
INFORMATION TO USERS 

This reproduction was made from a copy of a manuscript sent to us for publication 
and microfilming. While the most advanced technology has been used to pho
tograph and reproduce this manuscript, the qualiiyof the reproduction is heavily 
dependent upon the quality of the material submitted. Pages in any manuscript 
may have indistinct print. In all cases the best available copy has been filmed. 

The following explanation of techniques is provided to help clarify notations which 
may appear on this reproduction. 

1. Manuscripts may not always be complete. When it is not possible to obtain 
missing pages, a note appears to indicate this. 

2. When copyrighted materials are removed from the manuscript, a note ap
pears to indicate this. 

3. Oversize materials (maps, drawings, and charts) are photographed by sec
tioning the original, begiiming at the upper left hand comer and continu
ing from left to right in equal sections with small overlaps. Each oversize 
page is also filmed as one exposure and is available, for an additional 
charge, as a standard 35mm slide or in black and white paper format.* 

4. Most photographs reproduce acceptably on positive microfilm or micro
fiche but lack clarity on xerographic copies made from the microfilm. For 
an additional charge, all photographs are available in black and white 
standard 35mm slide format.* 

*For more information about black and white slides or enlarged paper reproductions, 
please contact the Dissertations Customer Services Department. 

'lirivBTsily 
IVBrnmlms 



8615068 

McCann, Michael John 

AN APPLICATION OF CONVEX PROGRAMMING TO CONSTRUCTION 
SCHEDULING 

Iowa-State University PH.D. 1986 

University 
Microfilms 

I ntsrnsitionsil SOO N. zeeb Road, Ann Arbor, Ml 48106 

Copyright 1986 

by 

McCann, Michael John 

All Rights Reserved 



PLEASE NOTE: 

In all cases this material has been filmed in the best possible way from the available copy. 
Problems encountered with this document have been identified here with a check mark V . 

1. Glossy photographs or pages 

2. Colored illustrations, paper or print 

3. Photographs with dark background 

4. Illustrations are poor copy 

5. Pages with black marks, not original copy 

6. Print shows through as there is text on both sides of page 

7. Indistinct, broken or small print on several pages 

8. Print exceeds margin requirements 

9. Tightly bound copy with print lost in spine 

10. Computer printout pages with indistinct print 

11. Page(s) lacking when material received, and not available from school or 
author. 

12. Page(s) seem to be missing in numbering only as text follows. 

13. Tvvc pages nuiTibered . TsxtfcHcvvs. 

14. Curling and wrinkled pages 

15. Dissertation contains pages with print at a slant, filmed as received 

16. Other 

University 
Microfilms 

International 



An application of convex programming to construction 

scheduling 

by 

Michael John McCann 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Industrial Engineering 

Major: Engineering Valuation 

Approved : 

In Charge of Major Work 

For the Major Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1986 

Copyright (C) Michael John McCann, 1986. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



il 



i i i  

TABLE OF CONTENTS 

Page 

INTRODUCTION 1 

History of Construction Scheduling Methods 3 

Objective of Research 6 

Research Methods 7 

Form of Results 7 

SECTION I. SCHEDULING PROBLEMS WITH REAL NUMBER SOLUTIONS 9 

MINIMUM PROJECT DURATION PROBLEM 11 

Theory of Critical Path Method 11 

Critical Path Method BASIC Code 19 

Critical Path Method : 
Solutions to Example 2 Minimum Project Duration Model 30 

MINIMUM PROJECT COST PROBLEM WITH LINEAR COST FUNCTIONS 33 

Theory of Dual Simplex Method 33 

Dual Simplex Method BASIC Code 55 

Dual Simplex Method: 
Solutions to Example 4 Minimum Project Cost Problem 81 

MINIMUM PROJECT COST CURVE PROBLEM WITH LINEAR COST FUNCTIONS 87 

Fulkerson's Interpretation of Cost Problem with Linear Costs 87 

Theory of Out-of-kilter Method 91 

Out-of-kilter Method BASIC Code 99 

Out-of-kilter Method: 
Solutions to Example 6 Minimum Project Cost Curve Problem 116 

MINIMUM PROJECT COST PROBLEM WITH QUADRATIC COST FUNCTIONS 119 

Theory of Primal Simplex Method 120 



iv 

Theory of Primal-dual Method 126 

Primal-dual Method BASIC Code 126 

Theory of Beale's Method 140 

Beale's Method BASIC Code 159 

Beale's Method: 
Solutions to Example 10 Minimum Project Cost Problem 182 

MINIMUM PROJECT MAN COUNT PROBLEM WITH HYPERBOLIC AND PARABOLIC 
MAN COUNT FUNCTIONS 187 

Theory of Supporting Plane 188 

Parabolic, Hyperbolic, and Hyperbolic of Two Sheets Constraints 192 

Dual Simplex Method with Nonlinear Constraints BASIC Code 198 

Dual Simplex Method with Nonlinear Constraints: 
Solutions to Example 11 Minimum Project Man Count Problem 233 

MINIMUM PROJECT SUPERVISION COST PROBLEM WITH HYPERBOLIC 
MAN COUNT AND PARABOLIC COST FUNCTIONS 239 

Beale's Method with Nonlinear Constraints BASIC Code 240 

Beale's Method with Nonlinear Constraints: 
Solutions to Example 12 Minimum Project Supervision Cost Problem 243 

Cubic Hyperbolic and Cubic Hyperbolic of Two Sheets Constraints 247 

Primal-dual Method with Cubic Hyperbolic Constraints BASIC Code 248 

Primal-dual Method with Nonlinear Constraints: 
Solutions to Example 13 Minimum Project Supervision Cost Problem 256 

MINIMUM PROJECT COST CURVE PROBLEM WITH HYPERBOLIC MAN COUNT AND 
PARABOLIC COST FUNCTIONS 259 

Theory of Restart Method 260 

Restart Method BASIC Code 260 

Restart Method: Solutions 
to Example 12 Minimum Project Supervision Cost Curve Problem 269 



V 

SECTION II. INTEGER SOLUTION METHODS 271 

PROBLEMS WITH UNIMODULARITY 273 

Unlmodularlty of Simplex Tableau 273 

GOMORY'S ALL INTEGER METHOD WITH NONLINEAR CONSTRAINTS 277 

Theory of Gomory's Cut 278 

Theory of Wilson's Cut 285 

Gomory's Method with Nonlinear Constraint BASIC Code 287 

Gomory's Method with Nonlinear Constraints: Integer 
Solutions to Example 11 Minimum Project Man Count Problem 337 

BRANCH AND BOUND METHOD WITH HYPERBOLIC AND PARABOLIC CONSTRAINTS 339 

Theory of Branch and Bound Method 339 

Branch and Bound with Beale's Method BASIC Code 343 

Branch and Bound Method: Integer 
Solutions to Example 11 Minimum Project Man Count Problem 360 

Branch and Bound Method: Integer 
Solutions to Example 12 Minimum Project Supervision Cost Problem 360 

Theory of Driebeek's Penalty 361 

Branch and Bound with Diebreek's Penalty BASIC Code 364 

Branch and Bound Method with Driebeek's Penalty: Integer 
Solutions to Example 11 Minimum Project Man Count Problem 374 

SECTION III. CURVE FITTING PROBLEM AND REAL NUMBER SOLUTIONS 377 

MINIMUM DEVIATION FROM CUMULATIVE MANDAYS CURVE 379 

Theory of Restricted Pairs Method 381 

Restricted Pairs Method BASIC Code 382 

Restricted Pairs Method: 
Solutions to Example 15 Cumulative Mandays Curve Fitting Problem 399 



vl 

SUMMARY OF METHODS 405 

Summary of Solutions 406 

CONCLUSION 419 

FURTHER RESEARCH 425 

BIBLIOGRAPHY 429 

APPENDIX A: PRECEDENCE DIAGRAMMING METHOD 435 

Theory of Precedence Diagramming Method 435 

Precedence Diagramming Method BASIC Code Inputs and Reports 439 

Precedence Diagramming Method BASIC Code 450 

APPENDIX B: CORNER CUT METHOD 467 

Theory of Corner Cut Method 467 

Corner Cut Method BASIC Code 478 

Corner Cut Method With Nonlinear Constraints: 
Solutions to Example 11 Minimum Project Man Count Problem 490 

Round Up Integer Solution to Minimum Project Man Count Problem 496 

APPENDIX C: ELLIPSOIDAL METHOD 497 

Theory of Ellipsoidal Deep Cut Method (Perfect Arithmetic) 497 

Theory of Coffin's Method (Finite Arithmetic) 500 

Ellipsoidal Method BASIC Code 502 

Ellipsoidal Method: 
Solutions to Example 12 Minimum Project Supervision Cost Problem 515 

APPENDIX D: BARANKIN AND DORFMAN METHOD 517 

Theory of Barankin and Dorfman Method 517 

Barankin and Dorfman Method: 
Solutions to Example 17 Minimum Project Cost Problem 518 

APPENDIX E: PROGRAM DIRECTORY 521 



1 

INTRODUCTION 

The first commercially available digital computer was Introduced In 

1956. With this computer, or the UNIVAC computer, the DuPont and 

Remington Rand corporations developed the project scheduling method 

called the critical path method (CPM) and successfully applied the 

method to the planning and control of several of DuPont's construction 

projects. 

DuPont's successful applications of the CPM demonstrated the value 

of computer aided scheduling methods as a construction management tool, 

and encouraged many large companies and government agencies to specify 

CPM In their construction related contracts. 

As a result of these CPM contract specifications, the courts of the 

United States In 19721 required the use of CPM schedules for 

construction litigation. This decision set a precedent for the use of 

project scheduling and firmly established CPM as the basic tool of both 

government and Industry for the administration of construction 

contracts. 

Unfortunately, the benefits derived from CPM by Industry and 

government were not shared by construction contractors. Contractors 

often viewed, and sometimes found, owner required CPM schedules a 

restriction on their freedom to execute a project. Even though the 

Association of General Contractors supported the use of CPM as early as 

1965, by 1971 only a minority of contractors2 had actually integrated 

the method into their business procedures. 
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This fact was again confirmed In 1983 by the President's Report on 

Federal Construction Management. 

"Formal detailed (CPN) schedules are often not prepared and 
more often not maintained. Management Information systems 
concentrate on financial data rather than the physical status of 
construction and related activities. Project control systems are 
not clearly promulgated nor adequately utilized."3 

This lack of acceptance of CPN, and CPM related methods, by 

construction contractors Is due In part to the following inadequacies 

of the method. 

(1) CPM lacked data structure to integrate with the estimating and 

cost control methods used by most contractors. (Although the 

government tried to Integrate cost control and CPM with the Cost 

Schedule Control System criteria (CSCS), the results were 

controversial.) 

(2) CPM lacked the flexibility needed to track the rapid and dynamic 

progress of construction projects. Changing activity durations and 

construction sequences often made complex CPM networks obsolete 

(3) CPM lacked the ability to systematically seek optimal combinations 

of time, cost, manpower, and materials in a manner that would 

reduce contractor costs. This inadequacy became critical when 

the court case of Blackhawk Heating and Plumbing Company! implied 

that any contractor submitted CPM schedule was considered "optimal" 

and any free schedule time (float) was available for the owner's 

(the government's) use. 
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Extensive research has been done on network scheduling since the 

Initial Dupont CPM method; but In general, this research has not been 

applied to the construction contractor's needs. From the evident 

reluctance of construction contractors to adopt CPM, It appears that the 

current theories and technologies should be used, possibly In "hybrid" 

forms, to solve some of the Inadequacies of the present CPM network 

scheduling method. 

History of Construction Scheduling Methods 

"Scientific management" was first applied to project scheduling by 

Gantt* In 1917 with the use of the Gantt or bar chart. Much of the 

noncomputerized scheduling done today Is still based on this turn of the 

century method. 

It was not until 40 years later with the Introduction of the UNIVAC 

computer that Walker and SayerS of DuPont developed the network 

scheduling method of CPM. With CPM, large companies and government 

agencies had the tool to manage large scale multi-phased construction 

contracts. 

Parallel to the development of CPM, the consulting team of Booz, 

Allen, and Hamilton developed the probabilistic networking method 

called Project Evaluation and Review Technique® (PERT) for the Navy's 

Polaris missile program. Unfortunately, the complexity and the added 

information required by the method discouraged its widespread use. 

These methods laid the foundation of network scheduling and 

represent the majority of scheduling method applications in the 



4 

construction Industry today. 

In an attempt to expand CPM to Include resources other than time, 

such as costs, manpower, and materials, and to search for optimal 

combinations of these resources; research has continued since 1958 In 

three (3) major directions — the analytical methods, the heuristic 

methods, and simulation?. 

The Analytical Methods 

The work of Dantzig, Gomory, and Bellman provided the framework for 

the research In the analytical methods. Unfortunately, little of this 

work has had commercial application In construction scheduling although 

manufacturing has used extensively the linear programming techniques 

developed by Dantzig. 

Of the analytical methods, Dantzig's simplex method naturally lent 

Itself to optimizing CPM schedules with linear activity cost functions^. 

This led to the work of KelleyS, Charnes and CooperlO, and Fulkersonll 

who in the early 1960s solved CPM network schedules with linear activity 

cost functions by mëânS ûf à pfimwT-uuâl flûW Intêrprêuâtlûri Of thê 

simplex method. This research provided the basis for Kapur'slZ method 

for optimizing CPM schedules with parabolic activity cost functions in 

1973 using a modification of Fulkerson's method. Neither approach has 

seen widespread application in construction scheduling, and Kapur's 

method Is not available in a computerized form. 

Gomory's work with Integer programming in the 1960s provided the 

solutions to the integer resource constrained machine schedule models of 



5 

WagnerlS (processing order). Bowman14 (time period), and Manners (start 

time period), but the scale of the models were more suited for 

manufacturing than for construction. In practice, processing time made 

these models Impractical for full scale construction applications. 

Pritsker, Matters and Wolfe^® (selected time periods) derived a 

more efficient model which Patterson and Huberl? optimized using a 

branch and bound method In 1974; but again, the number of variables In 

the models proved a stumbling block to actual application. 

Attempts at using Bellman's dynamic programming for scheduling of 

resources proved of little use because of Its complexity and problem 

dependence; but PetrovlclB demonstrated In 1968 the feasibility of the 

approach. 

The Heuristic Methods 

The heuristic methods are offered In almost every major commercial 

CPM computer packages for the scheduling of activity costs and 

resources. Since these are privately developed commercial applications, 

most of the detailed Information about the methods are proprietary. 

Two (2) basic heuristic approaches have been developed?, the first 

of which is the "parallel" activity selection approach. Major vendors 

whose software packages use this approach are IBM's Project Management 

Systems IVl9 (PMS4), MacOonald Douglas's Management Scheduling and 

Control Systems^O (MSGS) and Project Software and Development's 

Project/221. The second approach is the "serial" activity selection 

approach which was first used by Sun Information Services for PREMIS22. 
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Both approaches schedule activities on heuristic rules and do not 

guarantee optimal solutions. In many cases the solutions are far from 

optimal which has discouraged even further use of the algorithms. 

The Simulation Methods 

The last direction of research Is the simulation methods. From the 

foundation of the probabilistic PERT, Pritsker developed Graphic 

Evaluation and Review Technique^S (GERT) based on the signal flow graph 

and its simulation extensions of Graphic Evaluation and Review Technique 

Simulation (GERTS) and Simulation Language for Alternative Model1ng24 

(SLAM). Although these methods have extensive applications in 

manufacturing, they have not been specifically adopted to construction 

scheduling. 

Objective of Research 

Other than the heuristic methods, little of the research of the 

past twenty (20) years has been applied directly to construction 

scheduling in the form of commercially available computerized methods. 

Considering that construction scheduling is closely tied to the computer 

technology and that CPM is specified extensively in contract documents, 

the objective of this research is to draw on the current analytical 

methods25 g^d computer technology to: 

(1) Increase the flexibility of CPM by eliminating the requirement of 

fixed or predetermined activity durations. 

(2) Incorporate costs and crew sizes (an Integer convex function used 

extensively in construction estimating) into a CPM related 
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networking model so that CPM can be more compatible with the 

current estimating and cost control procedures used by construction 

contractors. 

(3) Adapt the optimizing algorithms to the solution of the CPM related 

problem as defined above. 

This appears to be a reasonable objective, considering the 

developments in convex and Integer mathematical programming and the 

rapid growth in both the availability and power of computer equipment. 

Research Methods 

The methodology of the dissertation is to derive and code into the 

IBM BASIC computer language selected "hybrid" convex programming algo

rithms and to solve on a limited scale with a Panasonic Sr. Partner^S 

micro-computer (8088 processor with no 8087 co-processor with clock time 

of 4.77 MHz) several CPM related models applicable to construction 

scheduling. All computer programs will be limited to small 64k bytes 

BASIC routines to encourage copying and expansion by others and will be 

compiled using the IBM PC BASIC compiler rout1ne27 for greater machine 

transportability. 

Form of Results 

The dissertation will consists of a set of convex programming 

algorithms adapted to the solution of construction scheduling problems 

with computer benchmarks indicating their applicability to construction 

scheduling problems. 
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The programs will be written In a modular fashion In which matiy 

subroutines will be shared with the Intention of Increasing the 

flexibllty of the code. To encourage further research based on these 

programs, the BASIC code subroutines will be saved on a 5 1" floppy disk 
T 

disk under file names listed In the text. 
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SECTION I. SCHEDULING PROBLEMS WITH REAL NUMBER SOLUTIONS 

Most scheduling problems eventually reduce to finding a minimum 

balance between estimated fixed and variable costs. Beyond the fixed 

costs of materials, subcontracts, and direct labor which are determined 

by the contract specification more than the schedule, fixed overhead 

costs are related to project duration and can be estimated as a linear 

function of the duration of the tasks, or activities, which must be 

performed in a sequence determined by the schedule. Variable costs of 

direct labor supervision, can also be approximated by a linear function 

of the scheduled activity durations, but are more accurately estimated 

as a parabolic function of direct labor man counts where man counts are 

a hyperbolic function of activity durations. 

In this section, models will be formulated for project duration 

as determined by a given schedule; for project cost as determined by 

linear function of activity duration; for activity man counts as 

determined by a hyperbolic function of activity durations; and for 

project supervision cost as determined by a parabolic function of 

activity man counts. These models will then be minimized by the 

critical path method and variations of the simplex method. 

Each method will be accompanied by a BASIC program code listing 

with which an example problem will be solved to demonstrate the solution 

of the problems and the efficiency of the algorithm. For simplicity, 

no consideration will be given to the cases were integer solutions are 

required, such as for man counts and schedule dates. 
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MINIMUM PROJECT DURATION PROBLEM 

Before costs can even be considered, a project must be broken 

down into a sequence of tasks which are small enough in scope so that 

the individual tasks can be understood in detail. These tasks or 

activities can then be sequenced in a logical order to form a schedule. 

A project schedule is needed to determine if a sufficient amount 

of time has been alloted to complete the project. Although most 

schedules are "thought-out", this mental process does not have the 

rigor or the capacity to handle large projects. To find a minimum 

project duration, when the time alloted for the work becomes critically 

short, requires a mathematical model. 

Theory of Critical Path Method 

A method first developed by Kelley and Walker can determine the 

minimum amount of time required to complete a project schedule. This 

method is called the critical path method^S and is primarily a modeling 

technique, an accounting system for time, which determines those tasks 

in a work schedule whose timely completion are critical to the 

completion of a project schedule. 

CPM Time Scale 

The first component of the CPM model is the time scale as shown in 

figure 1. The scale is a set of "points" in time, usually represented by 

sequential integers, separated by equal "increments" of scheduled time or 

worked time which are not necessarily equal increments of elapsed time. 
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Points 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Increments 

Figure 1. Critical path method project time scale 

By convention, increment one (1) Is started at point one (1) and 

finished at point two (2). Increment two (2) at point two (2), etc. 

Work Activities and Durations 

The second component of the CPM model is the work "activity". Most 

projects, too complex to analyze as a whole, are divided into smaller 

units of work or activities which are of a repetitive nature and easily 

studied in detail. These activities are usually the work done by a 

single crew. They have an easily identifiable "start" and "finish" 

point, and they have a "duration" (dur-fj) of a fixed number of CPM work 

increments required for their completion. 

Events 

To associate an activity with the CPM time scale, each activity is 

defined with two (2) "events". Each activity must start after an event 

and finish before an event. Events must occur only at one of the points 

on the CPM time scale and must be separated by at least the duration of 

the activity which they define. 

Activities on Arrows 

In the CPM model, an activity Is graphically represented by two (2) 

nodes and an arrow shown in figure 2. The nodes represent two (2) 

events, often labeled 1 and j; and the arrow an activity. In this 
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durij=5 

Activity #1 

Figure 2. Critical path method arrow diagram work activity 

example, activity #1 Is defined In the CPM model as 1j with a duration 

of five (5) work Increments or durij=5. 

CPM Logic Diagram — Arrow Diagramming Technlgue 

Activities, drawn as arrows, can be combined Into a CPM logic 

diagram or "arrow" diagram as shown in figure 3, example 1. The 

Activity #3 

/ durik=15 \ 

/^Activity #1 Activity #2^ 

durij=5 durjk=5 

Figure 3. Critical path method example 1 

sequential requirements of a schedule can be modeled by sequencing the 

arrows In a directed network. In a network, the nodes now represent the 

event of completion of all the activities entering the node. 

Constructing the CPM network Is an art In Itself and will not be 

covered In detail here, but several conventions are commonly followed 

for the arrow diagram. Activities are linked together at their nodes. 

The network must have one (1) start node and one (1) finish node. For 

activity identification and processing purposes, the nodes are labeled 

with a set of integer numbers such that each activity can be identified 

by an ascending ordered pair of labeled nodes of which there are no 
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duplicate pairs. If any two (2) activities have a duplicate pair of 

labeled nodes, then "dunrniy" activities with zero (0) duration are added 

to the network to eliminate duplicate pairs. 

(Although duplicate pairs are allowed In the following BASIC 

program, the use of the arrow diagramming conventions will prevent the 

logical contradictions of doubling back or "looping" in a CRM network.) 

CPM Node Parameters 

If activity 1j is placed on the time scale in figure 4 at the 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

durij=5 durfj=5 

Figure 4. Critical path method time scale with activities 

earliest possible position, then event 1 is at point one (1) and event j 

is at six (6). Assuming a maximum scale point at sixteen (16) and 

placing activity ij at its latest possible position, event i is at point 

twelve (12) and event j is at sixteen (16). 

In algebraic notation, the above values can be expressed as: 

1=1 
j=i+durij=l+5=6 

j'=16 
1'=j'-durij=16-5=ll 

In CPM, these calculations define the node parameters defined by: 

Earliest start of node i (ES-f) = 1 
Latest start of node 1 (LSi) = 11 
Earliest start of node j (ESj) = 6 
Latest start of node j (LSj) = 16 
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The range of points on the CPM time scale which the nodes i and j 

can assume without violating any activity's duration are defined by the 

CPM parameters: 
Node float node i (NFi) = LS-f-ES-|«10 
Node float node j (NFj) = LSj-ESj=10 

CPM Forward Pass and Backward Pass 

If the activities of example 1 are now positioned on the CPM time 

scale in the earliest possible position as in figure 5. then i is at one 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Activity #1 Activity #2 Total float jk 

Activity #3 
i > k 

Figure 5. Critical path method example 1 early start time scaled 
network 

(1) j is at six (6), and k at sixteen (16). If fifteen (15) work 

increments is the time allowed for the example network, then the 

sixteenth (16) point is the end of the CPM time scale. Event sixteen 

(16) is now used as the latest possible finish point, so the network is 

placed in its late finish position as in figure 6 where i is at one (1), 

j is at eleven (11), and k at sixteen (16). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
+. . .+ . . ,+ . . .+ . . .+ . . ,+ . . .+ . . .+ . . .+ . . .+ . . .+ . . .+ . . .+ . .1+. . .+ . . .+  

, ...122:1. j 

Activity #3 
1 > k 

Figure 6. Critical path method example 1 late start time scaled 
network 



16 

In general, these calculations can be defined by a "forward pass": 

ESj=max (1, ES-f+durij) for all activities entering node j 

and a "backward pass": 

LSj=m1n (max point, LSk-durjk) for all activities leaving node j 

Calculating the CPM parameters for example 1 results in the 

following for the forward pass: 

ES-f=maximum (1)=1 
ESj=max1mum {1,6)=6 
ESk=maximum (1,11,16)=16 

and for the backward pass: 

LS|(=m1nimum (16)=16 
LSj=minimum (16,11)»11 
LSi=min1mum (16,6,1)»! 

and for the node calculations: 

NFi=LSi-ESi=l-l=0 
NFj=LSj-ESj=ll-6=5 
NFk=LSk-LSk=16-16=0 

CPM Activity Parameters 

Most people who schedule are more concerned with activities than 

with nodes. In ordeF to translate node parameters into activity 

parameters, CPM defines the following activity parameters: 

Earliest start of activity ij (ESij) =ES-f 
Latest start of activity ij (LS-jj) =LSj-durij 
Earliest finish of activity 1j (EFij) «ESt+dur^j 
Latest finish of activity ij (LFfj) =LSj 
Total float activity ij (TFij) =LSj-ES-f-durij 

"Earliest start", "latest start", "earliest finish", and "latest 

finish" times are self-explanatory from their descriptions. "Total 

float", in terms of the actual execution of the schedule, gives the work 
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Increments that activity's "actual" start can be delayed beyond its CRM 

early start without delaying any other activity's actual start beyond 

its CPM late start. Since one late start is the completion point of the 

project, if an activity's total float is zero (0), then the activity's 

early start is "critical" to the completion of the project. Together, 

all critical activities define a "critical path" for which all actual 

starts must equal the early start for timely completion of the project. 

Again, using example 1 and the formula for total floats: 

TF-f 4=11-1-5=5 
TFj |(=16-6-5=5 
TFik=16-l-15=0 critical 

CPM has further parameters of float29 as defined by: 

Free float activity ij (FFfj) =ESj-ESt-durij 
Safety float activity ij (SFfi) =LSj-LSi-durii 
Independent float activity ij (IFfj) =ESj-LSi-durij 

Figure 7 is a graphic summary of the parameters of the above 

parameters. 

Node times 

Node float 

Activity times 

Total float 

Free float 

Safety float 

Independent float 

+.. 
ESi LSI I 

.+...+. 
ESi 

ESij—durfj-

—-durfj-

----durfj-

•>EFij LSij--durij---

j*** 

._>*******'*******pp^ j** I 

|**NFi**| 
i •' I 

>LFij 

I 

durjj---->**SFij< 

durj j---->**IF'f j'' 

+.. 
Project time scale 

Figure 7. Critical path method parameters on time scale 
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"Free float" Is the work Increments that the actual start of an 

activity can be delayed beyond Its CPM early start without delaying the 

actual start of any other activity beyond its CPM early start. "Safety 

float" is the time Increments that the actual start of an activity can 

be delayed beyond its CPM late start without delaying the actual start 

any other activity beyond its CPM late start, and "Independent float" is 

the time Increments that the actual start of an activity can be delayed 

beyond its CPM late start without delaying the actual start of any other 

activity beyond its CPM early start. 

Negative Float 

In actual applications, the time scale point at which the project 

must be completed Is a requirement of the contract. To Introduce this 

completion time into the CPM model, the backward pass is started at the 

event corresponding to the completion time on the CPM time scale. 

Using example 1 and a completion at point fifteen (15), the total 

ES-f =maximum (1)=1 
ESj «maximum (1,6)=6 
ESj( =mâXimum (1,11,16)^16 
LS|ç =m1nimum (15)=15 
LSj «minimum (15,10)=10 
LS-f «minimum (15,5,0)=0 
NF-f «LS-f-ES-f«0-l=-l 
NFj «LSj—ESi=10—6=5 
NF|( «LS|(-LS|(«15-16«-1 
TFi j=LS j-ES-f-Duri j=10-1-5=4 
TFjk«LSk-ESj-Durjk=15-6-5=4 
TF i k«LSk-ESi -Dur-f k«15-1-15=-1 

float of activity Ik is a negative (-1) value. This "negative float" 

indicates that either the duration of activity 1j is one (1) time unit 

too long or that the logic of the schedule is not adequate for the 



19 

project requirements. Through a process of trial and error, the 

negative float can be eliminated by shortening activity durations or 

changing the arrow diagram logic. 

Critical Path Method BASIC Code 

The following code Is a modification of a BASIC program first 

published by Gary Whitehouse of the University of Central Florida. 

Although It does not contain all the options currently used In 

commercial CPM programs. It does provide a simple algorithm from which 

to expanded to larger more complex programs. For other enhancements, 

such as the precedence diagramming modification to CPM, see Appendix A. 

All programs listed In the text consist of a main calling routine 

and a series of Input, output, and processing subroutines. These BASIC 

routines are listed In the text as well as on a computer disk compatible 

with IBM micro-computers. 

Critical Path Method Main Routine — File MAIN-CPM 

The CPM main program (MAIN-CPM) dimensions the two (2) data 

CRITICAL PATH METHOD 

NUMBER OF ACTIVITIES 10 

M-RETURN TO MENU 

A-ACTIVITIES 
U-EXECUTE ALGORITHM 
R-REPORT 
S-SAVE F-FETCH 

OPTION ? 

Figure 8. Critical path method main menu screen 
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arrays; writes the options menu as shown In figure 8; calls the utility 

subroutines UTIL-OPT, UTIL-ERS. UTIL-CON, UTIL-CHX; calls the input and 

output routines INPT-ACT and REPT-CPM; times and calls the processing 

algorithm ALGR-CPM; and saves and fetches the Input data to and form 

disk file "DATA". 

1 REM * CRITICAL PATH METHOD * 
2 REM MAIN-CPM 

3 REM AR - NUMBER OF NETWORK ARCS OR ACTIVITIES 
4 REM BI# - MACHINE INFINITE 
5 REM DR - PROJECT DURATION 
6 REM SM# - MACHINE ZERO 
7 REM A(AR,5) - (I.J.MIN DUR.MAX DUR.INC CST) 
8 REM B(AR,8) - WORK FILE (NO,I,J,DR,ES,LS,TF,FF) 
9 REM 

Sets BI# to a number considered infinite and SM# to a number 
considered zero (0). Reads from the keyboard the number of activities 
in the arrow diagram, and dimensions the activity array A(AR,5) and the 
work space array B(AR,8). 

The array A(AR,8) contains the activity 1 node, 1 node, minimum 
duration, normal duration, and Incremental cost. The array B(AR,8) is a 
temporary work array with activity numbers which are the row numbers 
from array A(AR,8), 1 node, j node, minimum duration, early start, late 
start, total float, and free float. 

10 AR=0 
11 BI#=1E+10 
12 SM#=1E-10 
13 CLS 
14 LOCATE 1,7:PRINT "CRITICAL PATH METHOD" 
15 LOCATE 3,1:PRINT "NUMBER OF ACTIVITIES":LOCATE 3,31:INPUT "",L$ 
16 GOSUB 1870:REM UTIL-CHX 
17 IF Z#<>BI# THEN AR=Z# 
18 LOCATE 3,30;PRINT AR," 
19 DIM A(AR,5) 
20 DIM B(AR,8) 

Prints the "option" menu to the screen, calls the option line 
routine UTIL-OPT, and pauses the program execution for entry of 
"A","U","R","S", or "F" for the option variable L$. 
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21 LOCATE 8,10:PRINT 
22 LOCATE 10.5:PRINT 
23 LOCATE 11,5:PRINT 
24 LOCATE 12,S:PRINT 
25 LOCATE 13, :PRINT 
26 GOSUB 1800. lEM UTIL-OPT 
27 LOCATE 21,8:INPUT "",L$ 
28 CLS 

"M-RETURN TO MENU" 
"A-ACTIVITIES" 
"U-EXECUTE ALGORITHM" 
"R-REPORT" 
"S-SAVE F-FETCH" 

Calls either the Input subroutine INPT-ACT, the processing 
subroutine ALGR-CPM, or the report subroutine REPT-CPM based on the 
option variable L$. 

29 IF L$<>"A" THEN 32 
30 GOSUB 1100:REM INPT-ACT 
31 GOTO 28 
32 IF L$<>"U" THEN 37 
33 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

.2 ) )  
34 GOSUB 3300:REM ALGR-CPM 
35 TM«3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4.2))+VAL(MID$(TIME$,7 

,2))-TM 
36 GOTO 21 
37 IF L$<>"R" THEN 40 
38 GOSUB 2000:REM REPT-CPM 
39 GOTO 28 

Saves the content of A(AR,8) to disk file "DATA" as an ASCI file. 

40 IF L$<>"S" THEN 50 
41 OPEN "0".#1,"DATA" 
42 PRINT #1.STR$(AR) 
43 PRINT #1,"" 
44 FOR 1=1 TO ÂR 
45 FOR J=1 TO 5 
46 PRINT #1,STR$(A(I.J)) 
47 NEXT J 
48 NEXT I 
49 CLOSE #1 

Loads Into array A(AR,8) the disk file "DATA". 

50 IF L$<>"F" THEN 63 
51 OPEN "I",#1,"DATA" 
52 INPUT #1.X$ 
53 AR=VAL(X$) 
54 INPUT #1,X$ 
55 FOR 1=1 TO AR 
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56 FOR J=1 TO 5 
57 INPUT #1,X$ 
58 A(I,J)=VAL(X$) 
59 NEXT J 
60 NEXT I 
61 CLOSE #1 
62 GOTO 21 
63 IF L$«"N" THEN RUN 
64 GOTO 21 

Utility Subroutines ~ Files UTIL-OPT.UTIL-ERS.UTIL-CON. and UTIL-CHX 

The following routines are used as utilities for printing prompt 

lines, causing program pauses at report page breaks, and checking data 

entry for data type errors. The option line subroutine (UTIL-OPT) 

writes the OPTION ? line at the bottom of the screen. 

1800 REM * OPTION LINE SUBROUTINE * 
1801 REM UTIL-OPT 

1802 LOCATE 21,1:PRINT "OPTION ?" 
1803 RETURN 

The erase option subroutine (UTIL-ERS) erases the OPTION % line. 

1850 REM * ERASE OPTION LINE SUBROUTINE * 
1851 REM UTIL-ERS 

1852 LOCATE 21,1:PRINT " 
nt?<rtinAi 

The continue line subroutine (UTIL-CON) stops reports at the end of 

a screen with the prompt line £RESS RETURN TO CONTINUE before continuing 

to the next screen or taking another option. 

1860 REM * CONTINUE LINE SUBROUTINE * 
1861 REM UTIL-CON 

1862 LOCATE 21,7;PRINT "(PRESS RETURN TO CONTINUE)" 
1863 LOCATE 21,8:INPUT "",L$ 
1864 CLS 
1865 6=1 
1866 RETURN 
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The data check routine (UTIL-CHX) checks numeric Input entered as 

the character variable L$ for Invalid characters and either sets Z# to 

the number entered or. If an error Is found, to Infinite BI#. 

1872 IF L$="" THEN 1878 
1873 Z#=LEN(L$) 
1874 FOR Y=1 TO Z# 
1875 P$=MID$(L$,Y,1) 
1876 IF P$="E" THEN 1880 
1877 IF P$="0" OR P$="l" OR P$="2" OR P$="3" OR P$="4" OR P$="5" OR 

P$="6 " OR P$="7" OR P$="8" OR P$="9" OR ((P$="-" OR P$=".") AND 
Z#>1) THEN 1880 

1878 Z#=BI# 
1879 RETURN 
1880 NEXT Y 
1881 Z#=VAL(L$) 
1882 RETURN 

Activity Input Subroutine — File INPT-ACT 

The activity Input subroutine (INPT-ACT) Is the Interactive screen 

Input of data Into the activity array A(AR:8). To enter the screen from 

the main menu, type "A" as the OPTION %. The screen shown In figure 9 

1870 REM 
1871 REM 

* DATA CHECK SUBROUTINE * 
UTIL-CHX 

NO. I 
1 0 
2 2 
3 0 
4 1 
5 2 
6 3 
7 1 
8 0 
9 1 
10 0 

J 
3 
4 
1 
2 
3 
4 
3 
2 
4 
4 

ACTIVITIES 
MIN DUR NORM DUR INC COST 

10 5 
20 10 
30 15 
40 20 
50 25 
60 30 
70 35 
80 40 
90 45 
100 50 

OPTION ? 

Figure 9. Critical path method activity Input screen 
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will appear which consists of a data line for each activity. The 

cursor will locate under the activity number column NO. and will 

move across the columns as the ENTER key Is pressed to enter the data 

typed on the screen under the column heading. When a blank Is entered, 

the current values for the activity numbered are retained In the file. 

If an error Is made In entry, the current activity line must be 

completed and a new entry made using the same activity number as In the 

first column of the mistyped activity line. 

If In the NO. column an activity number Is not entered, but an 

option letter Is entered, then the option Is taken. 

1100 REM * ACTIVITY INPUT SUBROUTINE * 
1101 REM INPT-ACT 

1102 H=0 
1103 6=2 
1104 LOCATE 1,15:PRINT "ACTIVITIES":LOCATE 2,1:PRINT "NO. I 

J MIN DUR NORM DUR INC COST" 
1105 G=G+1 
1106 H=H+1 
1107 GOSUB 1800:REM UTIL-OPT 

Enters activity number. 

1108 LOCATE G,2:INPUT "",L$ 
1109 GOSUB 1870;REM UTIL-CHX 
1110 IF L$<>"" AND Z#=BI# THEN RETURN 
1111 IF Z#<>BI# THEN H=Z# 
1112 IF H>AR OR H<=0 THEN 1107 
1113 GOSUB 1850:REM UTIL-ERS 

Prints activity number and enters new 1 node number. 

1114 LOCATE G,1:PRINT H," ":LOCATE G,6:PRINT A(H,1):L0CATE G,7:INPUT "" 
,L$ 

1115 GOSUB 1870:REM UTIL-CHX 
1116 IF Z#<>BI# AND Z#>=0 THEN A(H.1)=Z# 

Prints 1 node and enters new j node. 
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If the j node Is less than or equal to the 1 node then the new j 
node number Is rejected. This is a protection against entering a loop 
in the CRM network logic. 

1117 LOCATE G,6:PRINT A(H.l)," LOCATE G.llrPRINT A(H,2):L0CATE G,12 
:INPUT "",L$ 

1118 GOSUB 1870:REM UTIL-CHX 
1119 IF Z#<»A(H,1) THEN 1117 
1120 IF Z#<>BI# THEN A(H,2)»Z# 

Prints j node and enters new minimum duration. 

1121 LOCATE G,11;PRINT A(H,2)," ":L0CATE G,16:PRINT A(H,3):L0CATE 
G.17:INPUT "",L$ 

1122 GOSUB 1870:REM UTIL-CHX 
1123 IF Z#<>BI# THEN A(H,3)=Z# 

Prints minimum duration and enters new normal duration. 

1124 LOCATE G,16:PRINT A(H,3)," ":LOCATE G,25:PRINT A(H,4):L0CATE 
G,26:INPUT "",L$ 

1125 GOSUB 1870:REM UTIL-CHX 
1126 IF Z#<>BI# THEN A(H,4)=Z# 

Prints normal duration and enters new incremental cost. 

1127 LOCATE G,25:PRINT A(H.4)," ";LOCATE G,38:PRINT A(H,5):LOCATE 
G,39;INPUT "".L$ 

1128 GOSUB 1870:REM UTIL-CHX 
1129 IF Z#<>BI# THEN A(H,5)=Z# 
1130 LOCATE 6,38;PRINT A(H,5)," 

Checks for end the of screen and starts a new screen if the lines 
used ârë greater than eighteen (18). 

1131 IF 6<18 THEN 1105 
1132 GOSUB 1860:REM UTIL-CON 
1133 GOTO 1106 

CPM Report Subroutine — File REPT-CPM 

The CPM report (REPT-CPM) lists the processing time of the ALGR-CPM 

subroutine and, in early start sequence, the activities and their CPM 

parameters of activity number, i node, j node, early start, late start, 

total float, and free float. At the end of each screen shown in figure 
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10, the option line Is printed and the listing pauses. 

CRITICAL PATH LISTING 
SOLUTION FOUND IN 4 SEC 
MINIMUM NETWORK DURATION 190 

NO. I J ES LS TF FF 
3 0 1 1 11 10 0 
8 0 2 1 1 0 0 
1 0 3 1 121 120 120 
10 0 4 1 91 90 90 
4 1 2 31 41 10 10 
7 1 3 31 61 30 30 
9 1 4 31 101 70 70 
5 2 3 81 81 0 0 
2 2 4 81 171 90 90 
6 3 4 131 131 0 0 

OPTION ? 

Figure 10. Critical path method critical path listing screen 

2000 REM * CPM REPORT SUBROUTINE * 
2001 REM REPT-CPM 

2002 LOCATE 1,8:PRINT " CRITICAL PATH LISTING" 
2003 LOCATE 2,4:PRINT "SOLUTION FOUND IN ":LOCATE 2,30:PRINT TM;"SEC" 
2004 LOCATE 3,4:PRINT "MINIMUM NETWORK DURATION ":LOCATE 3,30:PRINT DR 
2005 LOCATE 4,1:PRINT " NO. I J ES LS TF F F" 
2006 G=5 
2007 FOR I-l TO AR 
2008 LOCATE G,l:rRInT 5(I,1):LGChTE G,7:PRINT B(1,2):LOCATE S,13:PRIHT 

B(I,3):LOCATE G,19:PRINT B(1,5):LOCATE G.25:PRINT B(I,6):L0CATE 
BG,31:PRINT B(I,7);L0CATE G,37:PRINT B(I,8) 

2009 G=G+1 
2010 IF G<20 THEN 2016 
2011 GOSUB 1860:REM UTIL-CON 
2012 LOCATE 21,8:INPUT "".L$ 
2013 GOSUB 1870:REM UTIL-CHX 
2014 IF L$<>"" AND Z#=BI# THEN RETURN 
2015 GOSUB 1864:REM UTIL-CON 
2016 NEXT I 
2017 GOSUB 1800:REM UTIL-OPT 
2018 LOCATE 21,8:INPUT "",L$ 
2019 RETURN 



27 

Criteal Path Algorithm Subroutine — File ALGR-CPM 

The CPM algorithm subroutine (ALGR-CPM) first copies the activity 

data from the activity array A(AR,5) to the working array B(AR,8). The 

working file is then sorted In 1 node order; and within the 1 node 

order. Into j node order. With the activities sorted as above, the 

early finish EFij calculations of forward pass are executed to determine 

the earliest project completion time DR. Using the earliest project 

completion time DR, the late finish LF-fj calculations or backward pass 

are executed. These two calculations yield EFij and LF-jj for each 

activity from which the total float TF-fj and free float FF-fj are 

calculated. 

3300 REM * CRITICAL PATH ALGORITHM SUBROUTINE * 
3301 REM ALGR-CPM 

Copies the array A(AR,5) into the first five (5) positions of the 
array B(AR,8) and set all early finish times to one (1), late finish to 
zero (0), etc. 

3302 FOR 1=1 TO AR 
3303 B(I,1)»I 
3304 B{I,2)»A(I.l) 
3305 B(I,3)=A(I,2) 
3306 BiI,4)=A(I,4) 
3307 B(I,5)=1 
3308 FOR J=6 TO 8 
3309 B(I,J)=0 
3310 NEXT J 
3311 NEXT I 

Sorts the array B(AR,8) on positions two (2), then three (3), using 
a Schell sort30. 

3312 IF AR=1 THEN 3335 
3313 Y=AR 
3314 Y=INT(Y/2) 
3315 FOR Z=1 TO AR-Y 
3316 A=B(Z+Y,1) 
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3317 B=B(Z+Y,2) 
3318 C=B(Z+Y.3) 
3319 D=B(Z+Y,4) 
3320 FOR W=Z TO 1 STEP -Y 
3321 IF B(W,2)<B THEN 3329 
3322 IF B(W.2)>B THEN 3324 
3323 IF B(W,3)<C THEN 3329 
3324 B(W+Y,1)-B(W,1) 
3325 B(W+Y,2)»B(W,2) 
3326 B(W+Y,3)=B(W.3) 
3327 B(W+Y,4)=B(W,4) 
3328 NEXT W 
3329 B(W+Y,1)=A 
3330 B(W+Y,2)=B 
3331 B(W+Y,3)=C 
3332 B(W+Y.4)=D 
3333 NEXT Z 
3334 IF Y>1 THEN 3314 

Executes the CPM forward pass to find early finish times. 

This Is done by selecting the first activity of the 1 node 
sequence, adding to Its early start Its duration, searching the 
remaining activities of the J sequence (which because of the sort have 
larger node numbers) for all activities with the same start node as the 
current activities completion node, and assigning these activities new 
early start times equal to the current activity's early finish if the 
current activity's finish time is the latest. After all connected 
activities are found, select the next activity in the 1 node sequence to 
continue the process until the last activity Is reached. 

3335 FOR 1=1 TO AR 
3336 B(I,5)=B(I,5)+B(I,4) 
3337 IF I=AR THEN 3344 
3338 FOR J=I+1 TO AR 
3339 IF B(I,3)<>B(J,2) THEN 3342 
3340 IF B(J,5)>B(I.5) THEN 3342 
3341 B(J,5)=B(I,5) 
3342 NEXT J 
3343 NEXT I 

Selects the latest early finish time as the project duration. 

3344 DR=0 
3345 FOR 1=1 TO AR 
3346 IF DR>B(I,5) THEN 3348 
3347 DR=B(I.5) 
3348 NEXT I 
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Sets all activity late finish times to project duration. 

3349 FOR 1=1 TO AR 
3350 B(I,6)=DR 
3351 NEXT I 

Executes the CRM backward pass. 

This is the same process as the forward pass above except that the 
file is sequenced backwards and the activity duration is subtracted from 
the selected activity rather than added as in the forward pass. 

3352 FOR 1=1 TO AR 
3353 K=AR-I+1 
3354 FOR J=1 TO AR-I 
3355 IF B(K,2)<>B(J,3) THEN 3358 
3356 IF B(K,6)-B(K.4)>B(J,6) THEN 3358 
3357 B(J,6)=B(K,6)-B(K,4) 
3358 NEXT J 
3359 NEXT I 

Calculates the total float times TF-fj using the formula LF-fi-EF-fj 
and the free float FF-fi as follows. For each current activity of the i 
node sequence finds all activities of the j node sequence which directly 
follow, of these finds the minimum early start time and subtract it from 
the late finish of the current activity. 

3360 FOR 1=1 TO AR 
3361 B(I.7)=B(I.6)-B(I,5) 
3362 IF B(I,3)=B(AR,3) THEN 3364 
3363 GOTO 3365 
3364 A=B(AR,6) 
3365 FOR J=I TO AR 
3366 IF B(I,3)=B(J,2) iHEN 3368 
3367 GOTO 3369 
3368 A=B(J,5)-B(J.4) 
3369 NEXT J 
3370 B(I.8)=A-B(1.5) 
3371 NEXT I 

Converts early finish EFij and late finish LF-fj times to early 
start ES-fj times and early finish EF-fj times. 

3372 DR=DR-1 
3373 FOR 1=1 TO AR 
3374 B(I,5)=B(I,5)-B(I,4) 
3375 B(I.6)=B(I,6)-B(I,4) 
3376 NEXT I 
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3377 RETURN 

Program Table of Contents 

The following table 1 can be used to reconstruct the above 

Table 1. Critical path method BASIC program table of contents 

File Program lines Page Routines 

MAIN-CPM 0001-0064 20 
INPT-ACT 1100-1133 24 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-CPM 2000- 2019 26 
ALGR-CPM 3300-3377 27 

Critical path method 
Activity Input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

CPM report subroutine 
Critical path algorithm subroutine 

computer code from the computer disk files. Since BASIC code Is 

dependent on program line numbers for subroutine branching, the line 

number must be maintained as listed In above 

wf  iwfwùi  # 
Solutions to Example 2 Minimum Project Duration Model 

A small ten (10) activity project network schedule Is used as an 

example throughout the dissertation for the purpose of establishing 

benchmarks for the different methods except In cases where the resulting 

models or problems would exceed the capacity of a 64k CPU. This example 

also serves as the source of the Input and output data for the figures 

displaying computer screens. 

Figure 11 Is the CPM arrow diagram used for example 2 and consists 
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Activity #1 

/ duro3=10 \ Activity #2 

/ / \ dur24»20 \ 
/Activity #3 Activity #4 /Activity #54/ Activity fS-V 

\\ duroi=30 \\ duri2"40 duri3»50 ^ dur34=60 
W \\ / Activity #7 / // 

W Activity #8 \ / duri3=70 Activity #9 // 
cluT*iii®90 / 

\ <l"n)2-80 Activity *10 / 

duro4=î55 

Figure 11. Minimum project duration model example 2 arrow diagram 

of ten (10) activities and five (5) nodes. When this network is entered 

into the the CPM program, it appears as shown in figure 12. For each 

ACTIVITIES 
NO. I J MIN DUR NORM DUR II 
1 0 3 0 10 0 
2 2 4 0 20 0 
3 0 1 0 30 0 
4 1 2 0 40 0 
5 2 3 0 50 0 
6 3 4 0 60 0 
7 1 3 0 70 0 
8 0 2 0 SO 0 
9 1 4 0 90 0 
10 0 4 0 100 0 

OPTION ? 

Figure 12. Minimum project duration model example 2 activity input 
screen 

activity number, NO., there is an 1 to j node pair 

and a "normal" activity duration entered under the 

in ascending order 

column heading NORM 
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OUR. The Input screen Is also used In later programs In which the 

activity durations are variables, so the minimum durations column, MIN 

DUR, and Incremental costs columns, INC COST, are left as zero (0) In 

this method. 

After an execution time of four (4) seconds, the report shown In 

figure 13 was listed by the CPM BASIC program to the computer screen. 

CRITICAL PATH LISTING 
SOLUTION FOUND IN 4 SEC 
MINIMUM NETWORK DURATION 190 

NO. I J ES LS TF FF 
3 0 1 1 11 10 0 
8 0 2 1 1 0 0 
1 0 3 1 121 120 120 
10 0 4 1 91 90 90 
4 1 2 31 41 10 10 
7 1 3 31 61 30 30 
9 1 4 31 101 70 70 
5 2 3 81 81 0 0 
2 2 4 81 171 90 90 
6 3 4 131 131 0 0 

OPTION ? 

Figure 13. Minimum project duration model example 2 critical path 
listing screen 
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MINIMUM PROJECT COST PROBLEM WITH LINEAR COST FUNCTIONS 

The critical path method combines work activities, each with a 

fixed duration and a schedule sequence. Into a mathematical model 

described by a set of parameters. These parameters can then be 

evaluated relative to some objective. If the parameters fall to meet 

the objective, a new set of activity durations or schedule sequences can 

be modeled; and In an Iterative manner, a better set of parameters can 

be found which are closer to meeting the objective. 

Unfortunately, this does not guarantee an optimal set of parameter 

even with fixed activity durations. When variable activity durations 

and associated costs are Introduced, finding an optimum network becomes 

too complex for a simple trial and error approach. 

Theory of Dual Simplex Method 

The application of the "simplex" methods to CPM schedules^! was 

first proposed by Kelley. The simplex method had been used extensively 

to solve sets of linear equations, and it provided a means to find an 

optimal solution to the mathematical model of the CPM network. 

If the network logic of example 1 is written as a set of simulta

neous equations with all variables greater than or equal zero (0), then: 

Tj-dur-f j-Ti>=0 
Tk-durjk-Tj>=0 
Tk-durik-Ti>=0 

Tk<=Dur. 

Ti,Tj,Tk,Dur.>=0 
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where T-| are the node times not restricted to Integer points, durij are 

the activity durations, and Dur. Is the maximum duration of the network. 

Let R-fj be the reduction In the duration of activity 1 j so: 

Activity duration = dur-fj-R-fj for all 1 j 
then: 

Tj-(durij-Rij)-Ti>=0 
Tk-(durjk-Rjk)-Tj>=0 
Tk-(durik-Rlk)-Ti>=0 

Tk<=Dur. 

Rij< durij 
Rjk< durjk 
Rik< durik 

Tl,Tj,Tk,Rlj,Rjk.Rlk,Dur.>=0 

Using the variable (or direct) cost versus fixed (or overhead) cost 

economic model32, the total cost of the project can be written as: 

Total cost=ncij+ncjk+ncik+cij*Rij+cjk*Rjk+cik*Rlk+f1x.*(Tk-Ti) 

where ncij Is the normal duration cost of the activity ij; c-fj is the 

Incremental variable cost to reduce the normal duration of activity ij 

by Rij! and fix. is the incremental fixed cost over the duration (Tk-n). 

The CPM arrow diagram can now be written as a set of linear 

"constraints" as demonstrated above. If the completion time of the 

network is fixed, then the constraints can be satisfied by only a 

limited set of values or points called the "feasible region"; and all 

the point of the region can be evaluated with the total project cost 

equation, or "objective function", for the optimal solution point. 

These constraints and objective function define a linear 
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programming (LP) problem called the "primal problem"33. (For every LP 

problem there Is also another problem called the "dual problem" from 

which the method first was derived.) This problem can be solved with 

the "dual" simplex method34 which minimize the objective function while 

generating a series of "primal Infeaslble" points satisfying an ever 

Increasing number of unsatisfied constraints until a minimum optimal 

solution from the feasible region of the primal problem Is found. 

The Two Dimensional Case of the Dual Simplex Method 

To visualize the method and to provide a simple geometric problem 

minimize a*X+b*Y 

subject to: X >=0 or lower bound of X 
Y>=0 or lower bound of Y 

c*X+d*Y>=e 
g*X+h*Y>=f 

a,b,c,d,e,f,g,h>=0 

.g*X+h*Y=f 
a*X+g*Y=0 

(0,0). Current point 

. .. \ 

Y axis 

.c*X+d*Y=e 

Feasible region 

Figure 14. Dual simplex method example 3 
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to solve with the dual simplex algorithm, the two (2) dimensional 

example displayed In figure 14 will be used as a demonstration. 

Example 3 Is In a format for which there Is a dual simplex method 

solution. All lower case letters represent positive coefficients. 

All constraints are In the greater than or equal form. The positive 

restrictions on the X and Y variables and the positive coefficients of 

the objective function (a condition called "dual feasible" since the 

constraints of the dual problem are satisfied) are a requirement of the 

dual simplex method. 

Slack 

If the objective function is added to the constraints and a set of 

"slack" values are chosen which will satisfy the constraints as 

equalities, then the problem can be written as: 

Starting Point 

The above equations can be rewritten so that only the slacks are on 

the left hand side: 

minimize z 

subject to: a*X+b*Y-z =0*1 
X -X =0*1 

Y-y =0*1 
c*X+d*Y-sl=e*l 
g*X+h*Y-s2=f*l 

minimize z 

subject to: z= 0*l+a*X+b*Y 
x= 0*1 +X 
y= 0*1 +Y 

sl=-e*l+c*X+d*Y 
s2=-f*l+g*X+h*Y 
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Since all the coefficients of the objective function are greater 

than or equal to zero (0), setting X and Y to the lower bound of zero 

(0) results in the minimum value of the objective function and the best 

possible starting value or "current point" from which to search for a 

minimum primal feasible point. (If any variable has a greater lower 

bound then the starting point can be at that lower bounds.) 

Graphically, example 2 is as shown in figure 14 with the current 

point (0,0) at the origin of an X,Y coordinate system in which x=0 is 

the displacement of the current point on the X axis; y=0 is the 

displacement of the current point on the Y axis; z=0 is the displacement 

of the objective function from the origin; and sl=-e and s2=-f are the 

negative slack of the last two (2) unsatisfied or "violated" constraints. 

Selection of a Violated Constraint 

The current point (0,0) violates several of the constraints so it 

is "primal infeasible" and not a solution. Any "new point" which might 

be in the feasible region must first "satisfy" at least one (1) of the 

violated constraints without violating any of the satisfied constraints. 

To find a new point, a constraint is selected to be satisfied. 

The simplest choice would be to choose the equation with the most 

negative slack. Unfortunately, this does not lead to a feasible 

solution in later methods, so the greatest distance along the normal 

line from the current point to the violated constraint is used as the 

selection criterion. 

A line through the point (x,y) and normal to the line c*X+d*Y=e 
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can bé written parametlcally In T as the line X=x+c*T and Y=y+d*T. 

The Intersection of the parametric line and the constraint can be found 

by substitution In c*X+d*Y=e and solving for T. 

c*(x+c*T)+d*(y+d*T)=e 

T=e-c*X"d*y 
c"2+d'2 

The distance from (x,y) to c*X+d*Y=e can now be defined by; 

dl-2=(X-(x+c*T))-2+(y-(y+d*T))"2 
and: 

dl"2=(e-c*x-d*y)"2 
c"2+d*2 

or: 
dl"2= (-sl)-2 

c"2+d*2 

The distance from the current point to the constraint Is then the 

slack "normalized" by the coefficients of the constraint. 

In the example problem, equation (4) Is geometrically the most 

distant so that: 
dl-2= (-e)'2 >= (-f)"2 =d2'2 

c"2+d'2 g"2+h-2 
Selecting a_ New Point 

Any new point mu5t satisfy the selected constraint equation (4) so 

that sl>=0. Using this fact, algebraically, a new point can be found by 

rewriting the constraint equation In either the X variable and si or in 

the Y variable and si and setting si to zero (0). 

sl=0 X=0 Y=e+sl-c*X=e point (0,e) 
ïï"ïïïï d d 

sl=0 Y=0 X=e-d*Y+sl=e point (e,0) (6) 
c c c c c 

Of the two possible points, (0,e),(e,0), the point to be selected 
ÏÏ c 
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should yield the minimum value of the objective function. By 

substitution: 
z=a*0+b*e=b*e 

ÏÏ ÏÏ 

z=a*e+b*0=a*e 
c c 

or if a*e<=b*e, or ^<=b, choose (6) as the new point. 
c ÏÏ c ÏÏ 

The geometry of the algebra can be represented by the intersection 

of the violated constraint with the constraints defining the current 

point or the "basis". As in the algebraic solution, the graphics in 

figure 15 show two (2) intersection points, both possibly in the 

feasible 

X=0 

\.(0,e).New point 

Y axis Feasible region 

-b*e 

Y=0 

(0,0) Current point (e,0) New point 
c \k 

X axis#^ 

Figure 15. Dual simplex method example 3, iteration one 

region, which can be evaluated with the displacement of the objective 
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function from the origin. 

Simplex Tableau and Transformation 

The simplex method tableau and transformation provides a more 

convenient format than the algebra derived above to search for a simplex 

new point. 

The simplex algorithm is based on the transformation of a matrix by 

a Gauss-Jordan elimination. The matrix or tableau for example 3 is 

shown as tableau 1. In the first column is the constants column or the 

1 X Y 
+ + + 

z= I 0 I a b I 
I I I 

x= I 0 1 1 0 I 
I I I 

y= I 0 I 0 1 I 
I I I 
+ + + 

sl= I -e I c d I 
I I I 
+ + + 

Tableau 1. Dual simplex method tableau example 3. iteration one 

slacks column. The second column is the X column or the coefficients of 

the X variable. The third column is the Y column or the coefficients of 

the Y variable. The rows of the tableau consist of the objective 

function row followed by the constraints defining the current point. 

This second set of equations Is called the basis and consists of the 

minimum number of equations needed to define the current point. (For 

the point (0,0) the X,Y>=0 constraint are always used.) To the bottom 

of the tableau is appended the selected violated constraint called the 



41 

"pivot row". 

Simplex Transformation 

The algebraic solution for the new point can be duplicated in 

tableau 1 with a Gauss-Jordan elimination on the pivot row^S. Again, 

there are two possible new points. To set si equal to zero (0) in the 

transformed tableau, the appended row can be transformed to either: 

sl=0+0*X+l*Y or: sl=0+l*X+0*Y 

To transform the original pivot row into the form above using 

a Gauss-Jordan elimination, either a "pivot" on the "pivot element" of 

the coefficient of the Y "pivot column" can be performed by dividing the 

pivot row by the Y coefficient d and then subtracting out multiples of 

the new Y element from the remaining element, or by a similar pivot on 

X. In either case, the same operations as performed on the pivot row 

must be performed on all the tableau rows, transforming the first row or 

objective row of the tableau to one (1) of the following equations. 

z=b*e+(a-b*c)*X+b*s1 
d d 

z=a*e+a*sl+(b-a*d)*Y 
c c 

Of the two possible pivots yielding new points, the pivot which 

results in the minimum increase in z is selected. Since X, Y, si are zero 

(0) and a, b, d, c are greater than zero (0), selecting the pivot column 

with minimum ratio (b,a) minimizes the objective function value. 
ÏÏ c 

A«euming a<=b, then the Gauss-Jordan elimination is as shown in 
c ÏÏ 

tableaus 2 and 3. Tableau 2 is the division of the pivot row by c 
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z= 

X» 

y 

sl= 

0 

0 

0 

-e 
c 

a 

1 

0 

b 

0 

1 

d 
c 

Tableau 2. Dual simplex method tableau example 3, Iteration one 

and tableau 3 Is the reduction of the tableau with the "pivot column". 

1 si Y 

z= 

y= 

sl= 
I 
+-

a*e 
c 

e 
c 

0 

0 

1 

0 

1 

b-a*d 
c 

-d 
c 

1 

0 
I 

.+ 

Tableau 3. Dual simplex method tableau example 3, Iteration one 

The new point can now be read directly from tableau 3 since the 

second and third row of tableau 3 are the same as equations-(6); and 

geometrically, x and y are the displacement of the new point along the X 

and Y axes as shown in figure 16. 
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Y axis Feasible region 

(0,0) Current point (e,0) New point 

Figure 16. Dual simplex method example 3. iteration one 

Another result of the transformation is that the objective function 

row, or first row elements of the tableau, remain greater than or equal 

to zero (0) which is an assumption of the method. This can be shown true 

by: 
2<=b guarantees b-a*d>=b-b*d=0 
c d c d 

In the above example, the coefficients c and d were assumed greater 

than zero (0). In the general case, c or d may have any value. If a 

pivot were selected so that the pivot row element were zero (0), then 

the pivot would result in a division by zero (0) which by the geometry 

is a basis constraint that does not intersect with the pivot row. If a 

pivot were selected so that the pivot row element was negative, then the 

new point would violate one of the currently satisfied constraints and 



44 

could not possibly Improve on the feaslbHty of the current solution. 

Perturbation Method 

In the method described above, the selection of the pivot 

element from the pivot row was determined by the minimum (a,b) ratio. 

If a tie, such as ^>b, exists, then It Is possible to return to a point 
c ÏÏ 

previously evaluated and the method could "cycle". A modification to 

dual simplex method used to prevent cycling is a form of the 

"perturbation method"36 which can be described geometrically as follows. 

Figure 17 is the two (2) dimensional example 3 modified to 

demonstrate the perturbation method. As seen in the figure 17, the two 

c ÏÏ 

I.X=0 

c*X+d*Y=e 

a*X+b*Y=b*e=a*e 
\-r — 

+. + 

Feasible region 

.Y=0... 

(0,0) Current point lew point 

Figure 17. Dual simplex method perturbation iteration 
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(2) points eligible for a pivot are on a pivot row parallel to the 

objective function, so that either are equal candidates. To break the 

tie, select the point with the minimum value of X. If there is still a 

tie, select the point with the minimum value of Y, etc. Before all the 

dimensions of the problem are exceeded, a unique point must be found. 

This is accomplished in the tableau by using the second row of 

the tableau to break the tie. Using the example, choose the: 

minimum (j^.O) 
c ÏÏ 

If this is a tie then: 
minimum (0,3.) 

c d 

In the modified of example 3, using the Y column as the pivot, the 

new tableau is shown in tableau 4. 

1 X si 

z= I b*e I a-b*c=0 b | 
I c i  d I  
I I I 

x= I 0 I 1 0 I 
! I I 

y" I -e I -c 1 I 
I ? I ? I 
I i I 
+ + + 

sl= I 0 I 0 1 I 
I I I 
+ + + 

Tableau 4. Dual simplex method tableau perturbation iteration 

This tie breaking method will maintain not only a positive element 

in the first row, but also a positive element as the first greater 

than zero (0) element of the every variable coefficient column. This 
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tableau is defined as "lexicographical positive"37. 

Constraint Transformation 

If the transformed tableau is rewritten as equations in si and Y, 

it would appear as: 

z=(a*e)*l+a*sl+(b-a*d)*Y 
c c 

x= e*l+ si -d*Y 
c c 

y= 0*l+0*sl +1*Y 
sl= 0*l+l*sl +0*Y 

To find the violated constraints, substitute X=£ and Y=0 into the 
c 

original constraints: 

x=e>0 y=0 sl=-e+c*e+d*0=0 s2=-f+g*e-h*0»-f+g*e 
c c c c 

and select a violated constraint by the distance formula. 

dr2=( -e+c*e+d*0 )"2<=( -f+a*e+h*0 )"2=d2'2 
c c . 

c"2+d"2 g-2+h"2 

Up to now, the search or "iteration" for the third point has been 

the same as the for the second. But the new tableau is now in terms of 

si and Y. Before the selected constraint can be appended to the current 

tableau, its equation has to be transformed to the current variables. 

Algebraically, this can be done by substituting for X from the 

tableau's second row's displacement: 

x=e+l*sl-d*Y 
c c 

into the violated constraint: 

s2=-f+g*X+h*Y 
resulting in: 

s2=(g*e-f)+q*sl+(h-q*d)*Y 
c c 
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This transformation can be accomplished directly in the simplex 

tableau by multiplying the coefficients of the constraint by the 

elements of the columns of the tableau and totaling in the manner 

demonstrated in the following expression of the transformed constraint. 

column 1 column 2 columns 

s2= {-f+g*(e)+h*(0)} + {g*(l)+h*(0)}*sl+ {g*(-d)+h*(l)}*Y 
c c 

Again, appending the selected constraint to the tableau as a pivot 

row results in tableau 5. 

1 si Y 

z= 1 a*e 1 
1 c 1 
1 1 

a •b-a*d 1 
c 1 

1 
x= 

1 f 1 
1 1 

1 
1 1 

1 
y= 1 0 1 

1 1 
0 

I 
1 1 

s2= 1 q*e-f 1 
1 c 1 

9 h-q*d 1 
c 1 

Tableau 5. Dual simplex method tableau example 3, iteration two 

Graphically, the current point and the selected constraint can be 

drawn as shown in figure 18. The Intersection of the selected 

constraint and the current basis constraints form the two (2) possible 

new points from which the simplex algorithm will select a pivot to 

transform the tableau to represent the next simplex pivot. 
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.X=0. 

Y axis 

Nv a*X+b*Y=a*e+(c*f-q*e)*(b*c-a*d) 

txl 

^ \ !!!!! 1 !! 1 y/. I !! I ! â*x+b*Y=â*K ! 
IL g 

New point 

(0.0) (e 

4...g*X+h*Y=f 
— Sv.Y=0 

Current point 

x\xTs 

(f,0) New point 
9 

Figure 18. Dual simplex method example 3, Iteration two 

Assuming g<0 and h-q*d<0 and a>=b*c-a*d and pivoting on Y results 
c g c*h-g*d 

In tableaus 6 and 7. 

x= 

y= 

s2= 

a~e 

C 

e 
c 

si 

a 

1 

0 

(^*e-c*f) I c*q 
g*d) I(h*c-g*d) 

+. 

D-a-q 
c 

-d 
c 

+ + 

+ + 4 

Tableau 6. Dual simplex method tableau example 3, iteration two 
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si s2 

Z la*e-(< i*e-c*f)*(b*c-a*d)1 a-( c*q )*(b*c-a*d) c*b-a*d1 
1 c (f i*c-g*di c 1 (c*h-g*d) c c 1 

1 
x« 1 e+ ;g*e-c*f)*d 1 l+( c*g )*d -d ! 

c [n*c-g*d; c i (h*c-g*d) c c 1 
1 

y= 1 .(Q*e-c*f) 1 -c*g 
1 

1 1 
1 {n*c-g*d) 1 (h*c-g*d; 1 

s2= 1 
1 

0 1 0 
' 1 1 1 I 1 

Tableau 7. Dual simplex tableau example 3. solution 

Again checking the current point with the constraints. 

x=e-(g*e-c*f)*d>0 y=-(e*g-c*f)>0 sl=c*{e+(e*q-c*f)*d}+d*{c*f-q*e}-e=0 
c*h-g*d c c*h-g*d c h*c-g*d c h*c-g*d 

s2=0 

Since all of the constraints are satisfied, the current point is a 

feasible solution. Having selected each successive point in the search 

for a feasible point such that it was always the minimum value of the 

objective function guaranteed a solution from the feasible region which 

also minimized the objective function. 

Geometrically, the current point is shown in figure 19. Again the 

point satisfies all constraints and is the point of minimum value of the 

objective function. 
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.X=0 

Y axis 

K \. a*X+b*Y=a*e+(c*f-q*e)*(b*c-a*d) 
TcT. (g*d-c*h). ....c.... 

((e*h-d*f).(c*f-q*e)) 
.(c*h-d*g).(g*h-c*h). 

Current point 
Y=0 

(0.0) 
X axis 

Figure 19. Dual simplex method example 3, solution 

Dual Simplex Method In Matrix Notation 

To provide a more rigorous description of the dual simplex method 

based on LP theory38 and to extend the method Into more than two (2) 

dimensions, the method will be presented In matrix notation. 

The constraints of the problem derived from the CFM model can be 

minimize c'x 

subject to: Âx>=âr 
x>=ïï 

written in the matrix notation above, where F is the vector of 

coefficients of the linear objective function; ¥ is the vector of the 

constants of the constraints; and X is the constraint coefficients in a 

matrix with as many rows as constraints and as many columns as variables. 

From LP theory, the above problem has a dual which can be written in 
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the following form. 

maximize ïï'? 

subject to: S"'s>=c 
s>=9 

As In the two (2) dimensional example, a slack vector x can be 

added to change the Inequalities to equalities. 

minimize z 

subject to:_ z^-T'?-Ô'^=ÏÏ 
0 ' z+AJ_s+I_|_x=c 

z,s,x>=0 

If the matrices are now partitioned, the above matrices can be 

written as: 

~ ~ z I = I 0 I 

71 IT I 
r l  

If the TT' matrix is partitioned further into the linearly 

independent ÏÏ' and dependent ÏÏ' columns of the A' matrix (assuming 

a feasible solution exists) then: 

l - I ' l  _  l - b ' l  - d '  I  

I I' I I ÏÏ' I ÏÏ' I 

where ÏÏ' is now a square matrix with as many rows and columns as 

variables in the problem. The partitioned dual problem can now be 

written in the matrix notation: 

I II ÏÏ' I -?• I * 
II 

I 9 I T I X' I 
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I 1 I Ô' I -b' I d' I 
I + + + 1 
I ÏÏ I T' I B' I D' I 

z 

X 

I 0 I 
I  — I  
I C I 

s I 

Tl 
Again from LP theory the simplex transformation results In the 

"Inversion" of the "augmented" B' matrix or: 

-b' 1-1 

I ÏÏ I ÏÏ' I 

1  1 ï ï ' l ' - l  

ÏÏ I ?'-! -

The tableau of the simplex method can now be constructed with these 

components: 

Z X S S 

1 I ÏÏ' I -ÏÏ' I ÏÏ' I 0 z 
+ + + + 

0 I T' I B' I D' I c =I 

From the transform of the above tableau, the simplex tableau Is 

con SurUCtëu. 
1 X 

1 1 ÏÏ' Z 

x= ÏÏ 1 T X 

?= -b 1 B S 

¥= -d 1 D S 

z= 0 

z 

1 c-

Î' 

To minimize computer storage, the dual simplex tableau is reduced 



53 

further. Using the equation format of the two (2) dimensional example 3: 

minimize z 

subject to: z+c'x »0 
-i+7îx >»ïï 

the equations can be written as the partitioned matrix and repartitioned 

as: 
O l e '  O l e '  

-â I ïï -  -ïï I B 

-d I D 

From LP theory, only the augmented ÏÏ Inverse is needed to 

reconstruct any transformed row of the dual simplex tableau. To 

construct the objective function: 

I 0 ,  IE'I * I 1 I ÏÏ' 1=1 c'B-lïï. c'ïï-l| 

IB-Iïï I B-1 I 

and any constraint: 

I ~ap ,  ap'l * I 1 I 0' 1= I-ap+ap'W"^F, ap'W"^l 

IB -Iïï I f-1 I 

which is the same transformation in matrix form as used in the two (2) 

dimensional example 3. 

The final form of the simplex tableau, as used in the computer 

program, can now be constructed. For each section of the partitioned 

tableau, there is defined a program array. The first section of the 

tableau is the original coefficients of the objective and constraints. 

The next section Is the transformed objective coefficients and the 

augmented ÏÏ inverse followed by the constraint coefficients from which 
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0 1 c-

-a 1 Â 

c'B-lïï 1 c'ïï-1 

B-lïï 1 ïï-1 

-ÏÏ 1 ÏÏ 

program variables 

A#(1.ND+1) 

A#(2 to MD+l.ND+1) 

z= 

x= B-lïï I ÏÏ-1 B#(2 to ND+1,ND+1) 

B#(ND+2 to ND+l+ND.ND+1) 
(column one negative) 

s= -ap+ap'B"ap'B~l P#(ND+1) 

the current basis Inverse was constructed. At the bottom of the 

matrix Is appended the transformed violated constraint or the pivot row. 

With this tableau, using the procedures of the two (2) dimensional 

example, a pivot column can be found and the Gauss-Jordan transformation 

used to Invert the new basis in which the violated constraint has 

replaced a row of the augmented ÏÏ matrix. 

I 1 I Ô' 1-1 I 1 I Ô' I 

l-Fnew I Bnew I I B'lF I "S"! I 

To start the iterative process, the origin point is defined by the 

identity matrix. To construct the objective function: 

I -0 ,  c' I * I 1 I ÏÏ' I = I 0 ,  c' I 
I + 1 
19 1 T I 

and to construct the pivot row from the selected constraint: 

I  - a p  , a p ' |  * I  1  I  0 '  1 =  I  - a p  ,  a p *  I  

|--rr-r-| 
The resulting tableau and program arrays: 
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program variables 

0 1 c' A#(1,ND+1) 

-a À A#(2 to MD+1,ND+1) 
(column one negative) 

B#(1,ND+1) z= 0 c' 

A#(2 to MD+1,ND+1) 
(column one negative) 

B#(1,ND+1) 

x= ÏÏ T B#(2 to ND+l.ND+1) 

-ÏÏ T B#(ND+2 to ND+1+ND,ND+1) 
(column one negative) 

P#(ND+1) s= -ap 1 Ip' 

B#(ND+2 to ND+1+ND,ND+1) 
(column one negative) 

P#(ND+1) 

Dual Simplex Method BASIC Code 

The following code Is a modification of the dual simplex method 

with extra code provided for use in later programs. If only the dual 

simplex application Is needed, then the code can easily be reduced for 

faster processing and more efficient data storage. 

All programs listed in the text consist of a main calling routine 

and a series of input, output, and processing subroutines. These 

BASIC routines are listed in the text as well as on a computer disk 

which is compatible with IBM micro-computers. 

Dual Simplex Main Routine — File MAIN-SMP 

The dual simplex main calling routine (MAIN-SMP) dimension nine (9) 

arrays; writes the options menu to the screen as show in figure 20; 

calls the utility subroutines UTIL-OPT, UTIL-ERS. UTIL-CON, UTIL-CHX; 

calls the data input and output subroutines INPT-OBJ, INPT-CON, INPT-

TYP, INPT-BND, and REPT-SMP; call and times the processing algorithm 

ALGR-SMP; and saves and fetches the input data to disk. 
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DUAL SIMPLEX METHOD 

NUMBER OF CONSTRAINTS 10 

M-RETURN TO MENU 

O-OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPES 
B-BOUNDED VARIABLES 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
N-NEW PROBLEM 
S-SAVE F-FETCH 

OPTION ? 

Figure 20. Dual simplex method main menu screen 

1 REM * DUAL SIMPLEX METHOD * 
2 REM MAIN-SMP 

3 REM BI# - MACHINE INFINITE 
4 REM CO - PIVOT COLUMN FOR SIMPLEX TRANSFORMATION 
5 REM ER - ERROR KEY 
6 REM IR - MAXIMUM NUMBER OF ITERATIONS 
7 REM MD - NUMBER OF CONSTRAINTS 
8 REM ND - NUMBER OF VARIABLES 
9 REM OB# - VALUE OF THE OBJECTIVE FUNCTION 
10 REM RO - PIVOT ROM FOR SIMPLEX TRANSFORMATION 
11 REM SM# - MACHINE ZERO 
12 REM A#(MD+1,ND+1) - ORIGINAL DATA AND KEYS 
13 REM B#(ND+ND+1,ND+1) - PRIMAL-DUAL MATRIX 
14 REM C(ND+1) - COLUMNS ELIGIBLE FOR PIVOT 
15 REM H#(ND+1) - SOLUTION TO LAST ITERATION 
16 REM M#(ND+1.2) - UPPER AND LOWER BOUNDS OF VARIABLES 
17 REM P#(ND+1) - CURRENT PIVOT ROW 
18 REM R(MD+1) - CONSTRAINT TYPES 
19 REM T#(ND+1,ND+1) - REINVERSION WORKSPACE 
20 REM X#(ND) - SOLUTION VECTOR 
21 REM 

Sets MD to the default number of constraints In the problem to be 
optimized and ND to the number of variables. Sets IN to the number of 
Iterations before relnverslon of the augmented B basis matrix. Sets the 
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default maximum number of Iterations to one thousand (1000). Sets BI# 
to a number considered infinite and SM# to a number considered zero (0). 

22 MD=0 
23 ND=0 
24 IN«20 
25 IR*1000 
26 BI#=1E+10 
27 SM#=1E-10 

Prompts and reads from the keyboard the number of constraints, MD; 
the number of variables, ND; and the maximum number of iterations, IR. 

28 CLS 
29 LOCATE 1.10:PRINT "DUAL SIMPLEX METHOD" 
30 LOCATE 3,1:PRINT "NUMBER OF CONSTRAINTS":LOCATE 3.31:INPUT "",L$ 
31 60SUB 1870:REM UTIL-CHX 
32 IF Z#<>BI# THEN MD=Z# 
33 LOCATE 3,30:PRINT MD," ":LOCATE 4,1:PRINT "NUMBER OF VARIABLES" 

:LOCATE 4,31:INPUT "",L$ 
34 GOSUB 1870:REM UTIL-CHX 
35 IF Z#<>BI# THEN ND»Z# 
36 LOCATE 4,30:PRINT ND," ":LOCATE 5,1:PRINT "MAXIMUM ITERATIONS" 

:LOCATE 5,31:INPUT "",L$ 
37 GOSUB 1870:REM UTIL-CHX 
38 IF Z#<>BI# THEN IR=Z# 
39 LOCATE 5,30:PRINT IR," 

Dimensions the objective function and constraint coefficient array 
A#(MD+l,ND+8), the basis inverse and basis array B#(2*ND+1,ND+1), the 
eligible entering column array C(ND+1), the holding array H#(ND+1), the 
upper and lower bounds array M#(ND+1,2), the pivot row array P#(ND+1), 
the constraint type array R(MD+1), the reinversion work space array 
T#(ND+1,ND+1), and the solution array X#(ND). 

