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ABSTRACT 

We consider a domain decomposition method for a fluid-structure interaction prob

lem. The fluid-structure interaction problem involves two mathematical models, each 

posed on a different domain, so that domain decomposition occurs naturally. Our ap

proach to a domain decomposition method is based on a strategy in which unknown data 

at the interface is determined through an optimization process. We prove that the solu

tion of the optimization problem exists. And we show that the Lagrange multiplier rule 

may be used to transform the constrained optimization problem into an unconstrained 

one and that rule is applied to derive an optimality system from which optimal solutions 

may be obtained. We then study a gradient method for solving optimization problem. 
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1 INTRODUCTION 

Multidisciplinary simulation problems arise in a variety of settings in which more 

than one media, or more than one mathematical model, or more than one dominant 

effect are present. The direct solution of such problems presents a formidable challenge, 

since they usually involve large, coupled system of partial differential equations. For 

this reason, methods which uncouple the different disciplines are of interest. Here, we 

discuss uncoupling procedures which are based on using an optimization strategy. 

A main virtue of our approach is that it allows for the user to use existing codes for 

each discipline as black boxes and only requires that the user write a simple code that 

effects the coupling between the disciplines. One reason we are able to do this is that 

our methodology allows for complete flexibility with regards to the boundary conditions 

imposed on each discipline. Another virtue of the optimizaion-based decoupling is that 

it allows for the use of efficient iterative strategies, e.g., quickly converging iterative pro

cesses by which solutions of the coupled, multidisciplinary problem are determined. Our 

methodology has other important virtues as well as allowing for the use of mismatched 

grids and different discretization methods for each discipline. 

Here, for the sake of concreteness, we will describe the optimization-based domain 

decomposition method for a fluid-structure interaction problem. The subjects of fluid-

structure interaction problem have been extensively studied in the past and continue 

to be the focus of much attention today. There are number of different types of math

ematical models for fluid-structure interactions. We classify these models into three 

categories. 
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Elementary fluid. The fluid motion is governed by potential equations, e.g., Laplace 

equations or wave equations. In [34], a coupled system of a potential equation and a 

wave equation is considered. Elementary fluids coupled with rigid cavity or moving wall 

has been studied in [19] and with an elastic solid in [4]. 

Inviscid fluid. A few mathematical papers have appeared for fluid-structure interac

tions modeled using inviscid fluid models, e.g., the Euler equations. Interactions between 

linearized inviscid fluids and elastic solids have been analyzed in [2],[35]. An algorithm 

for an inviscid nonlinear fluid coupled with rigid walls was given in [3]. 

Viscous fluid. There is an extensive literature on linearized viscous fluids coupled 

with solids. Solids modeled using plate equations or shell equations are treated in 

[15],[16],[17],[32]. The Stokes equations coupled with a beam equation has been ana

lyzed in [21]. In [11], [31], interactions between linearized viscous fluid and elastic solids 

are studied. See [7] interaction with rigid walls. 

Also, there is a vast literature on fluid-structure interactions for which the fluid is 

modeled using nonlinear viscous fluid models, e.g., the Navier-Stokes equations. Rigid 

body motions of solids in a nonlinear viscous fluid have been studied in [8],[12], [22], [23]. 

In [18], a coupled problem of Navier-Stokes equations and a plate equation is studied. 

Some works have treated interactions between nonlinear viscous fluids and elastic solids. 

See, e.g., [8],[13],[14],[36],[37], 

MODEL PROBLEM 

In this paper, we consider elastic body motions in a fluid flow. Let Q/ and $ls denote 

the regions occupied by the fluid and solid, respectively. Let To denote the interface 

between the fluid and solid and let F/ and Fs denote the boundaries of the fluid and 

solid regions (other than the interface Fq). In the fluid region, we apply the Stokes 

System. 
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P / V t  + Vp — f i /Av  =  p j f  in Q/ 

V - v = 0 in 0.1 

v = 0 on F, 
(1.1) 

v|t=o = V° in Clf 

Here, p/ and p./ denote the (constant) fluid density and viscosity, v the fluid velocity, 

p the fluid pressure, and v0 the initial velocity. 

In the solid, we apply the equation of the linear elasticity. 

p s u t t  —  p . s Au — (As + ̂ S)V(V - u) = p s b in fi5 

(1 .2 )  

u = 0 on Fs 

u|i=0 = u° in fis 

ut|i=0 = u1 in fis 

Here, n j  and A/ are the Lame constants and p s  the constant density of solid, b 

denotes a given loading force per unit mass, u the displacement of the solid, and Uo and 

Ui are given initial data. 

Along the fixed interface To between the fluid and solid, the velocity of the fluid and 

solid are equal, as are the stress vector in the fluid and solid. Thus, we have 

u< = v on To (1.3) 

and 

/isVu • n + (As 4- Ai,)(V • u)n = pn — p./Vv n on To (1.4) 

Solving (1.1)-(1.4) is a formidable challenge. Fluid-structure interaction problems 

involve two different mathematical models, each posed on a different domain, so that 

domain decomposition occurs naturally. Our approach to domain decomposition is based 
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on a strategy in which unknown data at the interface is determined through an opti

mization process. We consider the following interface conditions. 

v = g on To (1.5) 

and 

^sVu • n + (AS + /lz3)(V • u)n = h on F0 (1.6) 

Then we may solve (1.1) and (1.5) for v and p and solve (1.2) and (1.6) for u. 

For an arbitrary choice of g and h, (1.1) and (1.2) are satisfied. However, (1.3) and 

(1.4) will not be satisfied. On the other hand, we know that g and h exist such that 

solutions of ( 1.1),(1.5) and (1.2),(1.6) are solutions of (1.1)-(1.4). We merely have to 

choose g = v|r0 = û£|r0 and h = /zsVû - n + (As + fis)(V • û)n = pn — fi/Vv • n on F0, 

where (v. p. û) is a solution of (1.1)-(1.4). 

The optimization-based domain decomposition algorithm finds such g and h by min

imizing the functional 

J7"(v,p, g,u,h) = (u, -g)2 dT dt 

1 z-^* r 
+ - I I (pn — p./Vv • n — h)~</F dt 

2 J o •/Pq 

In the remainder of this chapter, we discuss the derivation of the model (1.1)-(1.4). 

This thesis is organized as follows. In chapter 2, a coupled system of fluid-structure 

interaction problem is studied. The existence of a weak solution is proved and finite ele

ment approximations are discussed. In chapter 3, we introduce an optimization problem 

to uncouple the system. We prove that the optimization problem has a solution and the 

solution converges to the solution of the coupled system. The Lagrange multiplier rule 

is used to derive an optimality system from which optimal solutions may be determined. 

Finally, we define a gradient method for the solution of the optimality system and show 

the convergence for the gradient method. 
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2 FLUID-STRUCTURE INTERACTION PROBLEMS 

2.1 The model problems 

We consider a coupled system of Stokes and elasticity problem that was introduced 

in the previous chapter. 

P/vt + Vp — (J./Av = p/f in ft/ 

V • v = 0 in V.f 

v = 0 on F/ 

pSUTT — /J.SAu — (As + /zs)V(V - u) = psb in Qs 

u = 0 on T. 

ut = v on Fq 

fisVu • n + (As + fJ.s)(V • u)n = pn — p/Vv n on F0 

v|t=0 = v° in Clf 

u|t=0 = u° in f>s 

ut|£=0 = u1 in Cls 

(2.1.1) 

2.2 Notation 

Throughout this paper, C will denote a positive constant whose meaning and value 

changes with context. HS(D), s 6 1R, denotes the standard sobolev space of order s 



with respect to the set Z), equipped with the standard norm || - ||S.D- Corresponding 

sobolev spaces of vector-valued functions will be denoted by HS{D). Dual spaces will 

be denoted by We then define the subspaces 

H}(P-/) = {v E H^Q/) : v = 0 on E» 

J  = {v E : V • v = 0 on f t / }  

where be the space of C°° functions with compact support contained in &/. 

V = the closure of J in Hy-(Q/) 

H = the closure of J in L2(fi/) 

and 

= {u € B.l(Cls) : u = 0 on rs> 

We define, for ( p q )  E L l ( D )  and (u - v) E L l { D ) ,  

{ p ,  Q ) d  = / p q d D  and (u. v)^ = / u -  v  d D  
Jd Jd 

respectively. 

