as computational fluid dynamics (CFD) simu-

lations) need dense computational grids that require long CPU times

(often on the order of days) on high performance computing clusters.

The graph shows how the time and the objective function values of a

2D CFD simulation of transonic airfoil flow vary with the grid density. 3

Figure 3.1 An illustration of the design space reduction technique using single-

objective optimization runs (Koziel et al. [1]). The illustration assumes

a three-dimensional design space and two design objectives. 19

Figure 3.2 Flowchart describing the data-driven surrogate modelling process . . . 20

Figure 3.3 Latin Hypercube Sampling Illustration 21

Figure 4.1 Example B-spline parameterization of an airfoil. The designable control

points are restricted to vertical movements only. 26

Figure 4.2 The baseline airfoil (RAE 2822) and sample airfoils from the base train-

ing set. 27

Figure 4.3 Example training points sampled using Latin Hypercube Sampling. . . 28

Figure 4.4 Visualization of the high-fidelity model computational mesh. 30

Figure 4.5 Visualization of the low-fidelity model computational mesh. 30

Figure 4.6 A close-up view of the airfoil surface mesh for the high-fidelity model. . 31

viii

Figure 4.7 Evolution of lift, drag and pitching moment coefficients obtained by the

low fidelity model at M∞ = 0.734. 32

Figure 4.8 A comparison of the pressure distribution obtained by the high and

low-fidelity models at M∞ = 0.734. 32

Figure 4.9 Variation of the simulation time with respect to the grid size for the

grid study in Table 4.1. 33

Figure 4.10 Results of Strategy 1 showing the Pareto fronts obtained in at several

iterations. 35

Figure 4.11 The final Pareto front of Strategy 1 with high-fidelity valiation samples. 35

Figure 4.12 Results of Strategy 2 showing the Pareto fronts obtained in at several

iterations. 38

Figure 4.13 The final Pareto front of Strategy 2 with high-fidelity valiation samples. 38

Figure 4.14 Results of Strategy 3 showing the Pareto fronts obtained in at several

iterations. 41

Figure 4.15 The final Pareto front of Strategy 3 with high-fidelity valiation samples. 41

Figure 4.16 Comparision of the final Pareto fronts obtained by the three strategies. 42

Figure 4.17 Designs selected along the final Pareto front of strategy 3 for visualization. 43

Figure 4.18 Airfoil shape of the designs selected from the final Pareto front of Strat-

egy 3. 43

Figure 4.19 Pressure coefficient of designs selected from the final Pareto front of

Strategy 3. 44

Figure 4.20 Pressure coefficient contours for design 1. 44

Figure 4.21 Pressure coefficient contours for design 2. 45

Figure 4.22 Pressure coefficient contours for design 3. 45

Figure 4.23 A comparison of the proposed multi-objective algorithm with the single-

objective optimization using a scalarized objective function. 47

Figure 4.24 Results of Strategy 3 showing the Pareto fronts obtained with 500 initial

sampling points. 49

ix

Figure 4.25 Results of Strategy 3 showing the Pareto fronts obtained with 300 initial

sampling points. 50

Figure 4.26 Results of Strategy 3 showing the Pareto fronts obtained with 100 initial

sampling points. 50

Figure 4.27 Results of Strategy 3 showing the Pareto fronts obtained with 100 initial

sampling points and 3 refinement points. 51

Figure 4.28 Results of Strategy 3 showing the Pareto fronts obtained with 1,600 and

100 initial sampling points. 52

x

ABSTRACT

Computationally efficient constrained multi-objective design optimization of transonic air-

foils is considered. The proposed methodology focuses on fixed-lift design aimed at finding

the best possible trade-offs between the conflicting objectives. The algorithm exploits the

surrogate-based optimization principle, variable-fidelity computational fluid dynamics (CFD)

models, as well as auxiliary approximation surrogates (here, using kriging). The kriging models

constructed within a reduced design space. The optimization process has three major stages:

(i) design space reduction which involves the identification of the extreme points of the Pareto

front through single-objective optimization, (ii) construction of the kriging model and an ini-

tial Pareto front generation using multi-objective evolutionary algorithm, and (iii) Pareto front

refinement using co-kriging models. For the sake of computational efficiency, stages (i) and (ii)

are realized at the level of low-fidelity CFD models. The proposed algorithm is applied to the

multi-objective optimization of a transonic airfoil at a Mach number of 0.734 and a fixed lift

coefficient of 0.824. The shape is parameterized with eight B-spline control points. The fluid

flow is taken to be inviscid. The high-fidelity model solves the compressible Euler equations.

The low-fidelity model is the same as the high-fidelity one, but with a coarser description

and is much faster to execute. With the proposed approach, the entire Pareto front of the

drag coefficient and the pitching moment coefficient is obtained using 100 low-fidelity samples

and 3 high-fidelity model samples. This cost is not only considerably lower (up to two orders

of magnitude) than the cost of direct high-fidelity model optimization using metaheuristics

without design space reduction, but, more importantly, renders multi-objective optimization of

transonic airfoil shapes computationally tractable, even at the level of accurate CFD models.

xi

NOMENCLATURE

A Response correction matrix

AbaselineBaseline cross sectional area [m2]

Ac Cross sectional area of low-fidelity model [m2]

Af Cross sectional area of high-fidelity model [m2]

Amin Minimum cross sectional area [m2]

al Scalar terms of response correction matrix A

ad Scalar terms of response correction matrix A

Cd Drag coefficient matrix of low-fidelity model

Cl Lift coefficient matrix of low-fidelity model

Cd Drag coefficient [-]

Cd.c Drag coefficient of low-fidelity model [-]

Cd.f Drag coefficient of high-fidelity model [-]

Cl Lift coefficient [-]

Cl.c Lift coefficient of low-fidelity model [-]

Cl.f Lift coefficient of high-fidelity model [-]

Cm Pitching moment coefficient [-]

Cm.c Pitching moment coefficient of low-fidelity model [-]

Cm.f Pitching moment coefficient of high-fidelity model [-]

Cp Pressure coefficient [-]

D Response correction matrix

D Drag [N]

dl Scalar terms of response correction matrix A

dd Scalar terms of response correction matrix A

Fd Drag coefficient matrix of high-fidelity model

xii

Fl Lift coefficient matrix of high-fidelity model

g(x) Inequality constraints

h(x) Equality constraints

H Scalar valued objective function

l Design variable lower bound

L Lift [N]

M∞ Mach number [-]

q Additive response correction

s Surrogate model

u Design variable upper bound

x Airfoil chord-wise location [m]

X B-spline control polygon coordinates

x Design variable

x∗ Optimized design variable

z Airfoil thickness [m]

Z B-spline control polygon coordinates

1

CHAPTER 1. INTRODUCTION

1.1 Motivation and Challenges

The development of complex engineering systems requires us to deal with various conflict-

ing objectives. For example, in the development of a cellphone we need to look into several

objectives like cost, battery life, and aesthetics. Attaining the best values of all the objectives

simultaneous may be an impossible task. In such cases, we want to know the optimal decisions

that need to be taken in the presence of trade-offs between the competing objectives. Here,

the task is to find a representative set of optimal solutions that satisfy the different objectives,

the so-called Pareto-optimal set [2], which describes the trade-offs between these objectives.

Pareto optimality, is a state of allocation of resources in which it is impossible to make any one

individual better off without making at least one individual worse off [3].

We will explain the concept of Pareto optimality through an example. Let us assume that

we are designing an aircraft where we want to obtain the trade-off between two objectives

F = [F1 F2]T , where, for example, F1 is the cost and F2 is the range. Let us assume that

there are two design variables x = [x1 x2]T , where, for example, x1 is the wing span and

x2 is the wing thickness to chord ratio. Figure 1.1 shows the feasible design space and the

corresponding objective space. Consider designs A, B, C, and D. Out of these four designs,

Design A gives the best range but at the same time it is the most expensive one. Similarly,

Design B has a shorter range and is also very expensive. Design C, however, has the same

range as B, but is much cheaper. Design D is cheaper than the other three designs, but has the

same range as B and C. Moreover, Design D lies on the Pareto-optimal front, and represents

the best design for the given values of the two objectives. In other words, it is not possible to

find a design than has a longer range than Design D without increasing the cost.

2

A

A
C

D

B

B
C

D

F1 (Cost)

F 2
(R
an

ge
)

X1

X
2

Feasible space Pareto-optimal front

a) Design space b) Objective space

Figure 1.1 Representation of the design space and the corresponding feasible objective space.

Designs A, B, and C are non-optimal solutions. Design D lies on the Pareto-optimal

front.

The above example explains how the trade-offs between conflicting objectives can be repre-

sented within the design and objective spaces. A rudimentary approach to the simultaneous

control of several objectives is a priori preference articulation (i.e., selection of the primary ob-

jective such as cost), and handling the remaining objectives by means of constraints of penalty

functions. As a result, the problem can be solved as a single-objective one. However, in

some situations it is of interest to gain more comprehensive information about the system at

hand which may allow the designer to understand the characteristics of the possible trade-offs

between conflicting objectives. In such a case, the entire Pareto front needs to be generated.

Multi-objective optimization [4] (MOO) (also called vector optimization or Pareto optimiza-

tion) is used to obtain the trade-offs between competing objectives. There are various methods

to perform MOO (Section 2 gives the background of MOO). A widely used approach involves

the use of metaheuristic algorithms, such as genetic algorithms [5] (GAs), multi-objective evo-

lutionary algorithm [6] (MOEAs), and particle swarm optimization [7] (PSO). Their primary

advantage is the capability of generating the entire Pareto front representation in a single al-

gorithm run. Unfortunately, metaheuristics are computationally intensive due to processing of

large sets of candidate designs (population sizes of up to a few hundreds of individuals are not

3

F1
(x

),
F2

(x
)

Number of computational cells Number of computational cells

Ti
m

e
 (

m
in

)

F1

F2

a) Objectives b) Simulation time

Figure 1.2 PDE simulations (such as computational fluid dynamics (CFD) simulations) need

dense computational grids that require long CPU times (often on the order of days)

on high performance computing clusters. The graph shows how the time and the

objective function values of a 2D CFD simulation of transonic airfoil flow vary

with the grid density.

uncommon). Consequently, metaheuristic algorithms are almost always limited to situations

where the underlying computational model is very fast to execute and small design spaces.

High-fidelity partial differential equation (PDE) simulations are becoming increasingly im-

portant in the design of complex multidisciplinary engineering systems. The reason behind

this is that the physics governing these complex systems can be highly nonlinear. Moreover,

nonlinear couplings between disciplines may exist. Furthermore, when considering unconven-

tional systems, it may not be possible to rely on prior designs. High-fidelity PDE simulations

are, therefore, essential in the development of many modern engineering systems, even at the

initial conceptual stage, since lower fidelity methods may not be able to capture reliably the

main characteristics to yield the best design. Unfortunately, high-fidelity PDE simulations are

computationally expensive. For example, a single PDE simulation of the fluid flow past an

aerodynamic surface, such as a typical transonic transport wing shape, can be on the order of

one day when using high performance computing (HPC). Figure 1.2 gives an example for the

two-dimensional inviscid transonic flow past a airfoil. The trends for a wing shape will be the

same, but the simulation time will be an order of magnitude larger.