The arrays A#(MD+l.ND+8), B#(2*ND+1,ND+1), and P#(ND+1) have been 
defined previously. The only differences is that array A#(MD+l,ND+8) 
contains seven extra columns used in later algorithms. The array 
C{ND+1) contains elements with value either zero (0) or one (1) 
corresponding to each column of the simplex tableau where one (1) Is a 
column eligible for a pivot operation and zero (0) is column not 
eligible. In the case of ties there would be more than one one (1) in 
the array. H#(ND+1) is a holding array for the last point before the 
current point. In later algorithms this is used to reduce duplicate 
processing if the current point values remain the same as at the last 
iteration. The array M#(ND+1,2) contains two (2) values for each 
variable (offset by one (1)). The first value is the upper bound, and 
the second value is the lower bound of the variable. The array R(MD+1) 
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contains a value for each constraint (offset by one) that represents the 
relationship type where one (1) Is for minus one (-1) for 
and zero (0) for The array T#(ND+1,ND+1) Is a work space array In 
which the current basis Is held for a Gauss-Jordan relnverslon. And the 
array X#(ND) Is the point that is both feasible and optimal. 

40 DIM A#(MD+l,ND+8) 
41 DIM B#(2*ND+1.ND+1) 
42 DIM C(ND+I) 
43 DIM H#(ND+1) 
44 DIM M#(ND+1,2) 
45 DIM P#(ND+1) 
46 DIM R(MD+1) 
47 DIM T#(ND+1,ND+1) 
48 DIM X#(ND) 
49 FOR 1=2 TO MD+1 
50 R(I)=1 
51 NEXT I 

Prints the option menu to the screen; calls the option line 
routine, UTIL-OPT; and pauses for the entry of "M", "0", "A", "C", "B", 
"U", "R", "N", "S", "F" for the option variable L$. 

52 LOCATE 8.12:PRINT "M-RETURN TO MENU" 
53 LOCATE 10,7:PRINT "O-OBJECTIVE COEFFICIENTS" 
54 LOCATE 11,7:PRINT "A-CONSTRAINT COEFFICIENTS" 
55 LOCATE 12.7:PRINT "C-CONSTRAINT TYPES" 
56 LOCATE 13.7:PRINT "B-BOUNDED VARIABLES" 
57 LOCATE 14,7:PRINT "U-EXECUTE ALGORITHM" 
58 LOCATE 15,7:PRINT "R-REPORT LISTING" 
59 LOCATE 16,7;PRINT "N-NEW PROBLEM" 
60 LOCATE 17,7:PRINT "S-SAVE F-FETCH" 
51 SCSuD loGGiREn uTIL-GrT 
62 LOCATE 21,8:INPUT "",L$ 

Calls either the objective function input subroutine INPT-OBJ, the 
constraint input subroutine INPT-CON, the constraint type input 
subroutine INPT-TYP, the upper and lower bounds input subroutine INPT-
BND, the processing subroutine ALGR-SMP, or the report subroutine REPT-
SMP based on the option variable L$. 

63 CLS 
64 IF L$<>"0" THEN 67 
65 GOSUB 1200:REM INPT-OBJ 
66 GOTO 63 
67 IF L$<>"A" THEN 70 
68 GOSUB 1300:REM INPT-CON 
69 GOTO 63 
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70 IF L$<>"C" THEN 73 
71 60SUB 1400;REM INPT-TYP 
72 GOTO 63 
73 IF L$<>"B" THEN 76 
74 GOSUB 1500:REM INPT-BND 
75 GOTO 63 
76 IF L$<>"U" THEN 85 
77 TM=3600*VAL{MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

.2)) 
78 GOSUB 3300:REM ALGR-SMP 

Sets the last current point of the simplex tableau to the optimal 
solution. 

79 0B#=B#(1.1) 
80 FOR 1=1 TO ND 
81 X#(I)=B#(I+1.1) 
82 NEXT I 
83 TM-3600*VAL(MID$(TIME$.1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

,2))-TM 
84 GOTO 52 
85 IF L$<>"R" THEN 88 
86 GOSUB 2200:REM REPT-SMP 
87 GOTO 63 

Saves the contents of MD, ND, M#(ND+1,2), A#(MD+l,ND+8), and 
R(ND+1) to disk file "DATA" as an ASCI file If option "S" Is selected. 

88 IF L$<>"S" THEN 106 
89 OPEN "0".#1,"DATA" 
90 PRINT #1.STR$(MD) 
91 PRINT #1.STR$(ND) 
92 FOR 1=1 TO ND+1 
93 FOR J=1 TO ND+1 
94 PRINT #1,"" 
95 NEXT J 
96 PRINT #1,STR$(M#(I,1)) 
97 PRINT #1.STR$(M#(I,2)) 
98 NEXT I 
99 FOR 1=1 TO MD+1 
100 FOR J=1 TO ND+8 
101 PRINT #1.STR$(A#(I,J)) 
102 NEXT J 
103 PRINT #1,STR$(R(I)) 
104 NEXT I 
105 CLOSE #1 

Loads to MD, ND, M#(ND+1,2), A#(MD+1,ND+8), and R(ND+1) the disk 
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file "DATA" if option "F" is selected. 

106 IF L$<>"F" THEN 131 
107 OPEN "I",#1."DATA" 
108 INPUT #1.X$ 
109 MO>VAL(X$) 
110 INPUT #1,X$ 
111 ND=VAL(X$) 
112 FOR T'l TO ND+1 
113 FOR J-1 TO ND+1 
114 INPUT #1,X$ 
115 NEXT J 
116 INPUT #1.X$ 
117 M#(I,1)=VAL(X$) 
118 INPUT #1,X$ 
119 M#(I,2)=VAL(X$) 
120 NEXT I 
121 FOR 1=1 TO MD+1 
122 FOR J=1 TO ND+8 
123 INPUT #1.X$ 
124 A#(I,J)=VAL(X$) 
125 NEXT J 
126 INPUT #1,X$ 
127 R(I)=VAL(X$) 
128 NEXT I 
129 CLOSE #1 
130 GOTO 52 

Restarts the program for a new run if option "N" is selected. 

131 IF L$="N" THEN RUN 
132 GOTO 52 

Utility Subroutines — Files UTIL-OPT. UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Objective Function Input Subroutine — Files INPT-OBJ 

The objective function input subroutine (INPT-OBJ) is the 

interactive screen input of the first row of the A#(MD+l,ND+8) array, 

columns two (2) through ND+1, To reach the screen from the main menu, 

type "0" as the OPTION The screen, as shown in figure 21, consists 
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NON-0 COEFFICIENTS IN THE OBJECTIVE 
VARIABLE NO. COEFFICIENT VARIABLE NO 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

10 
15 
20 
25 
30 
35 
40 
45 
50 

5 

OPTION ? 

Figure 21. Dual simplex method objective function Input screen 

of a variable number and the objective function coefficient for that 

variable. When the screen Is first entered, the cursor will be In the 

VARIABLE NO. column. When a variable number or a blank Is typed and 

entered, the cursor will move to the COEFFICIENT column so that the 

coefficient can be typed and entered. 

If an error Is entered, then the variable number can be reentered 

and the corrections made. To select other options and leave the screen, 

the option letter Is typed In the VARIABLE NO. column and entered. 

1200 REM * OBJECTIVE INPUT SUBROUTINE * 
1201 REM INPT-OBJ 

1202 H=0 
1203 G=2 
1204 LOCATE 1,1:PRINT "NON-0 COEFFICIENTS IN THE OBJECTIVE":LOCATE 2,5: 

PRINT "VARIABLE NO. COEFFICIENT" 
1205 G=G+1 
1206 H=H+1 
1207 GOSUB 1800:REM UTIL-OPT 
1208 LOCATE 6,11:INPUT "",L$ 
1209 GOSUB 1870:REM UTIL-CHX 
1210 IF L$<>"" AND Z#=BI# THEN RETURN 
1211 IF Z#<>BI# THEN H=Z# 
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1212 IF H>ND OR H<=0 THEN 1207 
1213 60SUB 1850:REM UTIL-ERS 
1214 LOCATE G.lOrPRINT H." LOCATE G,21:PRINT A#(1,H+1):LOCATE G.22 

: INPUT "%L$ 
1215 GOSUB 1870:REM UTIL-CHX 
1216 IF ZfOBI# THEN A#(1.H+1)=Z# 
1217 LOCATE G,21:PRINT A#(1.H+1)," 
1218 IF G<18 THEN 1205 
1219 GOSUB 1860:REM UTIL-CON 
1220 GOTO 1206 

Constraint Input Subroutine — File INPT-CON 

The constraint Input subroutine (INPT-OBJ) Is the Interactive 

screen Input of rows two (2) to MD+1 and columns two (2) to ND+1 of the 

A#(MD+l,ND+8) array. To reach the screen from the main menu, type "A" 

for the OPTION %. The screen, as shown In figure 22, consists of a 

NON-0 COEFFICIENTS A MATRIX 
ROW COLUMN COEFFICIENTS 
13 1 
1 5 1 
2 4 1 
2 6 1 
2 2 -1 
3 1 1 
3 7 1 
4 2 1 
4 8 1 • 
4 1 -1 
5 3 1 
5 9 1 
5 2 -1 

OPTION ? 

Figure 22. Dual simplex method constraint coefficient input screen 

constraint or ROW number, a variable or COLUMN number, and the variable 

COEFFICIENT column which correspond to the entries in the simplex A 

matrix. When the screen is first entered, the cursor will be in the ROW 
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column. When a row number or a blank Is typed and entered, the cursor 

will move to the COLUMN column so that the column number can be typed 

and entered. The cursor will then move to the COEFFICIENT column so 

that the coefficient of the variable can be typed and entered. 

If an error Is entered, then the row and column numbers must be re

entered and the corrections made. To select other options and leave the 

screen, the option letter Is typed in the ROW column and entered. 

1300 REM * CONSTRAINT COEFFICIENT INPUT SUBROUTINE * 
1301 REM INPT-CON 

1302 LOCATE 1,1:PRINT "NON-ZERO COEFFICIENTS A MATRIX":LOCATE 2,2:PRINT 
"ROW COLUMN COEFFICIENTS" 

1303 H»1 
1304 G«2 
1305 R-0 
1306 G=G+1 
1307 R=R+1 
1308 GOSUB 1800:REM UTIL-OPT 
1309 LOCATE G,3:INPUT "",L$ 
1310 GOSUB 1870:REM UTIL-CHX 
1311 IF L$<>"" AND 2#=BI# THEN RETURN 
1312 IF Z#<>BI# THEN H=Z# 
1313 IF R<=ND THEN 1316 
1314 R=1 
1315 IF L$="" THEN H=H+1 
1316 IF H>MD OR H<=0 THEN 1308 
1317 GOSUB 1850:REM UTIL-ERS 
1318 LOCATE G.2:PRINT H:LOCATE G,9:INPUT "",L$ 
1319 GOSUB 1870:REM UTIL-CHX 
1320 IF Z#<>BI# THEN R=Z# 
1321 IF R>ND OR R<=0 THEN 1318 
1322 LOCATE G,8:PRINT RELOCATE G,15:PRINT A#(H+1,R+1):LOCATE G,16:INPUT 

"",L$ 
1323 GOSUB 1870:REM UTIL-CHX 
1324 IF Z#<>BI# THEN A#(H+1,R+1)=Z# 
1325 LOCATE G,15:PRINT A#(H+1,R+1)," " 
1326 IF G<18 THEN 1306 
1327 GOSUB 1860:REM UTIL-CON 
1328 GOTO 1307 
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Constraint Type Input Subroutine — File INPT-TYP 

The constraint type input subroutine (INPT-OBJ) Is the 

' Interactive screen Input of the R(MD+1) array and of the ND+2 through 

ND+8 columns of the A#(MD+l,ND+8) array. All constraints are stored In 

the A#(MD+l,ND+8) array in the greater than or equal form. To save the 

relationship type, a one (1) for constraints of the ">=" type, a zero 

(0) for constraints of the "=" type, and a minus one (-1) for 

constraints of the "<=" type is entered in the array R(MD+1). The last 

columns of the A#(MD+l,ND+8) array are used in later algorithms for 

storing keys to the nonlinear constraints. 

To reach the screen from the main menu, type "C" as the OPTION 

The screen, as shown in figure 23, consists of a column of row numbers, 

VALUE AND TYPE OF CONSTRAINTS 
ROW LINEAR PARABOLIC HYPERBOLIC SHEET 
1 >= 10 0 0 0 
2 >= 20 0 0 0 
3 >« 30 0 0 0 
4 >= 40 0 0 0 
5 >» 50 0 0 0 
6 >= 60 0 0 0 
7 >= 70 0 0 0 
8 >= 80 0 0 0 
9 >= 90 0 0 0 
10>= 100 0 0 0 

OPTION ? 

Figure 23. Dual simplex method constraint type input screen 

a relationship type, a constant column for linear constraints, a 

constant column for a hyperbolic constraints, and a constant column for 

a hyperbolic of two sheet constraints. 
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As an example of the Input format using two (2) variables 

constraints, for the linear cases: 

X+Y>«LINEAR constant or X+Y<=LINEAR constant or X+Y=LINEAR constant 

for the parabolic case: 

Y+a*(X-PARABOLIC constant)*2>=LINEAR constant 

for the hyperbolic case: 

X*Y>=HYPERBOLIC constant 

and for the hyperbolic In two sheets case: 

X*(Y-Z)>=SHEET constant 

When the screen Is first entered, the cursor will be under the ROW 

column. When a constraint number or a blank Is typed and entered, the 

cursor will move to the relationship column so that ">»" or "<=" or "=" 

can be typed and entered. The cursor will then move to the constant 

columns and the constants can be typed and entered In the same manner. 

If an error Is entered, then the constraint number Is reentered and 

the corrections made. To select other options and leave the screen, the 

option letter Is typed In the ROW column and entered. 

1400 REM * CONSTRAINT TYPE INPUT SUBROUTINE * 
1401 REM INPT-TYP 

1402 H=0 
1403 6=2 
1404 LOCATE 1,3:PRINT " VALUE AND TYPE OF CONSTRAINTS":LOCATE 2,1:PRINT 

"ROW LINEAR PARABOLIC HYPERBOLIC PLANE" 
1405 G=G+1 
1406 H=H+1 
1407 GOSUB 1800:REM UTIL-OPT 
1408 LOCATE G,2:INPUT "",L$ 
1409 GOSUB 1870:REM UTIL-CHX 
1410 IF L$<>"" AND Z#=BI# THEN RETURN 
1411 IF Z#<>BI# THEN H=Z* 
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1412 IF H>MD OR H<=0 THEN 1407 
1413 GOSUB 1850:REM UTIL-ERS 
1414 IF R(H+1)=1 THEN L$=">=" 
1415 IF R(H+1)=0 THEN L$="=" 
1416 IF R(H+1)=-1 THEN L$-"<«" 
1417 LOCATE 6,1:PRINT H," ":LOCATE 6,4:PRINT L$:LOCATE G,4:INPUT "".L$ 
1418 IF L$<>">«" AND L$<>"=" AND L$<>"<»" AND L$<>"" THEN 1417 
1419 IF L$="" THEN 1423 
1420 IF L$=">=" THEN R(H+1)=1 
1421 IF L$--=" THEN R(H+l)-0 
1422 IF L$="<=" THEN R(H+1)=-1 
1423 LOCATE G,4:PRINT L$:LOCATE G,6:PRINT A#(H+1,1):LOCATE G,7:INPUT "" 

.L$ 
1424 GOSUB 1870:REM UTIL-CHX 
1425 IF Z#<>BI# THEN A#(H+1.1)=Z# 
1426 LOCATE G,6:PRINT A#(H+1,1)." " 
1427 IF R(H+1)<1 THEN 1438 
1428 LOCATE G,13:PRINT A#(H+l,ND+2):LOCATE G,14:INPUT "",L$ 
1429 GOSUB 1870:REM UTIL-CHX 
1430 IF Z#<>BI# THEN A#(H+1,ND+2)=Z# 
1431 LOCATE G,13:PRINT A#(H+l,ND+2)," ":LOCATE G,23:PRINT A#(H+l,ND+3 

):LOCATE G,24:INPUT "".L$ 
1432 GOSUB 1870:REM UTIL-CHX 
1433 IF Z#<>BI# THEN A#(H+1,ND+3)=Z# 
1434 LOCATE G,23:PRINT A#(H+l,ND+3)," ":L0CATE G,34:PRINT A#(H+l,ND+4 

):LOCATE G,35:INPUT "",L$ 
1435 GOSUB 1870:REM UTIL-CHX 
1436 IF Z#<>BI# THEN A#(H+1.ND+4)=Z# 
1437 LOCATE G,34:PRINT A#(H+l,ND+4)," 
1438 IF G<18 THEN 1405 
1439 GOSUB 1860:REM UTIL-CON 
1440 GOTO 1406 

Upper and Lower Bounds Input Subroutine — File INPT-BND 

The upper and lower bounds input subroutine (INPT-BND) is the 

interactive screen input of the M#(MD+1,2) array. 

To reach the screen from the main menu, type "B" as the OPTION 

The screen, as shown in figure 24, consists of a variable number, its 

upper bound, and its lower bound. When the screen is first entered, the 

cursor will be in the VARIABLE NO. column. When a variable number or 

a blank is typed and entered, the cursor will move to the UPPER BOUND 
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VARIABLE NO 
BOUNDS ON VARIABLES 
NO. UPPER BOUND LOWER BOUND 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

160 
9 
19 
29 
39 
49 
59 
69 
79 
89 
99 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

OPTION ? 

Figure 24. Dual simplex method variable bounds Input screen 

column so that the value can be typed and entered. The cursor will then 

move to the LOWER BOUND column where the lower bound can be typed and 

If an error Is entered, then the variable number can be reentered 

and the corrections made. To select other options and leave the screen» 

the option letter is typed in the VARIABLE NO. column and entered. 

1502 H=0 
1503 G=2 
1504 LOCATE 1,10:PRINT "BOUNDS ON VARIABLES":LOCATE 2,1:PRINT "VARIABLE 

NO. UPPER BOUND LOWER BOUND" 
1505 G=G+1 
1506 H=H+1 
1507 60SUB 1800:REM UTIL-OPT 
1508 LOCATE G,2:INPUT "",L$ 
1509 GOSUB 1870:REM UTIL-CHX 
1510 IF L$<>"" AND Z#s=BI# THEN RETURN 
1511 IF Z#<>BI# THEN H=Z# 
1512 IF H>ND OR H<=0 THEN 1507 
1513 GOSUB 1850:REM UTIL-ERS 
1514 LOCATE G,1:PRINT H," ":LOCATE G,14:PRINT M#(H+1,1):LOCATE G,15 

entered 

1500 REM 
1501 REM-

* VARIABLE BOUNDS INPUT SUBROUTINE * 
INPT-BND 
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:INPUT "".L$ 
1515 GOSUB 1870:REM UTIL-CHX 
1516 IF Z#<>BI# AND Z#>=0# THEN M#(H+1,1)=Z# 
1517 LOCATE G,14:PRINT M#(H+1,1)." LOCATE G,27:PRINT M#(H+1.2) 

:LOCATE G,28:INPUT "",L$ 
1518 GOSUB 1870:REM UTIL-CHX 
1519 IF Z#<>BI# AND Z#>»0# THEN M#(H+1,2)-Z# 
1520 LOCATE G.27:PRINT M#(H+1,2)." 
1521 IF G<18 THEN 1505 
1522 GOSUB 1860:REM UTIL-CON 
1523 GOTO 1506 

Dual Simplex Report Subroutine — File REPT-SMP 

The simplex report subroutine (REPT-SMP) Is the Interactive screen 

output of the X#(ND) array. To reach the screen from the main menu, type 

"R" as the OPTION The screen, as shown In figure 25. The dual 

SOLUTION FOUND IN 7 ITR 
VALUE OF OBJECTIVE 

5 SEC 
750 

VARIABLE NO VALUES 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

30 
80 
10 
160 
0 
0 
0 
0 
30 
0 
0 
0 
0 
0 

OPTION ? 

Figure 25. Dual simplex method solution screen 

simplex report lists the number of Iterations and seconds required to 

reach an optimal solution, the value of the objective function, and the 
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variable numbers and their values at the solution. At the end of each 

screen of output, the OPTION % line Is printed and the program pauses. 

To continue, enter blank. Otherwise, any other option. 

If the dual simplex method falls to reach a solution then Instead 

of a report, an error code Is printed where: 

ER 0 = Iteration limit exceeded 
ER 1 = Successful execution 
ER 2 - Problem has no feasible solutions 
ER 3 = Relnverslon failed because of numerical accuracy 
ER 4 = Maximum number of branch and bound nodes exceeded 

2200 REM *SIMPLEX REPORT SUBROUTINE* 
2201 REM REPT-SMP 

2202 IF ER02 AND ER03 AND ER04 THEN 2205 
2203 LOCATE 1,6;PRINT "NO SOLUTION FOUND.";ER;"ER" 
2204 GOTO 2210 
2205 IF EROO THEN 2208 
2206 LOCATE 1,6:PRINT "MAXIMUM ITERATIONS REACHED " 
2207 GOTO 2210 
2208 IF EROl THEN 2222 
2209 LOCATE 1,1:PRINT "SOLUTION FOUND IN ";IT;"ITR" 
2210 LOCATE 1,30:PRINT TM;"SEC":LOCATE 2,1:PRINT "VALUE OF OBJECTIVE" 

: LOCATE 2,30:PRINT OB#:LOCATE 4,8:PRINT "VARIABLE NO. VALUES" 
2211 G=5 
2212 FOR 1=1 TO ND 
2213 LOCATE G,7:PRINT I:LOCATE G,22:PRINT X#(I) 
2214 6=6+1 
2215 IF G<20 THEN 2221 
2216 GOSUB 1860:REM UTIL-CON 
2217 LOCATE 21,8:INPUT "",L$ 
2218 GOSUB 1870:REM UTIL-CHX 
2219 IF LSO"" AND Z#=BI# THEN RETURN 
2220 GOSUB 1864:REM UTIL-CON+4 
2221 NEXT I 
2222 GOSUB 1800:REM UTIL-OPT 
2223 LOCATE 21,8:INPUT "",L$ 
2224 RETURN 

Dual Simplex Algorithm Subroutine — File ALGR-SMP 

The dual simplex algorithm first initializes the simplex tableau to 
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represent the point at the origin and the set of constraints that form 

the zero axes. Then, In an Iterative fashion. It proceeds to execute 

the following steps. 

(1) From the constraints of the LP problem, select the constraint 

violated by the current point which Is geometrically farthest from 

the current point. If no constraints are violated, then the 

current point Is a feasible optimal solution. Otherwise, go to 

step (2). 

(2) From the points of Intersection formed by the constraint selected 

In step (1) and the constraints defining the current point, select 

a new point which minimizes the value of the objective and does not 

violate the basis constraints. This can be done directly from 

the simplex tableau as demonstrated earlier. If no intersection is 

found, set ER=2, since the the problem is infeasible, and return to 

the main routine. Otherwise, go to step (3). 

(3) Use a Gauss-Jordan elimination to transform the current tableau to 

represents the new peint selected in step (2) and the constraints 

which define it. If the transformation fails because of numerical 

accuracy, set ER=3 and return to main routine. Otherwise, go to 

step (4). 

(4) Set the current point equal to the new point and return step (1). 

If the cycle is repeated more than a preset number of iterations, 

then set ER=0 and return to main routine. 

3300 REM *DUAL SIMPLEX ALGORITHM SUBROUTINE* 
3301 REM ALGR-SMP 
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Initializes the simplex tableau to represent the origin by setting 
the ÏÏ matrix to the Identity matrix. Sets the Iteration count IT to 
zero (0) and the error code ER to zero (0). 

3302 FOR 1=1 TO 2*ND+1 
3303 FOR J«1 TO ND+1 
3304 B#(I,J)=0# 
3305 NEXT J 
3306 NEXT I 
3307 FOR 1=2 TO ND+1 
3308 H#(I)=BI# 
3309 B#(I.I)=1#:B#(I,1)=M#(I,2) 
3310 B#(I+ND,I)=1#:B#(I+ND.1)=M#(I,2) 
3311 B#(1.I)=A#(1,I) 
3312 NEXT I 
3313 IT=0 
3314 ER=0 

Increments the Iteration count by one and checks 1f maximum 
Iteration has been reached. 

3315 IT»IT+1 
3316 IF IT>IR THEN RETURN 

Checks the upper bound for the most violated constraint and saves 
the slack amount 1n MI#. In the case of the upper bound, the geometric 
distance Is also the amount by which the constraint Is violated. Sets 
RO to the row number of the violated constraint If the violation Is 
currently the largest found In the current Iteration. 

To accommodate upper and lower bounds, the number of constraints 
Is automatically Increased In the algorithm to ND+l+ND+l+MD+1. The 
extra constraint on each grouping of constraints Is to allow for the 
offset formed by the objective function In the simplex tableau. This 
simplifies addressing at the expense of phantom constraints. 

3317 MI#=-SM# 
3318 R0=0 
3319 FOR 1=2 TO ND+1 
3320 IF B#(I,1)-M#(I,2)>=MI# THEN 3323 
3321 MI#=B#(I.1)-M#(I,2) 
3322 RO=I 
3323 NEXT I 

As with the upper bound, checks the lower limits. 

3324 FOR J=2 TO ND+1 
3325 IF M#(J,1)<=0# THEN 3331 
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3326 A#=M#(J,1) 
3327 IF A#=BI# THEN A#=0# 
3328 IF A#-B#(J,1)>=MI# THEN 3331 
3329 MI#=A#-B#(J,1) 
3330 R0=J+ND+1 
3331 NEXT J 

Checks for the violated constraint the greatest geometric distance 
form the current point. The REM statements are for later nonlinear 
constraints. 

3332 FOR K»2 TO MD+1 
3333 REM 
3334 REM 
3335 REM SUPPORTING PLANE AND DEEP CUT SUBROUTINES 
3336 REM (if no nonlinear subroutines used, set Z#-l# in line 3345) 
3337 REM 
3338 B#=-A#(K.l) 
3339 Z#=0# 
3340 FOR J=2 TO ND+1 
3341 B#=B#+A#(K.J)*B#(J,1) 
3342 Z#»Z#+A#(K,J)*A#(K.J) 
3343 NEXT J 
3344 IF Z#=0# THE 3350 
3345 SN=R(K):REM Z#=l# 
3346 IF SN=0 THEN SN«-SGN(B#) 
3347 IF (B#*CDBL(SN))/CDBL(SQR(Z#))>=MI# THEN 3350 
3348 MI#=(B#*CDBL(SN))/CDBL(SQR(Z#)) 
3349 R0=K+ND+1+ND+1 
3350 NEXT K 

Sets ER=1 and returns to main routine If no constraints are 
violated. 

3351 ER=1 
3352 IF R0=0 THEN RETURN 

Transforms the original constraint coefficients into the 
coefficients of the current simplex tableau. 

3353 GOSUB 3600:REM TRAN-CON 

Selects the pivot column for a Gauss-Jordan elimination using 
a modification of the perturbation method. In practice it Is seldom 
used for the dual simplex method. 

3354 REM 
3355 REM CN=0 
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3356 REM FOR 1=2 TO ND+1 
3357 REM IF P#(I)<=SM# OR M#(I.1)=BI# THEN 600 
3358 REM CN=CN+1 
3359 REM C(CN)=I 
3360 REM NEXT I 
3361 REM C0=C(1) 
3362 REM IF CN-1 THEN 810 
3363 REM FOR 1=1 TO ND+2 
3364 REM IF I=ND+2 THEN STOP 
3365 REM MI#=BI# 
3366 REM FOR J=1 TO CN 
3367 REM IF C(J)=0 THEN 690 
3368 REM IF MI#>B#(I.C(J))/P#(C(J)) THEN MI#=B#(I,C(J))/P#(C(J)) 
3369 REM NEXT J 
3370 REM C=0 
3371 REM FOR J=1 TO CN 
3372 REM IF C(J)=0 THEN 780 
3373 REM IF B#(I,C(J))/P#(C(J))>MI# THEN 770 
3374 REM C=C+1 
3375 REM C0=C(J) 
3376 REM GOTO 780 
3377 REM C(J)=0 
3378 REM NEXT J 
3379 REM IF C=1 THEN 810 
3380 REM NEXT I 
3381 REM 

Selects the pivot column for a Gauss-Jordan elimination using 
the minimum ratio of the objective function row coefficient B#(1,ND+1) 
to the pivot row coefficient P#(ND+1). Ties are broken by using the 
largest divisor, then by the smallest column number. 

3382 MI#=BI# 
3383 MA#=0# 
3384 C0=0 
3385 FOR 1=2 TO ND+1 
3386 IF P#(I)<=SM# OR M#(I,1)=BI# THEN 3365 
3387 IF MI#<B#(1,I)/P#(I) THEN 3365 
3388 IF MI#=B#(1,I)/P#(I) AND MA#>P#(I) THEN 3365 
3389 MI#=B#(1.I)/P#(I) 
3390 MA#=P#(I) 
3391 CO=I 
3392 NEXT I 

Sets ER=2 and returns to main routine if no column is found and 
the problem is infeasible. 

3393 ER=2 
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3394 IF C0=0 THEN RETURN 

Performs a Gauss-Jordan elimination using the pivot row RO and 
column CO. 

3395 GOSUB 3700:REM TRAN-INV 

Sets ER=3 and return to main routine If the Gauss-Jordan 
elimination falls because of numerical precision. 

3396 IF ER»3 THEN RETURN 
3397 REM 

Returns to start next interatlon 

3398 GOTO 3314 

Constraint Tranformatlon Subroutine — File TRAN-CON 

The constraint transformation subroutine (TRAN-CON) transforms the 

constraint RO selected In ALGR-SMP subroutine from either the upper and 

lower bound M#(ND+1,2) array or the A#(MD+l,ND+8) array Into an equation 

In the current tableau's coefficients and then stores the transformed 

constraint in the pivot row array P#(ND+1). This transformation is 

simplest to stated as the matrix operation: 

I -ap , ap'I * j 1 I 0' I = I -ap+ap'ap'B"^! 

IB-IF I B-1 I 

where the a* vector is the selected row of the A#(MD+l,ND+8) array and 

the inverted augmented B matrix Is the multiplier. 

3600 REM * CONSTRAINT TRANSFORMATION SUBROUTINE * 

3601 REM TRAN-CON 

Sets the pivot row P#(ND+1) array equal to the transformed upper 
bound constraint. 

If the RO value is less or equal to ND+1, then the selected 
constraint is an upper bound. The upper bound constraint can be 
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directly transformed from the basis inverse as seen if the constraint is 
substituted into the matrix operation defining the transformation. 

3602 IF R0>ND+1 THEN 3608 
3603 P#(1)=B#(R0,1)-M#(R0.2) 
3604 FOR 1=2 TO ND+1 
3605 P#(I)=B#(RO.I) 
3606 NEXT I 
3607 GOTO 3632 

Sets the pivot row P#(ND+1) array equal to the transformed lower 
bound constraint. 

If the RO value is greater than ND+1 and less or equal to ND+l+ND+1 
then the selected constraint is a lower bound constraint. 

3608 IF R0>ND+1+ND+1 THEN 3617 
3609 J=R0-ND-1 
3610 A#»M#(J.l) 
3611 IF A#=BI# THEN A#=0# 
3612 P#(1)'A#-B#(J,1) 
3613 FOR 1=2 TO ND+1 
3614 P#(I)=-B#(J,I) 
3615 NEXT I 
3616 GOTO 3632 

Sets the pivot row P#(ND+1) array equal to the transformed 
A#(MD+l,ND+8) array row. 

If the RO value is greater than ND+l+ND+1 then the selected 
constraint is one of the original LP problem constraints stored in their 
original form in the A#(MD+l,ND+8) array. The transformation is as 
defined earlier except that the order of the matrix operations are 
chosen to take advantage of a sparse A#(MD+l,ND+8) matrix. 

3617 K=R0-ND-1-ND-1 
3618 P#(l)=-A#(K.l) 
3619 FOR 1=2 TO ND+1 
3620 P#(I)=0# 
3621 P#(1)=P#(1)+A#(K,I)*B#(I,1) 
3622 NEXT I 
3623 SN=R(K) 
3624 IF SN=0 THEN SN=-SGN(P#(1)) 
3625 P#(1)=P#(1)*CDBL(SN) 
3626 FOR J=2 TO ND+1 
3627 IF A#(K.J)=0# THEN 3631 
3628 FOR L=2 TO ND+1 
3629 P#(L)=P#(L)+A#(K,J)*B#(J.L)*CDBL(SN) 
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3630 NEXT L 
3631 NEXT J 
3632 RETURN 

Inversion Subroutine — File TRAN-INV 

The Inversion subroutine (TRAN-INV) using the pivot row P#(ND+1) 

performs a Gauss-Jordan elimination on column CO of the Inverted 

augmented B matrix or the B#(ND+1,ND+1+ND) array rows one (1) to ND+1. 

The pivot row constraint In the original variables Is then stored in the 

augmented B matrix or the B#(ND+1,ND+1+ND) array rows ND+2 to ND+l+ND in 

a row corresponding to the column CO's transpose row position. 

3700 REM *INVERSION SUBROUTINE* 
3701 REM TRAN-INV 

Prints to the screen the current Iteration, objective function 
value, selected constraint, and pivot column. 

3702 PRINT IT;B#(1.1);R0;C0 

Searches for the sequence of operations in the transformation with 
the fewest mathematic operations; sets the holding array to the current 
point; and loads into the augmented ? matrix the selected constraint as 
defined by RO. 

3703 X=0 
3704 T=0 
3705 FOR 1=1 TO NO+l 
3706 H#(I)=B#(I,1) 
3707 IF R0<=ND+1+ND+1 THEN B#(C0+ND,I)=0# 
3708 IF R0>ND+1+ND+1 THEN B#(C0+ND,I)=A#(R0-ND-1-ND-1,I)*CDBL(SN) 
3709 IF P#(I)=0# THEN X=X+1 
3710 IF B#(I,C0)=0# THEN Y=Y+1 
3711 NEXT I 
3712 IF R0>ND+1 THEN 3716 
3713 B#(C0+ND.1)=M#(R0,2) 
3714 B#(C0+ND.R0)=1# 
3715 GOTO 3719 
3716 IF R0>ND+1+ND+1 THEN 3719 
3717 B#(ND+C0.1)=-M#(R0-ND-1,1) 
3718 B#(ND+C0.R0-ND-1)=-1# 
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If the number of Iterations Is equal to an Integer multiple of IN 
then the augmented ÏÏ matrix Is completely Inversed or: 

I 1 I Ô' |-1 I 1 I Ô' I 

l~^new I ?new I I I I 

Fortunately, with only a slight lose of precision, only a single column 
of the Inverted augmented B matrix has to be updated. 

Selects to do a full Inversion. 

3719 IF IT/IN=INT(IT/IN) THEN 3742 

Pivots on the pivot row if the pivot row has a greater number of 
zero (0) entries that the CO column of the inverted augmented B matrix. 

3720 L#=P#(CO) 
3721 IF X<Y THEN 3730 
3722 FOR J=1 TO ND+1 
3723 P#=P#(J) 
3724 IF J=CO OR P#=0# THEN 3728 
3725 FOR 1=1 TO ND+1 
3726 B#(I.J)«(B#(I,J)*L#-(P#*B#(I,C0)))/L# 
3727 NEXT I 
3728 NEXT J 
3729 GOTO 3737 

Pivots on the CO column rather than the pivot row if the CO column 
of the inverted augmented B matrix has a greater number of zero (0) 
entries than the pivot row. 

3730 FOR 1=1 TO ND+l 
3731 P#=B#(I.CO) 
3732 IF P#=0# THEN 3736 
3733 FOR J=1 TO ND+1 
3734 IF JOCO THEN B#(I,J)=(B#(I,J)*L#-(P#*P#(J)))/L# 
3735 NEXT J 
3736 NEXT I 

Divides the CO column by minus one (-1) if the pivot element is a 
negative value. 

In the primal simplex algorithm for which this inversion is also 
used, the pivot element has a negative coefficient. In this case the 
transformation has a extra division by minus one (-1) of the CO column 
of the inverted augmented ÏÏ matrix. 
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3737 IF SGN(L#)=1 THEN RETURN 
3738 FOR 1=1 TO ND+1 
3739 B#(I.CO)=-B#(I,CO) 
3740 NEXT I 
3741 RETURN 
3742 GOSUB 3900:REM TRAN-RIV 
3743 RETURN 

Relnverslon Subroutine — File TRAN-RIV 

The relnverslon subroutines^ completely Inverts the augmented ÏÏ 

matrix or In matrix notation: 

I 1 I Ô' 1-1 I 1 I Ô' I 

l-^new I ^new I I ¥'1^ I "ff-l I 

This Inversion is done using a Gauss-Jordan elimination starting with: 

I 1 I 0' I 1 I 0' I 
I 1 —2 + I 
l-^new I Bnew I 0 I I I 

where the augmented ÏÏ matrix Is copied Into the T#(ND+1,ND+1) array 

and the Identity matrix Is loaded Into the B#(ND+1,ND+1) array. By the 

transformation, the new matrix is: 

1 1 Ô' 1 I ÏÏ' 

ÏÏ Î T B-lïï 1 I-l 

where the B#(ND+1,ND+1) array Is the reinverted augmented B matrix. 

3900 REM * REINVERSION SUBROUTINE * 
3901 REM TRAN-RIV 

Initializes the T#(ND+1,ND+1) array as the augmented B matrix and 
the B#(ND+1,ND+1+ND) array rows one (1) through ND+1 as the Identity 
matrix. 
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3902 FOR 1=2 TO ND+1 
3903 FOR J=2 TO ND+1 
3904 T#(I,J)=B#(I+ND,J) 
3905 B#(I,J)=0 
3906 NEXT J 
3907 B#(I,I)=1 
3908 NEXT I 

Inverts the B matrix. 

To allow for eliminating parts of the computer code In later 
algorithms, the actual Inversion Is doiie on the B matrix and then the 
first column and row of the augmented B matrix are added as a separate 
operation. This allows the objective function transformation to be 
dropped from the code when It Is performed in other subroutines. 

The Inversion routine works by selecting In sequence each row, from 
two (2) to ND+1, as pivot rows; finding the largest element of the 
selected pivot row In a column of number equal to or larger than the 
current pivot row number as the pivot element; reordering the columns so 
that the selected pivot element column Is now In the corresponding pivot 
row column number; and performing a Gauss-Jordan pivot on each row and 
column selected. 

3909 FOR 1=2 TO ND+1 
3910 P#=T#(I,I) 
3911 K=I 
3912 IF I=ND+1 THEN 3918 
3913 FOR J=I+1 TO ND+1 
3914 IF ABS(T#(I,J))<ABS(P#) THEN 3917 
3915 P#=T#(I,J) 
3916 K=J 
3917 NEXT J 
3918 IF P#<>0# THEN 3922 

If a pivot cannot be found the matrix has failed to reinvert 
because of numerical precision. 

3919 PRINT "MATRIX IS SINGULAR" 
3920 ER=3 
3921 RETURN 
3922 IF I=K THEN 3927 
3923 FOR J=2 TO ND+1 
3924 SWAP B#(J,I),B#(J,K) 
3925 SWAP T#(J,I),T#(J,K) 
3926 NEXT J 
3927 FOR J=2 TO ND+1 
3928 P#(J)=T#(I,J)/P# 
3929 NEXT J 
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3930 FOR J=2 TO ND+1 
3931 L#=P#(J) 
3932 IF L#=0# OR J»I THEN 3937 
3933 FOR K=2 TO ND+1 
3934 B#(K,J)=B#(K.J)-(L#*B#(K,I)) 
3935 T#(K.J)-T#(K,J)-(L#*T#(K.I)) 
3936 NEXT K 
3937 NEXT J 
3938 FOR J=2 TO ND+1 
3939 B#(J,I)=B#(J,I)/P# 
3940 T#(J,I)=T#(J,I)/P# 
3941 NEXT J 
3942 NEXT I 

Transforms the first column of the reinverted augmented B matrix. 

3943 FOR 1=2 TO ND+1 
3944 B#(I,1)=0# 
3945 FOR J=2 TO ND+1 
3946 B#(I,1)=B#(I,1)+B#(I,J)*B#(J+ND.l) 
3947 NEXT J 
3948 NEXT I 

Transforms the objective row of the reinverted augmented B matrix. 

3949 B#(1.1)=0# 
3950 FOR 1=2 TO ND+1 
3951 B#(1,I)=0# 
3952 B#(l,l)=B#(l,l)+A#(l,I)*B#(I.l) 
3953 NEXT I 
3954 FOR 1=2 TO ND+1 
3955 IF A#(1,I)=0# THEN 3959 
3956 FOR J-2 TO ND+1 
3957 B#(1,J)=B#(1.J)+A#(1,I)*B#(I.J) 
3958 NEXT J 
3959 NEXT I 
3960 RETURN 

Program Table of Contents 

Table 2 can be used to reconstruct the above computer code from 

the computer disk and to organize subroutines from previous program 

listings. Since BASIC code is dependent on program routine line numbers 

for its subroutine branching, the statement numbers must be maintained 
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Table 2. Dual simplex BASIC program table of contents 

File Program lines Page Routine 

MAIN-SMP 0001-0132 56 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200- 2224 69 
ALGR-SMP 3300-3398 70 
TRAN-CON 3600- 3633 74 
TRAN-INV 3700-3743 76 
TRAN-RIV 3900- 3960 78 

Dual simplex method 
Objective coefficient Input subroutine 
Constraint coefficient Input subroutine 
Constraint type Input subroutine 
Variable bounds Input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Dual simplex algorithm subroutine 
Constraint transformation subroutine 
Basis Inversion subroutine 
Basis reinversion subroutine 

as listed above. 

Dual Simplex Method: 
Solutions to Example 4 Minimum Project Cost Problem 

To expand the example 2 ten (10) activity network model Into a 

linear programming problem requires the definition of several variables 

not used in the CPM networks. 

Cij - Incremental cost to reduce duration of activity ij 
Rij - Increments of reduction of duration of activity ij 
Ti - Node time for node 1 
Uij - Upper limit for duration of activity ij if less than durij 
1 j j  -  L o w e r  l i m i t  f o r  d u r a t i o n  o f  a c t i v i t y  i j  
n - Maximum node number 
Dur. - Project total duration incrememts 
durij - Normal or minimum cost duration Increments for activity ij 
fix. - Fixed cost per increment of total project duration 

Formulating the problem in algebraic notation the cost function becomes: 
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minimize > cfj*Rij+f1x.*(Tn-To) 
all ij 

once the constant cost terms are dropped from the equation. The network 

relationships become the constraints: 

subject to: Tj-Ti-(durij-Rij)>=0 for all 1j 

Tn-To<=Dur. 

for which the range of the variables are restricted to: 

durij-Tij> Rfj >dur-fj-u-fj for all ij 

Ti,Rij,Dur.>=0 for all 1,ij 

If this notation is used to label a network, the result is figure 26. 

duro3-Ro3 

/ \ dur24-R24 
/ \ 

/ / \ \ 
/ duroi-Roi duri2-Rl2 /dur23-R23>V dur34-R34 *V 

W W -A -A -77V 
\\ W / duri3-Ri3 / // 
\\ durj4~l^l4 If 
\\ duro2-R02 / / 
\ duro4-R04 / 

Figure 26. Minimum project cost problem example 4 arrow diagram 

To provide data for the example, the arbitrary set of data in 

table 3 is used. The data are not intended to represent any real or 

estimated project. The example problem is only to demonstrate the 

mechanics and performance characteristic of the algorithms. 
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Table 3. Activity duration and Incremental cost table 

Activity Min. dur. Max. dur. Dur. var. Var. range Inc. cost 

Activity #1 1 10 R03 or R5 0-9 5 
Activity #2 1 20 R24 or R6 0-19 10 
Activity #3 1 30 ROl or R7 0-29 15 
Activity #4 1 40 R12 or R8 0-39 20 
Activity #5 1 50 R23 or R9 0-49 25 
Activity #6 1 60 R34 or RIO 0-59 30 
Activity #7 1 70 Rl3 or Rll 0-69 35 
Activity #8 1 80 R02 or R12 0-79 40 
Activity #9 1 90 R14 or R13 0-89 45 
Activity #10 1 100 R04 or R14 0-99 50 

Rewriting the ten (10) activity minimum project cost network In the 

form of a LP problem results In: 

minimize 5*R5+10*R6+15*R7+20*R8+25*R9+30*R10 
+35*R11+40*R12+45*R13+50*R14 

subject to; T3-(10-R5)-0>=0 
T4-(20-R6)-T2>=0 
Tl-(30-R7)-0>=0 
T2-(40-R8)-Tl>=0 
T3-(50-R9)-T2>=0 
T4-(60-R10)-T3>=0 
T3-(70-Rll)-Tl>-0 
T2-f80-R12)-0>=0 
T4-(90-R13)-Tl>=0 
T4-(100-T14)-0>=0 

T4<=Dur. 
R5<=9 
R6<=19 
R7<=29 
R8<=39 
R9<=49 
R10<=59 
Rll<=69 
R12<=79 
R13<=89 
R14<=99 

T1.T2, R14>=0 
or as a arrow diagram: 
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10-R5 

/ 
/ 
/ 
/ 

0=T0 —— 
W 
W 
W 
W 
\-

30-R7 

\ 20-R6 
\ 

/ \ \ 
40-R8 / 50-R9 4/ 60-R10 ^ 

w H -A -771 
W /70-Rll / // 
\ / 90-R13 // 

80-R12 / / 
100-R14 / 

Dur. 

Figure 27. Minimum project cost problem example 4 arrow diagram 

Solutions to Minimum Project Cost Problem 

To establish a simple bench mark for the execution time of the dual 

simplex method, the example LP problem was run with predetermined 

project durations ranging from one hundred sixty (160) Increments to 

four (4) Increments. The durations were chosen to correspond to the 

breaks In the piece wise linear cost curve solution of the out-of-kilter 

method described In the following chapter. Fixed costs were dropped 

from the problem because a fixed project duration was used, making the 

fixed cost, f1x.*(Tn-To), a constant for each computer run. 

The results of the computer runs are displayed 1n table 4 which 

lists for each of the ten (10) runs the fixed project duration, the 

number of Iterations required to reach the solution, the seconds In 

processing time required to reach the solution, the value of the 

objective function at the solution, and the value of each variable. 

These computer runs were executed on a Panasonic Sr. Partner 

computer with the program code compiled using an IBM BASIC Compiler. 
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Table 4. Dual simplex method solutions to example 4 minimum project cost 
problem with linear activity cost functions 

Dur. 160 120 101 100 91 
Itr. 7 8 10 9 11 
Sec. 5 6 7 6 8 
Obj. 750 1950 2710 2755 3700 
T1 30 30 11 10 1 
T2 80 80 80 80 71 
T3 100 100 81 81 72 
T4 160 120 101 100 91 
R5 0 0 0 0 0 
R6 0 0 0 0 0 
R7 0 0 19 20 29 
R8 0 0 0 0 0 
R9 30 30 49 49 49 
RIO 0 40 40 41 41 
Rll 0 0 0 0 0 
R12 0 0 0 0 9 
R13 0 0 0 0 0 
R14 0 0 0 0 9 

Table 4. Continued 

Dur. 90 72 43 11 4 
Itr. 12 13 13 14 15 
Sec. 8 9 9 10 10 
Obj. 3835 6265 11195 17275 18640 
T1 1 1 1 1 1 
T2 70 70 41 9 2 
T3 71 71 42 10 3 
T4 90 72 43 11 4 
R5 0 0 0 0 7 
R6 0 18 18 18 18 
R7 29 29 29 29 29 
R8 0 0 0 32 39 
R9 49 49 49 49 • 49 
RIO 41 59 59 59 59 
Rll 0 0 29 61 68 
R12 10 10 39 71 78 
R13 1 19 48 80 87 
R14 10 28 57 89 96 
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MINIMUM PROJECT COST CURVE PROBLEM WITH LINEAR COST FUNCTIONS 

The project duration variable Dur. was fixed at predetermined 

points on the CPM time scale for the dual simplex solutions to the 

minimum project cost problem with linear cost functions. If the process 

were continued for each time scale point between the minimum possible 

project duration and the maximum project duration, a project "cost 

curve" of optimal costs could be constructed for every feasible duration. 

Fortunately, because of the linear characteristics of the cost 

curve, the number of points needed to define a cost curve are limited 

to the points where the linear segments of the piece wise cost curve 

"break". 

In example 4, the minimum project cost was calculated at known 

break point values (Dur.) from four (4) to one hundred sixty (160) work 

increments. A total of one hundred twelve (112) dual simplex iterations 

for a total time of sixty-eight (68) seconds are needed to calculate 

enough points to define a cost curve. Using a method derived by 

Fulkersonll, the same curve can be calculated in two (2) seconds. 

Fulkerson's Interpretation of Cost Problem with Linear Costs 

The Fulkerson's cost problem is solved using a network flow model 

and a unique application of the Kuhn-Tucker conditions^O called the 

"out-of-kilter" method. With this approach, greater computer processing 

speed and activity capacity can be attained than with the dual simplex 

method. 
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Fulkerson's network flow model Is based on the dual problem of the 

minimum project cost problem with linear costs functions. But before 

continuing, the LP problem must be changed slightly from the LP defined 

In the earlier chapter. Defining: 

cij - Incremental cost benefit to Increase duration of activity 1j 
fij - Fixed cost not related to duration of activity 1j 
Durfj - Duration of activity 1j (as apposed to dur1j-R1j) 
Ti - Node time for node 1 
1lj - Minimum duration for activity 1j 
uij - Normal duration for activity 1j 
n - Maximum node number 
Dur. - Project total duration 

so that the cost of an activity Is: 

and the total project cost Is: 

Project cost = 7 (flj-cij*Durtj) 
all 1j 

By dropping the fixed costs from the project cost equation, the 

linear costs LP problem can be written as the following equations. 

Dunj.Ti.Tj free 

This form of the LP problem demonstrates the one assumption that 

Fulkerson has made. All the node times and duration variables are 

assumed to be free variables. Although this Is not true, only the 

Cost of activity ij =flj-cij*Durij 

maximize > Cij*Durij 
all ij 

dual variables 

subject to: Dur^j+ Ti- Tj<= 0 all ij 

Tn- To<= Dur. 

<Flj> 

< V > 

Durij <= Uij all ij 
-Durij <=-lij all ij 
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positive solutions are considered. 

Using the LP above, the dual of the cost problem can be written as: 

minimize Dur,*V+ > uij*G-fj- > Tlj*Hij 
all 1j all 1j 

subject to: Fij+Glj-Hij=Cij all 1j 

V,j=0 
> (Flj-Fjl)= { 0,j=l,n-l 

all j -V,j=n 

Flj,Gij,Hij>=0 

where the first set of constraints can be rewritten In the form: 

Glj= cij-Fij+Hij all 1j 
or: 

Hlj=-cij+Fij+Gij all 1j 

and the second set of constraints are the node conservation constraints 

of a flow network with flows Fij. 

The first set of constraints, along with the minimum requirement of 

the objective function, means that at an optimal solution either S-fj=0 

or Hij=0, so; 
Gij«max (0,Cij-Fij) 

and: 
Hij=max (O.-Cij+Fij) 

By substitution the the objective function is then; 

minimize Dur.*V+ 7 uij*max (0,cij-Fij)- 7 1ij*max (0,-cij+Fij) 
all ij all ij 

and the new objective function is now piece wise linear in the flow 

variable F-fj for a given Dur. and V. 

The objective can be drawn for activity ij as figure 28 where 

the axes are the activity's contribution to the objective versus the 
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flow variable F-fj. 

Activity 
contribution 
to the dual 
objective 
function 

(0,0) 

When the variable F-fj is greater than or equal to 

\ 

\ -(uij*max (O.-(cij-Fij))) 

\ 
\ 
\ 

cij ̂ — 

-llj*max (0,-cij+Fij) 

Fij axis 

Figure 28. Out-of-kilter method activity piece wise objective function 

zero (0) and less than Cij, the Incremental cost for activity 1j, then 

the curve has a negative slope of -u-fj. If the variable Fij is greater 

than or equal to c^j, then the curve has a negative slope of -lij. 

If r-fj is split into two (2) components Fiji and Fijg where: 

0<=Fiji<=Cij all ij 

0<=F-|j2<=inf all ij 

then the dual problem can be rewritten as: 

minimize Dur.*V- T Uij*Fiji- T Tij*Fij2 
alTij all ij 

V.j=0 
subject to: > Fijk-Fjik = { 0,j=l,n-l 

all ijk -V,j=n 

which is a flow problem for a given flow V and duration Dur. where each 
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activity of the network has two (2) associated flows. ji,Fij2, and the 

cost for the first flow is uij and for the second flow is lij. 

Figure 29 Is the ten (10) activity example with flow variables Fiji 

and Fij2. 

F031.10 

/ "FÔ32.Ï ' \ F241.20 

/ / \F242.1 \ 
/ Foil.30 F121.40 / F231.50 ^ F341.6O ^ 

\\ FO12»1 W F122.I -A F231.1 "A F342.I 
W W / Fi31,70 / // 

W F02I.8O \ / F132.I [141.90 // 

\ F022.I F041.IOO / 

F042.Î 

Figure 29. Out-of-kilter method dual flow diagram example 6 

Theory of Out-of-kilter Method 

The flow model Interpretation of the dual of the LP linear cost 

problem, given that the duration and flow are fixed, provides a means 

for finding the optimal points on the cost curve. To demonstrate the 

method and to avoid the confusion of notation, a one (1) activity 

network will be used for example 5. 

Dur.>=loi 

Dur.<=uoi ^ 

Dur.- Project total duration or in this case activity duration 
loi - Minimum activity 01 duration 
UQi - Normal activity 01 duration 
cQi - Incremental cost to reduce activity 01 duration 
Ti - Node time for node i 
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If the dual of the network is written in the notation of the dual 

problem, then the flow model is a follows. 

V.Dur. (coi-Foil),Toi -V.Dur. 

F012,uoi 

V 
Dur. 

-Foii<=coi 

- Total network flow 
- Incremental cost for flow V 

(coi-Foii) - First level of flow in arc 01 
F012 
loi 
"01 
COI 
inf 

- Second level of flow in arc 01 
- Incremental cost for flow Foi2 
- Incremental cost for flow (COI-FQH) 
- Maximum flow for -Foil 
- infinity 

The activity's contribution to the piece wise objective function 

for the example 5 is then as shown in figure 30. 

Activity 
contribution 
to the dual 
objective 
function 

(0,0) + 

\ 
\ -uoi*-(coi-Foil) 

\ 
\ 
\ 
\ coi 

-Foil Fo12 

-101*(-COI+FO12) 

Arc Flow 

Figure 30. Out-of-kilter method objective function example 5 
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The objective of the dual problem Is now written as: 

minimize Dur.*V+uoi*(coi-Foii)-loi*(-coi+Foi2) 

or 

minimize Dur,*V+uoi*(-Foii)-loi*Foi2 

and the constraints as: 
Foil<=coi 

V-(CO1-Fo11)-(-co1+Fo12)=0 

(coi-Foil)+(-COI+FO12)-V=0 

Fo11»FO12»V>=0 

or 

Foil<=coi 

V-(-Foil)-Foi2=0 

(-Foii)+FO12-V=0 

Fo11»FO12»V>=0 
for the constraints. 

The equality constraints of the above problem make It Ideal for the use 

of the Lagranglan function to find the optimal solution. By writing the 

above problem as a Lagranglan function: 

W(V,Foil,Foi2.S,To,Ti)= 

Dur.*V-uoi*Foil-loi*Foi2+S*(-coi+Foil)+To*(V+Foii-Foi2)+Tl*(-Foii+Foi2-V) 

the problem can now be minimized by using the Kuhn-Tucker^® conditions. 

Kuhn-Tucker Conditions 

The Kuhn-Tucker theory^O provides a set of conditions sufficient for 

the optimal solution to the Lagranglan function assuming that the 

function is differentiable. For the Lagranglan of the example 5 one (1) 



activity network, the Kuhn-Tucker conditions are: 

&W(V,Foil»Foi2»S,To»Tx)«Dur.+To-Ti>=0 or Ti-To<=Dur. 
gv 

&W(V,Foil»Foi2tS»To»Ti)auoi+S+To-Ti>=0 or Ti-To-S<=uoi 
&F011 

&W(V,Foii,Foi2,S,To,Ti)=_iQ2-To+Ti>=0 or Ti-To>*loi 
&F012 

&W(V,Foii,Foi2,S,To,Ti)=_cnt_Fnii or (-Foii)<=coi 
5§ 

&W(V,Foii,Foi2,S,T6,Ti)=v_(_Fnii)_Fmp=0 
ST5 

&W(V,FQii,Fo^2*S*Tb*Tl)=(-Fmi )+Fni?-V=0 

V*&W(V,Foil.Foi2.S,To,Ti)=v*(Dur.+Tn-Ti)=0 
ÏV 

Fnil*#W(V.Foii,Foi2,S,To,Ti).Fnii*(uni+S+Tn-Ti)=0 
SPÔÏÎ 

Fni?**W(V,Foil,Foi2,S,To,Ti)=Fnip*(-Tni-Tn+Ti )=0 
5FÔÏ2 

S*&W(V,Foil.Foi2.S,To.Ti)»s*(-cni+Fnii)=0 
s§—; 

I f m» V 
**roii,roiz,3/-v io»H-Tree 

These conditions are also the network node flow conditions: 

V-(-FOII)-FOI2=0 

(-Foil)+Foi2-V=0 

and the critical path restrictions; 

Tl-To<=Dur. 

Tl-To>=loi 

Ti-To<=uoi+S 
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and what are called the "out-of-kilter" conditions: 

S*(-coi+Foil)=0 

(-F01l)*(uoi+S+To-Ti)»0 

F012*(-101-T0+TI)«0 

The above conditions can be seen more easily in figure 31 as a 

inf 

1 1 
1 1 

+Fyi2 1 
< (Tj-To=lol, S=0, Foi 1=0 ) 

1 1 
arc 1 

1 1 
1—(FOII=0,FO12=0,S=0) 

1 1 V (uOl.cOl) 
c^l 1 

1 1 
(l01»C0l) j 

flow I 
! ! 

|< (Tj-To=uoi,Foi2=0,S=0) 

1 1 
-Foil 1 

i t 

1 
1 (Foil=coi,Foi2=0,Tj-To=uoi+S) 

1 1 1 1 1 

Tl-To 

Figure 31. Out=ef=kntsr sthwd kiltsr lins GXSmplG 5 

"kilter" line. For each activity, a kilter line can be drawn on a set of 

axes consisting of a flow network axis and a CPM network axis. If a 

combination of CPM network times Ti-Tq and flow network flows Foil, Foi2 

can be found such that the points they define lie on the kilter lines, 

then the solution satisfies the Kuhn-Tucker conditions and is optimal. 

To find a cost curve, a number of points which satisfy the kilter 

lines must be found which correspond to different project durations Dur. 
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and network flows V. The search for optimal points starts at the 

maximum project duration. At this project duration, all activities are 

at their maximum duration and the optimal solution Is known. For 

example 5, the maximum duration solution Is: 

Dur.»uoi 

To=0 

Tl=uoi 

F011=0 

Foi2=0 

V=0 

5=0 

or In figure 32 a point at (1) on the kilter line. 

Inf 

+Fyi2 

arc 

cyi 

h 

I 
+ 

<——— (Ti-To=loi»S=0,Foil='0) 

+ (Foii=0,FO12"O.S=0) 

I V (UQL.COI) 

(lOl.CQi) I 

flow 
I 

-f(ii I 

V+ 0 + 
0 

(1)  

< (TI-TO=uoi»FOI2=0,S=0) 

(FOII=coi,FO12=0,TI-TO=UOI+S) 

—*...v. 

Tl-To 

Figure 32. Out-of-kilter method kilter line example 5, Iteration one 
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Staying on the kilter line, the flow (COI-FQH) can be increased to 

CQi while still satisfying all flow conservation constraints in the flow 

net. This condition is called a "breakthrough". (If the network was 

larger and consisted of more than one (1) activity, the maximum flow that 

could be passed throught the flow network without violating the kilter 

lines and without changing the CPM network times is used.) 

This now leaves V equal to CQI, which is the unit cost for the next 

reduction in the CPM network's duration on the kilter line. Figure 33 

moves the point to (2) where the next move along the kilter line 

requires a change in the CPM network times Ti-Tq. 

inf 

I 
I 

+Fyi2 

I 
arc 

I 
I 

cni •?= 

flow 

-Foil 

•(Ti-To=loi»S=0,Foil=0) 

+—— ( FQI 1~0, FQ 12~0 » S=0 ) 

V (UQl.COl) 

doi.coi) 

V+ 0 +-
0 

—( T l-T0=uoi, FO12®0 » S=0 ) 

2 (F(^11=COI.FO12=O.TI-TO=UOI+S) 

—*...v. 

Tl-To 

Figure 33. Out-of-kilter method kilter line example 5, iteration one 

To move the point from (2) the duration of the CPM network, TI-TQ, 

must be changed for the point to stay on the kilter line. The flow V is 
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the unit cost for this reduction In duration so the cost of the move Is 

V*(uoi-loi)' BY moving to point (3) In figure 34 the duration of the CPM 

Inf 

I 
I 

+F^12 

I 
arc 

I 
c(j)l 

flow 

I 
"Fyil 

< -(Ti-To®lol»S=0,Foil=0) 

•(FOII=0,FOI2"O.S=0) 

, , V (uoi.CQl) 
(3) *<<<<<<<<<<<<<<<* (2) 
(lOl.CQl) 

I 
V 0 +-

0 

(1) 

• (Ti-To=uoi> FO12=0.s=0) 

( Fn n=co 1. Fo 12=0, Ti-To. uo 1+S ) 

Tl-To 

Figure 34. Out-of-kilter method kilter line example 5, iteration one 

network Dur. is reduced to Iqi. If the network were larger and 

consisted of more than one (1) activity, the maximum reduction In the 

CPM network's duration without violating the kilter lines and without 

changing the flow network flows is used. 

To move the point from (3) as in figure 35 requires an increase in 

flow. Breakthrough requires finding the maximum flow that can pass 

through the flow net without changing the network times; for this move 

to reach a limit, the point would have to move to an infinite flow. 

This breakthrough would make any further reduction in CPM network 

duration an infinite cost, so the algorithm is stopped. 
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inf 

I 
I 

+F^12 

I 
arc 

I 
I 

c^l 

I 
flow 

-Fyii 

inf 

*<--------(Ti-To=lQi,S=0,Foii=0) 

I (Foii=0,Foi2-0,S=0) 

V (UQltCQl) 
* (2) (3) * 

doi.coi) 

0 +-
0 

i - (Tj-To^uoi > FO12®0 » S=0 ) 

(1) I (F^ll"C01,Foi2=0,Tj-To=uoi+S) 

*...V 

Tj-To 

Figure 35. Out-of-kilter method kilter line example 5, iteration two 

To translate the results into a cost curve, the first point on the 

curve is the maximum duration of uqi which has a cost of zero (0). The 

next point is then at duration l-fj with a cost of V*(uij-lij). 

Out-of-kilter Method BASIC Code 

The out-of-kilter method BASIC code presented here is based on an 

algorithm described by Salah Elmaghraby^l. 

All programs listed in the text consist of a main calling routine 

and a series of input, output, and processing subroutines. These 

routines are listed in the text as well as on a copy of a computer disk 

which is compatible with IBM micro-computers. 

Out-of-kilter Main Routine — File MAIN-KLT 

The out-of-kilter main calling routine (MAIN-KLT) dimensions four 
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(4) arrays; writes the options menu to the screen as shown In figure 36; 

OUT-OF-KILTER METHOD 

NUMBER OF ACTIVITIES 10 
NUMBER OF NODES 5 

M-RETURN TO MENU 

A-ACTIVITIES 
U-EXECUTE ALGORITHM 
R-REPORT 
S-SAVE F-FETCH 

OPTION ? 

Figure 36. Out-of-k11ter method main menu screen 

calls the utility subroutines UTIL-OPT. UTIL-ERS. UTIL-CON, UTIL-CHX; 

calls the data input and output routines INPT-ACT and REPT-CRV; calls 

and times the processing algorithm ALGR-KLT; and saves and fetches the 

Input data to disk file "DATA". 

1 REM * OUT-OF-KILTER METHOD * 

2 REM MAIN-KLT 
3 REM AR - NUMBER OF ACTIVITIES OR ARCS 
4 RE" SI - nACnirîE INFINITE 
5 REM ND - NUMBER OF NODES 
6 REM SM - MACHINE ZERO 
7 REM A(AR,5) - ACTIVITY FILE (I,J,L,U,COST) 
8 REM B(AR,7) - WORK FILE (I.J,L,U,C0ST.F(1,j,l),F(1,j,2)) 
9 REM N(ND,3) - NODE LABLES (Q.I.TE) 
10 REM C#(CYC,2) - COST CURVE (DUR.COST) 
11 REM 

Sets AR to the default number of arcs and activities In the network 
and ND to the default number of nodes In the network. Sets CYC to the 
maximum number of points on the cost curve. Sets BI# to machine 
infinite for double precision variables and SM# to machine zero. 

12 AR=0 
13 ND=0 
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14 CYC=100 
15 BI#=1E+10 
16 SM#=1E-10 

Prompts and reads from the keyboard the number of activities In the 
network and the number of nodes. 

The network node numbering scheme must start at zero (0) and be 
consecutively Integers. 

17 CLS 
18 LOCATE 1,9:PRINT "OUT-OF-KILTER METHOD" 
19 LOCATE 3,1:PRINT "NUMBER OF ACTIVITIES";LOCATE 3,31:INPUT "",L$ 
20 GOSUB 1870:REM UTIL-CHX 
21 IF Z#<>BI# THEN AR=Z# 
22 LOCATE 3,30:PRINT AR," ":LOCATE 4,1:PRINT "NUMBER OF NODES":LOCATE 

4,31:INPUT "",L$ 
23 GOSUB 1870:REM UTIL-CHX 
24 IF Z#<>BI# THEN ND-Z# 
25 LOCATE 4.30:PRINT ND," " 

Dimensions the activity array A(AR,5), the work space array 
B(AR,7), the node array N(AR,3), and the cost curve array C#(CYC,2). 

The activity array elements are: 

A(act1v1ty number,1) - Start node, 1 
A(act1v1ty number,2) - Start node, j 
A(act1v1ty number,3) - Minimum duration 
A(act1v1ty number,4} - Maximum duration 
A(act1v1ty number,5) - Incremental cost 

The work file and the node file elements defined In the notation of 

1 < 
Fijl.uij 

> j 
Flj2.Tlj 

Fijl<=cij 

Fij2<"1nf 

the CPM network and the flow network are: 

B(act1v1ty number,!) 
Bfactivity number,2) 
B(act1v1ty number,3) 
B(activity number,4) 

= Start node i 
- Finish node j 
- lij minimum duration 
- uij maximum duration 
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B(act1vity number,5) 
Bfactivity number,6) 
B(act1v1ty number,?) 
N(1,l] 
N(i.2! 
N(1.3: 

and the cost curve elements are: 

C#(curve Increment,!) 
C#(curve Increment,2} 

c-fj Incremental cost 
Fiji flow 
Flj2 flow 
Node flow at node 1 
Node from which node 1 flow came 
Tj time of occurrence of node 1 

Project duration at curve break 
Project cost at curve break 

26 DIM A(AR,5) 
27 DIM B(AR,7) 
28 DIM N(ND,3) 
29 DIM C#(CYC.2) 

Prints the option menu to the screen; calls the option line routine 
UTIL-OPT; and pauses for the entry of "M", "0", "A", "C". "B", "U", "R", 
"N", "S", "F" for the option variable L$. 

30 LOCATE 8,10:PRINT 
31 LOCATE 10,5:PRINT 
32 LOCATE 11,5:PRINT 
33 LOCATE 12,5:PRINT 
34 LOCATE 13,5:PRINT 
35 GOSUB 1800:REM UTIL-OPT 
36 LOCATE 21,8:INPUT "",L$ 

"M-RETURN TO MENU" 
"A-ACTIVITIES" 
"U-EXECUTE ALGORITHM" 
"R-REPORT" 
"S-SAVE F-FETCH" 

Calls either the activity Input subroutine INPT-ACT, the processing 
subroutine ALGR-KLT, or the report subroutine REPT-CRV based on 
the option variable L$. 

37 CLS 
38 IF L$<>"A" THEN 41 
39 GOSUB 1100:REM INPT-ACT 
40 GOTO 37 
41 IF L$<>"U" THEN 47 
42 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL{MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

. 2 ) )  
43 GOSUB 3300:REM ALGR-KLT 
44 TM=3600*VAL(MID$(TIME$.1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

,2))-TM 
45 CLS 
46 GOTO 30 
47 IF L$<>"R" THEN 50 
48 GOSUB 2100:REM REPT-CRV 
49 GOTO 37 
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Saves the content of AR, ND, A(AR,5) to disk file "DATA" as an ASCI 
file If option "S" Is selected. 

50 IF L$<>"S" THEN 60 
51 OPEN "0",#1."DATA" 
52 PRINT #1,STR$(AR) 
53 PRINT #1.STR$(ND) 
54 FOR 1=1 TO AR 
55 FOR J-1 TO 5 
56 PRINT #1,STR$(A(I.J)) 
57 NEXT J 
58 NEXT I 
59 CLOSE #1 

Loads to AR, NO, A(AR,5) the disk file "DATA" If option "F" Is 
selected. 

60 IF L$<>"F" THEN 74 
61 OPEN "I",#1,"DATA" 
62 INPUT #1,X$ 
63 AR=VAL(X$) 
64 INPUT #1,X$ 
65 ND=VAL(X$) 
66 FOR 1=1 TO AR 
67 FOR J=1 TO 5 
68 INPUT #1,X$ 
69 A(I,J)=VAL(X$) 
70 NEXT J 
71 NEXT I 
72 CLOSE #1 
73 GOTO 30 
74 IF L$»"N" THEN RUN 
75 GOTO 30 

Utility Subroutines — Files UTIL-OPT, UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Activity Input Subroutine — File INPT-ACT 

The code and explanation of the activity Input subroutine Is listed 

In the critical path BASIC program chapter. The out-of-kllter method 

uses the same Input screen as the CPM method and the same arrow network 

except for the following restrictions. Beyond the ordered pair 
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restrictions, the sequence of node numbers must start at zero (0); and 

In sequential integers, end with the number of nodes ND minus one. 

(This is true for IBM BASIC where arrays are dimensioned starting at 

zero (0).) 

The information entered for activity input has two added entries. 

The activities have two durations, a minimum duration MIN DUR and a 

normal duration NORMAL DUR, rather than just the normal duration of the 

CRM method. Each activity is also assigned a cost which is incurred 

when the duration is reduced by one (1) increment of time. 

Figure 37 is the input screen for the out-of-kilter method. 

ACTIVITIES 
NO. I J MIN DUR NORM DUR INC COST 
1 0 3 1 10 5 
2 2 4 1 20 10 
3 0 1 1 30 15 
4 1 2 1 40 20 
5 2 3 1 50 25 
6 3 4 1 60 30 
7 1 3 1 70 35 
8 0 2 1 80 40 
9 1 4 1 90 45 
10 0 4 1 100 50 

OPTION ? 

Figure 37. Out-of-kilter method activity input screen 

Project Cost Curve Subroutine — File REPT-CRV 

The total project cost curve comprised of optimum solutions to the 

minimum project cost problem is piece wise linear. The points where the 

curve breaks are the points listed on the project cost curve report. Up 
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to one hundred (100) points can be listed in the report. The screen, 

shown in figure 38, lists the computer processing time to reach the 

PROJECT COST CURVE 
SOLUTION REACHED IN 2 SEC 

NO. DURATION COST 
1 190 0 
2 160 750 
3 120 1950 
4 101 2710 
5 100 2755 
6 91 3700 
7 90 3835 
8 72 6265 
9 43 11195 
10 11 17275 
11 4 18640 

OPTION ? 

Figure 38. Out-of-kilter method project cost curve screen 

solution; the line number of the break point; the duration of the 

project at the point; and the project cost at that point. 

At the end of each screen of output, the OPTION line is printed 

and the program is paused. To continue, enter a blank. Otherwise, any 

other option. 

2100 * COST CURVE REPORT SUBROUTINE * 
2101 REM REPT-CRV 

2102 LOCATE 1,9:PRINT "PROJECT COST CURVE" 
2103 IF ER02 AND ER03 AND ER04 THEN 2106 
2104 LOCATE 2,5;PRINT "NO SOLUTION FOUND ";ER;"ER" 
2105 GOTO 2123 
2106 IF EROO THEN 2109 
2107 LOCATE 2,1:PRINT "MAXIMUM ITERATIONS REACHED " 
2108 GOTO 2111 
2109 IF EROl THEN 2123 
2110 LOCATE 2,1:PRINT "SOLUTION FOUND IN ";IT;"ITR" 
2111 LOCATE 2.30:PRINT TM;"SEC":LOCATE 3,8:PRINT "NO. DURATION COST" 
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2112 6=4 
2113 FOR 1=1 TO CYC 
2114 LOCATE G.7:PRINT I:LOCATE 6.12:PRINT C#(I.1):L0CATE G,22:PRINT C#(I 

.2) 
2115 6=6+1 
2116 IF G<20 THEN 2122 
2117 60SUB 1860:REM UTIL-CON 
2118 LOCATE 21,8:INPUT "".L$ 
2119 GOSUB 1870:REM UTIL-CHX 
2120 IF L$<>'"' AND Z#«BI# THEN RETURN 
2121 GOSUB 1864:REM UTIL-CON+4 
2122 NEXT I 
2123 60SUB 1800:REM UTIL-OPT 
2124 LOCATE 21,8:INPUT "",L$ 
2125 RETURN 

Out-of-ki1ter Algorithm Subroutine — ALGR-KLT 

The out-of-knter algorithm subroutine (ALGR-KLT) Is a flow 

algorithm combined with a CPM network algorithm. Once the minimum 

project duration based on normal activity durations Is found for the CPM 

network with the network alogrlthm, the flow algorithm starts a series 

of flow and time adjustments within the restrictions of the kilter 

diagrams until the minimum duration CPM network Is reached. 

The algorithm Is a labeling routine In which the N(ND,3) Is the 

node array containing the flow network node flows (N(i,l), nodes 1=0 

to ND-1), the source of the flow or "from" node Indicators (N(1,2) nodes 

1=0 to ND-1), and the CPM networks node times (N(1,3) 1=0 to ND-1). 

In detail, the algorithm consists of the following steps. 

(1) Sort the arcs (B(k,l)->B(k,2) arc k=l to AR), called activities In 

the CPM network. In their start node, and then finish node order so 

that all arcs starting from node zero (0) are grouped together and 

subordered by their finish nodes. Using the CPM forward pass 
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algorithm with all arcs set at the normal activity durations 

(B(k,4)), find the maximum CPM network duration and its early tart 

node times (N(i,3) node i=0 to ND-1). Let the network duration of 

the last network node (N(ND-1,3)) with a cost of zero (0) be the 

first point on the cumulative cost curve. Go to step (2). 

(2) "Unlabel" all node flows to zero (N(i,l)=0 node i=0 to ND-1) and 

all "from" node indicators (N(i,2)=-BI node i=0 to ND-1) to 

negative infinity, and go to step (3). 

(3) Starting with the first node, "label" node zero (0) with an Infinite 

flow capacity (N(0,1)»BI) and set the "from" node indicator to zero 

(N(0,2)=0). Then, for each node in ascending order, say for node i, 

select all arcs, say k, leaving node i with minimum arc or activity 

duration equal to the difference between the nodes at the ends of 

the arc (N(B(k,2),3)-N(B(k,l),3)=B(k,3)) and with a flow assigned 

to the j node less than that assigned to the 1 node, label arc k's 

j node with the flow of node 1 (N(B(k,2),l)=N(B(k,l),l), and arc 

k's "from" nods indicator to with i (N(B(k*2)»2)=1). Continue 

this procedure until the next to the last node is reached. (Note: 

In the following steps the same procedure is used except that some 

of the arcs have limited capacity. In that case, the flow in the 

arc may be restricted so that the minimum of either the flow at the 

1 node, the flow allowed through the arc, or the flow at the j node 

are used to determine the flow reaching the j node flow.) If the 

last node (N(ND-1,1)=BI) has Infinite flow, then the unit cost for 
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the next reduction In duration will be Infinite, so stop the 

algorithm. If not Infinite, the CPM network can be reduced 

further. Go to step (4). 

(4) Knowing that an Infinite flow can not be passed through the flow 

network, the next step Is to find the maximum flow that can be 

passed through the flow network In the arcs that are on the 

vertical segements of the kilter lines. This Is done by using the 

same procedure as In step (3) with the addition of the arcs In 

which the difference between their node times Is equal to the 

maximum arc or activity duration (N(B(k,2),3)-N(B(k,l),3)=B(k,4) 

k=l to AR) and the first level of the stepped flow is less than the 

Incremental arc or activity cost (B(k,6)<B(k,5)). For these arcs, 

the flow assigned to the arc's j node is further restricted to the 

incremental arc or activity cost minus the current flow (B(k,5)-

B(k,6)). Go to step (5). 

(5) If step (3) indicated that a flow can be passed through the network 

(rnNu-l,l)>G), then a breakthrough has occurred. In this càsê, thé 

flow network's arcs are updated in step (7). If a breakthrough has 

not occurred (N(ND-1,1)=0), then step (6) is taken to try to find 

any reverse flows which might lead to a breakthrough. If step (4) 

and (6) do not result in a breakthrough, then the CPM network is 

adjusted in step (8). 

(6) With no breakthrough, it might be possible to find a network flow by 

reducing arc flows or reversing the flows. Starting sequentially 
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from the first arc. If the arc's finish node, say node j, has been 

labeled (N(j,2)>=0) and the start node, say node i, has not been 

labeled (N(i,2)»-BI), then by reversing the flow In the arc, a 

breakthrough might be found. To find if a reverse flow for say the 

arc ij or arc k can be found, the difference between the node times 

must be equal to the upper or lower activity durations 

(N(B(k,2).3)-N(B(k.l)=B(k.4) or N(B(k,2),3)-N(B(k,l),3)= B{k,3)) 

and the flow at either level (B(k,6) or B(k,7)) must be greater 

than zero (0). If a reverse flow is possible, then label the 1 node 

with the minimum of either the arc flow or the labeled flow at the 

j node. After all reverse flows are found by selecting all 

arcs in ascending ij order, return to step (4). 