We define the bilinear forms 

a /(u, v) = f j . f V u : V v d Q  Vu, v E 

a5(u,v) = [ {^sVu : Vv + (As + jUs)(V - u)(V - v)} d f l  Vu, v E 

a(u, v) = ^sVu : Vv dCl Vu, v E H1(fis) 

and 

6(v, q )  =  —  [  q d i w d Q .  Vv E Vg E L 2 ( f l ; )  

It is well known that the forms <z/(-, •), as(-, •), a(-, •) and 6(-, •) are continuous, i.e. 

there exist positive constants ka and kb such that 

|a/(u,v)| < &tt||u||i,nr ||v||li£Ijr Vu,veH\Qf) 



and 

l«s(u,v)| < fc0||u||lfn,||v||lA Vu,v 6 HL(fis) 

|a(u, v)| < fca||u|| ltfij || v|| Vu.veH1^) 

|6(v,g)| < t6||v||^J|g||o^ Vv6H'(n/), VgE^Oy) 

Also, a /(•, -), a s ( - .  •) and a(-, •) satisfy the coercivitv property and 6(-, •) satisfies the 

inf-sup condition, which means there exist positive constants Ka and /v, such that 

|a/(u.u)| > /va||u||2fi/ Vue Hl{Qf) 

k(u,u)| > A'.||u||^ Vu € H1 (fi/) 

|a(u,u)| > Â-a||u||2in, Vu € H^O/) 

and 

• r 
6(v,ç) ^ r-inf sup -r— — > A 6 

0A,eL2(nz) 0^veHi(nf) llvlli,n/lkllo,n/ 

2.3 A weak formulation 

We define a space of trial functions and test functions as 

U = {(v,u) : v € L 2(0, r ;H}(n/)), u G I2(0, T; 

U( 6 L2(0, T; L2(QS)), such that v = u£ on F0} 

A weak formulation corresponding to (2.1.1) is given by 

For f, v°,b,u° and u1 given, 

f € L2(0,r;H}(fi/)-) (2.3.2) 

v° € 1,2(0;) (2.3.3) 

beL2(0,T;L2(ns)) (2.3.4) 

u° € Hi(n.) (2.3.5) 

u1 € L2(fis) (2.3.6) 
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to find (v, u) G U satisfying 

P/(Vi,w)2/ + 6(w,p) + az(v, w) + ps(ut,. 0£)n_. 

+ as(u, 9t) = pf(f.w)n, +ps(b,0,)n3 V(w,0) € C" (2.3.7) 

6(v, ç) = 0 Vç G £2(fi/) (2.3.8) 

(2.3.9) 

u|t=0 = U° 

Ut [ £=0 — u 

(2.3.10) 

(2.3.11) 

We recall the definition of the spaces J. V and H, introduced in the previous section 

and which will be the basic spaces for W. 

Now, we define a space of trial functions and test functions as 

W  = {(v.u) : v G L 2 ( 0 ,  T ; V), u G Z2(0, T ;  Hj(fi,)), 

u- G L2(0, T; L2(fis)), such that v = uf on F0} 

Then a weak formulation (2.3.7)-(2.3.11) is equivalent to the following: 

To find (v,u) G H* satisfying 

Z>/(v£, w)n/ +a/(v,w) + /t>a(u«,0t)n. + as(u,/9t) 

J = {v G î>(û/) : V-v = 0on.Q/} 

V = the closure of J in Hy(f2/) 

H = the closure of J in L2(fi/) 

/9/(f,w)n/ + p s ( b , e t ) n j  v { w , 6 ) e \ v  (2.3.12) 

v|t=o = V° 

U11=0 — u 

U£ |t=o = u 

(2.3.13) 

(2.3.14) 

(2.3.15) 
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2.4 The existence of a weak solution 

To show the existence of weak solutions for the coupled system, we introduce an 

auxiliary problem involving an 'artificial viscosity' term. The auxiliary problem is defined 

as follows. 

p/v t + Vp  — f i fAv  =  p/{  in fi/ 

V • v = 0 in Q/ 

v = 0 on F f 

PsUtt — eyusAut — p.sAu — (As + /^S)V(V • u) = psb in $ls 

u = 0 on rs 

(2.4.16) 

ut = v on To 

£^SVU( - n + /usVu • n + (As + /zs)(V • u)n = pn — p./Vv - n on F0 

v|£=o = V° in fi/ 

u|t=0 = u° in Qs 

ut|t=0 = u1 in 9.s 

We define a space of trial functions and test functions for the auxiliary problem as 

û  =  {(v, u) : v E L2(0,r;H}(fi/)), u G £2(0, T; H*(fis)), 

ut E L2(0, T; H*(f2s)), such that v = uz on F0} 

A weak formulation corresponding to (2.4.16) is given by 

For f, v°, b, u° and u1 given, 

f E L2(0,r;H}(fZ/)-) (2.4.17) 

v° E L2(fi/) (2.4.IS) 
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b € L2(0,r ;L2(f2 s))  (2.4.19) 

u° 6 Hl ( Ç l s )  (2.4.20) 

u1 E L2(û s)  (2.4.21) 

to find (v. u) E Û satisfying 

Pf {v t ,  w)n/ + 6(w,p) + a/(v?w) + /9s(u££,0£)nj + ea(u£,0t) 

+ as(u,0t) = y9/(f. w)nz + /os(b. 5t)n, V(w,0) Ç Ô (2.4.22) 

6(v,ç) = 0 VçE L2(fi/) (2.4.23) 

v|t=0 = v° (2.4.24) 

u|£=0 = u° (2.4.25) 

u£|£=0 = u1 (2.4.26) 

Now, we define a space of trial functions and test functions as 

M/= {(v,u) : v E L2(0,T: V), u E I2(0, T: Hj(0,)), 

U{ E Z2(0, T; H^fls)), such that v = u( on F0} 

Then a weak formulation (2.4.22)-(2.4.26) is equivalent to the following: 

To find (v, u) E W satisfying 

P f i y t - .  w)n, + «/(v, w) + p s {u££, 9 t )n3 + ea(u£, 6 t )  

+  a s {u,0t) = p f ( f,w)n/ + ps(b,0£)n, V(w,0) E W  (2.4.27) 

v|£=0 = v° (2.4.28) 

u|i=0 = u° (2.4.29) 

u£|£=0 = u1 (2.4.30) 

We show the existence of solutions of the auxiliary problem in the next theorem. 
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Theorem 2.4.1 For given f,v°,b,u° and u1 which satisfy (2.4.17)-(2.4-21), there ex

ists a u n ique solution (v, u) E W which satisfy (2-4-27)-(2.4-30). Moreoverv E L°°(0, T : H), u E 

L°°(0,r;Hi(fis)) andut E £°°(0,T;L2(fis)) 

proof: We use the Galerkin method. Let (<Z>n)neN be a basis of V and (0n)nÉN be a 

basis ofHj(fia) such that <pn = 0n on F0. We define discrete spaces Mn = span{0m, 1 < 

m < 7î} and = span{9m, 1 < m < n). Also define a discrete space of trial and test 

functions by 

= {(v,u) E VnJ x Vn^, ut = v on To} 

w ;ith 

V n , f  =  {v = £>,-(*)&, a i { t )  e  H \ Q .  T ) }  
t = l 
71 

V„,s = {u = X>(*)0.', b i ( t ) e  H \ Q , T ) }  
1=1 

The discrete problem is : Find (vn,un) E Vn such that vra(0) E Mn. u(0) E An and 

u„z(0) E Ar
n with vn(0) —>• v° in L2(fi/), un(0) -4- u° in H^fZ*) and unt(0) —>• u1 in 

L2(fls) and 

p r ( v n t ,  w„)n/ + a/(vn,w„) + ps(untt, Znt)a, + ea(unf,z„t) 
(2.4.31) 

+as(un.Zn<) = /9/(f, Wn)n/ +y9s(b,Zn<).Q3 V(w„,z„) E Vn 

Since this is a linear system of ordinary differential equations, there is a unique solution. 

We will obtain a priori estimates independent of n for the functions vn, un and then 

pass to the limit. Set wn = vn and zn = un in (2.4.31). We get 

P/(v„t.vn)n/ + a/(vn, vn) +/9s(untt, u„,)n5 + ea(unt,un;) 
(2.4.32) 

-J-ds(UTl, l l n t  )  —  P f { f , V n ) a f  + ps(b, \ l n t  )fi3 

and this gives 

+ A=llvn|lî,nz + V"^Hu"<llo,n3 + eA-lluntllïA 

+ ^ P/lif|l-i,n/||vn||i,n/+ Ps||b||o,fiJ|u„t||otn3 
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Integrating this from 0 to t, we obtain 

^"(llVnlio.nyr — l|Vn(0)||o,n/) + f0 llVnill,n/ + ~^"(ilunt|lo,n3 — l!unt(0)||o.£îj 

+ €̂ a f0 IIU" lll.fi, ~~ llun(0)||i,nj 

- 2P~K~Jo Ilfll-1=/ + T  ̂ l|v""**'+Tp-h + llu»'llo.n. 