4

The key challenges with automated PDE-constrained MOO are as follows: (1) high com-

putational cost of accurate PDE simulations, (2) large design space dimensionality and large

parameter ranges, and (3) a large number of system evaluations required by conventional MOO

techniques. The combination of (1) and (2) may yield design problems which are prohibitively

expensive to solve using (3). Therefore, efficient methodologies are required to reduce the de-

sign space, speed-up the simulations while still retaining a desired accuracy, and reduce the

number of required system evaluations.

1.2 Research Objectives and Contributions

The overall objective of this research work is to investigate strategies to accelerate PDE-

constrained MOO to enable fast iterative system design. To limit the scope, we focus the

work on the design of airfoil shapes in transonic fluid flow. This design problem requires the

computational fluid dynamics (CFD) simulations of the transonic fluid flow. Airfoil shapes are

typically described using up to 15 parameters, and, in this work we parameterize the shapes

with eight parameters. The objective is to generate the trade-offs of the airfoil characteristics.

In particular, the trade-offs between the drag and pitching moment coefficients are generated

at a fixed lift coefficient. Therefore, the MOO design problem considered in this work involves

small-scale PDE simulations (on the order of 20 minutes on HPC) and a low-dimensional design

space (8 parameters). Future work, will consider larger scales and higher dimensional problems.

The MOO approach proposed in this work is as follows. We integrate fast physics-based

surrogate models and design space reduction techniques to approximately identify the Pareto-

optimal front, and, subsequently, refine the Pareto front using a limited number of computation-

ally expensive system evaluations. To achieve this, we developed a computational framework

which integrates variable-fidelity CFD models with numerical algorithms to perform the MOO.

In particular, a critical step in the MOO process is to reduce the design space to enable the

construction of an accurate approximation model (we use kriging interpolation [8]) with a lim-

ited number of fast low-fidelity CFD models. The design space reduction is achieved through

single-objective optimization of each objective separately. The kriging surrogate is then uti-

lized to generate the initial approximate Pareto front using MOEA, which is computationally

5

efficient since the kriging surrogate is very fast. The approximate Pareto front is then refined

by constructing a co-kriging model [8] on top of the initial kriging surrogate with a limited

number of high-fidelity PDE simulations. To validate the approach, we perform MOO of the

full design space and compare with the proposed approach.

1.3 Thesis Outline

The thesis is structured as follows. Chapter 2 provides the background of MOO, MOO

algorithms, and MOO approaches used in aerodynamic design. The proposed MOO algorithm

is described in Chapter 3. The results of the numerical application is given in Chapter 4.

Chapter 5 concludes the thesis.

6

CHAPTER 2. BACKGROUND

2.1 Definition and Formulation of Multi-Objective Optimization

The process of optimizing systematically and simultaneously a collection of objective func-

tions is called multi-objective optimization (MOO) (also called vector optimization, Pareto

optimization, or multi-criteria optimization) [2]. MOO is an area of multiple criteria decision

making, that deals with mathematical optimization problems involving more than one objec-

tive function to be optimized simultaneously [4]. It has been applied in many fields of science,

including engineering, economics and logistics where optimal decisions need to be taken in the

presence of trade-offs between two or more conflicting objectives. Some of the few examples

of multi-objective optimization problems involving two or three objectives are minimizing cost

while maximizing comfort while buying a car, and maximizing performance whilst minimizing

fuel consumption and emission of pollutants of a vehicle. Typically, the case of competitive

objectives is the most interesting in the research field of MOP, because the choice of an “ac-

ceptable” or “best” solution relies on the trade-offs of the objective functions, which ultimately

depends on human preferences and decisions [9].

MOO can be described in mathematical terms as follows [2, 3, 4]

min(F1(x), F2(x), . . . , Fk(x)) (2.1)

subject to gj(x) ≤ 0, j = 1, 2, . . . ,m, (2.2)

hl(x) = 0, l = 1, 2, . . . , e, (2.3)

where k is the number of objective functions, m is the number of inequality constraints, and

e is the number of equality constraints. x ∈ En is a vector of design variables (also called

decision variables), where n is the number of independent variables xi. F(x) ∈ Ek is a vector

7

of objective functions Fi(x) : En → E1. Fi(x) are also called objectives, criteria, payoff

functions, cost functions, or value functions. The feasible design space X (often called the

feasible decision space or constraint set) is defined as the set {x|gj(x) ≤ 0, j=1 ,2,...,m; and

hi(x) = 0, i = 1, 2, ..., e}. The feasible criterion space Z (also called the feasible cost space or

the attainable set) is defined as the set {F(x)|x ∈ X}.

Unlike single-objective optimization, a solution to a multi-objective problem is more of a

concept than a definition. Typically, there is no single global solution, rather we may need to

determine a set of points that all fit a predetermined definition for an optimum. The main

concept in defining an optimal point is that of Pareto optimality [10]. All Pareto optimal points

lie on the boundary of the feasible criterion space Z [11]. Often, algorithms provide solutions

that may not be Pareto optimal but may satisfy other criteria, making them significant for

practical applications. All Pareto optimal points may be categorized as being either proper

or improper. The idea of proper Pareto optimality and its relevance to certain algorithms is

discussed by [12, 13]. It is defined as follows: Properly Pareto Optimal: A point, x ∈ X, is

properly Pareto optimal (in the sense of [12]) if it is Pareto optimal and there is some real

number M ≥ 0 such that for each Fi(x) and each x ∈ X satisfying Fi(x) < Fi(x
?), there exists

at least one Fj(x) such that Fj(x
?) < Fj(x) and (Fi(x

?)− Fi(x))/(Fj(x)− Fj(x
?)) ≤M . The

quotient is referred to as a trade-off, and it represents the increment in objective function j

resulting from a decrement in objective function i. As required by the definition the trade-off

between each function and at least one other function be bounded in order for a point to be

properly Pareto optimal. For any given problem, there may be an infinite number of Pareto

optimal points constituting the Pareto optimal set.

2.2 Multi-Objective Optimization Strategies and Algorithms

Several approaches and algorithms to solve MOO problems have been developed. The

following is a brief description of several MOO approaches.

8

2.2.1 Single-Objective Optimization using a Scalarized Objective Function

One way of solving the MOO problem is to scalarize the objectives and solve using single-

objective optimization algorithms. The weighted sum method (WSM) is one way to scalarize

the objectives. WSM transforms multiple objectives into an aggregated objective function

by multiplying each objective function by a weighting factor and summing up all weighted

objective functions as follows [14]

Jweighted sum = w1J1 + w2J2 + · · ·+ wmJm, (2.4)

where wi, i = 1, . . . ,m, is a weighting factor for the ith objective function. The weight

of an objective is chosen in proportion to the relative importance of the objective. The main

disadvantage of this method is it is difficult to set the weight vectors to obtain a Pareto-optimal

solution in a desired region in the objective space. Also it cannot find certain Pareto-optimal

solutions in the case of a nonconvex objective space.

2.2.2 Evolutionary Algorithms

The term evolutionary algorithm (EA) stands for a class of stochastic optimization methods

that simulate the process of natural evolution [6]. EAs have proven themselves as a general,

robust and powerful search mechanism [15]. EAs seem to be especially suited to MOO because

they are able to capture multiple Pareto-optimal solutions in a single simulation run and may

exploit similarities of solutions by recombination. EAs operate on a set of candidate solution

and use strong simplifications to subsequently modify the two basic principles of evolution:

selection and variation. By ‘selection’ we mean the competition for resources among living

beings. Some may be better than others and are more likely to survive and to reproduce their

genetic information. In EAs, natural selection is simulated by a stochastic selection process.

Each solution reproduces a certain number of time depending on their quality, which is assessed

by evaluating the individuals and assigning them scalar fitness values. The other principle,

‘variation’, imitates natural capability of creating new living beings by means of recombination

and mutation. According to some researchers multi-objective search and optimization might

be a problem area where EAs do better than other blind search strategies [16]. Schaffer [17,

9

18] performed the first studies on evolutionary MOO in the mid-1980s. This multi-objective

evolutionary algorithm (MOEA) approach was later used in various field pertaining to multi-

objective problems [19]. The main objectives of MOEAs are [6]: (a) the distance of the resulting

non-dominated front to the Pareto-optimal front should be minimized, (b) a good (in most cases

uniform) distribution of the solutions found is desirable, and (c) the spread of the obtained

non-dominated front should be maximized, i.e., for each objective a wide range of values should

be covered by the non dominated solutions.

2.2.3 Genetic Algorithms

Genetic algorithms (GAs) are one of the approaches that can be used to solve MOO prob-

lems directly. Holland [5] introduced GAs in 1975. Kocer [20] outlined a general GA and

compared it with simulated annealing in its ability to minimize the cost of H-frame transmis-

sion poles subjected to earthquake loading with discrete variables. Gen and Cheng [21] used

GAs to treat problems related to industrial engineering, whereas Davis [22] provided a more

general treatment. Because GAs do not require gradient information, they can be effective

regardless of the nature of the objective functions and constraints. They combine the use of

random numbers and information from previous iterations to evaluate and improve a popula-

tion of points (a group of potential solutions) rather than a single point at a time. GAs are

global optimization techniques, which means they may converge to the global solution rather

than to a local solution. However, it is not true when working with MOO, which usually entails

a set of solution points. Mathematically, we cannot have a single global solution to a MOO

problem. The GA methods involve global optimization, i.e, they determine solutions that are

globally Pareto optimal, not just locally Pareto optimal. Schaffer [18] presents one of the first

treatments of multi-objective GAs, although he only considers unconstrained problems. Schaf-

fer’s approach, which is also called the vector evaluated genetic algorithm (VEGA), involves

producing smaller subsets of the original population, or sub-populations, within a given gen-

eration. Pareto optimality as a concept is not embedded in the fundamentals of GAs. It has

no correlation to the natural origins of genetic methods and hence it is possible with certain

multi-objective GAs that a Pareto optimal solution may be born and then die out.

10

2.2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [7], another type of EA, simulates the movements of a

flock of birds which aim to find food. The relative simplicity of PSO, and the fact that it is a

population-based technique, have made it a natural candidate to be extended for MOO. Moore

and Chapman proposed the first extension of the PSO strategy for solving multi-objective prob-

lems in an unpublished manuscript from 1999 [23]. There was great interest among researchers

to extend PSO after this early attempt. The next proposal was not published until 2002. The

main issues about extending PSO to MOO are discussed in [24]. In order to apply the PSO

strategy for solving MOO problems, the original PSO scheme has to be modified. Reyes-Sierra

and Coello [25] present a comprehensive review of the various multi-objective particle swarm

optimization (MOPSO).

2.3 Applications of Multi-Objective Optimization in Aerodynamic Design

Shape optimization is an important part of the design of aerodynamic components such as

aircraft wings and turbine blades [26, 27]. Nowadays, the use of high-fidelity computational

fluid dynamic (CFD) simulations is widespread in aerodynamic design. While searching for an

improved design using CFD-based parameter sweeps and engineering experience is still a com-

mon practice, design automation using numerical optimization techniques is becoming more

and more popular [28, 29]. Various methods and algorithms are available, from conventional,

gradient-based algorithms [30], including those utilizing cheap adjoint sensitivities [31, 32],

to the more and more popular surrogate-based optimization techniques [33, 34, 35] that of-

fer efficient global optimization, and substantial reduction of the design cost as compared to

traditional methods [36].