(7) When a breakthrough has occurred, the flow passed through the net 

needs to be distributed to the flow network arcs (B(k,6) and B(k,7) 

k=l to AR). This is done by starting at the terminal node (ND-1); 

and in reverse sequence from ND-1 to zero (0), adding to each arcs 

specified by the nodes (j=ND-l to 0) and "from" labels (N(i,2), 

j=ND-l to 0) the flow passed through the network (N(ND-1,1)). If 

the nodes define a reversed arc where 1>j, then subtract the flow. 

This is continued for each node until node zero is reached. Return 

to step (2). 

(8) If a breakthrough has not occurred, then a new set of CRM network 

node times (N(1,3)) must to be found. From step (4), the array 

N(ND,3) has been labeled with flows, "from" nodes, and CRM early 
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start times. Each arc or activity Is defined by a pair of nodes In 

this array. All activities that have a labeled start node 

(N(1,2)>=0) and an unlabeled finish node (N(j,2)=-BI), or an 

unlabeled start node and a labeled finish node, constitute a "cut" 

set for which the activity with the least reduction, or Increase, 

In duration (N(j,3)-N(1,3)) from the upper of lower limits, limits 

the reduction In the total CPM networks duration for the current 

set of flows. From the kilter lines, any activity with greater 

than the minimum duration, or less than the maximum duration, is 

part of the cut set that can be used to reduce the duration of the 

CPM network. Selecting the arc or activity with the minimum 

difference from the maximum or minimum durations and subtracting 

the difference from all unlabeled node times (N(i,2)=-BI, 1=0 to 

ND-1) updates the current CPM network node times (N(1,3)-change for 

all unlabeled nodes). 

(9) The CPM network was changed at a cost which had a unit value equal 

to the flow through the network at the last breakthrough. This 

cost is an incremental cost, so the point on the cumulative cost 

curve is the summation of the last cumulative cost point and the 

current cost. Return to step (2). 

3300 REM *OUT-OF-KILTER ALGORITHM SUBROUTINE* 
3301 REM AL6R-KLT 

Sets BI to machine infinite for single precision variables. 

3302 BI=lE+08 

Loads the activity data from array A(ARs5) into work array B(AR»7). 
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3303 FOR 1=1 TO AR 
3304 FOR J=1 TO 5 
3305 B(I.J)=A(I.J) 
3306 NEXT J 
3307 B(I,6)=0 
3308 B(I.7)=0 
3309 NEXT I 

Initializes the node array N(ND,3) to zero (0) flows N(ND,1), to 
null "from" Indicators N(ND,2), and to zero (0) early start CPM time 
N(ND,3). 

3310 FOR 1=0 TO ND-1 
3311 N(I,1)=0 
3312 N(I,2)=-BI 
3313 N(I.3)=0 
3314 NEXT I 

Sets Iteration count CYC to one (1) and sorts the work array on 
CPM 1 node B(AR,1) and then j node B(AR,2) using a Schell sort^O. 

3315 CYC«1 
3316 Y=AR 
3317 Y=INT(Y/2) 
3318 FOR Z=1 TO AR-Y 
3319 A=B(Z+Y.l) 
3320 B=B(Z+Y,2) 
3321 C=B(Z+Y,3) 
3322 D=B(Z+Y,4) 
3323 E=B(Z+Y,5) 
3324 FOR W=Z TO 1 STEP -Y 
3325 IF B(W.1)<A THEN 3334 
3326 IF B(M,1)>A THEN 3328 
3327 IF B(W,2)<B THEN 3334 
3328 B(H+Y.1)=B(W,1) 
3329 B(W+Y,2)=B(W,2) 
3330 B(W+Y,3)=B(W,3) 
3331 B(W+Y,4)=B(W,4) 
3332 B(W+Y,5)=B(W,5) 
3333 NEXT W 
3334 B(W+Y,1)=A 
3335 B(W+Y.2)=B 
3336 B(W+Y,3)=C 
3337 B(W+Y,4)=D 
3338 B(W+Y.5)=E 
3339 NEXT Z 
3340 IF Y>1 THEN 3317 
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Sets the start node numbered zero (0) to Infinity so that node Is 
not eligible for CPM network time reduction. 

The node numbering scheme for the out-of-kilter algorithm Is more 
rigid than the CRN algorithm. Not only do the conventions of the CPM 
network apply, but also the node numbering must start at zero (0) and be 
consecutive Integers up to ND-1. 

3341 N(0.1)=BI 
3342 N(0,2)=BI 

Finds the duration of the CPM network when all activities are set 
at their normal durations. 

3343 AA=1 
3344 FOR N=0 TO ND-2 
3345 FOR A=AA TO AR 
3346 IF B(A,1)>N THEN 3350 
3347 IF B(A,1)<>N THEN 3349 
3348 IF N(N,3)+B(A.4)>N(B(A,2),3) THEN N(B(A,2),3)=N(N,3)+B(A,4) 
3349 NEXT A 
3350 AA=A 
3351 NEXT N 

Sets the first point on the cost curve C#(l,l), C#(l,2) to the 
maximum duration and zero (0) cost. 

3352 C#(CYC,1)=N(ND-1,3) 

Before starting any flow calculations, Intlallzes a11 nodes not on 
the minimum duration critical path, or on the upper part of the kilter 
Tine, to zero (0) flow N(ND,1) and negative Infinity "from" node N(N,2). 

3353 FOR N=0 TO ND-1 
3354 IF N(N,1)=BI THEN 3357 
3355 N(N,1)=0 
3356 N(N,2)=-BI 
3357 NEXT N 

Sets any node terminating an activity that is at its minimum 
duration to an Infinite flow. This corresponds to the upper part of the 
out-of-kilter line. 

3358 AA=1 
3359 FOR N=0 TO ND-2 
3360 IF N(N,1)<>BI THEN 3369 
3361 FOR A=AA TO AR 
3362 IF B(A,1)>N THEN 3368 
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3363 IF B(A,1)<>N THEN 3367 
3364 IF N(N,3)+B(A,3)-N(B(A,2).3)<>0 THEN 3367 
3365 N(B(A,2),1)=BI 
3366 N(B(A,2),2)=N 
3367 NEXT A 
3368 AA=A 
3369 NEXT N 

Stops the algorithm If the last node has an Infinite flow. This 
Indicates that the CRM network has a critical path In which all the 
activities on the path have been reduced to minimum duration. 

3370 IF N(ND-1.1)=BI THEN RETURN 

Seeks a maximum flow through the flow network which does not 
violate any of the activity kilter lines. 

This can be best visualized on the kilter diagram. The first node 
Is assumed to have an Infinite flow. Each arc's directed flow is 
restricted by its kilter line so that the flow through the net can be 
found by calculating the maximum flow that can reach each node in 
succession until the last node Is reached. If a node is reached by one 
(1) or more flows, then the node number from which the maximum flow came 
is assigned to N(node,2) and the maximum flow is assigned to N(node,l). 
If no flow reaches the node then N(node,2) is left at negative machine 
infinite or -BI. 

3371 AA=1 
3372 FOR N=0 TO ND-2 
3373 IF N(N,1)=0 THEN 3387 
3374 FOR A=AA TO AR 
3375 IF B(A,1)>N THEN 3386 
3376 IF B(A*1)<>M THEN 3385 
3377 IF N(B(A,2),2)<>-BI THEN 3385 
3378 IF N(N,3)+B(A,4)-N(B(A,2),3)=0 AND B(A,6)<B(A,5) THEN 3382 
3379 IF N(N,3)+B(A,3)-N(B(A,2),3)<>0 THEN 3385 
3380 N(B(A.2),1)=N(N,1) 
3381 GOTO 3384 
3382 N(B(A,2),1)=B(A,5)-B(A.6) 
3383 IF N(N,1)<N(B(A.2),1) THEN N(B(A,2).1)=N(N,1) 
3384 N(B(A,2),2)=N 
3385 NEXT A 
3386 AA=A 
3387 NEXT N 

Goes to the CRM time.change routine when a breakthrough is found or 
N(ND-1,2) has a label. 
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3388 IF N(ND-1.2)<>-BI THEN 3405 

Finds a reverse flow combination which can increase the flow in the 
flow net. 

Although the network is a directed network, if a flow in an arc can 
be reduced in such a manner as to increase to total flow in the network, 
then the arc can be considered reversed in flow even though the total 
flow in the arc is in the proper direction. 

3389 X=0 
3390 FOR N=1 TO ND-2 
3391 IF N(N,2)=-BI THEN 3403 
3392 FOR A=1 TO AR 
3393 IF B(A,2)<>N THEN 3402 
3394 IF N(B(A.1),2)<>-BI THEN 3402 
3395 IF N(B(A.1),3)+B(A,4)-N(N,3)<>0 AND N(B(A.1),3)+B(A,3)-N(N,3)<>0 

THEN 3402 
3396 IF B(A,6)<=0 AND B(A,7)<=0 THEN 3402 
3397 X=1 
3398 N(B(A,1),2)-N 
3399 N(B(A,1),1)=N(N,1) 
3400 IF B(A,6)>0 AND N(B(A,1),1)>B(A,6) THEN N(B(A,1),1)=B(A,6) 
3401 IF B(A.7)>0 AND N(B(A,1),1)>B(A,7) THEN N(B(A,1),1)=B(A,7) 
3402 NEXT A 
3403 NEXT N 

Returns to the flow algorithm to seek an increase in total flow of 
the flow network if the change switch is set to one (1). 

3404 IF X-1 THEN 3371 

Returns to main routine if a breakthrough has occurred with an 
infinite flow. 

3405 IF N{ND-1.1)=BI THEN RETURN 
3406 IF N(ND-1,1)=0 THEN 3425 

Changes the flows assigned to each activity or arc in the flow net. 

The breakthough algorithm found the maximum flow that could be 
passed through the network. This algorithm distributes the flow among 
the activities. Remembering that the kilter line has two (2) flow 
change segments or that the activity has two (2) flows, one of which is 
limited to a flow equal to the incremental activity cost, the flow 
change must be distributed between the two (2) flows 
B(act1vity number,6) and B(activity number,?). 
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3407 L=N(ND-1,1) 
3408 J=ND-1 
3409 I=N(ND-1,2) 
3410 FOR N=0 
3411 FOR A=1 
3412 IF B(A.l 
3413 IF B(A,6 
3414 IF B(A,( 

0 ND-1 
0 AR 
<>I OR B(A.2)<>J THEN 3416 
-B(A,5) THEN BfA,7)-B(A,7)+L 
<B(A.5) THEN B(A,6)=B(A,6)+L 

<>I OR B(A,1)<>J THEN 3419 
=0 THEN B(A,6)=B(A,6)-L 
>0 THEN B(A,7)=B(A,7)-L 

3415 GOTO 3419 
3416 IF B(A,2 
3417 IF B(A.7 
3418 IF B(A,7 
3419 NEXT A 
3420 IF 1=0 THEN 3353 
3421 J=I 
3422 I=N(J,2) 
3423 NEXT N 
3424 GOTO 3353 

Finds the maximum reduction In CPM network duration within the 
restrictions of the kilter lines. 

3425 A1=BI 
3426 A2=BI 
3427 FL=0 
3428 FOR A=1 TO AR 
3429 IF B(A,1)=0 THEN FL=FL+B(A,6)+B(A,7) 
3430 
3431 
3432 S2=N(B(A,1),3)+B(A,3)-N(B(A,2),3) 
3433 IF SKO AND A1>-S1 THEN A1=-S1 
3434 IF S2<0 AND Al>-S2 THEN Al=-S2 

IF N(B(A,1),2)=-BI OR N(B(A,2).2)<>-BI THEN 3436 
S1=N(B(A.1),3)+B(A,4)-N(B(A,2),3) 

3435 GOTO 3441 
3436 IF N(B(A,1),2)<>-BI OR N(B(A,2),2)=-BI THEN 3441 
3437 S1=N(B(A,1),3)+B(A,4)-N(B(A,2),3) 
3438 S2=N(B(A,1),3)+B(A,3)-N(B(A,2).3) 
3439 IF S1>0 AND A2>S1 THEN A2=S1 
3440 IF S2>0 AND A2>S2 THEN A2=S2 
3441 NEXT A 
3442 IF A1>A2 THEN A1=A2 
3443 FOR N«1 TO ND-1 
3444 IF N(N.2)=-BI THEN N(N,3)=N(N.3)-A1 
3445 NEXT N 

Finds the cost for the CPM network reduction in duration. 

The reduction in duration of the CPM network is at a cost equal to 
the total flow In the flow network. 
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3446 CYC=CYC+1 
3447 C#(CYC,1)=N(ND-1.3) 
3448 C#(CYC.2)=A1*FL+C#(CYC-1,2) 
3449 GOTO 3353 

Program Table of Contents 

Table 5 can be used to reconstruct the above computer code from the 

Table 5. Out-of-k11ter BASIC program table of contents 

File Program lines Page Routines 

MAIN-KLT 0001-0075 100 Out-of-kilter method 
INPT-ACT 1100-1133 24 Activity input subroutine 
UTIL-OPT 1800-1803 22 Option line subroutine 
UTIL-ERS 1850-1853 22 Erase option subroutine 
UTIL-CON 1860-1866 22 Continue line subroutine 
UTIL-CHX 1870-1882 23 Data check subroutine 
REPT-CRV 2100-2125 105 Cost curve report subroutine 
ALGR-KLT 3300-3449 110 Out-of-kilter algorithm subroutine 

computer disk and to organize subroutines from previous program 

listings. Since BASIC code Is dependent on program line numbers for its 

subroutine branching, the statement numbers must be maintained as listed 

above. 

Out-of-kilter Method: 
Solutions to Example 6 Minimum Project Cost Curve Problem 

Example 6 for the out-of-kilter method is based on the same example 

4 network schedule as shown in figure 26 which was used to demonstrate 

the linear cost problem. The input screen is shown in figure 9 and the 

output screen is shown in figure 39. 
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PROJECT COST CURVE 
SOLUTION REACHED IN 2 SEC 

NO. DURATION COST 
1 190 0 
2 160 750 
3 120 1950 
4 101 2710 
5 100 2755 
6 91 3700 
7 90 3835 
8 72 6265 
9 43 11195 
10 11 17275 
11 4 18640 

OPTION ? 

Figure 39. Out-of-kllter method cost curve output screen 

The execution time was two seconds (2) when run on the Panasonic Sr. 

Partner computer using the above code compiled by the IBM BASIC compiler. 
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MINIMUM PROJECT COST PROBLEM WITH QUADRATIC COST FUNCTIONS 

In the minimum project cost problem with linear cost functions the 

objective function was defined as: 

Total project cost = 7 cij*Rij + f1x.*(Tn-To) 
alTlj 

were: 
cij - Incremental cost to reduce duration of activity 1j 
Rlj - Reduction In duration of activity 1j 
durij - Normal or minimum cost duration of activity 1j 
fix. - Fixed cost per Increment of total project duration 
Ti - Node time for node 1 
n - Maximum node number 

A better aproximatlon of the project cost would be a quadratic function: 

Total Project cost = T (cflj*(Rlj-rmcij)~2+fij*(Tj-Ti)) + f1x.*(Tn-To) 
all ij 

or: 

Total Project cost = T (cfij*(Rlj-rmcij)*2+fij*(durjj-Rij)) +f1x.*(Tn-To) 

rmc-fj- Reduction In duration of Ij at which Its variable cost Is minimum 
cffj - Coefficient for curvature of cost curve for activity 1j 
f-fj - Fixed cost per Increment of activity's "window" for completion 

and were each activity's variable cost is a quadratic function with a 

minimum value at duration dur-fj-rmc-fj and a curvature factor of cf-fj. 

To find the optimal solution to this problem requires solving a set 

of linear constraints with a convex quadratic objective function, or a 

quadratic programming (QP) problem. Fortunately, the QP problem can be 

solved with the primal-dual method using a series of LP subproblems^Z as 

derived by Beale from the Kuhn-Tucker condi t ions^O. 

Before describing Beale's method, the primal simplex and primal-dual 

methods will be presented. 
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Theory of Primal Simplex Method 

The dual simplex method required that the coefficients of the 

objective function In the simplex tableau be greater than or equal to 

zero (0) and that the starting current point (0,0) violate at least one 

(1) constraint. In this form, the current point was an Infeaslble 

solution for the primal problem or the point was "primal Infeaslble". 

In many LP problems, the current point (0,0) satisfies all the 

model's constraints so that the current point Is "primal feasible". 

This point would also satisfy the dual simplex algorithm's condition for 

an optimal solution. 

But If some of the coefficients of the objective function are less 

than zero (0) and If one (1) of the variables can be Increased to a 

larger positive number while still satisfying the constraints of the 

model, the current point (0,0) cannot be the minimum value of the 

objective. 

To solve this primal feasible problem, the primal simplex method 

was developed. 

The Two Dimensional Case solved by the Primal Simplex Method 

As with the dual simplex method, let the following two (2) variable 

LP problem be the primal simplex example 7. 

minimize (-a)*X+b*Y 

subject to: X >=0 
Y>=0 

-X >=e 
-Y>=f 

e,f>=0 
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(0,f)-+ 

Y axis 

X=0 
Y=f 

• • • 'JU 
^U«x+b*y=ô! 

... Feasible Region 

jià:::::::::::::::::::::::::::::::: 
,(0,0) Current point 

2H X axis 

Figure 40. Primal simplex method example 7 

(e.f) 

X=e 

Y=0 

(e.O) 
I 

In this example, the objective function has a negative coefficient 

of -a, and the constraint constants are all nonnegatlve. 

Primal Simplex Tableau and Transformation 

In a manner similar to the dual simplex method, slack can be added 

to the above equations and the equations written as tableau S with two 

z= 

x= 

y= 

sl= 

s2= 

1 0 
1 

1 (-a) b 

1 0 
1 

1 
1 

1 0 
1 
1 0 

I 
1 0 1 

I e 
1 

1 -1 0 

1 f 1 0 -1 

Tableau 8. Primal simplex method tableau example 7, iteration one 



122 

(2) possible pivot rows. Since all slacks (sl,s2) are nonnegatlve, the 

constraints are satisfied and the current point (0,0) Is In the feasible 

region of the LP problem. 

In the dual simplex method, this would terminate the algorithm; but 

In example 7, the objective function Is not at a minimum value. This 

can be seen by Inspection of the constraints and the objective function. 

Since It Is possible to Increase the value of the X variable to e without 

violating any constraint while reducing the value of the objective 

function z by a*e, the current point (0,0) 1s not optimal. 

To find a new point (e,0) a Gauss-Jordan elimination can be used as 

In the dual simplex method. For the transformation of the tableau, the 

column headed with the most negative objective function coefficient 

would be the best choice or the column headed by the element -a. 

But for a Gauss-Jordan elimination, a pivot row Is also needed. To 

find a row In example 7 for a Gauss-Jordan elimination, every row of the 

tableau Is tried as a pivot row and the minimum value of the objective 

selected: 

Since the -(-a) coefficient is common to all the possible objective 

function values, the pivot row can be selected from among the pivot 

rows with a negative element in the pivot column. 

It might appear that most negative ratio would determine the pivot 

minimum (-(-a*0),-(-a*0),-(-a*e),-(-a*f)) 

or considering only valid operations: 

minimum (0, e) 
1 -1 
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row from among the rows with negative elements In the pivot column; but 

for the new point to remain a primal feasible solution point, the 

constraint with the smallest absolute value of ratio of constant column 

element to pivot column element ratio must be chosen. This can be 

demonstrated by completing several simplex transformations on negative 

ratios with other than the minimum absolute value. 

The third constraint can be selected for the pivot row using the 

above rule. In the new pivot row, the pivot element has a negative 

value, so division by the pivot element changes the sign of the slack. 

Using example 7, the pivot row Is divided by the pivot element In 

tableau 9 and row reduced In tableau 10. 

z= 

x= 

y= 

-sl= 

Tableau 9. Primal simplex method tableau example 7, Iteration one 

z-

x= 

y= 

sl= 

1 -si Y 

-a*e I -a b 

e l l  0  

0 I 
+ +-
I 0 I 
+ +-

0 

1 

1 

0 
.+ 
I 

.+ 

Tableau 10. Primal simplex method tableau example 7, Iteration one 
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This transformation has left a negative slack column In the tableau; 

or In equation form, the slack coefficient is the negative of Its 

original value. To change this slack to a positive value, the pivot 

column elements of the tableau are multiplied through by a negative one 

(-1). Tableau 11 Is the final result of the primal simplex method. 

1 -(-si) Y 

z= 

r
r
t
 

\ 
gi

 
1 

1 
»
 i
 

1 
(D

 
1 

1 -(-a) b 

x= i e 
1 

1 
1 

-(1) 0 

y= 
1 
1 0 

1 
1 0 1 

sl= 1 0 1 -(1) 0 

Tableau 11. Primal simplex method tableau example 7, Iteration one 

The new point, shown In figure 41, can be read directly from the 

primal simplex tableau as In the dual simplex method. 

Y axis 
Feasible region, 

X=e 

-a*X+b*Y=-a*e A 

(0,0) X axis 

Figure 41. Primal simplex method example 7, iteration one 

^(e,0) Current point 
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The transformation has left the first row of the tableau with all 

nonnegative elements. To reduce the value of objective function 

further would require a negative element in the objective row since all 

LP variables are restricted to nonnegative values. When the elements 

of the objective row are all nonnegative, the current point is optimum 

and the algorithm is stopped. 

If a second pivot were required, the transformation of the 

constraints is identical to the dual simplex method with the augmented 

le, -1 ,0 
+ +-

* 1 1 1  
+—---+. 

I ' I 
I 0 I 
+ +-

0 

1 

0 

0 

0 

1 

1 = 1 0 , - 1  , 0  
.+ 

If, 0 ,-l| 
+ +-

* 1 1 1  
+ +-

I ' I 
I 0 I 

0 

1 

0 

0 

0 

1 

.+ 

.+ 
I 

.+ 
f , 0 -1  

•ff 4 matrix transformation resulting 1rs the n« 

z= 

x= 

y= 

sl= 

s2= 

-a*e I 

e I 

si 

a 

- 1  

0 

- 1  

Y 

b 

0 

1 

-1 

Tableau 12. Primal simplex method tableau example 7, iteration one 
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Theory of Primal-dual Method 

A LP problem can be either, or both, primal and dual Infeaslble for 

the current point (0,0). In this case, the LP problem can be solved by 

a combination of the primal and dual methods described earlier. 

Although several primal-dual methods are available, such as the 

criss-cross method43 or the objective function penalty method**, the 

approach used here Is to first consider for a transformation a reduced 

primal feasible problem with only the nonviolated constraints of the 

orglnal problem and then to consider for a transformation a reduced dual 

feasible problem with only the columns with nonnegative objective 

function elements. 

In general, the method starts at the current point (0,0) and uses a 

two (2) phase search for a pivot column or row with which to transform 

the simplex tableau to a new point. 

First using the primal algorithm, the simplex tableau is searched 

for a primal pivot column. If all possible primal pivot columns are 

exhausted, then the dual algorithm is used to search the simplex tableau 

for a pivot row. Depending on the pivot found, primal or dual, the 

simplex tableau is transformed and the method continues to the next 

iteration to find a new point until point both primal and dual feasible 

is found. 

Primal-dual Method BASIC Code 

All programs listed in the text consist of a main calling routine 

and a series of input, output, and processing subroutines. These 
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routines are listed In the text as well as on a computer disk compatible 

with IBM micro-computers. 

Primal-Dual Method Main routine — File MAIN-PDS 

The primal-dual main calling routine (MAIN-PDS) dimensions the nine 

(9) data arrays; writes the option menu to the screen as shown in figure 

PRIMAL-DUAL METHOD 

NUMBER OF CONSTRAINTS 10 
NUMBER OF VARIABLES 14 
MAXIMUM ITERATIONS 1000 

M-RETURN TO MENU 

O-OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPES 
B-BOUNDED VARIABLES 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
S-SAVE F-FETCH 
N-NEW PROBLEM 

OPTION ? 

Figure 42. Primal-dual method main menu screen 

42i calls the utility subroutines liTIL-OPT, uTIL-ERS, iiTIL-CON, oTIL-

CHX; calls the data input and output subroutines INPT-OBJ, INPT-CON, 

INPT-TYP, INPT-BND, and REPT-SMP; calls and times the processing 

algorithm ALGR-PDS: and saves and fetches the input data to disk. 

1 REM * PRIMAL-DUAL SIMPLEX METHOD * 
2 REM MAIN-PDS 

3 REM BI# - MACHINE INFINITE 
4 REM CO - PIVOT COLUMN FOR SIMPLEX TRANSFORMATION 
5 REM ER - ERROR KEY 
6 REM IN - NUMBER OF ITERATIONS BETWEEN REINVERSIONS 
7 REM IR - MAXIMUM NUMBER OF ITERATIONS 
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8 REM MD - NUMBER OF CONSTRAINTS 
9 REM NO - NUMBER OF VARIABLES 
10 REM PA - NUMBER OF ATTEMPTS AT PIVOT 
11 REM RO - PIVOT ROW FOR SIMPLEX TRANSFORMATION 
12 REM SM# - MACHINE ZERO 
13 REM A#(MD+l,ND+8) - ORIGINAL DATA AND KEYS 
14 REM B#(2*ND+1,ND+1) - SIMPLEX MATRIX 
15 REM H#(ND+1) - PAST ITERATION SOLUTION 
16 REM M#(ND+1,2) - UPPER AND LOWER BOUND VALUES 
17 REM P#(ND+1) - WORK VECTOR 
18 REM R(MD+1) - CONSTRAINT TYPE (l->=,0--,-l-<=) 
19 REM T#(ND+1,ND+1) - INVERSION WORK FILE 
20 REM V#(MD+1+ND+1+ND+1+ND+1) - ROW AND COLUMN ARRAY 
21 REM X#(ND) - SOLUTION VECTOR 
22 REM 

Sets MD to the default number of constraints In the LP problem and 
ND to the number of variables. Sets IN to the number of Iterations 
before the reinverslon of the augmented B matrix. Sets the default 
maximum number of Iterations to one thousand (1000). Sets BI# to 
machine Infinite and SM# to machine zero. 

23 MD=0 
24 ND=0 
25 IN»10 
26 IR=1000 
27 BI#=1E+10 
28 SM#=1E-10 

Prompts and reads from the keyboard the number of constraints MD In 
the LP problem, the number of variables ND. and the maximum number of 
iterations IR allowed before the primal-dual simplex algorithm is 
stopped. 

29 CLS 
30 LOCATE 1,7:PRINT "PRIMAL-DUAL METHOD" 
31 LOCATE 3.1:PRINT "NUMBER OF CONSTRAINTS":LOCATE 3,31:INPUT "",L$ 
32 60SUB 1870:REM UTIL-CHX 
33 IF Z#<>BI# THEN MD=Z# 
34 LOCATE 3,30:PRINT MD," LOCATE 4,1:PRINT "NUMBER OF VARIABLES": 

LOCATE 4,31:INPUT "",L$ 
35 GOSUB 1870:REM UTIL-CHX 
36 IF Z#<>BI# THEN ND=Z# 
37 LOCATE 4,30:PRINT ND," LOCATE 5,1:PRINT "MAXIMUM ITERATIONS": 

LOCATE 5,31:INPUT "",L$ 
38 GOSUB 1870:REM UTIL-CHX 
39 IF Z#<>BI# THEN IR=Z# 
40 LOCATE 5.30:PRINT IR," 
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Dimensions the constraint coefficients array A#(MD+l,ND+8). 
Dimensions the basis Inverse and basis array B#(2*ND+1,ND+1). 
Dimensions the holding array H#(ND+1), the upper and lower bound array 
M#(ND+1), the pivot row P#(ND+2), the constraint type array 
R(MD+1+ND+1), the relnverslon working space array T#(ND+1,ND+1), the 
pivot selection array V#(MD+1+ND+1+ND+1+ND+1), and the solution vector 
X#(ND). 

The array V#() Is the summary of the first row and the first 
column. Including the phantom upper and lower bound constraints, of the 
expanded simplex tableau. This allows for a rapid search of the 
possible primal and then dual pivots. 

41 DIM A#(MD+l,ND+8) 
42 DIM B#(2*ND+1,ND+1) 
43 DIM H#(ND+1) 
44 DIM M#(ND+1,2) 
45 DIM P#(ND+2) 
46 DIM R(MD+1) 
47 DIM T#(ND+1,ND+1) 
48 DIM V#(MD+1+ND+1+ND+1+ND+1) 
49 DIM X#(ND) 

Initializes the constraint type array to all greater than or equals. 

50 FOR 1=1 TO MD+1 
51 R(I)=1 
52 NEXT I 

Prints the option menu to the screen; calls the option line 
routine UTIL-OPT; and pauses for the entry of "M", "0". "A", "C", "B", 
"Q". "U% "R". "S", "F", "N" for the option variable L$. 

53 LOCATE 
54 LOCATE 
55 LOCATE 
56 LOCATE 
57 LOCATE 
58 LOCATE 
59 LOCATE 
60 LOCATE 
61 LOCATE 
62 GOSUB 
63 LOCATE 

8,15: PRINT 
10,10:PRINT 
11,10:PRINT 
12,10:PRINT 
13,10:PRINT 
14,10:PRINT 
15,10:PRINT 
16,10:PRINT 
18,10:PRINT 

1800:REM UTIL-OPT 
21,8:INPUT "",L$ 

"M-RETURN TO MENU" 
"O-OBJECTIVE COEFFICIENTS" 
"A-CONSTRAINT COEFFICIENTS" 
"C-CONSTRAINT TYPES" 
"B-BOUNDED VARIABLES" 
"U-EXECUTE ALGORITHM" 
"R-REPORT LISTING" 
"S-SAVE F-FETCH" 
"N-NEW PROBLEM" 

Calls either the objective function input subroutine INPT-OBJ, the 
constraint input subroutine INPT-CON, the constraint type input 
subroutine INPT-TYP, the upper and lower bound input subroutine INPT-
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BND, the processing subroutine ALGR-PDS, or the report routine REPT-SMP 
based on the option variable L$. 

64 CIS 
65 H=0 
66 G=2 
67 IF LfO-O" THEN 70 
68 GOSUB 1200:REM INPT-OBJ 
69 GOTO 64 
70 IF L$<>"A" THEN 73 
71 GOSUB 1300:REM INPT-CON 
72 GOTO 64 
73 IF L$<>"C" THEN 76 
74 GOSUB 1400:REM INPT-TYP 
75 GOTO 64 
76 IF L$<>"B" THEN 79 
77 GOSUB 1500:REM INPT-BND 
78 GOTO 64 

Sets the optimal solution equal to the current point of the primal-
dual algorithm. 

79 IF L$<>»U- THEN 88 
80 TM«3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$.7 

. 2 ) )  
81 GOSUB 3300:REM ALGR-PDS 
82 0B#=B#(1,1) 
83 FOR 1=1 TO ND 
84 X#(I)=B#(I+1,1) 
85 NEXT I 
86 TM-3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

_ .2))-TM 
S/ GOTO S3 
88 IF L$<>"R" THEN 91 
89 GOSUB 2200:REM REPT-SMP 
90 GOTO 64 

Saves the content of MD. ND, M#(ND+l,ND+8), A#(MD+l,ND+8), and 
R(ND+1) to disk file "DATA" as an ASCI file if option "S" Is selected. 

91 IF L$<>"S" THEN 106 
92 OPEN "0",#1,"DATA" 
93 PRINT #1,STR$(MD) 
94 PRINT #1,STR$(ND) 
95 FOR 1=1 TO ND+1 
96 PRINT #l.STR$(M#(I.l)) 
97 PRINT #1,STR$(M#(I,2)) 
98 NEXT I 
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99 FOR 1=1 TO MD+1 
100 FOR J=1 TO ND+8 
101 PRINT #1.STR$(A#(I,J)) 
102 NEXT J 
103 PRINT #1,STR$(R(I)) 
104 NEXT I 
105 CLOSE #1 

Loads to MD. ND, M#(ND+1,2), A#(MD+l,ND+8), and R(ND+1) the disk 
file "DATA" if option "F" is selected. 

106 IF L$<>"F" THEN 128 
107 OPEN "I",#1,"DATA" 
108 INPUT #1,X$ 
109 MD=VAL(X$) 
110 INPUT #1,X$ 
111 ND=VAL(X$) 
112 FOR 1=1 TO ND+1 
113 INPUT #1,X$ 
114 M#(I,1)=VAL(X$) 
115 INPUT #1,X$ 
116 M#(I,2)-VAL(X$) 
117 NEXT I 
118 FOR 1=1 TO MD+1 
119 FOR J=1 TO ND+8 
120 INPUT #1.X$ 
121 A#(I.J)=VAL(X$) 
122 NEXT J 
123 INPUT #1,X$ 
124 R(I)-VAL(X$) 
125 NEXT I 
126 CLOSE #1 
197 nmn c? 

Restarts program for new run if option "N" is selected. 

128 IF L$="N" THEN RUN 
129 GOTO 53 

Utility Subroutines — Files UTIL-OPT. UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Input Subroutines — Files INPT-OBJ. INPT-CON. INPT-TYP. and INPT-BND 

Same as for dual simplex method. 
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Report Subroutine — File REPT-SMP 

Same as for dual simplex method. 

Primal-dual Algorithm Subroutine — File ALGR-PDS 

The primal-dual algorithm first initializes a simplex tableau to 

represents a current point (0,0) at the origin and the constraints that 

form the zero axes. Then, in an iterative fashion, the algorithm 

executes the following steps. 

Primal Search The first steps follow the primal algorithm 

as if the simplex tableau were a LP problem consisting of only the 

constraints satisfied by the current point. This approach assumes that 

the current point is primal feasible by satisfying a reduced set of 

constraints; that a new point can be found by increasing the values of 

the variables associated with negative elements in the simplex objective 

function row; and that primal feasibility can be maintained for the 

reduced set of constraints. 

Using this reduced set of constraints requires a modification to the 

primal simplex method because of the possibility that in the reduced 

tableau all columns eligible for a primal pivot will not provide a pivot 

row under the rules of the primal algorithm. If a column fails to 

provide a pivot row, then several eligible pivot columns will have to be 

tried until all eligible columns have been eliminated. 

(1) Find all columns from the simplex tableau eligible as a primal 

pivot column which have a negative element in the first row. If no 

column can be found and the simplex tableau is primal feasible then 



133 

go to step (5). Otherwise, go to step (2) 

(2) From the still eligible primal pivot columns, select the column 

with the most negative element In the first row. If no pivot 

column can be found, then go to step (5). Otherwise, go to 

step (3). 

(3) From the pivot column selected In step (2), allow any satisfied 

constraint from the LP problem to be a candidate for the primal 

pivot row if the constraint's transformed row element corresponding 

to the pivot column is less than zero (0). Go to step (4) 

(4) If more than one (1) transformed constraint qualifies as a pivot 

row, then select as the pivot row the row with the minimum absolute 

value of the ratio of the constant column element and the pivot 

column element. If no row is found for a pivot, then remove the 

current column as an eligible pivot column and return to step (2). 

Otherwise, go to step (8). 

Dual Search The next two (2) steps assume that the simplex 

tableau consists only of columns with positive first row elements and 

that a new point can be found satisfying one of the violated constraints 

of the simplex tableau. 

(5) If all columns of the simplex tableau have been eliminated as 

candidates for a primal pivot columns, then find all the LP problem 

violated constraints which are eligible for a dual simplex pivot 

row. If no constraint 1s violated and the tableau is primal and 

dual feasible, then set ER=1 and return to the main routine. 
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Otherwise go to step (6). 

(6) From the eligible pivot rows, select the constraint row which Is the 

greatest geometric distance from the current point. If the 

simplex tableau Is either dual or primal Infeaslble and no pivot 

row or column has been found, then set ER=2 and return to main 

routine. Otherwise, go to step (7). 

(7) In the transformed constraint selected In step (6) as a candidate 

for a dual pivot row, select as a pivot element the row element 

which is greater than zero (0) and corresponds to a positive element 

in the first row of the tableau which has the minimum ratio of the 

first row element and pivot row element. If no pivot element is 

found, then remove the row as an eligible dual pivot row and return 

to step (6). Otherwise, go to step (8). 

(8) At this point, either a primal pivot or a dual pivot has been 

found. Transform the simplex part of the tableau using a Gauss-

Jordan elimination with the pivot row selected in steps (2),(3), 

and (4); or steps (6) and (7). Go to step (9). 

(9) The tranformed augmented simplex tableau now represents the new point 

which becomes the current point. Increment the iteration count by 

one. If the iterations count is greater than the maximum allowed, 

set ER=0 and go to main routine. Otherwise, go to step (1). 

3300 REM * PRIMAL-DUAL ALGORITHM * 
3301 REM AL6R-PDS 

Initializes the simplex tableau to represent the point at the 
origin and the zero axes or the lower bounds of all variables. 
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3302 FOR 1=1 TO 2*ND+1 
3303 FOR J=1 TO ND+1 
3304 B#(I,J)=0# 
3305 NEXT J 
3306 NEXT I 
3307 FOR 1=2 TO ND+1 
3308 H#(I)-BI# 
3309 B#(I,I)-1#:B#(I,1)=M#(I.2) 
3310 B#(ND+I,I)-1#:B#(ND+I,1)=M#(I,2) 
3311 B#(1,I)-A#(1.I) 
3312 NEXT I 

Sets the pointers for the V#(MD+1+ND+1+ND+1+ND+1) array where LOW 
Is the start of the lower bounds. UP Is the start of the upper bounds, 
and CON is the start of the constraints. Initializes the Iteration 
count IT to zero (0). Initializes the pass counter PA, or the number 
number of tries at finding a pivot column or row, to one (1). Sets the 
error code ER=0. 

3313 L0W=ND+1 
3314 UP-ND+l+ND+1 
3315 C0N=ND+1+ND+1+ND+1 
3316 IT=0 
3317 PA=1 

Increments the iteration counter by one (1) and returns to the main 
routine If the limit on the iterations IR is exceeded. 

3318 IT=IT+1 
3319 IF IT<IR THEN 3322 
3320 ER=0 
3321 RETURN 

Transforms the linear objective function rather than using the 
simplex tableau first row transformation. 

This step is optional if the size of the LP problem is small or the 
accuracy required is not important. 

3322 GOSUB 3550:REM TRAN-OBJ 

Loads the V#(MD+1+ND+1+ND+1+ND+1) array. 

This array contains the first row of the simplex tableau, the 
constant elements of the transformed lower bound constraints, the 
constant elements of the transformed upper bound constraints, the 
constant elements of the transformed LP problems constraints. 
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3323 FOR H'2 TO ND+1 
3324 V#(H)=B#(1.H) 
3325 NEXT H 
3326 FOR 1=2 TO ND+1 
3327 V#(I+L0W)-B#(I,1)-M#(I,2) 
3328 NEXT I 
3329 FOR J-2 TO ND+1 
3330 IF M#(J,1)<«0# THEN 3334 
3331 A#=M#(J,1) 
3332 IF A#=BI# THEN A#=0# 
3333 V#(J+UP)»A#-B#(J,1) 
3334 NEXT J 
3335 FOR K=2 TO MD+1 
3336 REM 
3337 REM 
3338 REM SUPPORTING PLANE AND DEEP CUT SUBROUTINES 
3339 REM 
3340 REM 
3341 Z#=0# 
3342 B#=-A#(K,1) 
3343 FOR J-2 TO ND+1 
3344 B#=B#+A#(K,J)*B#(J,1) 
3345 Z#=Z#+A#(K.J)*A#(K,J) 
3346 NEXT J 
3347 SN=R(K) 
3348 IF SN=0 THEN SN=-SGN(B#) 
3349 P#(K)=CDBL(SN) 
3350 V#(K+CON)=B#*P#(K) 
3351 IF V#(K+C0N)<0# AND Z#<>0# THEN V#{K+CON)=V#(K+CON)/CDBL(SQR(Z#)) 
3352 NEXT K 

Searches for a primal pivot using the V#() array to find eligible 
pivot CCluiiiiiS. 

3353 REM PRIMAL SIMPLEX 
3354 MI#=-SM# 
3355 C0=0 
3356 FOR H=2 TO ND+1 
3357 IF M#(H,1)=BI# OR MI#<=V#(H) THEN 3360 
3358 MI#=V#(H) 
3359 CO=H 
3360 NEXT H 

Goes to the dual simplex algorithm if no primal pivot column Is 
found. 

3361 IF C0=0 THEN 3404 
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Searches for a primal pivot row from the upper and lower bounds 
and the constraints of the LP problem. 

3362 PA=PA+1 
3363 V#(C0)=0# 
3364 MN#=BI# 
3365 MA#=0# 
3366 R0=0 
3367 FOR 1=2 TO ND+1 
3368 IF V#(I+L0W)<0# OR B#(I.C0)>-SM#/100# THEN 3375 
3369 B#=-(V#(I+LOW)/B#(I,CO)) 
3370 IF MN#<B# THEN 3375 
3371 IF MN#=B# AND MA#>-(B#(I,CO)) THEN 3375 
3372 MN#=B# 
3373 MA#=-(B#(I,CO)) 
3374 RO=I 
3375 NEXT I 
3376 FOR J=2 TO ND+1 
3377 IF M#(J,1)<=0# OR V#(J+UP)<0# OR -B#(J,C0)>-SM#/100# THEN 3384 
3378 B#--(V#(J+UP)/(-B#(J,CO))) 
3379 IF MN#<B# THEN 3384 
3380 IF MN*=B# AND MA#>B#(J.CO) THEN 3384 
3381 MN#=B# 
3382 MA#=B#(J,CO) 
3383 RO=J+LOW 
3384 NEXT J 
3385 FOR K=2 TO MD+1 
3386 IF V#(K+C0N)<0# THEN 3399 
3387 A#=0# 
3388 FOR J=2 TO ND+1 
3389 A#«A#+A#(K,J)*B#(J,CO) 
3390 NEXT J 
3391 A#=A#*P#{K) 
3392 IF A#>«-SM#/100# THEN 3399 
3393 B#=-(V#(K+CON)/A#) 
3394 IF MN#<B# THEN 3399 
3395 IF MN#=B# AND MA#>-A# THEN 3399 
3396 MN#=B# 
3397 MA#=-A# 
3398 RO=K+UP 
3399 NEXT K 

If no pivot row Is found, returns to continue the search for a 
pivot column. 

3400 IF R0=0 THEN 3354 

Transforms the pivot row constraint and the simplex tableau. 
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3401 GOSUB 3600:REM CONSTRAINT TRANSFORMATION SUBROUTINE 
3402 GOSUB 3700:REM INVERSION SUBROUTINE 
3403 IF ER=3 THEN RETURN 
3404 GOTO 3318 

Searches for a dual pivot row In the V#() array. 

3405 REM DUAL SIMPLEX 
3406 MI#--SM# 
3407 R0=0 
3408 FOR I»2+L0W TO CON+MD+1 
3409 IF MI#<=V#(I) THEN 3412 
3410 MI#=V#(I) 
3411 RO=I-LOW 
3412 NEXT I 

If a dual pivot row Is found, searches for a pivot column. 
Otherwise, returns to main routine 

3413 IF R0>0 THEN 3417 
3414 ER=2 

Sets error code ER=1 if no column or row has been set ineligible 
for a pivot at the time the algorithm was terminated. Otherwise, sets 
ER=2 for an infeaslble solution. 

3415 IF PA=1 THEN ER=1 
3416 RETURN 
3417 V#(R0+L0W)=0# 
3418 PA»PA+1 
3419 GOSUB 3600: REM TRANSFORMATION SUBROUTINE 
3420 MN#»BI# 
3421 MA#=0# 
3422 C0=0 
3423 FOR 1=2 TO ND+1 
3424 IF M#(I,1)=BI# OR B#(1,I)<0# OR P#(I)<SM#/100# THEN 3431 
3425 B#=(B#(1.I)/P#(I)) 
3426 IF MN#<B# THEN 3431 
3427 IF MN#=B# AND MA#>P#(I) THEN 3431 
3428 MN#=B# 
3429 MA#«P#(I) 
3430 00=I 
3431 NEXT I 
3432 IF C0=0 THEN 3405 

Transforms simplex tableau. 

3433 GOSUB 3700:REM INVERSION SUBROUTINE 
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3434 IF ER=3 THEN RETURN 
3435 GOTO 3318 

Objective Function Transformation — File TRAN-OBJ 

The use of the transformation of the objective function In the 

primal-dual algorithm is optional since the objective is also 

transformed as the first row of the simplex tableau. In actual 

practice, the precision maintained in the simplex tableau is not 

adequate when solving problems that have many variables or running many 

iterations between reinversions. 

3550 REM * OBJECTIVE TRANSFORMATION SUBROUTINE * 
3551 REM TRAN-OBJ 

3552 B#(l,l)-0# 
3553 FOR 1=2 TO ND+1 
3554 B#(1,I)=0# 
3555 B#(1,1)=B#(1.1)+A#(1,I)*B#(I,1) 
3556 NEXT I 
3557 FOR 1=2 TO ND+1 
3558 IF A#(1,I)=0# THEN 3562 
3559 FOR J=2 TO ND+1 
3560 B#(1,J)=B#(1,J)+A#(1,I)*B#(I,J) 
3561 NEXT J 
3562 NEXT I 
3563 RETURN 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 

Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Reinversion Subroutine — File TRAN-RIV 

Same as for dual simplex method. 

Program Table of Content 

Table 6 can be used to reconstruct the primal-dual simplex method 
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Table 6. Primal-dual method BASIC program table of contents 

File Program lines Page Routines 

MAIN-BEA 0001-0147 127 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200-2224 69 
ALGR-PDS 3300-3433 134 
TRAN-OBJ 3550- 3563 139 
TRAN-CON 3600-3633 74 
TRAN-INV 3700- 3743 76 
TRAN-RIV 3900-•3960 78 

Primal-dual method 
Objective coefficient Input subroutine 
Constraint coefficient Input subroutine 
Constraint type Input subroutine 
Variable bounds Input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Primal-dual simplex algorithm subroutine 
Objective function transformation subr. 
Constraint transformation subroutine 
Basis Inversion subroutine 
Basis relnverslon subroutine 

from the above computer code and to organize subroutines from previous 

program listings. Since BASIC code Is dependent on program line numbers 

for Its subroutine branching, the statement numbers must be maintained 

as listed above. 

TîlêOry of Bêâlê'S nëtnOd 

Beale's method Is a method for finding the optimal solution to 

a linear set of constraints and a strictly convex quadratic objective 

function. A key to the method Is the manner In which the quadratic 

objective function is expressed as a set of linear equations. 

Beale's Method Tableau and Transformation of Objective Function 

As in example 7, let the following example 8 be a two (2) 

dimensional QP problem where the quadratic function is strictly convex 
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with all coefficients In lower case letters positive. 

minimize l*X'2+m*Y'2+2*n*X*Y+2*r*X+2*s*Y 

subject to: X >=0 (4) 
Y >=0 (5) 

c*X+d*Y-e>=0 (6) 
g*X+h*Y-f>»0 (7) 

To find the minimum value of the unconstrained quadratic function, 

the partial derivatives are set equal to zero (0) resulting In a set of 

simultaneous equations which can be solved for X and Y. In example 8, If 

the quadratic function: 

F(X,Y)=l*X~2+m*Y"2+2*n*X*Y+2*r*X+2*s*Y 

Is differentiated with respect to the X variable and set equal to zero 

(0): 
&F^X.Y)=2*rt-2*l *X+2*n*Y=0 

and with respect to the Y variable and set equal to zero (0): 

&F^X.Y)=2*s+2*n*X+2*m*Y=0 

The resulting linear functions, divided by two (2), can be written in 

tableau form as the sec-ond and third row of tableau 13 where s3 and s4 

1 X Y 
+-

z= 1 
1 

1 
O

 1
 1 1 1 

—
 
+
 

r s 1 1 

s3= 1 r 1 
1 

1 n 
1 
1 X 
1 

s4= 1 
1 

s 1 n m 
1 
1 Y 

+ + + 

Tableau 13. Beale's method tableau example 8, objective function 

are the "slack-surplus" constants indicating the displacement, either 
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positive or negative, of the current point (0,0) from the minimal 

unconstrained solution point of the quadratic function and where the 

first row of the tableau Is the transpose of the first column. 

Example 8 is constrained, so the objective tableau must be enlarged 

to Include a simplex tableau as in tableau 14. The objective function 

1 X Y 
+ + + 

z= I 0 I r s 
! I 

x= I 0 I 1 0 
! I 

y= I 0 I 0 1 
+ + + _ 

sl= I -e I c d I p' 
+ + + 

2= I 0 I r s II 
I I I 

s3= 1 r I 1 n IX 
I I I 

s4= I s I n m I Y 
+ +— — + 

Tableau 14. Beale's method augmented simplex tableau example 8 

elements of the simplex tableau are taken from the first row of 

quadratic tableau. 

To demonstrate a transformation of the augmented simplex tableau 

from one current point to another current point with the quadratic 

tableau appended to the bottom, a typical pivot row will be appended to 

the tableau; and tableau 14 will be transformed to tableau 16. 

the violated constraint is appended to the simplex part of tableau 

14 for a pivot row, and a Gauss-Jordan elimination is used to transform 

the simplex part of the tableau 14 to tableau 15. 
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1 si Y 
+ + + 

z= I - I 
I I 

X» I e I 1 -d 
I c i  c  

y- I 0 I 0 1 
+ _ 

sl= I 0 I 1 0 I p' 
+ + + 

Tableau 15. BealeVs method simplex tableau example 8, Iteration one 

The transformation of the quadratic part of the augmented tableau 

requires a double pivot. Algebraically, the X variable can be replaced 

by: 
x«e+sl-d*Y 

c c 

and substituted Into the original quadratic function: 

F(sl,Y)=(2*r*e+T*e"2)+l*sl*2+(T*d-2+m-2*n*d)*Y+(2*n-2*l*d)*sl*Y+ 
c c~2 c"2 c c 

(2*r+2*1*e)*sl+(2*s-2*r*d+2*n*e-2*e*4*1)*Y=z 
c c c c*l 

which when differentiated with respect to si and set equal to zero (0): 

&F(sl.Y)=(2*r+2*1*e)+2*1*sl+(2*n-2*1*d)*Y=0 
&S1 c c 

and with respect to Y and set equal to zero (0): 

&F(sl.Y)=(2*s-2*r*d+2*n*e)+(2*n-2*l*d)*sl+(2*1*d'2+2*m-4*n*d)*Y=0 
&Y c ~ c c c"2 c 

If the objective function Is evaluated at the current point (e,0) 
c 

then: 
z=l*e*2+m*0"2+2*n*e*0+2*r*e+2*s*0=l*e*2+2*r*e 

c"2 c c"2 c 

Reconstructing the tableau using the transformed components results in: 
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z= 

y» 

si» 

z= 

s5= 

s6= 

2*r*e+T*e*2 
c TT" 

si 

r+1*e 
c 

e 
"c 

0 

0 

I 0 

1 

s-r*d+n*e-e*d*l I 
I 

I 
1 I 

— —+ 
0 I 

— + H 

2*r*e+l*e"2 
— TT" 

r+l*e 
c 

s-r*d+n*e-e*d*l 
— —-rr 

r+1*e s- r*d-m*e-e*d*1 
c c c c 2 

1 n-T*d 
c 

n-l*d l*d''2+in-2*n*d 
— TT- —c— 

1 

si 

Y 

+ + H 

Tableau 16. Beale's method tableau example 8 objective function. 
Iteration one 

The transformation of the quadratic tableau can also be done In 

tableau form with a series row and column operations using the 

components of the transformed simplex tableau 15. Starting with the 

Current quadratic tableau 17 and using the rules of matrix 

multiplication to multiply tableau 17 times the augmented ÏÏ Inverse of 

the simplex tableau as shown in tableau 18 results In tableau 20. 

1 X Y 

z= 1 0 1 
1 

r s 1 1 
1 

s3= 1 
1 

r 1 
1 

1 n 1 X 

s4= 1 
1 

s 1 n m 
1 
1 Y 

Tableau 17. Beale's method tableau example 8 objective function 
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I 1 I 0 0 I 
I I I 
l e i  1  - d  I  
I c I ci 

10 10 1 I 
+ + + 

Tableau 18. Simplex method tableau example 8 basis Inverse component. 
Iteration one 

1 r]^ 1 r s-d*r 1 
1 c 1 
1 1 

c 1 
1 1 
1 l*e+r I 1 n-d*l 1 
1 c 1 c 1 

1 e*n+s 1 n m-d*n 1 
1 c 1 c 1 

Tableau 19. Beale's method tableau example 8 objective function. 
Iteration one 

Tableau 19 Is then transposed to tableau 20. Tableau 20 Is again 

matrix multiplied times the augmented ÏÏ Inverse resulting in tableau 21. 

If tableau 21 1s compared with tableau IS which was obtained by-

algebraic substitution, the two (2) tableau are identical. 

1 r*e 1 l*e+r e*n+s i 
1 c 1 
1 1 

c c 1 
1 

I r 1 1 
1 

n 1 
1 

1 s-d*r 1 n-d*l 
1 

m-d*n 1 
1 c c c 1 

Tableau 20. Beale's method tableau example 8 objective function, 
iteration one 
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1 si Y 
h + 4 

z= I 2*r*e+l*e"2 
c c~2 

s5= I r+1*e 
c 

s6« I s-r*d+n*e-e*d*1 
c c c"2 

r+l*e s-r*d+n*e-e*d*l 
c c c'2 c 

1 n-1*d 
c 

n-1*d T*d'2+m-2*n*d 
c TT" c 

1 

si 

Y 

+— — —+ —— H 

Tableau 21. Beales method tableau example 8 objective function, 
iteration one 

Beale's Method Tableau in Matrix Notation 

To expand the two (2) dimensional example 8 and to give a more 

rigorous definition of the components of the augmented simplex tableau, 

the QP problem can be written in matrix notation as: 

maximize -z 

subject to: ^+2*ïï'x+x'Qx =0 
-â+ X X >=0 

X >«ÏÏ 

The quadratic objective function can be written as two (2) 

augmented variable vectors and an augmented Q matrix as follows: 

I  1 , x' |*l z I  c' I  I  1 I = z+2*c'x+x'Qx 

I-tttTITI 
The transformation for the quadratic function can be written as: 

(OB-1) 1=?-1 1 

where Q and ^ are the augmented Q and B matrices, respectively. This 
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can also be written as the following matrix operations: 

I  1 I B-1'ïï '  I I  0 I c' I I 1 I ÏÏ '  I 
I —  I I  *  I - 1 I  *  I — — — — — — 1 1  
I ÏÏ I I-l' I I c I T[ I I 1-lïï I I 

Or in two (2) steps, the first two (2) matrices are mutiplied and then 

multiplied again. 

I  B-1'ïï'c I c '+ïï-l'ïï'iy I  I I  1  Ï Ï '  I  

I B-l'c I ïï-1'ïï I I ïï-lïï I Ï-1 I 

The resulting symmetric matrix is: 

I c+ÏÏ"l*ïï'TîÇ"lïïi c'ïï"l+ïï~l 'ïï'IJÇ"! I 

I "b-Î ' C+ÏÏ-Î'Iîff"îïï I î-î'TJB""! I 

where the second half of the final matrix is the inversion of the 

partial derivatives. 

From LP theory: 
x-ïï-lïï 

so the value of the objective is: 

B-1 ' b'c+B-1 ' b'c+B-1 • F QB~lïï=2*P x+x'Qx=z 

which corresponds to the upper left hand corner of the final matrix. 

Derivation of Beale's Method 

Again, using a two (2) dimensional example 9 which in this case has 

been simplified further to demonstrate the method, a QP problem can be 

written as the following set of equations where the quadratic function 
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minimize Z(X,Y)=X"2-2*a*X+Y'2 

subject to: X >-0 
Y>=0 

b*X+b*Y>=c 

a,b.c>0 

is strictly convex and the lower case letter are positive coefficients. 

Figure 43 is the same example 9 in graphic form. 

X=0 

^......Feasible region 

Y axis 

(0,0) Current point (a,0) (c,0)v 

X axis ÏÏ 

Figure 43. Dual simplex method example 9 

As with the out-of-k1lter method, the QP problem can be written as 

a Lagrangian function: 

F(X,Y,W)=X*2-2a*X+Y-2+W*(c-b*X-b*Y) 

where Z is the Lagrangian multiplier. 

The Kuhn-Tucker conditions sufficient for an optimal solution are: 



Let: 

and: 

149 

&F(X.Y.W)=2*X-2*a-b*W>-0 
&X 

&F(X.Y.W)=2*Y-b*W>=0 
&Y 

&F(X.Y.W)=c-b*X-b*Y<=0 
ÏZ 

X*&F(X.Y.W)=X*(2*X-2*a-b*W)=0 
SX 

Y*&F(W.Y.W)=Y*(2*Y-b*W)=0 
SY 

W*&F(X.Y.W)=Z*(c-b*X-b*Y)=0 
W 

s2=2*X-2*a=&Z^X.Y) 
X 

s3=2*Y=&Z^X.Y) 

where s2,s3 are slack-surplus, then: 

-s2+b*W<=0 
-s3+b*W<=0 

-c+b*X+b*Y>=0 

X*(s2-b*W)=0 
Y*(s3-b*W)=0 

M*(c—u*X—b*Y}=v 

which are now the Kuhn-Tucker conditions for the LP "subproblem" 

minimize s2*X+s3*Y 

subject to; X >=0 
Y>=0 

b*X +b*Y>=c 

s2=X-a 
s3=Y 

s2,s3 free 
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Primai-dual Method to Solve Beale's LP Subproblem 

The LP subproblem can be either, or both, primal and dual 

infeasible. The subproblem can be solved by a combination of the primal 

and dual methods described earlier. Although several primal-dual 

methods are available, such as the criss-cross method or the objective 

function penalty method, the approach used in the following code Is to 

first use the primal algorithm and then the dual algorithm. 

In general, the method starts at the current point (0,0) and uses a 

two (2) phase search for a pivot column or row with which to transform 

the augmented simplex tableau to a new point. First, using the primal 

algorithm, the simplex tableau Is searched for a primal pivot column in 

order of the most negative first row elements; and then the rows of the 

simplex tableau, as well as the objective tableau, are searched for a 

primal pivot element. If all possible primal pivot columns fail to have 

a pivot element, then the dual algorithm is used to search only simplex 

tableau. In order of most geometric distant constraint form the current 

point, for a dual pivot row and element. Depending on the pivot found, 

the augmented simplex tableau is transformed. 

The LP subproblem derived from the Kuhn-Tucker conditions can 

be written as the augmented simplex tableau with one additional row 

called a "switch" row. Since slack-surplus Is not restricted in sign 

like the simplex variables, the tableau, which has only nonnegative 

variables, would have to have a negative and positive column to 

represent the slack-surplus. By using the switch row set to zero (0) 
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for positive slack and one (1) for negative surplus, only a positive 

column need to be displayed in the tableau. 

Applying the algorithm in greater detail, example 9 can be 

written as tableau 22. Tableau 22 shows a negative element in the 

1 X Y 

z= I - I s2=-a s3«0 I 

x= I 0 I 1 0 

y= 

sl= I -c 
+ 

s2= I -a 
+—— 

z= I 0 
I 

s2« I -a 

s3= 
+-

I 
+-

I .+. 
I 
I 

I 

0 

b 

1 

-a 

1 

0 

0 

1 

b 

0 

0 

0 

1 

0 

.+ 
I 

-+ 

I P' -+ 
I 1 
I 
I X 
I 
I Y 

switch 

Tableau 22. Beale's method tableau example 9 

objective function row. Because the second column of the tableau has 

all positive pivot elements, the primal subproblem has no eligible pivot 

rows and does not provide a transformation. (If the third column had a 

negative first element, the search for primal pivot would continue 

through the third column.) 

Beale's algorithm solves this infeasibility with a pivot row in the 

quadratic part of the tableau. Recalling that the rows of the quadratic 

part of the tableau are the equation coefficients for the partial s of 
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the variables which correspond to the quadratic tableau's diagonal 

elements, the rows of the quadratic tableau are eligible as pivot rows 

If the element In the diagonal of the quadratic tableau which corresponds 

to the pivot column is positive. In the case where both the simplex 

part of the tableau and the quadratic part of the tableau have a 

possible pivot row, then the row with the minimum absolute value of the 

ratio of the constant element to the pivot column element is chosen for 

the pivot row. 

By using the quadratic part of the tableau as if the quadratic 

function were unconstrained, the second row can be used as a pivot row 

1 s2 Y 

Z» 1 - 1 0 0 1 

x= 1 
1 

a 1 
I 

1 0 
1 

y= 
1 
1 0 

1 
1 0 1 

1 
1 

sl= 1 

u
 

è
 

m
 b b 1 

sl= 1 a*b-c 1 b b 1 P' 

z- 1 
1 
1 

-â''2 1 
1 

G 0 i 
1 
1 

s4= 1 
1 

0 
1 
1 
1 

1 0 
1 
1 
1 

s2 

s5= 
! 
1 0 

1 
1 0 1 

1 
1 Y 

1 1 0 1 switch 
+ + 

Tableau 23. Beale's method tableau example 9, iteration one 

for a dual simplex pivot resulting in tableau 23 and the new point shown 

in figure 44. 
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Y axis 

Feasible region 

(0.0) 

X'2-2*a*X+Y-2=-a"2...Y=0.. 

(a,0) Current point 
X axis 

Figure 44. Beale's method example 9, Iteration one 

The new tableau now has the slack-surplus s2 In column two (2). 

When the tableau was transformed, s2 entered the transformed 

constraints, so the column switch was changed from zero (0) to one (1) 

to Indicate that the elements of column two (2) are now of the opposite 

sign than In the tableau. This change In the switch also allows a 

higher priority to be assigned to pivoting on columns with slacks-

surplus from the quadratic part of the tableau in order to force the 

partial s of the quadratic objective function as close to zero (0) as 

possible within the restrictions of the feasible region. 

A primal pivot column can no longer be found in tableau 23, so a 

dual simplex pivot is made on the fourth and only primal infeasible row 
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of the tableau. Two of the elements of the row are positive and both 

have the same pivot ratio of zero (0). In the dual simplex algorithm, 

this tie would be broken with the perturbation method; but In this case* 

the slack-surplus generated by the quadratic tableau Is given priority 

so that column two Is selected as the pivot column. 

If the tableau were not primal feasible and all possible primal 

pivots had been eliminated, then only the positive row element In 

columns headed by a positive element would be candidates for a dual 

pivot elements. 

Tableau 24 Is the result of the transformation of the simplex and 

z= 

1 si Y 

I c-a*b a*b-c I 

z-

s6= 

s7= 

I 
+— 

x= 1 
1 
1 

1 1 
o
lo

 
1 1 1 

1 
1 
1 

1 -1 

y= 1 0 1 0 1 

si- I 0 1 1 0 

s7" Î 
1 

a"b-c 
b 

Î 
1 

-i 2 

+ 
I 
+ __ 
i p' 

2-2*a*c c-a*b a*b-c 

c-a*b 

a*b-c 

0 I switch 
+ 

Tableau 24. Beale's method tableau example 9. iteration two 
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and quadratic tableau. In this case the slack si is not a free so the 

switch row element corresponding to the pivot column is set to zero (0). 

The result of the pivot is shown in figure 45. The new point (c,0) 
F 

is at the intersection of the third constraint and the X axis. 

Y axis 

b*X+b*Y=c 

Feasible region 

(0.0) 

I.X~2-2*a*X+Y"2=c'2-2*a*c. 
FT. 

,Y=0. 

X axis 
(£,0)^urrent point 
b ^ 

Figure AC •Is's iHSthcc! exsRspls 9. itsrat 1 on two 

The new tableau has a primal pivot. Since c-a*b>0, a*b-c<0, the 
B b 

third column of the tableau is chosen for the primal pivot column. 

Searching the pivot column and assuming that the absolute value of 

a*b-c<c, the third row of the quadratic tableau is selected for 

the pivot row. 

Transforming tableau 24 results in tableau 25. 
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si s7 

z-

y 

sl= 

z= 

s8= 

s9= 

2*b 

c+a*b 
"FT 

c-a*b 
-2*r 

c-a*b 0 

-1 

1 

1 
2 

1 1 

c'2-2*a*b*c-a"2*b"2 I c-a*b 
2*5-7 " 2 * 5 "  

c-a*b 
-2*5-

I  

0 

0 

+-

I  
+-

I 0 
-+ 

0 

p' 

1 

si 

s7 

1 I switch 
+ 

Tableau 25. Beale's method tableau example 9, solution 

Graphically, the new point (c+a*b.c-a*b) Is shown In figure 46. 
2*b 2*b 

This new point Is Intersection of the third constraint and the partial 

of the quadratic function, now expressed In terms of s2 and si, with 

respect to s2. 

The new tableau Is now primal and dual feasible so the subproblem 

is optimal. The coefficients of the transformed objective function in 

the subproblem are equal to the partial derivatives of the transformed 

quadratic with respect to s7 and si. If the tableau were reconstructed 

in the original X and Y variables by back substitution, the Kuhn-Tucker 
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I X=0 

b*X+b*Y=c i Feasible region. 

Y axis 

(0.0) 

y 

.X=a. 
:z: 

.x 

..Xr2-2*a*X+Y:2=c~2-2*a*b*c-a-2*b*2 
+. 2*b*2... 
IX << 

( (c+a*b) • (c-a*b) ). Current 
T ..2*b 2*b point 

^ ' / AV 
1/ AX; 

X axis \ 

Figure 46. Beale's method example 9, solution 

conditions sufficient for the optimal solution of the QP problem would 

be satisfied by the point (c+a*b,c-a*b). 
"2*5" 

Beale's Method in Matrix Notation 

To expand the two (2) dimension example, the QP problem can be 

written as: 
minimize 2c'x+x'Qx 

subject to: Âx>=â 
x>=0 

As before, the Kuhn-Tucker conditions are: 

2ïîx+2c^-7r'w>=ïï 
_ a°7Sx<-ïï _ 
x'*(2Qx+2c-A'w)=0 

w'*(a-%x)=0 
Letting: 
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0=2(Jx+2c" 

the subproblem can be written as: 

minimize o'x 

subject to: ?G<>=a 
x>=ÏÏ 

and: 
o=TJx+c 

The complete augmented dual simplex tableau used In the computer 

program can now be constructed: 

program variables 

0 I c' Q#(1,ND+1) 

c I Q Q#(2 to ND+1,ND+1) 

0 I 2c' A#(1.ND+1) 

-â I J A#(2 to MD+1,ND+1) 
+ —------ (column one negative) 

-ïï-1'c I ÏÏ-1'ÏT A#(MD+2 to MD+2+ND,ND+l) 
— --+ —----—- (column one negative) 

z= "Ç-l'ïï'c+ff-l'ïï'c+ïï-lïï'Tîff-lïïlc'ïï-l+ff-l'ïï TJP-l B#(1,ND+1) & V#(ND+1) 

x= ïï-lïï I ÏÏ-1 B#(2 to ND+l.ND+1) 

-ÏÏ I B B#(ND+2 to ND+2+ND,ND+l) 
+ (column one negative) 

s= -ap+âp'B-lïï I ap'B-1 P#(ND+1) 

0 I switch S#(ND+1) 

This tableau has an added set of constraints in the constraint 

rows. These constraints are the result of the first step of the 

transformation of the quadratic tableau. Because the complete 

transformation of the quadratic tableau requires one (1) more step or 
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transformation, these half transformed constraints can be treated In the 

same manner as the original constraints of the LP problèmes. 

For the starting point (0,0), the augmented simplex tableau Is 

Initialized to: 

program variables 

0 1 c' Q#(1,ND+1) 

c 1 Q Q#(2 to ND+1,ND+1) 

0 1 2c' A#(1,ND+1) 

-¥ 1 J A#(2 to MD+1,ND+1) 
(A#(-,l) Is negative) 

A#(MD+2 to MD+2+ND,ND+l) c" 1 Q 

A#(2 to MD+1,ND+1) 
(A#(-,l) Is negative) 

A#(MD+2 to MD+2+ND,ND+l) 

z= 0 1 c* B#(1,ND+1) & V#(ND+1) 

x= ÏÏ 1 T B#(2 to ND+1,ND+1) 

s= 

Ô 

-ap 

I 
—+-

1 

T 

ap' 

B#(ND+2 to ND+l+ND.ND+1) 
(B#(-,l) Is negative) 

P#{ND+1) 

0 1 ÏÏ S#(ND+1) 

SeaTe's Method BASIC Code 

The BASIC program code presented here Is Beale's method modified 

to solve both primal and dual Infeaslble models. 

All programs listed In the text consist of a main calling routine 

and a series of Input, output, and processing subroutines. These 

routines are listed In the text as well as on a computer disk compatible 

with IBM micro-computers. 
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Beale's Method Main routine — File MAIN-BEA 

Beale's main calling routine (MAIN-BEA) dimensions the eleven (11) 

data arrays; writes the option menu to the screen as shown In figure 47; 

BEALE'S METHOD 

NUMBER OF CONSTRAINTS 10 
NUMBER OF VARIABLES 14 
MAXIMUM ITERATIONS 1000 

M-RETURN TO MENU 

(^OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPES 
B-BOUNDED VARIABLES 
Q-QUADRATIC COEFFICIENTS 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
S-SAVE F-FETCH 
N-NEW PROBLEM 

OPTION ? 
0'X+X'QX=z 

Figure 47. Beale's method main menu screen 

calls the utility subroutines UTIL-OPT, UTIL-ERS, UTIL-CON, UTIL-CHX; 

calls the data input and output subroutines INPT-OBJ, INPT-CON, INPT-

TYP, INPT-BND, INPT-QUD, and REPT-SMP; calls and times the processing 

algorithm ALGR-BEA: and saves and fetches the input data to disk. 

1 REM *BEALES METHOD* 
2 REM MAIN-BEA 

3 REM BI# - MACHINE INFINITE 
4 REM CO - PIVOT COLUMN FOR SIMPLEX TRANSFORMATION 
5 REM ER - ERROR KEY 
6 REM IN - NUMBER OF ITERATIONS BETWEEN REINVERSIONS 
7 REM IR - MAXIMUM NUMBER OF ITERATIONS 
8 REM MD - NUMBER OF CONSTRAINTS 
9 REM ND - NUMBER OF VARIABLES 
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10 REM PA - NUMBER OF ATTEMPTS AT PIVOT 
11 REM PM - SIGN KEY (+-) 
12 REM RO - PIVOT ROW FOR SIMPLEX TRANSFORMATION 
13 REM SM# - MACHINE ZERO 
14 REM A#(MD+2+ND.ND+8) - ORIGINAL DATA AND KEYS 
15 REM B#(2*ND+1,ND+1) - PRIMAL-DUAL MATRIX 
16 REM H#(ND+1) - PAST ITERATION SOLUTION 
17 REM M#(ND+1,2) - UPPER AND LOWER BOUND VALUES 
18 REM P#(ND+2) - WORK VECTOR 
19 REM Q#(ND,ND) - QUADRATIC OBJECTIVE MATRIX 
20 REM R(MD+1) - CONSTRAINT TYPE (l->=,0-=,-l-<=) 
21 REM S#(ND+1) - FREE VARIABLE COLUMN SWITCH 
22 REM T#(ND+1.ND+1) - INVERSION WORK FILE 
23 REM V#(ND+1+ND+1+ND+1+MD+1) - ROW AND COLUMN ARRAY 
24 REM X#(ND) - SOLUTION VECTOR 
25 REM 

Sets MD to the default number of constraints In the LP problem and 
ND to the number of variables. Sets IN to the number of Iterations 
before the relnverslon of the augmented ÏÏ basis. Sets the default 
maximum number of Iterations to one thousand. Sets BI# to a number 
considered machine Infinite and SM# to a number considered machine zero. 

26 MD=0 
27 ND=0 
28 IN»10 
29 IR=1000 
30 BI#=1E+10 
31 SM#=lE-09 

Prompts and reads from the keyboard the number of constraints MD in 
the QP problem, the number of variables ND, and the maximum number of 
iterations IR allowed before Beale's algorithm is stopped. 

32 CLS 
33 LOCATE 1,10:PRINT "BEALE'S METHOD" 
34 LOCATE 3,1:PRINT "NUMBER OF CONSTRAINTS":LOCATE 3,31:INPUT "",L$ 
35 GOSUB 1870:REM UTIL-CHX 
36 IF Z#<>BI# THEN MD=Z# 
37 LOCATE 3,30:PRINT MD," ":LOCATE 4,1:PRINT "NUMBER OF VARIABLES" 

:LOCATE 4,31;INPUT "",L$ 
38 GOSUB 1870:REM UTIL-CHX 
39 IF Z#<>BI# THEN ND=Z# 
40 LOCATE 4,30:PRINT ND," ":LOCATE 5,1;PRINT "MAXIMUM ITERATIONS" 

: LOCATE 5,31;INPUT "",L$ 
41 GOSUB 1870:REM UTIL-CHX 
42 IF ZfOBI# THEN IR=Z# 
43 LOCATE 5,30:PRINT IR," 
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Dimensions the array A#(MD+2+ND+l,ND+8) which contains the linear 
portions of the quadratic objective function, the constraint 
coefficients, and the first step of the transformation of the quadratic 
partial s. Dimensions the basis Inverse and basis array B#(2*ND+1,ND+1). 
Dimensions the holding array H#(ND+1), the upper and lower bound array 
M#(ND+1), the pivot row P#(ND+2), the augmented 9 matrix array 
Q#(ND+1,ND+1), the enlarged constraint type array R(MD+1+ND+1), the 
switch array S#(ND+1), the relnverslon working space array 
T#(MD+1,ND+1), the pivot selection array V#(MD+1+ND+1+ND+1+ND+1), and 
the solution vector X#(ND). 

The array A#(MD+2+ND+l,ND+8) has been modified from the array used 
In the dual simplex algorithm by adding at each Iteration a set of rows 
to the bottom of the constraint tableau which are the first step of the 
transformation of the quadratic tableau. These added rows are used as 
If they are constraints In their original coefficients since the last 
step In the quadratic transformation Is the same as the simple simplex 
transformation. The constraint type array R(MD+1+ND+1) has been 
enlarged to Include the rows added with the quadratic tableau 
transformation to the constraint matrix A#(MD+2+ND+l,ND+8). The array 
V#() is the summary of the first row and the first column, including the 
phantom upper and lower bound constraints, of the augmented simplex 
tableau. This allows for a rapid search of the possible primal and then 
dual pivots. 

44 DIM A#(MD+2+ND+l,ND+8) 
45 DIM B#(2*ND+1.ND+1) 
46 DIM H#(ND+1) 
47 DIM M#(ND+1,2) 
48 DIM P#(ND+1) 
49 DIM Q#(ND+1.ND+1) 
50 DIM R(MD+1+ND+1) 
51 DIM S#(ND+1) 
52 DIM T#(ND+1,ND+1) 
53 DIM V#(MD+1+ND+1+ND+1+ND+1) 
54 DIM X#(ND) 

Initializes the constraint type array to all greater than or equals. 

55 FOR 1=1 TO MD+l+ND+1 
56 R(I)=1 
57 NEXT I 

Prints the option menu to the screen; calls the option line 
routine UTIL-OPT; and pauses for the entry of "M", "0", "A", "C", "B", 
"Q", "U", "R". "S", "F", "N" for the option variable L$. 

58 LOCATE 8,15: PRINT "M-RETURN TO MENU" 
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59 LOCATE 10,10:PRINT 
60 LOCATE 11,10:PRINT 
61 LOCATE 12,10:PRINT 
62 LOCATE 13,10:PRINT 
63 LOCATE 14,10:PRINT 
64 LOCATE 15,10:PRINT 
65 LOCATE 16,10:PRINT 
66 LOCATE 17,10:PRINT 
67 LOCATE 18,10:PRINT 
68 LOCATE 22,1:PRINT " 

"O-OBJECTIVE COEFFICIENTS" 
"A-CONSTRAINT COEFFICIENTS" 
"C-CONSTRAINT TYPES" 
"B-BOUNDED VARIABLES" 
"Q-QUADRATIC COEFFICIENTS" 
"U-EXECUTE ALGORITHM" 
"R-REPORT LISTING" 
"S-SAVE F-FETCH" 
"N-NEW PROBLEM" 

OX'+XQX'=z" 
69 REM LOCATE 23,1:PRINT "l*X*2*Y>=c l*X*(2*Y-3*Z)>=c l*Y+a*(X-b)*2>=c" 
70 GOSUB 1800:REM UTIL-OPT 
71 LOCATE 21,8:INPUT "",L$ 

Calls either the objective function input subroutine INPT-OBJ, the 
constraint Input subroutine INPT-CON, the constraint type Input 
subroutine INPT-TYP, the upper and lower bound input subroutine INPT-
BND, the quadratic g matrix Input subroutine INPT-QUD, the processing 
subroutine ALGR-BEA, or the report routine REPT-SMP based on the option 
variable L$. 

72 CLS 
73 H=0 
74 G=2 
75 IF L$<>"0" THEN 78 
76 GOSUB 1200:REM INPT-OBJ 
77 GOTO 72 
78 IF L$<>"A" THEN 81 
79 GOSUB 1300:REM INPT-CON 
80 GOTO 72 
81 IF L$<>"C" THEN 84 
82 GOSUB 1400:REM INPT-TYP 
33 GOTO 72 
84 IF L$<>"B" THEN 87 
85 GOSUB 1500:REM INPT-BND 
86 GOTO 72 
87 IF L$<>"Q" THEN 90 
88 GOSUB 1600:REM INPT-QUD 
89 GOTO 72 
90 IF L$<>"U" THEN 99 
91 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$.4,2))+VAL(MID$(TIME$,7 

»2) ) 
92 GOSUB 3300:REM ALGR-BEA 

Sets the optimal solution equal to the current point of Beale's 
algorithm. 

93 0B#=B#(1,1) 
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94 FOR 1=1 TO ND 
95 X#(I)=B#(I+1.1) 
96 NEXT I 
97 TM=3600*VAL(MID$(TIME$,1.2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

.2))-TM 
98 GOTO 58 
99 IF L$<>"R" THEN 102 
100 GOSUB 2200:REM REPT-SMP 
101 GOTO 72 

Saves the content of MD, ND, M#(ND+l,ND+8), A#(MD+l,ND+8), 
Q#(ND+1,ND+1), and R(ND+1) to disk file "DATA" as an ASCI file if option 
"S" is selected. 

102 IF L$<>"S" THEN 120 
103 OPEN "0",#1,"DATA" 
104 PRINT #1,STR$(MD) 
105 PRINT #1,STR$(ND) 
106 FOR 1=1 TO ND+1 
107 FOR J=1 TO ND+1 
108 PRINT #1,STR$(Q#(I,J)) 
109 NEXT J 
110 PRINT #1,STR$(M#(I,1)) 
111 PRINT #1,STR$(M#(I.2)) 
112 NEXT I 
113 FOR 1=1 TO MD+1 
114 FOR J=1 TO ND+8 
115 PRINT #1,STR$(A#(I,J)) 
116 NEXT J 
117 PRINT #1.STR$(R(I)) 
118 NEXT I 
119 CLOSE #1 

Loads to MD, ND, M#(ND+1,2), A#(MD+l,ND+8). Q#(ND+1,ND+1), and 
R(ND+1) the disk file "DATA" if option "F" is selected. 