Gronwall's inequality may be used to conclude 

fT fT 
sup P/livn||o,nf + Ka Jq | |Vn||i,n/ +supps||unt[|^3 + ck'a ^ ||un,||^ 

+ sup A'.||u»||^. <cf llfiii^n, + P , C £  llbllS.n, 

+ Pf\W0\\o,n f  + ̂ ilul|lo,n. + ̂ allu°lli,n„ 

Hence {vn} is uniformly bounded in L°°(Q, T; H) and L2(Q. T; V): {un} is uni

formly bounded in L°°(0. T ; Hi(f2s)); {unt} is uniformly bounded in L°°(0, T : L2(fis)) 

and L2(0, T; H*(Os)); Thus, there exist weakly convergent subsequences and by passing 

to the limit, a solution of (2.4.27)-(2.4.30) exists. 

Uniqueness. Let (vt, uL) and (v2,u2) be two solutions of (2.4.27)-(2.4.30). Then 

energy estimates may be used to get 

rT 
sup P/||vi — v2|!o,n/ + A0 ||vt — v2||2in/+ sup ps||uu — u2t||o,n3 

+ €^a JQ liUl< ~~ U2t||ï,n;l + sup AallUi — U2||2_nj < 0 

and hence vt = v2 and Ui = u2. 

Now we show the existence of the coupled system by taking the limit of solutions of 

the auxiliary problem as e —>• 0 

Theorem 2.4.2 For given f, v°, b, u° and u1 which satisfy (2.3.2)-(2.3.6), there exists a 

unique solution (v, u) E W which satisfy (2.3.12)-(2.3.15). Moreoverv E L°°(Q,T; H), u E 

L°°(0,r;HKfis)) and ut E L°°(0, T; L2(f2s)) 
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proof: Ve, there exists v£,u£ which are solutions of (2.4.27)-(2.4.30). Using a priori 

estimate obtained in the proof of Theorem 2.4.1, 

sup P/||v£|||n/ + A:aJ j|vc||^n/ +supps||(ut),||5in_. 

+ eK*fQ ll(ujf|li,n, + sup Araj|uc||fiî2j < C(v°,u°,u\f,b) 

From which we deduce 

vc is uniformly bounded in L2{0, T; V) fi L°°(0, T; H) 

ut is uniformly bounded in L°°(0, T: H](f25)) 

(uc)t is uniformly bounded in L°°(0, T: L2(f2s)) 

x/e(uc)t is uniformly bounded in £2(0, T; H*(QS)) 

Therefore, we can extract a subsequence such that 

v £  — v  i n  L2{0, T: V) A £°°(0, T; H) 

u £ - u i n  L ° ° ( 0 ,  T ; H*(fis)) 

(ue)t ^ut in L°°(0,r;L2(fis)) 

Since \/Ê(u£)£ is uniformly bounded in £2(0, T; H*(f2s)) then is uniformly 

bounded in Z2(0, T ; H^fîs)*) and 

limeas((uc)t, w) = 0 Vw 6 Z,2(0, T: H*(fis)) 

From (2.4.27), 

P/((vt)t,w)n/ + />s((u£)££,0£)n3 

= -a/(ve, w) - ea((uc)£,0£) - as(u£,0£) + /9/(f,w)nz +  p a ( b , 6 t ) n t  

—> —a/(v, w) — as(u,dt) + /)/(f, w)nz + /?s(b, 8i)ns V(w,0) E H-' 

Moreover, since v£ —>• v in L°°(0,T; H) and (uc)£ —^ u£ in L°°(0, T; L2($ls)) we have 

Z>/(v£, w)n, + ps(u££, d t )n ,  

= -a/(v,w)-a,(u,0t)+/j/(f,w)n/+ / * a (b,0t)n, V(w,0) E W 
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Further. 

v£|É=o v|t=0 in H 

u£ |t=o ^ u|£=o in Hs(fis) 

uet|t=o —^ Ut|t=o in L2(fis) 

Thus the existence theorem.is proved. The proof of uniqueness is exactly the same 

as before. 

2.5 Finite element approximations 

Let h denote a discretization parameter tending to zero and, for each k. let X/, 

Sk and Xg be finite dimensional spaces such that Xy C Sh C L2(D.j) and 

X^ C And 

^ = {(v\uA )  :  v k  e L2(o,r ;x*),  VL h  e H l ( 0 ,T ; X h
s ) ,  

such that v h  = u^1 on F0} 

We assume that the finite element spaces satisfy the standard approximation prop

erties, i.e., 

inf ||v - vk||l>n < ||v||m+1.n, Vv € 
vexy 

^ HP - ph\\Q.Q.f < l|p|U,n/ Vp e HM(0Z) 

and 

inf ||u - u*||1A < ||u||„+1,n. Vu € H™+'(fi,) 
u€X? 

We also assume the inf-sup condition (or LBB) condition, 

• f b(v k ,q h )  
o/,-sx? l|v»||i,n,|W||o,n, " " 

where Kb is a positive constant independent of h. 
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Finite element approximations of solutions of the coupled system (2.3.7)-(2.3.11 ) are 

defined as follows: Seek (v\ uA, ph) G Uh x L2(Q,T; Sh) such that 

P f ( v t ^ k h ,  + b ( w h , p h )  + a/(v\w/l) + ps(uît,d?)a3 +as(u\0f) 

= (2.5.33) 

6(v\ ̂ ) = 0 € ^(0, T; ̂ ) (2.5.34) 

v^l^o =v o h  (2.5.35) 

uh\t=Q = uofl (2.5.36) 

u î \ t = Q  =  u l h  (2.5.37) 

First, we show the convergence of finite element approximations. To show the con

vergence, we consider finite element approximations of the auxiliary problem (2.4.22)-

(2.4.26): Seek (v£/i, u£\ peh) € Uh x L2(0,T;Sh) such that 

P/(v£\ w h h f  +  b ( w h , p c h )  + a/(v£/l, w h )  + p s (  uJt
A,0t

A)n. 

+ ca(urX) + a,(u^X) 

= V(w\^)GC/"  (2 .5 .38 )  

6(v£\ qh) = 0 Vqh  e L2(0, T; Sh) (2.5.39) 

v£/l|t=0 = voh (2.5.40) 

u£/l|f=0 = uoh (2.5.41) 

uc
t
h\t=0 = ulh (2.5.42) 

Lemma 2.5.1 For each e > 0, let (v£, u£, pc) denote solutions of auxiliary problem 

(2.4-22)-(2.4-26) and (vc/l, u£n, pch) denote finite element approximations of solutions of 

auxiliary problem. Then (vt/l, uth.pch) —> (vc, u£, pc) in L2(0, T; Hl(Q/)) x Hl(0, T: ) ) x 

H - l ( 0 : T ; L 2 ( Q f ) )  a s h - +  0. 

proof: Set w'1 = v£/l and 6h = ut/l in (2.5.38) and combine with (2.5.39), we obtain 

sup Pf\\v th\\ln, + Kafo  ||v£/l||2in/ +supps||u£/l||2nj 
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+ =A'„ £ ||u;*|[5in, + sup A-.K'Htn, 

< C^r||f||ilj2/+p,C^T||b||ln, 

+ Pf\\v°\\la, +#'.llu1||gs. + a:.II«0II?s, 

The same argument as in the proof of the Theorem 2.4.1 yields (v£/l. ue/l) —y (v% u') 

in L 2 ( 0 ,  T ;  H L ( 0 / ) )  x  H l ( Q ,  T ;  H ^ f Z s ) )  a s  h  — >  0 .  I f  w e  t a k e  p f h  s a t i s f y i n g  ( 2 . 5 . 3 8 )  a n d  p c  

satisfying (2.4.22) then pth —t pc in H~l(0,T; L2(Q.j)) as h —>• 0. Thus lemma is proved. 

It was proved in Theorem 2.4.2 that (v£. u£, p£) —>• (v. u, p) as e —> 0 and it can be 

shown (ve/\ u£/l, pch) —> (vA, uh.ph) as e —r 0 in the same manner. Combining this with 

Lemma 2.5.1 gives the following theorem. 

Theorem 2.5.2 Let (v, u,p) denote solutions of the coupled system (2.3.7)-(2.3.11 ) 

a n d  ( v \  u h , p h )  d e n o t e  s o l u t i o n s  o f  ( 2 . 5 . 3 3 ) - ( 2 . 5 . 3 7 ) .  T h e n  ( v A ,  u h , p h )  — > •  ( v , u , p )  i n  

L2(0,T:Hl(nf)) x (L2(0, T; H^P.,) A Hl(0, T: L2(ÛS)) x #-1(0, T: L2{Q/)) as h ^ 0. 

2.6 Error estimates 

For the purpose of the proof of next theorem, we introduce some spaces and a pro

jection. Let $1 denote P/ n Qs and XA denote a finite dimensional space such that 

XA £ H^P). We define a continous space G and a discrete space Gh by 

G = {z € H1(Q) : z/ = z|n/ € V, zs = z|n, € H1^), and z/|r0 = zs|r0} 

G l  = {zeX 1 : ^ i  t6 "B, € X», Y» = •Z-'jn, € Xj. 