Aerodynamic design is inherently a multi-objective problem. In many cases, a primary

objective (e.g., drag coefficient minimization) may be selected through a priori preference ar-

ticulation, whereas the others (e.g., lift coefficient) can be handled through design constraints.

This allows for solving the problem as a single-objective one. Sometimes, however, this is nei-

ther possible nor convenient, e.g., when gaining knowledge about possible trade-offs between

11

competing objectives (example drag coefficient and pitching moment coefficient) is important.

In those situations, solving a genuine MOO is necessary.

The following are just a few examples from the literature where MOO is used in aero-

dynamic design. Shijun [37] uses the Davidon-Fletcher-Powell variable metric method as the

multi-objective optimizer, and the Golden Section method for one-dimensional search, to max-

imize flutter speed by tailoring the fiber orientations of the skin and spar web laminates of

an aircraft wing. Wesley [38] uses a GA with discrete design variable to construct an object-

oriented multi-disciplinary aerodynamic optimization (MDAO) tool. The MDAO tool and

high-fidelity structural analysis is used to minimize the structural weight while maintaining

desired flutter speeds of an X-56A aircraft. Kai [39] presented a novel multidisciplinary frame-

work for performing multi-objective shape optimization of a flexible wing structure. Using

a multidisciplinary algorithm both aerodynamic shape and structural topology are optimized

concurrently using gradient based optimization. Gaetan [40] uses the weighted sum method and

a gradient-based search algorithm to perform an multi-objective aero-structural optimization.

Ekhlas [41] uses multi-objective evolutionary algorithm (MOEA) for optimum aerodynamic

design of horizontal-axis wind turbines (HAWT). Using the evolutionary method of combined

GA and with different airfoil profiles technique, turbine aerodynamic performance is optimized.

Hanafy [42] uses strength Pareto evolutionary algorithm (SPEA) based approach for designing

an integrated fuzzy guidance law. Mukesha [43] uses PSO and GA to solve an aerodynamic

shape optimization problem concerning NACA 0012 airfoil using 12 design variables. Results

show that the PSO scheme is more effective in finding the optimum solution among the various

possible solutions. Overall, based on this brief literature survey, it seems that for aircraft and

aerodynamic design, the weighted sum method and GAs are generally used for MOO. Moreover,

in these works the high-fidelity model is utilized directly in the MOO process.

12

CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION METHODOLOGY

In this section, we define multi-objective aerodynamic design problem, and describe each

step of the multi-objective optimization (MOO) algorithm proposed in this work. In particu-

lar, we describe the variable-fidelity computational fluid dynamics (CFD) modeling and space

mapping correction, design space reduction technique, and the kriging and co-kriging surrogate

model construction. The utilization of the MOO algorithm is demonstrated in Chapter 4 using

an example of transonic airfoil shape design.

3.1 Multi-Objective Aerodynamic Design Formulation

We will denote by x the vector of design variables which are typically the geometry parame-

terization coefficients of the aerodynamic surface of interest. Also, let f(x) = [f1(x) f2(x) . . .

fk(x)]T be a vector of k high-fidelity CFD model responses. Examples of responses include the

airfoil section drag coefficient f1(x) = Cd.f , and the section lift coefficient f2(x) = Cl.f . Let

Fk(x), k = 1, . . . , Nobj , be the kth design objective. A typical performance objective would be

to minimize the drag coefficient (Cd.f), in which case Fk(x) = Cd.f . Another objective would

be to minimize the pitching moment coefficient (Cm.f), in which case Fk(x) = Cm.f .

A comparison of the design solutions in a multi-objective setting is performed using a Pareto

dominance relation. It is necessary because if Nobj > 1, then any two designs x(1) and x(2)

for which Fk(x(1)) < Fk(x(2)) and Fl(x
(2)) < Fl(x

(1)) for at least one pair k 6= l, are not

commensurable, i.e., none is better than the other in the multi-objective sense. We define

Pareto dominance relation 6 (see, e.g., Fonseca [2]), saying that for the two designs x and y,

we have x 6 y (x dominates over y) if Fk(x) ≤ Fk(y) for all k = 1, . . . , Nobj , and Fk(x) < Fk(y)

for at least one k. Multi-objective optimization aims at finding a representation of the Pareto

13

front (of Pareto-optimal set) XP of the design space X, such that for any x ∈ XP , there is

no y ∈ X for which y 6 x (Fonseca [2]). In practice, the Pareto front gives us information

about the best possible trade-offs between the competing objectives, such as the minimum drag

and pitching moment coefficients for a given value of the lift coefficient. Having a reasonable

representation of the Pareto front is therefore indispensable in making various design decisions.

In practice, the identification of a set of alternative Pareto-optimal solutions needs to be

followed by a decision making process, so that a single final design is selected for prototyping

and subsequent manufacturing. This is done based on given preferences concerning, among

others, importance of particular objectives. In this work, we only focus on the methodology

for obtaining the Pareto front itself. The decision making process is beyond the scope of this

work.

3.2 Optimization Algorithm

As mentioned in the introduction, a fundamental bottleneck of PDE-constrained optimiza-

tion of complex systems is the high cost of the accurate, high-fidelity models, which is especially

challenging in MOO. Therefore, for the sake of computational efficiency, the MOO procedure

presented here exploits, apart from the original, high-fidelity model f , its low-fidelity model

counterpart c. In this work, the low-fidelity model is based on coarse-discretization CFD sim-

ulations (its detailed setup is discussed in Chapter 4, which allows for a fast evaluation at

the cost of some accuracy degradation. A design speedup is achieved by performing most of

the operations at the level of the low-fidelity model; however, high-fidelity simulations are also

executed in order to yield a Pareto set that is sufficiently accurate.

We present the entire MOO flow now, and then discuss each step in the following subsec-

tions. The proposed MOO algorithm is as follows:

1. This step is optional. Correct the low-fidelity model c using output space mapping to

construct a surrogate model s0. If the correction is not performed, then s0 = c;

2. Perform design space reduction using s0;

3. Sample the design space and acquire the surrogate model data with s0;

14

4. Construct a kriging surrogate sKR based on the data from Step 3;

5. Obtain an approximate Pareto set representation by optimizing sKR using MOEA;

6. Evaluate the high-fidelity model f along the Pareto front;

7. Construct/update the co-kriging surrogate sCO;

8. Update Pareto set by optimizing sCO using MOEA;

9. If termination condition is not satisfied go to Step 6; else END

Comments on each step in the above MOO algorithm:

Step 1: Searching for a Pareto front in a large design space using expensive high-fidelity PDE

simulations is not practical, and, hence, a fast surrogate model will speed up the process. For

the sake of reliability, output space mapping (Section 3.3) can be used to correct high-fidelity

CFD models. However, this step may be skipped since the algorithm uses kriging (Step 4) and

co-kriging (Step 7) to generate the Pareto front. These data-driven surrogates can provide the

necessary alignment of the low-fidelity model with the high-fidelity one.

Step 2: Setting up an accurate data-driven surrogate (Step 4) can be very expensive to do in a

large design space, i.e., wide parameter ranges, with multiple design variables. Hence, reducing

the design space is a critical part of the propose MOO algorithm. With a smaller design space

(in terms of reduced design variable parameter ranges, as well as reduced dimensionality), the

kriging (Step 4) and co-kriging (Step 7) models can be set up accurately using few model

evaluations. The design space reduction methodology is described in Section 3.4.

Step 3: Latin Hypercube Sampling (LHS) [44] is used to select the shapes within the reduced

design space for the kriging model construction. The LHS sampling is described in Section 3.5.

Step 4: Using the sampled data from Step 3, a kriging interpolation model is constructed.

Section 3.5 describes the surrogate model construction.

Step 5: A multi-objective evolutionary algorithm (MOEA) is run using the kriging model

(from Step 4) to generate an initial approximation of the Pareto set. Note, however, the Pareto

set obtained is not accurate to the high-fidelity level as we obtain it using the approximate

15

surrogate which is based on the low-fidelity model. Here, we use a standard MOEA with fit-

ness sharing, Pareto-dominance tournament selection, and mating restrictions [2]. The main

changes (compared to single-objective evolutionary algorithms) are the mechanisms that push

the solutions towards the Pareto front (here, realized through Pareto-dominance-based fitness

function as well as the aforementioned selection procedure) and spread the solutions along the

front (here, realized using fitness sharing and mating restrictions). The algorithm is modified

in order to handle nonlinear constraints. The modification include: (i) initialization proce-

dure that only generated feasible individuals, and (ii) crossover and mutation procedures that

maintain feasibility of individuals.

Step 6 and 7: Designs are sampled uniformly along the Pareto front predicted by the initial

kriging model optimization. Those designs are then evaluated using the high-fidelity model.

A co-kriging model is then constructed (or updated) using all the high-fidelity model data

accumulated during the algorithm run. Only a few high-fidelity model evaluations are used per

iteration. The co-kriging model construction is discussed in Section 3.6.

Step 8: The co-kriging model is used to refine the Pareto front using the MOEA. In practice,

just a few iterations are sufficient for convergence. If the alignment between these samples and

the surrogate ones is sufficient, the algorithm is terminated. The convergence condition is based

on the distance between the predicted front and the high-fidelity verification samples (distance

measured in the feature space). In the case of the presented aerodynamic design problems, the

threshold is set to 2 drag counts (one drag count is defined as ∆Cd = 0.0001)).

3.3 Variable-Fidelity Surrogate Model

The main optimization engine utilized here for Pareto front identification is MOEA [45].

Due to excessive computational cost of population-based procedures such as MOEAs, it is not

practical to apply evolutionary search directly at the level of the expensive PDE simulation

model f(x) = [Cd.f (x) Cm.f (x)]T (the lift coefficient Cl.f (x) is kept constant by implicitly

varying the angle of attack). Instead, we exploit a faster representation of the high-fidelity

model, which is a surrogate constructed as follows. Let c(x) = [Cd.c(x) Cm.c(x)]T denote the

low-fidelity airfoil model, where Cd.c and Cm.c are the drag and pitching moment coefficients

16

obtained by the low-fidelity CFD model (the low-fidelity lift coefficient Cl.c(x) is kept constant

by implicitly varying the angle of attack). The description and setup of the high- and low-

fidelity models has been described in Chapter 4. The output space mapping (OSM) surrogate

model s in Step 1 of the MOO algorithm (Section 3.2) is constructed as follows.

Enhancement of the low-fidelity model. In this step, the initial surrogate model s0(x)

is obtained by applying a parameterized output space mapping (OSM) [46, 47]. OSM uses

correction terms that are directly applied to the response components Cd.c(x) and Cm.c(x) of

the low-fidelity model (drag coefficient and pitching moment, respectively). The aerodynamic

surrogate model is defined as [47]

s0(x) = A(x) ◦ c(x) + D(x), (3.1)

where ◦ denotes component-wise multiplication, and A(x) and D(x) are multiplicative and

additive correction terms. Both terms are design-variable-dependent and take the form of

A(x) = [ad.0 + [ad.1ad.2....ad.n] · (x− x0) am.0 + [am.1am.2....am.n] · (x− x0)]T , (3.2)

D(x) = [dd.0 + [dd.1dd.2....dd.n] · (x− x0) dm.0 + [dm.1dm.2....dm.n] · (x− x0)]T , (3.3)

where x0 is the center of the design space. Response correction parameters A(x) and D(x) are

obtained as

[A,D] = arg min
[Ā,D̄]

N∑
k=1

|| f(xk)− (Ā(xk) ◦ c(xk) + D̄(xk)) ||2 (3.4)

i.e., the response scaling is supposed to (globally) improve the matching for all training points

xk, k = 1, . . . , N .