120 IF L$<>"F" THEN 146 
121 OPEN "I".#1,"DATA" 
122 INPUT #1.X$ 
123 MD=VAL(X$) 
124 INPUT #1.X$ 
125 ND=VAL(X$) 
126 FOR 1=1 TO ND+1 
127 FOR J=1 TO ND+1 
128 INPUT #1.X$ 
129 Q#(I.J)=VAL(X$) 
130 NEXT J 
131 INPUT #1,X$ 
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132 M#(I.1)=VAL(X$) 
133 INPUT #1,X$ 
134 M#(I,2)=VAL(X$) 
135 NEXT I 
136 FOR 1=1 TO MD+1 
137 FOR J-1 TO ND+8 
138 INPUT #1.X$ 
139 A#(I.J)=VAL(X$) 
140 NEXT J 
141 INPUT #1,X$ 
142 R(I)=VAL(X$) 
143 NEXT I 
144 CLOSE #1 
145 GOTO 58 

Restarts program for new run if option "N" is selected. 

146 IF L$="N" THEN RUN 
147 GOTO 58 

Utility Subroutines — Files UTIL-OPT. UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Input Subroutines — Files INPT-OBJ. INPT-CON. INPT-TYP. and INPT-BND 

The input subroutines used for the Beale's method are the same as 

for the dual simplex method. The linear portion of the quadratic 

objective function is entered through the subroutine INPT-OBJ. 

Qâudfâtic matrix Subroutine — IwPT-QUD 

The program stores the quadratic objective function in two arrays. 

The linear part of the objective or the c" vector is stored in the first 

I  1  , x' | * l  z I  c' I  I  1  I = z+2*c'x+x'Qx 

• I'tttTITI 
row of the A#(MD+2+ND+l,ND+8) array by the subroutine INPT-OBJ. The Q 

matrix, which is symmetric and positive definite, is stored in the last 

ND columns and ND rows of the Q#(ND+1,ND+1) array by the quadratic 
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matrix subroutine. 

The quadratic matrix subroutine (INPT-QUD) Is the Interactive 

screen input of the Q#(ND+1,ND+1) array. To reach the screen from the 

main menu, type "Q" as the OPTION 7, The screen, as shown in figure 48, 

NON-0 COEFFICIENTS Q MATRIX 
ROW COLUMN COEFFICIENTS 
5 5 10 
6 6 9 
7 7 8 
8 8 7 
9 9 6 
10 10 5 
11 11 4 
12 12 3 
13 13 2 
14 14 1 

OPTION ? 

Figure 48. Quadratic input 

consists of a ROW column, a COLUMN column and the Q matrix COEFFICIENT 

column. When the screen is first entered the cursor will be located 

in the ROW column. When a Q matrix row number or a blank is typed and 

entered, the cursor will move to the COLUMN column so that the column 

number of the matrix can be typed and entered. The cursor will then 

move to the COEFFICIENT column so that the Q matrix entry can be typed 

and entered. 

If an error is made, then the row and column numbers aire reentered 

and the coefficient retyped. To select other options and leave the 

screen, the option letter is typed In the ROW column and entered. 

1600 REM * QUADRATIC INPUT SUBROUTNE * 
160 1 EARN A = 
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1602 LOCATE 1,1:PRINT "NON-ZERO COEFFICIENTS Q MATRIX":LOCATE 2,3:PRINT 
"ROW COLUMN COEFFICIENTS" 

1603 H=1 
1604 R=0 
1605 G=G+1 
1606 R-R+1 
1607 GOSUB 1800:REM UTIL-OPT 
1608 LOCATE G.4:INPUT "",L$ 
1609 GOSUB 1870:REM UTIL-CHX 
1610 IF L$<>"" AND Z#=BI# THEN RETURN 
1611 IF Z#<>BI# THEN H=Z# 
1612 IF R<=ND THEN 1615 
1613 R=1 
1614 IF L$="" THEN H=H+1 
1615 IF H>ND OR H<=0 THEN 1607 
1616 GOSUB 1850:REM UTIL-ERS 
1617 LOCATE G.3:PRINT H: LOCATE G,10:INPUT "",L$ 
1618 GOSUB 1870:REM UTIL-CHX 
1619 IF Z#<>BI# THEN R=Z# 
1620 IF R>ND OR R<=0 THEN 1617 
1621 LOCATE G,9:PRINT R," ":LOCATE G,16:PRINT Q#(H+1,R+1):LOCATE G.17 

:INPUT "".L$ 
1622 GOSUB 1870:REM UTIL-CHX 

Loads the augmented Q matrix of the quadratic objective function. 

_The array Q#(ND+1,ND+1) is actually the augmented Q matrix. When 
the Q matrix elements are entered into the augmented Q matrix, the row 
and column must be offset by one. Also the matrix is symmetrical so 
the elements in the transposed positions must be equal. 

The linear part of the quadratic objective function is first 
entered into the first row of the A#(MD+Z+ND+l,ND+8) to utilize the 
simplex program code. These data are transferred in the first steps of 
the Beale's algorithm to the Q#(ND+1,ND+1) array. 

1623 IF Z#<>BI# THEN Q#(H+1,R+1)=Z# 
1624 IF Z#<>BI# THEN Q#(R+1,H+1)=Z# 
1625 LOCATE G,16:PRINT Q#(H+1,R+1)," " 
1626 IF G<18 THEN 1605 
1627 GOSUB 1860:REM UTIL-CON 
1628 GOTO 1606 

Report Subroutine — File REPT-SMP 

Same as for dual simplex method. 
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Beale's Algorithm Subroutine — File ALGR-BEA 

Beale's algorithm first Initializes a simplex tableau to represents 

a current solution point at the origin and the constraints that form the 

zero axes, a quadratic tableau to represents the quadratic function 

partial s evaluated at the origin, and a switch row set all to zeros (0). 

In an Iterative fashion, the algorithm then executes the following 

steps. 

Primal Search The first steps follow the primal algorithm 

as if the augmented simplex tableau were for a LP problem consisting of 

only the objective function derived from the quadratic tableau and 

constraints satisfied by the current point. 

This approach assumes that the current point is primal feasible 

satisfying a reduced set of constraints; that a new point can be found 

by increasing the values of the variables associated with negative 

elements in the simplex objective function row; and that primal 

feaslbllty can be maintained for the reduced set of constraints. 

Using this reduced set of constraints requires a modification to the 

primal simplex method because of the possibility that In the reduced 

tableau all columns eligible for a primal pivot will not provide a pivot 

element under the rules of the primal algorithm. If a column fails to 

provide a pivot element, then several eligible pivot columns will have 

to be tried until all eligible columns have been eliminated. 

(1) Find all columns from the simplex tableau eligible as a primal 

pivot column which have a negative element in the first row or for 
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which the switch row element is set to one (1). If no column can 

be found and the simplex tableau is primal feasible, then go to 

step (5). Otherwise, go to step (2). 

(2) From the eligible primal pivot columns which have the switch row 

elements set to one (1), select as a pivot column the column which 

has the greatest absolute value first row element of all eligible 

columns that have not failed to provide a pivot element in the 

current iteration. If this fails, then select from the remaining 

eligible pivot columns the column with the most negative element in 

the first row. If no pivot column can be found, then go to step 

(5). Otherwise, go to step (3). 

Geometrically, the priority given to pivoting on the slack-surplus 

(switch row element set to one (1)) from the partial constraints forces 

the new point closer to the unconstrained minimum point of the quadratic 

function. 

(3) From the pivot column selected In step (1), allow any satisfied 

constraint from the LP subproblem to be a candidate for the primal 

pivot row if the element in both the transformed constraint and the 

candidate column has the same sign as the first element of the 

pivot column. (This use of the sign of the first element of the 

pivot column is another way of taking into account the switch row.) 

In addition to the candidate constraints, use as a candidate row, 

the row from the quadratic tableau which corresponds to the 

diagonal element of the quadratic tableau in the candidate pivot 
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column If the diagonal element Is greater than zero (0). 

(4) If more than one transformed constraint or quadratic tableau row 

qualifies as a pivot row, then select as the pivot row the row with 

the minimum absolute value of the ratio of the first column element 

and the pivot element. If no row Is found for a pivot element, 

then remove the current column as a possible pivot column and 

return to step (2). Otherwise, go to step (8). 

Geometrically, the selection of the minimum pivot ratio quarantees 

that the new point Is at an Intersection within the bounds of the 

feasible region of the reduced simplex tableau. If the partial 

constraint from the quadratic tableau forms an Intersection point within 

the reduced set of constraints and yields the greatest reduction In 

the objective function, then It Is selected for a pivot row. 

Dual Search The next two (2) steps assume that the simplex 

tableau consists only of columns headed by positive elements, and that a 

new point can be found by satisfying one (1) of the violated constraints 

of the LP subproblem. 

(5) If all columns of the simplex tableau have been eliminated as 

candidates for primal pivot columns, then find all the violated 

constraint of the LP subproblem which are eligible for a dual 

simplex pivot row. If no constraint is violated and the tableau is 

primal and dual feasible, then set ER=1 and return to the main 

routine. Otherwise, go to step (6). 

(6) From the eligible rows, select the constraint row which is the 
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greatest geometric distance from the current point. If the simplex 

tableau Is either dual or primal Infeaslble and no pivot row or 

column has been found, then set ER=2 and return to main routine. 

Otherwise, go to step (7). 

(7) In the transformed constraint selected In step (6) as a candidate 

for a dual pivot row, select as a pivot element the row element 

corresponding to a column which has a switch row element set to one 

(1) and which has the same sign as the first row element and the 

minimum absolute value for the ratio of the first row element and 

the pivot row element. If no such pivot columns exists, then 

select from the remaining columns with positive first row elements 

and positive corresponding pivot row elements. If still no pivot 

element is found, then remove the row as a possible dual pivot row 

and return to step (6). Otherwise, go to step (8). 

Geometrically, the priority given the slack-surplus rather than the 

slacks of the constraints forces the new point to be within the feasible 

region of the constraints before moving to the minimum point of the 

unconstrained quadratic objective function. 

(8) At this point, either a primal pivot or a dual pivot has been 

found. The simplex part of the tableau is transformed using a 

Gauss-Jordan elimination and the pivot row selected in steps 

(2),(3), and (4); or steps (6) and (7). Go to step (9). 

(9) Set the switch row element to one (1) for the pivot column if the 

pivot row is from the quadratic tableau. If the pivot row is not 
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from the quadratic tableau, then set the switch to zero (0). Go to 

step (10). 

(10) The quadratic tableau has yet to be transformed. To transform the 

quadratic tableau, the tableau Is matrix multiplied times the 

augmented ? Inverse from the transformed simplex tableau. Then, 

the product matrix Is transposed. (This matrix Is the constraints 

stored In the lower half of the A#(MD+2+ND+1,ND+8) array, rows MD+3 

to MD+2+ND+1.) The transposed matrix Is then matrix multiplied 

times the augmented B matrix again resulting in the transformed 

quadratic tableau of the augmented Q matrix. 

(11) The transformed augmented simplex tableau now represents a new point 

which becomes the current point. Increment the Iteration count by 

one. If the iterations count is greater than the maximum allowed, 

set ER=0 and go to main routine. Otherwise, go to step (1), 

3300 REM *BEALE'S ALGORITHM* 
3301 REM ALGR-BEA 

Initializes the augmented simplex tableau to represent the point 
at the origin and the zero axes or the lower bound of all varibles. 

3302 FOR 1=2 TO 2*ND+1 
3303 FOR J»1 TO ND+1 
3304 B#(I.J)=0# 
3305 NEXT J 
3306 NEXT I 
3307 FOR 1=2 TO ND+1 
3308 S#(I)=0# 
3309 H#(I)»BI# 
3310 B#(I,I)-1#:B#(I.1)»M#(I.2) 
3311 B#(ND+I,I)=1#:B#(ND+I,1)=M#(!,2) 
3312 B#(1.I)=A#(1.I) 
3313 NEXT I 

Completes the augmented Q matrix. 
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3314 FOR 1=2 TO ND+1 
3315 Q#(l,I)=A#(l,I)/2# 
3316 Q#(I,l)=A#(l,I)/2# 
3317 NEXT I 

Sets the pointers for the V#(MD+1+ND+1+ND+1+ND+1) array where LOW 
Is the start of the lower bounds* UP Is the start of the upper bounds* 
CON Is the start of the LP subproblem constraints* OBJ Is the start of 
the quadratic partial constraints. Initializes the Iteration count IT 
to zero (0). Initializes the pass counter, or the number of tries at 
finding a pivot column or row, to one (0). Sets maximum Iterations ER=0. 

3318 L0W=ND+1 
3319 UP=ND+1+ND+1 
3320 C0N=ND+1+ND+1+ND+1 
3321 0BJ=ND+1+ND+1+MD+1 
3322 IT=0 
3323 PA=1 
3324 ER=0 

Increments the Iteration counter by one (1) and returns to the main 
routine If the limit on Iterations IR Is exceeded. 

3325 IT=IT+1 
3326 IF IT>IR THEN RETURN 

Transforms the quadratic tableau using the current augmented ? 
inverse, 

3327 60SUB 3550:REM TRAN-QUD 

Loads the V#(MD+l+ND+l+ND+l+ND+1) array. 

The array V#() contains the first row of the augmented simplex 
tableau, and the constant elements of the transformed lower bound 
constraints, the transformed upper bound constraints* the transformed LP 
constraints. 

3328 FOR H=2 TO ND+1 
3329 V#(H)=B#(1*H) 
3330 NEXT H 
3331 FOR 1=2 TO ND+1 
3332 V#(I+L0W)=B#(I,1)-M#(I,2) 
3333 NEXT I 
3334 FOR J=2 TO ND+1 
3335 IF M#(J,1)<=0# THEN 3339 
3336 A#=M#(J*1) 
3337 IF A#=BI# THEN A#=0# 
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3338 V#(J+UP)=A#-B#(J.l) 
3339 NEXT J 
3340 FOR K=2 TO MD+1 
3341 REM 
3342 REM 
3343 REM SUPPORTING PLANE AND DEEP CUT SUBROUTINES 
3344 REM 
3345 REM 
3346 REM 
3347 Z#=0# 
3348 B#=-A#(K.l) 
3349 FOR J-2 TO ND+1 
3350 B#=B#+A#(K,J)*B#(J,1) 
3351 Z#=Z#+A#(K.J)*A#(K,J) 
3352 NEXT J 
3353 V#(K+C0N)=0#:IF Z#=0# THEN 3359 
3354 SN=R(K) 
3355 IF SN=0 THEN SN»-SGN(B#) 
3356 P#(K)«CDBL(SN) 
3357 V#(K+CON)=B#*P#(K) 
3358 IF V#(K+C0N)<0# THEN V#(K+CON)=V#(K+CON)/CDBL(SQR(Z#))) 
3359 NEXT K 
3360 REM PRIMAL SIMPLEX 

Searches for a primal pivot using the V#() array to find dual 
Infeaslble columns. 

3361 MI#=-SM#/10# 
3362 C0=0 

Searches for a primal pivot among columns with switches S#(ND+1) 
set to one (1). 

This gives priority to the slack-surplus from the quadratic 
objective function. 

3363 FOR H=2 TO ND+1 
3364 IF S#(H)=0# OR M#(H,1)=BI# OR MI#<=-ABS(V#(H)) THEN 3367 
3365 MI#=-ABS(V#(H)) 
3366 CO=H 
3367 NEXT H 
3368 IF C0>0 THEN 3375 

Searches for a primal pivot among columns with switches set to 
zero (0). 

3369 FOR H=2 TO ND+1 
3370 IF S#(H)>0# OR M#(H,1)=BI# OR MI#<=V#(H) THEN 3373 
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3371 MI#=V#(H) 
3372 CO=H 
3373 NEXT H 
3374 IF C0=0 THEN 3439 

Increments the pass switch by one (1). 

In order to tell If the algorithm tried a number of pivot columns 
and failed to find a pivot or If no primal pivot columns were found, a 
count Is kept of the number of times a primal pivot column was found. 

3375 PA=PA+1 

Sets PM to the sign of the primal pivot column first row element. 

3376 PM=SGN(V#(CO)) 

Sets the first row element from V#(ND+1) corresponding to the pivot 
column to zero (0) so it Is no longer eligible for a pivot column. 

3377 V#(C0)=0# 

Searches the quadratic tableau for a pivot row. 

In this program, the elements of the quadratic tableau are 
calculated only for the first row and the diagonal elements; and then 
only if they are in a pivot column or row. To do this, the first 
half of the transformation of the tableau is done completely and stored 
in the A#() array. The final transformation is done in the following 
set of code. 

The selection of the pivot row is based on the minimum absolute 
value of the ratio of the heading of the pivot column and the pivot 
element. If a tie Is found, then, for precision, the largest divisor is 
used. 

3378 MN#=BI# 
3379 MA#=0# 
3380 R0=0 
3381 A#=0# 
3382 FOR H=2 TO ND+1 
3383 A#=A#+A#(MD+1+C0,H)*B#(H,C0) 
3384 NEXT H 
3385 IF A#<SM#/100# THEN 3389 
3386 MN#=ABS(B#(1,C0)/A#) 
3387 MA#=A# 
3388 RO=OBJ+CO 
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Searches lower bound constraints for a pivot row. 

3389 FOR 1=2 TO ND+1 
3390 IF V#(I+L0W)<0# OR ABS(B#(I,CO))<SM#/100# THEN 3398 
3391 IF PN<>SGN(B#(I.CO)) THEN 3398 
3392 B#-ABS(V#(I+LOW)/B#(I,CO)) 
3393 IF MN#<B# THEN 3398 
3394 IF MN#=B# AND MA#>ABS(B#(I,CO)) THEN 3398 
3395 MN#«B# 
3396 MA#«ABS(B#(I,CO)) 
3397 RO»I 
3398 NEXT I 

Searches upper bound constraints for a pivot row. 

3399 FOR J=2 TO ND+1 
3400 IF M#(J,1)<=0# OR V#(J+UP)<0# OR ABS(B#(J.CO))<SM#/100# THEN 3408 
3401 IF PM=SGN(B#(J.CO)) THEN 3408 
3402 B#=ABS(V#(J+UP)/B#(J.CO)) 
3403 IF MN#<B# THEN 3408 
3404 IF MN#=B# AND MA#>ABS(B#(J,CO)) THEN 3408 
3405 MN#=B# 
3406 MA#=ABS(B#(J,CO)) 
3407 R0=J+ND+1 
3408 NEXT J 

Searches LP subproblem constraints for pivot row. 

3409 FOR K=2 TO MD+1 
3410 IF V#(K+C0N)<0# THEN 3424 
3411 A#-0# 
3412 FOR J=2 TO ND+1 
3413 A#»Â#+Â#{K,J)*B#(J,CÔ) 
3414 NEXT J 
3415 A#=A#*P#(K) 
3416 IF ABS(A#)<SM#/100# THEN 3424 
3417 IF PM<>SGN(A#) THEN 3424 
3418 B#=ABS(V#(K+CON)/A#) 
3419 IF MN#<B# THEN 3424 
3420 IF MN#=B# AND MA#>ABS(A#) THEN 3424 
3421 MN#=B# 
3422 MA#=ABS(A#) 
3423 R0=K+ND+1+ND+1 
3424 NEXT K 

Returns to find a new pivot column If no pivot row Is found. 

3425 IF R0=0 THEN 3361 
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Complete the transformation of the selected pivot row. 

3426 GOSUB 3600:REM TRAN-CON 

Set switch to zero (0). 

3427 S#(C0)»0# 

Checks accuracy of constraint selected from quadratic tableau by 
using the symmetry of the quadratic tableau. 

The quadratic tableau Is symmetric, so a test of precision can be 
made by calculating the transpose of the transposed column and comparing 
the elements. 

3428 IF ROOOBJ+CO THEN 3436 
3429 FOR H=1 TO ND+1 
3430 FOR 1=2 TO ND+1 
3431 P#(H)=P#(H)+A#(H+MD+1,I)*B#(I.R0-0BJ) 
3432 NEXT I 
3433 P#(H)=P#(H)/2# 
3434 NEXT H 

Sets the switch to one (1) when the pivot row Is from the quadratic 
tableau. 

3435 S#(C0)=1# 

Transforms the simplex tableau. 

3436 GOSUB 3700:REM TRAN-INV 

Returns to main fOutlfiê ôïid SêtS ER"3 if the transformation fails 
because of numerical accuracy. 

3437 IF ER=3 THEN RETURN 

Returns to start next iteration. 

3438 GOTO 3323 
3439 REM DUAL SIMPLEX 

Searches for a dual pivot using the V#() array to find primal 
Infeaslble constraints. 

3440 MI#=-SM# 
3441 R0=0 
3442 FOR I=2+L0W TO CON+MD+1 
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3443 IF MI#<=V#(I) THEN 3446 
3444 MI#=V#(I) 
3445 RO=I-LOW 
3446 NEXT I 

Sets ER=1 If no pivot column or pivot row was found on the first 
pass through the tableau. Sets ER>2 for an infeaslble problem If no 
pivot column or pivot row was found after more than one pass through the 
tableau. 

3447 IF R0>0 THEN 3451 
3448 ER-2 
3449 IF PA=1 THEN ER=1 
3450 RETURN 

Sets the element of V#() corresponding to the pivot row to zero (0) 
so it Is no longer eligible for a pivot row. Increments pass counter by 
one (1). 

3451 V#(R0+L0W)»0# 
3452 PA=PA+1 

Transforms the candidate pivot row. 

3453 GOSUB 3600:REM TRAN-CON 

Searches for a pivot column from among dual feasible columns with 
switchs S#(ND+1) set to one (1). 

This gives priority to the slack-surplus from the quadratic 
objective function. 

3454 nNff®BIff 
3455 MA#=0# 
3456 C0=0 
3457 FOR 1=2 TO ND+1 
3458 IF S#(I)=0# OR M#(I,1)=BI# OR ABS(P#(I))<SM#/100# THEN 3466 
3459 IF SGN(B#(1,I))<>0 AND SGN(B#(1,I))<>SGN(P#(I)) THEN 3466 
3460 B#=B#(1,I)/P#(I) 
3461 IF MN#<B# THEN 3466 
3462 IF MN#=B# AND MA#>ABS(P#(I))THEN 3466 
3463 MN#=B# 
3464 MA#=ABS(P#(I)) 
3465 CO=I 
3466 NEXT I 
3467 IF C0>0 THEN 3478 

Searches for a dual feasible column from among the remaining 
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eligible columns. 

3468 FOR 1=2 TO ND+1 
3469 IF S#(I)>0# OR M#(I,1)=BI# OR B#(1.I)<0# OR P#(I)<SM#/100# THEN 3476 
3470 B#=B#a,I)/P#(I) 
3471 IF MN#<B# THEN 3476 
3472 IF MN#=B# AND MA#>P#(I) THEN 3476 
3473 MN#=B# 
3474 MA#=P#(I) 
3475 CO=I 
3476 NEXT I 
3477 IF C0=0 THEN 3439 

Sets the switch row element of the column corresponding to the 
pivot column to zero (0). 

3478 S#(C0)=0# 

Transforms the simplex tableau using the pivot row selected. 

3479 GOSUB 3700:REM TRAN-INV 

Returns to main routine and sets ER=3 If the transformation falls 
because of numerical accuracy. 

3480 IF ER=3 THEN RETURN 

Returns to start next iteration. 

3481 GOTO 3323 

Quadratic Tableau Transformation — File TRAN-OUD 

The quadratic tableau transformation subroutine (TRAN-QUD) 

transforms the quadratic tableau In two (2) steps. The first step 

I  I  0  I  c '  I  i l  1  Ô '  I  I '  1  B- 1 ' F C I c ' + ï ï - l ' ï ï ' ï ï  1  
I  I  — — - 1  — — —  I  *  I  — I  - - - - - 1  I  =  I  — — —  I  I  
I  I  c I Q I  I  B-IF I  Ï Ï-1 I I  I  ï ï-1'c I I-L'TY I  

transforms the quadratic tableau or the augmented matrix by matrix 

multiplying the tableau times the augmented ÏÏ Inverse from the 

transformed simplex tableau and then transposing the resulting matrix. 

This half transformed and transposed matrix is then stored in the 
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constraint matrix A#(M0+l+ND+l,ND+8) as If 1t were a set of constraints 

In the original variables. 

The last step of the transformation Is the same as the simplex 

transformation In which the transformated objective function row used In 

the simplex tableau on the next Iteration Is the result of the 

multiplication of the first row of the half transformed quadratic 

tableau stored as a constraint row times the augmented B Inverse. 

I B-1'ïï'c |c'+B-l'E'9 I II ICI 

I l-l'c I ï-1'iy I I -ff-lF I ?-l I 

IB-1 'ïï'c+ïï-1 'FC+ÏÏ-1 'FW-l^I c'ïï-l+ïï-l 'Fljff-l I 

I I Ê-î"%-î I 

3550 REM * QUADRATIC OBJECTIVE TRANSFORMATION * 
3551 REM"—————————————————TRAN—QUD—— 

Multiplies the quadratic tableau times the augmented ÏÏ Inverse 
matrix from the simplex tableau and then transforms the resulting 
matrix. 

3552 FOR I«1 TO ND+l 
3553 A#(MD+2,I)=Q#(I,1) 
3554 FOR J-2 TO ND+1 
3555 A#(MD+1+J,I)=0# 
3556 A#(M0+2,I)=A#(M0+2.I)+Q#(I.J)*B#{J.l) 
3557 NEXT J 
3558 FOR J=2 TO ND+1 
3559 IF Q#(I,J)=0# THEN 3563 
3560 FOR K=2 TO ND+1 
3561 A#(MD+1+K,I)=A#(MD+1+K,I)+Q#(I,J)*B#(J,K) 
3562 NEXT K 
3563 NEXT J 
3564 A#(I+MD+1,1)=-A#(I+MD+1,1) 
3565 NEXT I 

Multiplies the first row of the half transformed quadratic matrix 
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times the augmented B inverse matrix resulting In the objective function 
row of the transformed dual tableau. 

Since the objective function row of the dual tableau was also 
calculated in the reinverslon subroutine TRAN-RIV, It is possible to 
save computer processing time by dropping lines 3949-3959 from TRAN-RIV. 

3566 B#(1,1)=-A#(MD+2,1) 
3567 FOR J-2 TO ND+1 
3568 B#(1,J)=0# 
3569 B#(1.1)=B#(1,1)+A#(MD+2.J)*B#(J,1) 
3570 NEXT J 
3571 FOR J=2 TO ND+1 
3572 IF A#(MD+2,J)=0# THEN 3576 
3573 FOR K=2 TO ND+1 
3574 B#(1.K)=B#(1,K)+A#(MD+2,J)*B#(J,K) 
3575 NEXT K 
3576 NEXT J 

Recalculates the objective function row and checks for accuracy. 

Since the quadratic tableau Is always symmetrical, the first row of 
the tableau can be calculated and compared to the first column. 

3577 FOR K=1 TO ND+1 
3578 B#(1.K)=B#(1.K)-A#(K+MD+1.1) 
3579 FOR J=2 TO ND+1 
3580 B#(l,K)=B#(l.K)+A#(K+MD+i.J)*B#(J,l) 
3581 NEXT J 
3582 B#(l.K)=B#(l.K)/2# 
3583 NEXT K 
3584 RETURN 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 

Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Reinversion Subroutine — File TRAN-RIV 

Same as for dual simplex method. 

Program Table of Contents 

Table 7 can be used to reconstruct the above computer code from the 
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Table 7. Beale's BASIC program table of contents 

File Program lines Page Routines 

MAIN-BEA 0001-0147 160 Beale's method 
INPT-OBJ 1200-1220 61 Objective coefficient input subroutine 
INPT-CON 1300-1328 63 Constraint coefficient input subroutine 
INPT-TYP 1400-1440 65 Constraint type input subroutine 
INPT-BND 1500-1523 67 Variable bounds input subroutine 
INPT-QUD 1600-1628 166 Quadratic input subroutine 
UTIL-OPT 1800-1803 22 Option line subroutine 
UTIL-ERS 1850-1853 22 Erase option subroutine 
UTIL-CON 1860-1866 22 Continue line subroutine 
UTIL-CHX 1870-1882 23 Data check subroutine 
REPT-SMP 2200-2224 69 Simplex report subroutine 
ALGR-BEA 3300-3481 172 Beale's algorithm subroutine 
TRAN-QUD 3550-3584 180 Quadratic tableau tranformation subroutine 
TRAN-CON 3600-3633 74 Constraint transformation subroutine 
TRAN-INV 3700-3743 76 Basis inversion subroutine 
TRAN-RIV 3900-3960 78 Basis reinversion subroutine 

computer disk and to organize subroutines from previous program 

listings. Since BASIC code is dependent on program line numbers for its 

subroutine branching, the statement numbers must be maintained as listed 

above. 

Beale's Method: 
Solutions to Example 10 Minimum Project Cost Problem 

Using the previously defined QP problem: 

minimize > (cfij*(Rij-rmcij)'2+fij*(Tj-Ti)) + fix.*(Tn-To) 
all ij 

subject to: Tj-(durij-Rij)-Ti>=0 for all Ij 

Tn-To<=Dur. 

durij-lij> Rij >durij-uij for all ij 

Ti,Rij>=0 for all Isij 
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where: 

cfij - Coefficient for the curvature of the cost for activity ij 
rmcij - Duration reduction of ij at which the variable cost is minimum 
fij - Fixed cost per increment of activity ij potential duration 
Rij - Reduction in duration of activity 1j 
T-f - Node time for node 1 
uij - Upper limit for duration of activity ij if less than durij 
lij - Lower limit for duration of activity ij 
n - Maximum node number 
fix. - Fixed cost per increment of project duration 
durij - Upper limit or cost reference duration of activity ij 
Dur. - Project duration 

the ten (10) activity linear cost problem of example 4 can be rewritten 

as a QP problem for example 10 as: 

minimize 10*R5"2+9*R6'2+8*R7*2+7*R8'2+6*R9"2+5*R10*2 
+4*R11"2+3*R12"2+2*R13"2+1*R14"2 

-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14 

subject to: T3-(10-R5)-0>=0 
T4-(20-R6)-T2>=0 
Tl-(30-R7)-0>=0 
T2-(40-R8)-Tl>=0 
T3-(50-R9)-T2>=0 
T4-(60-R10)-T3>=0 
T3-(70-Rll)-Tl>=0 
T2-(80-R12)-0>-0 
T4-(90-R13)-Tl>»0 
T4-(100-R14)-0>=0 

T4<=Dur. 
R5<=9 
R6<=19 
R7<=29 
R8<=39 
R9<=49 
R10<=59 
Rll<=69 
R12<=79 
R13<=89 
R14<=99 

T1.T2 .R14>=0 

and solved by Beale's method. 
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Minimum Project Cost Problem with Quadratic Cost Functions Solutions 

Using Beale's method, the example 10 problem as defined above was 

solved with the computer algorithm for ten (10) predetermined project 

duration ranging from one hundred (100) to ten (10) time increments in 

steps of ten (10) increments. Since the duration of the project is 

predetermined, the fixed cost f1x.*(Tri-To)» Is not Included in the 

example problem objective function. 

The results of the computer runs as executed on the Panasonic Sr. 

Partner are displayed in table 8 which lists for each fixed project 

duration the number of Iterations required to reach a solution, the 

seconds required to reach a solution, the value of the objective 

function at the solution, and the value of each variable. 

Table 8. Beale's method solutions to the Example 10 minimum project 
cost problem with quadratic cost functions 

Dur. 100 90 80 70 60 
Itr. 41 28 31 31 31 
Sec. 133 87 103 103 103 
Gbj. 14/80.31524 19121.24837 24378.06271 30551.00826 37640.08503 
T1 16.89093 13.71880 10.54666 7.37453 4.20240 
T2 49.74721 46.27071 42.79421 39.31772 35.84122 
T3 76.36980 70.79996 65.23013 59.66029 54.09046 
T4 100 90 80 70 60 
R5 0.05 0.05 0.05 0.05 0.05 
R6 0.05555 0.05555 0.05555 0.05555 0.05555 
R7 13.10906 16.28119 19.45333 22.62546 25.79759 
R8 7.14377 7.44808 7.75245 8.05681 8.36117 
R9 23.37740 25.47074 27.56408 29.65742 31.75076 
RIO 36.36980 40.79996 45.23013 49.66029 54.09046 
Rll 10.52113 12.91883 15.31653 17.71423 20.11193 
R12 30.25278 33.72928 37.20578 40.68227 44.15877 
R13 6.89093 13.71880 20.54666 27.37453 34.20240 
R14 0.50000 10 20 30 40 
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Table 8. Continued 

Dur. 50 40 30 20 10 
Itr. 49 37 32 28 44 
Sec. 164 122 100 83 138 
Obj. 45673.70877 55545.735 68007.735 83069.735 100740.76 
T1 0.99999 1.00000 1 1 1 
T2 31.43362 25.64 19.64 13.64 7.64 
T3 48.14011 39 29 19 9 
T4 50 40 30 20 10 
R5 0.05 0.05 0.05 0.05 1 
R6 1.43362 5.64 9.64000 13.64 17.64 
R7 29 29 29 29 29 
R8 9.56637 15.36 21.36 27.36 33.36 
R9 33.29351 36.64 40.64 44.64 48.64 
RIO 58.14011 59 59 59 59 
Rll 22.85988 32 42 52 62 
R12 48.56637 54.36 60.36 66.36 72.36 
R13 41 51 61 71 81 
R14 50 60 70 80 90 
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MINIMUM PROJECT MAN COUNT PROBLEM 
WITH HYPERBOLIC AND PARABOLIC MAN COUNT FUNCTIONS 

The simplex methods could optimize only problems with linear 

objective functions and linear constraints. Unfortunately, since most 

cost functions are nonlinear, the linearity restriction restricted the 

method to simplified models with limited actual applications. 

Beale's method could optimize a quadratic cost problem If all the 

cost functions could be reduced to a single quadratic objective 

function. Again, In many cases, costs can not be expressed as a single 

quadratic function. 

The variable costs of most Interest to contractors are related to 

manpower. In estimating the cost of a project, the number of manhours 

or mandays required to complete an activity determine the fixed direct 

labor costs. From the mandays is calculated the number of men and days 

needed for each activity (a hyperbolic function Is assumed) to complete 

the project within the alloted time. The number of men or man count 

then determine the variable direct labor or supervision costs. 

To reduce supervision costs, the schedule which minimizes the total 

activity man count is generally selected. Using the notation of 

previous sections, let: 

Then, a nonlinear convex programming (CP) problem for the minimum total 

- Node time for node 1 
- Duration of activity ij 
- Men assigned to complete activity ij 
- Mandays to complete activity ij 
- Project duration 
- Maximum node number n 
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activity man count can be written with objective function: 

minimize 7 M-fj 
all ij 

and schedule constraints: 

subject to: Tj-Ti-Durtj>»0 for all ij 

Tn-To<=Dur. 

and hyperbolic man count constraints: 

Mij*Durij>=hij for all ij 

T-f ,Durij,Mij>=0 for all i,1 j 

This constraint set can be reduced further to a set of hyperbolic 

and hyperbolic of two sheets constraints: 

subject to: M-f)>=h|j for all ij 

Tn-To<=Dur. 

Ti,Mij>=0 for all 1j 

Theory of Supporting Plane 

To solve the minimum man count CP problem, the dual simplex method 

must be modified to Include nonlinear convex constraints in the constraint 

set. In the dual simplex method, a constraint is eligible for a pivot 

row if it is violated by the simplex current point. Of the violated 

constraint, the constraint that is the greatest geometric distance from 

the simplex current point is then selected for the pivot row. 

This same procedure can be followed even if the constraint is 

convex nonlinear. To find if the constraint is "violated", it is a 

simple matter to substitute the current point's coordinate values into 
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the nonlinear constraints function. The geometric distance to the 

nonlinear constraint, assuming the constraint Is differentiate, can be 

calculated Iteratlvely for almost any convex function. 

This leaves only the pivot row to be defined. But what ever pivot 

row Is used. It will have to be linear to be compatible with the simplex 

tableau: It will have to be selected so that any point that satisfies 

the convex constraint will not violate the pivot row; and it will have 

to be violated by the simplex current point. 

Witzqall's Supporting Plane 

In the case of the parabolic constraint, the substitute linear 

constraint, or "supporting plane" derived from the parabolic constraint 

which will provide for a pivot row in the simplex method, can be taken 

directly from the parabolic equation^®. 

If a nonlinear constraint can be written in the following format: 

aiO- I aij*Xlj - > b|(*( > (aijk*Xijk)"2)>=0 (11) 
all j all k all j 

it is parabolic. The parabolic equation has a linear component: 

aiO- > aij*Xlj>=0 (12) 
all j 

and k squared components: 

bk*( > (aijk*Xijk)"2)>=0 
all j 

Geometrically, if a point satisfies the parabolic equation (11) then, 

since the squared terms can only have a positive value, the point cannot 

violate the linear component (12) of the parabolic equation. In fact, 

the linear equation and the parabolic equation share only a single point 
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and that Is the point at which both equations are equal to zero (0). 

The convention of the simplex method Is to start with the point at 

the origin; so for the first Iteration of the dual simplex method, the 

linear component of the parabolic equation (12) and the parabolic 

equation (11) are both violated or both satisfied depending on the value 

of the constant a-fQ. 

The parabolic equation can now be written In vector notation as: 

ao-2a'x-x'Qx 

or In the simplex tableau as: 

I 1 7' I * I ao I -Ï' I * I 1 I 
I —— " 4 *  I ———' I 
I -â I -W I I X I 

In this form, a parabolic constraint can be transposed by using the same 

transformation: 
(gg-1 )'?-!=?-!'3'g-l 

as used for the quadratic tableau In Beale's method or: 

1 s 

an-2a'B-lïï-ïï'ïï-l'Iîff-lïï I -â'ïï-1-ïï'ïï-l'TJff-l 1 
— ———+— 

I -ïï-l'TJff-l s 

where the linear component of the transformed parabolic Is now: 

I ao-2¥'B~lïï-ïï'ïï"lIJff"lF I -2ï'ïï~l-2ïï'ïï-l'Iîff-l I = p' 

In the transformed parabolic, the variables of the constraint 

include slacks set to zero (0) as well as the remaining original 

variables also set to zero (0). As in the original equation in which 

the variables are set to zero (0) at the origin, the linear component of 
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the transformed constraint provides a supporting plane for the simplex 

method at each Iteration. 

Parabolic Constraints with Two Variables 

The linear component of the parabolic constraint provides a 

supporting plane from which to derive a pivot row. If a multivariate 

parabolic must be used, Witzgall's method provides a means of generating 

supporting planes for the constraint. Unfortunately, this method also 

requires a substantial amount of tableau space. 

Take the two (2) variable parabolic constraint: 

Y-a*(X-b)"2>=c 

This constraint when expanded becomes: 

-a*b*2-c+2*a*b*X+Y-a*X*2>=0 

which when written In tableau form Is: 

1 X Y 

l-a*b"2-c I -a*b 1 | 1 
I I II 
I + 1 
I -a*b I -a 0 I X 
I ! I 
I 1 I 0 0 I Y 
17 1 I 
+ + + 

Tableau 26. Parabolic constraint tableau 

with the supporting plane: 

(a*b"2-c)-a*b*X+Y>=0 
7 

To represent this constraint in the simplex tableau requires nine 

(9) tableau 26 entries. 
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By taking advantage of the geometry of two (2) and three (3) 

dimensional constraints, the tableau size requirements for the two (2) 

varlate constraint can be reduced to three (3) entries and the "strength" 

of the supporting plane» or the distance of the supporting plane from the 

current point, can be Increased over that obtained In Witzgall's method. 

Parabolic, Hyperbolic, and Hyperbolic of Two Sheets Constraints 

Three basic types of nonlinear constraints are used In the 

following problems. The parabolic constraint In the form Y+a*(X-b)~2>=c 

where the coefficient of Y is one (1), a is always negative and b and c 

are positive. The hyperbolic constraint in the form Y*X>=c where the 

coefficients of X and Y are one (1) and c is greater than zero (0). And 

the hyperbolic of two sheets or "sheet" constraint in the form X*(Y-Z)>=c 

where the coefficients of X, Y and Z are one (1) and c is greater 

than zero (0). 

Tangent Plane Through à Point on £ Pifferentiable Constraint 

For any differentiable simplex constraint, for any point satisfying 

the constraint as a equality, a plane can be found through the point 

which is tangent to the constraint. If the constraint is convex, any 

point that satisfies the constraint will also satisfy the tangent plane; 

and the tangent plane will meet the requirements of a supporting plane. 

To algebraically derive in two (2) dimensions the tangent line at 

the point (x,y) on the function F(X,Y), take the partials with respect 

to the X variable and the Y variable. These partials give a 

parameterized rate of change at the point (x,y) of the function in the X 
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direction and the Y direction where the parameter In terms of X Is: 

or In terms of Y Is: 

T=X*&F(x.y) 
&X 

>Y*&F^x.y) 

To find the Intersection points of the tangent line and the axes, the 

parameterized slopes In both directions along the line yield the points: 

and: 

which Is graphically shown In figure 49. 

^+c(0.y+x*&F(x.y)* &Y ) y 
\&X &F(x,y) / 

/ 

V 
/ 

/ T* &X 
/ &F(x,y) 

T* &Y 
&F(x.y) 

Y axis 

(y,0) + 
point (x 

F(x,y) ly* &Y F X , Y  
ARxIy) 

x* &X (x.O) 
TFTTIyT X axl s 

Figure 49. Tangent line to a curve at point (x,y) 

The line passing through these two (2) points can be found by 

solving the two (2) simultaneous equations for 1 and j47. 
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1*(x+y*&F(x.y)* &X )+j*(0)=F(x.y) 
&F(x,yj 

1*(0)+3*(y»x*&F(x.y)* &Y )°F(x.y) 
"HR &F(x.y) 

resulting In: 

x+y*SF y+x*a 

Back substitution gives: 

&F(x,y)*X+&F(x.y)*Y=&F(x.y)*x+&F(x.y)*y 
-TR &Y ax 4Y 

which can be reduced to: 

&F(x.y)*(X-x)+&F(x.y)*(Y-y)=0 
&X &Y 

If the formula Is expanded to three (3) dimensions then: 

&F(x.y,z)*(X-x)+&F(x.y.z)*(Y-y)+&F(x.y.z)*(Z-z)=0 
ST 5f SZ 

Nonlinear Convex Constraints Used In Scheduling Problems 

Given the point (x,y,F(x,y)) or (x,y,z), a supporting plane can be 

found through the point for any differentlable convex constraint. 

Several constraints are repeatedly required In the following scheduling 

models and will be defined in more detail. 

A Supporting Line Through a Point on a Parabolic Constraint To 

find the supporting line to the parabolic constraint defined by: 

Y-a*(X-b)"2>=c, Y>=0, X>=0, a>-0. b>=0, 0=0 

the function must first be proven convex. Writing the function as: 

Y=a*X* 2-2*a*b*X+c+a*b"2 
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and differentiated with respect to X: 

&F(X)=2*a*X-2*a*b 
nr 

then if the function Is convex, two (2) points on the function 

((X',F(X')) and (X",F(X"))) should always lie above or on the tangent 

line at (X',F(X')) or: 

F(X")>=F(X')*aF^X')*(X"-X') 

should hold where X"-X'>0. Expanding the equation: 

a*X"'2-2*a*b*X"+c+a*b"2>=a*X'*2-2*a*b*X'+c+a*b*2+(2*a*X'-2*a*b)*(X"-X') 

and reducing: 
X"~2>=X''2-2*X'*X" 

or using the fact that X*>=0 and X">=0 and dividing through by X"*2: 

1>=X'"2-2*X'*X" 
IPT X""2 

which is true since: 
X'<1 
IF  

Using the formula developed above, the supporting line at (x,y) is: 

(-2*a*x+2*a*b)*(X-x)+(Y-y)>=0 
Or: 

-2*a*x*X+Y>=2*a*b*x+y 

A Supporting Line Through a Point on à Hyperbolic Constraint To 

find a supporting line to the hyperbolic constraint defined by: 

X*Y>=c. X>0, Y>0, OO 

the function must first be proven convex. First, select two points X',Y' 

and X",Y" such that: 

X'*Y'=c. X"*Y"=c. X'>0. Y'>0, X">0, Y">0 

then any linear combination of the two (2) points on the function must 
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He above or on the function If the function is convex. With 0<Q<1 then: 

(Q*X•+(1-Q)*X")*(Q*Y'+(1-Q)*Y")= 

c*(Q-2+(1-Q)"2+Q*(1-Q)*(X"*Y'+X'*Y"))= 

c*(Q*2+(l-Q)"2+Q*(l-Q)*(X"+X')) 
TTUr 

Since by inspection: 
X"+X'=A+1>=2 0<A<inf minimum at A=1 
VT J 

then: 
c*(Q"2+(l-Q)"2+Q*(l-Q)*(X"+X'))>=c*(Q"2+(l-Q)-2+Q*(l-Q)*2)=c 

V TT 

Using the formula developed above, the supporting line at (x,y) is: 

y*(X-x)+x*(Y-y)>=0 
or: 

y*X+x*Y>=2*x*y 

A Tangent Plane Through a Point on a Hyperbolic of Two Sheets 

To find a supporting plane to the sheet constraint the function defined 

by: 
X*(Y-Z)=c, X>0, Y>0, Z>=0, (Y-Z)>0, OO 

the function must be proven convex. First, select two (2) points X',Y'. 

Z' and X",Y",Z" such that: 

X'*(Y'-Z')=c, X"*(Y"-Z")=c, X'>0, Y'>0, Z'>=0, X">0, Y">0, Z">=0 

then any linear combination of the two (2) points on the function must 

lie above or on the function if the function is convex. With 0<Q<1 then: 

(Q*X'+(1-Q)*X")*(Q*Y'+(1-Q)*Y"-(Q*Z'+(1-Q)*Z"))= 

(Q*X'+(1-Q)*X")*(Q#(Y'-Z')+(1-Q)*(Y"-Z"))= 

which can be reduced to: 

c*(Q'2+(1-Q)'2+Q*(1-Q)*(X'+X"))>=c 
TT V 

as in the hyperbolic case. 
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Using the formula developed above, the supporting plane at (x,y,z) Is: 

(y-z)*(X-x)+x*(Y-y)-x*(Z-z)>=0 
or: 

(y-z)*X+x*Y-x*Z>»2*x*y-2*x*z 

A Supporting Line Through a Point on a^ Cubic Hyperbolic Constraint 

A variation of two (2) of the above constraints Is useful In combining a 

quadratic objective function with a hyperbolic or sheet constraint. 

To find a supporting line to the "cubic hyperbolic" constraint defined 

by the function; 
X*Y"2=c, X>0. Y>0, OO 

the function must first be proven convex. Select two (2) points X',Y' 

and X",Y" such that: 

X'*Y'"2=c, X"*Y"*2=c, X'>0, Y'>0. X">0, Y">0 

then any linear combination of the two (2) points on the function must 

lie above or on the function if the function is convex. With 0<Q<1 then: 

(Q*X'+(1-Q)*X")*(Q*Y'+(1-Q)*Y")'2= 

c*(Q"3+( 1-Q)*3+Q*( l-Q)"2*(Xl+2*Yl)+Q-2*( l-Q)*(r+2*r ) ) 
X" Y" X' Y* 

Now take: 

Xl+2*Y^=x;_+2* yir'»A+2>-3 0<A<inf minimum at A=1 
X" Y" X" Tf" yTT 

and by inspection: 
r+2*r>=3 
X' Y' 

so that: 
c*(Q-3+(l-Q)"3+3*Q*(l-Q)*2+Q-2*(l-Q)*3)=c 

Using the formula developed above, the supporting line at (x,y) is: 

y"2*(X-x)+2*x*y*(Y.y)>=0 
or: 

y-2*X+2*x*y*Y>=3*x*y"2 
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A Supporting Plane Through à Point on ^ Cubic Sheet Constraint 

Another combined constraint Is the "cubic sheet" constraint defined 

by the function: 
X#(Y-Z)"2=c 

To prove the function convex, select two (2) points X',Y',Z' and X",Y", 

Z" such that: 

X'*(Y'-Z')"2=c. X"*(Y"-Z")"2=c. X'>0, Y'>0, Z'>=0, X">0, Y">0, Z">=0 

then any linear combination of the two (2) points on the function must 

lie above or on the function If the function Is convex. With 0<Q<1 then: 

(Q*X'+(1-Q)*X")*(Q*Y'+(1-Q)*Y"-(Q*Z'+(1-Q)*Z"))"2= 

(Q*X'+(1~Q)*X")*(q*(Y'-Z')+(1-Q)*(Y"-Z"))'2= 

which can be reduced to: 

c*(Q"3+(l-Q)'3+Q*(l-Q)"2*()r+2*yn )+Q"2*(l-Q)*(r+2* ))>=c 
X" X' y/W 

as In the hyperbolic cubic case. Using the formula developed above, the 

supporting plane at (x,y,z) Is: 

(y-2 )'"2*( X-x)+(2*x*y-2*x*z )*( Y-y )+( -2*x*y+2*x*z )*(Z-z )>=0 

or; 
(y-z)*X+2*x*Y-2*x*Z>=3*x*(y-z) 

Dual Simplex Method with Nonlinear Constraints BASIC Code 

The nonlinear constraint algorithms generate for the simplex 

methods linear supporting planes to replace the original nonlinear 

constraint. The supporting plane is stored In the constraint matrix of 

the simplex tableau like a normal simplex constraint, and the nonlinear 
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convex constraint Is coded Into "keys" in the last seven columns of the 

simplex constraint matrix A#(MD+l,ND+8). 

Because a majority of the code Is identical to the dual simplex 

algorithm, most of the routines used In the dual simplex algorithm with 

nonlinear constraints are taken directly from the dual simplex 

algorithm. 

Dual Simplex Method Main Routine — File MAIN-SMP 

Same as for the dual simplex method with the exception that the 

constraint matrix A#(MD+l,ND+8) is enlarged by seven (7) columns to 

accommodate keys for the nonlinear constraints, and the main program of 

the dual simplex method (MAIN-SMP) is changed to call the constraint 

keys subroutine by changing line: 

79 GOSUB 3000:REM ALGR-KEY 

Utility Subroutines ~ Files UTIL-OPT, UTIL-ERS. UTIL-CON, and UTIL-CHX 

Same as for critical path method. 

Input Subroutines — Files INPT-OBJ. INPT-CON. INPT-TYP. and INPT-BND 

Sâiitê as for dual simplex iîîêthOu. 

To represent the nonlinear constraints in the linear constraint 

matrix, the following programming conventions have been followed. The 

parabolic constraint is represented by the linear constraint Y+a*X>=b 

with c entered as a PARABOLIC constant in constraint type input routine; 

the hyperbolic constraint is represented by the linear constraint Y+X>=0 

with c entered as a HYPERBOLIC constant; and the sheet constraint by the 

linear constraint X+2*Y-3*Z>=0 with c entered as a SHEET constant. 
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Report Subroutine — File REPT-SMP 

Same as for dual simplex method. 

Constraint Keys Subroutine — File ALGR-KEY 

The constraint keys subroutine (ALGR-KEY) sets the keys as shown 

in table 9 (the "X" or "Y" represents the column numbers in the AT 

Table 9. Nonlinear constraint key in A matrix 

T matrix column number 

Constraint type ND+2 ND+3 ND+4 ND+5 ND+6 ND+7 ND+8 

Parabolic b 0 0 "X" iiyii 0 c 
Hyperbolic 0 c 0 "X" iiyii 0 0 
Sheet 0 0 c "X" IIY n 112" 0 

matrix in which the X or Y coefficient are located) before the dual 

simplex algorithm is processed. When the processing ends, the simplex 

tableau is returned to its original preprocessed form with the keys. 

3000 REM *CONSTRAINT KEYS ALGORITHM* 
3001 REM ALGR-KEY 

3002 FOR 1=2 TO MD+1 
3003 IF A#(I.ND+2)=0 THEN 3011 
3004 A#(I,ND+8)=A#(I.L) 
3005 FOR K=2 TO ND+1 
3006 IF A#(I,K)<0 THEN A#(I,N0+5)=K-1 
3007 IF A#(I.K)>0 THEN A#(I.ND+6)=K-1 
3008 IF A#(I,K)<0 THEN A#(I,ND+7)=ABS(A#(I.K)) 
3009 NEXT K 

Sets the parabolic constraint keys in columns ND+5,6,7 of the 
constraint matrix. Column ND+5 is the Y variable number. Column ND+6 
is the X variable number. Column ND+7 Is the coefficient of the X 
variable. 

3010 GOTO 3023 
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3011 IF A#(I.ND+3)=0 THEN 3017 
3012 FOR K=2 TO ND+1 
3013 IF A#(I,K)=1 THEN A#(I,MD+5)=K-1 
3014 IF A#(I.K)=2 THEN A#(I.ND+6)=K-1 
3015 NEXT K 

Sets the hyperbolic constraint keys in columns ND+5,6 of the 
constraint matrix. Column ND+5 is then X variable number. Column ND+6 
is then Y variable number. 

3016 GOTO 3023 
3017 IF A#(I,ND+4)=0 THEN 3023 
3018 FOR K=2 TO ND+1 
3019 IF A#(I,K)=1 THEN A#(I,ND+5)=K-1 
3020 IF A#(I,K)=2 THEN A#(I.ND+6)=K-1 
3021 IF A#(I,K)=-3 THEN A#(I,ND+7)=K-1 
3022 NEXT K 

Sets the sheet constraint keys in columns ND+5,6,7 of the 
constraint matrix. Column ND+5 is the X variable number. Column ND+6 
is the Y variable number. Column ND+7 is the Z variable number. 

3023 NEXT I 
3024 GOSUB 3300:REM ALGR-SMP;ALGR-BEA;ALGR-GOF;ALGR-CRN;ALGR-GOM 

Executes the processing algorithm, 

3025 REM 
3026 REM GOSUB 3100:REM ALGR-RST;ALGR-BND;ALGR-DBK;ALGR-PRS 
3027 REM FOR 1=2 TO ND+1 
3028 REM M#(I.1)=N*(1,I) 
3029 REM M#(I,2)=N%(2,I) 
3030 REM NEXT ! 

In the branch and bound algorithms, the upper and lower bound array 
is used to set subproblem bounds. To restore the original bounds, the 
first node of the original problem is used to restore the upper and 
lower bound array to its original values. 

3031 REM 
3032 FOR K=2 TO MD+1 
3033 IF A#(K,ND+2)=0 THEN 3041 
3034 A#(K,l)=A#(K,ND+8) 
3035 FOR J=2 TO ND+1 
3036 A#(K.J)=0 
3037 IF J=A#(K,ND+5)+l THEN A#(K,J)=-A#(K,ND+7) 
3038 IF J=A#(K.ND+6)+l THEN A#(K,J)=1 
3039 NEXT J 
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Reconstructs the original parabolic coefficients from the keys 
located in ND+5,6,7,8 of the constraint matrix. 

3040 GOTO 3055 
3041 IF A#(K,ND+3)=0 THEN 3048 
3042 FOR J=1 TO ND+1 
3043 A#(K,J)=0 
3044 IF J=A#(K.ND+5)+l THEN A#(K,J)«1 
3045 IF J=A#(K,ND+6)+l THEN A#(K,J)=2 
3046 NEXT J 

Reconstructs the original hyperbolic coefficients from the keys 
located in ND+5,6 of the constraint matrix. 

3047 GOTO 3055 
3048 IF A#(K,ND+4)=0 THEN 3055 
3049 FOR J=1 TO ND+1 
3050 A#(K,J)=0 
3051 IF J=A#(K,ND+5)+l THEN A#(K.J)=1 
3052 IF J=A#(K,ND+6)+l THEN A#(K,J)=2 
3053 IF J=A#(K,ND+7)+l THEN A#(K,J)=-3 
3054 NEXT J 

Reconstructs the original sheet coefficients from the keys 
located in ND+5,6,7 of the constraint matrix. 

3055 NEXT K 
3056 CLS 
3057 RETURN 

Dual Simplex Algorithm Subroutine — File ALGR-SMP 

Same as for the dual simplex method except that the nonlinear 

constraint subroutines must be called from the dual simplex algorithm 

by adding the lines: 

3333 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3334 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
3336 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANL 

Transformation Subroutines — Files TRAN-CON, TRAN-INV, and TRAN-RIV 

Same as for dual simplex method. 
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Parabolic Subroutines — Files PAR-TANA, PAR-TANL, or PAR-TANG 

Although an equation for a supporting line was derived in terms 

of any tangent point to the constraint function, finding the best 

supporting line which will meet all of the requirements of a pivot row 

is dependent on finding the best tangent point on the constraint 

function. 

To find a point on the constraint which will result in the 

strongest possible pivot row requires that the supporting line, or in 

this case the tangent line, be the greatest possible geometric distance 

from the simplex current point. This distance is measured by the length 

along a normal to the tangent line which passes through the simplex 

current point. The line tangent to the constraint that yields the 

stroligest simplex pivot row for the given nonlinear constraint has as 

its tangent point, a point on the normal line passing through the 

simplex current point. 

This point can also be shown to correspond to the point on the 

constraint function that is closest tc the simplex current point. This 

point can be found for some constraints with a closed form solution; but 

in most cases, an iterative approach is used. Several algorithms will 

be presented for finding this point, each having advantages in different 

applications. 

Axial Algorithm The axial algorithm for the parabolic constraint 

starts with a point (b,D) on a line through the axis of the parabolic 

curve as shown in figure 50. (The constraint is only in two (2) 
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Y axis 

Y-a*(X-b)'2=c 

+vv(b,D') 

(b,D)+ 

I.H) 

Current point^+ (x,y) 
I T 

(0,0) X axis 

Figure 50. Parabolic constraint supporting line, axial algorithm 

dimensions, so only the corresponding dimensions of the simplex current 

point need be considered.) The equation of the line through the point 

(b,D) and the current point of the simplex method (x,y) is: 

X=(Y*(x-b)+b*y-x*D) 
(y-D) 

The intersection of the line and the curve: 

(Y-c)=a*(X-b)'2 

can be found by substitution as: 

where: 

Y=(x-D)"2+K- ̂ (x-D)"2+Kr2-4*G*c*(x-D)"2-r2 =H 
2*G 

G=a*(x-b)*2 
K=2*D*G 
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Say the point of intersection is the point (I,H). The I is not 

needed in further calculations so its value is not calculated. 

If the point (I,H) were on the normal line from the current point 

(x,y) to the strongest pivot row or tangent line, then the normal to the 

tangent line at point (I,H) passing through (I,H) would intersect the 

axis at (b,D). 

To find the actual point of intersection, the parabolic function: 

F(X,Y)=Y-a*X"2+2*a*b*X-a*br2-c=0 

is differentiated with respect to X and Y: 

&F(X.Y)=1 &F(X,Y)=-2*a*X+2*a*b 
&Y ST 

and the parametric equation of the normal line through (I,H) is found: 

Y=H+T X=I+(2*a*b-2*a*I)*T 
or rewriting: 

Y= X -(I-2*a*b*H+2*a*q*H) 
(2*a*b-2*a*I) (2*a*b-2*a*I) 

The point of intersection of the normal through (I,H) and the axis: 

X=b 
is then by substitution: 

Y-K+ 1 ̂ 0' 
?*a 

for a new point (b,D') which Is assumed not (b,D) so the search 

conti nues. 

This leads back to finding the intersection of the line between 

(b,D') and (x,y) and the parabolic curve by the formula: 

Y=(x-D')'2+K- . V^(x-D')'2+K)"2-4*G*c*(x-D')"2-K"2 =H' 

where: 
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G=A*(x-b)"2 
K=2*D'*G 

If the point (I'.H') is as close to point (I,H) as needed by the 

computer tolerances then the stop at (I'M'). Otherwise, set: 

H=H' 

and continue the iteration until a closer tolerance Is reached. 

Supporting Line for Parabol1c Using Axial A1 gorithm The 

supporting line for parabolic constraint using the axial algorithm 

subroutine (PAR-TANA) finds the point on the parabolic constraint, a 

constraint whose parameters are stored In the last seven (7) columns of 

the constraint matrix, which is closest to the current simplex point by 

using the axial algorithm and then constructs the tangent line through 

the point and loads the line's coefficients into the linear portion of 

the constraint matrix. 

4000 REM * SUPPORTING LINE FOR PARABOLIC USING AXIAL ALGORITHM * 
4001 REM PAR-TANA — 

4002 ZX=A#(K,ND+5)+l 
4003 ZY=A#(K,ND+6)+l 
4004 A#=A#(K,Nu+7) 
4005 B#=A#(K,ND+2) 
4006 IF B#<0# THEN B#=0# 
4007 C#=A#(K,ND+8) 
4008 Y#=B#(ZY,1) 
4009 X#=B#(ZX.l) 
4010 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4011 IF X#>=0# AND Y#>=0# AND Y#-A#*(X#-B#)-2>=C# THEN RETURN 
4012 IF X#<>B# THEN 4015 
4013 Y#=C# 
4014 GOTO 4027 
4015 6#=A#*(B#-X#)*(B#-X#) 
4016 D#=C#+1#/(2#*A#) 
4017 IF D#<=Y# THEN D#=Y#+1#/(2#*A#) 
4018 FOR W=1 TO 50 
4019 K#=2#*D#*G# 
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4020 H#=(((Y#-D#)-2#+K#)-CDBL(SqR(((Y#-D#)-2#+K#)"2#-4#*G#*C#*(Y#-D#)*2# 
-Kr2#)))/(2#*G#) 

4021 IF ABS(D#-H#-1#/(2#*A#))<.00001 THEN 4024 
4022 D#=H#+1#/(2#*A#) 
4023 NEXT W 
4024 Y#=H# 
4025 IF Y#<C# THEN Y#=C# 
4026 X#=(B#*A#+SGN(X#-B#)*CDBL(SQR(A#*(Y#-C#))))/A# 
4027 REM A#(K,1)=Y#+2#*A#*X#*(B#-X#) 
4028 A#(K,1)=A#*B#*B#-A#*X#*X#+C# 
4029 FOR 1=2 TO ND+1 
4030 A#(K.I)=0# 
4031 IF I=ZX THEN A#(K,I)=2#*A#*(B#-X#) 
4032 IF I=ZY THEN A#(K,I)=1# 
4033 NEXT I 
4034 RETURN 

Line Search Algorithm The line search algorithm for the 

parabolic constraint starts with two (2) points on the parabolic curve. 

Y-a*(X-b)*2=c 

Y axis 

(U.D^ 

(x,y) Current 
point 

(L+U.O) (U,0) 
T" 

(0.0) (L.O) 

X axis 

Figure 51. Parabolic constraint supporting line, line search algorithm 
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The first point (u,d) is the projection of the simplex current point up 

to the parabolic curve as shown in figure 51 or when: 

S=sign(b-x) where s=l if >0, s=0 if =0 s=-l if <0 

then: 
U=x+S*small amount 
D=c+a*(x-b)*2 

The second point (L,E) is either the apex of the parabolic: 

L=b 
E=c 

or if y greater than c then: 

L=b+ /y-c 
/ a 
E=y 

The algorithm cuts the X axis interval or |U-L| in half and selects as 

the new set of points the set of points which are on the side of the 

original interval which reduces the differences in the slopes of the 

normal line to the curve at the point (U,D) and the line through the 

points (U,D) and (x,y). To do this, first let G equal the slope of the 

normal line to the curve at the point (U,D): 

6= i 
(2*a*b-2*a*U) 

and K equal the slope of the line through (U,D) and (x,y): 

so that: 
S=sign(G-K) S=(l.-1) 

Then, move to a new point at half interval distance in the direction 

which reduces the differences in slopes with: 

U'=U-(S*|U-L|) 
2 
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resulting In a new Interval on the X axis of only half the width. 

(After the first Iteration of the search, the upper and lower point 

might not coincide with the U and L variable name.) When the Interval 

lU-Ll Is within a preset tolerance, then stop the search for the tangent 

point. Otherwise, repeat the algorithm with another half Interval by 

setting: 
L=U 
U=U' 

Supporting 1Ine for Parabol1c Using Line Search Algorithm The 

supporting line for parabolic constraint using the line search algorithm 

subroutine (PAR-TANL) finds the point on the parabolic constraint, a 

constraint whose parameters are stored in the last seven (7) columns of 

the constraint matrix, which Is closest to the simplex current point by 

using the line search algorithm and then constructs the tangent line 

through the point and loads the line's coefficients into the linear 

portion of the constraint matrix. 

4000 REM * SUPPORTING LINE FOR PARABOLIC USING LINE SEARCH ALGORITHM * 
4001 REM PAR-TANL 

4002 ZX=A#(K,ND+5)+l 
4003 ZY=A#(K.ND+6)+l 
4004 A#=A#(K,ND+7) 
4005 B#=A#(K,ND+2) 
4006 IF B#<0# THEN B#=0# 
4007 C#=A#(K,ND+8) 
4008 Y#=B#(ZY,1) 
4009 X#=B#(ZX,1) 
4010 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4011 IF X#>=0# AND Y#>=0# AND Y#-A#*(X#-B#)*2>=C# THEN RETURN 
4012 U#=X# 
4013 IF X#-B# THEN 4025 
4014 L#=B# 
4015 S#=SGN(B#-X#) 
4016 U#=U#+S#*lE-08 
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4017 IF Y#>C# THEN L#=B#+S#*CDBL(SQR((Y#-C#)/A#)) 
4018 FOR W=1 TO 100 
4019 IF ABS(U#-L#)<lE-08 THEN 4025 
4020 T#=U# 
4021 S#=((X#-U#)-2#*A#*(B#-U#)*{Y#-A#*U#*U#+2#*A#*B#*U#-A#*B#*B#-C#))/(2 

#*A#*(B#-U#)*(X#-U#)) 
4022 U#=U#-((SGN(S#)*ABS(L#-U#))/2#) 
4023 L#=T# 
4024 NEXT W 
4025 X#=U# 
4026 Y#=A#*(U#-B#)*(U#-B#)+C# 
4027 REM A#(K,1)=Y#+2#*A#*X#*(B#-X#) 
4028 A#(K.1)=A#*B#*B#-A#*X#*X#+C# 
4029 FOR 1=2 TO ND+1 
4030 A#(K,I)=0# 
4031 IF I=ZX THEN A#(K,I)=2#*A#*(B#-X#) 
4032 IF I=ZY THEN A#(K.I)=1# 
4033 NEXT I 
4034 RETURN 

Gordlan Algorithm A simpler and more efficient means of 

finding a point through which to pass the tangent line is to simply 

project up in the Y direction to the curve from the simplex current 

point. This crude, but simple, means of cutting the "Gordlan" knot 

expands the use of the supporting plane to more complex functions such 

as the cubics used later. The price that is paid for the simpler 

algorithm Is that the resulting supporting line or pivot row is not the 

strongest pivot row that can be found for the given constraint. 

The algorithm simply evaluates the Y variable based on the x value 

of the simplex current point. Since the parabolic function never 

approaches the vertical or infinite slope, there is always a 

corresponding Y value. Figure 52 shows graphically the projection of 

the simplex current point onto the parabolic curve. 
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Y axis 

+^{x,c+a*(X-b)'2) 

(b.c)  

+(x,y) Current point 

(0.0) 

Figure 52. Parabolic constraint supporting line, Gordian algorithm 

X axis 

Supporting 1ine for Parabolic Using Gordian Algorithm The 

supporting line for parabolic constraint using the Gordian algorithm 

subroutine (PAR-TANG) finds the point on the parabolic constraint, a 

constraint whose parameters are stored in the last seven (7) columns of 

the constraint matrix, which is the vertical projection of X coordinate 

of the simplex current point on the parabolic function and then 

constructs the tangent line through the point and loads the line's 

coefficients into the linear portion of the constraint matrix. 

4000 REM * SUPPORTING LINE FOR PARABOLIC USING GORDIAN ALGORITHM * 
4001 REM PAR-TANG 

4002 ZX=A#(K,ND+5)+l 
4003 ZY=A#(K,ND+6)+l 
4004 A#=A#(K.ND+7) 
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4005 B#=A#(K,ND+2) 
4006 IF B#<0# THEN B#=0# 
4007 C#=A#(K,ND+8) 
4008 Y#=B#(ZY.l) 
4009 X#=B#(ZX,1) 
4010 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4011 IF X#>-0# AND Y#>»0# AND Y#-A#*(X#-B#)"2>=C# THEN RETURN 
4012 A#(K,1)=A#*B#*B#-A#*X#*X#+C# 
4013 FOR 1=2 TO ND+1 
4014 A#(K,I)=0# 
4015 IF I=ZX THEN A#(K,I)=2#*A#*(B#-X#) 
4016 IF I=ZY THEN A#(K,I)=1# 
4017 NEXT I 
4018 RETURN 

Hyperbolic Subroutines » Files HYP-TANA. HYP-TANL. or HYP-TANG 

The same three approaches used with the parabolic constraint for 

finding a tangent point can be used with the hyperbolic constraint. 

The details of the algorithms are different due to the differences in 

the functions, but in general the approaches utilize the intersections 

on an axis line, the distance on the curve between two (2) points, and 

the projection of the simplex current point to the curve. 

Axial Algorithm The axial algorithm first constructs an axis 

line for the hyperbolic function X*Y>=c which is the line of slope one 

(1) through the origin. Any line that Is the normal to the tangent to 

the curve that goes through the tangent point would work as an axis, but 

the forty-five (45) degree line is mathematical 1 y the simplest. 

On the axis line, select as a starting point the point (D,D) where: 

D=c+1 
or: 

D=x+1 

if D>x where x is the X coordinate of the current simplex point (x,y) 

Graphically, the axes and the point (D,D) are shown in figure 53. 
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Y axis 

Y*X=c 
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/ 

+/(D',D') 

JD.D)^ + 

/ 
/ 

/M 

+(x,y) Current point 

(0,0) X axis 

Figure 53. Hyperbolic constraint supporting line, axial algorithm 

As with the parabolic function, the line through (d,d) and (x,y) Is: 

Y=((D-y)*X+D*(y-x)) 

and the Interaction of the line with: 

Y*X>=c 
Is: 

X=D*(x-y)+ /D*(y-x2j^2+4*c*(D-x)*(D-y) =G 

or say the point (G,H). If the point (G,H) were on the normal line from 

the current point (x,y) to the strongest pivot row or tangent line, then 

the normal to the tangent line at point (G,H) passing through (6,H) 

would Intersect the axis at (D,D). 

To find If this Is true, the normal line to the tangent of the 
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function: 

F(X,Y)=X*Y-c=0 

differentiated with respect to X and Y: 

&F(X.Y)=Y &F(X.Y)=X 
SJT" i? 

can be written In parametric form for the point (g,h): 

X=G+H*T Y=H+G*T 

or as: 
Y=(H*2+G*X-G"2) 

H 

The Intersection of the line with the axis; 

X=Y 

is then: 
X=(H"2-G)=(c+G~2)=D' 
(H%) ̂  

for a new point (D',D'), which is assumed not to be (D.D), so the search 

continues. 

This leads back to finding the intersection of the line between 

(D',D') and (x,y) and the hyperbolic curve by the formula: 

X=D'*( x-y)+ /d '*( y-x) )"2-»-4*c*(D ' -x)*(D ' -y ) =G' 
2*(D'-y) 

If the point (G',H') is as close to point (G,H) as needed for the 

computer tolerances, then the stop at (G*H'). Otherwise, set: 

G=G' 

and continue the iteration until a closer tolerance is reached. 

Supporting Line for Hyperbolic Using Axial Algorithm The 

supporting line for the hyperbolic constraint using the axial algorithm 
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subroutine (HYP-TANA) finds the point on the hyperbolic constraint, a 

constraint whose parameters are stored in the last seven (7) columns of 

the constraint matrix, which is closest to the simplex current point by 

using the axial algorithm and then constructs the tangent line through 

the point and loads the line's coefficients into the linear portion of 

the constraint matrix. 
4200 REM * SUPPORTING LINE FOR HYPERBOLIC USING AXIAL ALGORITHM * 
4201 REM HYP-TANA 

4202 ZX=A#(K,ND+5)+l 
4203 ZY=A#(K.ND+6)+l 
4204 C#=A#(K.ND+3) 
4205 Y#=B#(ZY.l) 
4206 X#=B#(ZX,1) 
4207 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4208 IF X#>0# AND Y#>0# AND X#*Y#>=C# THEN RETURN 
4209 D#=(C#+1#) 
4210 IF X#>=D# THEN D#=(X#+1#) 
4211 FOR W=1 TO 20 
4212 G#=(X#*D#-Y#*D#+SQR(((Y#*D#-X#*D#)-2)+4#*(D#-X#)*(D#-Y#)*C#))/(2#*( 

D#-Y#)) 
4213 D#=(G#*G#+C#)/G# 
4214 NEXT W 
4215 A#(K,1)=2#*C# 
4216 FOR 1=2 TO ND+1 
4217 A#(K,I)=0# 
4218 IF I=ZX THEN A#{K,I)=C#/S# 
4219 IF I=ZY THEN A#(K.I)=6# 
4220 NEXT I 
4221 RETURN 

Line Search Algorithm The line search algorithm starts with 

the current simplex point (x,y) and the point (G,H) on the hyperbolic 

curve as shown in figure 54 where: 

G= /E 

H= y/c 
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Y axis 

Y*X=c 

c»y) Current point" 

(G,0) (S".0) (G',0) X axis 

Figure 54. Hyperbolic constraint supporting plane, line search algorithm 

The normal to the tangent line at the point (G,H) on the function: 

F(X.Y)=X*Y-c=0 

through the point (x,y) can be found by differentiating with respect to 

X and Y: 
tftX.YM IFOun-X 

sX &Y 

and written In parametric form as: 

X=x+H*T Y=y+6*T 
or by substitution as: 

Since: 

then: 

Y=y+((X-x)*G) 
H 

H=c 
G 

Y=y+((X-x)*G"2) 
c 



217 

The intersection of this line passing through the point (x,y) and 

the hyperbolic function: 
X*Y=c 

results in: 

X=x*G~2-y*C+ /(y*c-x*G"2)"2+4*c"2*G*2 =G' 
2*6-2 

Saying that the intersection point is (G',H'), if the point (G',H') is 

as close to point (G,H) as needed for the computer tolerances then 

stop at (G',H'). Otherwise, a new point (G",H") from which to start 

the iteration again can be found by averaging the two (2) previous 

intersections by; 
G"=(G'+G) 

2 

Supporting Line for Hyperbolic Using Line Search Algorithm The 

supporting line for the hyperbolic constraint using the line search 

algorithm subroutine (HYP-TANL) finds the point on the hyperbolic 

constraint, a constraint whose parameters are stored in the last seven 

(7) columns of the constraint matrix, which Is closest to the simplex 

current point by tssing ths lirss sssrch slgcritum and then constructs the 

tangent line through the point and loads the line's coefficients into 

the linear portion of the constraint matrix. 

4200 REM * SUPPORTING LINE FOR HYPERBOLIC USING LINE SEARCH ALGORITHM * 
4201 REM HYP-TANL 

4202 ZX=A#(K.ND+5)+l 
4203 ZY=A#(K,ND+6)+l 
4204 C#=A#(K,ND+3) 
4205 Y#=B#(ZY,1) 
4206 X#=B#(ZX.l) 
4207 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4208 IF X#>0# AND Y#>0# AND X#*Y#>=C# THEN RETURN 
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4209 G#=(C#*X#-C#*Y#+CDBL(SQR(((C#*Y#-C#*X#)"2)+4#*C#*C#*C#)))/(2#*C#) 
4210 FOR W=1 TO 50 
4211 T#=(G#*G#*X#-C#*Y#+CDBL(SQR(((C#*Y#-6#*6#*X#)-2)+4#*C#*C#*6#*G#)))/ 

(2#*G#*G#) 
4212 IF ABS(G#-T#)<.0000001 THEN 4215 
4213 G#=(G#+T#)/2# 
4214 NEXT W 
4215 A#(K,1)=2#*C# 
4216 FOR 1=2 TO ND+1 
4217 A#(K,I)=0# 
4218 IF I=ZX THEN A#(K,I)=C#/G# 
4219 IF I=ZY THEN A#(K,I)=G# 
4220 NEXT I 
4221 RETURN 

Gordlan Algorithm The Gordlan algorithm for the hyperbolic 

constraint projects the current simplex point (x,y) onto the 

hyperbolic curve In either the X or Y direction depending on the 

location of the current dual simplex point. The hyperbolic function 

asymptotically approaches both the X and Y axes, so trying to project 

the simplex point onto the curve In only one (1) direction would not 

result In a point on the curve In all cases. To solve this problem, the 

region of points violating the constraint Is divided Into three (3) 

regions âS shown In figuré 55. If the simplex current point lies bëlôw 

the line Y= /c and Is less than x then the point ( /c , /c ) Is always 
"Z 

use the point through which the tangental line passes. If the current 

dual simplex point lies above the line or on the line, and y>= /c , then 
2 

point on the curve to be used as the tangent point is found by the 

projection in the Y direction. Otherwise, the projection in the X 

direction is used. 
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X*Y=c 

Y axis 

(x.y)+- \ (c,y) 

X= /c 

(0,0) I + (x,y) Current point 

X axis 

Figure 55. Hyperbolic constraint supporting line, Gordlan algorithm 

Supporting Line for Hyperbol1c Using Gordlan Algorithm The 

supporting line for the hyperbolic constraint using the Gordlan 

algorithm subroutine (HYP-TANG) finds the point on the hyperbolic 

constraint, a constraint whose parameters are stored in the last seven 

(7) columns of the constraint matrix, by using the Gordlan algorithm and 

then constructs the tangent line through the point and loads the line's 

coefficients into the linear portion of the constraint matrix. 

4200 REM * SUPPORTING LINE FOR HYPERBOLIC USING GORDIAN ALGORITHM * 
4201 REM HYP-TANG 

4202 ZX=A#(K,ND+5)+l 
4203 ZY=A#(K,ND+6)+l 
4204 C#=A#(K,ND+3) 
4205 Y#=B#(ZY,1) 
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4206 X#=B#(ZX.l) 
4207 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4208 IF X#>0# AND Y#>0# AND X#*Y#>=C# THEN RETURN 
4209 G#=CDBL(SQR(C#)) 
4210 IF Y#>X# THEN GOTO 4219 
4211 IF X#>=G#/2# THEN G#=X# 
4212 A#(K,1)=2#*G#*C# 
4213 FOR L=2 TO ND+1 
4214 A#(K,L)=0# 
4215 IF ZX=L THEN A#(K.L)=C# 
4216 IF ZY=L THEN A#(K,L)=6#*6# 
4217 NEXT L 
4218 RETURN 
4219 IF Y#>=G#/2# THEN G#=Y# 
4220 A#(K,1)=2#*C# 
4221 FOR L=2 TO ND+1 
4222 A#(K.L)=0# 
4223 IF ZX=L THEN A#(K,L)=6# 
4224 IF ZY=L THEN A#(K,L)=C#/G# 
4225 NEXT L 
4226 RETURN 

Hyperbolic Sheet Subroutine — Files SHT-TANA. SHT-TANG. or SHT-TANG 

The sheet constraint adds a third dimension to the search for a 

point on the surface which will result In the strongest pivot row. As 

before, the point on the surface which is closest to the simplex current 

point will provide that point. 