= 0 v/e S\ and = i/'jlrj 

We define P h  :  G — >  G h  to be the projection with respect to the L 2 ( Q )  inner 

product, i.e. Pkz = z if 

(z,0A)n = (z, V,/l)n Vif>eGh, Vz € G 
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Then 

l|z-z||i,n < C/imj|z||m+i,n (2.6.43) 

||z - i|lo.n < Ch">+<|!z||m+1-n (2.6.44) 

Nov/ we prove the following estimate for the error between the solutions of the semi-

discrete and continuous problems. 

Let 

v on $1/ 
c = 

ut on 0S 

And define v = P h Ç \ a f ,  ût =  

Theorem 2.6.1 

Pf\\V - V/L||O,FI/ + Ka  ||V - Vk\\2
in fdt 

+Ps||u£ — uf ||o,n3 + Aa||u — 

< Ch^*2Ml+lstl + Ch^l ||v|lL-,.n/i 

+CA2">||ufc+1,i!, + CA2™+2|[U,|£+1A 

+Ch2m j 'a  ||u£+1,n,» + Ch.2"1  £ \\v\\l.n,dt (2.6.45) 

proof: By subtracting (2.5.33)-(2.5.34) from the corresponding equations of (2.3.7)-

(2.3.8) we obtain the "orthogonality conditions". 

P/(v£ - v,\wk ) a f  + 6(w\p — ph) + a/(v - v\ wA) 

+ p,(u«-4,^)n,+a,(u-u\^) = 0 V(w\^)€^ (2.6.46) 

6(v - v\ q h )  =0 Vqh e L2{0, T- Sh) (2.6.47) 

Using (2.6.46)-(2.6.47) we deduce that 

P/(vt - vt
/l,v-v/l)n/ + <z/(v - v\v - v*) 
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+/2s(u« — ufj, u£ — u*)n, + <zs(u — uA, U( — uf ) 

= p/(v t  - vf,v — v)n, + a/(v-v\v-v) +p,(u« — u* t ,u t  — ù f)n, 

+as(u — u^, u< — ùf ) — 6(v — \r/l, p — p^1) 

+/9/(vt ~ ~ vh)n f  + a/(v  — V>1- v ~ v / l) + Ps(utt — u^, û t  — uf )n5  

+as(u — u\ùt - u£) + 6(v - v\p — p'1) 

= z?/(v t  -v t\v-v)n/  +a/(v-v\v-v) + p£(u t t  -uf t ,u£  - ù<)n, 

+a s(u — uA ,  u£  — û() — 6(v — v\p — ph) (2.6.48) 

Then using the facts that {ijj1}, v — v) = 0 Vzîy € Xy and that 

6(v,^) =0 = b(yh,qh) VqheSh (2.6.49) 

We obtain (by also noting that (2.6.49) implies v£ 6 Xy and E Xy) 

P/(v t  - v*, v -  v) f l /  = p/(v t ,v -  v)n/  = p/(v< -  v t ,  v -  v)nz  (2.6.50) 

Similarly. 

ps(u, t  - u£,u t  - û t)n ,  = Ps(Ui t  - ù«,u£  - ù£)n ,  (2.6.51) 

Combining  ( 2 . 6 . 4 S ) - ( 2 . 6 . 5 1 )  w e  d e d u c e  t h a t  f o r  a l l  q h  €  L 2 ( Q , T ~ ,  S h )  

-r/l||o_n/ + A'a||v — 

./i l|2 

2 dt V 

+^"~rllut -  u?IIoa + V"3rllu ~ u/ llli,n3  

Pj d 
< TT—r v-v 

2 <# '  

0,n f  + ̂ a||V — v/l||l,fi/||v — v||i_n/ 2 rff1 

~ ^allu — u/l iU.fi» llUt — ù< iU.fi» 

+fcii|v — v||i,fi/l |P — ç^Ho.n/ + kb\\v — v / l | | i ,a / | |p — qh\\o,n f  

Therefore, 

P/I|v - vA||g + K a  ̂  ||v - vA||\ n d t  + ps\\ut - + A'„||u - uh\\2
lSl; 

< C(||v — .v||oifl/ + 11V — v||in/cft + (|u(fi) — Ù(f1)||iiftâ 

+ilu« — ùtllo,n s  + JQ llu« 
— + JQ \ \P  — <I h \ \o ,n f dt)  (2.6.52) 
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for all q h  E L 2 ( Q , T :  S h ) .  where ||u(<i) — ù(Zi)|| = max£€[0ir] ||u(f) — ù(£)||. Hence (2.6.45) 

follows from (2.6.52), (2.6.43) and (2.6.44). 
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3 OPTIMIZATION-BASED DOMAIN DECOMPOSITION 

In this chapter, we present an optimization-based domain decomposition method to 

uncouple the computations. 

3.1 The model problems 

Let v,p, g, u and h satisfy the coupled system (2.1.1). Instead of constraints (2.1.1). 

we consider the uncoupled system 

P/Vt + Vp — fi/ Av = p/f in fi/ 

V • v = 0 in fi/ 

v = 0 on F/ 

v = g on To 

(3.1.1) 
p s u t t  — Us  Au — (As + f j . s )V(V  •  u) = psb in fis 

u = 0 on Fs 

f j . s Vu •  n + (As + ̂ S)(V • u)n = h on T0 

v|£=0 = v° in fly 

u|£=0 = u° in fis 

Ut|t=o = u1 in fi. 

In this paper, we refer to g and h as controls. Our goal is to find g and h such 
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that the solutions of (3.1.1) coincide with solutions of (2.1.1). The optimization-based 

domain decomposition algorithm finds such g and h by minimizing the functional 

In order to regularize the optimization problem, we instead minimize the penalized 

functional 

where the penalty parameter 6 is a positive constant that can be chosen to change the 

relative importance of penalty terms in J~s and Vp denotes tangential gradient. Thus 

the optimization problem we propose to solve is given by 

Problem 1 

Find (v.p,g.u.h) such that the functional Js is minimized subject to (3.1.1). 

3.2 The existence of an optimal solution 

We recall the definition of the spaces 

</F dt 

H}(fi/) = {v € H^fi/) : v = 0 on T/} 

J  = {v G ~ D ( Q . f )  : V • v = 0 on fi/} 

V = the closure of J in H/(fi/) 

H = the closure of J in L2(fi/) 

and 

Hj(fis) = {u € : u = 0 on TJ 
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For functions defined, on To, we will use the subspaces 

y = {g€l 2(0,T ;H1(ro))niy 1(0,r ;L2(ro)):  g = 0onaro} 

z = ^(0,t;l"(ro)) 

with norms 

llsl|2r = fob g2 d T d t  + r/r„(Vrg)2 i T d t  +  fob S ?  d r d t  

l|h|1^ " JaTfr.htJC* 

A weak formulation corresponding to (3.1.1) is given by : Seek v E L 2 (0, T : H}(fi/)), p  E 

L2(0.r;L2(.Q/)), g E V, u E l2(0,t:Hl
s(ns)) n hl(0,t;-L2(ns)) and h € Z satisfying 

w)n/ + 6(w,p) + a/(v,w) + (w,pn -/j/Vv-n)r0 

= P/(f,w)n/ V w E H/(fi/) (3.2.2) 

6(v. ç) = 0 V ç E L2(Qj) (3.2.3) 

(v,s)r0-(g,s)r0 =0 VsEH"1/2(r0) (3.2.4) 

Ps(utt, 6)n, + a5(u, é>) = ps(b, 0)fi, + (h, 0)ro 

V0 EHKO,) (3.2.5) 

v|t=o = V° in fi/ (3.2.6) 

u|t=o = u° in fis (3.2.7) 

Uf|t=o = u1 in fis (3.2.8) 

Next, we give a precise definition of an optimal solution. Let the admissibility set is 

defined by 

= {(v,p,g,u,h) E Z2(0,r;H}(fi/)) x ^(0,T:62(fi/))x 

y  x Z2(0, t :  Hj(fi5)) n h \ q ,  T; L2(fis)) x Z : 

J7"s(v,p, g, u,h) < oc and (3.2.2)-(3.2.8) is satisfied } (3.2.9) 
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Then (v,p, g, û, h) is called an optimal solution if there exists a > 0 such that 

Js (y ,  p, g, û, h) < J>(v, p, g, u. h) 

(3.2.10) 

for all (v, p, g, u. h) E Uad satisfying 

l|g-g||y + ||h - h|jz < a 

To show the existence of optimal solutions, we introduce an auxiliary problem again. 

P/Vt + Vp — p./Av = prî in fi/ 

V • v = 0 in fi/ 

v = 0 on F j  

v = g on To 

PsU-tt — e^sAut - /isAu — (As + /^S)V(V • u) = psb in fis 

u = 0 on Fs 

e/ijVut • n + - n + (As + ̂ zs)(V • u)n = h on To 

v|1=0 = v° in fi/ 

u|t=0 = u° in fis 

ut|t=0 = u1 in fis 

Problem 2 

Find (v,p,g,u,h) such that the functional Js is minimized subject to (3.2.10). 