In this work, we use a training set consisting of (i) factorial design with 2n + 1 training

points (n being the number of design variables) allocated at the center of the design space x0

= (l + u)/2 (l and u being the lower and upper bound for the design variables, respectively),

and the centers of its faces, i.e., points with all coordinates but one equal to those of x0, and

the remaining one equal to the corresponding component of l or u; this sampling scheme is

17

also referred to as the star distribution [36], (ii) additional 10 points allocated using the Latin

Hypercube Sampling [44]. The only formal requirement for the necessary number of samples

is that it is larger than the number of model coefficients to be identified.

The correction parameters A and D can be calculated analytically as follows [47]

ad.0

ad.1
...

ad.n

dd.0
...

dd.n

= (CT
d Cd)−1CT

d Fd

am.0

am.1

...

am.n

dm.0

...

dm.n

= (CT
mCm)−1CT

mFm (3.5)

where

Cd =

Cd.c(x
1) Cd.c(x

1) · (x1
1 − x0

1) . . . Cd.c(x
1).(x1

n − x0
n) 1 (x1

1 − x0
1) . . . (x1

n − x0
n)

Cd.c(x
2) Cd.c(x

2).(x2
1 − x0

1) . . . Cd.c(x
2) · (x2

n − x0
n) 1 (x1

1 − x0
1) . . . (x1

n − x0
n)

...
...

. . .
...

...
...

...
...

Cd.c(x
N) Cd.c(x

N) · (xN1 − x0
1) . . . Cd.c(x

N) · (xNn − x0
n) 1 (x1

1 − x0
1) . . . (x1

n − x0
n)

(3.6)

F =

[
Cm.f (x1) Cm.f (x2) . . . Cm.f (xN)

]T
(3.7)

which is a least-square optimal solution to the linear regression problems [ad.0 ad.1 . . . ad.n dd.0

dd.1 . . . dd.n]TCd = Fd and [am.0 am.1 . . . am.n dm.0 dm.1 . . . dm.n]TCm = Fm, equivalent to

(3.4). Note that the matrices CT
l Cl and CT

d Cd are non-singular for N > n + 1, which is the

case for our choice of the training set.

The enhancement of the low-fidelity model using OSM can be skipped since it can be costly.

The data-driven surrogates (Steps 4 and 7) may take care of the low-fidelity model alignment

with the high-fidelity one. In this case, the surrogate model is simply

s0(x) = c(x). (3.8)

18

3.4 Design Space Reduction

The MOO algorithm proposed in this work is heavily based on data-driven surrogate models.

Therefore, it is of primary importance to ensure that the training data for creating the surrogate

models can be acquired in a reasonable timeframe, even if the dimensionality of the design

space is relatively large (say, more than 10 parameters). Here, similar as done in Koziel et

al. [1], we carry out an initial design space reduction in order to identify the sub-region of

the search space that contains the Pareto-optimal solutions. This region is usually a very

small fraction of the original space. It is partially because the bounds for each geometry

parameter are defined rather wide to ensure that the desired solutions are located within these

prescribed limits. Nonetheless, setting up a data-driven surrogate in a large solution space may

be impractical. However, the bounds of the design variables can be conveniently minimized

using single-objective optimization runs with respect to each design goal. The result of those

optimization runs should give us an approximation of where the extreme points of the Pareto-

optimal set lie.

Consider l and u as the initial lower and upper bounds, respectively, for the design variable

vector x. Single-objective optimization of each objective Fk yield the approximate location of

the extreme points xc of the Pareto-optimal set, and can be found as

x∗(k)
c = arg min

l≤x≤u
Fk(s0(x)) (3.9)

where k = 1, . . . , Nobj . The boundaries of the reduced design space can be then defined as l∗

= min{x∗(1)
c ,....,x

∗(Nobj)
c } and u∗ = max{x∗(1)

c ,..., x
∗(Nobj)
c }. The concept of the search space

reduction is illustrated in Fig. 3.1. The reduced space is usually orders of magnitude (volume-

wise) smaller than the initial one, which makes the generation of an accurate data-driven model

possible at a reasonably low computational cost. Although some of the Pareto optimal solutions

might fall outside the reduced design space, a majority of them are normally accounted for

assuming that the objectives are continuous functions of the design variables and the Pareto

front is a connected set.

19

0 10.2

1

0.4

0.8

0.6

0.6

0.8

0.4

1

0.2

0.5
0

0

Reduced Design space Original Design space

x
c
*(1)

x
c
*(2)

Figure 3.1 An illustration of the design space reduction technique using single-objective op-

timization runs (Koziel et al. [1]). The illustration assumes a three-dimensional

design space and two design objectives.

3.5 Kriging Surrogate Construction

A kriging interpolation surrogate model is constructed in Step 4 of the MOO algorithm

presented in Section 3.2. An outline of the process of constructing the surrogate is shown

in Fig. 3.2 which involves performing design of experiments (DOE), data acquisition, model

fitting, and model validation. Each step in the process is described in detail here below.

3.5.1 Design of Experiments

DOE is a technique to distribute sample points within the design space [35]. In this work,

we use Latin Hypercube Sampling (LHS) [35]. LHS is a statistical method for generating a

sample of a given parameter value from a multidimensional distribution, and ensures that each

probability distribution in the model is evenly sampled. The idea of LHS is to use bins to

sample the points along each design variable dimension. For example, as shown in Fig. 3.3, if

20

Design of Experiments

Model Data Acquisition

Kriging Interpolation

Model Validation

Figure 3.2 Flowchart describing the data-driven surrogate modelling process

the range of each design variable is split into 20 bins, for the two-dimensional case, there are

202 cells in the design space. The samples are allocated randomly so that for each dimension

bin there is only one sample inside.

3.5.2 Kriging Interpolation

A kriging [8] interpolation model is utilized in this work to yield an initial approximation

of the Pareto set. It is also the core of the co-kriging approach described in Section 3.6. This

section briefly provides background information on kriging interpolation. A detailed survey can

be found in the literature [48, 49].

Let XB = {x1,x2, ...,xN} be a training set, and let f(XB.KR) be the corresponding set of

high-fidelity model responses. The aim of kriging interpolation is to fit a regression function on

the training nodes and build a Gaussian Process (GP) through the residuals [8]. The regression

function sKR(x) captures highest variance in the training samples while the GP covers the

21

Figure 3.3 Latin Hypercube Sampling Illustration

details related to the interpolation accuracy. This is provided by a kriging interpolant denoted

as

SKR(x) = Mα+ r(x) ·Ψ−1 · (f(XB.KR)− Fα), (3.10)

where M and F are model matrices of the test node x and the base set XB.KR, respectively.

The vector α is a regression function coefficient of the form

α = (X ′B.KRΨ−1XB.KR)−1XB.KRΨ−1(f(XB.KR)) (3.11)

while r(x) = (Ψ(x,x1
KR), ...,Ψ(x,xNKR

KR)) is an 1 × NKR vector of correlations between the

point x and the base set XB.KR, and Ψ is a NKR ×NKR correlation matrix given by

Ψ(x1

KR,x
1
KR) . . . Ψ(x1

KR,x
NKR
KR)

...
. . .

...

Ψ(xNKR
KR ,x1

KR) . . . Ψ(xNKR
KR ,xNKR

KR)

 (3.12)

The kriging interpolation model is capable to predict the approximation error at any location

in the solution space. The error is zero at the training nodes, which is because kriging is an

interpolative model. The regression function actually operates as the mean of the GP, thus

the predictions situated too far from existing training nodes (e.g., outside the sampled region)

22

will revert to the average values. The nature of the response is usually unknown so that a

constant regression function (referred to as ordinary kriging) is often utilized. One should note

that in such cases, kriging is solely an interpolation method without the possibility of response

extrapolation. The choice of the proper correlation function is important in order to create an

accurate kriging surrogate. A widely used class of correlation functions dependent only on the

distance between any two points (here x and x’) is defined by:

Ψ(x,x’) = exp

 ∑
k=1,...,n

−θk|xk − xk|p
 , (3.13)

where the parameter p determines the prediction smoothness, while θk, k = 1, . . . , n, denotes

the influence sphere of a node on its neighbors in each dimension [50]. This is helpful for

identification of relevant variables as it describes the linearity of the response. Usually, p

is constant while the parameters θk are determined using Maximum Likelihood Estimation

(MLE) [51], where the negative concentrated log-likelihood is minimized using

ln(L) ≈ −NKR/2× ln(σ2)− 1/2 ln(| Ψ |), (3.14)

and

σ2 = (f(XB.KR)− Fα)′Ψ−1(f(XB.KR)− Fα)/NKR. (3.15)

Usually, p = 2 is selected (also known as the Gaussian correlation function), which is suitable

for many problems. In the case of sharp responses, selecting p = 1 (which corresponds to the

exponential correlation function) is normally more suitable. Finally, because no extrapolation

capabilities are required, the regression function is set to be constant, i.e., F = [1 1 . . . 1]T

and M = (1).

3.5.3 Model Validation

Model validation is needed to check the quality of the surrogate model constructed in the

data fitting process. Apart from the sampled set of designs that are used to construct the

kriging model, a randomly selected subset is set aside for model validation purposes. The main

purpose of these sets is to allow us evaluate the difference between the true model and the

23

kriging model values at the specified test sites. In this work, we use the root mean square error

(RMSE) metric [35]. We take a set of data of the size nt and a set of predictions at those

locations and calculate the RMSE as

RMSE =

√∑nt
i=0(y(i) − ŷ(i))2

nt
(3.16)

where nt is the size of test data, y(i) is the true data and ŷ(i) is the predicted function value

by the surrogate. Generally, we want the RMSE metric to be as small as possible. A kriging

model with a RMSE value less than 2% can be considered as a reasonably good model, and

can be used reliably within a surrogate-based optimization process [35].

3.6 Co-kriging Surrogate Construction

In this work, combining variable-fidelity CFD simulation data into a single surrogate model

is of primary importance for reducing the cost of the Pareto-optimal set identification. For

that purpose, we follow the work of Koziel et al. [52] and use co-kriging [8]. Co-kriging is an

extension of kriging which exploits correlations between the models of various fidelities. This

results in a considerable enhancement of the surrogate prediction accuracy even if the number

of high-fidelity data samples is very small compared to what is normally required by single-

level (in particular, conventional kriging) modeling. Here, the autoregressive co-kriging model

of Kennedy et al. [53] is adopted.

The generation of the co-kriging model is carried out through a sequential construction of

two kriging models: the first model sKRc dervied from the original surrogate training samples

(XB.KRc, c(XB.KRc)), and the second sKRd model generated on the residuals of the high- and

low-fidelity samples (XB.KRf , sd), where sd = f(XB.KRf)− ρc(XB.KRf). The parameter ρ is a

part of MLE of the second model. If c(XB.KRf) is not available, it can be approximated by the

first model, i.e., as c(XB.KRf) ≈ sKRc(XB.KRf). One should emphasize that the configuration

(specifically, the choice of the correlation function, regression function, and so forth) of both

models can be adjusted separately for the low-fidelity data c and the residuals sd, respectively.