A modification of three approaches used previously for the 

hyperbolic function will work for the sheet constraint. This can be 

attributed to the fact that the sheet function is linear in the Y and Z 

axes plane and hyperbolic like only in the X and Y axes plane. 

Axial Algorithm The axial algorithm first constructs an axis 

line. In three (3) dimensions, this line is the intersection of the 

plane formed by the forty-five (45) degree axis of all the hyperbolic 

like sections in X and Y axes plane and the plane through the simplex 
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X*(Y-Z)=c 

(A.B.D) + 

( yc.(y+z+\/c).(y+z- V c ) )  

+(x.y,z) Current point 

(o!o) X axis 

Figure 56. Hyperbolic sheet constraint supporting plane, axial algorithm 
X and Y axes view 

X*(Y-Z)=c 

\(A'.B'.D 

(A.B.D)S 

Y axis 

( yc .(y+z+ \/c),(y+z- /c)) 

'+v (E.F.G) 

+ (x.y.z) Current point 

(0.0) 
Z axis 

Figure 57. Hyperbolic sheet constraint supporting plane, axial algorithm 
Y and Z axes view 



222 

current point forming a line with a slope of negative one (-1) in the Z 

and Y axes plane as shown in figures 56 and 57. 

Algebraically* the parametric line for the axis can be found from 

the point on the surface of the function which is at the intersection of: 

Y+Z=y+z 
and: 

Y-Z= /c 

in the plane: _ 
X= /c 

or: _ _ _ 
X= /c Y=(y+z+ yc) Z=(y+z- /c) 

2 2 

If the function: 
F(X,Y)=X*Y-X*Z-c=0 

is differentiated with respect to X, Y and Z: 

&F(X,Y)=(Y-Z) &F(X.Y)=X &F(X.Y)=-X 
—gx— &Y i l  

the parametric line through the point and normal to the tangent to the 

surface at that point is: 

X= yc + y/c *T Y=(y+z+ y/c)  + >/c *T Z=(y+z- y/c) - Vc *T 
z  z  

The parameter T can be solved for in terms of X as 

T=(X- yc) 

y/C 

then by back substituted in the parametric equation: 

Y=X+(y+z- Jc)  
2 

and; 

Z=-X+(y+z+ \/c) 
2 
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As with the hyperbolic axial algorithm, a point (A,B,D) on the axis 

where: 
A=c 

or If: 
A<x 

then: 
A=x+1 

B=A+(y+z- Vc) 
2 

D=-A+(y+z+ yë) 
2 

The line through the points (A,B,D) and (x,y,z) can be written as 

the parametric line: 

E=x+(A-x)*T F=y+(A-y)*T G=z+(D-z)*T 

where (E,F.G) Is on the curve X*(Y-Z)=c. Back substituting into 

E*(F-G)=c and solving for T: 

T=-K+ V&"2-4*(A-x)*(BZDZ(y-z))*(x*(y-z)-c) 
2*(A-x)*(B-D-(y-z)) 

where: 
K=((y-z)*(A-x)+x*(B-D)-(y-z)) 

results in the intersection point (E,F,S): 

E=x+(A-x)*T 
F=y+(B-y)*T 
G=z+(D-z)*T 

Through the point on the curve (E,F,G) the normal to the curve can 

be written as the parametric line: 

X=E+c*T Y=F+E*T Z=F-E*T 

where T is: 
T'((X-E)*E) 

c 
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With back substitution into the parametric equations: 

Y=(F*c+E"2*X-E"3) 
c 

The intersection of the line through the points (E,F,G) and (x,y,z) and 

the axis line is then found by back substitution: 

Y=X+(y+z- yc) =fF*c+E'2*X-E"3) 
2 c 

and solving for X: 

X=(2*F*c-2*E-3-c*G+c* /c)=A' 

(2*c-2*E"2) 

Say that X is equal to A' then: 

B'=A'+(y+z- y/c)  
2 

and: _ 
D'=-A'+(y+z+ yc) 

2 

If the point (A,B,D) and (A',B',D') are the same point then the 

algorithm would stop. Otherwise, let A',B',D' be the new intersection 

point for the next iteration. 

Supporting plane for Hyperbolic Sheet Using Axial Algorithm The 

supporting plane for the hyperbolic sheet constraint using the axial 

algorithm subroutine (TANA-SHT) finds the point on the hyperbolic sheet 

constraint, a constraint whose parameters are stored in the last seven 

(7) columns of the constraint matrix, which is closest to the simplex 

current point by using the axial algorithm and then constructs the 

tangent plane through the point and loads the plane's coefficients into 

the linear portion of the constraint matrix. 

4400 REM * SUPPORTING PLANE FOR SHEET USING AXIAL ALGORITHM * 
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4401 REM SHT-TANA 

4402 C#=A#(K,ND+4) 
4403 ZX=l+A#(K.ND+5) 
4404 ZY=l+A#(K,ND+6) 
4405 ZZ=l+A#(K,ND+7) 
4406 Y#»B#(ZY.l) 
4407 X#=B#(ZX.l) 
4408 Z#=B#(ZZ,1) 
4409 IF X#=H#(ZX) AND Y#=H#(ZY) AND Z#=H#(ZZ) THEN RETURN 
4410 G#=(Y#-Z#) 
4411 IF X#>0# AND G#>0# AND X#*G#>=C# THEN RETURN 
4412 A#=C# 
4413 IF X#>A# THEN A#=(C#+1#) 
4414 FOR W=1 TO 20 
4415 B#=X#*(2#*A#-CDBL(SQR(C#))-Y#+Z#)+(A#-X#)*(Y#-Z#) 
4416 K#=2#*(A#-X#)*(2#*A#-CDBL(SQR(C#))-Y#+Z#) 
4417 T#=(-B#+CDBL(SQR((Br2#)-2#*K#*((X#*(Y#-Z#))-C#))))/K# 
4418 E#=X#+(A#-X#)*T# 
4419 A#=(2#*(Y#+((2#*A#-Y#+Z#-CDBL(SQR(C#)))*T#/2#))*C#-2#*E#*E#*E#-C#*( 

Y#+Z#)+C#*CDBL(SQR(C#)))/(2#*C#-2#*E#*E#) 
4420 NEXT W 
4421 A#(K,1)=2#*C# 
4422 FOR J=2 TO ND+1 
4423 A#(K,J)=0# 
4424 IF ZX=J THEN A#(K,J)=C#/E# 
4425 IF ZY=J THEN A#(K,J)=E# 
4426 IF ZZ=J THEN A#(K,J)=-E# 
4427 NEXT J 
4428 RETURN 

Line Search Algorithm The line search algorithm for the 

hyperbolic sheet constraint depends on the fact that the function is a 

cylinder sloping upward in the Z direction at a forty-five (45) degree 

angle. If a plane is passed through the simplex current point at a 

forty-five (45) degree angle to the Y axis and parallel to the X axis so 

that it intersects the function at a ninety (90) degree angle as shown 

in figures 58 and 59 then the surface at its intersection with the plane 

will form a two (2) dimensional two (2) variable (y+z)*X-2*X*Y=c curve 

that is then used for the line search. 
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,(Y-Z)=c 

•F,G) or ( Je .(y+z+ /c).(y+z- yc)) 
( E " , F " . G " )  2 ^ - 2  

(0,0) (E.0.0) (E',0,0) 
(E",0.0) X axis 

Figure 58. Hyperbolic sheet constraint supporting plane, line search 
algorithm X and Y axes view 

X*(Y-Z)=c 

Y axis 

i ( /c ,(y+z+ %/c).(y+z- Jc)) 
2 2 

n (E".F",G") 

+ (x,y,z) Current point 

(0,0) 
Z axis 

Figure 59. Hyperbolic sheet constraint supporting plane, line search 
algorithm Y and Z axes view 
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As in the hyperbolic case, a point ( »/c.(y+z+ /c).(y+z- /c)) or say 
2 1 

(E.P.G) is selected as the starting point. This point is the same point 

picked as the intersection of the axis line with the function in the 

axial algorithm. The normal to the tangent plane at the point (E,F,G) 

on the function: 

F(X,Y)=X*Y-X*Z-c=0 

through the point (x,y,z) can be found by differentiating with respect 

to X and Y and Z: 

&F(X,Y)=Y-Z &F(X,Y)=X &F(X.Y)=-X 
~~5? &Z 

and writing the parametric equation: 

X=x+(F-G)*T Y=y+E*T Z=z-E*T 

Since the point (E,F,G) is on the surface, then: 

F-G=£ 
E 

so by back substitution into the parametric equation: 

T-((X.x)*E) 
c 

which can be used to express Y and Z in terms of X: 

Y=y+(E'2*(X-x)) Z=z-(E*2*(X-x)) 
c c 

With these equations the intersection of the normal line throught point 

(x,y,z) and the surface: 

X*(Y-Z)>=c 
is: 

X=(2*E'2*x+z*c-y*c)+ v^v*c-Z*C-2*E"2*x)"2+8*E"2*c"2 =E' 
4*E-2 
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Say that the new intersection point is (E',F',G'). If the point (E,F,G) 

and (E',F',G') are the same or are as close to the same point as 

required for computer tolerances* then stop the iterations. Otherwise, 

the point to start the next iteration is: 

E"=(E+E') 
2 

F"=y+(E""2*(E"-x)) G"=z-(E""2*(E"-x)) 
c c 

Supporting Plane for Hyperbolic Sheet Using Line Search Algorithm 

The supporting plane for the hyperbolic sheet constraint using the line 

search algorithm subroutine (TANL-SHT) finds the point on the sheet 

constraint, a constraint whose parameters are stored in the last seven 

(7) columns of the constraint matrix, which is closest to the simplex 

current point by using the line search algorithm and then constructs the 

tangent plane through the point and loads the plane's coefficients into 

the linear portion of the constraint matrix. 

4400 REM * SUPPORTING PLANE FOR SHEET USING LINE SEARCH ALGORITHM * 
4401 REM—-———--SHT—TANL--—— 

4402 C#=A#(K,ND+4) 
4403 ZX=l+A#(K,ND+5) 
4404 ZY=l+A#(K,ND+6) 
4405 ZZ=l+A#(K.ND+7) 
4406 Y#=B#(ZY,1) 
4407 X#=B#(ZX,1) 
4408 Z#=B#(ZZ.l) 
4409 IF X#=H#(ZX) AND Y#=H#(ZY) AND Z#=H#(ZZ) THEN RETURN • 
4410 G#=(Y#-Z#) 
4411 IF X#>0# AND 6#>0# AND X#*G#>=C# THEN RETURN 
4412 E#=((2#*C#*X#-Y#*C#+Z#*C#)+CDBL(SQR(((Y#*C#-Z#*C#-2#*C#*X#)"2#)+8#* 

C#*C#*C#)))/(4#*C#) 
4413 FOR W=1 TO 100 
4414 T#=((2#*E#*E#*X#-Y#*C#+Z#*C#)+CDBL(SQR(((Y#*C#-Z#*C#-2#*E#*E#*X#)'2 

#)+8#*E#*E#*C#*C#)))/(4#*E#*E#) 
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4415 IF ABS(T#-E#)<.000001 THEN 4418 
4416 E#=(T#+E#)/2# 
4417 NEXT W 
4418 A#(K,1)=2#*C# 
4419 FOR J=2 TO ND+1 
4420 A#(K,J)=0# 
4421 IF ZX»J THEN A#(K.J)=C#/E# 
4422 IF ZY=J THEN A#(K,J)=E# 
4423 IF ZZ=J THEN A#(K,J)=-E# 
4424 NEXT J 
4425 RETURN 

Gordlan Algorithm The Gordlan algorithm for the hyperbolic 

sheet constraint again utilizes the fact that function is a cylinder in 

the Z axis direction. The algorithm for the sheet constraint projects 

the simplex current point (x,y,z) onto the hyperbolic sheet surface in 

either the X or Y axis direction depending on the location of the current 

simplex point. The sheet function asymptotically approaches both the X 

and Y axes plane, so trying to project the simplex point onto the 

surface in only one direction would not result in a point on the surface 

in all cases. To solve this problem, the region of points violating the 

function is divided into three (3) regions as shown in figures 60 and 61. 

If the simplex current point lies below the planes Y=Z= Vc and X= ^/c then 
2 2 

the point ( >/c, yc ,0) is always used as the point through which the 

tangental plane passes. If the simplex current point lies above or on 

the plane, and Y-Z>= /c and y-x>x, then the tangent point is found by 

the projection of the current point to the surface in the Y direction in 

the X and Y axes plane. Otherwise, the projection to the surface in the 

X direction is used. 
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X*(Y-Z)=c 

(x,y,z)+ 

Y axis 

yc ,  y/c ,0) 
Y-Z= /c / 

+«^(x,(c+z*x),0) 

(0.0) I X= Vc 
—r 

+ (x,y,z) Current point 

X axis 

Figure 60, Hyperbolic sheet constraint supporting plane, Gordian 
algorithm X and Y axes view 

yy y 
X?(Y-Z)=c^ 

Y axis V / 
/ 

I ^ / 

{ c ,y,u; —K (x,'y,zL Current point 
(Fz) , / 

\/c » Vc *0 / 
(c+z*x),0K 4 / 

X ll Y-Z= >/c 
y!& ~2" 

(0,0)^—+ (x,y,z) Current point 
Z axis 

Figure 61. Hyperbolic sheet constraint supporting plane, Gordian 
algorithm Y and Z axes view 
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Supporting Plane for Hyperbolic Sheet Using Gordian ATgorithwi 

The supporting plane for the hyperbolic sheet constraint using the 

Gordian algorithm subroutine (TANG-SHT) finds the point on the sheet 

constraint, a constraint whose parameters are stored in the last seven 

(7) columns of the constraint matrix, by using the Gordian algorithm and 

then constructs the tangent plane through the point and loads the 

plane's coefficients into the linear portion of the constraint matrix. 

4400 REM * SUPPORTING PLANE FOR SHEET SUBROUTINE * 
4401 REM SHT-TANG 

4402 ZX=A#(K,ND+5)+l 
4403 ZY=A#(K,ND+6)+l 
4404 ZZ=A#(K,ND+7)+l 
4405 C#=A#(K,ND+4) 
4406 X#=B#(ZX,1) 
4407 Y#=B#(Zï,i) 
4408 Z#=B#(ZZ.l) 
4409 IF X#=H#(ZX) AND Y#=H#(ZY) AND Z#=H#(ZZ) THEN RETURN 
4410 IF X#>0# AND Z#>=0# AND Y#-Z#>0# AND X#*(Y#-Z#)>=C# THEN RETURN 
4411 G#=SQR(C#) 
4412 IF Y#-Z#<=X# THEN 4422 
4413 IF Y#-Z#>=G#/2# THEN G#=(Y#-Z#) 
4414 A#(K,1)-2#*C# 
4415 FOR L=2 TO ND+1 
4416 A#(K,L)=0# 
4417 IF ZX=L THEN A#(K.L)=G# 
4418 IF ZY=L THEN A#(K,L)=C#/G# 
4419 IF ZZ=L THEN A#(K,L)=-C#/G# 
4420 NEXT L 
4421 RETURN 
4422 IF X#>=G#/2# THEN G#=X# 
4423 A#(K,1)=2#*C# 
4424 FOR L=2 TO ND+1 
4425 A#(K,L)=0# 
4426 IF ZX=L THEN A#(K,L)=C#/G# 
4427 IF ZY=L THEN A#(K,L)=G# 
4428 IF ZZ=L THEN A#(K,L)=-G# 
4429 NEXT L 
4430 RETURN 
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Program Table of Content 

The dual simplex method utilizes the pivot rows generated by the 

nonlinear constraint subroutines. As far as program coding Is concerned, 

the nonlinear constraint subroutines are an extension of the 

dual simplex method. 

Table 10 can be used to reconstruct the dual simplex method with the 

Table 10. Dual simplex with nonlinear constraints BASIC program table 
of contents 

File Program lines Pages Routines 

MAIN-SMP 0001-0132 56 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200-2224 69 
AL6R-KEY 3000-3057 200 
ALGR-SMP 3300-3398 70 
TRAn-COn 

mm 
oouu-oooo 74 

TRAN-INV 3700-3743 76 
TRAN-RIV 3900-3960 78 
PAR-TANL 4000-4034 209 
HYP-TANL 4200-4221 217 
SHT-TANL 4400-4425 228 

Dual simplex method 
Objective coefficient Input subroutine 
Constraint coefficient input subroutine 
Constraint type input subroutine 
Variable bounds input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint key subroutine 
Dual simplex algorithm subroutine 
Constraint transformation subroutine 
Basis inversion subroutine 
Basis reinversion subroutine 
Supporting line for parabolic subroutine 
Supporting line for hyperbolic subroutine 
Supporting plane for sheet subroutine 

above computer code from the computer disk and to organize subroutines 

from previous program listings. Since BASIC code is dependent on 

program line numbers for its subroutine branching, the statement numbers 

must be maintained as listed above. 
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A Une In the main program of the dual simplex method (MAIN-SMP) 

must be changed to call the constraint keys subroutine: 

79 GOSUB 3000:REM ALGR-KEY 

and the nonlinear constraint subroutines must be called from the dual 

simplex algorithm ALGR-SMP by adding the lines: 

3333 IF A#(K.ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3334 IF A#(K.ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
3336 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANL 

Dual Simplex Method with Nonlinear Constraints: 
Solutions to Example 11 Minimum Project Man Count Problem 

The most obvious application of the nonlinear version of the dual 

simplex method Is to the solution of the minimum project man count CP 

problem. If the example ten (10) activity network as shown In figure 61 

Is used as the schedule logic for a man count problem, then the following 

M5*(T3-0)>=10 

! M6*(T4-T2)>=20 

/ / \ \ 
/M7*(Tl-0)>=30 M8*(T2-T1)>=40 /M9*(T3-T2)>=50 -V M10*(T4-T3)>=60 -V 

» » « — ^ ^ y » ~t 

W W -A 
\\ \\ / M11*(T3-T1)>=70 / // 

\ M14*(T4-0)>=100 / 

Figure 62. Dual simplex method with nonlinear constraints example 11 
minimum project man count problem arrow diagram 

example 11 minimum project man count CP problem can be constructed In 

which the total activity man count for ten (10) scheduled activities 



234 

for which the mandays requirements ranging from ten (10) to (100) 

mandays is minimized. 

minimize M5+M6+M7+M8+M9+M10+M11+M12+M13+M14 

subject to: M5*(T3-0)>=i0 
M6*(T4-T2)>=20 
M7*(Tl-0»=30 
M8*(T2-T1)>=40 
M9*(T3-T2)>=50 
M10*(T4-T3)>=60 
M11*(T3-T1)>=70 
M12*(T2-0)>=80 
M13*(T4-T1)>=90 
M14*(T4-0)>=100 
T4<=Dur. 
T1,T2 M14>=0 

Minimum Project Man Count Solutions 

The dual simplex method can be combined with hyperbolic and sheet 

constraints subroutines based on the axial, line search, or Gordlan 

algorithms. The supporting planes derived using the line search 

algorithm are stronger than the planes derived using the Gordlan 

algorithm, but less time Is required to execute the Gordlan algorithm. 

To provide a comparison between the two (2) algorithms, example 11 was 

solved for ten (10) predetermined project durations at ten (10) work 

Increment Intervals using both algorithms. 

The computer runs were executed on a Panasonic Sr. Partner 

computer with code compiled by the IBM BASIC Compiler. The results 

are displayed in table 11 which lists for each of the ten (10) fixed 

project duration, the number of Iterations required to reach the 

solution, the seconds required to reach the solution, the value of the 

objective function at the solution, and the value of each variable. 
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Table 11. Dual simplex method, using supporting planes derived with the 
line search algorithm, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 
Itr. 115 114 107 115 116 
Sec. 205 198 186 206 216 
Obj. 12.75378 14.17086 15.94222 18.21968 21.25630 
T1 19.12823 17.21547 15.30255 13.38980 11.47698 
T2 48.67236 43.80524 38.93799 34.07078 29.20354 
T3 75.02409 67.52155 60.01935 52.51685 45.01448 
T4 100 90 80 70 60 
M5 0.13329 0.14810 0.16661 0.19041 0.22215 
M6 0.38965 0.43294 0.48706 0.55665 0.64942 
M7 1.56836 1.74261 1.96045 2.24051 2.61392 
M8 1.35390 1.50433 1.69237 1.93414 2.25650 
M9 1.89741 2.10825 2.37176 2.71060 3.16236 
MIO 2.40231 2.66922 3.00290 3.43187 4.00386 
Mil 1.25232 1.39148 1.56540 1.78904 2.08721 
M12 1.64364 1.82626 2.05454 2.34805 2.73939 
M13 1.11287 1.23652 1.39109 1.58981 1.85478 
M14 1 1.11111 1.25 1.42857 1.66666 

Table 11. Continued 

Dur. 50 40 30 20 10 
Itr. 109 112 114 107 112 
Sec. 190 194 209 193 209 
Obj. 25.50756 31.88445 42.51260 63.76891 127.53782 
Ti 9.56413 7.65130 5.73848 3.82564 1.91282 
T2 24.33627 19.46899 14.60177 9.73447 4.86725 
T3 37.51203 30.00964 22.50723 15.00481 7.50241 
T4 50 40 30 20 9.99999 
M5 0.26658 0.33322 0.44430 0.66645 1.33290 
M6 0.77931 0.97413 1.29885 1.94826 3.89654 
M7 3.13671 3.92089 5.22785 7.84182 15.68357 
MS 2.70780 3.38475 4.51299 6.76952 13.53902 
M9 3.79484 4.74353 6.32474 9.48705 18.97414 
MIO 4.80462 6.00579 8.00772 12.01157 24.02320 
Mil 2.50466 3.13082 4.17443 6.26164 12.52328 
M12 3.28727 4.10909 5.47878 8.21821 16.43638 
M13 2.22574 2.78218 3.70957 5.56436 11.12873 
M14 2 2.49999 3.33333 5 9.99999 
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To execute the dual simplex method with the nonlinear subroutines 

using the Gordlan algorithm, the subroutines must be called from the 

dual simplex algorithm ALGR-SMP by adding the lines: 

3333 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANG 
3334 IF A#(K»ND+3)<>0# THEN GOSUB 4200:REM HYP-TANG 
3336 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANG 

Table 12 contains the results of the ten (10) computer runs of the 

example 11 minimum project man count CP problem using the nonlinear 

subroutines derived with the Gordlan algorithm. Although the average 

number of Iterations required to solve the problems was about five 

percent (5%) higher, the time per Iteration was about thirty percent 

(30%) less, resulting In a reduction of overall processing time. 

Table 12. Dual simplex method, using supporting planes derived with the 
Gordlan algorithm, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 
Itr. 117 129 117 119 111 
Sec. 141 156 137 138 130 
Obj. 12.75378 14.17086 15.94222 18.21968 21.25630 
li 19.1Z8Z9 17.21536 15.30263 13.38981 11.47694 
T2 48.67257 43.80516 38.93797 34.07073 29.20351 
T3 75.02410 67.52164 60.01927 52.51686 45.01448 
T4 100 90 80 70 60 
M5 0.13329 0.14810 0.16661 0.19041 0.22215 
M6 0.38965 0.43294 0.48706 0.55664 0.64942 
M7 1.56835 1.74262 1.96044 2.24050 2.61393 
M8 1.35389 1.50433 1.69238 1.93414 2.25649 
M9 1.89742 2.10823 2.37176 2.71059 • 3.16236 
MIO 2.40231 2.66923 3.00289 3.43187 4.00386 
Mil 1.25232 1.39147 1.56541 1.78904 2.08721 
M12 1.64363 1.82626 2.05454 2.34805 2.73939 
M13 1.11287 1.23652 1.39109 1.58981 1.85478 
M14 0.99999 1.11111 1.25 1.42857 1.66666 
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Table 12. Continued 

Dur. 50 40 30 20 10 
Itr. 124 112 113 115 121 
Sec. 149 133 135 139 153 
Obj. 25.50756 31.88445 42.51260 63.76891 127.53782 
T1 9.56411 7.65129 5.73846 3.82564 1.91281 
T2 24.33623 19.46899 14.60174 9.73448 4.86724 
T3 37.51202 30.00963 22.50723 15.00481 7.50241 
T4 50 40 30 20 10 
M5 0.26658 0.33322 0.44430 0.66645 1.33290 
M6 0.77930 0.97413 1.29884 1.94827 3.89654 
M7 3.13672 3.92090 5.22788 7.84181 15.68367 
M8 2.70780 3.38475 4.51300 6.76952 13.53899 
M9 3.79483 4.74354 6.32471 9.48706 18.97411 
MIO 4.80462 6.00578 8.00772 12.01157 24.02321 
Mil 2.50465 3.13082 4.17442 6.26164 12.52326 
M12 3.28727 4.10909 5.47879 8.21820 16.43639 
M13 2.22574 2.78218 3.70957 5.56436 11.12872 
M14 2 2.5 3.33333 5 10 
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MINIMUM PROJECT SUPERVISION COST PROBLEM 
WITH HYPERBOLIC MAN COUNT AND PARABOLIC COST FUNCTIONS 

By approximating supervision costs as a parabolic function of man 

counts, man counts can be converted to direct supervision costs. This 

results In a CP problem with a quadratic objective function which can be 

solve by Beale's method with nonlinear constraints. 

With the notation of the previous chapter, let; 

ffj - Fixed overhead cost per day of activity ij 
Dur^j - Duration of activity 1j 
Scij - Supervisory cost per man per day 
csij - Supervisory cost curve parameter 
Mij - Men assigned to activity ij 
T-f - Node time for node 1 
hij - Mandays for activity ij 
Our. - Project maximum allowable duration 
fix. - Fixed overhead cost per day of project duration 
n - Final node number of CPM network 

then direct supervisory cost is approximately related to the activity man 

count, or men per day, as a parabolic function as shown in figure 63. 

Figure 63. Supervisory cost versus activity man count per day 

The parabolic curve represents the supervisory cost per man per day Scij 

for each man assigned to an activity, and csjj is the curvature 

parameter of the parabolic curve. 

Total supervisory cost for activity ij can then be written as: 

Scij 
cost/man/day 

for 
Scij=csij*(Mij)'2 

activity ij 

+ 
Mij - men per day assigned to activity ij 
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Total activity ij supervisory cost = Mij*Scij*Durjj+fij*(Tj-Ti) 

= Mij*csij*(Mij)*2*Durij+fij*(Tj-Ti) 

» hij*csij*(Mij)"2*Durij+fij*(Tj-Ti) 

Dïïrij 

= hij*csij*(Mij)'2+fij*(Tj-Ti) 

and for the total project as the quadratic function: 

Project cost= > (hij*csij*(Mij)-2+fij*(Tj-Ti)) + flx.(Tn-To) 
ail ij 

or: _ 
Project cost= 2 (hij*csij*(Mij)"2+fij*(Durij)) + fix.(Tn-To) 

ail ij 

with the schedule restrictions: 

subject to: Tj-Ti-Durij>=0 for all ij 

Tn-To<=Dur. 

and the hyperbolic mandays constraints: 

Mij*Durij)>=hij for all ij 

T-f.Dur-fj,M-fj>=0 for all i,ij 

For the first project cost formulation this constraint set can be 

rsdwCsd further to: 

subject to: M-fj*(Tj-Ti)>=h-fj for all ij 

Tn-To<=Dur. 

T-f,Durij,M-}j>=0 for all ij 

Beale's Method with Nonlinear Constraints BASIC Code 

Beale's method can utilized the supporting planes generated by the 

nonlinear constraint subroutines so that the nonlinear coding is an 

extension of program code for Beale's method. 
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Beale's Method Main Routine — File MAIN-BEA 

Same as for Beale's method except for a line In the main routine 

which must be changed to call the constraint keys subroutine: 

94 GOSUB 3000:REM AL6R-KEY 

Utility Subroutines — Files UTIL-OPT, UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Input Subroutines ~ Files INPT-OBJ. INPT-CON, INPT-TYP, and INPT-BND 

The input subroutines used for the Beale's method are the same as 

for the dual simplex method. The linear portion of the quadratic 

objective function is entered through the subroutine INPT-OBJ. 

Quadratic Matrix Subroutine — INPT-QUD 

Same as for Beale's method. 

Report Subroutine — File REPT-SMP 

Same as for dual simplex method. 

Constraint Keys Subroutine — File ALGR-KEY 

Same as for dual simplex method with nonlinear constraints. 

Beale's Algorithm Subroutine — File ALGR-BEA 

Same as for Beale's method except for the nonlinear constraint 

subroutines which must be called from Beale's algorithm ALGR-BEA by 

adding the lines: 

3342 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3344 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
3346 IF A#(K,ND+4)<>0# THEN GOSUB 4400;REM SHT-TANL 

Quadratic Tableau Transformation — File TRAN-QUD 

Same as for Beale's method. 



242 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 

Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Reinversion Subroutine — File TRAN-RIV 

Same as for dual simplex method. 

Parabolic Subroutines — Files PAR-TANA, PAR-TANL, or PAR-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Subroutines — Files HYP-TANA. HYP-TANL. or HYP-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Sheet Subroutines — Files SHT-TANA. SHT-TANL. or SHT-TANG 

Same as for dual simplex method with nonlinear constraints. 

Program Table of Content 

Table 13 can be used to reconstruct the Beale's method with the 

nonlinear constraints from the computer disk files and to organize 

subroutines from previous program listings. Since BASIC code Is 

dependent on program line numbers for its subroutine branching, the 

statement numbers must be maintained as listed below. 

A line in the main program of Beale's method (MAIN-BEA) must be 

changed to call the constraint keys subroutine: 

94 GOSUB 3000:REM ALGR-KEY 

and the nonlinear constraint subroutines must be called from Beale's 

algorithm (ALGR-BEA) by adding the lines: 

3342 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3344 IF A#(K.ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
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3346 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANL 

Table 13. Beale's with nonlinear constraints BASIC program table of 
contents 

File Program lines Page Routines 

MAIN-BEA 0001-0147 160 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
INPT-QUD 1600-1628 166 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200-2224 69 
ALGR-KEY 3000-•3057 200 
ALGR-BEA 3300-3481 172 
TRAN-QUD 3550-3584 180 
TRAN-CON 3600-•3633 74 
TRAN-INV 3700-•3743 76 
TRAN-RIV 3900-•3960 78 
PAR-TANL 4000-•4034 209 
HYP-TANL 4200-•4221 217 
SHT-TANL 4400-4425 228 

Beale's method 
Objective coefficient Input subroutine 
Constraint coefficient Input subroutine 
Constraint type Input subroutine 
Variable bounds Input subroutine 
Quadratic Input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint key subroutine 
Beale's algorithm subroutine 
Quadratic tableau transformation subroutine 
Constraint transformation subroutine 
Basis inversion subroutine 
Basis reinversion subroutine 
Supporting line for parabolic subroutine 
Supporting line for hyperbolic subroutine 
Supporting plane for sheet subroutine 

Beale's Method with Nonlinear Constraints: 
Solutions to Example 12 Minimum Project Supervision Cost Problem 

Using the example 11 ten (10) activity network for the minimum 

project man count problem with the variables as shown in figure 62, a 

supervision cost CP problem can be constructed and solved using Beale's 

method with nonlinear constraints. 

A minimum supervision cost CP problem for example 12 can be written 

as follows: 
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minimize 10*M5~2+9*M6'2+8*M7*2+7*M8*2+6*M9*2+5*M10"2 
+4*M11"2+3*M12~2+2*M13"2+M14'2 

+(T3-0)+(T4-T2)+{Tl-0)+(T2-Tl)+(T3-T2)+(T4-T3)+(T3-Tl) 
+(T2-0)+(T4-Tl)+(T4-0) 

subject to: M5*(T3-0)>=10 
M6*(T4-T2)>-20 
M7*(Tl-0)>=30 
M8*(T2-T1)>»40 
M9*(T3-T2)>=50 
M10*(T4-T3)>=60 
M11*(T3-T1)>=70 
M12*(T2-0)>=80 
M13*(T4-T1)>=90 
M14*(T4-0)>=100 
T4<=Dur. 

T1,T2 M14>=0 

Minimum Supervision Cost Problem Solutions 

Beale's method can be combined with hyperbolic and hyperbolic sheet 

constraint subroutines utilizing either the axial, the line search, or 

the Gordian algorithms. The pivot rows derived using the line search 

algorithm are stronger than the pivot rows derived using the Gordian 

algorithm, but less time is required to execute the Gordian subroutine. 

To provide a comparison between the two (2) algorithms, example 12 was 

run for ten (10) project durations Dur. spaced at ten (10) work 

increment intervals using both algorithms. 

The results of the computer runs are displayed for the line search 

algorithm in table 14 which lists for each of ten (10) runs the fixed 

project duration, the number of iterations required to reach the 

solution, the seconds required to reach the solution, the value of the 

objective function at the solution, and the value of each variable. 
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Table 14. Beale's method, using supporting planes derived with the line 
search algorithm, solutions to the example 12 minimum project 
supervision cost problem with parabolic cost and hyperbolic man 
count functions 

Dur. 100 90 80 70 60 
Itr. 240 240 215 202 184 
Sec. 1333 1333 1200 1049 974 
Obj. 554.78018 554.78018 554.78018 556.79123 581.59037 
T1 16.84936 16.84936 16.84919 15.63239 13.04579 
T2 34.59311 34.59311 34.58314 32.57042 27.95595 
T3 52.98392 52.98392 52.98395 50.08515 43.30467 
T4 74.39570 74.39570 74.39585 70 60 
M5 0.18873 0.18873 0.18873 0.19965 0.23092 
M6 0.50247 0.50247 0.50247 0.53433 0.62414 
M7 1.78048 1.78048 1.78050 1.91909 2.29959 
M8 2.25431 2.25431 2.25428 2.36154 2.68273 
M9 2.71874 2.71874 2.71874 2.85474 3.25760 
MIO 2.80219 2.80219 2.80217 3.01282 3.59382 
Mil 1.93720 1.93720 1.93719 2.03176 2.31337 
M12 2.31259 2.31259 2.31259 2.45621 2.86164 
M13 1.56394 1.56394 1.56394 1.65539 1.91676 
M14 1.34416 1.34416 1.34416 1.42857 1.66666 

Table 14. Continued 

Dur. 50 40 30 20 10 
Itr. 199 162 164 174 177 
Sec. 
Obj • 

1031 820 846 872 931 Sec. 
Obj • u54.35u9o 831.36710 1270.72451 2619.40329 10124.15667 
T1 10.66004 8.41532 6.26032 4.15609 2.07484 
T2 23.32245 18.67304 14.01192 9.34371 4.67229 
T3 36.31425 29.17392 21.93619 14.64317 7.32508 
T4 50 40 30 20 10 
M5 0.27537 0.34277 0.45586 0.68291 1.36517 
M6 0.74969 0.93778 1.25093 1.87682 3.75396 

M7 2.81424 3.56492 4.79208 7.21831 14.45889 
M8 3.15895 3.89950 5.16022 7.71067 15.39970 
M9 3.84858 4.76150 6.30972 9.43491 18.84811 
MIO 4.38412 5.54217 7.44065 11.20066 22.43061 
Mil 2.72859 3.37209 4.46546 6.67488 13.33273 
M12 3.43017 4.28425 5.70942 8.56190 17.12218 
M13 2.28775 2.84948 3.79112 5.68041 11.35624 
M14 2 2.49999 3.33333 5 10 
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To execute Beale's method with the nonlinear subroutines based on 

the Gordlan algorithm, the subroutines must be called from the Beale's 

algorithm ALGR-BEA by adding the lines: 

3342 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANG 
3344 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANG 
3346 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANG 

Table 15 contains the results of the ten (10) runs using the 

nonlinear subroutines based on the Gordlan algorithm. 

Both constraint types were executed on a Panasonic Sr. Partner 

computer with code compiled with the IBM BASIC Compiler. 

Table 15. Beale's method, using supporting planes derived with the 
Gordlan algorithm, solutions to the example 12 minimum 
project supervision cost problem with parabolic cost and 
hyperbolic man count functions 

Our. 100 90 80 70 60 
Itr. 203 203 213 206 189 
Sec. 842 842 908 854 766 
Obj. 554.78018 554.78018 554.78018 556.79123 581.59037 
T1 16.84926 16.84926 16.84930 15.63227 13.04571 
T2 34.59319 34.59319 34.59339 32.57047 27.95585 
T3 52.98393 52.95393 52.98429 50.05523 43.30466 
T4 74.39584 74.39584 74.39591 70 60 
M5 0.18873 0.18873 0.18873 0.19965 0.23092 
M6 0.50247 0.50247 0.50248 0.53433 0.62413 
M7 1.78049 1.78049 1.78048 1.91910 2.29960 
M8 2.25429 2.25429 2.25427 2.36152 2.68273 
M9 2.71876 2.71876 2.71873 2.85473 3.25758 
MIO 2.80217 2.80217 2.80221 3.01284 3.59381 
Mil 1.93719 1.93719 1.93718 2.03175 - 2.31336 
M12 2.31259 2.31259 2.31257 2.45621 2.86165 
M13 1.56395 1.56395 1.56394 1.65539 1.91675 
M14 1.34416 1.34416 1.34415 1.42857 1.66666 
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Table 15. Continued 

Dur. 50 40 30 20 10 
Itr. 181 169 157 163 171 
Sec. 743 706 645 694 733 
Obj. 654.85698 831.36710 1270.72451 2619.40329 10124.15667 
T1 10.66014 8.41515 6.26029 4.15617 2.07484 
T2 23.32262 18.67296 14.01188 9.34378 4.67233 
T3 36.31437 29.17383 21.93621 14.64321 7.32509 
T4 50 40 30 20 10 
M5 0.27537 0.34277 0.45586 0.68291 1.36517 
M6 0.74969 0.93777 1.25092 1.87683 3.75398 
M7 2.81421 3.56499 4.79210 7.21817 14.45891 
M8 3.15893 3.89946 5.16023 7.71068 15.39949 
M9 3.84859 4.76151 6.30967 9.43496 18.84829 
MIO 4.38416 5.54212 7.44067 11.20075 22.43066 
Mil 2.72859 3.37208 4.46544 6.67490 13.33270 
M12 3.43014 4.28426 5.70944 8.56184 17.12207 
M13 2.28775 2.84946 3.79111 5.68044 11.35624 
M14 2 2.5 3.33333 5 10 

Cubic Hyperbolic and Cubic Hyperbolic of Two Sheets Constraints 

The quadratic tableau transformation In Beale's method requires 

not only an array space equivalent to the augmented ¥ and augmented B 

inverse matrix, but also the extra transformation step with its inherent 

lack of precision. In many cases, the objective function can be 

rewritten in the form of nonlinear convex constraints and can be 

minimized using the primal-dual simplex routine, thus avoiding the time 

and precision handicaps of Beale's method. 

In the minimum project supervison cost problem let: 

Wij=(Mij)"2 for all ij 

Then, the objective function can be written as a linear function: 
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Project cost= ̂  (csfj*Wij+fij*(Tj-Ti)) + fix,*(Tn-To) 
an i.j 

and the constraints as: 

subject to: Wij*(Tj-Ti)"2>=(hij)*2 for all ij 

Tn-To<=Dur. 

The nonlinear constraints needed to solve the supervision cost 

problem can now be written In general terms for X,Y,Z as: 

X*Y*2>=h*2=c 
and: 

X*(Y-Z)'2>=h-2=c 

Primal-dual Method with Cubic Hyperbolic Constraints BASIC Code 

The primal-dual method with nonlinear constraints utilizes the 

supporting planes generated by the nonlinear constraint subroutines. As 

far as program coding is concerned, the nonlinear subroutines are an 

extension of the primal-dual program. 

Primal-dual Method Main routine — File MAIN-PDS 

Same as for primal-dual method except the main routine must call 

the constraint keys subroutine by changing line: 

81 GOSUB 3000:REM ALGR-KEY 

Utility Subroutines ~ Files UTIL-OPT. UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Input Subroutines — Files INPT-OBJ. INPT-CON, INPT-TYP, and INPT-BND 

Same as for dual simplex method with the exception of the input of 

constraint coefficients and types. In the case of the cubic hyperbolic 
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constraint X*Y*2>=c, the constraint is entered as If It were a simple 

linear constraint of the form X+Y>=0, and the c constant Is entered In 

the HYPERBOLIC column of the constraint type input screen. For the 

cubic sheet constraint X*(Y-Z)*2>=c, the input is X+2*Y-3*Z>=0, and the 

c constant is entered in the SHEET column of the constraint type input 

screen. 

Report Subroutine — File REPT-SMP 

Same as for dual simplex method. 

Constraint Keys Subroutine — File ALGR-KEY 

Same as dual simplex method with nonlinear constraints. 

Primal-dual Algorithm Subroutine — File ALGR-PDS 

Same as for primal-dual method except the nonlinear subroutines 

must be called by adding lines: 

3338 IF A#(K,ND+3)<>0# THEN GOSUB 4600;REM CUBIC HYPERBOLIC 
3339 IF A#(K,ND+4)<>0# THEN GOSUB 4800:REM CUBIC SHEET 

Objective Function Transformation — File TRAN-OBJ 

Same as for primal-dual method. 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 

Inversion Subroutine — File TRAW-INV 

Same as for dual simplex method. 

Reinversion Subroutine — File TRAN-RIV 

Same as for dual simplex method. 

Cubic Hyperbolic Subroutine — File CBH-TANG 

The Gordian algorithm provides a simple means of finding a point 
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on the hyperbolic cubic curve X*Y'^2=c with which to generate a tangent 

point for a supporting plane. 

Gordlan Algorithm The Gordlan algorithm for the cubic 

hyperbolic function projects the simplex current point (x,y) to the 

curve in either the X or Y direction, depending on the location of the 

simplex current point, from which is generated a supporting line. Since 

the cubic hyperbolic function asymptotically approaches both the X and Y 

axes, trying to project the simplex point onto the curve in only one (1) 

direction would not result in a point on the curve in all cases. To 

solve this problem, the region of points which violates the function is 

divided into three (3) regions as shown in figure 64. If the current 

X*Y*2=c 

r(i/\ 

(x,y) +—»+>( c .y) 

1 
Y=(2*c)' 

Y axis I 
I 
I 

(oto) 

-+v uc/4ru/3;,u''cru/3j; 

N-^(x. /c ) 

+ (x,y) Current point* 
X=(c/4)-(l/3) 

X axis 

Figure 64, Cubic hyperbolic constraint supporting line, Gordlan 
algorithm 
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simplex point lies below the line Y=(2*c)"(l/3) and left of the line 

X=(c/4)-(l/3), then the point ((2*c)'(l/3),((c/2)'(l/3)), or the point 

on the curve where the tangent line has a slope of negative one (-1), is 

always used as the point through which the supporting line passes. If 

the simplex current point lies above or on the line Y=(2*c)*(l/3), then 

the projection in the Y direction is used as the point on the curve for 

the tangent point. Otherwise, the projection in the X direction is 

used. 

Supporting line for Cubic Hyperbolic Using Gordian Algorithm The 

supporting line for the cubic hyperbolic constraint using the Gordian 

algorithm subroutine (HCB-TANG) finds the point on the cubic hyperbolic 

constraint, a constraint whose parameters are stored in the last seven 

(7) columns of the constraint matrix, by using the Gordian algorithm and 

then constructs the tangent line through the point and loads the line's 

coefficients into the linear portion of the constraint matrix. 

4600 REM * SUPPORTING LINE FOR CUBIC HYPERBOLIC SUBROUTINE * 
4601 REM CBH-TANG 

4602 ZX=A#(ND+5)+l 
4603 ZY=A#(ND+6)+l 
4604 C#=A#(ND+3) 
4605 Y#=B#(ZY,1) 
4606 X#=B#(ZX,1) 
4607 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4608 IF X#>0# AND Y#>0# AND X#*(Y#*Y#)>=C# THEN RETURN 
4609 H#=(2#*C#)"(l#/3#) 
4610 G#=C#/(H#*H#) 
4611 IF Y#<H# AND X#<G# THEN GOTO 4621 
4612 IF Y#>=X# THEN 4620 
4613 A#{1)=3#*C# 
4614 FOR L=2 TO ND+1 
4615 A#(L)=0# 
4616 IF ZX=L THEN A#(L)=C#/X# 
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4617 IF ZY=L THEN A#(L)=2#*CDBL(SQR(C#*X#)) 
4618 NEXT L 
4619 RETURN 
4620 H#=Y# 
4621 A#(1)=3#*C# 
4622 FOR L=2 TO ND+1 
4623 A#(L)=0# 
4624 IF ZX=L THEN A#(L)=H#*H# 
4625 IF ZY=L THEN A#(L)=2#*C#/H# 
4626 NEXT L 
4627 RETURN 

Cubic Hyperbolic of two Sheets Subroutine — File CBS-TANG 

Again, the Gordlan algorithm can be used to find a tangent point on 

the cubic hyperbolic of two sheets function for a supporting plane. 

Gordian Algorithm The Gordlan algorithm for the cubic sheet 

constraint utilizes the fact that function Is a cylinder In the Z 

axis. The algorithm for the cubic sheet constraint projects the 

simplex current point (x,y,z) onto the surface In either the X or Y axis 

direction depending on the location of the simplex current point. The 

function asymptotically approaches both the X and Y axes, so trying to 

project the simplex point onto the surface In only one (1) direction 

would not result in s point on the surface in all cases. To solve this 

problem, the region of points violated by the constraint 1s divided Into 

three (3) regions as shown In figures 65 and 66. If the simplex current 

point lies below the plane Y-Z=(2*c/4)*(l/3) and to the left of the 

plane X=(c/4)"(l/3) then the point ((c/4)"(l/3).(2*c)^(2/3)-,0) is always 

used as the point through which the supporting plane passes. If the 

simplex current point lies above or on the plane Y-Z=(2*c)''(l/3), then 

the point on the surface used as the tangent point is found by the 
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X*(Y-Z)"2=c 

(x,y,z) +---> 

Y axis 

(_c_,y,0) 

I 

+— 
(0.0) 

Y-Z=(2*c)"(l/3) \| 1 I I I 
J ((c/4)^( 1/3),(2*c)*(1/3),0) 

( x._j/c_»0 ) 
•IT 

+ (x,y,z),^rrent point 

X=(c/4)'(l/3) 

X axis 

Figure 65. Cubic hyperbolic of two sheets constraint supporting plane, 
Gordian algorithm X and Y axes view 

( c ,y,0) +•<—+ (x,y,z) Current point 

^ Y=Z=(2*c)-(l/3) 
((c/4)^(l/3).(2*c)-(l/3).0)^f 

(x, Vc ,0) 
Ik yT 

—+ (x,y,z) Current point 

Z axis 

Figure 66. Cubic hyperbolic of two sheets constraint supporting plane 
Gordian algorithm Y and Z axes view 
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projecting the current point to the surface in the Y direction in the 

X and Y axes plane. Otherwise, the projection in the X direction is 

used. 

Supporting Plane for Cubic Sheet Using Gordian Algorithm The 

supporting plane for cubic hyperbolic of two sheet constraint using the 

Gordian algorithm subroutine (CBS-TANG) finds the point on the cubic 

sheet constraint, a constraint whose parameters are stored in the last 

seven (7) columns of the constraint matrix, by using the Gordian 

algorithm and then constructs the tangent plane through the point and 

loads the plane's coefficients into the linear portion of the constraint 

matrix. 

4800 REM * SUPPORTING PLANE FOR CUBIC SHEET SUBROUTINE * 
4801 REM CBS-TANG 

4802 ZX=A#(K.ND+5)+l 
4803 ZY=A#(K,ND+6)+l 
4804 ZZ=A#(K,ND+7)+l 
4805 C#=A#(K.ND+4) 
4806 X#=B#(ZX,1) 
4807 Y#=B#(ZY,1) 
4808 Z#=B#(ZZ,1) 
4805 IF (ZX) AND Y#=n#(ZT) AND Z#*H#(ZZ) THEN RETURN 
4810 IF X#>0# AND Z#>=0# AND Y#-Z#>0# AND X#*(Y#-Z#)"2#>=C# THEN RETURN 
4811 H#=(2#*C#)-(l#/3#) 
4812 G#=C#/(H#*H#) 
4813 IF Y#-Z#<H# AND X#<G# THEN 4816 
4814 IF X#>=G# THEN 4824 
4815 H#=(Y#-Z#) 
4816 A#(K,1)=3#*C# 
4817 FOR L=2 TO ND+1 
4818 A#(K,L)=0# 
4819 IF ZX=L THEN A#(K.L)=H#*H# 
4820 IF ZY=L THEN A#(K,L)=2#*C#/H# 
4821 IF ZZ=L THEN A#(K,L)=-2#*C#/H# 
4822 NEXT L 
4823 RETURN 
4824 A#(K,1)=3#*SQR(C#*X#) 



255 

4825 FOR L=2 TO ND+1 
4826 A#(K,L)=0# 
4827 IF ZX=L THEN A#(K,L)=CDBL(SQR(C#/X#)) 
4828 IF ZY=L THEN A#(K,L)=2#*X# 
4829 IF ZZ=L THEN A#(K,L)=-2#*X# 
4830 NEXT L 
4831 RETURN 

Program Table of Content 

Table 16 can be used to reconstruct the primal-dual simplex method 

with cubic contraints from the computer disk files and to organize 

Table 16. Primal-dual method with nonlinear constraints BASIC 
program table of contents 

File Program lines Page Routines 

MAIN-PDS 
INPT-OBJ 
INPT-CON 
INPT-TYP 
INPT-BND 
UTIL-OPT 
UTIL-ERS 
UTIL-CON 
UTIL-CHX 
REPT-SMP 
ALSR-KEY 
ALGR-PDS 
TRAN-0B2 
TRAN-CON 
TRAN-INV 
TRAN-RIV 
CBH-TANG 
CBD-TANG 

0001. 
1200. 
1300. 
1400. 
1500. 
1800-
1850. 
I860-
1870. 
2200-
3000-
3300. 
3550. 
3600. 
3700. 
3900-
4600-
4800. 

0147 
1220 
1328 
1440 
1523 
1803 
1853 
1866 
1882 
2224 
3057 
3433 
3563 
3633 
3743 
3960 
4628 
4832 

127 Primal-dual method 
61 Objective coefficient input subroutine 
63 Constraint coefficient input subroutine 
65 Constraint type input subroutine 
67 Variable bounds Input subroutine 
22 Option line subroutine 
22 Erase option subroutine 
22 Continue line subroutine 
23 Data check subroutine 
69 Simplex report subroutine 
200 Ccnstralnt ksy Subroutine 
134 Primal-dual simplex algorithm subroutine 
139 Objective function transformation sbr. 
74 Constraint transformation subroutine 
76 Basis inversion subroutine 
78 Basis reinversion subroutine 
251 Supporting plane for cubic hyperbolic subr. 
254 Supporting plane for cubic sheet subr. 

subroutines from previous program listings. Since BASIC code is 

dependent on program line numbers for subroutine branching, the 

statement numbers must be maintained as listed above. 
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The primal-dual method main routine Is a modification of the 

routine MAIN-BEA which must be changed to call the constraint keys 

subroutine by changing line: 

94 GOSUB 3000:REN ALGR-KEY 

and the primal-dual algorithm ALGR-PDS requires adding the lines: 

3338 IF A#(K,ND+3)<>0* THEN GOSUB 4600:REM CBH-TAN6 
3339 IF A#(K,ND+4)<>0# THEN GOSUB 4800:REM CBS-TANG 

for the nonlinear subroutines. 

Primal-dual Method with Nonlinear Constraints: 
Solutions to Example 13 Minimum Project Supervision Cost Problem 

The example 12 minimum project supervision cost problem which was 

solved with Beale's method with nonlinear constraints can be rewritten 

as a the following CP problem in which the objective function is linear 

and can solved with the primal-dual method with cubic constraints. 

minimize 10*W5+9*W6+8*W7+7*W8+6*W9+5*W10+4*W11 
+3*W12+2*W13+W14 

+(T3-0)+{T4-T2)+(Tl-0)+(T2-Tl)+(T3-T2)+(T4-T3)+(T3-Tl) 
+(T2=0)+(T4=Tl)+(T4-0) 

subject to: W5*(T3-0)'2>=100 
W6*(T4-T2)"2>=400 
W7*(Tl-0)'2>=900 
W8*(T2-T1)*2>=1600 
W9*(T3-T2)"2>=2500 
W10*(T4-T3)'2>=3600 
Wll*(T3-Tl)-2>=4900 
W12*(T2-0)*2>=6400 
W13*(T4-T1)*2>=8100 
W14*(T4-0)"2>=10000 
T4<=0ur. 

T1,T2 W14>=0 
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Minimum Project Supervision Cost Problem Solutions 

With this problem, ten (10) computer runs were made for project 

durations of one hundred (100) to ten (10) time Increments at ten (10) 

time Increment intervals using the computer code for the primal-dual 

method with cubic hyperbolic constraints. 

The results of the computer runs are displayed in table 17 which 

lists for each of the ten (10) fixed project duration, the number of 

iterations required to reach the solution, the seconds required to reach 

the solution, the value of the objective function at the solution, and 

the value of each variable. 

Table 17. Primal-dual n»thod, using supporting planes derived with the 
Gordian algorithm, solutions to example 12 minimum project 
supervision cost problem with cubic hyperbolic cost functions 

Dur. 100 90 80 70 60 
Itr. 119 123 119 101 108 
Sec. 210 225 209 172 190 
Obj. 554.78018 554.78018 554.78018 556.79123 581.59037 
T1 16.84926 16.84926 16.84925 15.63227 13.04573 
T2 34.59319 34.59320 34.59324 32.57041 27.95588 
T3 52.98403 52.98408 52.98410 50.08518 43.30469 
T4 74.39589 74.39594 74.39595 70 60 
W5 0.03562 0.03562 0.03562 0.03986 0.05332 
W6 0.25248 0.25248 0.25248 0.28551 0.38955 
W7 3.17015 3.17015 3.17015 3.68296 5.28816 
W8 5.08183 5.08182 5.08179 5.57684 7.19707 
W9 7.39157 7.39154 7.39155 8.14951 10.61183 
WIO 7.85224 7.85224 7.85225 9.07715 12.91558 
Wll 3.75271 3.75270 3.75269 4.12804 5.35165 
W12 5.34808 5.34808 5.34807 6.03299 8.18904 
W13 2.44593 2.44593 2.44593 2.74032 3.67396 
W14 1.80676 1.80676 1.80676 2.04081 2.77777 



Table 17. Continued 

258 

Dur. 50 40 30 20 10 
Itr. 111 109 118 126 140 
Sec. 203 202 226 230 264 
Obj. 654.85698 831. 36710 1270.72451 2619.40329 10124.15667 
T1 10.66012 8. 41523 6.26032 4.15612 2.07485 
T2 23.32253 18. 67301 14.01188 9.34375 4.67232 
T3 36.31433 29. 17386 21.93616 14.64318 7.32510 
T4 50 40 30 20 10 
W5 0.07583 0. 11749 0.20781 0.46636 1.86368 
W6 0.56204 0. 87942 1.56482 3.52250 14.09241 
W7 7.91986 12. 70894 22.96405 52.10329 209.05862 
W8 9.97901 15. 20595 26.62821 59.45413 237.14635 
W9 14.81157 22. 67207 39.81260 89.01866 355.25479 
WIO 19.22076 30. 71534 55.36290 125.45552 503.13922 
Wll 7.44524 11. 37100 19.94043 44.55416 177.76084 
W12 11.76599 18. 35486 32.59769 73.30559 293.16559 
WIS 5.23382 8. 11950 14.37270 32.26727 128.96453 
W14 4 6. 25 11.11111 24.99999 99.99999 
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MINIMUM PROJECT COST CURVE PROBLEM 
WITH HYPERBOLIC MAN COUNT AND PARABOLIC COST FUNCTIONS 

Just as when the dual simplex method was used to minimize the 

linear cost problem, the nonlinear modifications of the simplex method 

found only one of the cost versus duration points on the project cost 

curve. In the case of the linear cost problem, the out-of-kilter method 

provided a very efficient means of solving for all the cost versus 

duration points on the project cost curve. In the nonlinear case, the 

out-of-kilter method proves too complex and problem dependent for a 

straight forward computerl2 algorithm. 

The project cost curve in the nonlinear case Is a continuous 

function rather than the piece wise linear function of the linear cost 

problem. To approximate the curve in the nonlinear case, a set of 

durations defining preset Intervals must first be defined and then the 

optimal cost for each Interval point found. 

One possible method for finding the cost curve is to run the 

nonlinear simplex method or Beale's method for every interval point OR 

the curve. But rather than rerunning the nonlinear modification of the 

simplex method from the starting point (0,0) for every point on the 

curve, the method can be restarted from the last optimal solutiuon point 

by adding a new and lower duration constraint corresponding to the next 

duration point on the project cost curve to the optimal simplex tableau 

as each successive optimal cost verses duration solution point is found. 
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Theory of Restart Method 

This method restarts the Beale's algorithm from the current point 

of the last optimal solution by adding a new constraint which makes the 

simplex tableau dual Infeaslble until a new optimal solution Is found. 

This approach simply takes advantage of the fact that the current 

simplex point at the last optimal solution is closer to the new optimal 

solution than the usual simplex starting point at the origin. 

Restart Method BASIC Code 

Restart Main routine — File MAIN-RST 

The restart method main routine (MAIN-RST) dimensions eleven (11) 

arrays; writes the options menu to the screen as shown in figure 67; 

RESTART METHOD 

NUMBER OF CONSTRAINTS 10 
NUMBER OF VARIABLES 14 
MAXIMUM ITERATIONS 1000 
DURATION VARIABLE 4 
CURVE POINT INTERVAL 10 

M-RETURN TO MENU 

O-OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPES 
B-BOUNDED VARIABLES 
Q-QUADRATIC COEFFICIENTS 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
S-SAVE F-FETCH 
N-NEW PROBLEM 

OPTION ? 
0'X+X'QX=z 

l*X*2*Y>=c l*X*(2*Y-3*Z)>=c l*Y+a*(X-b)'2>=c 

Figure 67. Restart method main menu screen 
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calls the utility subroutines UTIL-OPT, UTIL-ERS, UTIL-CON, UTIL-CHX; 

calls the data input and output routines INPT-OBJ, INPT-CON, INPT-TYP, 

INPT-BND, INPT-QUD, and REPT-CRV; calls and times the processing 

subroutines ALGR-KEY, ALGR-RST, and ALGR-BEA; and saves and fetches the 

input data to the disk file "DATA". 

1 REM * RESTART METHOD * 
2 REM MAIN-RST 

3 REM 81# - MACHINE INFINITE 
4 REM CO - PIVOT COLUMN FOR SIMPLEX TRANSFORMATION 
5 REM DV - VARIABLE GOVERNING DURATION OF NETWORK 
6 REM ER - ERROR KEY 
7 REM IN - NUMBER OF ITERATIONS BETWEEN REINVERSIONS 
8 REM INV - DURATION INTERVAL OF COST CURVE 
9 REM IR - MAXIMUM NUMBER OF ITERATIONS 
10 REM MD - NUMBER OF CONSTRAINTS 
11 REM ND - NUMBER OF VARIABLES 
12 REM PA - NUMBER OF ATTEMPTS AT PIVOT 
13 REM PM - SIGN KEY (+-) 
14 REM RO - PIVOT ROW FOR SIMPLEX TRANSFORMATION 
15 REM SM# - MACHINE ZERO 
16 REM A#(MD+2+ND,ND+8) - ORIGINAL DATA AND KEYS 
17 REM B#(2*ND+1.ND+1) - PRIMAL-DUAL MATRIX 
18 REM C#(CYC,2) - COST CURVE 
19 REM H#(ND+1) - PAST ITERATION SOLUTION 
20 REM M#(ND+1,2) - UPPER AND LOWER BOUND VALUES 
21 REM P#(ND+2) - WORK VECTOR 
22 REM Q#(ND,ND) - QUADRATIC OBJECTIVE MATRIX 
23 REM R(MD+1) - CONSTRAINT TYPE (l->=,0-=,-l-<=) 
24 REM S#(ND+1) - FREE VARIABLE COLUMN SWITCH 
25 REM T#(ND+1,ND+1) - INVERSION WORK FILE 
26 REM V#(ND+1+ND+1+ND+1+MD+1) - ROW AND COLUMN ARRAY 
27 REM X#(ND) - SOLUTION VECTOR 
28 REM 

Sets MD to the default number of constraints in the LP problem and 
ND to the number of constraints. Sets_IN to the number of iterations 
before a reinversion of the augmented B matrix. Sets CYC to the maximum 
number of duration points on the cost curve. Sets IR to the default 
maximum number of iterations. Sets BI# to a number considered machine 
infinite and SM# to a number considered machine zero. 

29 MD=0 
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30 ND=0 
31 IN=10 
32 CYC=50 
33 IR=1000 
34 BI#=1E+10 
35 SM#=lE-09 

Prompts and reads from the keyboard MD the number of constraints In 
the CP problem; ND the number of constraints; IR the maximum number of 
Iterations allowed before the restart algorithm Is stopped; DV the 
starting project duration; and INV the duration Interval between points 
on the project cost curve. 

36 CIS 
37 LOCATE 1,10:PRINT "RESTART METHOD" 
38 LOCATE 3,1:PRINT "NUMBER OF CONSTRAINTS";LOCATE 3,31:INPUT "",L$ 
39 GOSUB 1870:REM UTIL-CHX 
40 IF Z#<>BI# THEN MD=Z# 
41 LOCATE 3,30:PRINT MD," ":LOCATE 4,1:PRINT "NUMBER OF VARIABLES" 

: LOCATE 4,31:INPUT "",L$ 
42 GOSUB 1870:REM UTIL-CHX 
43 IF Z#<>BI# THEN ND=Z# 
44 LOCATE 4.30:PRINT ND," ":LOCATE 5,1:PRINT "MAXIMUM ITERATIONS" 

: LOCATE 5,31:INPUT "",L$ 
45 GOSUB 1870:REM UTIL-CHX 
46 IF Z#<>BI# THEN IR=Z# 
47 LOCATE 5,30:PRINT IR," LOCATE 6,1:PRINT "DURATION VARIABLE" 

: LOCATE 6,31:INPUT "",L$ 
48 GOSUB 1870:REM UTIL-CHX 
49 IF Z#<>BI# THEN DV=Z# 
50 LOCATE 6,30:PRINT DV." ":LOCATE 7,1:PRINT "CURVE POINT INTERVAL" 

: LOCATE 7,31:INPUT "",L$ 
&1 êôsUB 1870:REM UTIL-CHX 
52 IF Z#<>BI# THEN INV=Z# 
53 LOCATE 7,30:PRINT INV," 

Dimensions the A#(MD+2+ND+1,ND+8) array which contains the linear 
portions of the quadratic objective function, the constraint 
coefficients, and the first step of the transformation of the quadratic 
partials. Dimensions the augmented B inverse and augmented B array 
B#(2*ND+1.ND+1). Dimensions the holding array H#(ND+1), the upper and 
lower bound array M#(ND+1), the pivot row P#(ND+2), the augmented ÎJ 
matrix array Q#(ND+1,ND+1), the enlarged constraint type array 
R(MD+1+ND+1), the switch array S#(ND+1), the reinversion working array 
T#(ND+1,ND+1), the pivot selection array V#(MD+1+ND+1+ND+1+ND+1), the 
solution vector X#(ND), and the cost curve array C#(CYC,2). 

The restart method utilizes Beale's algorithm, so the arrays used 
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are the same for both methods. The only array which is added is the 
cost curve array C#(CYC,2). This array contains all the points of the 
cost curve where C#(CYC,1) is the duration and C#(CYC,2) Is the cost. 

54 DIM A#(MD+2+ND+l.ND+8) 
55 DIM B#(2*ND+1,ND+1) 
56 DIM C#(CYC,2) 
57 DIM H#(ND+1) 
58 DIM M#(ND+1,2) 
59 DIM P#(ND+1) 
60 DIM Q#(ND+i,ND+l) 
61 DIM R(MD+1+ND+1) 
62 DIM S#(ND+1) 
63 DIM T#(ND+1,ND+1) 
64 DIM V#(MD+1+ND+1+ND+1+ND+1) 

Initializes the constraint type array to all greater than or equals. 

65 FOR 1=1 TO MD+l+ND+1 
66 R(I)=1 
67 NEXT I 

Prints the option menu to the screen; calls the option line routine 
UTIL-OPT; and pauses for the entry of "M", "0", "A", "C". "B", "Q", "U", 
"R", "S", "F", "N" for the option variable L$. 

68 LOCATE 
69 LOCATE 
70 LOCATE 
71 LOCATE 
72 LOCATE 
73 LOCATE 
74 LOCATE 
75 LOCATE 
76 LOCATE 
77 LOCATE 
78 LOCATE 
79 LOCATE 
80 GOSUB 
81 LOCATE 

9,15: PRINT 
11,10:PRINT 
12,10:PRINT 
13,10:PRINT 
14,10:PRINT 
15,10:PRINT 
16,10:PRINT 
17,10: PRINT "R-
18,10:PRINT "S-
19,10:PRINT "N-
22,1:PRINT " 
23,1:PRINT "1*X*2*Y>= 

1800:REM UTIL-OPT 
21,8:INPUT "",L$ 

"M-RETURN TO MENU" 
"O-OBJECTIVE COEFFICIENTS" 
"A-CONSTRAINT COEFFICIENTS" 
"C-CONSTRAINT TYPES" 
"B-BOUNDED VARIABLES" 
"Q-QUADRATIC COEFFICIENTS" 
""-EXECUTE ALGORITHM" 

REPORT LISTING" 
SAVE F-FETCH" 
NEW PROBLEM" 

OX'+XQX'=z" 
c l*X*(2*Y-3*Z)>=c l*Y+a*(X-b)*2>=c" 

Calls either the objective function input subroutine INPT-OBJ, the 
constraint input subroutine INPT-CON, the constraint type input 
subroutine INpT-TYP, the upper and lower bound input subroutine INPT-
BND, the quadratic ^ matrix input subroutine INPT-QUD, the processing 
subroutine ALGR-KEY, or the report subroutine REPT-CRV based on the 
option variable L$. 
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82 CLS 
83 H=0 
84 G=2 
85 IF L$<>"0" THEN 88 
86 GOSUB 1200:REM INPT-OBJ 
87 GOTO 82 
88 IF LSO-A" THEN 91 
89 GOSUB 1300:REM INPT-CON 
90 GOTO 82 
91 IF L$<>"C" THEN 94 
92 GOSUB 1400:REM INPT-TYP 
93 GOTO 82 
94 IF L$<>"B" THEN 97 
95 GOSUB 1500:REM INPT-BND 
96 GOTO 82 
97 IF L$<>"Q" THEN 100 
98 GOSUB 1600:REM INPT-QUD 
99 GOTO 82 
100 IF L$<>"U" THEN 109 
101 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4.2))+VAL(MID$(TIME$, 

7.2)) 
102 GOSUB 3000:REM ALGR-KEY 
103 TM=3600*VAL(MID$(TIME$,1.2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$, 

7,2))-TM 
104 GOTO 68 
105 IF L$<>"R" THEN 108 
106 GOSUB 2100:REM REPT-CRV 
107 GOTO 82 

Saves the content of MD, ND, M#(ND+l,ND+8), A#(MD+l,ND+8), 
Q#(ND+1,ND+1), and R(MD+1+ND+1) to disk file "DATA" as an ASCI file if 
option "S" is selected. 

108 IF L$<>"S" THEN 126 
109 OPEN "0",#1,"DATA" 
110 PRINT #1,STR$(MD) 
111 PRINT #1.STR$(ND) 
112 FOR 1=1 TO ND+1 
113 FOR J=1 TO ND+1 
114 PRINT #1.STR$(Q#(I,J)) 
115 NEXT J 
116 PRINT #1,STR$(M#(I,1)) 
117 PRINT #1.STR$(M#(I.2)) 
118 NEXT I 
119 FOR 1=1 TO MD+1 
120 FOR J=1 TO ND+8 
121 PRINT #1,STR$(A#(I.J)) 
122 NEXT J 
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123 PRINT #1,STR$(R(I)) 
124 NEXT I 
125 CLOSE #1 

Loads to MD, ND, M#(ND+1,2), A#(M0+l,ND+8), Q#(ND+1,ND+1), and 
R(MD+1+ND+1) the disk file "DATA" If option "F" Is selected. 

126 IF L$<>"F" THEN 152 
127 OPEN "I".#1,"DATA" 
128 INPUT #1.X$ 
129 MD=VAL(X$) 
130 INPUT #1,X$ 
131 ND=VAL(X$) 
132 FOR 1=1 TO ND+1 
133 FOR J=1 TO ND+1 
134 INPUT #1.X$ 
135 Q#(I,J)=VAL(X$) 
136 NEXT J 
137 INPUT #1.X$ 
138 M#(I,1)=VAL(X$) 
139 INPUT #1.X$ 
140 M#(I.2)=VAL(X$) 
141 NEXT I 
142 FOR 1=1 TO MD+1 
143 FOR J=1 TO ND+8 
144 INPUT #1.X$ 
145 A#(I,J)=VAL(X$) 
146 NEXT J 
147 INPUT #1,X$ 
148 R(I)=VAL(X$) 
149 NEXT I 
150 CLOSE #1 
151 GOTO 68 

Restarts program for a new run if option "N" is selected. 

152 IF L$="N" THEN RUN 
153 GOTO 68 

Utility Subroutines — Files UTIL-OPT. UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Input Subroutines — Files INPT-OBJ. INPT-CON. INPT-TYP, and INPT-BND 

The input subroutines used for the Beale's method are the same as 

for the dual simplex method. The linear portion of the quadratic 



266 

objective function Is entered through the subroutine INPT-OBJ. 

Qaudratic Matrix Subroutine — INPT-QUD 

Same as for Beale's method. 

Report Subroutine — File REPT-CRV 

Same as for out-of-kllter method. 

Constraint Keys Subroutine — File AL6R-KEY 

Same as for dual simplex method with nonlinear constraints except 

for calling the restart subroutine by changing lines; 

3024 REM 
3026 GOSUB 3100:REM ALGR-RST 

Restart Algorithm Subroutine — File ALGR-RST 

The restart algorithm subroutine (ALGR-RST) saves the value of the 

current optimal solution in array C#(CYC,1) and then restarts Beale's 

method from its current optimal point by adding a duration constraint to 

the augmented simplex tableau which makes the tableau primal infeasible. 

3100 REM * RESTART ALGORITHM * 
3101 REM ALGR-RST 

Runs Beale's algorithm 

For the first run of Beale's method, the simplex tableau is 
initialized to the point at the origin. For all remaining runs of the 
subroutine, the initialization section of the code is skipped. 

3102 ITR=0 
3103 IT=0 
3104 CYC=1 
3105 ER=0 
3106 IF IT>IR THEN RETURN 
3107 IF CYOl THEN 3110 
3108 GOSUB 3300:REM ALGR-BEA 
3109 GOTO 3111 
3110 GOSUB 3318:REM ALGR-BEA+18 
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Totals the iteration count for all restarts. 

3111 ITR=ITR+IT 
3112 IT=ITR 

Continues to next point on the cost curve if the error code 
indicates a optimal solution. Otherwise returns to main routine. 

3113 IF ER=1 THEN 3117 
3114 IF CYC=1 THEN RETURN 
3115 ER=1 
3116 RETURN 

Sets C#(CYC,2) to the current optimal point on the cost curve. 

3117 C#(CYC,1)=M#(DV+1.1) 
3118 C#(CYC.2)=B#(1,1) 

Sets the upper bound on the duration variable to the next duration 
point on the cost curve. 

3119 M#(DV+1,1)=M#(DV+1,1)-INV 

Stops the restart of Beale's method if the duration point is less 
than or equal to zero (0). Otherwise, increments cycle count and 
restarts algorithm. 

3120 IF M#(DV+1,1)<=0 THEN 3115 
3121 CYC=CYC+1 
3122 GOTO 3105 

Beale's Algorithm Subroutine — File ALGR-BEA 

Same as for Beale's Method except the nonlinear constraint 

subroutines must be called from Beale's algorithm (ALGR-BEA) by adding 

the lines: 

3342 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3344 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
3346 IF A#(K.ND+4)<>0# THEN GOSUB 4400:REM SHT-TANL 

Quadratic Tableau Transformation — File TRAN-QUD 

Same as for Beale's Method. 
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Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 

Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Relnverslon Subroutine — File TRAN-RIV 

Same as for dual simplex method. 

Parabolic Subroutines — Files PAR-TANA. PAR-TANL. or PAR-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Subroutines — Files HYP-TANA. HYP-TANL, or HYP-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Sheet Subroutines — Files SHT-TANA. SHT-TANL. or SHT-TANG 

Same as for dual simplex method with nonlinear constraints. 

Program Table of Content 

Table 18 can be used to reconstruct the restart method with the 

above computer code and to organize subroutines from previous program 

listings. Since BASIC code is dependent on program line numbers for its 

SubrOwtins ursnching. tîiê statemsnt numbers must be maintained as listed 

below. 

The constraint keys subroutine ALGR-KEY must be changed to call the 

restart subroutine by changing lines: 

3024 REM 
3026 GOSUB 3100:REM ALGR-RST 

and the nonlinear constraint subroutines must be called from Beale's 

algorithm (ALGR-BEA) by adding the lines: 

3342 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
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3344 IF A#(K,ND+3)<>0# THEN 60SUB 4200;REM HYP-TANL 
3346 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANL 

Table 18. Restart method BASIC program table of contents 

File Program lines Page Routines 

MAIN-RST 0001-0153 261 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
INPT-QUD 1600-1628 166 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-CRV 2100-2125 105 
ALGR-KEY 3000-3057 200 
ALGR-RST 3100- 3122 266 
ALGR-BEA 3300- 3481 172 
TRAN-QUD 3550-3584 180 
TRAN-CON 3600- 3633 74 
TRAN-INV 3700- 3743 76 
TRAN-RIV 3900- 3960 78 
PAR-TANL 4000-•4034 209 
HYP-TANL 4200-•4221 217 
SHT-TANL 4400-•4425 228 

Restart method 
Objective coefficient input subroutine 
Constraint coefficient input subroutine 
Constraint type input subroutine 
Variable bounds input subroutine 
Quadratic input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Cost curve report subroutine 
Constraint key subroutine 
Restart algorithm 
Beale's algortihm subroutine 
Quadratic tableau transformation subroutine 
Constraint transformation subroutine 
Basis inversion subroutine 
Basis reinversion subroutine 
Supporting line for parabolic subroutine 
Supporting line for hyperbolic subroutine 
Supporting plane for sheet subroutine 

Restart Method : Solutions to 
Example 12 Minimum Project Supervision Cost Curve Problem 

With the prompts of restart method main routine screen, the project 

duration variable number (4) of example 12 and the ten (10) increment 

interval for the points on the project cost curve were entered. 

Starting with an upper bound of the duration variable which was one 

hundred (100) Increments, the method in increments of ten (10) reduced 
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the project duration from one hundred (100) to ten (10) Increments for 

the costs shown In figure 68. 

PROJECT COST CURVE 
SOLUTION REACHED IN 1321 ITR 4577 SEC 

NO. DURATION COST 
1 74.39595 554.78018 
2 74.39595 554.78018 
3 74.39595 554.78018 
4 70 556.79123 
5 60 581.59037 
5 50 654.85698 
7 40 831.36106 
8 30 1270.72451 
9 20 2619.40329 
10 10 10124.15667 

OPTION ? 

Figure 68. Restart method, using supporting planes derived with the line 
search algorithm, cost curve solution to example 12 minimum 
project supervision cost problem 
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SECTION II. INTEGER SOLUTION METHODS 

No consideration was given to Integer solutions for the models and 

problems derived In section I. In actual practice, construction crews 

work one (1) day at a time and consist of an Integer number of people. 

If the solutions found In the previous section are used for an 

actual project, the actual results would not be comparable with the 

results predicted by the models because the requirement of the job site 

would haphazardly round the the solution to a nonoptlmal Integer 

alternative. 

Even If the solutions of section I are systematically round to an 

Integer solution, the result would still not be the optimal Integer 

solution. To find the Integer solutions, some of the problems presented 

In section I must be solved by alternate methods. 

In section II, the problems of section I will be re-solved with 

Integer methods. In the case of the CPM and the simplex methods with 

linear constraints, the methods are Inherently Integer. For the 

variations of the simplex method with nonlinear constraints, the 

solutions are not inherently Integer. For these methods, alternate 

methods will be presented. 



272 



273 

PROBLEMS WITH UNIMODULARITY 

The CPM method was based on a time scale of integer points, so 

node times, activity durations, activity times, and floats were all 

restricted to Integer values. The dual simplex method, in the general 

case, is not restricted to integer solutions, and yet the solutions to 

the examples are consistent with the CPM method in that they were all 

integer values. 

The integer solutions to the examples are not an exception. The 

dual simplex method will always reach integer optimal solutions to the 

network schedule LP problem with linear cost functions. 

Unimodularity of Simplex Tableau 

To describe the characteristic of the minimum project cost problem 

with linear cost functions, the three (3) activity network of example 1 

will be used. The example 1 problem has three (3) activities and three 

(3) nodes in the arrow diagram: 

duro2-R02 

/ \ 
/duroi-Roi duri2-Rl2 -V 

where; 
Ti - Node time of node i 
durij - Normal duration of activity 1j 
Rlj - Increments of reduction of duration of activity 1j 
u-jj - Upper limit for reduction of duration of activity ij 
1ij - Lower limit for reduction of duration of activity 1j 
dur. - Project duration 

The constraints of the minimum project cost problem: 



274 

T2-(dur02-R02)-T0>=0 
Ti-(duroi-Roi)-To>=0 
T2-(duri2-Ri2)-Tl>=0 

-T2>=-dur. 
R02>* dur02-U02 

-R02>=-dur02+102 
ROl>= duroi-UQi 

-R01>"-dur0l+l01 
R12>» duri2-ui2 

-Rl2>=-duri2+l12 

To.Ti Ri2>=0 

can be written in matrix form as: 

Âx>=¥ 
x>=? 

Tableau 27 is the A matrix of the example three (3) activity 

problem in tableau format. 