A weak formulation corresponding to (3.2.10) is given by: Seek v E L 2 (0, T : Hj-(fi/)). p E 

L2(0,T; £2(fi/)), g E v; u E #i(0,T;H;(n,)) and h E Z satisfying 

P/(vt, w)n, + 6(w,p) + a/(v, w) + (w, pn - nj Vv • n)r0 

= p/(f, w)n/ V w E H}(fi/) (3.2.11) 
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6(v,ç) = 0 V ç E L2(Q.f) 

(vrS)r0 - (g,s)r0 = 0 VsEH'1/2(r0) 

(3.2.12) 

(3.2.13) 

ps(utt, 9)n, + ca(ut, 6) + a,(u, 9) 

(3.2.14) 

(3.2.15) 

(3.2.16) 

(3.2.17) 

And admissibility set be defined by 

WL = {(V ,p,g,u,h) E x r(O.T;^(fi;))x 

Y x H l (0 ,T ;H . l
s {Q s ) )  x Z :  J s ( v ,  p, g, u, h) < oo 

and (3.2.11)-(3.2.17) is satisfied } (3.2.18) 

Using the properties of the bilinear forms we can obtain an a priori bounds for 

solutions of the weak formulation (3.2.11)-(3.2.17). Let (v,p, g,u, h) satisfy (3.2.11)-

(3.2.17). From (3.2.11) and (3.2.14), we obtain 

P/(v£, w)ft/ + 6(w, p) + <z/(v, w) 

+Ps(utt, 0)n, + ea(u<, 9) + as(u, 9) 

= p/(f, w)n f  + ps(b, 8) n ,  - (w, pn - ̂ /Vv - n)r0 + (h, 9) r 0  

VWEH}(FI7), V0EHl(fls) 

or 

P/(vz,w)fi/ +6(w,p) +a/(v,w) 

+ps(utt) 5)n, + e<i(ut, 0) t as(u, 0 )  

= P/(f, w)fi/ + ps(b, 0)n, - (w, pn - ̂ Vv - n)Fo 

+(w, h)r0 + (h, 6)r0 - (w, h)r0 
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V w E V 6 G H](fi5) (3.2.19) 

Taking w = v and 9 = u£ in (3.2.19). Then, because of (3.2.12)-(3.2.13) we have 

/>/(vt,v)n/ + a/(v, v) + ps(u££, u£)n, + ea(u£,u£) + as(u,u£) 

= P/(f, vhf + ps(b, u£)n, - (g, pn - /t/Vv • n)r0 -f- (g, h)r0 

+(h,ut)r0 - (g,h)r0 

This may be reduced to 

= -(g,pn-^/Vv-n-h)r0 + (h,u* -g)r0 + p f ( ï , v ) Q f  + ps(b,u£)fil 

^ l|g||o,r0!!pn — jtz/Vv • n — h||0,r0 + l|h||o.r0|lut — gi|o,r0 

+P/l|f|l-i,fi/llvlli,n/ + Ps||b||o,nJ|U(||o.n, 

Integrating from 0 to £ yields 

rT 

Pf sup ||v||o.n/ + Ka JQ ||v||i,n/( + Ps sup liut||o,n5 

rT 
+eKa Jo ilu<lli.n..^ + /VaSl^plluiliA 

< [ llgllô.ro^ + [ IIPn — A^/Vv - n — h||otI-0Gft + f ||h||o_rocft 
J  0  « /  0  • /  0  

+ Jq llu< — gllo.r0^ + P f C fQ il^ll-ijifdt + PsCfQ l|b||o,n,^ 

l|u"||l. (3-2.20) 

We take test functions w with V • w = 0 in equation (3.2.11), we get 

P/(v£, w)fl/ = —ay(v, w) - (w,pn - fi/Vv - n)r0 + /?/(f,w)n/ Vw E V 

and this gives 

|/9/(v£,w)fi/| < ̂ ||v||i,n/||w||i,n/ 

+ ||w||i,n/||pn - p/Vv - n||o,r0 + P/||f||-i,r2z||w||i,n/ 
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Therefore, 

Pf f \Wt\\v'dt < k« [ \M\l.af
dt + f IIP" - fzfVv - n - h||£r 

J 0  JO Jo 

+ jf IMlS.r„<« + Pf  [  l|f||2-i.n,di (3.2.21 ) 

From (3.2.11), 

6(w,p) = — p j { y t , v r ) a f  - a/(v, w) 

- (w, pn - /i/Vv • n)r0 + /»/(f, w)fl/ Vw 6 H}(0/) 

Inf-sup condition may be used to get, 

Kb f \\p\\lnfdt < pj f \\vt\\l.dt + ka f ||v||2
lja dt 

J O  ' J o  J o  '  

+ IJpn - ̂ /Vv • n||gfr0rf< + Pf JQ P (3.2.22) 

Theorem 3.2.1 There exists an optimal solution (v, p, g, û, h) E W^d for Problem 2. 

proof: It is clear that lA^d is not empty. Let (vn ,pn ,  gn, un, hn) be a minimizing sequence 

in Uad- i.e. 

lim J"5(vn,pn,gn,un,h") = irxf Js{v, p, g, u, h) 
(v,P,g,u,h)eZYad 

Thus from (3.2.18), we have that ||g"|| and ||hn|| are uniformly bounded in y  x z .  

T h en since by (3.2.20) and (3.2.22) (vn,pn,un) E L2(0, T; H}(fi,)) x Z2(0,T; L2{9.F)) x 

Hl(Q, T ; H^ûs)) is uniformly bounded. Thus, there exist subsequences, denoted by 

(v",pn,gn,un,hn) for simplicity, such that 

vn v in L2(0.r;H}(f2/)) 

p^-pin ̂ (0,t;l"(n/)) 

gn -»• g in y  

un —*• u in #X0,T;HXn,)) 

hn —^ h in Z 
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for some (v, p, g, Û, h) € Uc
ad. 

Now, by passing to the limit, we have that (v, p, g, û, h) E satisfies (3.2.11)-

(3.2.17). Then by the fact that functional J7g(-, -, -, -, -) is lower semi-continuous, we 

conclude that 

t7s(v,p,g,û,h) = inf v7s(v,p,g,u,h) 
(v.p,g,u,h)€Mad 

i.e. (v, p, g, û.h) is an optimal solution. 

Now we take the limit as e —0 of optimal solutions of Problem 2 to get optimal 

solutions of Problem 1. 

Theorem 3.2.2 There exists an optimal solution (v,p, g, û, h) E U.ad. for Problem 1. 

The proof is the same as in the Theorem 2.2. 

3.3 Convergence with vanishing penalty parameter 

In the next theorem we show that optimal solutions of Problem 2 converges to the 

weak solution of (2.4.16) as 6 —>• 0. 

Theorem 3.3.1 For each 5, let (v*, ps, gs, uJ, hJ) denote an optimal solution of Problem 

2 and (v,p, û) denote a solution of (2.4-22)-(2.4-26). Then ||v — v5||lin/ —¥ 0. ||p — 

—>• 0, ||û — —> 0, \\ùt — uf||i,n3 —y 0 as S r 0. 

proof: Let g = v|r0 and h = e^sViï£ - n + ̂ sVû • n + (A5 + /zs)(V • û)n on F0. For any 

solution (v, p, û) of (2.4.16), we have 

J s ( v 5 , p s , g 5 , u s ,  h5) < J7"j(v,p,g,ù,h) 

i.e. 

i f T [  (uf - g)2 d T d t  +  \  f T [  ( p s n - /i/Vv{ - n - h ' f d T d t  
2* J 0 v to J 0 «'to 

+ f/o L ^s^dTit+1/X„ ̂hS^drdt 
< J-(v,p,g,û,h) + U W U T d t  + | jf/r„ V S  
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Then ||g5||y and ||h5||z are uniformly bounded, ||u£ — g||o.r0 0 and ||p5n — 

fi/Vv5 - n - h5||0,r0 0 as 6 0. We then obtain ||v5||ltfif, ||p5||o,n/; llu5||i,ns and 

||ufj|!,n, are uniformly bounded by (3.2.20) and (3.2.22). Hence, as S —Y 0. there 

exists a subsequence of {(v5, ps, gs, u5, h5)} that converges to some (v,p,g, û, h) E 

L2(0,r;H}(fi/)) x L2(0,T;L2(nf)) x Y x Hl(0,T-,Hl
s(Cls)) x Z. The fact that ||uf -

g||o,r0 —>• 0 yields v = ût on F0, also ||p5n — /z/Vv5 • n — h^joxo —* 0 as S -*• 0 implies 

that efisVilt • n + yusVù - n + (As + /zs)(V - ù)n = pn — fj/Vv - n on F0. 

By passing to the limit, we have that (v.p, ù) satisfy (2.4.22)-(2.4.26). By the unique

ness of solutions of (2.4.22)-(2.4.26), (v.p, ù) = (v,p, û) and hence theorem is proved. 