Both models use (3.13) as a correlation function together with constant regression function

24

F = [1 1 . . . 1]T and M = (1). The final co-kriging model sCO(x) is defined similarly as

in (3.10), i.e.,

sCO(x) = Mα+ r(x) ·Ψ−1 · (Sd − Fα), (3.17)

where the block matrices M, F, r(x), and Ψ of (3.14) can be written as a function of the two

underlying kriging models sKRc and sKRd as

r(x) = [ρ · σ2
c · rc(x) ρ2 · σ2

c · rc(x, XB.KRf
) + σ2

d · rd(x)],

Ψ =

 σ2
cΨc ρ · σ2

c ·Ψc(XB.KRc , XB.KRf
)

0 ρ2 · σ2
c ·Ψc(XB.KRf

, XB.KRf
) + σ2

d ·Ψd

 ,

F =

 Fc 0

ρ · Fd Fd

 ,
and

M = [ρ ·Mc Md].

25

CHAPTER 4. NUMERICAL APPLICATIONS

In this chapter, we demonstrate the multi-objective optimization (MOO) algorithm of Sec-

tion 3.2 on the design of aerodynamic surfaces. The case considers transonic airfoil shapes with

eight design variables, and two conflicting objectives. In particular, we generate the trade-offs

for the drag and pitching moment coefficients at a constant lift coefficient. The chapter is

organized as follows. The problem is described in detail first. Three variations of the proposed

MOO algorithm (which we call Strategies 1, 2, and 3) are applied to the design problem and

the results presented. The chapter ends with a comparison of the strategies, and a parametric

study of the third strategy.

4.1 Problem Description

Here, we give the details of the following: formulation of the problem, the design variable

parameterization, training data sampling, variable-fidelity computational fluid dynamics (CFD)

modeling, and an outline of the investigations with the three strategies.

4.1.1 Formulation of the MOO Problem

We consider multi-objective airfoil design in transonic flow at fixed lift. In particular, the

free-stream Mach number is set to M∞ = 0.734, and the lift coefficient is fixed at Cl.f (x) =

0.824, where the subscript f refers to the high-fidelity model, and x is the design variable vector

with a lower bound l and an upper bound u. The first objective is F1(x) = Cd.f (x), where

Cd.f is the high-fidelity drag coefficient. The second objective is F2(x) = Cm.f (x), where Cm.f

is the high-fidelity pitching moment coefficient. Both objectives are minimized. We impose

a constraint on the cross-sectional area, i.e., we have A(x) ≥ Abaseline, where A(x) the cross-

26

sectional area of a given design x nondimensionalized with the chord squared, and Abaseline is

a baseline reference value.

4.1.2 Design Space

We use the B-spline parameterization approach to describe the shape of the airfoil. The

design variable vector is x = p, where p is a vector of the size m× 1, with m being the total

number of control parameters. The airfoil surfaces are written in parametric form as [54]

x(t) =
n+1∑
i=1

XiNi,k(t), z(t) =
n+1∑
i=1

ZiNi,k(t), (4.1)

where (x, z) are the Cartesian coordinates of the airfoil surface, Ni,k is the B-spline basis

function of order k, (Xi, Zi) are the coordinates of the B-spline control polygon, and m = n+1

is the total number of control points. Note that the surface description with (4.1) is continuous.

The control points are used as design variables and allowed only to move freely vertically

as shown in Fig. 4.1. Thus, we have x = [Z1 Z2 . . . Zn+1]T and the corresponding Xi

coordinates are fixed during the optimization process. In this work, we use 8 design variables

with 4 for each surface (as shown in Fig. 4.1).

0 0.2 0.4 0.6 0.8 1
 x

-0.05

0

0.05

 z

Designable control point

Fixed control point

Figure 4.1 Example B-spline parameterization of an airfoil. The designable control points are

restricted to vertical movements only.

27

We use the RAE 2822 airfoil as a baseline. The shape is fitted to a B-spline curve by

setting the x-locations of design variables as X = [Xu; Xl]
T = [0.0 0.15 0.45 0.8; 0.0 0.35 0.6

0.9]T . After the fit, the baseline design variable vector is x0 = [xu; xl]
T = [0.0175 0.04975

0.0688 0.0406; -0.0291 -0.0679 -0.03842 0.0054]T . The bounds of the design space are defined

by l = (1−sign(x0) ·0.15)◦x0 and u = (1+sign(x0) ·0.15)◦x0. Using the definition, the lower

and upper bounds on x0 are set as l = [0.0105 0.0414 0.0537 0.0200; -0.0369 -0.0808 -0.0666

-0.0265]T and u = [0.0231 0.0629 0.0889 0.0816; -0.0231 -0.0536 -0.0210 0.0140]T , respectively.

The baseline reference cross-sectional area is ARAE2822= 0.0779.

4.1.3 Training Points

Sets of design points are generated around the baseline airfoil (the RAE 2822), within the

upper and lower bounds, using Latin Hypercube Sampling (LHS) (see Section 3.5). Apart

from LHS sampling, 256 corner points of the design space are generated and included in the

set. Once the points are generated, each of them are checked for violation of area constraint

and those infeasible are removed. An initial base set of 1,600 designs is used in all the strategies

(this number is based on the mean square error and the values for each strategy are given in

the results). Figure 4.2 shows the baseline airfoil, as well as a few samples from the base set.

Figure 4.3 shows the design points (in black) for 2 of the control points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 x

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 z

Rae2822 Airfoil

 Airfoils from base set

Figure 4.2 The baseline airfoil (RAE 2822) and sample airfoils from the base training set.

28

0.018 0.0185 0.019 0.0195 0.02
X1 (1st control point)

0.0423

0.04235

0.0424

0.04245
X

2
(2

n
d

 c
o

n
tr

o
l p

o
in

t)

Corner points of the design spaceSampled design points by LHS

Figure 4.3 Example training points sampled using Latin Hypercube Sampling.

Output space mapping is utilized in Strategy 2 to setup the inital surrogate. In that case, a

set of 30 points for the low- and high-fidelity simulations are generated within the given lower

and upper bounds. Out of the 30 points, 2n+ 1 points are generated using a star distribution

(these are at the centers of bounds and at the center, hence the name), and the rest are

generated using LHS.

4.1.4 Computational Fluid Dynamics Modeling

The Stanford University Unstructured (SU2) computer code [55] is utilized for the fluid flow

simulations. The steady compressible Euler equations are solved with an implicit density-based

formulation. The convective fluxes are calculated using the second order Jameson-Schmidt-

Turkel (JST) scheme [56]. Three multi-grid levels are used for solution acceleration. Asymptotic

convergence to a steady state solution is obtained in each case. The flow solver convergence

criterion is the one that occurs first of the two: (i) the change in the drag coefficient value over

the last 100 iterations is less than 10−4, or (ii) a maximum number of iterations of 1,000.

An O-type computational mesh is generated using Pointwise. The farfield boundary is set

55 chord lengths away from the airfoil surface. The mesh density is controlled by the number of

29

cells on the airfoil surface and the number of cells normal to the surface. Distance to the first

grid point is 0.001c. The results of a grid convergence study, given in Table 4.1, revealed that

the 512× 512 mesh (shown number 5 in the table) is required for convergence within 0.2 drag

counts (1 drag count is ∆Cd = 10−4) when compared with the next mesh. The flow simulation

for Mesh 5 takes about 30 minutes. This time includes several simulations to obtain the desired

lift coefficient by varying the angle of attack. Typically, 3 to 4 simulations are required.

For the multi-objective optimization studies, Mesh 5 will be used as the high-fidelity model f,

and Mesh 3 as the low-fidelity model c. Figures 4.4, 4.5, and 4.6 show the computational grids.

For the low-fidelity model, the maximum number of solver iterations is set to 300. Figure

4.1.5 shows the solver convergence of the low-fidelity model. Consequently, the high-to-low

simulation time ratio is around 30 (see Fig. 4.9). A comparison of the pressure distributions,

shown in Fig. 4.8, indicates that the low-fidelity model, in spite of being based on much coarser

mesh and reduced flow solver iterations, captures the main features of the high-fidelity model

pressure distribution quite well. The comparison indicates that the low-fidelity model may

be a relatively good representation of the high-fidelity one. The biggest discrepancy in the

distributions is around the shock on the upper surface, leading to an under estimation of both

the drag and pitching moment coefficients (Table 4.1). Note that the drag and pitching moment

coefficients are presented in terms of counts. We define one drag count (d.c.) to be ∆Cd =

0.0001, and one pitching moment count (p.c.) to be ∆Cm = 0.00127.

4.1.5 Investigations

We solve the problem described in this section using three strategies. Each strategy uses

the MOO algorithm in Section 3.2, but with different setup of the initial surrogate, as well

as with and without the design space reduction step. We compare the strategies in terms of

Pareto front findings and computational cost.

30

Figure 4.4 Visualization of the high-fidelity model computational mesh.

Figure 4.5 Visualization of the low-fidelity model computational mesh.

31

Table 4.1 Results of the grid convergence study at M∞ = 0.734 and Cl = 0.824.

Grid Size Cd Cm

64× 64 0.0221 0.1384

128× 128 0.0228 0.1439

256× 256 0.0230 0.1448

512× 512 0.0231 0.1450

Figure 4.6 A close-up view of the airfoil surface mesh for the high-fidelity model.

32

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Solver Iterations

C
d
,C

l,C
m

C
d

C
m

C
l

Figure 4.7 Evolution of lift, drag and pitching moment coefficients obtained by the low fidelity

model at M∞ = 0.734.

Figure 4.8 A comparison of the pressure distribution obtained by the high and low-fidelity

models at M∞ = 0.734.

33

High-fidelity

Low-fidelity

Figure 4.9 Variation of the simulation time with respect to the grid size for the grid study in

Table 4.1.

34

4.2 Strategy 1

In Strategy 1, we follow the MOO algorithm in Section 3.2, but we skip the Output Space

Mapping correction and utilize the low-fidelity model, i.e., s0(x) = c(x). We also skip design

space reduction (step 2) and perform MOO on the original design space. Below, we outline the

MOO algorithm, give results and summarize the computational cost.

4.2.1 MOO Algorithm

The steps of the MOO algorithm for Strategy 1 are as follows:

1. Sample the design space and acquire the low-fidelity model data with c;

2. Construct a kriging surrogate sKR based on the data from Step 1;

3. Obtain an approximate Pareto set representation by optimizing sKR using MOEA;

4. Evaluate the high-fidelity model f along the Pareto front;

5. Construct/update the co-kriging surrogate sCO;

6. Update Pareto set by optimizing sCO using MOEA;

7. If termination condition is not satisfied go to Step 5; else END

4.2.2 Results

The MOO algorithm was stopped after 7 iterations. Figure 4.10 shows the 1st, 3rd, 5th,

and the 7th Pareto fronts. After the initial Pareto generation using the kriging model, 9 high-

fidelity refinement samples are evaluated along the front. Subsequently, the co-kriging model is

constructed and optimized using MOEA. This is repeated 7 times. Figure 4.11 shows the final

Pareto and several high-fidelity model validation samples. It can be observed that the Pareto

front predicted in the final iteration is close to the high fidelity verification samples. However,

even after 7 iterations, the agreement between the predicted front and the verification samples

is good except at its right-hand-side edge where the actual high-fidelity model samples exhibit

higher pitching moments. Further iterations were performed, but it was found that the results

did not improve much.