T2 R02 ROl R12 To Ti 

1 -1 0 1 1 0 0 
1 -1 1 0 0 1 0 
1 0 -1 1 0 0 1 
1 0 0 -1 0 0 0 
1 0 0 0 1 0 0 
1 0 0 0 -1 0 0 
1 0 0 0 0 1 0 
1 0 0 0 0 -1 0 
! 0 0 0 0 0 n 

1 0 0 0 0 0 -1 

>= duro2 
>= duroi 
>= duri? 
>=-dur. 
>= duro2-u02 
>=-duro2+T02 
>= duroi-UQi 
>=-duroi+loi 

!>= duri2-ui2 

Tableau 27. Simplex unimodular A matrix 

This tableau contains three (3) rows for each activity in the 

network. The network constraint row contains three (3) nonzero entries, 

two (2) positive one (1) entries and one (1) negative one (-1) entry. 

The second row and third rows are the upper and lower bounds on the 

duration reduction variable, each containing only one (1) nonzero entry. 
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In every case, the bounds row entry are directly below the 

constraint row entry, so that If the tableau were expanded to the 

general case, the above conditions would still hold. 

With a simple row operation, the tableau elements corresponding to 

duration reduction variables can be reduced to zero (0) In every network 

constraint row. This operation has been performed In tableau 28. 

To Tl T2 R02 ROl *12 

-1 0 1 0 0 0 !>=-102 
-1 1 0 0 0 0 l>=-ioi 
0 -1 1 0 0 0 l>=-ll2 
0 0 -1 0 0 0 |>=-dur. 
0 0 0 1 0 0 I>= dur02-U02 
0 0 0 -1 0 0 |>=-duro2+T02 
0 0 0 0 1 0 l>= duroi-UQi 
0 0 0 0 -1 0 |>=-duroi+loi 
0 0 0 0 0 1 l>= durx2-ui2 
0 0 0 0 0 -1 |>=-duri2+li2 

Tableau 28. Simplex unimodular A matrix 

If A matrix Is transformed and set equal to the matrix ¥ then 

the tableau appears as shown in tableau 29. 

1 -1 -1 0 0 0 0 0 0 0 0 
T' 1 0 1 -1 0 0 0 0 0 0 0 

1 
1 0 1 -1 0 0 0 0 0 0 

1 
1 0 0 0 0 1 -1 0 0 0 0 

T" 1 0 0 0 0 0 0 1 -1 0 0 
1 0 0 0 0 0 0 0 0 1 -1 
+-

Tableau 29. Simplex unimodular B matrix 
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The ÏÏ matrix can now be proven to have a "unimodular" structure by: 

"Let B be an m by n matrix whose rows can be partitioned into two 
(2) disjoint sets, T' and T", such that ÏÏ, T', and T" have the following 
properties 

1) Every entry in ÏÏ is 0,+l,-l. 
2) Every column contains at most two nonzero entries. 

(3) If a column of B contains two nonzero entries and they are of 
opposite sign, then both are in T' or T" 

then B has the unimodular property. If ¥ is unimodular then B transpose 
in unimodular."48 

The importance of unimodular matrices lies in the fact that the 

vertices of the following polyhedron; 

_ jnc>=a 
d-u<=x<=ïï-T 

are integers values, whenever b,%,T,u,d are integer values. The 

solutions for the dual simplex method lie on the vertices of the "K 

matrix or the intersections of the constraints, so if the upper and 

lower limits on the duration reduction variables, the project duration, 

and all activity durations are integer, then all optimal solutions to 

the linear activity cost problems are also integer. 
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GOMORY'S ALL INTEGER METHOD WITH NONLINEAR CONSTRAINTS 

In the minimum project cost problem with linear cost functions, 

the LP problem's constraint coefficient matrix was unimodular. This 

unimodularity guaranteed integer solutions. In the minimum project man 

count or cost problems with nonlinear constraints or with quadratic 

objective functions, integer solutions are no longer guaranteed. 

Although dollar amounts are not normally restricted to integer 

values, man counts and project days are almost always integer values in 

construction schedules. One way to find an integer solution with dual 

simplex method with nonlinear constraints is to round up the noninteger 

solution. In the case of the minimum man count CP problem, the 

coefficient matrix Is at least partially unimodular, so the round up 

method will give a good solution as demonstrated in Appendix B. 

The more complex minimum project supervision cost problem can not 

be solved by the round up method. In the case where the round up method 

will not work, several integer methods provide integer solutions to the 

nonlinear problems. 

An integer method which is closely related to the dual simplex 

method and which is compatible with the nonlinear convex constraints of 

the modified dual simplex method is Gomory's all integer method^^. 

Although Gomory's method is usually not very efficient, in the cases 

where the optimum real solution 1s close to integer or the constraint 

coefficient matrix is at least partially unimodular, the method is 

competitive with other integer methods. 
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Theory of Gomory's Cut 

Gomory's method is closely related to the dual simplex method in 

that it uses a simplex tableau and transforms the tableau using a Gauss-

Jordan elimination. The primary difference between the two methods is 

that Gomory's method starts with and maintains an all integer tableau 

after every transformation. 

Gomory's Tableau 

In the dual simplex method, the tableau at any iteration is: 

1 s 

z c'B-lïï I c'ÏÏ-1 

x= i-ïïï"""î"i-î'" 

s= -?p+âp'ïï"îïï I âp'ïï-î 

In Gomory's method, the LP problem is changed slightly from the 

formulation used earlier and is written as; 

minimize z 

subject to: z+c'(-x) =0 
-â-TT (-x)>=ïï 

x >=ÏÏ and integer 

c>=0 
or as: 

maximize -z 

subject to: -z-c^'(-7) =0 
a+TT (-x)<=0 

X >=0 and integer 

?>=Ô 

where all coefficients of the LP problem are restricted to integers; and 
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the variables, and therefore, the variable columns of the tableau, are 

the negative of the previous dual simplex tableau. 

Assuming that Gomory's method transforms the augmented ÏÏ matrix 

while still maintaining an all Integer elements, the augmented ÏÏ inverse 

for the Gomory's method becomes: 

1 s 

-1 I Ô' 

""i-îïï" r"-i-î 

so that the transformation of the objective function Is: 

I  0  , -c' I  *  I  - 1  I  Ô '  1 = 1  -c'B-lïï ,  c' Ï Ï -1 I  

I B-lïï I -1-1 I 

and of any constraint 1: 

I  a f  ,  â f '  I  *  I  - 1  I  Ô '  1  =  1  - a i + ¥ i ' ' B - l F  ,  - a - f ' B - l  I  

I B-lïï I -ÏÏ-1 I 

resulting in the Gomory tableau at any iteration of: 

1 -? 

z- ^G'B-lïï I ïï'B-1 

7= "ïï-ïïï r"iïï-ï 
s= -ap+ap'B-lïï I -ap'B-1 

Any pivot row can now be written in the form: 

I -ap+ap'B-lïï, -ap'ÎT-l I 

or as the equation: 
s=bpo*l+ > bpj*(-Xj) 

j=l,n 

bpO<0 
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where the pivot row equation has all integer coefficients again assuming 

an a11 integer augmented ÏÏ inverse. 

Gomory's Cut 

The transformation of the simplex tableau requires a division 

of the pivot row by the selected pivot element which would more than 

likely result in a noninteger transformed tableau. To eliminate this 

problem, Gomory devised an alternate pivot row or "cut"36 which has all 

integer elements and a pivot element equal to one (1). 

The coefficients of the original pivot row can be factored by first 

setting: 
fjîbpj-[bpj/L] 0<=fj<l L a positive number 

where [bpj/L] means the largest integer value less than or equal to 

^j. Let rj=L*fj so that rj is the noninteger component of then: 

p=J^=^j-[bpj/U or bpj=rbpj/Ll*L+rj 

Since 0<=fj<l and L>0, then 0<=rj<L. Now by substitution into the 

original pivot row the factors of the coefficients; 

{ri/L]*L+r}*s={rbpO/L]*L+ro>+ > {[bpj/L]*L+rj}*(-Xj) 
j=l,n 

or rewritten as: 

> rj*Xj +r*s=ro+L*{rbpo/Ll+ > rbpj/L]*(-Xj) +ri/L]*(-s)} 
j=l,n j=l,n 

Let s be a positive integer value since we are seeking an all integer 

solution in the final tableau and the pivot row is all integer. This 

allows a portion of the factored pivot row to be set to the integer 

slack s% in: 



281 

S%={rbp0/Ll+ > rbpj/L]*(-Xj) +ri/U*(-s)} 
j=l,n 

If s% is greater than or equal to zero (0) in a feasible solution of 

the LP problem, then the slack equation can be used as a pivot row. 

Say s% is a negative integer so that the equation cannot be used as 

a pivot row then: _ 
2 rj*Xj + r*s=ro+L*s%<0 

j=l,n 

since ro<L, ro>=0, L>0 and L*s%<0 by definition and; 

> rj*Xj + r*s<0 
j=l,n 

which would contradict the feasibility of the original pivot row at the 

optimal solution. 

The slack equation can now be rewritten as: 

[l/L]*s+s%=rbpo/Ll+ > rbpj/L]*(-Xj) 
j=l,n 

or if L>1 then: 
s%=[bpo/L]+ > rbpj/L]*(-Xj) 

j=l,n 

The slack equation can be used as an integer cut or pivot row for 

the Gomory transformation in which all the coefficients of the 

equation are integer and the pivot element bpp is one (1) when L is 

chosen to be greater than the pivot element. 

Selecting a Dual Simplex Pivot Row from Which to Derive a Gomory Cut 

The Gomory cut was derived from a dual simplex pivot row. The dual 

simplex method of selecting the constraint with the most negative slack 

or which is the most distant from the current simplex point as the pivot 
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row would then appear to be the best source of a Gomory cut. 

Unfortunately, the simplex rules fail to converge in every case, so a 

weaker choice, which can be proven to converge36, is used. 

The choice is simply to use the first constraint in the Gomory 

tableau which has a negative slack as the constraint from which to 

generate the Gomory cut. 

Gomory'5 Transformation 

After finding a pivot row, the pivot element and a L which will 

result in the strongest Gomory cut must be selected so as to maintain 

primal feasiblity and lexicographic positivity after each 

transformation. The added requirement of lexicographic positivity, as 

in the perturbation method of the dual simplex method, is needed in 

Gomory's method to avoid cycling. 

Gomory's method assumes that the starting simplex tableau is 

lexicographically positive so that in every column the first nonzero 

element is a positive number. If the tableau is not lexicographically 

positive, then the tableau has to be row reordered or a constraint must 

be added to force lexicographic positivity. 

(In the dual feasible dual simplex tableau which has positive 

variable columns, the objective function coefficients and the basis 

inverse matrix form a lexicographically positive tableau in- the first 

ND+1 rows of the tableau. Since the tableau is lexicographically 

positive at the first Iteration and the basis inverse matrix remains 

nonsingular, the lexicographically smallest column of the tableau can 
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always be identified from just the first ND+1 rows of the tableau.) 

Let tableau 30 represent the Gomory tableau in which first row is 

the objective row, rows one (1) through n are the augmented ÏÏ inverse, 

and the row p is the pivot row selected for generating the Gomory cut. 

The tableau is assumed to be lexicographically positive. From the pivot 

1 -S I  -S j  -sp -Sn 

-z= j boo j boi bop bOn 1 

xk= 
1 

j b|cl bkp 1 k 
I 

Xj= j bOj 1 
I 

bij bmj j 

xn= bon • • bmn j 
s%= 1 bpo 1 bp! bpj bpp bpn 1 P pivot row 

1 P 
max pivot 

[Ibpjl/ujl selected 

Tableau 30. Gomory's method tableau 

row, among the bpj<0, select the column which is lexicographically 

smallest and call it column p. Find integers uj>=l for each column in 

which bpj<0 such that if the column elements of j are divided by the 

integer uj the column will still be lexicographically larger than column 

p. Algebraically, that is: 

l*F-f lex> Fp 
"J 

Now define Lg=max(lbpji/uj) j=l,b where b is the number of columns 

where bpj<0, Ibpjl is the absolute value of the pivot row element 1n 

column j, and g is the column with the maximum ratio Lq. This results 
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in a Gomory cut of: _ 
s%=[bpo/Lgl+ 2 [bpj/Lg]*(-Xj) 

j=l.n 

Lexicographic Positivity After Transformation with Gomory Cut 

With the Gomory cut derived above, a Gauss-Jordan elimination is 

used to transform the Gomory tableau. The tableau resulting from the 

transformation using the Gomory cut will remain lexicographically 

positive. 

To show that this is true, consider the cases where the first 

positive element of the lexicographically positive column g occurs in 

row k. The elements of the pivot row corresponding to the g and p 

columns are: 

rbpg/Lg3 = [bpg*Ug/| bpgH^-Ug [bpp/Lg] = [bpp*Ug/|bpg|]=-l 

If the element bkp=0 then the g column element bjçg will remain positive 

after the transformation and the column will remain lexicographically 

positive. But taking the worst case for column g in which bkp>0, and 

pivoting, the partial tableau: 

I bkg bkp I k row in which first positive 
I ! element of column g occurs 

I -Uq -1 I p 
+ : + 

g P 
IS transformed to: 

bkg-Ug*bkp bkp 

0 -1 

g P 
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but b|(g>b|(p by definition and Ug<b|(g since bkp>=0, b|(g>0, Ug>0. 
Ug ïïkp 

so: bkg-Ug*bkp>bkg-bkg*bkp=0 
Dkp 

and g column is still lexicographically positive. 

For the other columns where bpj<0 and the 1 row is the row in which the 

first positive element of column j occurs the pivot row elements are: 

fbpj/Lg]<=bpj*Ug/IbpgI<=bpj*bkg/IbpgI*bkp 

Again transforming the column element bkj: 

blj-Capj/Lg3*bip>=bij-apj*bkg*bip/IapgI*bkp>0 

since b]j>0 and bpj<0 by definition and bkg>0, b-|p>=0, bkp>0. 

For the other columns where bpj>=0 the pivot element b]j transforms to: 

blj+rbpj/Lg]*bTp>0 

since b]j>0, rbpj/Lg]>=0, bip>=0. 

Theory of Wilson's Cut 

Gomory's cut can be written as: 

S%=[bpO/Lg]+ 2 [bjp/Lg]*(-Xj) + 2 C''jp/Lg1*(-Xj) 
bjp>0 bjp<=0 

where the positive and negative coefficients have been segregated and Lq 

is chosen by the Gomory algorithm as the minimum L which will maintain 

lexicographic positivity of the columns of the Gomory tableau. 

Actually, any larger L can be chosen or inf>L>=Lg. Wilson's cutSO is 

derived by finding an L that strengthens Gomory's cut. 

If Gomory's cut is rewritten as: 

s%'=-[l-bopl/L]- > [I+bjpl/L]*Xj + > [l-bjp|/L]*Xj) 
bjp>0 bjp<=0 
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where s%' Is now the slack for differing values of L assuming a constant 

set of X variable values then s%'1s more negative than s% If: 

CI-bopl/L] 
Is Increased or: 

CI+bjpl/L] 
Is Increased or: 

[l-bjpl/L] 
Is decreased. 

Since decreasing s%' strengthens the cut by making the slack more 

negative, increasing the first two (2) components of the equation would 

require a smaller L than the minimum Lg from the Gomory's cut. But if 

a L larger then Lg can be found such that: 

CI-bopi/L]=[I-bopi/Lg] 

CI+bjp|/L]=CI+bjp|/Lg] for all bjp>=0 

CI-bjp|/L]<[l-bjpl/Lg] for all bjp<0 

then s%'<s% for the same set of Xj values. 

To find Wilson's L^, define the set of j=0,J as: 

Lo=bop/(1+rbop/Lg])-smal1 amount 

ki=biD/[bio/La] for all bio>0 
then let: ' " 

Lw=max1mum {Lg,m1n(Lj),j=0,J} 

so that Wilson's cut is now: 

s%'=[bop/Lw3+ 2 Cbjp/Lw]*(-Xj) + 2 rbjp/Lw!!*(-Xj) 
bjp>0 bjp<=0 

Selecting a Dual Simplex Pivot Row from Which to Derive a Wi 1 son Cut 

In Gomory's method the first constraint of the LP problem with a 

negative slack was used as the pivot row. This method can be proven to 

converge. Unfortunately, the method has a poor rate of convergence. 
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Utilizing the convergence proof of Gomory's method, another method for 

selecting a pivot row can be derived that usually converges faster. 

If the pivot column is found using the Gomory method as described 

earlier for each transformed constraint of the LP problem that has a 

negative slack, then a pivot row can be is selected as the row which has 

the lexicographically largest pivot column from all the potential rows. 

This approach favors the rows of the tableau which have the 

greatest impact on the first column of the Gomory tableau; and in that 

manner, hopefully leads to a primal feasible tableau at a faster rate. 

Gomory's Method with Nonlinear Constraints BASIC Code 

The following code is a modification of Gomory's all integer method 

incorporating suggestions by WilsonSO and Zoints^l. The algorithm is 

coded to take advantage of any unimodularity of the simplex tableau by 

seeking any simplex transformation which would result in an all integer 

tableau as well as the supporting planes of the simplex methods. 

All the programs listed in the text consist of a main calling 

routine, and a series of input, output, and processing subroutines. The 

BASIC routines are listed in the text and as BASIC files on a computer 

disk compatible with IBM micro-computers. 

Gomory's Method Main Routine — File MAIN-GOM 

The Gomory's method main routine (MAIN-GOM) dimensions eleven (11) 

data arrays; writes the options menu as shown in figure 69; calls the 

utility subroutines UTIL-OPT, UTIL-ERS, UTIL-CON,UTIL-CHX; calls the 

input and output routines INPT-OBJ, INPT-CON, INPT-TYP, INPT-BND, and 
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GOMORY'S METHOD 

NUMBER OF CONSTRAINTS 
NUMBER OF VARIABLES 
MAXIMUM ITERATIONS 

M-RETURN TO MENU 

O-OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPE 
B-BOUNDED VARIABLES 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
S-SAVE F-FETCH 
N-NEW PROBLEM 

OPTION ? 

I*X*2*Y>=c l*X*(2*Y-3*Z)>=c l*Y*a*(X-b)"2>=c 

Figure 69. Gomory's method main menu screen 

10 
14 

1000 

REP-SMP; calls and times the processing algorithm ALGR-GOM; and saves 

and fetches the input data to a disk file. 

1 REM *GOMORY'S METHOD* 
2 REM MAIN-GOM 
3 REM BI# - MACHINE INFINITE 
4 REM CO - PIVOT COLUMN FOR SIMPLEX TRANSFORMAIION 
5 REM ER - ERROR KEY 
6 REM IR - MAXIMUM NUMBER OF ITERATIONS 
7 REM MD - NUMBER OF CONSTRAINTS 
8 REM ND - NUMBER OF VARIABLES 
9 REM RO - PIVOT ROW FOR SIMPLEX TRANSFORMATION 
10 REM SM# - MACHINE ZERO 
11 REM A#(MD+l,ND+8) - ORIGINAL DATA AND KEYS 
12 REM B#(ND+2,ND+1) - PRIMAL-DUAL MATRIX 
13 REM C(ND+1) - COLUMNS ELIGIBLE FOR GOMORY PIVOT 
14 REM H#(ND+1) - SOLUTION FROM LAST ITERATION 
15 REM M#(ND+1,Z) - LOWER AND UPPER BOUNDS OF VARIABLES 
16 REM P#(ND+1) - PIVOT ROW VECTOR 
17 REM R(MD+1) - CONSTRAINT TYPE (!-">=",0-"=".-!-"<=") 
18 REM S#(ND+1) - TEMPORARY GOMORY PIVOT ROW 
19 REM U(ND+1) - MAX DIVISOR MAINTAINING LEX MIN COLUMN 
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20 REM V#(ND+1) - TEMPORARY SIMPLEX PIVOT ROW 
21 REM X#(ND) - SOLUTION VECTOR 
22 REM 

Sets MD to the default number of constraints in the integer CP 
problem and NO to the number of variables. Sets IR to the default 
maximum number of iterations. Sets BI# to a number considered machine 
infinite and SM# to a number considered machine zero. 

23 MD=0 
24 ND=0 
25 IR=1000 
26 BI#=1E+10 
27 SM#=1E-10 

Prompts and reads from the keyboard the number of constraints MD in 
the CP model; the number of variables ND; and the maximum number of 
iterations IR allowed before Gomory's algorithm is stopped. 

28 CLS 
29 LOCATE 1.10:PRINT "GOMORY'S METHOD" 
30 LOCATE 3,1;PRINT "NUMBER OF CONSTRAINTS":LOCATE 3,31:INPUT "",L$ 
31 GOSUB 1870;REM UTIL-CHX 
32 IF Z#<>BI# THEN MD=Z# 
33 LOCATE 3,30:PRINT MD." LOCATE 

: LOCATE 4,31:INPUT "".L$ 
34 GOSUB 1870:REM UTIL-CHX 
35 IF Z#<>BI# THEN ND=Z# 
36 LOCATE 4.30:PRINT ND." ":LOCATE 

: LOCATE 5,31:INPUT "",L$ 
37 GOSUB 1870:REM UTIL-CHX 
38 IF Z#<>BI# .THEN IR=Z# 
OO I ACATC C -aA-nnTMT TM II il 

Dimensions the A#(MD+l,ND+8) array which contains the constraint 
coefficients. Dimensions the augmented ÏÏ inverse and augmented ÏÏ matrix 
B#(ND+2,ND+1). Dimensions the holding array H#(ND+1), the upper and 
lower bound array M#(ND+1,2), the pivot row P#{ND+1), the constraint 
type array R(MD+1), and the Gomory pivot row selection array S#(ND+1). 
Dimensions the column selection array C(ND+1), the largest integer 
divisor array U(ND+1), the simplex pivot row selection array V#(ND+1), 
and the solution vector X#(ND). 

The arrays S#(ND+1) and V#(ND+1) hold the pivot rows from which the 
Wilson cut is derived and a simplex transformation is made. If a 
simplex transformation can be made while still maintaining a integer 
tableau the simplex pivot row is used. If not, then the Wilson cut is 
used. 

4,1:PRINT "NUMBER OF VARIABLES" 

5,1:PRINT "MAXIMUM ITERATIONS" 
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40 DIM 
41 DIM 
42 DIM 
43 DIM 
44 DIM 
45 DIM 
46 DIM 
47 DIM 
48 DIM 
49 DIM 
50 DIM 

A#(MD+l.ND+8) 
B#(ND+2,ND+1) 
H#(ND+1) 
M#(ND+1.2) 
P#(ND+1) 
R(MD+1) 
S#(ND+1) 
C(ND+1) 
U(ND+1) 
V#(ND+1) 
X#(ND) 

Initializes the constraint array type to all greater than or equals. 

51 FOR 1=1 TO MD+1 
52 R(I)=1 
53 NEXT I 

Prints the option menu to the screen; calls the option line routine 
OPT; and pauses for the entry c 

"F", "N" for the option variable L$. 
UTIL-OPT; and pauses for the entry of "M". "A", "C", "B", "U", "R", "S". 

54 LOCATE 8,15: PRINT 
55 LOCATE 10,10:PRINT "0 
56 LOCATE 11,10:PRINT "A 
57 LOCATE 12,10:PRINT "C 
58 LOCATE 13,10:PRINT "B 
59 LOCATE 14,10:PRINT "U 
60 LOCATE 15,10;PRINT "R 
61 LOCATE ae,10:PRINT "S 
62 LOCATE 17,10:PRINT "N 
63 LOCAiE 23,i:PRINT "i*X*Z*Y> 
64 GOSUB 1800:REM UTIL-OPT 
65 LOCATE 21,8:INPUT "".L$ 

"M-RETURN TO MENU" 
•OBJECTIVE COEFFICIENTS" 
•CONSTRAINT COEFFICIENTS" 
•CONSTRAINT TYPES" 
•BOUNDED VARIABLES" 
•EXECUTE ALGORITHM" 
•REPORT LISTING" 
•SAVE F-FETCH" 
-NEW PROBLEM" 
=c l*X*(2*Y-3*Z)>=c l*Y*a*(X-b)"2>=c" 

Calls either the objective function Input subroutine INPT-OBJ, the 
constraint input subroutine INPT-CON, the constraint type input 
subroutine, the upper and lower bound Input subroutine INPT-BND, the 
processing subroutine ALGR-GQM, or the report subroutine based on the 
option variable L$. 

66 CLS 
67 H=0 
68 G=2 
69 IF L$<>"0" THEN 72 
70 GOSUB 1200:REM INPT-OBJ 
71 GOTO 66 
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72 IF L$<>"A" THEN 75 
73 GOSUB 1300;REM INPT-CON 
74 GOTO 66 
75 IF L$<>"C" THEN 78 
76 GOSUB 1400:REM INPT-TYP 
77 GOTO 66 
78 IF L$<>"B" THEN 81 
79 GOSUB 1500:REM INPT-BND 
80 GOTO 66 
81 IF L$<>"U" THEN 90 
82 TM=3600*VAL(MID$(TIME$,1.2))+60*VAL(MID$(TIME$.4,2))+VAL(MID$(TIME$,7 

. 2 ) )  
83 GOSUB 3000:REM ALGR-KEY 
84 0B#=B#(1.1) 
85 FOR 1=1 TO ND 
86 X#(I)=B#(I+1.1) 
87 NEXT I 
88 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$.7 

.2))-TM 
89 GOTO 54 
90 IF L$<>"R" THEN 93 
91 GOSUB 2200:REM REPT-SMP 
92 GOTO 66 

Saves the content of MD, ND, M#(ND+1,2). A#(MD+l,ND+8), and R(MD+1) 
to the disk file "DATA" as an ASCI file if option "S" is selected. 

93 IF L$<>"S" THEN 111 
94 OPEN "0",#1,"DATA" 
95 PRINT #1.STR$(MD) 
96 PRINT #1,STR$(ND) 
97 FOR 1=1 TO ND+1 
95 FOR TO ND+l 
99 PRINT #1,"" 
100 NEXT J 
101 PRINT #1,STR$(M#(I,1)) 
102 PRINT #1,STR$(M#(I,2)) 
103 NEXT I 
104 FOR 1=1 TO MD+1 
105 FOR J=1 TO ND+8 
106 PRINT #1,STR$(A#(I.J)) 
107 NEXT J 
108 PRINT #1.STR$(R(I)) 
109 NEXT I 
110 CLOSE #1 

Loads to MD, ND, M#(ND+1,2), A#(MD+1,ND+8), and R(ND+1) to disk 
file "DATA" if option "F" is selected. 
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111 IF L$<>"F" THEN 136 
112 OPEN "I".#1,"DATA" 
113 INPUT #1,X$ 
114 MD=VAL(X$) 
115 INPUT #1,X$ 
116 ND=VAL(X$) 
117 FOR 1=1 TO ND+1 
118 FOR J=1 TO ND+1 
119 INPUT #1,X$ 
120 NEXT J 
121 INPUT #1.X$ 
122 M#(I.1)=VAL(X$) 
123 INPUT #1,X$ 
124 M#(I,2)=VAL(X$) 
125 NEXT I 
126 FOR 1=1 TO MD+1 
127 FOR J=1 TO ND+8 
128 INPUT #1,X$ 
129 A#(I,J)=VAL(X$) 
130 NEXT J 
131 INPUT #1,X$ 
132 R(I)=VAL(X$) 
133 NEXT I 
134 CLOSE #1 
135 GOTO 54 

Restarts program for a new run if option "N" is selected. 

136 IF L$="N" THEN RUN 
137 GOTO 54 

Utility Subroutines ~ Files UTIL-OPT, uTIL-ERS. uTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Input Subroutines — Files INPT-OBJ. INPT-CON. INPT-TYP, and INPT-BND 

Same as for dual simplex method. 

Output Subroutine — File REPT-SMP 

Same as for dual simplex method. 

Constraint Keys Subroutine — File ALGR-KEY 

Same as for dual simplex method with nonlinear constraints. 
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Goitiory's Algorithm Subroutine — File ALGR-GOM 

Gomory's algorithm uses an all integer dual feasible tableau which 

is the same as the simplex tableau intialized to represent the current 

point at the origin and the set of constraints that form the zero axes. 

Although Gomory's cut was derived using a tableau in which the 

variables were the negative of the simplex tableau, this form restricted 

the use of computer subroutines from the dual simplex method. To 

compensate for the change in sign of the variable coefficients, the 

negative of the Gomory cut is actually used as the pivot row. 

Starting with the initial tableau, the algorithm in an iterative 

fashion proceeds through the following steps. 

(1) From the constraints of the integer CP problem, select the 

constraint violated by the current point which is geometrically 

farthest from the current point. If no constraints are violated, 

set ER=1 and return to the main routine. Otherwise, go to step (2). 

(2) From the new points of intersection formed by the constraint 

selected in step (1) and the constraints defining the current 

point, select a point which minimizes the value of the objective 

function and does not violate the current constraints. This must 

be done using the perturbation algorithm described for the dual 

simplex method. If no pivot element can be found the problem is 

infeasible, so set ER=2 and return to the main routine. Otherwise, 

go to step (3). 

(3) With the pivot element found in step (2), divide the elements of 
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the selected constraint. If the constraint remains all Integer, 

then use the constraint as a simplex pivot row and go to step (6). 

Otherwise, go to step (4). 

(4) For all the constraints which have negative slack, transform the 

constraint. Find the column for each transformed constraint which 

Is lexicographically smallest. Of all the the constraints for 

which the lexicographically smallest column have been determined, 

select the constraint with the lexicographically largest pivot 

column for the pivot row. Go to step (5). 

(5) From the constraint selected in step (4) derive a Gomory cut and 

then strengthen the cut with Wilson's method presented above. Use 

the negative of Wilson's cut as the pivot row and go to step (6). 

(6) Use a Gauss-Jordan elimination to transform the current tableau 

to represent a new integer point and the constraints which 

define it. If the transformation fails, then set ER=3 and return 

to the main routine. Otherwise, go to step (7). 

(7) Set the current point equal to the new point and return to step 

(1). If the cycle or iteration of the above steps is repeated more 

than a preset limit, set ER=0 and return to the main routine. 

3300 REM *GOMORY'S ALGORITHM SUBROUTINE* 
3301 REM ALGR-GOM 

Initializes the simplex tableau to represent the origin by setting 
the augmented B matrix to the identity matrix and the first row of the 
simplex tableau to objective function. Sets the iteration count 
IT to zero (0) and the error code ER to zero (0). 

By using the simplex tableau in which the starting tableau is 
the point at the origin, the tableau is guaranteed to be 
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lexicographically positive in every column. 

3302 FOR 1=2 TO ND+1 
3303 FOR J=1 TO ND+1 
3304 B#(I,J)=0# 
3305 NEXT J 
3306 NEXT I 
3307 IT=0 
3308 FOR 1=2 TO ND+1 
3309 B#(I.I)=1#;B#(I,1)=M#(I,2) 
3310 B#(l.I)=A#(l,I) 
3311 H#(I)=BI# 
3312 NEXT I 

Increments the iteration count by one (1). Sets ER=0 if the 
iteration count is greater than the preset limit IR. 

3313 IT=IT+1 
3314 ER=0 
3315 IF IT>IR THEN RETURN 

Sets the maximum first positive column element MA# to zero (0). 
Sets the maximum pivot element of the constraint to be used for a Gomory 
cut MG# to zero (0). Sets the greatest distance of a constraint from 
the current point MS# to zero (0). Sets the minimum number of zero 
elements at the top of a Gomory pivot column RA to infinity. 

3316 MA#=0# 
3317 MG#=0# 
3318 MS#=0# 
3319 RA=BI# 

Searches the upper and lower bcunus constraints and the integer CP 
problem constraints for both a dual simplex pivot row and a Gomory pivot 
row. 

3320 FOR N=1 TO ND+ND+MD 

Searches the lower bounds for a constraint that has a negative 
slack and sets S#(ND+1) equal to the transformation of the constraint. 

3321 Z#=l# 
3322 IF N>ND THEN 3330 
3323 I=N+1 
3324 IF B#(I,1)-M#(I,2)>=0# THEN 3417 
3325 S#(1)=B#(I,1)-M#(I,2) 
3326 FOR J=2 TO ND+1 
3327 S#(J)=-B#(I,J) 
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3328 NEXT J 
3329 GOTO 3367 

Searches the upper bounds for a constraint that has a negative 
slack and sets S#(ND+1) equal to the transformation of the constraint. 

3330 IF N>ND+ND THEN 3341 
3331 J=N-ND+1 
3332 IF M#(J,1)<=0# THEN 3417 
3333 A#=M#(J,1) 
3334 IF A#=BI# THEN A#=0# 
3335 IF A#-B#(J,1)>=0# THEN 3417 
3336 S#(l)=A#-B#(J.l) 
3337 FOR K=2 TO ND+1 
3338 S#(K)=B#(J,K) 
3339 NEXT K 
3340 GOTO 3367 

Searches the Integer CP problem constraints for a constraint that 
has a negative slack and sets S#(ND+1) equal to the transformation of 
the constraint. 

3341 K=N-ND-ND+1 
3342 REM 
3343 IF A#(K,ND+2)<>0# THEN GOSUB 4100:REM PAR-DEPL 
3344 IF A#(K,ND+3)<>0# THEN GOSUB 4300:REM HYP-DEPL 
3345 IF A#(K,ND+4)<>0# THEN GOSUB 4500:REM SHT-DEPL 
3346 REM NONLINEAR CONSTRAINT SUBROUTINES 
3347 REM 
3348 S#(l)=-A#(K.l) 
3349 Z#=0# 
3350 FOR 1=2 TO ND+1 
3351 S#(Î)=$#(i)+A#(K,I)*B#(1,1) 
3352 Z#=Z#+A#(K.I)*A#(K,I) 
3353 S#(I)=0# 
3354 NEXT I 
3355 Z#=CDBL(SQR(Z#)) 
3356 SN=R(K) 
3357 IF SN=0 THEN SN=-S6N(S(1)) 
3359 S#(1)=S#(1)*SN 
3360 IF S#(1)>=0# THEN 3417 
3361 FOR 1=2 TO ND+1 
3362 IF A#(K,I)=0# THEN 3366 
3363 FOR J=2 TO ND+1 
3364 S#(J)=S#(J)-A#(K.I)*B#(I,J)*SN 
3365 NEXT J 
3366 NEXT I 
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Selects the constraint whose transformation is in S#(ND+1) which is 
the greatest distance from the simplex current point and sets V#(ND+1) 
equal to it as the simplex pivot row. 

The variable Z# is the square root of the sum of the squares of the 
coefficients of the orginal constraint. 

3367 IF S#(1)/Z#>MS# THEN 3372 
3368 FOR 1=1 TO ND+1 
3369 V#(I)=S#(I) 
3370 NEXT I 
3371 MS#=S#(1)/Z# 

Sets the array C(ND+1) to the column numbers eligible for a Gomory 
pivot column for the constraint in S#(ND+1). 

3372 CN=0 
3373 FOR J=2 TO ND+1 
3374 IF S#(J)>=0# THEN 3378 
3375 CN=CN+1 
3376 C(CN)=J 
3377 CC=J 
3378 NEXT J 

Sets ER=2 and returns to the main routine if no column is found for 
a Gomory pivot column for the constraint now saved in S#(ND+1). 

3379 ER=2 
3380 IF CN=0 THEN RETURN 

Finds the number of zero (0) elements heading the Gomory pivot 
column R for the constraint now saved in S#(ND+1) 

3381 IF CN=1 THEN 3401 
3382 FOR 1=1 TO ND+2 
3383 IF I=ND+2 THEN STOP 
3384 MI#=BI# 
3385 FOR J=1 TO CN 
3386 IF C(J)=0 THEN 3389 
3387 IF MI#<=B#(I,C(J)) THEN 3389 
3388 MI#=B#(I.C(J)) 
3389 NEXT J 
3390 C=0 
3391 FOR J=1 TO CN 
3392 IF C(J)=0 THEN 3398 
3393 IF MI#<B#(I,C(J)) THEN 3397 
3394 CC=C(J) 
3395 C=C+1 
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3396 GOTO 3398 
3397 C(J)=0 
3398 NEXT J 
3399 IF C=1 THEN 3401 
3400 NEXT I 
3401 FOR J=1 TO ND+1 
3402 IF B#(J.CC)=0# THEN 3406 
3403 IF B#(J,CC)<0# THEN STOP 
3404 R=J 
3405 GOTO 3407 
3406 NEXT J 

Sets P#(ND+1) equal to the constraint whose Gomory pivot column Is 
lexicographically most positive and whose slack Is also negative. 

3407 IF R>RA THEN 3417 
3408 IF R=RA AND MA#>B#(R,CC) THEN 3417 
3409 IF MA#=B#(R,CC) AND MG#>S#(1) THEN 3417 
3410 RA=R 
3411 MA#=B#(R,CC) 
3412 MG#«S#{1) 
3413 CO=CC 
3414 FOR 1=1 TO ND+1 
3415 P#(I)=S#(I) 
3416 NEXT I 
3417 NEXT N 

Sets ER=1 and returns to the main routine If no Gomory pivot 
constraints are found. 

This Is the same as finding no constraints eligible for a Gomory 
constraint or the tableau Is primal feasible. 

3418 ER=1 
3419 IF RA=BI# THEN RETURN 

Finds a simplex pivot element In the transformed simplex pivot 
Z#{ND+1) using the perturbation method. 

3420 CN=0 
3421 FOR 1=2 TO ND+1 
3422 IF V#(I)>=0# THEN 3425 
3423 CN=CN+1 
3424 C(CN)=I 
3425 NEXT I 
3426 CC=C(1) 
3427 IF CN=1 THEN 3446 
3428 FOR 1=1 TO ND+2 
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3429 IF I=ND+2 THEN STOP 
3430 MI#=BI# 
3431 FOR J=1 TO CN 
3432 IF C(J)=0 THEN 3434 
3433 IF MI#>B#(I.C(0))/-V#(C(J)) THEN MI#=B#(I,C(J))/-V#(C(J)) 
3434 NEXT J 
3435 C=0 
3436 FOR J=1 TO CN 
3437 IF C(J)=0 THEN 3443 
3438 IF B#(I,C(J))/-V#(C(J))>MI# THEN 3442 
3439 C=C+1 
3440 CC=C(J) 
3441 GOTO 3443 
3442 C(J)=0 
3443 NEXT J 
3444 IF C=1 THEN 3446 
3445 NEXT I 

Divides the simplex pivot row by the pivot element. Sets the pivot 
row to be used for the transformation of the simplex tableau to the 
simplex pivot row if all the elements of the simplex row when divided by 
the pivot element are integer. 

3446 FOR 1=1 TO ND+1 
3447 IF V#(I)/V#(CC)<>INT(V#(I)/V#(CC)) THEN 3455 
3448 NEXT I 
3449 CO=CC 
3450 P#(1)=V#(1)/-V#(CC) 
3451 FOR 1=2 TO ND+1 
3452 P#(I)=V#(I)/V#(CC) 
3453 NEXT I 
3454 GOTO 3498 

Finds the Gomory pivot column for the constraint in P#(ND+1). 

3455 U(C0)=1 
3456 CN=0 
3457 FOR 1=2 TO ND+1 
3458 IF P#(I)>=0# THEN 3461 
3459 CN=CN+1 
3460 C(CN)=I 
3461 NEXT I 
3462 IF CN=1 THEN 3481 
3463 L#=B#(RA,CO) 
3464 FOR 1=1 TO CN 
3465 IF C(I)=CO THEN 3480 
3466 MI#=BI# 
3467 P#=B#(RA,C(I)) 
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3468 IF RA=1 THEN 3472 
3469 FOR J=1 TO RA-1 
3470 IF B#(J,C(I))<>0# THEN 3479 
3471 NEXT J 
3472 MI#=INT(P#/L#) 
3473 IF (P#/MI#)>L# THEN 3479 
3474 FOR J=RA+1 TO ND+1 
3475 IF (B#(J.C(I))/MI#)>B#(J.CO) THEN 3479 
3476 IF (B#(J,C(I))/MI#)<B#(J,CO) THEN 3478 
3477 NEXT J 
3478 MI#=MI#-1# 
3479 U(C(I))=MI# 
3480 NEXT I 

Finds the Gomory divisor L# to be used to "integerize" the cut. 

3481 L#=0# 
3482 FOR 1=1 TO CN 
3483 IF U(C(I))=BI# GOTO 3486 
3484 IF L#>=(ABS(P#(C(I)))/U(C(I))) GOTO 3486 
3485 L#=(ABS(P#(C(I)))/U(C(I))) 
3486 NEXT I 

Strengthens the Gomory cut using Wilson's method. 

3487 P#=BI# 
3488 IF INT(P#(1)/L#)<>-1 THEN P#=P#(1)/(1#+INT(P#(1)/L#)-SM#) 
3489 FOR 1=2 TO ND+1 
3490 IF INT(P#(I)/L#)<=0 THEN 3492 
3491 IF P#>P#(I)/(INT(P#(I)/L#)) THEN P#=P#(I)/(INT(P#(I)/L#)) 
3492 NEXT I 
3493 IF L#<P# THEN L#=P# 
3454 F#(i)»IriT(F#(l)/L#) 
3495 FOR 1=2 TO ND+1 
3496 P#(I)=-INT(P#(I)/L#) 
3497 NEXT I 

Transforms the simplex tableau using the dual simplex derived pivot 
row. If none is found that will result in an all integer tableau after 
the pivot, transforms the tableau using the Wilson cut. 

3498 GOSUB 3700:REM TRAN-INV 
3499 GOTO 3313 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 
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Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Nonlinear Convex Constraints for the Integer Methods 

The same approach as used In the nonlinear modification of the 

dual simplex method can also be used with the Gomory method. Although a 

Gomory "Integerlzed" pivot row can be generated from a supporting plane 

which Is the tangent plane to a nonlinear convex constraint. In practice 

the method converges to slowly to be of practical use. 

A stronger supporting plane or "deep cut" for the Integer methods 

Is one in which the plane Is "moved" Into the feasible region of the CP 

problem In such a manner that It cuts off the maximum amount of the 

feasible region without excluding any Integer points of the region. 

By extending the theory of the supporting plane or tangent plane 

which was derived from a single point on a constraint's surface, a deep 

cut supporting plane can be found using one point on a surface for each 

variable or dimension of a given constraint. 

A Cut Through Three Points on a Hyperbolic of Two Sheets Surface 

Leaving the derivation of the points for later, three (3) points on a 

hyperbolic of two sheets surface define a plane. Let one (1) point be 

(a%,b%,z%) with all three (3) coordinate values integer and satisfying 

the function X*(Y-Z)=c in which c>0 and integer. In the- same Z=z% plane 

another point (g%,d%,z%) can be found on the surface where g% and d% are 

again Integers coordinate values. A third point (g%,d%+l,z%+l) in the 

X=g% plane can also be found such that all the coordinates are integer 



302 

X*(Y-Z)=3 

Feasible region 

Y axis 

(x.y.z) 
Current 
point 

(0.0) X axis 

Figure 70. Hyperbolic sheet constraint deep cut X and Y axes view 

./f (g%.d%+l.z%+l) 
+ (x.y.z) Current point 

(0.0) Z axis 

Figure 71. Hyperbolic sheet constraint deep cut Y and Z axes view 
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values and the point Is again on the surface as shown In figures 70 and 

71. 

If a plane 1*X+j*Y+k*Y=c is passed through the three (3) points: 

1*(a%)+j*(b%) +k*(z«)=c 
1*(9%)+j*(d%) +k*(z%)=c 
1*(g%)+j*(d%+l)+k*(z%+l)=c 

the coefficients 1, j, k, can be found as: 

1= c*(b%-d«) 
a%*(b%-d%)+(b%-z%)*(g%-a%; 

j= c*(q%-a%) 
a%*(b%-d%)+(b%-z%)*tg%-a%) 

k= c*(a%-q%) 
a%*(b%-d%)+(b%-z%)*(g%-a%) 

and the equation of the plane can be rewritten as: 

(b%-d%)*X+(g%.a%)*Y+(a%-g%)*Z=g%*b%-a%*d%+z%*(a%-g%) 

A Cut Through Two Points on a^ Parabolic Curve The same 

procedure can be extended to the parabolic: 

Y+a*(X-b)*2=c 

for the two (2) Integer points (a%,b%),(g%,d%) such that: 

b%+a*(a%-b)"2=c 
d%+a*(g%-b)'2=c 

for the equation of the Tine: 

(b%-d%)*X+(g%-a%)*Y=g%*b%-a%*d% 

A Cut Through Two Points on £ Hyperbolic Curve The same 

procedure can be extended to the hyperbolic: 

X*Y=c 

for the two (2) integer points (a%,b%),(g%,b%) such that: 
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a%*b%=c 
g%*d%=c 

for the equation of the line: 

(b%-d%)*X+(g%-a%)*Y=g%*b%-a%*d% 

Parabolic Subroutines — Files PAR-DEPA, PAR-DEPL, or PAR-DEPG 

To find a deep cut with the line derived In the above equations, 

two points have to be found on the parabolic curve such that when the 

line is passed through the points, the line will not exclude any integer 

points from the feasible region of the integer CP problem. 

Previously, in the nonlinear convex constraint subroutines three 

algorithms, the axial, line search, and Gordian, were described for 

locating one point on the function through which the tangent line or 

supporting plane could be passed. This single point can now be used to 

find the other two (2) points for the deep cut line. 

If the parabolic function is graphed as shown in figure 72 then the 

Y axis 

+ + 
(b- 1 .c+ 1 ) I 

2*a 4*a I 
(b+ 1 ,c+ 1 ) 

2*a 4*a 

! (b,c) 

+. + +' 

(0,0) X axis 

Figure 72. Parabolic constraint deep cut 
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curve can be divided into four (4) segments in which the slope of the 

curve is as graphed in figure 73. 

+1 + 

Slope 

(0.0) + 
I  ( b , 0 )  
I  "  

SIope=2*a*X-2*a*b 

X axis 

Figure 73. Parabolic constraint slope function 

The slope in the first segment is negative and has an absolute 

value greater than one (1). The slope in the second segment is also 

negative but has an absolute value less or equal to one (1). In the 

third segment, the slope is positive and has a value less or equal to 

one (1). In the fourth segment, the slope is again positive but has a 

value greater than one (1). 

By utilizing the characteristics of the slope, a step function can 

be superimposed on the parabolic curve as shown in figure 74. This step 

function, which "steps" at integer values and which does not exclude any 

integer points from the region above the parabolic function, can now be 

used to find two (2) points for a deep cut line. 
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Feasible region 

Y axis + 

+ 
I  

—k-— 

(0.0) (b.O) 
X axis 

Figure 74. Parabolic constraint deep cut step function 

Starting with the point used to find the tangent line in the non-

integer case, an asterisk as shown in figure 75 can be placed on the 
\ ' 
+——+ . ^ 
\\ ! -r^4=—4 4—+-5+ I if 
\\ +--+ V I I / +--+/ 

\i 1/ 
• \  / •  

Figure 75. Parabolic constraint deep cut step function 

curve to represent the tangent point in any one (1) of the four (4) 

segments of the curve as defined by the four (4) slope characteristics. 

If the asterisk is located on the segment of the curve in which the 
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slope 1s negative with an absolute value greater than one (1), then the 

X coordinate of the points on the step function which would provide for 

an deep cut are simply the round up and round down integer values of the 

X coordinate of the asterisk point. If the asterisk Is located on the 

segment of the curve in which the slope is negative with an absolute 

value less than or equal to one (1), then the Y coordinates of the 

points on the step function are the round up and round down Integer 

values of the Y coordinate of the asterisk point. Only one (1) 

coordinate of the remaining points can be found in a similar manner. 

The other coordinate of the points on the step function are harder 

to find. Using as an example the segment of the function in which the 

slope is negative and the absolute value is less than or equal to one 

(1), the step function is shown figure 76. Above the asterisk point (0) 

( 3 )  

—+ ( 1 ) ( 1 ) 
—+—+ (3) 

I  ( 2 )  r * - i  — 
I  I  1(0) 1  (2) 

Figure 76. Deep cut step function 

a set of Integer points (1,1) on the step function can be found on 

each side of the asterisk, and a cut line (1->1) can be drawn through 

these two (2) points. Starting first on the left, a new integer point 

(2) on the step function can be found. If the point lies on or below 

the line (1->1) and the point is still in the same segment of the curve, 

then move the line so it passes through the point (2->l). If the 

next point (3) lies above the line (2->l) through the current set of 
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points, then let the point (2) be the left point through which the deep 

cut line passes. The right side is handled in a reversed fashion. 

A deep cut line can be found for other segments of the curve by 

varying only the direction of the search along the step function. 

The deep cut line derived above can be used as the source row to 

derive a Gomory or Wilson cut. Although the supporting line from the 

nonlinear modification of the dual simplex method can be used to derive 

a Gomory cut, the cut given above for which the code is given below, 

accelerates the conversion of the integer methods to follow. 

Deep Cut for Parabolic Using The Axial Algorithm The deep cut 

for the parabolic constraint using the axial algorithm subroutine (FAR

DERA) finds a point on the parabolic constraint, a constraint whose 

parameters are stored in the last seven (7) columns of the constraint 

matrix, by using the axial algorithm from which is constructed a deep 

cut line and then loads the line's coefficients into the linear portion 

of the constraint matrix. 

4100 REM * DEEP CUT FOR PARABOLIC USING AXIAL ALGORITHM * 
4101 REM PAR-DEPA 

4102 ZX=A#(K,ND+5)+l 
4103 ZY=A#(K,ND+6)+l 
4104 A#=A#(K,ND+7) 
4105 B#=A#(K.ND+2) 
4106 IF B#<0# THEN B#=0# 
4107 C#=A#(K.ND+8) 
4108 Y#=B#(ZY,1) 
4109 X#=B#(ZX.l) 
4110 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4111 IF X#>=0# AND Y#>=0# AND Y#-A#*(X#-B#)'2#>=C# THEN RETURN 
4112 IF X#<>B# THEN 4115 
4113 Y#=C# 
4114 GOTO 4127 
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4115 G#=A#*(B#-X#)*(B#-X#) 
4116 D#=C#+1#/(2#*A#) 
4117 IF D#<=Y# THEN D#=Y#+1#/(2#*A#) 
4118 FOR W=1 TO 50 
4119 K#=2#*D#*G# 
4120 H#=(((Y#-D#)"2#+K#)-CDBL(SQR(((Y#-D#)"2#+K#)'2#-4#*G#*C#*(Y#-D#)^2# 

-Kr2#)))/(2#*6#) 
4121 IF ABS(D#-H#-1#/(2#*A#))<.00001 THEN 4124 
4122 D#=H#+1#/(2#*A#) 
4123 NEXT W 
4124 Y#=H# 
4125 IF Y#<C# THEN Y#=C# 
4126 X#=(B#*A#+SGN(X#-B#)*SQR(A#*(Y#-C#)))/A# 
4127 IF Y#<=-INT(-C#) THEN 4183 
4128 IF Y#>=C#+(1#/(4#*A#)) THEN 4152 
4129 B%=-INT(-Y#) 
4130 D%=B%-1 
4131 A%=-INT(-SGN(X#-B#)*SQR((B%-C#)/A#)-B#) 
4132 G%=-INT(-SGN(X#-B#)*SQR((D«-C#)/A#)-B#) 

Finds the two (2) points on the curve through which the deep cut 
line is passed. 

4133 P%=B% 
4134 FOR 1=1 TO BI# 
4135 P%=P%+1 
4136 IF P%>C#+(1#/(4#*A#)) THEN 4142 
4137 J%=.INT(-SGN{X#-B#)*SQR((P%-C#)/A#)-B#) 
4138 IF J%*(B%-D%)+P«*(G%-A%)>B%*G%-A%*D% THEN 4142 
4139 B%=P% 
4140 A%=J% 
4141 NEXT I 
4142 P%=D% 
4143 FOR 1=1 TO BI# 
4144 P%=P%-1 
4145 IF P%<C# THEN 4151 
4146 J%=-INT(-SGN(X#-B#)*SQR((P«-C#)/A#)-B#) 
4147 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4151 
4148 D%=P% 
4149 G%=J% 
4150 NEXT I 
4151 GOTO 4174 
4152 G%=-INT(-X#) 
4153 A%=G«-1 
4154 D%=-INT(-C#-A#*(G%-B#)"2) 
4155 B%=-INT(-C#-A#*(A%-B#)"2) 
4156 P%=A% 
4157 FOR 1=1 TO BI# 
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4158 P«=P«-1 
4159 J%=-INT(-C#-A#*(P«-B#)"2) 
4160 IF J«<C#+(1#/(4#*A#)) THEN 4165 
4161 IF THEN 4165 
4162 A%=P% 
4163 B%=J% 
4164 NEXT I 
4165 P%=G% 
4166 FOR 1=1 TO BI# 
4167 P%=P%+1 
4168 J%=-INT(-C#-A#*(P%-B*)"2) 
4169 IF J«<C#+(1#/(4#*A#)) THEN 4174 
4170 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4174 
4171 G%=P% 
4172 D%=J% 
4173 NEXT I 

Finds the equation of the line through the two (2) points above. 

4174 S#=l 
4175 IF X#>B# AND Y#<C#+(1#/(4#*A#)) THEN .S#=-l 
4176 A#(K,1)=CDBL(B%*G%-A%*D%)*S# 
4177 FOR 1=2 TO ND+1 
4178 A#(K.I)=0# 
4179 IF I=ZX THEN A#(K,I)=CDBL(B%-D%)*S# 
4180 IF I=ZY THEN A#(K,I)=CDBL(G%-A%)*S# 
4181 NEXT I 
4182 RETURN 
4183 A#(K,1)=-INT(-C#) 
4184 FOR 1=2 TO ND+1 
4185 A#(K,I)«0# 
4186 IF I=ZY THEN A#(K,I)=1# 
4187 IF I=ZX THEN A#(K,I)"0# 
4188 NEXT I 
4189 RETURN 

Deep Cut for Parabolic Using Line Search Algorithm The deep cut 

for the parabolic constraint using the line search algorithm subroutine 

(PAR-DEPL) finds a point on the parabolic constraint, a constraint whose 

parameters are stored in the last seven (7) columns of the constraint 

matrix, by using the line search algorithm from which is constructed a 

deep cut line and then loads the line's coefficients into the linear 
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portion of the constraint matrix. 

4100 REM * DEEP CUT FOR PARABOLIC USING LINE SEARCH * 
4101 REM PAR-DEPL 

4102 ZX=A#(K,ND+5)+l 
4103 ZY=A#(K,ND+6)+l 
4104 A#=A#(K.ND+7) 
4105 B#=A#(K.ND+2) 
4106 IF B#<0# THEN B#=0# 
4107 C#=A#(K,ND+8) 
4108 Y#=B#(ZY.l) 
4109 X#=B#(ZX,1) 
4110 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4111 IF X#>=0# AND Y#>=0# AND Y#-A#*(X#-B#)"2#>=C# THEN RETURN 
4112 U#=X# 
4113 IF X#=B# THEN 4126 
4114 L#=B# 
4115 S#=SGN(B#-X#) 
4116 U#=U#+S#*lE-08 
4117 IF Y#>C# THEN L#=B#+S#*CDBL(SQR((Y#-C#)/A#)) 
4118 FOR W=1 TO 100 
4119 IF ABS(U#-L#)<lE-08 THEN 4125 
4120 T#=U# 
4121 S#=((X#-U#)-2#*A#*(B#-U#)*(Y#-A#*U#*U#+2#*A#*B#*U#-A#*B#*B#-C#))/(2 

#*A#*(B#-U#)*(X#-U#)) 
4122 U*=U#-((SGN(S#)*ABS(L#-U#))/2#) 
4123 T#=E# 
4124 NEXT W 
4125 X#=U# 
4126 Y#»A#*(U#-B#)*(U#-B#)+C# 
4127 IF Y#<=-INT(-C#) THEN 4183 
4128 IF Y#>=C#+(1#/(4#*A#)) THEN 4152 
4129 B%=-INT(-Y#) 
4130 D%=B%-1 
4131 A«=-INT(-SGN(X#-B#)*CDBL(SQR((B«-C#)/A#))-B#) 
4132 G%=-INT{-SGN(X#-B#)*CDBL(SQR((D%-C#)/A#))-B#) 

Finds the two (2) points on the curve through which the deep cut 
line is passed. 

4133 P%=B% 
4134 FOR 1=1 TO BI# 
4135 P%=P%+1 
4136 IF P%>C#+(1#/(4#*A#)) THEN 4142 
4137 J%=-INT(-SGN(X#-B#)*SQR((P%-C#)/A#)-B#) 
4138 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4142 
4139 B%=P% 
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4140 A%=J% 
4141 NEXT I 
4142 P%=D% 
4143 FOR 1=1 TO BI# 
4144 P%=P%-1 
4145 IF P«<C# THEN 4151 
4146 J%=-INT(-S6N(X#-B#)*SQR((P%-C#)/A#)-B#) 
4147 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4151 
4148 D%=P% 
4149 G%=J% 
4150 NEXT I 
4151 GOTO 4174 
4152 G%=-INT(-X#) 
4153 A%=G%-1 
4154 D%=-INT(-C#-A#*(G%-B#)"2) 
4155 B%=-INT(-C#-A#*(A%-B#)"2) 
4156 P%=A% 
4157 FOR 1=1 TO BI# 
4158 P%=P%-1 
4159 J%=-INT(-C#-A#*(P%-B#)*2) 
4160 IF J35<C#+(1#/(4#*A#)) THEN 4165 
4161 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4165 
4162 A%=P% 
4163 B%=J% 
4164 NEXT I 
4165 P%=G% 
4166 FOR 1=1 TO BI# 
4167 P%=P%+1 
4168 J%=-INT(-C#-A#*(P%-B#)"2) 
4169 IF J%<C#+(1#/(4#*A#)) THEN 4174 
4170 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4174 
4171 G%=P% 
4172 u%=J% 
4173 NEXT 

Finds the equation of the line through the two (2) points above. 

4174 S#=l 
4175 IF X#>B# AND Y#<C#+(1#/(4#*A#)) THEN S#=-l 
4176 A#(K,1)=CDBL(B%*G%-A%*D%)*S# 
4177 FOR 1=2 TO ND+1 
4178 A#(K,I)=0# 
4179 IF I=ZX THEN A#(K,I)=CDBL(B%-D%)*S# 
4180 IF I=ZY THEN A#(K.I)=CDBL(G%-A%)*S# 
4181 NEXT I 
4182 RETURN 
4183 A#(K,1)=-INT(-C#) 
4184 FOR 1=2 TO ND+1 
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4185 A#(K.I)=0# 
4186 IF I=ZY THEN A#(K,I)=1# 
4187 IF I=ZX THEN A#(K,I)=0# 
4188 NEXT I 
4189 RETURN 

Deep Cut for Parabolic Using Gordian Algorithm The deep cut for 

the parabolic constraint using the Gordian algorithm subroutine (PAR-

DEPG) finds a point on the parabolic constraint, a constraint whose 

parameters are stored in the last seven (7) columns of the constraint 

matrix, by using the Gordian algorithm from which is constructed a deep 

cut line and then loads the line's coefficients into the linear portion 

of the constraint matrix. 

4100 REM * DEEP CUT FOR PARABOLIC USING GORDIAN ALGORITHM * 
4101 REM DEPG-PAR— 

4102 ZX=A#(K,ND+5)+l 
4103 ZY=A#(K,ND+6)+l 
4104 A#=A#(K,ND+7) 
4105 B#=A#(K,ND+2) 
4106 IF B#<0# THEN B#=0# 
4107 C#=A#(K.ND+8) 
4108 Y#=B#(ZY,1) 
4109 X#=B#(ZX,1) 
4110 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4111 IF X#>=0# AND Y#>=0# AND Y#-A#*(X#-B#)~2#>=C# THEN RETURN 
4112 Y#=A#*(X#-B#)*(X#-B#)+C# 
4113 IF Y#<=-INT(-C#) THEN 4169 
4114 IF Y#>=C#+(1#/(4#*A#)) THEN 4138 
4115 B«=-INT(-Y#) 
4116 D%=B%-1 
4117 A%=-INT(-SGN(X#-B#)*CDBL(SQR((B%-C#)/A#))-B#) 
4118 G«=-INT(-SGN(X#-B#)*CDBL(SQR((D%-C#)/A#))-B#) 

Finds the two (2) points on the curve through which the deep cut 
line is passed. 

4119 P%=B% 
4120 FOR 1=1 TO BI# 
4121 P%=P%+1 
4122 IF P«>C#+(1#/(4#*A#)) THEN 4128 



314 

4123 J%=-INT(-SGN(X#-B#)*SQR((P«-C#)/A#)-B#) 
4124 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4128 
4125 B%=P% 
4126 A%=J% 
4127 NEXT I 
4128 P%=D% 
4129 FOR 1=1 TO BI# 
4130 P%=P%-1 
4131 IF P«<C# THEN 4137 • 
4132 J«=-INT(-SGN(X#-B#)*SQR((PX-C#)/A#)-B#) 
4133 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4137 
4134 D%=P% 
4135 G%=J% 
4136 NEXT I 
4137 GOTO 4160 
4138 G%=-INT(-X#) 
4139 A%=G%-1 
4140 D%=-INT(-C#-A#*(G%-B#)'2) 
4141 B%=-INT(-C#-A#*(A%-B#)"2) 
4142 P%=A% 
4143 FOR 1=1 TO BI# 
4144 P«=PX-1 
4145 J%=-INT(-C#-A#*(P«-B#)"2) 
4146 IF J%<C#+(1#/(4#*A#)) THEN 4151 
4147 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4151 
4148 A%=P% 
4149 B%=J% 
4150 NEXT I 
4151 P%=G% 
4152 FOR 1=1 TO BI# 
4153 P%=P%+1 
4154 J%=-INT(-C#-A#*(P%-B#)-2) 
4155 IF J%<C#+(1#/(4#*A#)) THEN 4160 
4156 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4160 
4157 G%=P% 
4158 D%=J% 
4159 NEXT I 

Finds the equation of the line through the two (2) points above. 

4160 S#=l 
4161 IF X#>B# AND Y#<C#+(1#/(4#*A#)) THEN S#=-l# 
4162 A#(K,1)=CDBL(B%*G%-A%*D%)*S# 
4163 FOR 1=2 TO ND+1 
4164 A#(K.I)=0# 
4165 IF I=ZX THEN A#(K,I)=CDBL(B%-D%)*S# 
4166 IF I=ZY THEN A#(K,I)=CDBL(G%-A%)*S# 
4167 NEXT I 
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4168 RETURN 
4169 A#(K,1)=-INT(-C#) 
4170 FOR 1=2 TO ND+1 
4171 A#(K.I)=0# 
4172 IF I=ZY THEN A#(K,I)=1# 
4173 IF I=ZX THEN A#(K,I)=0# 
4174 NEXT I 
4175 RETURN 

Hyperbolic Subroutine — Files HYP-DEPA. HYP-DEPL, or HYP-DEPG 

The hyperbolic function and parabolic functions are similar in that 

the segments of the curve with negative slope use the same procedure 

for finding a deep cut line as can be seen in figure 77 with its 

I \....X*Y=16 

Feasible region 

Y axis + 

—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+ 

(0,0) X axis 

Figure 77. Hyperbolic constraint deep cut step function 

superimposed step function. 

Deep Cut for Hyperbolic Using Axial Algorithm The deep cut for 

the hyperbolic constraint using the axial algorithm subroutine (HYP-

DEPA) finds a point on the hyperbolic constraint, a constraint whose 
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parameters are stored in the last seven (7) columns of the constraint 

matrix, by using the axial algorithm from which is constructed a deep 

cut line and then loads the line's coefficients into the linear portion 

of the constraint matrix. 

4300 REM * DEEP CUT FOR HYPERBOLIC USING AXIAL ALGORITHM * 
4301 REM DEPA-HYP 

4302 ZX=A#(K,ND+5)+l 
4303 ZY=A#(K,ND+6)+l 
4304 C#=A#(K,ND+3) 
4305 Y#=B#(ZY.l) 
4306 X#=B#(ZX,1) 
4307 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4308 IF X#>0# AND Y#>0# AND X#*Y#>=C# THEN RETURN 
4309 IF X#>=C* THEN 4374 
4310 IF Y#>=C# THEN 4377 
4311 D#=(C#+1#) 
4312 IF X#>=D# THEN D#=(X#+1#) 
4313 FOR W=1 TO 20 
4314 G#=(X#*D#-Y#*D#+CDBL(SQR(((Y#*D#-X#*D#)"2#)+4#*(D#-X#)*(D#-Y#)*C#)) 

)/(2#*(D#-Y#)) 
4315 D#=(G#*G#+C#)/G# 
4316 NEXT W 
4317 IF G#>=C# THEN 4374 
4318 IF G#<=1# THEN 4377 
4319 X#=6# 
4320 Y#=C#/X# 
4321 IF X#<CDBL(SqR(C#)) THEN 4345 
4322 5«==INT(-Y#) 
4323 D%=B%-1 
4324 A%=-INT(-C#/B%) 
4325 G«=-INT(-C#/D«) 

Finds the two (2) points on the curve through which the deep cut 
line is passed. 

4326 P%=B% 
4327 FOR 1=1 TO BI# 
4328 P%=P%+1 
4329 J%=-INT(-C#/P%) 
4330 IF J%<SQR(C#) THEN 4335 
4331 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4335 
4332 B%=P% 
4333 A%=J% 
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4334 NEXT I 
4335 P%=D% 
4336 FOR 1=1 TO BI# 
4337 P%=P%-1 
4338 IF P%<1 THEN 4344 
4339 J%=-INT(-C#/P%) 
4340 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4344 
4341 D%=P% 
4342 G%=J% 
4343 NEXT I 
4344 GOTO 4367 
4345 G%=-INT(-X#) 
4346 A%=G%-1 
4347 D%=-INT(-C#/G%) 
4348 B%=-INT(-C#/A%) 
4349 P%=A% 
4350 FOR 1=1 TO BI# 
4351 P%=P%-1 
4352 IF P%<1 THEN 4358 
4353 J%=-INT(-C#/P%) 
4354 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4358 
4355 A%=P% 
4356 B%=J% 
4357 NEXT I 
4358 P%=G% 
4359 FOR 1=1 TO BI# 
4360 P%=P%+1 
4361 IF P%>SQR(C#) THEN 4367 
4362 J%=-INT(-C#/P%) 
4363 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4367 
4364 G%=P% 
4365 D%=J% 
4366 NEXT I 

Finds the equation of the line through the two (2) points above. 

4367 A#(K,1)=CDBL(B%*G%-A%*D%) 
4368 FOR 1=2 TO ND+1 
4369 A#(K,I)=0# 
4370 IF I=ZX THEN A#(K,I)=CDBL(B«-D%) 
4371 IF I=ZY THEN A#(K,I)=CDBL(G%-A%) 
4372 NEXT I 
4373 RETURN 
4374 B#=l# 
4375 A#=0# 
4376 GOTO 4379 
4377 A#=l# 
4378 B#=0# 
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4379 A#(K,1)=1# 
4380 FOR 1=2 TO ND+1 
4381 A#(K.I)=0# 
4382 IF I=ZY THEN A#(K.I)=B# 
4383 IF I=ZX THEN A#(K,I)=A# 
4384 NEXT I 
4385 RETURN 

Deep Cut for Hyperbolic Using Line Search Algorithm The deep cut 

for the hyperbolic constraint using the line search algorithm subroutine 

(HYP-DEPL) finds a point on the hyperbolic constraint, a constraint 

whose parameters are stored in the last seven (7) columns of the 

constraint matrix, by using the line search algorithm from which is 

constructed a deep cut line and then loads the line's coefficients into 

the linear portion of the constraint matrix. 

4300 REM * DEEP CUT FOR HYPERBOLIC USING LINE SEARCH ALGORITHM * 
4301 REM HYP-DEPL 

4302 ZX=A#(K.ND+5)+l 
4303 ZY=A#(K,ND+6)+l 
4304 C#=A#(K.ND+3) 
4305 Y#=B#(ZY,1) 
4306 X#=B#(ZX,1) 
4307 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4308 IF X#>0# AND Y#>0# AND X#*Y#>=C# THEN RETURN 
4309 IF X#>=C# I HEN 43/4 
4310 IF Y#>=C# THEN 4377 
4311 G#=(C#*X#-C#*Y#+CDBL(SQR(((C#*Y#-C#*X#)"2#)+4#*C#*C#*C#)))/(2#*C#) 
4312 FOR W=1 TO 100 
4313 T#=(6#*G#*X#-C#*Y#+CDBL(SQR(((C#*Y#-G#*6#*X#)*2#)+4#*C#*C#*G#*G#))) 

B/(2#*G#*G#) 
4314 IF ABS(G#-T#)<.0000001 THEN 4317 
4315 G#=(G#+T#)/2# 
4316 NEXT W 
4317 IF G#>=C# THEN 4374 
4318 IF G#<=1# THEN 4377 
4319 X#=G# 
4320 Y#=C#/X# 
4321 IF X#<CDBL(SQR(C#)) THEN 4345 
4322 B%=-INT(-Y#) 
4323 D%=B%-1 
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4324 A%=-INT(-C#/B%) 
4325 G%=-INT(-C#/D%) 

Finds the two (2) points on the curve through which the deep cut 
line Is passed. 

4326 P%=B% 
4327 FOR 1=1 TO BI# 
4328 P%=P%+1 
4329 J%=-INT(-C#/P%) 
4330 IF J«<SQR(C#) THEN 4335 
4331 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4335 
4332 B%=P% 
4333 A%=J% 
4334 NEXT I 
4335 P%=D% 
4336 FOR 1=1 TO BI# 
4337 P%=P%-1 
4338 IF P%<1 THEN 4344 
4339 J%=-INT(-C#/P%) 
4340 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4344 
4341 D%=P% 
4342 G%=J% 
4343 NEXT I 
4344 GOTO 4367 
4345 G%=-INT(-X#) 
4346 A%=G%-1 
4347 D%=-INT(-C#/G%) 
4348 B%=-INT(-C#/A%) 
4349 P%=A% 
4350 FOR 1=1 TO BI# 
4351 P%=P%-1 
4352 IF P%<1 THEN 4358 
4353 j%=-iNT(-C#/P%) 
4354 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4358 
4355 A%=P% 
4356 B%=J% 
4357 NEXT I 
4358 P%=G% 
4359 FOR 1=1 TO BI# 
4360 P%=P%+1 
4361 IF P%>CDBL(SQR(C#)) THEN 4367 
4362 J%=-INT(-C#/P%) 
4363 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4367 
4364 G%=P% 
4365 D«=J% 
4366 NEXT I 
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Finds the equation of the line through the two (2) points above. 

4367 A#(K,1)=CDBL(B%*G%-A%*D%) 
4368 FOR 1=2 TO ND+1 
4369 A#(K,I)=0# 
4370 IF I=ZX THEN A#(K,I)=CDBL(B%-D*) 
4371 IF I=ZY THEN A#(K,I)=CDBL(G%-A$) 
4372 NEXT I 
4373 RETURN 
4374 B#=l# 
4375 A#=0# 
4376 GOTO 4379 
4377 A#=l# 
4378 B#=0# 
4379 A#(K.1)=1# 
4380 FOR 1=2 TO ND+1 
4381 A#(K,I)=0# 
4382 IF I=ZY THEN A#{K,I)=B# 
4383 IF I=ZX THEN A#(K,I)=A# 
4384 NEXT I 
4385 RETURN 

Deep Cut for Hyperbolic Using Gordian Algorithm The deep cut for 

the hyperbolic constraint using the Gordian algorithm subroutine (HYP-

DEPG) finds a point on the hyperbolic constraint, a constraint whose 

parameters are stored in the last seven (7) columns of the constraint 

matrix, by using the Gordian algorithm from which is constructed a deep 

Cut line and then loads the line's coefficients into the linear portion 

of the constraint matrix. 

4300 REM *DEEP CUT FOR HYPERBOLIC USING GORDIAN ALGORITHM* 
4301 REM--—-—-—-HYP—DEPG—————— 

4302 ZX=A#(K,ND+5)+l 
4303 ZY=A#(K,ND+6)+l 
4304 C#=A#(K,ND+3) 
4305 Y#=B#(ZY,1) 
4306 X#=B#(ZX,1) 
4307 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4308 IF X#>0# AND Y#>0# AND X#*Y#>=C# THEN RETURN 
4309 G#=CDBL(SQR(C#)) 
4310 IF X#<G#/2# AND Y#<G#/2# THEN 4313 
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4311 IF X#>«Y# THEN 4316 
4312 GOTO 4314 
4313 Y#=G# 
4314 X#=C#/Y# 
4315 GOTO 4317 
4316 Y#»C#/X# 
4317 IF Y#<=1# THEN 4372 
4318 IF X#<=1# THEN 4375 

Finds the two (2) points on the curve through which the deep cut 
line Is passed. 

4319 IF X#<G# THEN 4343 
4320 B%=-INT(-Y#) 
4321 D%=B%-1 
4322 A%=-INT(-C#/B%) 
4323 G%=-INT(-C#/D%) 
4324 P%=B% 
4325 FOR 1=1 TO BI# 
4326 P%=P%+1 
4327 J«=-INT(-C#/P«) 
4328 IF J«<SQR(C#) THEN 4333 
4329 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4333 
4330 B%=P% 
4331 A%=J% 
4332 NEXT I 
4333 P%=D% 
4334 FOR 1=1 TO BI# 
4335 P%=P%-1 
4336 IF P%<1 THEN 4342 
4337 J%=-INT(-C#/P%) 
4338 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4342 
4339 D%=P% 
4340 G%=J% 
4341 NEXT I 
4342 GOTO 4365 
4343 G%=-INT(-X#) 
4344 A%=G%-1 
4345 D%=-INT(-C#/G%) 
4346 B%=-INT(-C#/A%) 
4347 P%=A% 
4348 FOR 1=1 TO BI# 
4349 P%=P%-1 
4350 IF P«<1 THEN 4356 
4351 J%=-INT(-C#/P%) 
4352 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4356 
4353 A%=P% 
4354 B%=J% 
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4355 NEXT I 
4356 P%=G% 
4357 FOR 1=1 TO BI# 
4358 P%=P%+1 
4359 IF P«>SQR(C#) THEN 4365 
4360 J%=-INT(-C#/P%) 
4361 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4365 
4362 G%=P% 
4363 D%=J% 
4364 NEXT I 

Finds the equation of the line through the two (2) points above. 

4365 A#(K,1)=CDBL(B«*G%-A%*D%) 
4366 FOR 1=2 TO ND+1 
4367 A#(K.I)=0# 
4368 IF I=ZX THEN A#(K,I)=CDBL(B%-D%) 
4369 IF I=ZY THEN A#(K,I)=CDBL(G%-A%) 
4370 NEXT I 
4371 RETURN 
4372 B#=l# 
4373 A#=0# 
4374 GOTO 4377 
4375 A#=l# 
4376 B#=0# 
4377 A#(K.1)=1# 
4378 FOR 1=2 TO ND+1 
4379 A#(K,I)=0# 
4380 IF I=ZY THEN A#(K,I)=B# 
4381 IF I=ZX THEN A#(K.I)=A# 
4382 NEXT I 
4383 RETURN 

Hyperbolic Sheet Subroutine — Files SHT-DEPA. SHT-DEPL. or SHT-DEPG 

The hyperbolic of two sheets or X*(Y-Z)=c can be visualized as a 

cylinder In which sections in the X and Y axes plane are a series of 

hyperbolic like curves and slices in the Z and Y axes plane are a series 

of lines at forty-five (45) degrees as shown in figures 70 and 71. If 

the two (2) deep cut points on the hyperbolic like function that 

corresponds to the X and Y axis plane which passes through the [z] 

coordinate point can be found as say (a%.b%,[z]) and (gX.dX.fz]), then 
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the third point (g%,d%+l,[z]+l) can be found by assuming a forty-five 

(45) degree cut in the Z and Y axes plane. 

Deep Cut for Sheet Using Axial Algorithm The deep cut for 

the sheet constraint using the axial algorithm subroutine (SHT-DEPA) 

finds a point on the sheet constraint, a constraint whose parameters are 

stored in the last seven (7) columns of the constraint matrix, by using 

the axial algorithm from which is constructed a deep cut plane and then 

loads the plane's coefficients into the linear portion of the constraint 

matrix. 

4500 REM * DEEP CUT FOR SHEET USING AXIAL ALGORITHM * 
4501 REM~~—SHT—DEPA""""""———"""""""—"— 

4502 C#=A#(K,ND+4) 
4503 ZX=l+A#(K.ND+5) 
4504 ZY=l+A#(K.ND+6) 
4505 ZZ=l+A#(K.ND+7) 
4506 Y#=B#(ZY.l) 
4507 X#=B#(ZX,1) 
4508 Z#=B#(ZZ.l) 
4509 IF X#=H#(ZX) AND Y#=H#(ZY) AND Z#=H#(ZZ) THEN RETURN 
4510 G#=(Y#-Z#) 
4511 IF X#>0# AND 6#>0# AND X#*G#>=C# THEN RETURN 
4512 A#=C# 
4513 IF X#>A# THEN A#=(C#+1#) 
4514 FOR W-1 TO 20 
4515 B#=X#*(2#*A#-CDBL(SQR(C#))-Y#+Z#)+(A#-X#)*(Y#-Z#) 
4516 K#=2#*(A#-X#)*(2#*A#-CDBL(SQR(C#))-Y#+Z#) 
4517 T#=(-B#+CDBL(SQR((Br2#)-2#*K#*((X#*(Y#-Z#))-C#))))/K# 
4518 E#=X#+(A#-X#)*T# 
4519 A#=(2#*(Y#+((2#*A#-Y#+Z#-CDBL(SQR(C#)))*T#/2#))*C#-2#*E#*E#*E#-C#*( 

Y#+Z#)+C#*SQR(C#))/(2#*C#-2#*E#*E#) 
4520 NEXT W 
4521 X#=E# 
4522 Z#=Z#+((X#+Y#-2#*Z#-2#*A#+CDBL(SQR(C#)))*T#/2#) 
4523 Z%=INT(Z#) 
4524 Y#=(C#+Z«*X#)/X# 
4525 IF Y#-Z%<=1# THEN 4581 
4526 IF X#<=1# THEN 4588 
4527 IF X#<CDBL(SQR(C#)) THEN 4551 
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4528 B%=-INT(-Y#) 
4529 D%=B%-1 
4530 A%=-INT(-C#/(B%-Z%)) 
4531 G%=-INT(-C#/(D%-Z%)) 

Finds the two (2) of three (3) points on the curve through which 
the deep cut plane Is passed. 