The following theorem is achieved due to Theorem 2.4.2, Theorem 3.2.2 and Theorem 

Theorem 3.3.2 For each 5, let (v5,p5,g5, u5, h5) denote an optimal solution of Problem 

1 and (v,p,û) denote a solution of (2.3.7)-(2.3.11). Then ||v — v5||lin/ —> 0, ||p — 

0, [|û — 0, ||dt — —y 0 as S —r 0. 

3.4 Optimality system 

We use the Lagrange multiplier rule to derive the first order necessary conditions 

that optimal solutions must satisfy. 

Let B l  =  L 2 ( 0 , T ; H } ( Q f ) )  x L 2 { 0 , T :  L 2 ( Q f ) )  x Y  x H l ( Q .  T  ; H ^ ( Q S ) )  x Z and S2 = 

^(0,r;/f)(n;))- x^(0,t;/f)(n/)) xy x/7x0,t;^(n,)r. 

where, (•) denotes the dual space. Suppose the linear operator M : B\ —> B2 denotes 

the constraint operator, i.e., M : Bi —y B2 is defined by M(v,p, g, u, h) = (f, z, d, b) if 

and only if 

3.3.1. 



29 

[ 6(v, q) dt = f 6(z, q) dt V q E L2(Q/) 
Jo  Jo  

f [(v,s)r0 - (g,s)r0] dt = f (d,s)r0 dt V s e ff~1/2(r0) Jo Jo 

and 
-r 

dt f  [ps(utt, 0 ) n s  + ea(u<, 6 )  + as(u, 6 )  - (h, 0)ro] 
Jo 

=  f p s { b , e ) n , d t  v 8 e h l
s ( n s )  

J o 

Note that the constraint equations (3.2.11)-(3.2.14) can simply be expressed as 

M(v,p, g,u,h) = (f, 0, 0, b) 

The operator M ' (v,p, g, u, h) E C ( B X ,  B 2 )  may be defined as follows: 

M'(v ,  p, g, u, h) • (A, y ,  k, x, 1) = (f. z, d, b) if and only if 

rT 
J Q  [p/(At, w)n/ + b(w .y )  + a/(A, w) + (w, yn  -  /i/VA - n)r0] 

= pf( f ,w) n { d t  V w E H j ( f l f )  

[  b (A ,  q )  d t  =  [  b ( z .  q )  d t  V q  E L 2 { V t f )  
Jo  Jo  

[ [(A;s)r0 - (k,s)r0] dt = [ (d,s)r0 dt V s E H~ l / 2 ( rQ )  
Jo Jo 

and 
rT 

dt f  [pscxttt + ea(x«7 9 )  + qs(x? #) — (l ̂ )r0] 
Jo 

=  f  p s ( h , 9 ) n , d t  V 6  E H l
s { € l s )  

J o 

We also have that the operator J s  E C ( B i ,  B 2 )  may be defined by 

J s i y ,  p ,  g ,  u ,  h )  -  ( A ,  y ,  k ,  x ,  1 )  =  5  f o r  ( A ,  y .  k ,  % ,  1 )  E  B x  

if and only if 

rT 
10 dt f (Ut - g, Xt - k)rc Jo 

rT  
+ (pn — a^/Vv • n — h, yn — ///VA • n — l)r0 

Jo  

+5 [ (g, k)r0 dt + 5 f (Vrg, Vrk)r0 dt + 8 [ (gt, kt)r0 
JO Vo Jo 

+£ f (h,l)r0 dt = â 
Jo 

dt 

rT 
dt 
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Suppose (v,p, g, û, h) G fît is an optimal solution of Problem!. Then there exists a 

nonzero Lagrange multiplier (yu, <£, T, 77) G B2 satisfying the Euler equation. 

- J s ( y ,  p, g, u, h) - (A, y, k, 1) 

+ < (^,^,r,77),Af/(v»P»g>t,u,h) - (A,y,k,x,l) >= 0 

V(A,y,k,%,l)eBi (3.4.23) 

where, < -, • > denotes the duality pairing between B2 and the dual space BZ-

rT 
J Q  b/(At, f i ) n f  + b ( p ,  y )  + a/(A, p . )  + (p, yn - pfVA • n)r0 + 6( A, 0 )  

+(A, t )r0 - (k, r)ro + p a ( x t t ,  v h ,  +  e a ( x t ,  v )  +  as(\, v )  ~  (L *7)r„] d t  
rT 

= Jq [(u< - 9 , X t ~  k)r0 

+(pn — p j V v  • n — h, y n  —  p / V A  - n — l)r0] d t  

+à [ (g, k)r0 + £/" (Vrg, Vrk)r0 </< + £ / (g<,kt)r0 dt 
Jo  Jo  Jo  

+ 6  f  ( h , l ) r Q  d t  V(A,y,k,x,l) 6 B i  (3.4.24) 
Jo  

We may rewrite (3.4.24) in the form 

~ P j { f J - t ,  A ) n f  + a/(A, p )  + 6( A, 0 )  (3.4.25) 

+ ( A ,  t ) r o  -  ( p / V A  •  n ,  p )  

= — (pn — /i;Vv • n — h,/z/VA • n) V A G H j ( C l f )  

6(//,y)=0 V 7/6^(0/) (3.4.26) 

(/^, 2/n)r0 = (pn — /i/Vv • n — h, yn)r0 V y  G L l { Q f )  (3.4.27) 

p\t=T = 0 ( 3.4.2S ) 

p s [Vtt,x)ns + ea(xt, v) + <%,(%, 77) 

= —(utz — gt- x)r0 V x € Hl(Q.s) (3.4.29) 

v\t=T = 0 (3.4.30) 

Vt\t=T = 0 (3.4.31) 
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(k, r)r0 = (ut - g, k)r0 - J(g, k)r0 (3.4.32) 

—<J(Arg, Apk)r0 + S(gtt, k)r0 V k e V" 

(li*7)r0 = (pn — p/Vv-n-h,l)r0 - £(h,l)r0 V i e  Z  (3.4.33) 

Thus, solutions of the optimal problem are determined by solving the system (3.2.11)-

(3.2.17) and (3.4.25)-(3.4.33). This system of equations is called the optimality system. 

We may replace (3.4.25) and (3.4.32) by 

A)nz +  Û/(A, f i )  + 6(A, <p) (3.4.34) 

+( A, 4>n— n / V/z • n)r0 = 0 V A e 

(k, én  -  njV / i  •  n)r0 = (ut - g, k)r0 - S(g, k)r0 (3.4.35) 

- £ (  A rg,  A rk ) r 0  +  6(g«,  k)r 0  V k 6  Y 
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The optimality system is a weak formulation corresponding to 

Pf \ - t  + Vp - /.z/Av = p f {  

V • v = 

v = 

psutt — e/jsAut — fijAu — (As + /zs)V(V - u) = psb in 

in ft/ 

0 in ft/ 

0 on F/ 

v = g on Fo 

ft, 

u 

e/ZsViif • n + /zsVu - n + (As + yus)(V • u)n = 

0 on Fs 

h on F0 

v|<=o = 

u|t=o — 

UF 11=0 

uv 

= u 

—pjpt + v© — fj. / a/z — 0 

V - fj. = 0 

e/zs 

ps77it — e/z 

:Vr/t • n + ,usV77 • n + (AS + /Z, 

n 

n fts 

n fts 

n ft/ 

n ft/ 

(i = 0 on F/ 

fj. = pn — fi /Vv • n — h on F0 

— CFI.sAr)t — (J.sATJ — (As + /zs)V(V • z/) = 0 in fts 

77 = 0 on Fs 

,)(V • Ty)n = — (u« - gi) on F0 

Az|t=T = 0 in ft/ 

77|t=r = 0 in fts 

^7t|t=r = 0 in fts 

n + u( on F0 (1 + 5)g - 5Arg - = -cpn + jjfVfi - , 

(1 + 5)h = (pn — /z/Vv -11 — 77) on F0 

(3.4.36) 
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3.5 Sensitivity derivatives 

The optimality system (3.2.11)-(3.2.17) and (3.4.25)-(3.4.33) may also be derived 

using sensitivity derivatives instead of the Lagrange multiplier rule. The first derivatives 

-5—, ~^r~ °f Js are defined through their actions on variations g and h as follows: 
a g a h 

<~dg^>=ZL (Ut-g'~s)r0^ (3.5.37) 

r t  
+  J  ( p n  — / j . j V v  •  1 1  —  h , p n  —  f i / V v  •  n ) r 0 c l t  

+ s  f  (g>f)r 0 d t  +  s [  ( V r g ,  V r g ) r 0 d t  Jo Jo 
+£ f (gt,gt)r0dt (3.5.38) Jo 

where p, v are solutions of 

P/(vt,w)n/ + 6(w,p) + a/(v, w) (3.5.39) 