35

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

70

75

80

85

90

95

100

105

110

F
2

 (
P

it
ch

in
g

 M
o

m
en

t
C

o
u

n
ts

)

1st Pareto

3rd Pareto (green)

7th Pareto

5th Pareto (red)

Figure 4.10 Results of Strategy 1 showing the Pareto fronts obtained in at several iterations.

0 20 40 60 80 100 120

F1 (Drag Counts)

70

75

80

85

90

95

100

105

110

F
2

 (
P

it
ch

in
g

 M
o

m
en

t
C

o
u

n
ts

)

High-fidelity verification samples

Final pareto after 7 iterations (Strategy 1)

Figure 4.11 The final Pareto front of Strategy 1 with high-fidelity valiation samples.

36

4.2.3 Computational Cost

The overall computational cost of the multi-objective process in terms of number of evalu-

ations is 1,600 (1,475 feasible points and 125 feasible corner points) low-fidelity model evalua-

tions, and 63 high-fidelity model evaluations (9 each in 7 iterations of co-kriging-based Pareto

front refinements). The cost of the kriging and co-kriging function evaluations in the MOEA

process is ignored as the calculations are performed very quickly.

In terms of time, there is a significant advantage of the proposed method with variable-

fidelity models compared to that of using the high-fidelity directly. Each low-fidelity model

simulation is less than 1 min, and each high-fidelity model simulation is around 30 min. Hence,

for 1,600 low-fidelity model simulations and 63 high-fidelity model simulations, the total time is

around 3,490 minutes, or 2.4 days. However, the proposed method did not converge even after

9 iterations and hence the total time can be up to around 3 days. Using only the high-fidelity

model, and assuming 1,663 samples are still needed, the total time would be around 34.6 days.

4.3 Strategy 2

Strategy 2 follows the MOO algorithm in Section 3.2 with the following modifications.

We perform the OSM correction of the low-fidelity model (Step 1), but skip the design space

reduction (Step 2) and perform MOO on the original design space.

4.3.1 Description

The steps of the MOO algorithm for Strategy 2 are as follows:

1. Correct the low-fidelity model c using output space mapping to construct a surrogate

model s0;

2. Sample the design space and acquire the surrogate model data with s0;

3. Construct a kriging surrogate sKR based on the data from Step 3;

4. Obtain an approximate Pareto set representation by optimizing sKR using MOEA;

5. Evaluate the high-fidelity model f along the Pareto front;

37

6. Construct/update the co-kriging surrogate sCO;

7. Update Pareto set by optimizing sCO using MOEA;

8. If termination condition is not satisfied go to Step 5; else END

4.3.2 Results

Figure 4.12 shows the results of the Strategy 2 iterations. In this case, three iterations

of the MOO are enough to converge. Apart from the 1,600 points, extra 30 feasible points

are generated to calculate to construct the initial surrogate s0. These points include 2n + 1

corner points (where n = 8 is the number of design variables) and the rest points are from LHS

sampling (Section 4.1.3). While collecting points to calculate the OSM correction parameters,

care is taken that the infeasible designs (the ones violating the area constraint) are removed.

The 1,600 low-fidelity data samples are corrected to approximate it near to the high-fidelity

model. Using these corrected set, the kriging model sKR is generated, which is subsequently

used to perform the MOEA and get the first Pareto front. Then, the Pareto is refined using

9 high-fidelity verification samples evaluated along the Pareto front to generate the co-kriging

model sCO as described in Section 3.6 until convergence. It can be observed from Fig. 4.12

that the Pareto front predicted in the third iteration is converged within 1 d.c., i.e, after three

iterations, the agreement between the predicted front and the refinement samples is withing 1

d.c.

4.3.3 Computational Cost

The overall computational cost of the MOO process in terms of number of evaluations are

the initial 1,600 low-fidelity model evaluations, and 30 low- and high-fidelity model evaluations

for OSM correction. Then 27 high fidelity model evaluations are used for the refinement phase

(9 in each of the 3 iterations). The total time is 3,340 minutes, or 2.3 days.

38

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

70

75

80

85

90

95

100

105

110

F
2

 (
P

it
ch

in
g

 M
o

m
en

t
C

o
u

n
ts

)

3rd Pareto (Green)

2nd Pareto (Blue)

1st Pareto (Black)

Figure 4.12 Results of Strategy 2 showing the Pareto fronts obtained in at several iterations.

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

70

75

80

85

90

95

100

105

110

F
2

 (
P

it
ch

in
g

 M
o

m
en

t
C

o
u

n
ts

)

Final predicted front

High fidelity verification data

Figure 4.13 The final Pareto front of Strategy 2 with high-fidelity valiation samples.

39

4.4 Strategy 3

In Strategy 3, we skip the OSM correction in Step 1 of the MOO algorithm in Section 3.2,

but perform design space reduction of Step 2.

4.4.1 Description

The steps of the MOO algorithm for Strategy 3 are as follows:

1. Perform design space reduction using s0;

2. Sample the design space and acquire the low-fidelity model data with c;

3. Construct a kriging surrogate sKR based on the data from Step 2;

4. Obtain an approximate Pareto set representation by optimizing sKR using MOEA;

5. Evaluate the high-fidelity model f along the Pareto front;

6. Construct/update the co-kriging surrogate sCO;

7. Update Pareto set by optimizing sCO using MOEA;

8. If termination condition is not satisfied go to Step 5; else END

4.4.2 Results

To reduce the design space we perform two single-objective optimization runs to obtain an

approximation of the extreme points of the Pareto front. Pattern search method [REF] is used

to perform these runs using the low-fidelity CFD model. The optimization runs are performed

at M∞ = 0.734 with Abaseline = 0.0779. To maintain a fixed lift for each new design produced

by the optimizer, the angle of attack is used as a dummy parameter. The specification of the

single-objective optimization runs are as follows:

x∗(1)
c = arg min

l≤x≤u
Cd.c(x) s.t. Cl = 0.824, A ≥ Abaseline,

x∗(2)
c = arg min

l≤x≤u
Cm.c(x) s.t. Cl = 0.824, A ≥ Abaseline.

40

Pattern search method needs 256 function evaluations in both optimization runs to reach

to the minimum, and optimum designs are:

x∗(1)
c = [0.01790, 0.04244, 0.06388, 0.046725,−0.02938,−0.07122,−0.04399, 0.0063],

C
∗(1)
d = 0.00239, C∗(1)

m = 0.12883,

x∗(2)
c = [0.02010, 0.042341, 0.06348, 0.03455,−0.02938,−0.07802,−0.04415, 0.00466],

C
∗(2)
d = 0.00857, C∗(2)

m = 0.08441.

The reduced design space (according to Section 3.4) is, therefore, defined by l∗= min(x
∗(1)
c ,

x
∗(2)
c), and u∗=max(x

∗(1)
c , x

∗(2)
c). If we compare x

∗(1)
c and x

∗(2)
c we find that the 5th design is

same for both. It means the value of that design variable is constant at -0.02938 and hence

we can reduce the dimension of the design space by removing that design variable. Now the

reduced design space has a dimension of 7 instead of 8. Thus, we get the following bounds of

the reduced design space:

l∗ = [0.0179, 0.0423, 0.0635, 0.0346,−0.0780,−0.0442, 0.0047],

u∗ = [0.0201, 0.0424, 0.0639, 0.0467,−0.0712,−0.0440, 0.0063].

The reduced space is over 100 times smaller (volume-wise) than the original space. In

the next step, a kriging interpolation model sKR is constructed using 1,600 training points,

including corner points, and 1,344 samples allocated using LHS. Subsequently, Steps 5-8 of the

MOO procedure are executed using 9 high-fidelity verification points uniformly sampled along

the Pareto front predicted by the surrogate model. The process was converged in 2 iterations.

Figure 4.14 shows the Pareto fronts at subsequent design refinements. In Fig. 4.15 it can be

observed that there is a good agreement between the predicted front and the validation samples

after 2 iterations, and the algorithm has reached the convergence.

4.4.3 Computational Cost

The total design optimization cost corresponds to 1,856 low-fidelity function evaluations,

and 18 high-fidelity refinement samples. The total time is 2,652 min, or 1.8 days.

41

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

60

70

80

90

100

110

F
2
 (

P
it

h
in

g
 M

o
m

en
t

C
o

u
n

ts
)

1st Pareto

2nd Pareto

Low-fi Model Optimization
 (objective 1)

Low-fi Model Optimization (objective 2)

Figure 4.14 Results of Strategy 3 showing the Pareto fronts obtained in at several iterations.

0 10 20 30 40 50 60 70 80 90 100 110

F1(Drag Counts)

70

75

80

85

90

95

100

105

110

F
2
 (

P
it

ch
in

g
 M

o
m

en
t

C
o
u

n
ts

)

Final predicted front

High fidelity verification data

Figure 4.15 The final Pareto front of Strategy 3 with high-fidelity valiation samples.

42

4.5 Comparison of the Strategies

In this section, we summarize the outcome of each strategy and compare the cost in terms

of time and number of evaluations. Figure 4.16 compares the final Pareto fronts for all the

three strategies. It can be observed that a majority of the fronts are comparable. Table 4.2

summarizes the cost. Strategy 1 was the least efficient as it needed 3 days. Moreover, Strategy

1 was not fully converged after 7 iterations. Strategy 2 gave good results and converged

well within 3 iterations and needed 2.3 days. Strategy 3 was the most efficient method as it

converged within 2 iterations and needed 1.8 days. Three designs were selected along the final

Pareto front of Strategy 3 (as shown in Fig. 4.17) and the characteristic features are plotted in

Figs. 4.18, 4.19, 4.20, 4.21 and 4.22.

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

60

70

80

90

100

110

F
2

 (
P

it
ch

in
g

 M
o

m
en

t
C

o
u

n
ts

)

Strategy 3 (red)

Strategy 1 (blue)

Strategy 2 (green)

Figure 4.16 Comparision of the final Pareto fronts obtained by the three strategies.

Table 4.2 Comparison of the computatioal cost of the three strategies.

Strategy Iterations Nc Nf Time (days)

1 7+ 1,600 63 3

2 3 1,630 48 2.3

3 2 2,112 9 1.8

43

0 10 20 30 40 50 60 70 80 90 100 110

F1(Drag Counts)

70

75

80

85

90

95

100

105

110

F
2
 (

P
it

ch
in

g
 M

o
m

en
t

C
o
u

n
ts

)

Design 1

Design 2

Design 3

Figure 4.17 Designs selected along the final Pareto front of strategy 3 for visualization.

Figure 4.18 Airfoil shape of the designs selected from the final Pareto front of Strategy 3.

44

Figure 4.19 Pressure coefficient of designs selected from the final Pareto front of Strategy 3.

Figure 4.20 Pressure coefficient contours for design 1.

45

Figure 4.21 Pressure coefficient contours for design 2.

Figure 4.22 Pressure coefficient contours for design 3.

46

4.6 Comparison using Single-Objective Optimization and a Scalarized

Objective

To validate the Pareto fronts obtained by the proposed MOO algorithm, we need to have

the Pareto front evaluated entirely using the high-fidelity model. To do this, we compare the

results obtained with the single-objective optimization and a scalarized objective function (see

Section 2.2.1). In particular, using this approach we find the two extreme points of the Pareto

front, and two other points on the front.