4532 P%=B% 
4533 FOR 1=1 TO BI# 
4534 P%=P%+1 
4535 J%=-INT(-C#/(P%.Z%)) 
4536 IF J«<CDBL(SQR(C#)) THEN 4541 
4537 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4541 
4538 B%=P% 
4539 A%=J% 
4540 NEXT I 
4541 P%=D% 
4542 FOR 1=1 TO BI# 
4543 P%=P%-1 
4544 IF P%<Z%+1 THEN 4550 
4545 J%=-INT(-C#/(P%-Z%)) 
4546 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4550 
4547 D%=P% 
4548 G%=J% 
4549 NEXT I 
4550 GOTO 4573 
4551 G%=-INT(-X#) 
4552 A%=G%-1 
4553 D%=-INT(-(C#+Z%*G%)/G%) 
4554 B%=-INT(-(C#+Z%*A%)/A%) 
4555 P%=A% 
4556 FOR 1=1 TO BI# 
4557 P«=P«-1 
4558 IF P%<1 THEN 4564 
4559 J%=-INT(-(C#+P%*Z%)/P%) 
4560 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4564 
4561 A%=P% 
4562 B%=J% 
4563 NEXT I 
4564 P%=G% 
4565 FOR 1=1 TO BI# 
4566 P«=P«+1 
4567 IF P%>CDBL(SQR(C#)) THEN 4573 
4568 J«=-INT(-(C#+P%*Z%)/P«) 
4569 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4573 
4570 G%=P% 
4571 D%=J% 



325 

4572 NEXT I 

Finds the equation of the plane through the two (2) points found 
above and the Z and Y axes plane point. 

4573 A#(K,1)=CDBL((G%*B%-A%*D%)+Z%*(A%-G%)) 
4574 FOR J=2 TO ND+1 
4575 A#(K,J)=0# 
4576 IF ZX=J THEN A#(K,J)=CDBL(B%-D%) 
4577 IF ZY=J THEN A#(K,J)=CDBL(G%-A%) 
4578 IF ZZ=J THEN A#(K.J)=CDBL(A%-G%) 
4579 NEXT J 
4580 RETURN 
4581 A#(K,1)=1# 
4582 FOR J=2 TO ND+1 
4583 A#(K,J)=0# 
4584 IF J=ZY THEN A#(K.J)=1# 
4585 IF J=ZZ THEN A#(K,J)=-1# 
4586 NEXT J 
4587 RETURN 
4588 A#(K,1)»1# 
4589 FOR 1=2 TO ND+1 
4590 A#(K,I)=0# 
4591 IF I=ZX THEN A#(K,I)=1# 
4592 NEXT I 
4593 RETURN 

Deep Cut for Sheet Using Line Search Algorithm The deep cut 

for the sheet constraint using the line search algorithm subroutine 

(SHT-DEPL) finds a point on the sheet constraint, a constraint whose 

parameters are stored in the last seven (7) columns of the constraint 

matrix, by using the line search algorithm from which is constructed a 

deep cut plane and then loads the plane's coefficients into the linear 

portion of the constraint matrix. 

4500 REM * DEEP CUT FOR SHEET USING LINE SEARCH ALGORITHM * 
4501 REM SHT-DEPL 

4502 C#=A#(K,ND+4) 
4503 ZX=l+A#(K,ND+5) 
4504 ZY=l+A#(K,ND+6) 
4505 ZZ=l+A#(K,ND+7) 
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4506 Y#=B#(ZY,1) 
4507 X#=B#(ZX.l) 
4508 Z#=B#(ZZ,1) 
4509 IF X#=H#(ZX) AND Y#=H#(ZY) AND Z#=H#(ZZ) THEN RETURN 
4510 G#=(Y#-Z#) 
4511 IF X#>0# AND G#>0# AND X#*G#>=C# THEN RETURN 
4512 IF Y#>=Z#+C# THEN 4587 
4513 IF X#>=C# THEN 4580 
4514 E#«((2#*C#*X#-Y#*C#+Z#*C#)+CDBL(SQR(((Y#*C#-Z#*C#-2#*C#*X#)'2#)+8#* 

C#*C#*C#)))/(4#*C#) 
4515 FOR W=1 TO 100 
4516 T#=((2#*E#*E#*X#-Y#*C#+Z#*C#)+CDBL(SQR(((Y#*C#-Z#*C#-2#*E#*E#*X#)"2 

#)+8#*E#*E#*C#*C#)))/(4#*E#*E#) 
4517 IF ABS(T#-E#)<.000001 THEN 4520 
4518 E#=(T#+E#)/2# 
4519 NEXT W 
4520 Z#=Z#-((E#*E#*E#-X#*E#*A#)/C#) 
4521 X#=E# 
4522 ZX=INT(Z#) 
4523 Y#=(C#+Z«*X#)/X# 
4524 IF Y#-Z%<=1# THEN 4580 
4525 IF X#<=1# THEN 4587 
4526 IF X#<CDBL(SQR(C#)) THEN 4550 
4527 B«=-INT(-Y#) 
4528 D%=B%-1 
4529 A%=-INT(-C#/(B%-Z%)) 
4530 G%=-INT(-C#/(D%-Z%)) 

Finds the two (2) of three (3) points on the curve through which 
the deep cut plane Is passed. 

4531 P%=B% 
4532 FOR 1=1 TO BI# 
4533 P%=P%+1 
4534 J%=-INT(-C#/(P%-Z%)) 
4535 IF J%<CDBL(SQR(C#)) THEN 4540 
4536 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4540 
4537 B%=P% 
4538 A%=J% 
4539 NEXT I 
4540 P%=D% 
4541 FOR 1=1 TO BI# 
4542 P%=P%-1 
4543 IF P%<Z%+1 THEN 4549 
4544 J%=-INT(-C#/(P%-Z%)) 
4545 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4549 
4546 D%=P% 
4547 G%=J% 
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4548 NEXT I 
4549 GOTO 4572 
4550 G%=-INT(-X#) 
4551 A%=G%-1 
4552 D%=-INT(-(C#+Z%*G%)/G%) 
4553 B%=-INT(-(C#+Z%*A%)/A%) 
4554 P%=A% 
4555 FOR 1=1 TO BI# 
4556 P%=P%-1 
4557 IF P35<1 THEN 4563 
4558 J%=-INT(-(C#+P%*Z%)/P%) 
4559 IF P%*(B%-D%)+J%*(G%.A%)>B%*G%-A%*D% THEN 4563 
4560 A%=P% 
4561 B%=J% 
4562 NEXT I 
4563 P%=G% 
4564 FOR 1=1 TO BI# 
4565 P«=P%+1 
4566 IF P%>CDBL(SQR(C#)) THEN 4572 
4567 J%=-INT(-(C#+P%*Z%)/P%) 
4568 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4572 
4569 G%=P% 
4570 D%=J% 
4571 NEXT I 

Finds the equation of the plane through the two (2) points found 
above and the Z and Y axes plane point. 

4572 A#(K,1)=CDBL((G%*B%-A%*D%)+Z%*(A%-G%)) 
4573 FOR J=2 TO ND+1 
4574 A#(K,J)=0# 
4575 IF ZX=J THEN A#(K,J)=CDBL(B«-D«) 
4576 IF ZY=J THEN A#(K,J)=CDBL(G%-A%) 
4577 IF ZZ=J THEN A#(K,J)=CDBL(A%-G«) 
4578 NEXT J 
4579 RETURN 
4580 A#(K,1)=1# 
4581 FOR J=2 TO ND+1 
4582 A#(K,J)=0# 
4583 IF J=ZY THEN A#(K.J)=1# 
4584 IF J=ZZ THEN A#(K.J)=-1# 
4585 NEXT J 
4586 RETURN 
4587 A#(K.1)=1# 
4588 FOR 1=2 TO ND+1 
4589 A#(K.I)=0# 
4590 IF I=ZX THEN A#(K,I)=1# 
4591 NEXT I 
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4592 RETURN 

Deep Cut for Sheet Using Gordlan Algorithm The deep cut for 

the sheet constraint using the Gordian algorithm subroutine (SHT-DEPG) 

finds a point on the sheet constraint, a constraint whose parameters are 

stored in the last seven (7) columns of the constraint matrix, by using 

the Gordian algorithm from which is constructed a deep cut plane and 

then loads the plane's coefficients into the linear portion of the 

constraint matrix. 

4500 REM *DEEP CUT FOR SHEET USING GORDIAN ALGORITHM* 
4501 REM~~""~~""~~~~~~""""~~~~~~~~""""SHT""DEP6~~~~"'~""~~ 

4502 ZX=A#(K,ND+5)+l 
4503 ZY=A#(K,ND+6)+l 
4504 ZZ=A#(K,ND+7)+l 
4505 C#=A#(K.ND+4) 
4506 X#=B#(ZX,1) 
4507 Y#=B#(ZY.l) 
4508 Z#=B#(ZZ,1) 
4509 IF X#=H#(ZX) AND Y#=H#(ZY) AND Z#=H#(ZZ) THEN RETURN 
4510 IF X#>=0# AND Y#>=0# AND Z#>=0# AND X#*(Y#-Z#)>=C# THEN RETURN 
4511 G#=CDBL(SQR(C#)) 
4512 IF X#<G#/2# AND (Y#-Z#)<G#/2# THEN 4516 
4513 IF X#>Y#-Z# THEN 4517 
4514 X#»C#/(Y#-Z#) 
4515 GOTO 4517 
4516 X#=G# 
4517 Z%=INT(Z#) 
4518 Y#=(C#+Z«*X#)/X# 
4519 IF Y#-Z%<=1# THEN 4575 
4520 IF X#<=1# THEN 4582 

Finds the two (2) of three (3) points on the curve through which 
the deep cut plane is passed. 

4521 IF X#<CDBL(SQR(C#)) THEN 4545 
4522 B%=-INT(-Y#) 
4523 D%=B%-1 
4524 A%=-INT(-C#/(B%-Z%)) 
4525 G%=-INT(-C#/(D%-Z%)) 
4526 P%=B% 
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4527 FOR 1=1 TO BI# 
4528 P%=P%+1 
4529 J%=-INT(-C#/(P%-Z%)) 
4530 IF J«<SQR(C#) THEN 4535 
4531 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4535 
4532 B%=P% 
4533 A%=J% 
4534 NEXT I 
4535 P%=D% 
4536 FOR 1=1 TO BI# 
4537 P%=P%-1 
4538 IF P%<Z%+1 THEN 4544 
4539 J%=-INT(-C*/(P%-Z%)) 
4540 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4544 
4541 D%=P% 
4542 6%=J% 
4543 NEXT I 
4544 GOTO 4567 
4545 G%=-INT(-X#) 
4546 A%=G%-1 
4547 D%=.INT(-(C#+Z%*G%)/G%) 
4548 B«»-INT(-(C#+Z%*A%)/A%) 
4549 P%=A% 
4550 FOR 1=1 TO BI# 
4551 P%=P%-1 
4552 IF P%<1 THEN 4558 
4553 J%=-INT(-(C#+P%*Z%)/P%) 
4554 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4558 
4555 A%=P% 
4556 B%=J% 
4557 NEXT I 
4558 P%=G% 
4559 FOR 1=1 TO BI# 
4560 P%=P%+1 
4561 IF P«>SQR(C#) THEN 4567 
4562 J%=-INT(-(C#+P%*Z%)/P%) 
4563 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4567 
4564 G%=P% 
4565 D%=J% 
4566 NEXT I 

• 

Finds the equation of the plane through the two (2) points found 
above and the Z and Y axes plane point. 

4567 A#(K,1)=CDBL((G%*B%-A%*D%)+Z%*(A%-G%)) 
4568 FOR J=2 TO ND+1 
4569 A#(K,J)=0# 
4570 IF ZX=J THEN A#(K,J)=CDBL(B%-D%) 
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4571 IF ZY=J THEN A#(K,J)=CDBL(G%-A«) 
4572 IF ZZ=J THEN A#(K,J)=CDBL(A%-G%) 
4573 NEXT 0 
4574 RETURN 
4575 A#(K,1)=1# 
4576 FOR J=2 TO ND+1 
4577 A#(K,J)=0# 
4578 IF J=ZY THEN A#(K.J)=1# 
4579 IF J=ZZ THEN A#(K.J)=-1# 
4580 NEXT J 
4581 RETURN 
4582 A#(K,1)=1# 
4583 FOR 1=2 TO ND+1 
4584 A#(K,I)=0# 
4585 IF I=ZX THEN A#(K,I)=1# 
4586 NEXT I 
4587 RETURN 

Cubic Hyperbolic Subroutine — File CBH-DEPG 

The deep cut for the cubic hyperbolic function X*Y*2=c can be found 

....X*Y-2=8. 

Y axis + 

Feasible region. 

+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+ 
(0,0) X axis 

Figure 78. Cubic hyperbolic constraint step function 
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using the same approach as used for the hyperbolic function. The 

tangent point on the function can be found using the Gordian algorithm. 

From the single point, two (2) points on the underlying step function 

can be found using the same procedure as used for the hyperbolic 

function except that the slope characteristic segments of the function 

have been move as shown in figure 78. 

Deep Cut for Cubic Hyperbolic Using Gordian Algorithm The deep 

cut for the cubic hyperbolic constraint using the Gordian algorithm 

subroutine (CBH-DEPG) finds a point on the cubic hyperbolic constraint, 

a constraint whose parameters are stored in the last seven (7) columns 

of the constraint matrix, by using the Gordian algorithm from which is 

constructed a deep cut line and then loads the line's coefficients into 

the linear portion of the constraint matrix. 

4700 REM *CUBIC HYPERBOLIC GORDIAN DEEP CUT* 
4701 REM—"————————————————-—CBH-DEPG ——— ——————————————————— 

4702 ZX=A#(K,ND+5)+l 
4703 ZY=A#(K,ND+6)+l 
4704 C#=A#(K,ND+3) 
4705 Y#=B#(ZY.l) 
4706 X#=B#(ZX,1) 
4707 IF X#=H#(ZX) AND Y#=H#(ZY) THEN RETURN 
4708 IF X#>0# AND Y#>0# AND X#*(Y#*Y#)>=C# THEN RETURN 
4709 H#=(2#*C#)"(l#/3#) 
4710 G#=C#/(H#*H#) 
4711 IF X#<6# AND Y#<H# THEN 4716 
4712 IF Y#>=H# THEN X#=C#/(Y#*Y#) 
4713 IF X#>=C# THEN 4771 
4714 IF X#<=1# THEN 4774 
4715 GOTO 4717 
4716 X#=G# 
4717 Y#=CDBL(SQR(C#/X#)) 

Finds the two points on the curve through which the deep cut line 
Is passed. 
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4718 IF X#<G# THEN 4742 
4719 B%=-INT(-Y#) 
4720 D%=B%-1 
4721 A%=-INT(-C#/(B%*B%)) 
4722 G%=-INT(-C#/(D%*D%)) 
4723 P%=B% 
4724 FOR L=1 TO BI# 
4725 P%=P%+1 
4726 J%=-INT(-C#/(P%*P%)) 
4727 IF J%<G# THEN 4732 
4728 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4732 
4729 B%=P% 
4730 A%=J% 
4731 NEXT L 
4732 P%=D% 
4733 FOR L=1 TO BI# 
4734 P%=P%-1 
4735 IF P%<1 THEN 4741 
4736 J%=-INT(-C#/(P%*P%)) 
4737 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4741 
4738 D«=P% 
4739 G%=J% 
4740 NEXT L 
4741 GOTO 4764 
4742 G%=-INT(-X#) 
4743 A%=G%-1 
4744 D%=-INT(-SQR(C#/G%)) 
4745 B%=-INT(-SQR(C#/A%)) 
4746 P%=A% 
4747 FOR L=1 TO BI# 
4748 P%=P«-1 
4749 IF P%<i THEN 4755 
4750 J%=-INT(-SQR(C#/P%)) 
4751 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4755 
4752 A%=P% 
4753 B%=J% 
4754 NEXT L 
4755 P%=G% 
4756 FOR L=1 TO BI# 
4757 P%=P%+1 
4758 IF P%>G# THEN 4764 
4759 J%=-INT(-SQR(C#/P%)) 
4760 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4764 
4761 G%=P% 
4762 D%=J% 
4763 NEXT L 
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Finds the equation of the line through the two (2) points above. 

4764 A#(K,1)=CDBL(B%*G%-A%*D%) 
4765 FOR L=2 TO ND+1 
4766 A#(K,L)=0# 
4767 IF L=ZX THEN A#(K,L)=CDBL(B«-D%) 
4768 IF L=ZY THEN A#(K,L)=CDBL(G%-A%) 
4769 NEXT L 
4770 RETURN 
4771 B#=l# 
4772 A#=0# 
4773 GOTO 4776 
4774 A#=l# 
4775 B#=0# 
4776 A#(K,1)=1# 
4777 FOR L=2 TO ND+1 
4778 A#(K,L)=0# 
4779 IF L=ZY THEN A#(K,L)=B# 
4780 IF L=ZX THEN A#(K,L)=A# 
4781 NEXT L 
4782 RETURN 

Cubic Hyperbolic Sheet Subroutine — File CBS-DEPG 

As with the sheet constraint, the cubic hyperbolic of two sheets 

function X*(Y-Z)''2=c can be visualized as a cylinder in which sections 

in the X and Y axes plane are a series of hyperbolic like functions and 

sections in the Z and Y axes plane are a series of lines at forty-five 

(45) degrees. When the two (2) deep cut points on the hyperbolic like 

function that corresponds to the X and Y axes plane which passes through 

the [z] coordinate point are found as say (a%,b%,[z]) and (g%,d%,[z]) by 

using the underlying step function, then the third point (g%,d%+l,[z]+l) 

can be found by assuming a forty-five (45) degree cut in the Z and Y 

axes plane. 

Figure 79 shows the slope characteristic segments of the hyperbolic 

like curve in the X and Y axes plane. 
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+ ..X*(Y-Z)-2=8 

+ 

+ Feasible region 

+ 

+ 

Y axis + — 

+—+—+--+—+—+—+—+--+—+—+—+--+—+—+—+—+--+—+ 
(0,0) X axis 

Figure 79. Cubic sheet constraint step function 

Deep Cut for Cubic Sheet Using Gordlan Algorithm The deep cut 

for cubic sheet constraint using the Gordlan algorithm subroutine (CBS-

DEPG) finds a point on the cubic sheet constraint, a constraint whose 

parameters are stored in the last seven (7) columns of the constraint 

matrix, by using the Gordlan algorithm from which is constructed a deep 

cut plane and then loads the plane's coefficients into the linear 

portion of the constraint matrix. 

4900 REM *CUBIC SHEET GORDIAN DEEP CUT SUBROUTINE* 
4901 REM* 

4902 C#=A#(K,ND+4) 
4903 ZX=l+A#{K,ND+5) 
4904 ZY=l+A#(K,ND+6) 
4905 ZZ=l+A#(K,ND+7) 
4906 Y#=B#(ZY.l) 
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4907 X#=B#(ZX,1) 
4908 Z#=B#(ZZ,1) 
4909 IF X#=H#(ZX) AND Y#=H#(ZY) AND Z#=H#(ZZ) THEN RETURN 
4910 IF X#>0# AND Z#=0# AND Y#-Z#>0# AND X#*(Y#-Z#)*(Y#-Z#)>=C# THEN RET 

URN 
4911 H#=(2#*C#)"(l#/3#) 
4912 G#=C#/(H#*H#) 
4913 IF X#<G# AND (Y#-Z#)<H# THEN 4916 
4914 IF (Y#-Z#)>=H# THEN X#=C#/((Y#-Z#)*(Y#-Z#)) 
4915 GOTO 4917 
4916 X#=6# 
4917 Z%=INT(Z#) 
4918 Y#=(SQR(C#)+Z«*SQR(X#))/SQR(X#) 
4919 IF Y#-Z%<1# THEN 4975 
4920 IF X#<=1# THEN 4982 

Finds the two (2) of three (3) points on the function through which 
the deep cut plane Is passed. 

4921 IF X#<G# THEN 4945 
4922 B%=-INT(-Y#) 
4923 D%=B%-1 
4924 A%=-INT(-C#/((B%-Z%)*(B%-Z%))) 
4925 G%=-INT(-C#/((D%-Z%)*(D%-Z%))) 
4926 P%=B% 
4927 FOR 1=1 TO BI# 
4928 P%=P%+1 
4929 J%=-INT(-C#/((P%-Z%)*(P%-Z%))) 
4930 IF J«<G# THEN 4935 
4931 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4935 
4932 B%=P% 
4933 A%=J% 
4934 NEXT I 
4935 P%=D% 
4936 FOR 1=1 TO BI# 
4937 P%=P%-1 
4938 IF (P%-Z%)<1 THEN 4944 
4939 J%=-INT(-C#/((P%-Z%)*(P%-Z%))) 
4940 IF J%*(B%-D%)+P%*(G%-A%)>B%*G%-A%*D% THEN 4944 
4941 D%=P% 
4942 G%=J% 
4943 NEXT I 
4944 GOTO 4967 
4945 G%=-INT(-X#) 
4946 A%=G%-1 
4947 D«=-INT(-(SQR(C#)+ZX*SQR(G%))/SQR(G%)) 
4948 B%=-INT(-(SQR(C#)+Z«*SQR(A%))/SQR(A%)) 
4949 P%=A% 
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4950 FOR 1=1 TO BI# 
4951 P%=P%-1 
4952 IF P%<1 THEN 4958 
4953 J%=-INT(-(SQR(C#)+Z%*SQR(P%))/SQR(P%)) 
4954 IF P%*iB%-D%)+ô%*{G%-M)>B%*Q%-^%*D% THEN 4958 
4955 A%=P% 
4956 B%=J% 
4957 NEXT I 
4958 P%=G% 
4959 FOR 1=1 TO BI# 
4960 P%=P%+1 
4961 IF P%>G# THEN 4967 
4962 J%=-INT(-(SQR(C#)+Z%*SQR(P%))/SQR(P«)) 
4963 IF P%*(B%-D%)+J%*(G%-A%)>B%*G%-A%*D% THEN 4967 
4964 G%=P% 
4965 D%=J% 
4966 NEXT I 

Finds the equation of the plane through the two (2) points found 
above and the Y and Z axes plane point. 

4967 A#(K,1)=CDBL((G%*B%-A%*D%)+Z%*(A%-G%)) 
4968 FOR J=2 TO ND+1 
4969 A#(K,J)=0# 
4970 IF ZX=J THEN A#(K,J)=CDBL(B«-D«) 
4971 IF ZY=J THEN A#(K,J)=CDBL(G%-A%) 
4972 IF ZZ=J THEN A#(K,J)=CDBL(A«-G«) 
4973 NEXT J 
4974 RETURN 
4975 A#(K,1)=1# 
4976 FOR J=2 TO ND+1 
4977 A#(K,J)»0# 
4378 IF J-ZY THEN A#(K,J)=1# 
4979 IF J=ZZ THEN A#(K.J)=-1# 
4980 NEXT J 
4981 RETURN 
4982 A#(K,1)=1# 
4983 FOR 1=2 TO ND+1 
4984 A#(K,I)=0# 
4985 IF I=ZX THEN A#(K.I)=1# 
4986 NEXT I 
4987 RETURN 

Program Table of Contents 

Table 19 can be used to reconstruct the above code from the computer 

disk and to organize subroutines from previous program listings. Since 
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Table 19. Gomory's method with nonlinear constraints BASIC program 
table of contents 

File Program lines Page Routines 

MAIN-GOM 0001-•0137 288 Gomory's method 
INPT-OBJ 1200-1220 61 Objective coefficient input subroutine 
INPT-CON 1300-1328 63 Constraint coefficient input subroutine 
INPT-TYP 1400- 1440 65 Constraint type input subroutine 
INPT-BND 1500-1523 67 Variable bounds input subroutine 
UTIL-OPT 1800-1803 22 Option line subroutine 
UTIL-ERS 1850- 1853 22 Erase option subroutine 
UTIL-CON 1860--1866 22 Continue line subroutine 
UTIL-CHX 1870. -1882 23 Data check subroutine 
REPT-SMP 2100--2125 69 Simplex report subroutine 
ALGR-KEY 3000-•3057 200 Constraint key subroutine 
ALGR-GOM 3300-•3499 294 Gomory's algorithm subroutine 
TRAN-CON 3600- 3633 74 Constraint transformation subroutine 
TRAN-INV 3700-•3743 76 Basis inversion subroutine 
TRAN-RIV 3900-•3960 78 Basis reinversion subroutine 
PAR-DEPL 4100-•4189 311 Deep cut for parabolic subroutine 
HYP-DEPL 4300--4385 318 Deep cut for hyperbolic subroutine 
SHT-DEPL 4500-•4592 325 Deep cut for sheet subroutine 

BASIC code is dependent on program line numbers for its subroutine 

branching, the statement numbers must be maintained as listed above. 

Gomory's Method with Nonlinear Constraints; 
Integer Solutions to Example 11 Minimum Project Man Count Problem 

Using the nonlinear modification of the dual simplex method, the 

ten activity minimum project man count problem was solved in real 

numbers for example 11. The same example can be solved in all integers 

using the nonlinear modification of Gomory's method. The results are 

displayed in table 20 which lists for each fixed project duration the 

number of iterations required to reach a solution, the seconds required 
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to reach the solution, the value of the objective function, and the 

value of the variables. 

Table 20. Gomory's method, using deep cuts derived with the line search 
algorithm. Integer solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 580 5298 1110 445 822 6737 140 83 110 107 
Sec. 1540 13934 2718 1268 2189 17604 343 250 313 228 
Obj. 16 19 20 22 24 29 34 46 65 132 
T1 10 15 15 10 8 5 6 6 5 2 
T2 50 35 35 30 28 27 20 14 10 5 
T3 80 60 60 47 45 40 30 24 15 7 
T4 100 90 80 67 60 50 40 30 20 10 
M5 1 1 1 1 1 1 1 1 1 2 
M6 1 1 1 1 1 1 1 2 2 4 
M7 3 2 2 3 4 6 5 5 6 15 
MB 1 2 2 2 2 2 3 5 8 14 
M9 2 2 2 3 3 4 5 5 10 25 
MIO 3 2 3 3 4 6 6 10 12 20 
Mil 1 2 2 2 2 2 3 4 7 14 
M12 2 3 3 3 3 3 4 6 8 16 
M13 1 2 2 2 2 2 3 4 6 12 
M14 1 2 2 2 2 2 3 4 5 10 
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BRANCH AND BOUND METHOD WITH HYPERBOLIC AND PARABOLIC CONSTRAINTS 

Even when deep cut constraints are used to strengthen the Gomory or 

Wilson cut, Gomory's method does not consistently yield an integer 

solution within a reasonable number cf iterations. A method which does 

consistently yield an integer solution is the branch and bound method. 

Theory of Branch and Bound Method 

The branch and bound method52 -fg primarily a "bookkeeping" scheme, 

like the restart method, which creates and solves, or discards, a 

series of CP subproblems derived from the original CP problem. Each 

subproblem contains a partition of the original feasible region which 

has been systematically restricted to a smaller and smaller set of 

solutions by means of the addition of integer constraints to the 

original CP problem. The method continues to subdivide the feasible 

region until the minimum optimal solution to one of the subproblems is 

integer and is less than the optimal solution to all the other feasible 

subproblems that together form the original problem's feasible region. 

The simplest means to demonstrate the branch and bound method is 

with a two (2) variable example 14. 

minimize X+Y 

subject to: X >=0 
Y>=0 

-X +Y>=-1 
12*X+5*Y>=15 

X,Y integer 

Example 14 is shown graphically in figure 80. In addition to the 
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Y axis 
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0 

Figure 80. Branch and bound method example 14 feasible region 

constraint lines and the X and Y axes, an integer lattice is added to 

the feasible region which defines the points within the feasible region 

that are allowable as Integer solutions. 

Branch and Bound Node Tree 

Since the branch and bound method is a book keeping scheme which 

keeps track of a series of subproblems which are called "nodes", a 

method for storing the solutions of the subproblems must be defined. 

Table 21. Branch and bound method node table entry 

Line Node value and bound var. X Y New bounds 

1 current objective value upper bound upper bound upper bound 
2 new bounded variable no. lower bound lower bound lower bound 

...Feasible. region 

(5) 

(3f 

X axis 
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Node table 21 contains the information saved on each subproblem. An 

entry for each subproblem contains the value of the objective function 

when the subproblem is optimized, a set of upper and lower integer bounds 

for each variable in the subproblem, and a set of "tighter" bounds for 

one of the variables that is not integer in the subproblem solution. 

+—••-+ X=20 Y~ 3 
1(1)1 17 T7 

/ \ 
/ \ 
/ \ 
/ \ 
/ \ 

1(2)1 infeasible 
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X Y -
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Figure 81. Branch and bound method example 14 branch and bound tree 
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To start the algorithm, the original example 14 integer LP problem 

is solved without any integer bounds other than the lower variable 

bounds of zero (0). This solution for example 14 corresponds to node 

(1) in a "branch and bound tree" as shown in figure 81. 

Upper and Lower Integer Bounds 

Without any integer restrictions on the variables, the optimal 

solution to example 14 is not integer. To find an integer solution, the 

feasible region must be restricted by adding an integer upper or lower 

bound to one of the variables. The general practice is to choose the 

variable, say Y, which is closest to being integer in the minimum 

subproblem or node solution and to set the integer bounds for two (2) 

new nodes at less than or equal [y] and greater than or equal [y]+l. 

Again in figure 81, node (1) is "branched" into two (2) subproblems 

for nodes (2) and (3) and then discarded since it is not an integer 

solution. The variables X and Y are both as nearly integer, so Y is 

randomly selected for setting the bounds on two (2) new subproblem. 

The simplex solutions for the two (2) new nodes' subproblem are 

shown in figures 80 or as solution points (2) and (3) on figure 80. 

Since the subproblem for node (2) is infeasible, the node is discarded 

and only node (3) is considered. If both nodes had solutions, then the 

node with the minimum optimal solution would be considered for 

branching. The solution for node (3) is integer in Y and noninteger in 

X, so the node is considered for the next branch with bounds set on X. 

The next two (2) nodes are shown in figures 81 or as solution points 
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(4) and (5) in figure 80. The simplex solutions for the two (2) 

subproblems yield two (2) integer solutions. Any integer solution 

derived from further branching would have greater solution values; and 

since the integer solution to the subproblem at node (5) is the minimum 

solution of all the nodes not discarded, it is the optimal integer 

solution to the original problem. 

Branch and Bound with Beale's Method BASIC Code 

The branch and bound method consists of a scheme of selecting nodes 

and then branching from the selected nodes into other nodes. The actual 

processing of the subproblems associated with the nodes can be done with 

several simplex related algorithm and can be considered separate from 

the book keeping scheme of the branch and bound method. 

The book keeping scheme is contained in the branch and bound 

algorithm (ALGR-BND). The processing of the subproblems in this program 

is done with Beale's algorithm with nonlinear constraints which allows 

for the use of a quadratic objective function and nonlinear convex 

constraints in the integer CP problem. 

All programs listed in the text consist of a main calling routine 

and a series of input, output, and processing subroutine. These 

routines are listed in the text as well as on a computer disk compatible 

with IBM micro-computers. 

Branch and Bound Main Routine — File MAIN-BND 

The branch and bound main routine (MAIN-BND) dimensions the 

thirteen (13) data arrays; writes the option menu to the screen as shown 



344 

BRANCH AND BOUND METHOD 

NUMBER OF CONSTRAINTS 10 
NUMBER OF VARIABLES 14 
MAXIMUM ITERATIONS 1000 
BEST AVAILABLE SOLUTION 1000000000 

M-RETURN TO MENU 

O-OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPE 
B-BOUNDED VARIABLES 
Q-QUADRATIC COEFFICIENTS 
V-MAXIMUM VALUE OF OBJECTIVE 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
S-SAVE F-FETCH 
N-NEW PROBLEM 

OPTION ? 

O'X+X'QX-z 
l*X*2*Y>=c l*X*(2*Y-3*X)>=c l*Y+a*(X-b)'2>=c 

Figure 82. Branch and bound main menu screen 

In figure 82; calls the utility subroutines UTIL-OPT, UTIL-ERS, UTIL-

CON, UTIL-CHX; calls the data Input and output subroutines INPT-OBJ, 

INPT-CON, INPT-TYP, INPT-SND, INPT-QUB, and REPT-SMP; calls and times 

the processing algorithms ALGR-BND, ALGR-KEY, and ALGR-BEA; and saves 

and fetches the Input data to and from disk. 

1 REM *BRANCH AND BOUND METHOD* 
2 REM MAIN-BND 

3 REM BE# -MAXIMUM VALUE OF OBJECTIVE ON STARTING 
4 REM BI# - MACHINE INFINITE 
5 REM CO - PIVOT COLUMN FOR SIMPLEX TRANSFORMATION 
6 REM ER - ERROR KEY 
7 REM IN - NUMBER OF ITERATIONS BETWEEN REINVERSIONS 
8 REM IR - MAXIMUM NUMBER OF ITERATIONS 
9 REM MD - NUMBER OF CONSTRAINTS 
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10 REM 
11 REM 
12 REM 
13 REM 
14 REM 
15 REM 
16 REM 
17 REM 
18 REM 
19 REM 
20 REM 
21 REM 
22 REM 
23 REM 
24 REM 
25 REM 
26 REM 
27 REM 
28 REM 
29 REM 

ND - NUMBER OF VARIABLES 
PA - NUMBER OF ATTEMPTS AT PIVOT 
PM - SIGN KEY (+-) 
RO - PIVOT ROW FOR SIMPLEX TRANSFORMATION 
RQ - PIVOT ROW IN PARTIAL MATRIX 
SM# - MACHINE ZERO 
A#(MD+2+ND,ND+8) - ORIGINAL DATA AND KEYS 
B#(2*ND+1,ND+1) - PRIMAL-DUAL MATRIX 
H#(ND+1) - SOLUTIONS FORM LAST ITERATION 
M#(ND+1,2) - UPPER AND LOWER BOUNDS ON VARIABLES 
N%(2*MX,ND+2) - NODE MATRIX FOR BRANCH NETWORK 
0#(ND+1,ND+1+ND) - UNRESTRICTED BASIS SOLUTION 
P# 
Q# 

S# 
T# 
V# 

ND+1) - WORK VECTOR 
ND+1,ND+1) - QUADRATIC HESSIAN MATRIX 

R(MD+1+ND+1) - CONSTRAINT TYPE (l->=,0-=,-l-<=) 
ND+1) - FREE VARIABLE COLUMN SWITCH 
ND+1,ND+1) - INVERSION WORK MATRIX 
MD+l+ND+l+ND+l+ND+1) - ROW AND COLUMN ARRAY 

X#(ND) - SOLUTION VECTOR 

Sets MD to the default number of constraints In the Integer CP 
problem and ND to the number of variables. Sets J^N to the number of 
Iterations before a relnverslon of the augmented B matrix. Sets MX to 
the default maximum number of active nodes In the branch and bound node 
array N%(2*MX,ND+2). Sets IR to the default maximum number of 
Iterations before the algorithm Is terminated. Sets BI# to a number 
considered machine or computer Infinite and SM# to a number considered 
machine zero. 

30 MD=0 
31 ND=0 
32 IN=10 
33 MX=100 
34 IR=1000 
35 BI#=1E+10 
36 BI%=32000 
37 SM#=lE-09 
38 OB#=BI# 

Prompts and reads the number of constraints MD In the Integer CP 
problem, the number of variables ND, and the maximum number of 
Iterations IR allowed before the algorithm Is stopped. 

39 CLS 
40 LOCATE 1,10:PRINT "BRANCH AND BOUND METHOD" 
41 LOCATE 3.1:PRINT "NUMBER OF CONSTRAINTS":LOCATE 3,31:INPUT "",L$ 
42 GOSUB 1870:REM UTIL-CHX 



43 IF Z#<>BI# THEN MD=Z# 
44 LOCATE 3,30:PRINT MD," 

: LOCATE 4,31;INPUT "",L$ 
45 GOSUB 1870:REM UTIL-CHX 
46 IF Z#<>BI# THEN ND=Z# 
47 LOCATE 4.30:PRINT NO." 

: LOCATE 5.31:INPUT "".L$ 
48 GOSUB 1870:REM UTIL-CHX 
49 IF Z#<>BI# THEN IR=Z#:LOCATE 5.30:PRINT IR," " 
50 LOCATE 5,30:PRINT IR," " 

Dimensions the A#(MD+2+ND+l,ND+8) array which contains the linear 
portions of the quadratic objective function, the constraint 
coefficients, and the first step of ^he transformation of the quadrat1c_ 
partial s. Dimensions the augmented B inverse matrix and the augmented B 
matrix array B#(2*ND+1,ND+1). Dimensions the holding array H#(ND+1), 
the upper £nd lower bounds array M#(ND+1), the pivot row P#(ND+1), the 
augmented Q matrix array Q#(ND+1,ND+1), the enlarged constraint type 
array R(MD+1+ND+1), the switch array S#(ND+1), the reinversion working 
space array T#(ND+1,ND+1), the pivot row selection array 
V#(MD+1+ND+1+ND+1+ND+1), and the solution vector X#(ND). Dimensions the 
augmented B inverse and augmented B matrix of the noninteger optimal 
solution array 0#(ND+1+ND,ND+1). Dimensions the branch and bound node 
array N%(2*MX,ND+2). 

51 DIM A#(MD+2+ND+l,ND+8) 
52 DIM B#(2*ND+1,ND+1) 
53 DIM H#(ND+1) 
54 DIM M#(ND+1,2) 
55 DIM 0#(ND+1+ND,ND+1) 
56 DIM P#(ND+1) 
57 DIM N%(2*MX.ND+2) 
58 DIM Q#(ND+i,ND+i) 
59 DIM R(MD+1+ND+1) 
60 DIM S#(ND+1) 
61 DIM T#(ND+1,ND+1) 
62 DIM V#(MD+1+ND+1+ND+1+ND+1) 
63 DIM X#(ND) 

Initializes the constraint type array to all greater than or equals. 

64 FOR 1=2 TO MD+l+ND+1 
65 R(I)=1 
66 NEXT I 

346 

":LOCATE 4,1:PRINT "NUMBER OF VARIABLES" 

":LOCATE 5,1:PRINT "MAXIMUM ITERATIONS" 

Prints the option menu to the screen; calls the option line routine 
UTIL-OPT; and pauses for the entry of "M", "0", "A", "C", "B", "Q", "U", 
"R", "S", "F", "N" for the option variable L$. 



347 

67 LOCATE 8.15:PRINT 
68 LOCATE 10,10:PRINT 
69 LOCATE 11,10:PRINT 
70 LOCATE 12,10:PRINT 
71 LOCATE 13,10:PRINT 
72 LOCATE 14,10:PRINT 
73 LOCATE 15,10:PRINT 
74 LOCATE 16,10:PRINT 
75 LOCATE 17,10:PRINT 
76 LOCATE 18,10:PRINT 
77 LOCATE 19,10:PRINT 
78 LOCATE 22,1:PRINT " 

"M-RETURN TO MENU" 
"O-OBJECTIVE COEFFICIENTS" 
"A-CONSTRAINT COEFFICIENTS" 
"C-CONSTRAINT TYPES" 
"B-BOUNDED VARIABLES" 
"Q-QUADRATIC COEFFICIENTS" 
"V-MAXIMUM VALUE OF OBJECTIVE" 
"U-EXECUTE ALGORITHM" 
"R-REPORT LISTING" 
"S-SAVE F-FETCH" 
"N-NEW PROBLEM" 

OX'+XQX'=z" 
79 LOCATE 23,1:PRINT "l*X*2*Y>=c l*X*(2*Y-3*Z)>=c l*Y+a*(X-b)'2>=c" 
80 GOSUB 1800:REM UTIL-OPT 

Prompts and reads the maximum value of the objective function OB# 
at the start of the branch and bound method. 

By having a good guess at the solution at the start of the 
branching algorithm, many of the useless nodes can be eliminated early. 

81 LOCATE 21,8:INPUT "",L$ 
82 IF L$<>"V" THEN 87 
83 LOCATE 6,1:PRINT "MAXIMUM VALUE OF OBJECTIVE":LOCATE 6,31:INPUT "".L$ 
84 GOSUB 1870:REM UTIL-CHX 
85 IF Z#<>BI# THEN OB#=Z# 
86 LOCATE 6,30:PRINT OB#," " 

Calls either the objective function input subroutine INPT-OBJ, the 
constraint input subroutine INPT-CON, the constraint type input 
subroutine INPT-TYP^ the upper and lower bounds input subroutine INPT-
BND, the quadratic Q matrix input subroutine INPT-QUD, the processing 
subroutine ALGR-BND, or the report routine REPT-SMP based on the option 
variable L$. 

87 CLS 
88 H=0 
89 G=2 
90 IF L$<>"0" THEN 93 
91 GOSUB 1200:REM INPT-OBJ 
92 GOTO 82 
93 IF L$<>"A" THEN 96 
94 GOSUB 1300:REM INPT-CON 
95 GOTO 82 
96 IF L$<>"C" THEN 99 
97 GOSUB 1400:REM INPT-TYP 
98 GOTO 82 
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99 IF L$<>"B" THEN 102 
100 GOSUB 1500:REM INPT-BND 
101 GOTO 82 
102 IF L$<>"Q" THEN 105 
103 GOSUB 1600:REM INPT-QUD 
104 GOTO 82 
105 IF L$<>"U" THEN 110 
106 TM=3600*VAL(MID$(TIME$,1.2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$, 

7.2)) 
107 GOSUB 3000:REM ALGR-KEY 
108 TM=3600*VAL(MID$(TIME$,1.2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$. 

7,2))-TM 
109 GOTO 67 
110 IF L$<>"R" THEN 113 
111 GOSUB 2200:REM REPT-SMP 
112 GOTO 82 

Saves the content of MO, NO, M#(ND+1,2), A#(MD+l+ND,ND+8), 
Q#(ND+1.ND+1), and R(MD+1+ND+1) to disk file "DATA" as an ASCI file If 
option "S" is selected. 

113 IF L$<>"S" THEN 131 
114 OPEN "0",#1,"DATA" 
115 PRINT #1,STR$(MD) 
116 PRINT #1.STR$(ND) 
117 FOR 1=1 TO ND+1 
118 FOR J=1 TO ND+1 
119 PRINT #1.STR$(Q#(I,J)) 
120 NEXT J 
121 PRINT #1.STR$(M#(I,1)) 
122 PRINT #1,STR$(M#(I.2)) 
123 NEXT I 
124 FOR >1 TO MD+1 
125 FOR J=1 TO ND+8 
126 PRINT #1.STR$(A#(I,J)) 
127 NEXT J 
128 PRINT #1,STR$(R(I)) 
129 NEXT I 
130 CLOSE #1 

Load to MD, ND, M#(ND+1,2), A#(MD+l+ND,ND+8), 0#(ND+1,ND+1), and 
R(MD+1+ND+1) the disk file "DATA" if option "F" is selected. 

131 IF L$<>"F" THEN 157 
132 OPEN "I",#1,"DATA" 
133 INPUT #1,X$ 
134 MD=VAL(X$) 
135 INPUT #1,X$ 
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136 ND=VAL(X$) 
137 FOR 1=1 TO ND+1 
138 FOR J=1 TO ND+1 
139 INPUT #1.X$ 
140 Q#(I.J)=VAL(X$) 
141 NEXT J 
142 INPUT #1.X$ 
143 M#(I.1)=VAL(X$) 
144 INPUT #1.X$ 
145 M#(I,2)=VAL(X$) 
146 NEXT I 
147 FOR 1=1 TO MD+1 
148 FOR J=1 TO ND+8 
149 INPUT #1.X$ 
150 A#(I.J)=VAL(X$) 
151 NEXT J 
152 INPUT #1,X$ 
153 R(I)=VAL(X$) 
154 NEXT I 
155 CLOSE #1 
156 GOTO 67 

Restarts program for new run if option "N" is selected. 

157 IF L$="N" THEN RUN 
158 GOTO 67 

Utility Subroutines — Files UTIL-OPT. UTIL-ERS. UTIL-CON and UTIL-CHX 

Same as for critical path method. 

Input Subroutines ^ Files INPT-OBJ. INPT-CON. INPT-TYP, and INPT-BND 

Same as for dual simplex method. 

Input Subroutine — File INPT-QUD 

Same as for Beale's method. 

Report Subroutine — Files REPT-SMP 

Same as for dual simplex method. 

Constraint Keys Subroutine — ALGR-KEY 

Same as for dual simplex method with nonlinear constraints except 

for the following lines which must be changed to: 
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3024 REM 
3026 GOSUB 3100:REM ALGR-BND 
3027 FOR 1=2 TO ND+1 
3028 M#(I.1)=N«(1.I) 
3029 M#(I,2)=N%(2,I) 
3030 NEXT I 

Branch and Bound Algorithm Subroutine — File ALGR-BND 

The branch and bound algorithm subroutine (ALGR-BND) Is the book

keeping scheme of the branch and bound method. The subroutine follows 

the logic of the branch and bound tree by executing the following steps. 

(1) Solves the Integer CP problem using the primal-dual version of 

Beale's algorithm. The results of the first solution are stored 

In the first two (2) rows of array N%(2*MX,ND+2) as shown In table 

20 as node one (1). The augmented ¥ Inverse matrix and the 

augmented B matrix at the optimal solution are stored In the array 

0#(ND+1+ND,ND+1). If the solution Is all Integer, then set ER=1 

and return to the main routine. If the solution Is Infeaslble then 

set ER=2 and return to the main routine. Otherwise, go to step (2). 

(2) Of all the solutions or nodes stored in the array N%(2*MX,ND+2), 

select the node that has the solution with the minimum value of the 

objective function as the node to branch on. After the branching 

is completed, the node is no longer considered for branching again 

or as a potential solution. Go to step (3). 

(3) From the values of the variables in the minimum solution selected 

above, select the variable, say x, that is closest to an integer 

value either by rounding up or rounding down. Define two (2) new 

CP subproblems called nodes in which one has the added constraint 
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X<=[x] and the other has the constraint X>=[x]+1. Go to step (4). 

(4) Using the restart method and the augmented B Inverse matrix and 

augmented B matrix stored In the array 0#(ND+1+ND,ND+1) solve for 

the optimal solution of the two (2) new nodes and save the results 

in the node array N%(2*MX,ND+2) by adding the nodes to the bottom 

of the current list of nodes. If the node array Is full then set 

ER=4 and go to the main routine. Otherwise, go to step (5). 

(5) Check each of the two (2) solutions or nodes. If a solution for 

the node is infeaslble then discard the node from further 

consideration by deleting it from the node array. Go to step (6). 

(6) If the values of the variables of the solution are all Integer, 

then compare the value solution with all the other solution values 

in the node array. If any solution value in the node array is 

greater than or equal to the all Integer solution value, then 

delete the corresponding node from the node array and also 

from further consideration. Go to step (7). 

(7) If in step (6) all but one (1) solution was deleted from the node 

array, then set ER=1 and return to the main routine. If the total 

number of Iterations used in the solution of the subproblems to 

this point is greater than the maximum allowed, then set ER=0 and 

return to the main routine. Otherwise, go to step (2) 

3100 REM * BRANCH AND BOUND ALGORITHM * 
3101 REM ALGR-BND 

Sets the deleted node DL count to zero (0), the total iteration 
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count IT to zero (0), the subproblem iteration count ITR to zero (0), 
the branch and bound iteration or cycle count CYC to zero (0), and the 
node line number in the node array to one (1). Sets LL to the number of 
nodes used for branching at the start of the algorithm. Clears the node 
array N%(2*MX,ND+2) and sets the first node's upper and lower bounds to 
those of the starting Integer CP problem. 

3102 DL=0 
3103 ITR=0 
3104 IT=0 
3105 SP=2 
3106 CYC=1 
3107 LL=1 
3108 FOR 1=1 TO 2*MX 
3109 FOR J=1 TO ND+1 
3110 N«(I,J)=0% 
3111 NEXT J 
3112 NEXT I 
3113 FOR 1=2 TO ND+1 
3114 N«(1.I)=INT(M#(I,1)) 
3115 N«(2,I)=-INT(-M#(I,2)) 
3116 NEXT I 

Checks the iteration count to see if it exceeds the maximum limit 
IR; and if the limit is exceeded, sets ER=0 and returns to main routine. 

3117 ER=0 
3118 IF IT>IR THEN RETURN 

Sets LN to the line number In the node array N%(2*MX,ND+1) which 
holds the bounds for the current subproblem node. 

3115 LN=2*(CYC-DL)-1 

Sets up the switch, holding, and upper and lower bound arrays for 
the Beale's algorithm so that the subproblem can be processed. 

3120 FOR 1=2 TO ND+1 
3121 S#(I)=0# 
3122 H#(I)=BI# 
3123 M#(I.1)=N%(LN.I) 
3124 IF N%(LN,I)=BI% THEN M#(I.1)=BI# 
3125 M#(I,2)=N«(LN+1,I) 
3126 NEXT I 

Runs Beale's algorithm from the point at the origin if the cycle 
count Is one (1). Otherwise, uses the restart method. 
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3127 IF CYOl THEN 3140 
3128 GOSUB 3300:REM ALGR-BEA 

Reinvents the augmented ÏÏ matrix and the objective function and 
saves the switch array and the augmented ÏÏ inverse matrix and the 
augmented ÏÏ matrix for the optimal noninteger solution in the array 
0#(ND+l+ND,ND+2). 

The reinversion is done as a precaution since all succeeding 
subproblems start from this simplex tableau. 

3129 GOSUB 3900:REM TRAN-RIV 
3130 GOSUB 3550:REM TRAN-OBJ 
3131 FOR 1=1 TO ND+1 
3132 0#(1,I)=S#(I) 
3133 NEXT I 
3134 FOR 1=2 TO ND+l+ND 
3135 FOR J=1 TO ND+1 
3136 0#(I,J)=B#(I,J) 
3137 NEXT J 
3138 NEXT I 
3139 GOTO 3149 

Processes the subproblem using the restart method. 

The restart method starts the subproblem from the optimal point 
reached in cycle one. If more computer array space where available the 
restart could be started form the optimal point reached at the most 
recent node on the branch and bound tree by saving the augmented 7 
inverse matrix and the augmented B matrix of that node's subproblem. 

3140 FOR 1=1 TO ND+1 
3141 S#(I)=0#(1.I) 
3142 NbXl i 
3143 FOR 1=2 TO ND+l+ND 
3144 FOR J=1 TO ND+1 
3145 B#(I.J)=0#(I.J) 
3146 NEXT J 
3147 NEXT I 

The initialization lines of the Beale's algorithm are skipped since 
the starting point for the algorithm is not the origin but the restart 
point. 

3148 GOSUB 3318:REM ALGR-BEA+18 

Totals the number of iterations for all the subproblems. 
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3149 ITR=ITR+IT 
3150 IT=ITR 

Returns to the main routine if the error code on the first cycle 
indicates the problem is infeasible or has exceeded the maximum 
iterations. 

3151 IF EROl AND CYC=1 THEN RETURN 

Sets the value of the objective function in the node array to 
infinity. 

3152 N%(LN,1)=BI% 

Lets the objective function value in the node array stay at 
infinity if the error code indicates the subproblem is infeasible or the 
best current integer solution is less or equal to the solution of the 
subproblem. 

3153 IF EROl OR B#(1,1)>«0B# THEN 3179 

Checks the values of the variables of the solution to the 
subproblem to see if they are integer. 

3154 X=0 
3155 FOR 1=2 TO ND+1 
3156 I%=B#(I,1) 
3157 IF ABS(B#(I.1)-I%)>SM# THEN X=1 
3158 NEXT I 

Goes to the solution search if the solution is integer. 

3159 IF X=0 THEN 3174 

Finds the variable value that is closest to integer and sets the 
new upper and lower bounds for the node in the node array as well as 
rounds up the solution value to an integer value. 

3160 MM#=BI# 
3161 FOR 1=2 TO ND+1 
3162 I«=CINT(B#(I,1)) 
3163 A#=ABS(B#(I.1)-I%) 
3164 IF A#<=SM# THEN 3170 
3165 IF MM#<A# THEN 3170 
3166 MM#=A# 
3167 N35(LN+1,1)=I 
3168 N«(LN.ND+2)=INT(B#(I.l)) 
3169 N«(LN+l.ND+2)=-INT(-B#(I.l)) 
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3170 NEXT I 
3171 IF -INT(-B#(1.1))>=0B# THEN 3179 
3172 N%(LN,1)=-INT(-B#(1,1)) 
3173 GOTO 3189 

Sets the best Integer solution to the new Integer solution. 

3174 0B#=B#(1.1) 
3175 FOR 1=2 TO ND+1 
3176 X#(I-1)=B#(I,1) 
3177 NEXT I 

Sets ER=1 and returns to the main routine If there Is only one (1) 
node in the branch and bound tree and the solution is integer. 

3178 IF LL=1 THEN RETURN 
3179 IF OB#=BI# THEN 3189 

Checks the node array N%(2*MX,ND+2) for any nodes with objective 
function values greater than or equal to the current node's integer 
value. If the current nodes value is less than or equal, then set the 
node's solution value to infinity. 

3180 X=-l 
3181 FOR 1=1 TO LL STEP 2 
3182 IF N%(I,1)=BI% THEN 3185 
3183 IF N«(I.1)<0B# THEN 3186 
3184 N%(I,1)=BI% 
3185 X=X+2 
3186 NEXT I 

Sets ER=1 and returns to the main routine if only one (1) integer 
solution is left in the node array. 

3187 ER=1 
3188 IF X=LL THEN RETURN 

Returns to process the other node of the pair on the branch. 

Since at each branch two nodes are created, both nodes must be 
processed before another branch is taken. 

3189 IF CYC/2=INT(CYC/2) THEN 3214 

Executes the node compression subroutine if the node array is full. 

3190 IF CYC-DL+1>=MX THEN GOSUB 3250:REM ALGR-CPR 
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Sets ER=4 and returns to the main routine if the node array cannot 
be cleared for more node entries 

3191 ER=4 
3192 IF CYC-DL+1>=MX THEN RETURN 

Finds the node NODE with the minimum value of the objective in the 
node array. 

3193 N0DE=0 
3194 MI#=BI# 
3195 FOR 1=1 TO LN STEP 2 
3196 IF MI#<=N%(I,1) THEN 3199 
3197 MI#=N%(I.l) 
3198 NODE=I 
3199 NEXT I 

Sets ER=2 and returns to the main routine if no minimum node 
objective value can be found. 

3200 ER=2 
3201 IF N0DE=0 OR DL=CYC THEN RETURN 

Creates two (2) new nodes for the node tree and transfers the 
current upper and lower bounds to the new nodes. 

3202 FOR 1=1 TO ND+2 
3203 N%(LN+2,I)=N%(N0DE.I) 
3204 N%(LN+3,I)=N%(N0DE+1,I) 
3205 N%(LN+4,I)=N%(N0DE,I) 
3206 N%(LN+5,I)=N%(N0DE+1,I) 
3207 NEXT I 

Adds the new upper and lower bound restrictions to the new nodes 
and returns to process the two (2) new nodes. 

3208 LL=LN+4 
3209 N%(N0DE,1)=BI% 
3210 NW=N%(N0DE+1,1) 
3211 N%(LN+2,NW)=N%(N0DE,ND+2) 
3212 N%(LN+5,NW)=N%(N0DE+l,ND+2) 
3213 IF N%(LN+2,NW)=0% THEN N%(LN+2,NW)=BI% 
3214 CYC=CYC+1 
3215 GOTO 3117 

Node Compressing Subroutine — File ALGR-CPR 

The node array N%(2*MX.ND+2) contains all the nodes from the branch 
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and bound tree. As nodes are discarded from the tree, the array must be 

cleared so that the space can be reused. Since the clearing process, or 

actually a reorganization of the file which compresses the valid nodes 

to the start of the array, takes time, the array Is only compressed when 

the array Is nearly full. 

The node compressing subroutine (ALGR-CPR) compresses the discarded 

nodes from the node array. 

3250 REM * NODE COMPRESSING SUBROUTINE * 
3251 REM ALGR-CPR 

3252 X=SP+1 
3253 FOR I=SP+1 TO LL STEP SP 
3254 IF N«(I,1)<>BI% THEN 3258 
3255 REM 
3256 DL=DL+1 
3257 GOTO 3266 
3258 IF X=I THEN 3265 
3259 FOR J=1 TO ND+2 
3260 N%(X,J)=N%(I,J) 
3261 REM 
3262 N%(X+1,J)=N%(I+1,J) 
3263 REM 
3264 NEXT J 
3265 X=X+2 
3266 NEXT I 
3267 FOR I=X TO 2*MX 
3268 FOR J=1 TO ND+2 
3269 N%(I,J)=0% 
3270 REM 
3271 NEXT J 
3272 NEXT I 
3273 LN=2*(CYC-DL)-1 
3274 RETURN 

Beale's Algorithm Subroutine — File ALGR-BEA 

Same as for Beale's method except for the following lines: 

3342 IF A#(K.ND+2)<>0# THEN GOSUB 4100:REM PAR-DEPL 
3344 IF A#(K,ND+3)<>0# THEN GOSUB 4300:REM HYP-DEPL 
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3346 IF A#(K,ND+4)<>0# THEN GOSUB 4500;REM SHT-DEPL 

which must be added so that the convex constraints can be used. 

Quadratic Tableau Transformation Subroutine — File TRAN-QUD 

Same as for Beale's method. 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 

Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Reinversion Subroutine — File TRAN-RIV 

Same as for dual simplex method. 

Parabolic Subroutines — Files PAR-DEPA, PAR-DEPL, or PAR-DEPG 

Same as for Gomory's method with nonlinear constraints. 

Hyperbolic Subroutines — Files HYP-DEPA. HYP-DEPL. or HYP-DEPG 

Same as for Gomory's method with nonlinear constraints. 

Hyperbolic Sheet Subroutines — Files SHT-DEPA. SHT-DEPL, or SHT-DEPG 

Same as for Gomory's method with nonlinear constraints. 

rrOyram Table of Contents 

Table 22 can be used to reconstruct the above computer code from 

the computer disk and to organize subroutines from previous listings. 

Since BASIC code is dependent on program line numbers for subroutine 

branching, the statement numbers must be maintained as listed below. 
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Table 22. Branch and Bound BASIC program table of contents 

File Program lines Page Routines 

Branch and bound method 
Objective coefficient input subroutine 
Constraint coefficient input subroutine 
Constraint type input subroutine 
Variable bounds input subroutine 
Quadratic input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint key subroutine 
Branch and bound algorithm subroutine 

Node compressing subroutine 
Beale's algorithm subroutine 
Quadratic tableau transformation subroutine 
Constraint transformation subroutine 
Basis inversion subroutine 
Basis reinversion subroutine 
Deep cut for parabolic subroutine 
Deep cut for hyperbolic subroutine 
Deep cut for sheet subroutine 

MAIN-BND 0001-0156 344 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
INPT-QUD 1600-1628 166 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200-2224 69 
ALGR-KEY 3000- 3057 200 
ALGR-BND 3100- 3215 352 
ALGR-CPR 3200- 3274 357 
ALGR-BEA 3300-3481 172 
TRAN-QUD 3550- 3584 180 
TRAN-CON 3600- 3633 74 
TRAN-INV 3700- 3743 76 
TRAN-RIV 3900- 3960 78 
PAR-DEPL 4100- 4189 311 
HYP-DEPL 4300-•4385 318 
SHT-DEPL 4500-•4592 325 

The branch and bound method requires that several lines of the 

constraint keys subroutine ALGR-KEY be changed to: 

3024 REM 
3026 GOSUB 3100:REM ALGR-BND 
3027 FOR 1=2 TO ND+1 
3028 M#(I,1)=N%(1,I) 
3029 M#(I,2)=N%(2,I) 
3030 NEXT I 

and that the following lines be added to Beale's algorithm ALGR-BEA: 

3342 IF A#(K,ND+2)<>0 THEN GOSUB 4100:REM DEPL-PAR 
3344 IF A#(K.ND+3)<>0 THEN GOSUB 4300:REM DEPL-HYP 
3346 IF A#(K,ND+4)<>0 THEN GOSUB 4500:REM DEPL-SHT 

so that the nonlinear constraints can be used. 
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Branch and Bound Method: 
Integer Solutions to Example 11 Minimum Project Man Count Problem 

Example 11 was solved using the nonlinear modification of the dual 

simplex method. The same problem can be solved in all Integers using 

the branch and bound method with Beale's algorithm with nonlinear convex 

constraints as listed in table 23. 

Table 23. Branch and bound method, using deep cuts derived with the line 
search algorithm, integer solutions to the example 11 minimum 
project man count problem with parabolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 75 145 135 263 204 422 49 49 35 46 
Sec. 240 456 440 797 649 1249 174 172 147 176 
Obj. 16 19 20 22 24 29 34 46 65 132 
T1 10 15 15 15 10 10 10 6 5 2 
T2 50 35 35 33 32 28 20 14 10 5 
T3 80 60 60 50 45 38 30 24 15 8 
T4 100 90 80 70 60 50 40 30 20 10 
M5 1 1 1 1 1 1 1 1 1 2 
MS 1 1 1 1 1 1 1 2 2 4 
M7 3 2 2 2 3 3 3 5 6 15 
M8 1 2 2 3 2 3 3.9+ 5 8 14 
M9 2 2 2 3 4 5 5 5 10 17 
MID 3 2 3 3 4 5 6 20 12 30 
Mil 1 2 2 2 2 3 4 4 7 12 
ml2 2 3 3 3 3 3 4 6 S 16 
M13 1 2 2 2 2 3 3 4 6 12 
M14 1 2 2 2 2 2 3 4 5 10 

Branch and Bound Method: 
Integer Solutions to Example 12 Minimum Project Supervision Cost Problem 

Another problem that can now be solved in all integers is the 

minimum project supervision cost problem which was orginally stated and 

solved as example 12. 

It might appear that the problem used in example 13 and solved with 
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the primal-dual simplex method would be a better candidate for the 

branch and bound method. But In example 13, the variables representing 

man counts, which must be held to an Integer value, were eliminated from 

the problem when the quadratic objective function was reduced to nonlinear 

constraints. This would result In a solution with Integer dollars and 

Integer node times, but not Integer man counts. 

Table 24 Is the branch and bound Integer solution to example 12. 

Table 24. Branch and bound method, using deep cuts derived with the 
line search algorithm, integer solutions to the example 12 
minimum project supervision cost problem with hyperbolic man 
count and parabolic cost functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 151 153 152 411 812 726 71 155 88 403 
Sec. 634 644 621 1488 2784 2433 304 586 410 1597 
Obj. 595 595 595 610 653 733 872 1443 2687 10940 
T1 15 15 15 15 9.9+ 10 10 6 5.+ 2 
T2 35 35 35 35 28 20 20 14 10 4 
T3 52 52 52 52 45 34 30 22 15 7 
T4 72 72 72 67 60 50 40 30 20 10 
H5 1 1 1 1 1 1 1 1 1 2 
M6 1 1 1 1 1 1 1 2 2 4 
M7 2 2 2 2 3 3 3 5 5.9+ 15 
M8 2 2 2 2 3 4 4 5 8 20 
M9 3 3 3 3 3 4 5 7 10 17 
MIO 3 3 3 4 4 4 6 8 12 20 
Mil 2 2 2 2 2 3 4 5 7 14 
M12 3 3 3 3 3 4 4 6 7.9+ 20 
M13 2 2 2 2 2 3 3 4 6 12 
M14 2 2 2 2 2 2 3 4 5 10 

Theory of Driebeek's Penalty 

In order to gain the greatest flexibility for the branch and bound 

method, Beale's algorithm was used as the subproblem solution algorithm. 
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But Scale's algorithm Is a primal-dual method In which the value of the 

objective function can either increase or decrease at each iteration. 

If only the dual or only the primal algorithm Is used, as in the dual 

simplex method, then the value of the objective function only Increases, 

or only decreases, from one Iteration to the next. Driebeek's penalty53 

takes advantage of this fact. 

If any variable value is not integer in an optimal solution at a 

node in the branch and bound tree, then to bring the variable, say X, to 

an integer value from its optima.1 value, say x, either an upper or lower 

bound constraint must be added to the problem as either: 

x-/\x>=X where /\x=x-[x] 
or: 

x+/\x<=X where /\x=[x]+l-x 

where the last constraint can be rewritten in the form: 

-x-/\x>=-X 

Using the matrix operation for the simplex transformation of both 

of the above constraints: 

I  - ( X-/\A) , 0, ., 1, 0 I  *  I  1  j  0 i " !  - / ' \ x «  b ' ~ *  I  

I ïï-lïï I ÏÏ-1 I 
and: 

l -(-x-/Xx). 0 ,  .,-1, 0  1 * 1 1  I  Ï Ï  I  =  I  /Ix, -F-l 1 

I B-lïï I ÏÏ-1 I 

The result of the transformation is simply the row of the augmented ÏÏ 

inverse matrix which corresponds to the noninteger variable with the 

first column set equal to the change in value required to make the 

variable integer. 
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Let tableau 31 represent the augmented B inverse portion of the 

simplex tableau at the optimal solution. Then, for each noninteger 

variable value in the tableau, an equation can be written directly from 

1 si . . . sn 

z= j boo j boi . . . bon j 
xl= j bio I bii . . . bin j 

. 1 . 1 .  .  . . .  I  
I  I  I  

xm= I bmO I bmi . . . bmn I 
+ + 

Tableau 31. Driebeek's method dual simplex tableau 

the augmented ¥ matrix for the upper bound: 

bio-[bio]>= bii*sl+ bin*sn 

The minimum "impact" on the objective function that the constraint would 

have after at least one more iteration of the dual simplex algorithm can 

be found by selecting the minimum b^o value after pivoting on all 

the positive coefficients in the corresponding row of the augmented B 

inverse matrix or: 

zi+=min (boo+bop*(bio-[bio])) all positive bii, . . .b in 

ïïip 

Every pivot will result in an increase in the value of the objective 

function in the dual simplex algorithm. 

For the lower bound equation: 

-([bio]+l-bio)>= -(bii*sl+ bin*sn) 

a minimum impact to the objective function can be found by pivoting on 

the negative elements of the row or: 
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zi_=min (boo+bop*(bio-Cbiojl-l)) all negative bii,....bin 
ïïip 

All the variables must be forced to Integer values for the solution 

value to be Integer, so select the variable with the greatest impact on 

the objective function or: 

max ( »•••••*•••••Zp+tZp.) 

and set the minimum solution value for the node to this larger value. 

With this larger solution value or penalty, the chance that the 

node will be eliminated sooner is greater allowing the method to 

converge to an Integer solution at a faster rate. 

Branch and Bound with Driebeek's Penalty BASIC Code 

Driebeek's penalty is almost the same, from the standpoint of code, 

as the branch and bound method. The only difference between the two 

(2) methods is in the branch and bound subroutines and the dual simplex 

subroutine which are called by Driebeek's penalty main routine. 

Branch and Bound Main Routine — File MAIN-BND 

Same as for the branch and bound methou except the quadratic part 

of the objective function must be eliminated by deleting lines: 

102 REM 
103 REM 
104 REM 

Utility Subroutines ~ Files UTIL-OPT. UTIL-ERS. UTIL-CON and UTIL-CHX 

Same as for critical path method method. 

Input Subroutines Files INPT-OBJ. INPT-CON, INPT-TYP. and INPT-BND 

Same as for the dual simplex method. 
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Report Subroutine — Files REPT-SMP 

Same as for dual simplex method. 

Constraint Keys Subroutine — File ALGR-KEY 

Same as for dual simplex method with nonlinear constraints except 

for the following lines: 

3024 REM 
3026 GOSUB 3100:REM ALGR-DBK 
3027 FOR 1=2 TO ND+1 
3028 M#(I,1)=N%(1.I) 
3029 M#(I.2)=N%(2.I) 
3030 NEXT I 

Driebeeks's Penalty Algorithm Subroutine — File ALGR-DBK 

The Driebeek's penalty algorithm subroutine (ALGR-DBK) is the book

keeping scheme of the branch and bound method. The subroutine follows 

the logic of the branch and bound tree by executing the following steps. 

(1) Solve the integer CP problem using the dual simplex algorithm. 

Store the results of the first solution in the first two (2) rows 

of array N%(2*MX,ND+2) as shown in table 21 as node one (1). Store 

the augmented ÏÏ inverse matrix and the augmented ÏÏ matrix at the 

optimal solution In the array 0#(ND+1+ND,ND+1). If the solution is 

all Integer, then set ER=1 and return to the main routine. If the 

solution is infeasible, then set ER=2 and return to the main 

routine. Otherwise, go to step (2). 

(2) The current optimal solution to the node just calculated can be 

Increased by using Driebeek's penalty as described above. The 

penalized solution is saved as the solution for the node. Go to 

step (3). 
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(3) Of all the solutions or nodes stored In the array N%(2*MX,ND+2), 

select the node that has the solution with the minimum value of the 

objective function as the node to branch on. After the branching 

is completed, the node Is no longer considered for branching again. 

Go to step (4). 

(4) From the variables In the minimum solution selected above, select 

the variable, say X, that Is closest to an Integer value either by 

rounding up or rounding down. Define two (2) new CP subproblems, 

called nodes. In which one has the added constraint X<=[x] and the 

other has the added constraint X>=[x]+1. Go to step (5). 

(5) Using the dual simplex restart method and the augmented B Inverse 

matrix and augmented B matrix stored In the array 0#(ND+1+ND,ND+1) 

solve for the optimal solution of the two (2) new nodes and save the 

results in the node array N%(2*MX,ND+2) by adding the node to the 

bottom of the list of nodes. If the node array Is full, then set 

ER=4 and go to the main routine. Otherwise, go to step (6). 

(6) If at any time during the execution Of the dual simplex algorithm 

the value of the objective function exceeds the best current all 

Integer solution, then stop the dual simplex subproblem as if it 

were infeaslble. Go to step (7). 

(7) Check each of the two (2) solutions or nodes. If a solution for 

the node 1s infeaslble, then discard the node from further 

consideration by deleting it from the node array. Go to step (8). 

(8) If the values of the variables of the solution are all integer. 
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then compare the value of the solution with all the other node 

solutions remaining in the node array. If any solution in the 

node array is greater than or equal to the the all Integer 

solution, then delete the node from the node array and also from 

further consideration. Go to step (9). 

(9) If in step (8) all but one (1) node was deleted from the node array, 

then set ER=1 and return to the main routine. If the total number 

of iterations used in the solution of the subproblems to this point 

is greater than the maximum allowed then, set ER=0 and return to the 

main routine. Otherwise, go to step (2) 

3100 REM * DRIEBEEK'S PENALTY ALGORITHM * 
3101 REM AL6R-DBK 

Sets the deleted node DL count to zero (0), the total Iteration 
count IT to zero (0), the subproblem iteration count ITR to zero (0), 
the branch and bound iteration or cycle count CYC to zero (0), and the 
node line number in the node array to one (1). Sets LL to the number of 
nodes used for branching at the start of the algorithm. Clears the node 
array N%(2*MX,ND+2) and sets the first node's upper and lower bounds to 
those imposed in the starting integer CP problem. 

3102 DL=0 
3103 ITR=0 
3104 rr=0 
3105 CP=2 
3106 CYC=1 
3107 LL=1 
3108 FOR 1=1 TO 2*MX 
3109 FOR J=1 TO ND+1 
3110 N%(I,J)=0% 
3111 NEXT J 
3112 NEXT I 
3113 FOR 1=2 TO ND+1 
3114 N%(1,I)=INT(M#(I,1)) 
3115 N«(2,I)=-INT(-M#(I,2)) 
3116 NEXT I 

Checks the iteration count to see if it exceeds the maximum limit 
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IR; and If the limit Is exceeded, sets ER=0 and returns to main routine. 

3117 ER=0 
3118 IF IT>IR THEN RETURN 

Sets LN to the line number In the node array N%(2*MX,ND+l) which 
holds the bounds for the current subproblem or node. 

3119 LN=2*(CYC-DL)-1 

Sets up the holding, upper and lower bound arrays for the dual 
simplex algorithm so that the subproblem can be processed. 

3120 FOR 1=2 TO ND+1 
3121 H#(I)=BI# 
3122 M#(I,1)=N%(LN,I) 
3123 IF N«(LN,I)=BI« THEN M#(I.1)=BI# 
3124 M#(I,2)=N«(LN+1,I) 
3125 NEXT I 

Runs the dual simplex algorithm from the point at the origin If the 
cycle count Is one (1). Otherwise, uses the restart method. 

3126 IF CYOl THEN 3136 
3127 GOSUB 3300:REM ALGR-SMP 
3128 IF EROl THEN RETURN 

Relnverts the augmented B Inverse matrix and the augmented B matrix 
for the optimal nonlnteger solution In the array 0#(ND+l+ND,ND+2). 

The relnverslon Is done as a precaution since all succeeding 
subproblems start from this matrix. 

3129 GOSUB 3900:REM TRAN-RIV 
3130 FOR 1=1 TO ND+l+ND 
3131 FOR J=1 TO ND+1 
3132 0#(I,J)=B#(I,J) 
3133 NEXT J 
3134 NEXT I 
3135 GOTO 3142 

Processes the subproblem using the restart method. 
The restart method starts the subproblem from the optimal point 

reached In cycle one (1). If more computer array space were available, 
the restart could be started from the optimal point reached at the most 
recent node on the branch and bound tree by saving the augmented ÏÏ 
Inverse matrix and the augmented ÏÏ matrix of that node's subproblem. 
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3136 FOR 1=1 TO ND+l+ND 
3137 FOR J=1 TO ND+1 
3138 B#(I.J)=0#(I.J) 
3139 NEXT J 
3140 NEXT I 

The Intlallzatlon lines of the dual simplex algorithm are skipped 
since the starting point for the algorithm is not the origin but the 
restart point. 

3141 GOSUB 3313:REM ALGR-SMP+13 

Totals the number of iterations for all the subproblems. 

3142 ITR=ITR+IT 
3143 IT=ITR 

Returns to the main routine if the error code on the first cycle 
indicates the subproblem Is infeaslble or has exceeded the maximum 
iterations. 

3144 IF EROl AND CYC=1 THEN RETURN 

Sets the value of the objective function in the node array to 
infinity. 

3145 N%(LN.1)=BI% 

Lets the objective function value in the node array stay at 
infinity if the error code indicates the subproblem is infeaslble or the 
best current integer solution is less or equal to the solution of the 
subproblem. 

3146 IF EROl OR B#(l,i)>=OB# THEN 3183 

Checks the values of the variables of the solution to the 
subproblem to see if they are Integer. 

3147 X=0 
3148 FOR 1=2 TO ND+1 
3149 I%=CINT(B#(I.l)) 
3150 IF ABS(B#(I,1)-I%)>SM# THEN X=1 
3151 NEXT I 

Goes to the solution search If the solution is integer. 

3152 IF X=0 THEN 3178 
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Increases the value of the objective function using Driebeek's^ 
penalty. Finds the variable value that is closest to integer and sets 
the new upper and lower bounds for the node in the node array as well as 
the solution value rounded up to an integer value. 

3153 MA#=0# 
3154 NW=0 
3155 
3156 FOR 1=2 TO ND+1 
3157 IX=CINT(B#(I,1)) 
3158 A#=ABS(B#(I,1)-I«) 
3159 IF A#<=SM# THEN 3174 
3160 IF MM#<A# THEN 3165 
3161 MM#=A# 
3162 N%(LN+1.1)=I 
3163 N%(LN.ND+2)=INT(B#(I,1)) 
3164 N%(LN+1,ND+2)=-INT(-B#(I,1)) 
3165 MI#=BI# 
3166 FOR J=2 TO ND+1 
3167 IF ABS(B#(I.J))<SM# THEN 3172 
3168 IF B#(I.J)>0# THEN A#=B#(I,1)+INT(-B#(I,1)) 
3169 IF B#(I,J)<0# THEN A#=-B#(I.l)+INT(B#(I.l)) 
3170 A#=(-A#*B#(1,J))/ABS(B#(I.J)) 
3171 IF MI#>A# THEN MI#=A# 
3172 NEXT J 
3173 IF MA#<MI# THEN MA#=MI# 
3174 NEXT I 
3175 IF -INT(-B#(1.1)-MA#)>=0B# THEN 3183 
3176 N«(LN.1)=-INT(-B#(1.1)-MA#) 
3177 GOTO 3193 

Sets the best integer solution to the new integer solution. 

3178 0B#=B#(1,1) 
3179 FOR 1=2 TO ND+1 
3180 X#(I-1)=B#(I,1) 
3181 NEXT I 

If there is only one (1) node in the branch and bound tree and the 
solution is integer, returns to the main routine. 

3182 IF LL=1 THEN RETURN 
3183 IF OB#=BI# THEN 3193 

Checks the node array N%(2*MX,ND+2) for any nodes with objective 
function values greater than or equal to the current node's integer 
value. If the current node's value is less than or equal, then set the 
other node's objective function value to infinity. 
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3184 X=-l 
3185 FOR 1=1 TO LL STEP 2 
3186 IF N%(I,1)=BI% THEN 3189 
3187 IF N%(I,1)<0B# THEN 3190 
3188 N%(I,1)=BI% 
3189 X=X+2 
3190 NEXT I 

Sets ER=1 and returns to the main routine if only one (1) integer 
solution is left in the node array. 

3191 ER=1 
3192 IF X=LL THEN RETURN 

Returns to process the other node of the pair on the branch. 

Since at each branch two (2) nodes are created, both nodes must be 
processed before another branch is taken. 

3193 IF CYC/2=INT(CYC/2) THEN 3218 

Executes the node compression subroutine if the node array is full. 

3194 IF CYC-DL+1>=MX THEN GOSUB 3250:REM ALGR-CPR 

Sets ER=4 and returns to the main routine if the node array cannot 
be cleared for more active nodes. 

3195 ER=4 
3196 IF CYC-DL+1>=MX THEN RETURN 

Finds the node NODE with the minimum solution in the node array. 

3197 NÔDÈ=Ô 
3198 MI#=BI# 
3199 FOR 1=1 TO LN STEP 2 
3200 IF MI#<=N«(I,1) THEN 3203 
3201 MI#=N%(I.l) 
3202 NODE=I 
3203 NEXT I 

Sets ER=2 and returns to the main routine if no minimum node 
solution can be found. 

3204 ER=2 
3205 IF N0DE=0 OR DL=CYC THEN RETURN 

Creates two (2) new nodes for the branch and bound tree and 
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transfers the current upper and lower bounds to the new nodes. 

3206 FOR 1=1 TO ND+2 
3207 N«(LN+2,I)=N«(N0DE.I) 
3208 NX(LN+3,I)=M«(N0DE+1,I) 
3209 N%(LN+4,I)=N%(N0DE,I) 
3210 N%(LN+5,I)=N%(N0DE+1.I) 
3211 NEXT I 

Adds the new upper and lower bound restrictions to the new nodes 
and returns to process the two (2) new nodes. 

3212 LL=LN+4 
3213 N%(N0DE,1)=BI% 
3214 NW=N%(N0DE+1,1) 
3215 N%(LN+2,NW)=N%(N0DE,ND+2) 
3216 N%(LN+5,NW)=N«(N0DE+l.ND+2) 
3217 IF N%(LN+2,NW)=0 THEN N%(LN+2,NW)=BI% 
3218 CYC=CYC+1 
3219 GOTO 3117 

Node Compressing Subroutine — File ALGR-CPR 

Same as for branch and bound method. 