+ (w ,  pn-  f i  /  Vv  -  n )r 0  = 0  V w  6  H)(VL S )  

6(v, 9) = 0 VqeH^Qf) (3.5.40) 

(v,a)ro-(g,5)r„=0 vge^^ro) (3.5.41) 

v|t=0 = 0 (3.5.42) 

Setting A = v , yn = pn  — f i /Vv  - n in (3.4.34),(3.4.27) and w = f i  in (3.5.39) and 

from (3.5.37) 

. dJs ~ ^ [T, -x ,, 
< g>= yo (ut -g:-g)r0^ 

+  [  ( & , < f > n - i i f V f i - n ) r 0 d t  +  6  f  (g,g)r0^ (3.5.43) Jo Jo 
-6 [ (Arg,g)r0dt -  5 [  (gt t ,g)r0

d t  

Jo Jo 

rT  rT  
+ / (pn — fi/Vv • n — h, —h)r0cft + 6 (h, h)r0df (3.5.44) 

Jo  Jo  
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where û is a solution, of 

Ps(ût£,0)n_. + ea(û£,0) + <z,(û,6) = (h.0)ro V 9 e Hl
s{9.s) (3.5.45) 

û|t=0 = 0 (3.5.46) 

ù£|£=o = 0 (3.5.41 ) 

Setting x = û in (3.4.29) and 8  =  r j  in (3.5.45) and from (3.5.44) 

f? r 
< 

dh  
•r 

,h >= f (h. r})rQ d t  
Jo  

+ [ (pn — fi/Vv - n — h, — h)r0dt + 5 f (h,h)r0dt (3.5.48) 
J Q  J O  

Thus the first order necessary conditions — Q and = 0 yield that 

(1 + S)g — 5Arg — Sgu = — (pn + fi/Vfi • n + u£ on F0 

( 1 + 5)h = pn — [i/Vv • n — 77 on To 

which are the same as in (3.4.36). 

Note that equations (3.5.43) and (3.5.48) give an explicit formula for the gradient of 

•OF&, i.e.. 

— f [(1 + £)g — 5Arg — Sgtt + 4>n — fj,fS7fj. • n - ut]dt (3.5.49) 
dg Jo  

= f [(1 + 5)h — pn + ///Vv • n + 77]^ (3.5.50) 
on Jo  

3.6 Gradient method 

In this section, we study a gradient method to solve the optimization system (3.2.11 )-

(3.2.17) and (3.4.25)-(3.4.33). The simple gradient method we consider is defined as 

follows. 
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Given a starting guess gW and h'0* 

i  g(n+1) x 
— a  

( djg \ 
9g 

djs 
\ dh / 

f o r  n  =  1 ,2 ,  

where û is a step size. Combining with (3.5.49) and (3.5.50) yields, for n = 1,2, 

/ 
(n+i) 

x h(n+1) y 

( 

^ 1  ( n ) x  gv 

h(«) 

— Q 
JtT[(1 + <^)g — ^Arg — £g« + ?>n — /z/Vfi • n — u£]</t 

fo [(1 + ̂ )h — pn -+- ii/Vv - n + rj]dt 

Algorithm 3.6.1 1. Choose g(0) and h(0). 

2. For n=0,l.2,- - -, 

( a )  d e t e r m i n e  v ' 7 1 * , p ( " *  a n d  v S n ^  f r o m  

f/(v|"\w)n, + 6(w,pW) + a/(vM,w) 

+(w,p(n)n -^i/Vvw • n)r0 = p/(f, w)fi/ V w E /ij(ft/) 

6(v(n),ç) = 0 V ç € 

(v(n\ s)r0 - (g(n),s)r0 =0 V s 6 tf_1/2(r0) 

v(n)|£=0 = v° in fIf 

ps(u[t\ d)ni + ea(ujn),0) + as(u(n),0) = ps(b,0)n, + (h(n).0)ro 

v g G 

u(n)|£=0 = u° in Cls 

u£
(n)|£=0 = u1 in Qs 
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(b) determine ^n\cp^ and 77^ from 

A)» ,  + + 6(A^ (" ) )  

+(A. é>nxi — fjfVfj.^ - n)r0 =0 V A G Hj(Qf )  

6(pw,g) = o vçez"(n/) 

( f i ( nK&)rQ  = (p(n)n-/!/Vv(n) • n — h(n),s)r0 V se H~ l / 2{  T0) 

^n)\t=r = 0 

Ps(rj{
tt),x)n! +ea(xt,T7(n») + as(x,77(n)) = -(u^' - g!"' -X(n,)r0 

v % E 

77(n)|t=r = 0 

^(n)|t=t = 0 

( c )  d e t e r m i n e  g(n+l) and h^n+1^ from 

g(n+l) _ g(n) 

-a fo [(1 + <^)g(n) — <£Arg(n) — %Ln) + <P(n)n — fifV^n) • n — u{
t
n)]dt 

h(n+1) = h(n^ — a /0
T[( 1 + 5)hfn) — p(n)n + ̂ /Vv(n) • n + q(n^\dt 

The following result is useful to determining sufficient conditions for the convergence 

of the gradient method. 

Theorem 3.6.1 Let X be a Hilbert space equipped with the inner product (-,-)% and 

norm || • ||x- Suppose M. is a functional on x such that 

1. M. has a local minimum at x and is twice differentiate in an open ball B centered 

at x: 

2 .  I <  M " { u ) , { x , y )  >  I < M||x||x||y[|r, V u  e B , x  e X , y  e Y  ;  

3 .  I <  M " { u ) ,  ( x ,  x )  >  I > m||z|!x-, V u  e B , x  e X ,  
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where M and m are •positive constants. Let R denote the Riesz map. Choose 

suffi c i e n t l y  c l o s e  t o  x  a n d  c h o o s e  a  s e q u e n c e  p n  s u c h  t h a t  0  <  p .  <  p n  <  p "  <  2 m / M 2 .  

Then the sequence defined by 

r(n) = x { n ~ l )  -  p n R M ' i x ^ - ^ ) ,  f o r  n  =  1 , 2 , -  •  •  ,  

converges to x. 

We examine the second derivatives of J to determine the constants M and m. 

^ _ rt 
< 

<9g' 
rl  

-,(g,g)>=/ (g,g)r0^ 
J  o  

< 

+ J (pn  — n /V-v  -  n , pn  — f i /Vv  •  n ) r 0 d t  

+ s  f  (g5g)r0 d t  +  S  f  (Vrg,Vrg)r0 d t  +  6  [  (gt,gt)r0^ 
Jo  Jo  Jo  

d 2  7  r T  

, (g,h) >= / (-g,u£)r0^ 
Jo  <9g<9h 

< 

rT 
+ / (pn - /Li/Vv • n, —h)r0 d t  

Jo  
d 2  T z-r 

,(h, g ) > = /  (û£, -g ) r 0 d t  
Jo  dhdg 

< 

r + / (-h,pn — fifVv • n)r0cft 
Jo  

, (h,h)>= f  ( u t , û t ) r 0 d t  + (1 + 5) f  (h. h)r0<ft 
Jo  Jo  dh2 

where, v. p, u, v, p and û are solutions of 

P/(vt,w)n/ + 6(w, p) + a/(v, w) 

+ (w,pn  — f i /Vv  •  n ) r 0  = 0  V w  E Hj(9 . f )  

6(v, q)  = 0 V ç E L2(Q/) 

(v, s)r0 - (g, s)r0 =0 V s E tf~1/2(r0) 

(3.6.51) 
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P/(vt,w)n/ + 6(w, p) + a/(v, w) 

+ ( w , p n - / x / V v - n ) r 0  = 0  V w  e  h j ( q f )  

- 6(v, g)  =  0  V ç G L 2 (C l f )  

(v , s )r 0-(g , s ) r 0  =0 Vser 1 ^)  

v|£=0 = 0 

ps(u££,0)n, + ea(ut,û) +  a s ( u , 9 )  =  (h,0)ro V 0  e  //j(Qs) 

u|t=0 = 0 

uz|t=o = 0 

+ = (h^)r« vg e 

û|£=0 = 0 

ût|£=0 = 0 

Then. 