The extreme points are found as follows:

x
∗(1)
f = arg min

l≤x≤u
Cd.f (x) s.t. Cl = 0.824, A ≥ Abaseline,

x
∗(2)
f = arg min

l≤x≤u
Cm.f (x) s.t. Cl = 0.824, A ≥ Abaseline.

And the results are:

x
∗(1)
f = [0.01790, 0.04244, 0.06388, 0.04672,−0.02938,−0.07122,−0.04399, 0.0063],

C
∗(1)
d.f = 0.0011, C

∗(1)
m.f = 0.1319,

x
∗(2)
f = [0.02010, 0.042341, 0.06348, 0.03455,−0.02928,−0.07802,−0.04415, 0.0046],

C
∗(2)
d.f = 0.0073, C

∗(2)
d.f = 0.0862.

The other two points are found as:

x
∗(3 & 4))
f = arg min

l≤x≤u
w1 × Cd.f (x) + w2 × Cm.f (x) s.t. Cl = 0.824, A ≥ Abaseline,

where the weights w1 and w2 are varied to get different points along the front. For each case,

we use w1 = [0.2 0.75] and w2 = [0.8 0.25]. The results are as follows:

x
∗(3)
f = [0.02010, 0.04230, 0.06534, 0.03615,−0.02934,−0.07522,−0.04415, 0.0046],

C
∗(3)
d.f = 0.0050, C

∗(3)
m.f = 0.0941,

x
∗(4)
f = [0.01823, 0.04230, 0.06388, 0.04619,−0.02491,−0.07076,−0.04409, 0.00463],

C
∗(4)
d.f = 0.0012, C

∗(4)
m.f = 0.1230.

47

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

60

70

80

90

100

110

F
2
 (

P
it

ch
in

g
 M

o
m

en
t

C
o
u

n
ts

)

SOO using a scalarized objective function

Figure 4.23 A comparison of the proposed multi-objective algorithm with the single-objective

optimization using a scalarized objective function.

Figure 4.23 show a comparison of the Pareto fronts obtained by the proposed MOO algo-

rithm and the single-objective optimization (SOO). It can be seen that the final Pareto fronts

compare well with the SOO results. Although, it seems that the proposed MOO algorithm

does not give the full front.

4.7 Parametric Study of Strategy 3

In this section, we perform a parametric study of Strategy 3 where the number of low-

fidelity model sampling points. In each case, we re-run the MOO algorithm and compare with

the initial results.

4.7.1 Description

Previously, we used 1,600 low-fidelity points. Here, we use 500, 300, 100, and 50 sampling

points. The relative root mean square error (RMSE) is calculated, as described in Section

3.5.3, with 5 sets of samples: 1,600, 500, 300, 100, 50; all sampled uniformly over the reduced

design space. The kriging model was constructed using each of them, and the relative RMSE

was calculated.

48

4.7.2 Results

The relative RMSE for the initial kriging model, generated during Step 4 of the MOO

algorithm in Strategy 3 and Strategy 1, for different number of samples is given in Table 4.3

and Table 4.4 respectively. It can be seen that the RMSE is very low for the 1,600 samples

(or 0.17%) in Strategy 3, indicating that the sampling number is too high. At 50 samples, the

RMSE is 3.4%, which is higher than the recommended value of 2% (as mentioned in Section

3.5.3). The 100 samples, with a relative RSME value of 1.1%, seem to be adequate in this

particular case. The relative RMSE value for the 1,600 samples in the full design space (used

in Strategy 1) is around 1.45%. This fact, and that Strategies 1 and 3 yield similar results,

indicate that a relative RSME value of around 1% is adequate in this particular case. The

results of the MOO runs for cases with kriging models generated by 500, 300, and 100 low-

fidelity model samples are given in Figs. 4.24, 4.25, and 4.26, respectively. All the runs converge

after 2 iterations, and the final Pareto fronts compare well with the validation high-fidelity

samples.

Further investigation is performed to check for a minimum number of high-fidelity refine-

ment samples. For this test, 100 low-fidelity samples are used to construct the kriging model.

Instead of 9 refinement points for the co-kriging surrage, we try 3 refinement points. The points

are chosen in a way that we have 2 extreme points of the initial Pareto front, and one point in

the middle of the front. Figure 4.27 shows the results. Again, the MOO algorithm converges

within 2 iterations and compares well with the validation samples. Figure 4.28 compares this

Pareto front with the one obtained when using 1,600 samples, and indicates a very good agree-

ment of the fronts. The overall computational time with 100 initial samples and 3 high-fidelity

refinement points is approximately 0.5 days. Table 4.5 give a comparison with the original

results.

49

Table 4.3 Relative root mean square error (RMSE) of the initial kriging model in Step 4 of

the MOO algorithm in Strategy 3 for different number of samples.

Samples Relative RMSE (%)

1,600 0.17

500 0.25

300 0.50

100 1.13

50 3.43

Table 4.4 Relative root mean square error (RMSE) of the initial kriging model in Step 4 of

the MOO algorithm in Strategy 1 for different number of samples.

Samples Relative RMSE (%)

1,600 1.45

500 2.62

300 4.50

100 6.04

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

70

75

80

85

90

95

100

105

110

F
2
 (

P
it

ch
in

g
 M

o
m

en
t

C
o
u

n
ts

)

1st Pareto

High Fidelity Verification samples

2nd Pareto

500 Training Points

Figure 4.24 Results of Strategy 3 showing the Pareto fronts obtained with 500 initial sampling

points.

50

0 10 20 30 40 50 60 70 80 90 100 110

F1

70

75

80

85

90

95

100

105

110

F
2
 (

P
it

ch
in

g
 M

o
m

en
t

C
o

u
n

ts
)

300 Training Points

1st Pareto

2nd Pareto

High fidelity verification samples

Figure 4.25 Results of Strategy 3 showing the Pareto fronts obtained with 300 initial sampling

points.

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

70

75

80

85

90

95

100

105

110

F
2
 (

P
it

ch
in

g
 M

o
m

en
t

C
o
u

n
ts

)

1st Pareto

High fidelity verification samples

2nd Pareto

100 Training points

Figure 4.26 Results of Strategy 3 showing the Pareto fronts obtained with 100 initial sampling

points.

51

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

70

75

80

85

90

95

100

105

110

F
2
 (

P
it

ch
in

g
 M

o
m

en
t

C
o
u

n
ts

)

1st Pareto

100 Training points + 3 High fidelity points

High fidelity verification samples2nd Pareto

Figure 4.27 Results of Strategy 3 showing the Pareto fronts obtained with 100 initial sampling

points and 3 refinement points.

52

0 10 20 30 40 50 60 70 80 90 100 110

F1 (Drag Counts)

70

75

80

85

90

95

100

105

110

F
2
 (

P
it

ch
in

g
 M

o
m

en
t

C
o

u
n

ts
)

1,600 & 100 Training points

Final front with 100 samples (red)

Final front with 1600 samples (blue)

Figure 4.28 Results of Strategy 3 showing the Pareto fronts obtained with 1,600 and 100

initial sampling points.

Table 4.5 Comparison of the computatioal cost of the original three strategies, with the refined

Strategy 3 (indicated by 3∗).

Strategy Iterations Nc Nf Time (days)

1 7+ 1,600 63 3

2 3 1,630 48 2.3

3 2 2,112 9 1.8

3∗ 2 612 3 0.5

53

CHAPTER 5. CONCLUSION

A procedure for expedited multi-objective optimization (MOO) of aerodynamic surface has

been presented. The approach exploits design space reduction, variable-fidelity computational

fluid dynamics (CFD) simulations, and kriging and co-kriging interpolation models to con-

struct accurate and fast surrogate models. The latter is utilized to generate (by evolutionary

optimization) a set of alternative solutions representing the best possible trade-offs between

conflicting objectives. The design space reduction applied at the beginning of the optimization

process allows for identifying the region of the search space that contains Pareto optimal solu-

tions. The application of the MOO algorithm is demonstrated on the design of airfoil shapes in

two-dimensional transonic inviscid flow. The results the MOO algorithm in the reduced space

compare well with results obtained when considering the full design space, as well as when

using the weighted sum method. The proposed MOO approach was demonstrated to be at

least an order of magnitude faster than using the high-fidelity model directly.

The demonstration case involved a low-dimensional parameterization (8 design variables)

and a small scale simulation (a high-fidelity simulation with over 512,000 unknowns, requiring

around 30 min on HPC). Future work will be focused on extending the approach for medium-

to high-dimensional cases (where the number of design variables range from 10 to 40, or higher,

as well as larger scales of simulations. In these cases, the initial computational effort related to

the construction of the kriging and co-kriging models may become a serious issue (due to the

curse of dimensionality) despite of the design space reduction step used in the present version

of the algorithm. It is likely that in such cases a reduction in the design space dimensionality

needs to be performed prior to the design space reduction process (which focuses mainly on

the ranges of the parameters). The dimensionality reduction can be performed using principal

component analysis (PCA). In that case, adjoint sensitivity information needs to be acquired.

54

BIBLIOGRAPHY

[1] S. Koziel, A. Bekasiewicz, and L. Leifsson, “Multi-objective optimization of planar yagi-

uda antenna using physics-based surrogates and rotational design space reduction,” Int.

Conf. Comp. Science, Reykjavik, Iceland, June 1–3, 2015.

[2] C. Fonseca, Multiobjective genetic algorithms with applications to control engineering prob-

lems. PhD thesis, Department of Automatic Control and Systems Engineering, University

of Sheffield, Sheffield, UK, 1995.

[3] C. L. Hwang and A. S. M. Masud, Multiple objective decision making, methods and appli-

cations: a state-of-the-art survey. Berlin, Germany: Springer-Verlag, 1947.

[4] K. Miettinen, Nonlinear Multiobjective Optimization. Boston, MA: Kluwer Academic Pub-

lishers, 1999.

[5] J. Holland, Adaptation in Natural and Articial Systems. Ann Harbour, Michigan: The

University of Michigan Press, 1975.

[6] E. Zitzler, “Evolutionary algorithm for multi-objective optimization:methods and appli-

cation,” Master’s thesis, Institut fur Technische Informatik und Kommunikationsnetze

Computer Engineering and Networks Laboratory, Zurich, Switzerland, 1999.

[7] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm

optimization,” Evolutionary Programming VII, Springer Berlin, Germany, pp. 611–616,

March 1998.

[8] T. Simpson, J. Peplinski, P. Koch, and J. Allen, “Metamodels for computer-based engi-

neering design: survey and recommendations,” Engineering with Computers, vol. 17, no. 2,

pp. 129–150, 2001.

55

[9] C. Huang, J. Galuski, and C. Bloebaum, “Multi-objective pareto concurrent subspace

optimization for multidisciplinary design,” AIAA journal, vol. 45, no. 8, 2007.

[10] V. Pareto, Manuale di Economica Politica and Societa Editrice Libraria. Milan. New York,

NY: A.M. Kelley, 1971.

[11] T. Athan and P. Papalambros, “A note on weighted criteria methods for compromise

solutions in multi-objective optimization,” Eng. Optim., vol. 27, pp. 155–176, 1996.