(g M 

/ @2.7" \ / g 
\ 

dg2 9g9h g 

a2,7 a2,7 h V 9h9g 9h2 
/ X h / 

(3.6.52) 

(3.6.53) 

(3.6.54) 

< dg2 '(s'g) > <9gdh'(s' ^ > + < dh<9g'( ,g) > + < dh2 ^ > 

= Jq (g,g)r0dt + (pn-/i/Vv • n,pn-/i/Vv • n)r0^ 

+s fQ (g,g)r0dt + 6f^ (Vrg,Vrg)r0dt + S (gt,g£)r0^ 

+ Jq (—Ë,ut)r0dt + j (pn - /LZ/VV • n, -h)r0CFT 

fT  f T _ 
+ / (û£, -g)r0dt + / (-h,pn - jU/Vv • n)r0^ 

Jo Jo 

+ Jo (u£, ût)r0</£ + (1 + 5) (h, h)r0dt 

f t  
= / (u£ - g, û£ - g)r0<ft 

Jo 
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,dt + (pn — fi/Vv • n — h,pn — \x/ Vv - n — h)r0< 

+â f (g,g)r0dt + s[ (Vrg,Vrg)r0dt + S f (gt,gt)r0A 
Jo  Jo  Jo  

+S f (h,h)r0d< 
70 

We show that 

f  a\7 \ z \ 
g 

(g, h) 9g2 dgdh 

z \ 
g 

(g, h) 
a-J k 

\ dhdg dh2 
/ \ / 

<M||x||||y|| 

where x = (g, h)T, y = (g,h)r, ||x|| = )/l|g||y + [|h||| and ||y|| = ^/jj gll^ + l|h||2z 

First, we obtain bounds for v and p. Let v,p satisfy (3.6.51), which is a weak 

formulation of 

p fV t  + Vp  — f i / Av = 0 in ft/ 

where, T = F/ U F0 and 

We introduce a space 

V • v = 0 in ft/ 

v = g on T 

v|t=o = 0 in ft/ 

g = 
g on To 

0 on V/ 

h!(ft/) = {v€ hs(ft/) : Av 6 l2(ft/)} 

(3.6.55) 

with a norm 

MlsA.fi, = ||v||a,n/ + ||Av||0,n/ 

Then, for g E L2(0, T; h1(F)) fl h l ( 0 ,  t ; l2(F)), there is an extension r o g  E 

Z2(0,r;hl/2(ft/))nfl"1(0,r;h^/2(ft/)) such that V-(Rog) = 0 in ft/ and R0g = g on F. 
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And 

||^og||3/2A.n/ + W R q&W i/uvi, < llâlli.r + ||gt||o,r- (3.6.56) 

Write v = v + Rog, then we have 

pj'V t  + Vp — yu/Av = —pjRogt + fi/ARog in fi/ 

V • v = 0 in Qj 
(3.6.57) 

v = 0 on T 

v | £ = 0  =  —pfRo g \ t = o  i n  f I f  

Notice that — p j R o g t  + f i / A R 0 g  € L2(fi/) and we show that /2og|t=o € H^(fi/). 

[X. Y\e denotes the interpolation space equipped with a norm 

IMI[A-,y]e = IIA'-^Hv-

where A : Y —> Y is an operator such that ||U||A' = ||Au| |Y. And define a space H l(0. T) 

as 

r) = {u g ̂ (0, t; %), € z=(0, t; k)} 

Theorem 3.6.2 (Trace theorem) There exists a bounded operator 70 : Wl(0. T) —'t  

[X. Y]i/2 such that 70u = U|£=0 and ||7OU||[À',V]1/2 < C|Mlw--(o,r) 

proof: See Vivsik, Fursikov [40]. 

Lemma 3.6.3 If X = H3/,2(ft/) and Y = Hly,2(fi/) then [À', Y]i/2 = Hl(fi/) 

proof: 

(Sui, u2)i/2,njr = /"(! + |C|2)1/25U!U2</C 
j c l f  

(ui,u2)3/2,N, = fa (1 + |£|2)3/2UIÙ2< 
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(5ui,u2)1/2,n/ = (ui,u2)3 /2,nz implies 5 = 1 + |£|2 and hence A = (1 + |C|2)1/2 i.e. 

j|Au[| i/2,rir = ||u||3/2inf- By the definition of the interpolation space. 

l!ull[A',y]1/2 — l|A1/,2u||2/2n/ = ||u||2n/ 

Therefore, [X, F]i/2 = H1(û/) 

If A' = H3/,2(fi/) and Y = H1/,2(fZ/) then we may rewrite the Trace Theorem as 

follows : 

There exists a bounded operator 70 : Hzl(0, T) —> H1(f2/) such that 70u = u|i=o and 

ll7ou||?,ft/  < c(/0
t ||u||l/2n/^ + /0

t ||ut|!2
/2_n/^) 

Since R 0 g 6 L 2 (0 ,  T:  H&/2(fi/)) A /^(O.T; H^A/)), we have i?0g|i=o € H^fi,)) 

and 

l|flog|,=ollln<C(jfT||flog||l/2,I1/i+^T||fi„g«llî/2,n,<'i) (3.6.58) 

Then (3.6.57) is an evolution Stokes equation and hence we obtain 

v G L2(0, T; H2(fi7)) 

v£ € L2(0,r;L2(fi/)) 

p g ^ ( 0 , t ; ^ ( o / ) )  

Moreover. 

Jq  \ \ v t \ \ l ,n f dt  <  pj  Jo \ \Rogt \ \ ln f di  

f 1 }  j Q  IIAR0g\\l<slfdt + ||^og|i=o||2,n 

< C(llg|llr + llgtllo,r) 

by (3.6.56) and (3.6.58). 

We then come back to (3.6.57) and we apply the regularity theorem of stationary 
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case. For almost every t in [0,T], 

Vp -/i/Av = — p f ~ v t  —  p / R o g t  -{- n/ARog in ft/ 

1 V-v = 0 in.Q/ 

v = 0 on T 

so that v(£) G H2(fi) and p ( t )  G H l ( Q ) .  Moreover, 

J q  \ M l a f
d t  +  J Q  M l n f d t  

< c(p} ̂  ||v,||g.n/( + p} ̂  4 ̂  ii aaog||g.n/() 

< C(||g||^ + ||&||&r) 

Now we get bound for v. 

JQ \\v\\l/2xn f
d t  < fQ \Ml/2A,nfdt + fQ Pogll^A.n/^ 

< 2(||v||2/2_n/^ + iiavll^n/i) + jq \\roè\\l/2^s
dt 

< C(llg|li.r + H&llo.r) 

Then 

JQ llPnlloXo^ < fQ Mln f
d t  

< C(||gRr + ll&llg.r) = c||gllk 

and 

JQ IIVv - n||2_ro^ < Jo ||v||2/2A-n/^ 

< C(||g||lr + i|gt||2,r)=C||g||^ 

Now, we obtain a bound for u. Suppose u is a solution of (3.6.53). Then 

ps(u«, d ) n 3  + ea(ut, 6) + as(u, 6) = (h,0)ro V 9 G H\{Çla) (3.6.59) 
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Setting 9  = u£ in (3.6.59) to get 

rT 
sup Ps||ut|||n. + cKa Jo llutll^A + sup A'a||u||2_ni 

< c £ mlxA* = c\\H% 

We determine the constants M using bounds we have obtained. 

(g-h) 9g2 dgdh 

d 2 J  3 *  J  
\ dhSg dh2 / 

r 

/ \ 
g 

v h / 

,1/2 

= I  f (u t  -g ,û<  -g )r 0 A 
70 

/•r 
+ J (pn — fj,fVv • n — h, pn — fifVv - n — h)r0dt 

+â fQ (g'g)radt + tfQ (Vrg,Vrg)r0 d t  +  6 ( g t , g t ) r 0 d t  

+<5 f (h,h)r0^| 
vo 

< 2 (£  l lu . l l ln ,*  +  £  ||g | |2 , r 0 <<i )" 2 ( / o
T  l lû . l lU^ +  J*  l lg l lSr /O'"  

+'2(fa IIHIo.n/" +''// llVv - n||o.r0<" + fo IIMIS.r,/" 

if l!Pnllo,r0^ +0/ f llvv-nllo,r0^+ / llhllo.ro^)1 
«/ 0 •/ 0 *» 0 

+<S(/o
T|lsll5.r.'")1/2(_(T||8llo,r„«")1/2 

+ < $ ( _ / f  i l V r g | | I , r l l V r i f c r / ' ) '  

+<$(/T I|g.|l5,r„<")l/2(jf l|g«fer/i)1/2 

+<$({t||hêr/0'/2(_(t||h|||r„<«)1/2 

< 2(C||h||| + ||g!lr)1/2(C||h||| + llgllf-)"2 

+2(C||g||?. + tic\\g\\l- + + ticufy + llhlll)"2 

+i||g||K||g||y+f||h||y||h||,-

< M||x| 

lv2 

where, M = 1C + 2(1 + + 6. 
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Setting g = g and h = h to determine the constant m. 

z &\7 @:.7 ^ / \ 
g 3g2 dgdh 

\ 
g 

V dhdg ah2 / V n / 

= f f (ut — g)2 dT dt + f f (pn — (j.j Vv • n — h)2</F dt 
J o Pq o ir0 

-f-J f T [  g2 dT cfe + J F [ (Vrg)2 <*T A 
v 0 7to */0 v fq 

+<? f T  f  g2 dr dt + <5- f T f  h2 </r dt 
J  o 7r0 •/ o Vr0 

= ,7(v,p,g,u,h) + ̂ ||g||r + ̂ l|h||| > <£||x||2 

where m = S. 

This proves the convergence of the Gradient method. 
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