[12] A. Geoffrion, “Proper eciency and the theory of vector maximization,” J. Math. Anal.

Appl., vol. 22, pp. 618–630, 1968.

[13] P. Yu, Multiple-Criteria Decision Making Concepts, Techniques, and Extensions. New

York, NY: Plenum Press, 1985.

[14] I. Yong Kim and O. de Weck, “Adaptive weighted sum method for multiobjective opti-

mization,” Structural and Multidisciplinary Optimization, vol. 29, pp. 149–158, 2005.

[15] T. Back, U. Hammel, and H. Schwefel, “Evolutionary computation: Comments on the

history and current state,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,

pp. 3–17, 1997.

[16] C. M. Fonseca and P. Fleming, “An overview of evolutionary algorithms in multiobjective

optimization,” Evolutionary Computation, vol. 3, no. 1, pp. 1–16, 1995.

[17] J. D. Schaffer, Multiple Objective Optimization with Vector Evaluated Genetic Algorithms.

PhD thesis, Vanderbilt University, Nashville, TN, 1984.

[18] J. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,”

The First International Conference on Genetic Algorithms and their Applications, Pitts-

burgh, PA, pp. 93–100, 1985.

[19] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint

handling with evolutionary algorithmspart ii: Application example,” IEEE Transactions

on Systems, Man, and Cybernetics, vol. 28, no. 1, pp. 38–47, 1998.

56

[20] J. Kocer, F.Y.and Arora, “Optimal design of h-frame transmission poles for earthquake

loading,” J. Struct. Eng., vol. 125, pp. 1299–1308, 1999.

[21] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design. New York, NY: John

Wiley and Sons, 1997.

[22] L. Davis, Handbook of Genetic Algorithms. New York, NY: Van Nostrand Reinhold, 1991.

[23] J. Moore and R. Chapman, “Application of particle swarm to multiobjective optimization,”

Department of Computer Science and Software Engineering, Auburn University, Auburn,

Alabama, 1999.

[24] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont, Evolutionary Algorithms for

Solving Multi-Objective Problems. Boston, MA: Kluwer Academic Publishers, May 2002.

[25] M. Reyes-Sierra and C. A. C. Coello, “Multi-objective particle swarm optimizers: A survey

of the state of the art,” International Journal of Computational Intelligence Research,

vol. 2, no. 1, pp. 287–308, 2006.

[26] K. Leoviriyakit, S. Kim, and A. Jameson, “Viscous aerodynamic shape optimization of

wings including planform variables,” 21st Applied Aerodynamics Conference, Orlando,

Florida, June 23–26, 2003.

[27] R. Braembussche, Numerical Optimization for Advanced Turbomachinery Design, Opti-

mization and Computational Fluid Dynamics. Berlin, Germany: Springer verlag, 2008.

[28] C. Mader and J. R. R. A. Martins, “Derivatives for time-spectral computational fluid

dynamics using an automatic differentiation adjoint,” AIAA Journal, vol. 50, no. 12,

pp. 2809–2819, 2012.

[29] B. Epstein and S. Peigin, “Constrained aerodynamic optimization of three-dimensional

wings driven by navier-stokes computations,” AIAA Journal, vol. 43, no. 9, pp. 1946–

1957, 2005.

[30] J. Nocedal and S. Wright, Numerical Optimization. New York, NY: Springer, 2006.

57

[31] S. Kim, K. Hosseini, K. Leoviriyakit, and A. Jameson, “Enhancement of class of adjoint

design methods via optimization of parameters,” AIAA Journal, vol. 48, no. 6, pp. 1072–

1076, 2010.

[32] S. Schmidt, N. Gauger, C. Ilic, and V. Schulz, “Three dimensional large scale aerodynamic

shape optimization based on shape calculus,” 41st AIAA Fluid Dynamics Conference and

Exhibit, AIAA Paper 2011-3718, Honolulu, Hawaii, June 27-30, 2011.

[33] N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. Tucker, “Surrogate-

based analysis and optimization,” Progress in Aerospace Sciences, vol. 41, no. 1, pp. 1–28,

2005.

[34] A. Booker, J. Dennis Jr., P. Frank, D. Serafini, V. Torczon, and M. Trosset, “A rigorous

framework for optimization of expensive functions by surrogates,” Structural Optimization,

vol. 17, no. 1, pp. 1–13, 1999.

[35] A. Forrester and A. Keane, “Recent advances in surrogate-based optimization,” Progress

in Aerospace Sciences, vol. 45, no. 1–3, pp. 50–79, 2009.

[36] S. Koziel, D. Echeverra-Ciaurri, and L. Leifsson, Surrogate-based methods, in S. Koziel and

X.S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies

in Computational Intelligence. Berlin, Germany, Springer-Verlag, 2011.

[37] S. Guo, “Aeroelastic optimization of an aerobatic aircraft wing structure,” Aerospace Sci-

ence and Technology, vol. 11, no. 5, pp. 396–404, 2007.

[38] W. W.Li and C. Pak, “Aeroelastic optimization study based on the x-56a model,” AIAA

Aviation, Atlanta, GA, June 16–20, 2014.

[39] A. Kai, G. J. Kennedy, and J. Martins, “Concurrent aerostructural topology optimization

of a wing box,” Computers and Structures, vol. 134, pp. 1–17, 2014.

[40] G. K. Kenway, J. Martins, and G. Kennedy, “Aerostructural optimization of the common

research model configuration,” Group (ADODG), vol. 6, no. 7, pp. 8–9, 2014.

58

[41] E. M. Alfayyadh, S. H. Bakhy, and Y. M. Shkara, “A new multi-objective evolutionary

algorithm for optimizing the aerodynamic design of hawt rotor,” ASME 2014 12th Biennial

Conference on Engineering Systems Design and Analysis, Copenhagen, Denmark, vol. 2,

July 25-27, 2014.

[42] H. M. Omara and M. Abidob, “Designing integrated guidance law for aerodynamic missiles

by hybrid multi-objective evolutionary algorithm and tabu search,” Aerospace Science and

Technology, vol. 14, no. 5, pp. 356–363, 2010.

[43] R. Mukesha, R. Pandiyarajanb, U. Selvakumarc, and D. Lingadurai, “Influence of search

algorithms on aerodynamic design optimisation of aircraft wings,” International Confer-

ence On Modelling Optimization And Computing, vol. 38, pp. 2155–2163, 2012.

[44] B. Beachkofski and R. Grandhi, “Improved distributed hypercube sampling,” AIAA Paper

2002-1274, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference, Denver, CO, April 22–25, 2002.

[45] C. Coello Coello and G. Lamont, Applications of Multi-Objective Evolutionary Algorithms.

Singapore, Singapore: World Scientific, 2004.

[46] S. Koziel, Q. Cheng, and J. Bandler, “Space mapping,” IEEE Microwave Magazine, vol. 9,

no. 6, pp. 105–122, 2008.

[47] S. Koziel and L. Leifsson, “Knowledge-based airfoil shape optimization using space map-

ping,” AIAA Paper 2012-3016, 30th AIAA Applied Aerodynamics Conference, New Or-

leans, Louisiana, June 25-28, 2012.

[48] J. Kleijnen, Design and Analysis of Simulation Experiments. Switzerland: Springer Inter-

national Publishing, 2015.

[49] J. Sacks, W. Welch, T. Mitchell, and H. Wynn, “Design and analysis of computer experi-

ments,” Statistical Science, vol. 4, no. 4, pp. 409–435, 1989.

59

[50] S. Koziel, I. Ogurtsov, S.and Couckuyt, and T. Dhaene, “Variable-fidelity electromagnetic

simulations and co-kriging for accurate modeling of antennas,” IEEE Trans. Antennas

Prop., vol. 61, no. 3, pp. 1301–1308, 2013.

[51] M. Morris, T. Mitchell, and D. Ylvisaker, “Design and analysis of computer experiments:

use of derivatives in surface prediction,” Technometrics, vol. 35, no. 3, pp. 243–255, 1993.

[52] S. Koziel, A. Bekasiewicz, and L. Leifsson, “Multi-objective optimization of planar yagi-

uda antenna using physics-based surrogates and rotational design space reduction,” Int.

Conf. Comp. Science, Reykjavik, Iceland, 2015.

[53] A. Forrester, A. Sobester, and A. Keane, “Multi-fidelity optimization via surrogate mod-

elling,” Royal Society, Proceedings of the royal Society, vol. 463, no. 2088, pp. 3251–3269,

2007.

[54] G. Farin, Curves and Surfaces for Computer Aided Geometric Design. Boston, MA: Aca-

demic Press, 1993.

[55] F. Palacios, M. R. Colonno, A. C. Aranake, A. Campos, S. R. Copeland, T. D. Economon,

A. K. Lonkar, T. W. Lukaczyk, T. W. R. Taylor, and J. J. Alonso, “Stanford university un-

structured (su2): An open-source integrated computational environment for multi-physics

simulation and design,” AIAA Paper 2013-0287, 51st AIAA Aerospace Sciences Meeting

and Exhibit, Grapevine, Texas, USA, 2013.

[56] A. Jameson, W. Schmidt, and E. Turkel, “Numerical solution of the euler equations by

finite volume methods using runge-kutta time-stepping schemes,” AIAA 1981-1259, AIAA

14th Fluid and Plasma Dynamic Conference, Palo Alto, CA, June 23-25, 1981.

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	NOMENCLATURE
	1. INTRODUCTION
	1.1 Motivation and Challenges
	1.2 Research Objectives and Contributions
	1.3 Thesis Outline

	2. BACKGROUND
	2.1 Definition and Formulation of Multi-Objective Optimization
	2.2 Multi-Objective Optimization Strategies and Algorithms
	2.2.1 Single-Objective Optimization using a Scalarized Objective Function
	2.2.2 Evolutionary Algorithms
	2.2.3 Genetic Algorithms
	2.2.4 Particle Swarm Optimization

	2.3 Applications of Multi-Objective Optimization in Aerodynamic Design

	3. MULTI-OBJECTIVE OPTIMIZATION METHODOLOGY
	3.1 Multi-Objective Aerodynamic Design Formulation
	3.2 Optimization Algorithm
	3.3 Variable-Fidelity Surrogate Model
	3.4 Design Space Reduction
	3.5 Kriging Surrogate Construction
	3.5.1 Design of Experiments
	3.5.2 Kriging Interpolation
	3.5.3 Model Validation

	3.6 Co-kriging Surrogate Construction

	4. NUMERICAL APPLICATIONS
	4.1 Problem Description
	4.1.1 Formulation of the MOO Problem
	4.1.2 Design Space
	4.1.3 Training Points
	4.1.4 Computational Fluid Dynamics Modeling
	4.1.5 Investigations

	4.2 Strategy 1
	4.2.1 MOO Algorithm
	4.2.2 Results
	4.2.3 Computational Cost

	4.3 Strategy 2
	4.3.1 Description
	4.3.2 Results
	4.3.3 Computational Cost

	4.4 Strategy 3
	4.4.1 Description
	4.4.2 Results
	4.4.3 Computational Cost

	4.5 Comparison of the Strategies
	4.6 Comparison using Single-Objective Optimization and a Scalarized Objective
	4.7 Parametric Study of Strategy 3
	4.7.1 Description
	4.7.2 Results

	5. CONCLUSION
	BIBLIOGRAPHY