Dual Simplex Algorithm Subroutine — File ALGR-SMP 

Same as for dual simplex method except the following code must be 

modified for nonlinear convex constraints by adding: 

3333 IF A#(K.ND+2)<>0# THEN GOSUB 4100:REM PAR-DEPL 
3335 IF A#(K,MD+3)<>0# THEN GOSUB 4300:REM h'YP-DcFL 
3337 IF A#(K.ND+4)<>0# THEN GOSUB 4500:REM SHT-DEPL 
3369 IF B#(1.1)>=0B# THEN RETURN 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 

Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Reinverslon Subroutine — File TRAN-RIV 

Same as for dual simplex method. 
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Parabolic Subroutines — Files PAR-DEPA, PAR-DEPL, or PAR-DEPG 

Same as for Gomory's method with nonlinear constraints. 

Hyperbolic Subroutines — Files HYP-DEPA. HYP-DEPL. or HYP-DEPG 

Same as for Gomory's method with nonlinear constraints. 

Hyperbolic Sheet Subroutines — Files SHT-DEPA, SHT-DEPL, or SHT-DEPG 

Same as for Gomory's method with nonlinear constraints. 

Program Table of Contents 

Table 25 can be used to reconstruct the above computer code from 

Table 25. Branch and Bound (with Driebeek's penalty) BASIC program 
table of contents 

File Program lines Page Routines 

MAIN-BND 0001-0136 344 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2100- 2125 69 
ALGR-KEY 3000--3058 200 
ALGR-DBK 3100-•3219 367 
ALGR-CPR 3200- 3274 357 
ALGR-SMP 3300-•3499 70 
TRAN-CON 3600-•3633 74 
TRAN-INV 3700- 3745 76 
TRAN-RIV 3900-•3964 78 
DEPL-PAR 4100-•4199 311 
DEPL-HYP 4300-•4399 318 
DEPL-SHT 4500-•4599 325 

Branch and bound method 
Objective coefficient input subroutine 
Constraint coefficient input subroutine 
Constraint type input subroutine 
Variable bounds input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint key subroutine 
Driebeek's penalty algorithm subroutine 

Node compressing subroutine 
Dual simplex algorithm subroutine 
Constraint transformation subroutine 
Basis inversion subroutine 
Basis reinversion subroutine 
Deep cut for parabolic subroutine 
Deep cut for hyperbolic subroutine 
Deep cut for sheet subroutine 
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the computer disk and to organize subroutines from previous listings. 

Since BASIC code Is dependent on program line numbers for subroutine 

branching, the statement numbers must be maintained as listed below. 

The main routine for the branch and bound method MAIN-BND can no 

longer accept a quadratic objective function If the dual simplex method 

Is used to solve the subproblems. To eliminate this option, delete: 

102 REM 
103 REM 
104 REM 

from MAIN-BND. The constraint key subroutine must be changed as before 

In the branch and bound method with the following lines: 

3024 REM 
3026 GOSUB 3100:REM ALGR-DBK 
3027 FOR 1=2 TO ND+1 
3028 M#(I.1)=N35(1,I) 
3029 M#(I,2)=N«(2.I) 
3030 NEXT I 

and the dual simplex algorithm ALGR-SMP must be modified for nonlinear 

convex constraints by adding: 

3333 IF A#(K,ND+2)<>0# THEN GOSUB 4100:REM PAR-DEPL 
3335 IF A#(K,ND+5)<>0# iHEN GOSUB 4300:REM HYP-DEPL 
3337 IF A#(K,ND+4)<>0# THEN GOSUB 4500:REM SHT-DEPL 
3369 IF B#(1.1)>=0B# THEN RETURN 

Branch and Bound Method with Driebeek's Penalty: 
Integer Solutions to Example 11 Minimum Project Man Count Problem 

Using the nonlinear modification of the dual simplex method, the 

ten (10) activity network minimum project man count problem was solved 

In example 11. The same problem can be solved in all integers using the 

branch and bound method with Driebeek's penalty as listed in table 26. 
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Table 26. Branch and bound method with Driebeek's penalty, using deep 
cuts derived with the line search algorithm. Integer 
solutions to the example 11 minimum project man count problem 
with hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 75 156 100 235 168 385 39 45 28 40 
Sec. 129 240 174 332 250 484 95 103 94 115 
Obj. 16 19 20 22 24 29 34 46 65 132 
T1 10 15 15 15 9.9+ 10 10 6 5 2 
T2 50 35 35 33 32 20 20 14 10 5 
T3 80 60 60 50 45 37 30 24 15 8 
T4 100 90 80 70 60 50 40 30 20 10 
M5 1 1 1 1 1 1 1 1 1 2 
M6 1 1 1 1 1 1 1 2 2 4 
M7 3 2 2 2 3 3 3 5 6 15 
M8 1 2 2 3 2 4 3.9+ 5 8 14 
M9 2 2 2 3 4 3 5 5 10 17 
MIO 3 2 3 . 3 4 5 6 10 12 30 
Mil 1 2 2 2 2 3 4 4 7 12 
M12 2 3 3 3 3 4 4 6 8 16 
MIS 1 2 2 2 2 3 3 4 6 12 
M14 1 2 2 2 2 2 3 4 5 10 
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SECTION III. CURVE FITTING PROBLEM AND REAL NUMBER SOLUTIONS 

All the methods presented so far have solved for a project network 

schedule with either a minimum total costs, a minimum total man count, 

or a minimum total supervision cost. With each of these minimum 

solutions there is also a cumulative cost or mandays versus time curve. 

In many cases, the cumulative curve has been determined by outside 

factors, and the objective 1s to find a project schedule which minimizes 

the deviation from the predetermined curve. The most common of these 

predetermined cumulative curves is the cumulative mandays curve which 

reflects the availability of labor at a project site and the cumulative 

cash flow curve which reflects limits project funding. 

Section III presents a model to determine the deviations of a 

cumulative project mandays curve from a predetermined curve and a 

method to solve the minimum deviation problem. 
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MINIMUM DEVIATION FROM CUMULATIVE MANDAYS CURVE 

The manday curve fitting problem can be can be expressed as a 

a CP problem In which the product of pairs of variables are restricted 

to zero (0). 

First define the following variables as; 

Si - Start time of activity 1 
dur. - Project duration 
m-f - Man count on activity 1 
d-f - Duration of activity 1 
spi - End of span 1 
mandays1 - Mandays In span 1 

Then, approximate a cumulative mandays curve by a step function as shown 

In figure 83. 

1 . mandaysi+mandays2 
1 

1 
. mandaysi+mandays2 

1 mandays1 

1 

Cumulative 
manday 

-+ 

0 spi Work day sp2 dur. 

Figure 83. Cumulative mandays curve step function 

An activity, as In the CPM method, can be represented as an arrow 

between two (2) nodes where Si Is the start time for the activity #1 and 

S2 is start time of the following activity. If activity #1 is placed on 

Activity #1 

mx - Man count 
d% - Duration 
Si - Early start 

on the time scale of the cumulative mandays step function which has been 



380 

divided Into the time spans (0->spi->sp2->dur.), then the number of time 

Increments that the early start of activity #1 is either precedes (E1,E3) 

or succeeds (E2,E4) each spans ending (spi,sp2) point Is given by: 

Si+El-E2«spi 
Si+E3-E4=sp2 

with the restriction that: 
E1*E2=0 
E3*E4=0 

Or graphically: 

+ + + + 
I El I E2 I I 
I si< 1 >Si I 
I I E3 I E4 I 
I Sl< T| >Si I 
+ + + + 
0 spi sp2 dur.-di 

The same formulation can be used to find the number of time 

Increments the early finish of activity #1 either precedes or succeeds 

each span ending point: 
Si+di+Fl-F2=spi 
Si+d2+F3-F4=sp2 

with the restriction that: 
F1*F2=0 
F3*F4=0 

OF yrâpiîiCâlly: 

+ + + + 
1 FX I F2 I I 

I I - I N—RR—I 
I Si< 1 >Si ! 
+ + + + 
0 spi-di sp2-di dur.-di 

Adding the schedule restriction of: 

Si<Dur.-di 

the deviations V1,V2,V3,V4 from the mandays step function are then: 
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mi*(El-Fl)+Vl-V2=mandaysi 
mi*(E3-F3)+V3-V4=mandaysi+mandayS2 

With these components, a CP problem can be constructed to minimize 

the deviation of the activity mandays from the cumulative mandays curve. 

minimize V1+V2+V3+V4 

subject to: Si+El-E2=spi 
Si+E3-E4=sp2 
Si+di+Fl-F2=spi 
Si+di+F3-F4=sp2 

Si<Dur.-di 

mi*(El-Fl)+Vl-V2=mandaysi 
mi*(E3-F3)+V3-V4=mandaysi+mandays2 

E1*E2=0 
E3*E4=0 
F1*F2=0 
F3*F4=0 

Si,El,E2,E3,E4,Fl.F2,F3.F4,Vl.V2,V3,V4>=0 

Theory of Restricted Pairs Method 

In the problem described above, pairs of variables are restricted 

so that in any feasible solution at least one (1) member of the pair has 

the value of zero (0). In the branch and bound method the values of the 

variables were restricted in a similar manner to the integer values. By 

utilizing the same book keeping scheme of the branch and bound method, 

the restricted pairs method solves a series of CP subproblems with the 

dual simplex method in which tighter and tighter restrictions in the 

form of zero (0) upper bounded variables are added to the subproblem 

constraint sets until a minimum optimal solution is reached for which 

all the restricted pairs have at least one zero (0) member. 
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Restricted Pairs Method BASIC Code 

Restricted Pairs Main Routine — MAIN-RST 

The restricted pairs main calling routine (MAIN-RST) dimensions the 

twelve (12) data arrays; writes the option menu to the screen as shown 

In figure 84; calls the utility subroutines UTIL-OPT, UTIL-ERS, 

M-RETURN TO MENU 

O-OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPES 
B-BOUNDED VARIABLES 
R-RESTRICTED PAIRS 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
S-SAVE F-FETCH 
N-NEW PROBLEM 

Figure 84. Restricted pairs main menu screen 

UTIL-CONS, UTIL-CHX; calls the data Input and output subroutines INPT-

OBJ, INPT-CON, INPT-TYP, INPT-BND, and REPT-SMP; calls and times the 

processing algorithms ALGR-KEY, ALGR-RST, and ALGR-SMP; and saves and 

fetches the input data to the disk file "DATA". 

1 REM *RESTRICTED PAIRS METHOD* 
2 REM MAIN-PRS 
3 REM BI# - MACHINE INFINITE 
4 REM CO - PIVOT COLUMN FOR SIMPLEX TRANSFORMATION 
5 REM ER - ERROR KEY 
6 REM IR - MAXIMUM NUMBER OF ITERATIONS 

RESTRICTED PAIRS METHOD 

NUMBER OF CONSTRAINTS 
NUMBER OF VARIABLES 
MAXIMUM ITERATIONS 
NUMBER OF RESTRICTED PAIRS 

34 
60 
1000 
20 

OPTION ? 
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7 REM MD - NUMBER OF CONSTRAINTS 
8 REM ND - NUMBER OF VARIABLES 
9 REM MX - NUMBER OF NODES IN NODES MATRIX 
10 REM OB# - VALUE OF THE OBJECTIVE FUNCTION 
11 REM RO - PIVOT ROW FOR SIMPLEX TRANSFORMATION 
12 REM SM# - MACHINE ZERO 
13 REM A#(MD+l,ND+8) - ORIGINAL DATA AND KEYS 
14 REM B#(2*ND+1,ND+1) - SIMPLEX MATRIX 
15 REM E(BD) - RESTRICTED PAIRS MATRIX 
16 REM M#(ND+1,2) - LOWER AND UPPER BOUNDS OF VARIABLES 
17 REM N#(2*MX,BD+2) - NODES MATRIX 
18 REM 0#(2*ND+1,ND+1) - UNRESTRICTED SOLUTION BASIS AND INVERSE 
19 REM P#(ND+1) - CURRENT PIVOT ROW 
20 REM R(MD+1) - CONSTRAINT TYPES (l-">=",0-"=",-l-"<=") 
21 REM S#(ND+1) - WORK SPACE 
22 REM T#(ND+1,ND+1) - REINVERSION WORK SPACE 
23 REM X#(ND) - SOLUTION VECTOR 
24 REM 

Sets MD to the default number of constraints In the restricted 
pairs problem and ND to the number of variables. Se^s IN to the number 
of Iterations before a reinversion of the augmented B matrix. Sets the 
default limit IR on the maximum number of iterations to one thousand. 
Sets BI# to a number considered machine infinity and SM# to a number 
considered machine zero. Sets MX to the maximum number of active nodes 
allowed on the branch and bound tree. 

25 MD=0 
26 ND=0 
27 IN=20 
28 IR=1000 
29 BI#=1E+10 
30 SM#=1E-10 
31 MX=40 

Prompts and reads from the keyboard MD the number of constraints in 
the CP problem, ND the number of variables, IR the maximum number of 
iterations allowed before the restricted pairs method stopped, and BD to 
the number of restricted variables in the restricted pairs. 

32 CLS 
33 LOCATE 1,5:PRINT "RESTRICTED PAIRS METHOD" 
34 LOCATE 3,1:PRINT "NUMBER OF CONSTRAINTS";LOCATE 3,31:INPUT "",L$ 
35 GOSUB 1870:REM UTIL-CHX 
36 IF Z#<>BI# THEN MD=Z# 
37 LOCATE 3,30:PRINT MD," ": LOCATE 4,1:PRINT "NUMBER OF VARIABLES" 

: LOCATE 4,31:INPUT "",L$ 
38 GOSUB 1870:REM UTIL-CHX 
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39 IF Z#<>BI# THEN ND=Z# 
40 LOCATE 4.30:PRINT ND," LOCATE 5.1:PRINT "MAXIMUM ITERATIONS" 

: LOCATE 5,31;INPUT "".L$ 
41 60SUB 1870:REM UTIL-CHX 
42 IF Z#<>BI# THEN IR=Z# 
43 LOCATE 5,30:PRINT IR," LOCATE 6.1:PRINT "NUMBER OF RESTRICTED PA 

1RS":LOCATE 6.31:INPUT "",L$ 
44 60SUB 1870:REM UTIL-CHX 
45 IF Z#<>BI# THEN BD=2*Z# 
46 LOCATE 6,30:PRINT BD/2," 

Dimensions the A#(MD+l,ND+8) array which contains the consjtraint 
coefficients. Dimensions the augmented B matrix and augmented B matrix 
array B#(2*ND+1,ND+1). Dimensions the restricted pairs array E(BD). 
Dimensions the holding arra^ H#(ND+1), the branch and bound node array 
N#(MX,BD+2), the augmented B Inverse and augmented B matrix of the 
optimal solution of the unrestricted CP problem array 0#(2*ND+1,ND+1), 
the the upper and lower bound array M#(ND+1), the pivot row P#(ND+2), 
the constraint type array R(MD+1), the reinversion working array 
T#(ND+1,ND+1), and the solution array X#(ND). 

The node array for the restricted pairs method is different from 
the node array in the branch and bound method. The array N#(MX,BD+2) is 
noninteger. Each nodes information is contained on a single row of the 
array in which the first entry in the row is the value of the objective 
function followed by a pair of entries for each restricted pair 
containing a set of switches (set at either zero (0) for a variable not 
restricted, one (1) for a variable restricted to zero (0), or minus one 
(-1) for a variable allowed to be free) and the number of the variable 
to be restricted for the next set of subproblems. 

Table 27. Restricted pairs node table 

Line Node value Restricted pairs Variable number 

1 Current objective value Switch Switch New bound variable 

47 DIM A#(MD+l,ND+8) 
48 DIM B#(2*ND+1,ND+1) 
49 DIM E(BD) 
50 DIM M#(ND+1,2) 
51 DIM N#(MX.BD+2) 
52 DIM 0#(2*ND+1,ND+1) 
53 DIM P#(ND+1) 
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54 DIM H#(ND+1) 
55 DIM R(MD+1) 
56 DIM S#(ND+1) 
57 DIM T#(ND+1.ND+1) 
58 DIM X#(ND) 

Initializes the constraint type array to all greater than or equals. 

59 FOR 1=2 TO MD+1 
60 R(I)=1 
61 NEXT I 

Prints the option menu to the screen; calls the option line routine 
UTIL-OPT; pauses for the entry of "M", "0", "A", "C", "B". "U". "R", 
"S", "F", "N" for the option variable L$. 

62 LOCATE 8.12:PRINT "M-RETURN TO MENU" 
63 LOCATE 10,7:PRINT "O-OBJECTIVE COEFFICIENTS" 
64 LOCATE 11,7:PRINT "C-CONSTRAINT VALUES" 
65 LOCATE 12,7:PRINT "A-A MATRIX COEFFICIENTS" 
66 LOCATE 13,7:PRINT "B-UPPER BOUNDED VARIABLES" 
67 LOCATE 14,7:PRINT "P-RESTRICTED PAIRS" 
68 LOCATE 15,7:PRINT "U-EXECUTE ALGORITHM" 
69 LOCATE 16,7:PRINT "R-REPORT LISTING" 
70 LOCATE 17,7:PRINT "N-NEW PROBLEM" 
71 LOCATE 18,7:PRINT "S-SAVE F-FETCH" 
72 GOSUB 1800:REM UTIL-OPT 
73 LOCATE 21,8:INPUT "",L$ 
74 CLS 

Calls either the objective function Input subroutine INPT-OBJ, the 
constraint Input subroutine INPT-CON, the constraint type Input 
subroutine INPT-TYP. the upper and lower bounds Input subroutine INPT-
BND, the processing subroutine ALGR-KEY, the report subroutine REPT-SMP, 
or the restricted pairs Input subroutine INPT-PRS based on the option 
variable L$. 

75 IF L$<>"0" THEN 78 
76 GOSUB 1200:REM INPT-OBJ 
77 GOTO 74 
78 IF L$<>"A" THEN 81 
79 GOSUB 1300:REM INPT-CON 
80 GOTO 74 
81 IF L$<>"C" THEN 84 
82 GOSUB 1400:REM INPT-TYP 
83 GOTO 74 
84 IF L$<>"B" THEN 87 
85 GOSUB 1500:REM INPT-BND 
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86 GOTO 74 
87 IF L$<>"U" THEN 92 
88 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$.4,2))+VAL(MID$(TIME$,7 

. 2 ) )  
89 GOSUB 3000:REM ALGR-KEY 
90 TM=3600*YAL(MID$(TIME$,1.2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

,2))-TM 
91 GOTO 62 
92 IF L$<>"R" THEN 95 
93 GOSUB 2200:REM REPT-SMP 
94 GOTO 74 
95 IF L$<>"P" THEN 98 
96 GOSUB 1700:REM INPT-PRS 
97 GOTO 74 

Saves the content of MD, ND, M#(ND+1,2), A#(MD+l,ND+8), and R(ND+1) 
to disk file "DATA" as an ASCI file if option "S" is selected. 

98 IF L$<>"S" THEN 116 
99 OPEN "0".#1."DATA" 
100 PRINT #1,STR$(MD) 
101 PRINT #1.STR$(ND) 
102 FOR 1=1 TO ND+1 
103 FOR J=1 TO ND+1 
104 PRINT #1,"" 
105 NEXT J 
106 PRINT #l,STR$(M#(I.l)) 
107 PRINT #1.STR$(M#(I.2)) 
108 NEXT I 
109 FOR 1=1 TO MD+1 
110 FOR J=1 TO ND+8 
111 PRINT #1,STR$(A#(I.J)) 
112 NEXT J 
113 PRINT #1.STR$(R(I)) 
114 NEXT I 
115 CLOSE #1 

Loads to MD. ND, M#(ND+1,2), A#(MD+1,ND+8). and R(ND+1) the disk 
file "DATA" if option "F" is selected. 

116 IF L$<>"F" THEN 140 
117 OPEN "I",#1,"DATA" 
118 INPUT #1.X$ 
119 MD=VAL(X$) 
120 INPUT #1.X$ 
121 ND=VAL(X$) 
122 FOR 1=1 TO ND+1 
123 FOR J=1 TO ND+1 
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124 INPUT #1.X$ 
125 NEXT J 
126 INPUT #1.X$ 
127 M#(I,1)=VAL(X$) 
128 INPUT #1,X$ 
129 M#(I,2)=VAL(X$) 
130 NEXT I 
131 FOR 1=1 TO MD+1 
132 FOR J=1 TO ND+8 
133 INPUT #1,X$ 
134 A#(I.J)=VAL(X$) 
135 NEXT J 
136 INPUT #1,X$ 
137 R(I)=VAL(X$) 
138 NEXT I 
139 CLOSE #1 

Restarts program for new run if option "N" is selected. 

140 IF L$="N" THEN RUN 
141 GOTO 62 

Utility Subroutines ~ Files UTIL-OPT. UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Input Subroutines ~ Files INPT-OBJ. INPT-CON. INPT-TYP. and INPT-BND 

Same as for dual simplex method. 

Restricted Pairs Input Subroutine — File INPT-PRS. 

The restricted pairs subroutine (INPT-PRS) Is the Interactive input 

of the restricted pairs array E(BD). To reach the input screen from the 

main menu, type "R" as the OPTION %. The screen, as shown in figure 85, 

consists of a pair NO. column, a VARIABLE column, and a second VARIABLE 

column. When the screen is first entered the cursor will be located 

In the NO. column. When a restricted pair identification number or a 

blank is typed and entered, the cursor will move to the first variable 

column so that the variable number of the first variable of the 



388 

RESTRICTED 
NO. VARIABLE 

PAIRS 
VARIABLE 

1 3 
2 5 
3 7 
4 9 
5 11 
6 13 
7 15 
8 17 

4 
6 
8 
10 
12 
14 
16 
18 

OPTION ? 

Figure 85. Restricted pairs input screen 

restricted pair can be typed and entered. The cursor will then move to 

the second variable column so that the second variable number can be 

typed and entered. 

If an error is made when entering a restricted pair, then the pair 

identification number is retyped and the data reentered. To select 

other options and leave the current screen, the option letter is typed 

in the NO. column and entered. 

1700 REM * RESTRICTED PAIRS INPUT * 
1701 REM INPT-PRS 

1702 H=0 
1703 6=2 
1704 LOCATE 1,11:PRINT "RESTRICTED PAIRS":LOCATE 2,7:PRINT "NO. 

VARIABLE VARIABLE" 
1705 G=G+1 
1706 H=H+1 
1707 GOSUB 1800:REM UTIL-OPT 
1708 LOCATE G.7:INPUT "",L$ 
1709 GOSUB 1870:REM UTIL-CHX 
1710 IF L$<>"" AND Z#=BI# THEN RETURN 
1711 IF Z#<>BI# THEN H=Z# 
1712 IF 2#*H>BD OR H<=0 THEN 1707 
1713 GOSUB 1850:REM UTIL-ERS 
1714 LOCATE G.6:PRINT H," ":LOCATE G.12:PRINT E((H*2)-l):LOCATE G,13 

: INPUT "".L$ 
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1715 GOSUB 1870:REM UTIL-CHX 
1716 IF Z#<>BI# AND E(H*2)<>Z# THEN E((H*2)-1)=Z# 
1717 LOCATE G,12:PRINT E((H*2)-1)," LOCATE G.22:PRINT E(H*2) 

:LOCATE G,23:INPUT "",L$ 
1718 GOSUB 1870:REM UTIL-CHX 
1719 IF Z#<>BI# AND E((H*2)-1)<>Z# THEN E(H*2)=Z# 
1720 LOCATE G,22:PRINT E(H*2)," " 
1721 IF G<18 THEN 1705 
1722 GOSUB 1860:REM UTIL-CON 
1723 GOTO 1706 

Constraint Keys Subroutine — File ALGR-KEY 

Same as for dual simplex method with nonlinear constraints except 

for the following lines; 

3024 REM 
3026 GOSUB 3100:REM ALGR-PRS 
3027 FOR 1=2 TO ND+1 
3028 M#(I.1)=N%{1,I) 
3029 M#(I,2)=N%(2,I) 
3030 NEXT I 

Restricted Pairs Algorithm Subroutine — File ALGR-PRS 

The restricted pairs algorithm subroutine (ALGR-PRS) is the book

keeping scheme of the restricted pairs method. The subroutine follows 

the logic of a branch and bound tree by executing the following steps. 

(1) Solve the CP problem of the restricted pairs method in which no 

restriction is placed on the restricted pairs using the dual 

simplex algorithm. Store the results of the first solution in the 

first row of array N#(MX,ND+2) as shown in table 27 as node one (1). 

Store the augmented B inverse matrix and the augmented B matrix of 

the optimal solution in the array 0#(ND+1+ND,ND+1). If the 

solution satisfies the restricted pairs restrictions, then set ER=1 

and return to the main routine. If the solution is infeasible, then 
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set ER=2 and return to the main routine. Otherwise, go to step (2). 

(2) Using Drelbeek's penalty. Increase the value of the optimal value 

of the objective function for the current node and store the 

penalized solution In the node array. Go to step (3). 

(3) Of all the solutions or nodes stored In the array N#(MX,ND+2), 

select the node that has the solution with the minimum value of the 

objective function as the node to branch on. After the branching 

Is completed, the node 1s no longer considered for branching in 

following Iterations. Go to step (4). 

(4) From the values of the variables In the minimum solution selected 

above, select the restricted pair, say x and y, which has a product 

Is not zero (0) and which has a member closest to zero (0). Define 

two (2) new CP subproblems called nodes In which one has the added 

constraint X=0 and the other has the added constraint Y=0. Go to 

step (5). 

(5) Using the restart method and the augmented B inverse matrix and 

âuyïïîêntêw S iiiStrlX StOrêu In thê ârrôy Off (ND-rî+ND,ND+l), sôlvê fôr 

the optimal solution of the two (2) new nodes and save the results 

in the node array N#(MX,ND+2) by adding the nodes to the bottom of 

the current set of nodes. If the node array is full, set ER=4 

and go to the main routine. Otherwise, go to step (6). 

(6) Check each of the two (2) solutions or nodes. If a solution for the 

node is infeasible then discard the node from further consideration 

by deleting it from the node array. Go to step (7). 
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(7) If the restricted pairs of the solution are all satisfied, 

then compare the value of the objective function with all the other 

values remaining in the node array. If any objective function value 

in the node array is greater than or equal to the current objective 

function value, then delete the node from the node array and from 

further consideration. Go to step (8). 

(8) If in step (7) all but one (1) solution was deleted from the node 

array, then set ER=1 and return to the main routine. If the total 

number of iterations used in the solution of the subproblems to 

this point is greater than the maximum allowed, then set ER=0 and 

return to the main routine. Otherwise, go to step (2). 

3100 REM * RESTRICTED PAIRS ALGORITHM * 
3101 REM ALGR-PRS 

Sets the deleted node count DL to zero (0), the total iteration 
count IT to zero (0), the subproblem iteration count ITR to zero (0), 
the branch and bound iteration or cycle count CYC to zero (0), and the 
node line number in the node array to one (1). Sets LL to the number of 
nodes used for branching at the start of the algorithm. Clears the node 
array N#(MX,ND+2) and sets the first node's upper and lower bounds to 
those Imposed in the starting restricted pairs CP problem. 

3102 DL=0 
3103 ITR=0 
3104 IT=0 
3105 SP=1 
3106 0B#=BI# 
3107 CYC=1 
3108 LL=1 
3109 FOR 1=1 TO MX 
3110 FOR J=1 TO BD+1 
3111 N#(I,J)=0# 
3112 NEXT J 
3113 NEXT I 

Checks the iteration count to see if it exceeds the maximum limit 
IR; and if the limit is exceeded, sets ER=0 and returns to main routine. 
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3114 ER=0 
3115 IF IT>IR THEN RETURN 

Sets LN to the line number in the node array N%(2*MX,ND+1) which 
holds the bounds for the current subproblem or node. 

3116 LN=CYC-DL 

Sets up the upper and lower bound arrays for the dual simplex 
algorithm so that the subproblem can be processed. 

3117 FOR 1=1 TO BD 
3118 M#(E(I)+1,1)=0# 
3119 IF N#(LN,I)=1 THEN M#(E(I)+l,l)=BI# 
3120 NEXT I 

Runs the dual simplex algorithm from the point at the origin if the 
cycle count is one (1). Otherwise, uses the restart method. 

3121 IF CYOl THEN 3130 
3122 GOSUB 3300:REM AL6R-SMP 

Reinverts the augmented ? matrix and saves the augmented ? inverse 
matrix and the augmented B matrix for the optimal unrestricted solution 
in the array 0#(ND+l+ND,ND+2). 

The reinversion is done as a precaution since all succeeding 
subproblems start from this matrix. 

3123 GOSUB 3900:REM TRAN-RIV 
3124 FOR 1=1 TO 2*ND+1 
3125 FOR J=1 TO ND+1 
3126 0#{I »J)=B#(I»o) 
3127 NEXT J 
3128 NEXT I 
3129 GOTO 3136 

Processes the subproblem using the restart method. 

The restart method starts the subproblem from the optimal point 
reached in cycle one (1). If more computer array space where available 
the restart could be started from the optimal point reached at the most 
recent node on the branch and bound tree by saving the augmented ÏÏ 
inverse matrix and the augmented 7 matrix of that node's subproblem. 

3130 FOR 1=1 TO 2*ND+1 
3131 FOR J=1 TO ND+1 
3132 B#(I.J)=0#(I,J) 
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3133 NEXT J 
3134 NEXT I 

The Intlallzation lines of the dual simplex algorithm are skipped 
since the starting point for the algorithm Is not the origin but the 
restart point. 

3135 GOSUB 3313:REM ALGR-SMP+13 

Totals the number of Iterations for all the subproblems. 

3136 ITR=ITR+IT 
3137 IT=ITR 

Returns to the main routine If the error code on the first cycle 
Indicates the model is infeaslble or has exceeded the maximum 
iterations. 

3138 IF EROl AND CYC=1 THEN RETURN 
3139 IF BD=0 THEN 3170 

Sets the value of the objective function in the node array to 
infinity. 

3140 N#(LN,BD+1)=BI# 

Lets the objective function value in the node array stay at 
infinity if the error code indicates the subproblem is infeaslble or the 
best current restricted pair solution is less or equal to the solution 
of the subproblem. 

3141 IF EROl OR B#(1,1)>=0B# THEN 3176 

Checks the restricted pairs of the solution to the subproblem to 
see if they are all satisfied. 

3142 FOR 1=1 TO BD STEP 2 
3143 IF B#(E(I)+1,1)*B#(E(I+1)+1,1)>0# THEN 3146 
3144 NEXT I 
3145 GOTO 3170 

Finds the restricted pair which is closest to being satisfied, and 
sets NM equal to one of the variables of the pair. 

3146 MM#=BI# 
3147 MA#=0# 
3148 NW=0 
3149 FOR 1=1 TO BD STEP 2 



394 

3150 IF B#(E(I)+1,1)*B#(E(I+1)+1.1)=0# THEN 3157 
3151 IF B#(E(I)+1,1)>=MM# THEN 3154 
3152 MM#=B#(E(I)+1.1) 
3153 NW=I . 
3154 IF B#(E(I+1)+1,1)>-MM# THEN 3157 
3155 MM#=B#(E(I+1)+1,1) 
3156 NW=I+1 

Finds the amount of the Driebeek's penalty for the current 
subproblem solution. 

3157 MI#=BI# 
3158 FOR J=0 TO 1 
3159 FOR K=2 TO ND+1 
3160 IF B#(E(I+J)+1,K)<=SM# THEN 3162 
3161 IF MI#>(B#(E(I+J)+1,1)*B#(1,K))/B#(E(I+J)+1,K) THEN MI#=(B#(E(I+J)+ 

1.1)*B#(1.K))/B#(E(I+J)+l.K) 
3162 NEXT K 
3163 NEXT J 
3164 IF MI#>MA# THEN MA#=MI# 
3165 NEXT I 
3166 IF B#(1,1)+MA#>0B# THEN 3176 
3167 N#(LN,BD+1)=B#(1,1)+MA# 
3168 N#(LN,BD+2)=NW 
3169 GOTO 3186 

Sets the best restricted pair solution to the new restricted pair 
solution. 

3170 0B#=B#(1,1) 
3171 FOR 1=2 TO ND+1 
3172 X#(I-1)=B#(I,1) 
3173 NEXT I 

Returns to the main routine and sets ER=1 if there is only one (1) 
node in the branch and bound tree and the solution satisfies the 
restricted pairs. 

3174 N#(LN,BD+1)=BI# 
3175 IF BD=0 OR LL=1 THEN RETURN 
3176 IF OB#»BI# THEN 3186 

Checks the node array N#(MX,ND+2) for any nodes with solutions 
greater than or equal to the current node's restricted pairs solution. 
If the current nodes solution Is less than or equal, then set the node's 
solution value to infinity. 

3177 X=0 
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3178 FOR 1=1 TO LL 
3179 IF N#(I,BD+1)=BI# THEN 3182 
3180 IF N#(I,BD+1)<0B# THEN 3183 
3181 N#(I,BD+1)=BI# 
3182 X=X+1 
3183 NEXT I 

Sets ER=1 and returns to the main routine if only one (1) restricted 
pairs solution is left in the node arrays. 

3184 ER=1 
3185 IF X=LL THEN RETURN 

Returns to process the other node of the pair on the branch. 

Since at each branch two (2) nodes are created, both nodes must be 
processed before another branch is taken. 

3186 IF CYC/2=INT(CYC/2) THEN 3214 

Executes the node compression subroutine if the node array is full. 

3187 IF CYC-DL+1>=MX THEN GOSUB 3250:REM ALGR-CPR 

Sets ER=4 and returns to the main routine if the node array cannot 
be cleared for new nodes. 

3188 ER=4 
3189 IF CYC-DL+1>=MX THEN RETURN 

Finds the node NODE with the minimum solution in the node array. 

3190 N0DE=0 
3191 MI#=BI# 
3192 FOR 1=1 TO LN 
3193 IF MI#<=N#(I.BD+1) THEN 3196 
3194 MI#=N#(I,BD+1) 
3195 NODE=I 
3196 NEXT I 

Sets ER=2 and returns to the main routine if no minimum node 
solution can be found. 

3197 ER=2 
3198 IF N0DE=0 OR DL=CYC THEN RETURN 

Creates two (2) new nodes for the branch and bound tree and 
transfers the current upper and lower bounds to the new nodes. 
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3199 FOR 1=1 TO BD+2 
3200 N#(LN+1,I)=N#(N0DE.I) 
3201 N#(LN+2,I)=N#(N0DE.I) 
3202 NEXT I 

Adds the new upper and lower bound restrictions to the new nodes 
and returns to process the two (2) new nodes. 

3203 LL=LN+2 
3204 NW=N#(N0DE,BD+2) 
3205 N#(N0DE.BD+1)=BI# 
3206 N#(LN+1.NW)=1# 
3207 N#(LN+2,NM)=-1# 
3208 IF NW/2=INT(NW/2) THEN 3212 
3209 N#(LN+1,NW+1)=-1# 
3210 N#(LN+2,NW+1)=1# 
3211 GOTO 3214 
3212 N#(LN+1.NM-1)=-1# 
3213 N#(LN+2,NW-1)=1# 
3214 CYC=CYC+1 
3215 GOTO 3114 

Node Compressing Subroutine — File ALGR-CPR 

Same as for the branch and bound method except for Unes: 

3254 REM N%(I,1)<>BI% THEN 3258 
3255 N#(I.1)<>BI# THEN 3258 
3260 REM N%(X,J)=N%(I,J) 
3261 N#(X,0)=N#(I,J) 
3262 REM N%(X+1,J)=N%(I+1,J) 
3263 N#(X+1,J)=N#(I+1,J) 
326S REM N%(I,J)=0# 
3270 N#(I,J)=0# 

Dual Simplex Algorithm Subroutine — File ALGR-SMP 

Same as for dual simplex method except for lines; 

3332 IF A#(K.ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3334 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
3336 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANL 
3369 IF B#(1,1)>=0B# THEN RETURN 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 
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Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Reinversion Subroutine — File TRAN-RIV 

Same as for dual simplex method. 

Parabolic Subroutine — File PAR-TANA. PAR-TANL, or PAR-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Subroutine ~ File HYP-TANA. HYP-TANL. or HYP-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Sheet Subroutine — File SHT-TANA. SHT-TANL. or SHT-TANG 

Same as for dual simplex method with nonlinear constraints. 

Program Table of Contents 

Table 28 can be used to reconstruct the above computer code from the 

computer disk and to organize subroutines from previous program 

listings. Since BASIC code is dependent on program line numbers for its 

branching, the statement numbers must be maintained as listed below. 

The constraint key subroutine ALGR-KEY must be changed as before in 

the branch and bound method with the following lines: 

3024 REM 
3026 GOSUB 3100:REM ALGR-PRS 
3027 FOR 1=2 TO ND+1 
3028 M#(I,1)=N%(1,I) 
3029 M#(I,2)=N%(2.I) 
3030 NEXT I 

and the dual simplex algorithm ALGR-SMP must be modified by adding: 

3332 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3334 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
3336 IF A#(K.ND+4)<>0# THEN GOSUB 4400:REM SHT-TANL 
3369 IF B#(1.1)>=0B# THEN RETURN 
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Since the node array has been changed to a REAL array rather than an 

INTEGER array, the node compressing subroutine ALGR-CPR must be changed 

with the following lines of code: 

3254 REM N%(I,1)<>BI% THEN 3258 
3255 N#(I.1)<>BI# THEN 3258 
3260 REM N%(X.J)=N%(I,J) 
3261 N#(X.J)=N#(I,J) 
3262 REM N%(X+1,J)=N%(I+1,J) 
3263 N#(X+1,J)=N#(I+1.J) 
3269 REM N%(I,J)=0% 
3270 N#(I,J)=0# 

Table 28. Restricted pairs BASIC program table of contents 

File Program Unes Page Routines 

MAIN-PRS 0001-0141 382 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
INPT-PRS 1700-1723 388 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMr 2200- 2224 69 
ALGR-KEY 3000-3057 200 
ALGR-PRS 3100-3270 391 
ALGR-CPR 3200-3274 357 
ALGR-SMP 3300- 3398 70 
TRAN-CON 3600-•3633 74 
TRAN-INV 3700-•3743 76 
TRAN-RIV 3900-3960 78 
PAR-TANL 4000-•4034 311 
HYP-TANL 4200-•4221 318 
SHT-TANL 4400-•4425 325 

Restricted pairs method 
Objective coefficient Input subroutine 
Constraint coefficient Input subroutine 
Constraint type Input subroutine 
Variable bounds Input subroutine 
Restricted pairs Input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint keys subroutine 
Restricted pairs algorithm subroutine 

Node compressing subroutine 
Dual simplex algorithm subroutine 
Constraint transformation subroutine 
Basis inversion subroutine 
Basis relnverslon subroutine 
Supporting plane for parabolic subr. 
Supporting plane for hyperbolic subr. 
Supporting plane for sheet subroutine 
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Restricted Pairs Method: 
Solutions to Example 15 Cumulative Mandays Curve Fitting Problem 

The solution to the cumulative mandays curve fitting problem can be 

found by the restricted pairs method. If the ten (10) activity example 

network that was used in all previous examples is used as a restricted 

pairs problem, even If restricted to only two (2) spans of time on the 

mandays step function, the number of variables in the CP problem would 

be thirty-four (34). Since the number of variables, or the array space, 

in the restricted pairs program code would exceed the 64K capacity of 

the IBM BASIC compiler without the use of overlays, the problem has been 

reduced to a two (2) activity network and a three (3) span step function. 

As before, the following variables are defined for the example 15 

restricted pairs problem: 

Si - Start time of activity i 
dur. - Project duration 
mi - Man count on activity 1 
d-f - Duration of activity i 
sp-f - End of span i 
mandays-f - Mandays allowed in span 1 

The two (2) activity network is shewn in figure S6. 

Activity #1 Activity #2 

mi - man count mg - man count 
di - duration d2 - duration 
SI - early start S2 - early start 

Figure 86. Restricted pairs model example 15 

If the cumulative mandays curve is approximated by a three (3) seg

ment step function in which each segment has mandaysi, mandays2, mandays] 
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total mandays, then a set of variables representing the number of days 

that each start time and each finish time precedes and succeeds the end 

of span points (spi.spg) of the cumulative mandays step function can be 

used to construct a restricted pairs CP problem as shown In figure 87 

Figure 87. Restricted pairs model example 15 early start barchart 

and figure 88 which minimizes the deviation of the scheduled activities' 

mandays from the predetermined cumulative mandays curve. 

+. 
I I I 

+. 
Actl 0 
Act2 0 

Sl<-

S2<-

Fll 

F15 

1 
- i -

F12 
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—^31 I 
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Sl<— 
F16 

->S2 
F17 

F14 

F18 

spi-di 
spi-d2 

sp2-di 
sp2-d2 

->S1 

->S2 

dur.-di 
dur.-d2 

Figure 88. Restricted pairs model example 15 early finish barchart 
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The resulting restricted pairs CP problem is: 

minimize V19+V20+V21 

Subject to: S2-di-Sl>=0 
S2<=dur.-d2 
Sl+E3-E4=spi 
Sl+Fll-F12-spi-di 
Sl+E5-E6=sp2 
Sl+F13-F14=sp2-di 
S2+E7-E8=spi 
S2+F15-F16=spi 
S2+E9-E10=sp2 
S2+F17-F18=sp2-d2 

mi*(E3-Fll)+m2*(E7-F15)+V19-V20=mandaysi 
mi*{E5-F13)+m2*(E9-F17)+V21-V20=mandaysi+mandays2 

E3*E4=0 
E4*E6=0 
E7*E8=0 
E9*E10=0 
F11*F12=0 
F13*F14=0 
F15*F16=0 
F17*F18=0 

S1,S2,E3,E4,...V21>=0 

The value of the constants can now be defined as: 

spi»5 
sp2"10 
di»5 
d2"5 
mi=2 
m2=2 
dur.=20 
mandaysi=10 
mandays2=0 
mandays3=10 

The solution of the example problem using the restricted pairs 

method is listed in figures 89 and 90 as it would appear on the computer 

screen. Since the number of variables exceeds the capacity of a single 

screen, twenty-four (24) lines, the listing requires two (2) screens. 
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SOLUTION FOUND IN 17 ITR 262 SEC 
VALUE OF OBJECTIVE 0 

VARIABLE NO. VALUES 
1 0 
2 10 
3 5 
4 0 
5 10 
6 0 
7 0 
8 5 
9 0 
10 0 
11 0 
12 0 
13 5 
14 0 
15 0 

(PRESS RETURN TO CONTINUE) 

Figure 89. Restricted pairs problem example 15 solution, screen one 

16 10 
17 0 
18 5 
19 0 
20 0 
21 0 

OPTION ? 

Figure 90. Restricted pairs problem example 15 solution, screen two 

The solution was reached In seventeen (17) Iterations In two 

hundred sixty-two (262) seconds. The restricted pairs cumulative 

mandays curve and early start times that best fit the predetermined 

cumulative mandays curve are shown In figure 91. 
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20 + 

Cumulative I 
mandays 10 +. 

12*5=10 mandays 

+ +-. 
0 5 

2*5=10 mandays 

.+ + 
10 15 

Work days 

Figure 91. Restricted pairs problem example 15 cumulative mandays curve 
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SUMMARY OF METHODS 

Seventeen (17) different mathematical programming methods were 

coded into BASIC computer code, compiled using an IBM BASIC compiler, 

and run on a Panasonic Sr. Partner micro-computer for the purpose of 

solving eight (8) mathematical models and problems derived from a common 

ten (10) activity project network diagram. The eight (8) problems were; 

(1) The minimum project duration with fixed activity durations and a 

fixed activity sequence. 

(2) The minimum project cost with costs as linear functions of activity 

duration, variable activity durations, a fixed activity sequence, 

and a fixed project duration. 

(3) The minimum project cost curve with costs as linear functions of 

activity duration, variable activity durations, a fixed activity 

sequence, and a variable project duration. 

(4) The minimum project cost with costs as quadratic functions of 

activity duration, variable activity durations, a fixed activity 

sequence, and a fixed project duration. 

(5) The minimum project man count with man counts as hyperbolic 

function of activity duration, variable activity durations, a fixed 

activity sequence, and a fixed project duration. 

(6) The minimum project supervision cost with costs as parabolic 

function of man count, man counts as hyperbolic function of 

activity duration, variable activity durations, a fixed activity 

sequence, and a fixed project duration. 
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(7) The minimum project supervision cost curve with costs as parabolic 

function of man count, man counts as hyperbolic function of 

activity duration, variable activity durations, a fixed activity 

sequence, and a variable project duration. 

(8) The minimum deviation of the cumulative project mandays curve from 

a predetermined cumulative curve given a fixed activity sequence. 

Summary of Solutions 

The results of the computer runs which solved the eight (8) 

different problems are sumnarized In the following tables for the 

purpose of establishing benchmarks for the different methods. 

The CPM method finds the minimum project duration by utilizing a 

network model with fixed activity durations. The solution for the ten 

(10) activity network schedule is summarized in table 29. 

Table 29. Critical path method minimum project duration solution to 
the example 2 project network model 

Dur. 4 
Itr. noniterative method 
Sec. 4 seconds 
Obj. nonoptimizing method 

By changing the network model to a linear programming problem with 

costs which are linear functions of activity duration and variable 

activity durations, the dual simplex method can be used to solve the ten 

(10) activity LP cost problem for a minimum project cost at ten (10) 

different predetermined project durations as summarized in table 30. 
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Table 30. Dual simplex method solutions to the example 4 minimum 
project cost problem with linear cost functions 

Dur. 160 120 101 100 91 90 72 43 11 4 
Itr. 7 8 10 9 11 12 13 13 14 15 
Sec. 5 6 7 6 8 8 9 9 10 10 
Obj. 750 1950 2710 2755 3700 3835 6265 11195 17275 18640 
CyT. .71 .75 .70 .66 .72 .66 .69 .69 .71 .66 

The dual simplex method solves the linear cost problem for only one 

predetermined project duration at a time. If the LP problem is expanded 

to include a variable project duration, then out-of-kilter method can be 

used to solve for the same ten (10) simplex solutions of table 30, or the 

project cost curve, in the time listed in table 31, 

Table 31. Out-of-kilter method solution to the example 6 minimum 
project cost problem with linear cost functions 

Dur. range between 160-4 
Itr. 11 
Sec. 3 
Obj. project cost curve 

Expanding the problem to Include a quadratic cost function, Beale's 

Table 32. Beale's method solutions to the example 10 minimum project 
cost problem with quadratic cost functions. 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 41 28 31 31 31 49 37 32 28 44 
Sec. 133 87 103 103 103 164 122 100 83 138 
Obj 14780. 19121. 24378. 30551. 37640. 45673. 55545. 68007. 83069.100740 
CyT. 3.24 3.10 3.32 3.32 3.32 3.34 3.29 3.12 2.96 3.13 
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method can be used to solve the QP cost problem for minimum project cost 

at each of ten (10) predetermined project durations as summarized In 

table 32. 

Using only the quadratic or linear cost function problems Is over 

simplistic since variable cost are more directly related to activity 

man counts than to the activity durations. 

In order to model activity man counts, the LP problem Is expanded 

to Include man counts as hyperbolic functions of activity duration. The 

CP problem is then solved for ten (10) different predetermined project 

durations using the dual simplex method with nonlinear constraints 

approximated with supporting planes derived with a line search algorithm 

as summarized in table 33. 

Table 33. Dual simplex method, using supporting planes derived with the 
line search algorithm, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
îtr. lis 114 107 115 116 109 112 114 107 112 
Sec. 205 198 186 206 216 190 194 209 193 209 
Obj. 12. 14. 15. 18. 21. 25. 31. 42. 63. 127. 
CyT. 1.78 1.78 1.73 1.79 1.86 1.74 1.73 1.83 1.80 1.86 

A simpler method for solving the man count CP problem is to use the 

same dual simplex method; but Instead of using supporting planes derived 

with the usual line search algorithm, use supporting planes derived with 

a projection technique or the Gordian algorithm. The results of 

this simpler alogrithm are summarized in table 34. 
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Table 34. Dual simplex method, using supporting planes derived with the 
Gordlan algorithm, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 117 129 117 119 111 124 112 113 115 121 
Sec. 141 156 137 138 130 149 133 135 139 153 
Obj. 12. 14. 15. 18. 21. 25. 31. 42. 63. 127. 
CyT. 1.20 1.20 1.17 1.15 1.17 1.20 1.18 1.19 1.20 1.26 

A variation of the dual simplex method which results In greater 

precision Is the corner cut method. Solving the same man count CP 

problem using the corner cut method with supporting planes derived with 

the line search method results In table 35. 

Table 35. Corner cut method, using supporting planes derived with the 
line search algorithm, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 80 50 40 30 20 10 
Itr. 152 136 150 147 133 152 189 139 214 195 
Sec. 393 342 367 384 361 364 480 375 597 534 
Obj. 
CyT. 

12. 
2.58 

14. 
2.51 

15. 
2.44 

18. 
2.61 

21. 25. 
« Î I '  42. 63. 127 Obj. 

CyT. 
12. 

2.58 
14. 

2.51 
15. 

2.44 
18. 

2.61 2.71 2.39 2.53 2.69 2.78 2.73 

As with the dual simplex method, a simpler variation of the corner 

cut method for solving the same man count CP problem Is the corner cut 

method using supporting planes derived with projection technique or the 

Gordlan algorithm as summarized In table 36. 
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Table 36, Comer cut method, using supporting planes derived with the 
Gordian algorithms, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 192 215 192 218 160 179 188 277 318 260 
Sec. 412 439 391 435 335 366 381 590 652 572 
Obj. 12. 14. 15. 18. 21. 25. 31. 42. 63. 127 
CyT. 2.14 2.04 2.03 1.99 2.09 2.04 2.02 2.12 2.05 2.20 

A comparison of the four (4) methods is summarized in table 37. 

Table 37. Comparison between simplex and corner cut methods 

Dual Simplex Method Corner Cut Method 
Parameter Line Search Gordian Line Search Gordian 

Mean itr. 112.1 117.8 160.7 219.9 
Standard deviation 3.34 5.65 28.12 49.83 
Mean sec. 200.6 141.1 419.7 457.3 
Standard deviation 9.77 8.71 86.59 108.00 
Mean eye. time 1.790 1.192 2.597 2.072 
Standard deviation 0.048 0.029 0.130 0.064 

By expanding the man count CP problem, a supervision cost CP problem 

can be derived from the man count problem by assuming that supervision 

cost is a parabolic function of activity man count. Beale's method with 

supporting planes derived with the line search method provides a means 

of solving the supervision cost CP problem for ten (10) predetermined 

project durations as summarized in table 38. 
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Table 38. Beale's method, using supporting planes derived with the 
line search algorithm, solutions to the example 12 minimum 
project supervision cost problem with hyperbolic man count 
and parabolic cost functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 230 230 215 202 184 199 162 164 174 177 
Sec. 1333 1333 1200 1049 974 1031 820 846 872 931 
Obj. 554. 554. 554. 556. 581. 654. 831. 1270. 2619. 10124. 
CyT. 5.55 5.55 5.58 5.19 5.29 5.18 5.06 5.15 5.01 5.25 

A simpler method for solving the same supervision cost CP problem 

Is Beale's method with supporting planes derived with a projection 

technique or the Gordlan algorithm as summarized In table 39. 

Table 39. Beale's method, using supporting planes derived with the 
Gordlan algorithm, solutions to the example 12 minimum 
project supervision cost problem with hyperbolic man count 
and parabolic cost functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 203 203 213 206 189 181 169 157 163 172 
Sec. 842 842 908 854 766 743 706 645 694 733 
Obj. 554. 554. 554. 556. 581. 654. 831. 1270. 2619. 10124. 
ojri. 4. 14 4. 14 4. KO 4.14 4.U5 4.10 4.1/ 4.10 4.25 4.26 

The quadratic objective function and hyperbolic constraints of 

the supervision cost CP problem can be algebraically combined into a set 

of cubic hyperbolic constraints. By incorporating these constraints 

into the primal-dual method, the supervison cost problem can be solved 

for the ten (10) predetermined project durations as summarized in table 
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Table 40. Primal-dual method, using supporting planes derived with the 
Gordian algorithm, solutions to the minimum project 
supervision cost model with cubic hyperbolic cost functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 119 123 119 101 108 111 109 118 126 140 
Sec. 210 225 209 172 190 203 202 226 230 264 
Obj. 554. 554. 554. 556. 581. 654. 831. 1270. 2619. 10124. 
CyT. 1.76 1.82 1.75 1.70 1.75 1.82 1.85 1.91 1.82 1.88 

Another method which has been used to solve nonlinear problems is 

the ellipsoidal method. As a basis of comparison with established 

methods, the same supervision cost CP problem as solved above is solved 

using the ellipsoidal method. The results of using the ellipsoidal 

method for the solution of the CP problem are summarized in table 41. 

Table 41. Ellipsoidal method, using supporting planes derived with 
the line search algorithm, solutions to the minimum project 
supervision cost model 12 with hyperbolic man count and 
parabolic cost function 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 5439 5352 5295 5308 5538 5496 5475 5680 5745 6730 
Sec. 16386 17147 16079 15582 16186 16077 16043 16461 16722 19250 
Obj. 554. 554. 554. 556. 581. 654. 831. 1270. 2619. 10124. 
CyT. 3.01 3.20 3.03 2.93 2.92 2.92 2.93 2.89 2.91 2.86 

The results of Beale's method using supporting planes derived with 

both the line search algorithm and the Gordian algorithm, the primal-

dual method with cubic hyperbolic constraints, and the ellipsoidal 

method in solving the supervision cost CP problem are summarized in table 

42. 
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Table 42. Comparison of Beale's method. Cubic constraint method and 
Coffin's method 

Parameter Beale's Method Cubic Ellipsoidal 
Line Search Gordian Constraints Method 

Mean iterations 295.7 185.6 117.4 5605.8 
Standard deviation 28.76 19.98 11.00 421.63 
Mean seconds 1038.9 773.3 213.1 16593.3 
Standard deviation 190.88 84.30 25.07 1025.46 
Mean cycle time 5.284 4.166 1.812 2.963 
Standard deviation 0.209 0.073 0.065 0.099 

The above methods solved the minimum project supervison cost 

problem for only one predetermined project duration at a time. If the 

problem is expanded to include a variable project duration for a cost 

versus duration curve, the restart method can be used to find the same 

ten (10) solutions of table 38 in the time and iterations shown in table 

43. 

Table 43. Restart method, using supporting planes derived from the line 
search algorithm, solution to the example 12 minimum project 
supervision cost problem cost curve with hyperbolic man count 
and parabolic cost functions 

Dur. range between 74.39-10 
Itr. 1321 
Sec. 4577 
Obj. project cost curve 

In the solution of the above problems, integer solutions were not 

considered essential. In actual practice, the noninteger solution can 

not be used. This is obvious, considering that an Integer man works a 
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minimum of an integer day on most construction sites. 

In the case of the minimum duration model and the minimum project 

cost problem with linear activity costs, the optimal solutions are always 

integer due to the unimodular structure of the problem. In the case of 

the nonlinear problems, the methods do not guarantee integer solutions. 

To find Integer solutions for the nonlinear problems, Gomory's method 

was modified with deep cut supporting planes derived with the line search 

algorithm. Table 44 summarizes Gomory's method integer solutions to the 

man count CP problem for the same ten (10) predetermined project duration. 

Table 44. Gomory's method, using deep cuts derived with the line search 
algorithm, integer solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 580 5298 1110 445 822 6737 140 83 110 107 
Sec, 1540 13934 2718 1268 2189 17604 343 250 313 228 
Obj. 16 19 20 22 24 29 34 46 65 132 
CyT 2.65 2.63 2.44 2.84 2.66 2.61 2.45 3.01 2.84 2.13 

Another method for solving the Integer man count CP problem is the 

branch and bound method with deep cut supporting planes derived with the 

line search algorithm. This method is a hybrid of either the dual 

simplex or Beale's method in which a series of subproblems are solved 

with tighter and tighter restrictions on the feasible region. A summary 

of the results from the branch and bound method with deep cut supporting 

planes derived with the line search algorithm for the integer man count 

CP problem for ten predetermined durations is shown in table 45. 
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Table 45. Branch and bound method, using deep cuts derived with the line 
search algorithm. Integer solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 75 145 135 263 204 422 49 49 35 46 
Sec. 240 456 440 797 649 1249 174 172 147 176 
Obj. 16 19 20 22 24 29 34 46 65 132 
CyT. 3.20 3.14 3.25 3.03 3.18 2.95 3.55 3.51 4.20 3.82 

The convergence rate of the branch and bound method can be enhanced 

by using Driebeek's penalty. The summary of the results are shown in 

table 46 for the man count CP problem. 

Table 46. Branch and bound method with Driebeek's penalty, using deep 
cuts derived with the line search algorithm, integer 
solutions to the minimum project man count problem with 
hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 75 156 100 235 168 385 39 45 28 40 
Sec. 129 240 174 332 250 484 95 103 94 115 
Obj. 16 19 20 22 24 29 34 46 65 132 
CyT. 1.75 1.53 1.74 1.41 1.48 1.25 2.43 2.28 3.35 2.87 

Table 47. Comparison of Gomory's method, branch and bound method, and 
Driebeek's penalty for solution of minimum man count problem 

Parameter Gomory's method Branch and bound Driebeek's penalty 

Mean Iterations 1543.2 142.3 127.1 
Standard deviation 2406.78 124.45 113.53 
Mean seconds 4038.7 450.0 201.6 
Standard deviation 6301.98 359.47 127.70 
Mean cycle time 2.626 3.383 2.000 
Standard deviation 0.247 0.389 0.697 
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A comparison of the three (3) methods Is summarized In table 47. 

The supervision cost problem does not require Integer dollars 

solutions; but In the final solution, the days and men which determine 

the supervision cost, must still be Integer. To find this Integer 

solution, the branch and bound method with Beale's method with nonlinear 

constraints can be used. The result of the branch and bound method when 

applied to the project supervision cost problem Is summarized In tables 

48 and 49. 

Table 48. Branch and bound method, using deep cuts derived with the line 
search algorithm. Integer solutions to the example 12 minimum 
project supervision cost problem with hyperbolic man count 
and parabolic cost functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 151 153 152 411 812 726 71 155 88 403 
Sec. 634 644 621 1488 2784 2443 304 586 410 1597 
Obj. 595 595 595 610 653 733 872 1443 2687 10940 
CyT. 4.19 4.20 4.08 3.62 3.42 3.36 4.28 3.78 4.65 3.96 

Table 49. Summary of branch and bound method solving the example 12 
project supervision cost problem 

Mean Iterations 312.2 
Standard deviation 268.57 
Mean seconds 1151.1 
Standard deviation 884.39 
Mean cycle time 3.954 
Standard deviation 0.408 

By finding the minimum project cost or the minimum project man 

count, a cumulative mandays curve is determined. In many cases the 
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cumulative mandays curve Is predetermined. To find the project schedule 

which best fits the predetermined curve, a curve fitting CP problem can 

be derived and solved using the restricted pairs method. The results of 

the restricted pairs method for the example 15 three (3) activity network 

are summarized in table 50. 

Table 50. Restricted pairs solution to the example 15 cumulative 
mandays curve fitting problem 

Dur. 20 
Itr. 17 
Sec. 262 
Obj. 0 
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CONCLUSION 

The critical path method, or CPM, is a proven method for modeling, 

in the form of a network diagram, the essential information of 

construction project schedules. Using this method, most construction 

projects can be modeled by networks with between fifty (50) to three 

hundred (300) activities. Even for larger projects, networks 

exceeding twelve thousand (12000) activities have been successfully 

analyzed with the aid of the computer. 

The simplex method is also a proven method for optimizing linear 

programming problems with up to twenty thousand (20000) var1ables54. By 

constructing linear programming, or LP, cost problems derived from CPM 

networks models in which project costs are represented by linear 

functions of activity durations, networks with up to thirteen thousand 

(13000) activity (assuming 1.5 simplex variables per network node) can 

be cost optimized using the simplex method. 

The LP cost problem, as solved by the simplex method, is a 

practical means of finding the minimum project cost for a given project 

durations if the costs are linear functions of activity durations. 

In practice, most project cost and manpower functions are 

parabolic or hyperbolic in relation to activity durations. This results 

in a nonlinear problem, rather than a linear problem, in which costs and 

manpower are parabolic or hyperbolic functions of activity durations. 

To find the optimal cost or manpower solution to the nonlinear 

problem, a modification of the simplex method was developed in this 
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dissertation in which the nonlinear convex functions are Incorporated 

Into the simplex method by means of supporting planes used as linear 

approximations of the nonlinear constraints. 

As a demomstratlon of the computer requirements and the performance 

specifications of the nonlinear simplex methods, nine (9) linear and 

nine (9) nonlinear schedule problems in which the the number of network 

activities are Increased from five (5) to fifty (50) were solved on a 

Panasonic Sr. Partner computer with a simple overlay version of the 

programs presented above. The central processing unit (CPU) requirements 
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Figure 92. CPU requirements per number of network activities 

for each problem are shown in figure 92, and the Iterations and seconds 

per iteration required for each computer solution are shown in table 51, 
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Table 51. Number of iterations and seconds per iteration required to 
solve minimum cost and manpower problems for networks with 5 
to 50 activities using the primal-dual simplex method with 
linear and nonlinear constraints with precision set at lE-08. 

Constraint Types 
Linear Nonlinear 

Activities Simplex Cubic Supporting plane Deep cut 
in network Itr. Sec./Itr. Itr. Sec./Itr. Itr. Sec./Itr. 

5 10 1.700 61 1.420 16 1.810 
10 18 2.300 120 2.530 28 2.714 
15 27 3.185 174 4.017 43 3.744 
21 38 5.157 527 7.530 64 6.562 
26 49 7.224 335 9.414 80 7.975 
31 67 10.641 457 12.927 117 11.478 
35 71 11.676 383 13.349 122 12.991 
40 81 14.395 655 17.499 162 17.277 
50 105 52.476 560 86.820 186 86.660 

Table 52. Ratios of the number of iteration and seconds per iteration 
required to solve minimum cost and manpower problems with 
cubic cost and hyperbolic man count functions constraint to 
the number of Iteration and seconds per iteration required to 
solve the minimum cost problems with linear cost functions 
for networks with 5 to 50 activities with precision set at 
lE-08. 

Activities Cubic Supporting plane Hyperbolic deep cut 
in network Itr./Itr. Sec./Itr./Sec./Itr. Itr./Itr. Sec./Itr./Sec./Itr. 

5 6.10 0.83 1.60 1.06 
10 6.66 1.10 1.55 1.18 
15 6.44 1.26 1.59 1.17 
21 13.86 1.46 1.68 1.27 
26 6.83 1.30 1.63 1.10 
31 6.82 1.21 1.74 1.07 
35 5.39 1.14 1.71 1.11 
40 8.08 1.21 2.00 1.20 
50 5.33 1.65 1.77 1.65 

Mean 7.27 1.24 1.69 1.20 
Std. Dev. 2.60 0.22 0.13 0.18 
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Based on these computer runs as summarized in table 52, an Increase 

in iterations of approximately 7.27 times and an increase in processing 

time of approximately 7.27*1.24=9.01 times the linear problem can be 

expected for the solution of nonlinear supervision cost or manpower 

problems. 

Even with this increase in time and iterations, networks of fifty 

(50) activities can be reasonably optimized on micro-computers with 

64K bytes CPU memories; and networks of three hundred (300) activities 

can be optimized on main-frame computers with 4M bytes CPU memories 

using the nonlinear modification of the simplex method. 

Most schedule problems require Integer solutions since schedule 

dates are integer by contract and crew sizes are integer for efficiency. 

In the case of the linear cost problems as optimized by the 

simplex method, the optimal solution 1s also an Integer solution. This 

does not hold true for the nonlinear cost and manpower problems. The 

modified simplex solutions to the nonlinear cost and manpower problems 

with parabolic or hyperbolic functions are usually not integer. 

For the nonlinear manpower problem, a good, if not guaranteed 

optimal solution, can be found by utilizing the partial unimodularity of 

the problem and "rounding up" the solution found with primal-dual 

simplex method with deep cut constraints as demonstrated in Appendix B. 

If this suboptimal solution is used, based on the nine (9) computer 

solutions above as summarized in table 51, an increase In iterations of 

approximately 1.69 times and an Increase in processing time of 



423 

approximately 1.20*1.69=2.02 times the linear problem can be expected. 

To guarantee an optimal integer solution, a branch and bound 

algorithm is used which incorporates a dual simplex algorithm with deep 

cut constraints and a Driebeek's penalty function. 

Based again on the nine (9) computer solutions above, an increase 

in iterations of approximately 1.69 times the linear cost problem can be 

attributed to the deep cuts and an increase of two (2) to five (5) time 

the linear problem can be attributed to the branch and bound algorithmes 

for a total of 1.69*5=8.45 times the iterations of the linear cost 

problem. The increase In processing time is then approximately 

8.45*1.20=10.14 times the linear problem. 

To solve the Integer supervision cost problem requires the branch 

and bound algorithm combined with Beale's algorithm with deep cut 

constraints. Although the program code for the method can be executed 

within the CPU requirements shown in figure 92, the transformation time 

of the tableau increases rapidly from 8.45 seconds per Iteration for a 

five (5) activity network to 515.5 seconds for a fifty (50) activity 

network. This increase in iteration time, combined with the less 

predictable convergence rate of the branch and bound method without 

Driebeek's penalty, limits the method. Needless to say, the nine (9) 

networks were not solved in a reasonable amount of time {less than one 

day) with a micro-computer. 

Man count integer problem networks of fifty (50) activities can be 

integer optimized on micro-computers with 64K bytes CPU memories; but 
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for the supervision cost integer problem, the time of execution of the 

programs might limit the applicability of the methods to larger and 

faster machines. 
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FURTHER RESEARCH 

From the program listings and example solutions. It might appear 

that the simplex and simplex related algorithms consistently converge to 

a unique solution In a fixed number of Iterations depending on the 

formulation of the problem. In actual practice, the convergence rate Is 

a matter of precision depended on the choice of the program variable SM#. 

Using the minimum man count problem as an example, a small two (2) 

activity network can be formulated as below: 

T-f - Node time for node 1 
Dur-f j " Duration of activity 1 j 
Mij - Men assigned to complete activity 1j 
hij - Mandays to complete activity 1j 
Dur. - Project Duration. 

Duroi Duri2 
0 Ti T? ^~Dur. 

Moi MI2 
hoi=10 hi2=20 

and then rewritten as a convex programming problem: 

Minimize M01+M12+T2 

Subjsct to: f^l*(T2= 0)^—fîQi—10 
Mi2*(T2-TI)>=hi2=20 

Moi,MI2.TI,T2>=0 

in which the man count is balanced against the duration of the project. 

If the dual simplex method with nonlinear constraints is used to 

solve the problem, the precision, or the value at which the algorithm's 

code considers variables zero (0), can be varied from lE-06 to lE-16 and 

a series of different "solutions" can be found for the same problem 

which are shown in table 53. 
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Table 53. Solutions to a man count problem for six levels of precision 
or values of the variable SM# In the dual simplex method with 
convex constraints derived with Gordlan cut. 

Precision 

SM#=lE-06 SM#=lE-08 SM#=1E-10 

Itr. 23 31 37 
Sec. 29 35 40 
Obj. 15.26882723033593 15. 26882723033592 15.26882723033592 
T1 3.160411643603943 3. 162161034172499 3.162263081914992 
T2 7.629908652670576 7. 634132055108864 7.634378420148291 
MOl 3.164143676732816 3. 16239428616426 3.162292238421766 
M12 4.474774900932526 4. 472300889062794 4.47215657176586 

Table 53. Continued 

Precision 

SM#=1E-12 SM#=1E-14 SM#=1E-16 

Itr. 43 78 82 
Sec. 44 86 89 
Obj. 15.26882723033592 15. 26882723106905 15.26882723106905 
T1 3.162275837853207 3. 16227767030145 3.162277651051399 
i2 /.634409215676056 7, ,634470885385542 7.634470866128593 
MOl 3.162279482483552 3. 162277650035304 3.16227766928536 
M12 4.472138532176309 4.4720786956482 4.472078695655098 

If the precision Is lowered too far the algorithm will stop at a 

nonoptlmal solution. If the precision Is Increased, the number of 

Iterations also Increased, until a precision Is reached for which the 

algorithm will never terminate or the problem will be found Infeaslble. 

In the small example the Iteration count was doubled as the 

precision was Increased from lE-06 to IE-16. Unfortunately, in larger 
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problems, the iteration count may become excessive without reaching a 

satisfactory solution. 

In the case of the man count problem, a closed form solution is 

also available by using the cost function: 

min. F(Duroi,Duri2)= hoi + h12 +(Duroi+Duri2)= 10 + 20 +(Duroi+Duri2) 

Duroi Duri2 Duroi Duri2 

and setting the partial s equal to zero (0): 

&F(Duroi,Duri2)= 10 +Duroi=0 
SDuroi Duroi'2 

&F(Duroi,Duri2)= 20 +Duri2=0 

&Duri2 Dur12"2 

The duration of the activities and the value of the objective can be 

found as: 

Duroi= /ÏÔ Duri2= /2Ô F(Duroi,Duri2)=2* /ÏÔ +2* /2Ô 

which translates to the following solution for the convex programming 

problem: 
Obj. 15.2688273835449 
Ti 3.162277698516846 
72 7.634413719177246 
Moi 3.162277698516846 
"12 4.4721360206604 

Using the closed form solution for comparison, the effect of 

precision can be observed in table 53 as the number of significant digits 

in the convex programming solution increase from three (3) to nine (9). 

Further study is needed in the area of precision or- the computer 

application of the closed form methods before the programs presented 

here can be effectively expanded to larger problems. 
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APPENDIX A: PRECEDENCE DIAGRAMMING METHOD 

The CPM arrow diagramming technique has proved cumbersome to use 1n 

actual applications. This Is primarily due to the fact that the CPM In 

arrow diagram, the activities can only be Identified by a completed 

diagram's nodes numbers and that the relationships between activities 

are limited to only the simple linkage at the nodes. 

Theory of Precedence Diagramming Method 

To enhance CPM, the precedence diagramming method^® (PDM) was 

developed which utilized a "precedence diagram" rather that an arrow 

diagram In which the activities are assigned to the nodes and the 

relationships between activities are represented by the arrows. 

Relationships and Lags 

In PDM, a precedence diagram is constructed which represents the 

relationships between scheduled activities. Almost all scheduled 

relationships can be expressed as one of four (4) types — "finish to 

start", "start to start", "finish to finish", and "start to finish". 

In the finish to start relationship (N), or what can be considered 

the "normal" relationship in the arrow diagramming technique, the 

preceding activity must be finished before the succeeding activity 

starts. In the start to start relationship (S), the preceding activity 

must be started before the succeeding activity starts. In the finish to 

finish relationship (F), the preceding activity must be finished before 

the succeeding activity may finish; and in the start to finish 
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relationship (B), which is rarely used and is "backward" to the normal 

relationship, the preceding activity must be started before the 

succeeding activity finishes. 

In addition to the relationship type, there is "lag". Often a 

preceding activity must be finished a number of work increments or a 

lag time before the succeeding activity can start. This is expressed as 

a duration which is assigned to each relationship. When the lag is 

combined with the relationship type, almost any schedule can be modeled 

using a PDM diagram. 

Identification Numbers 

Using the ten activity network from the CRM example, it is possible 

to construct the relationship table A-1. In addition to activity 

Table A-1. Table of relationships 

# Preceding Activity ID Succeeding activity ID Relationship Type Lag 

1 Activity #3 1 Activity #1 2 start to start 0 
2 Activity #3 1 Activity 

Activity 
#4 3 end to start 0 

3 Activity #3 1 
Activity 
Activity #7 8 end to start 0 

4 Activity #3 1 Activity #9 9 end to start 0 
5 Activity #3 1 Activity #8 4 start to start 0 
6 Activity #3 1 Activity #10 5 start to start 0 
7 Activity #1 2 Activity #6 10 end to start 0 
8 Activity #4 3 Activity #2 6 end to start 0 
9 Activity #8 4 Activity #2 6 end to start 0 
10 Activity #4 3 Activity #5 7 end to start 0 
11 Activity #8 4 Activity #5 7 end to start 0 
12 Activity #10 5 Activity #6 10 finish to finish 0 
13 Activity #5 7 Activity #6 10 end to start 0 
14 Activity #7 8 Activity #6 10 end to start 0 
15 Activity #2 6 Activity #6 10 finish to finish 0 
16 Acti vi ty #9 9 Activity #6 10 finish to finish 0 
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decriptions such as "Activity #3", a set of identification numbers (ID) 

is assigned to each activity which for the following program must be 

ascending order within each pair of activities forming a relationship. 

This ascending order prevents logical loops In the PDM network. 

Precedence Diagram 

To convert the table to a precedence diagram as shown in figure A-1, 

*********** *********** 
* ACT.#1 *-+ 8 * ACT.#2 * 

I " » — — I D .  2  *  I  + — I D .  S *————•.-•15""'"""""""""+ 
I 0 * DUR. 10 * I I +9->* DUR. 20 * 0 I 
I *********** I i I Q *********** 

*********** *********** I I *********** Q I *********** 
* ACT.#3 * * ACT.#4 * + I * ACT.#5 * +->* ACT. #6 * 
* ID. 1 *—2>* ID. 3 *-10 >* ID. 7 *-13->* ID. 10 * 
* DUR. 10 *~+0 * DUR. 14 * 0 +11>* DUR. 13 * 0+>* DUR. 12 * 
*********** I *********** j Q *********** I *********** 

*********** I I *********** I /]\ 
* ACT.#8 * + * ACT.#7 * I I 

— — 5 — — I D .  4  *  — 3 - > *  I D .  8  * — 1 4 +  I  
0 * DUR. 20 * I 0 * DUR. 24 * 0 I 

*********** I *********** I 
+-I 12— + 

*********** I I *********** Q I 
* ACT.#10 * I +—4->* ACT. #9 * I 

+——————6———————^* ID. 5 *—+ 0 * ID. 9 *======J0=======+ 
0 * DUR. 50 * * DUR. 30 * 0 

*********** *********** 

Figure A-1. Precedence diagram network 

each activity is drawn as a square or node. Then, between each node 

is drawn the relationship arrows. To simplify the diagram, each 

relationship arrow is numbered with a relationship number, a lag, and a 

head and tail representing the relationship direction or type. This 

format, often called "activity on node" as compared to the "activity on 
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arrow", is the graphic basis of POM. 

In large computer packages such as IBM's PMSIV^® or PROJACS this 

diagram is printed by the computer. Software plotting packages such as 

Calcomp's Autonet®® or NacAuto's T-Map®^ can also draw the networks on 

mechanical plotters from the precedence table. 

Work Day Calendars 

In the original CPM, all activity durations, lags, and schedule 

times were expressed as work increment defined by points on the CPM time 

scale. In actual practice, schedules are expressed In work days and 

"calendar dates" In which the CPM time scale points are calendar dates. 

In the POM method, calendar dates (01JUN83, e.g.) are assigned to 

each CPM time scale point. The new time scale with calendar date points 

is then called the "base calendar". 

To add another dimension to the time scale, not all activities can 

be scheduled to work on every day of the base calendar. To convert 

activity durations, which might be restricted to any one of a number of 

different "worked day calendars", to s base calendar, a set of worked 

day calendars must be defined. 

These calendars, numbering one (1) through three (3) In the computer 

program to follow, are used to assign a "worked day" flag ("Y","N") to 

each day worked in the base calendar, and a work day calendar number to 

each activity duration and relationship lag. 

Schedule dates 

Once a set of worked day calendars has been defined, schedule dates 
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can be used to force activities to start after (01JUN83S, e.g.) or finish 

before (01JUN83F, e.g.) particular dates. The most often used of these 

is the date after which the project can start and the date before which 

the project must end. 

PPM Reports 

The processing and output for the PDM method is essentially the 

same as the CPM program. The only difference in the PDM program is that 

the CPM time scale is converted to calendar dates so that early start 

and late finishes are also listed as dates. 

Precedence Diagramming Method BASIC Code Inputs and Reports 

As a demonstration of the PDM, the ten (10) activity network will 

be used which was optimized by the branch and bound method at fifty (50) 

days for the example 11 minimum project man count problem. Table A-2 

optimal integer man counts and optimal integer activity durations for 

Table A-2. Optimal integer man count for 50 day project 

Activity # Men scheduled Days scheduled Mandays required 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
1 
3 
3 
4 
5 
3 
4 
3 
2 

10 
20 
10 
14 
13 
12 
24 
20 
30 
50 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
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each of the ten (10) activities of the precedence diagram in figure A-1. 

Main Menu Screen 

On Initial execution of the code, the menu screen will appear as in 

figure A-2. The screen lists the system options and pauses the program 

PRECEDENCE DIAGRAM NETWORKING MENU 

M-RETURN TO MENU 

* DATA FILES * 
C-CALENDAR A-ACTIVITY R-RELATION 

U-UPDATE 

* REPORTS * 
RE-BY STARTS RA-BY ACTIVITY 

RS-RESOURCES BC-BARCHART 

* FILE MAINTENANCE * 
E-EDIT L-LIST I-INSERT D-DELETE 

S-SAVE F-FETCH 

OPTION ? 

Figure A-2. Precedence diagramming method main menu screen 

execution for one of eleven OPTION ? entries ("M","C"."A"."R"."U","RE". 

"RA","RS","BC","S","F"). 

The "M" option returns the program to the menu screen from any 

other screen in the program. The "C" option lists and edits through the 

computer screen the file containing the work day calendars. The "A" 

option lists and edits the activity file. The "R" option lists and 

edits the relationships file. The "U" option process the POM model. 

The "S" and "F" save and fetch the inputed data to and from the 

computer disk as the ASCI file "DATA". The "RE", "RA". "RS", and "BC" 

options list to the computer screen the critcal path listing in early 
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Start order, the critcal path listing in input file order, the resource 

report, and the Gantt or bar chart, respectively. 

Calendar Input File 

Option "C" calls the calendar file input screen as shown in figure 

A-3. When the screen is first displayed, the calendar file may be 

CALENDAR 
START DAY DATE 01JUN85 

DAY DATE NO.l NO.2 NO.3 
1 01JUN85 N Y Y 
2 02JUN85 N Y Y 
3 030UN85 Y Y Y 
4 04JUN85 Y Y Y 
6 06JUN85 Y Y Y 
7 07JUN85 Y Y Y 
8 08JUN85 N Y Y 
9 09JUN85 N Y Y 
10 10JUN85 Y Y Y 
11 11JUN85 Y Y Y 
12 12JUN85 Y Y Y 
13 13JUN85 Y Y Y 
14 14JUN85 Y Y Y 
15 15JUN85 N Y Y 

15 05JUN85 Y Y Y 
D6 
6 06JUN85 Y Y Y 

OPTION ? 

Figure A-3. Calendar input screen 

either listed "L" or edited "E". If "L" is entered for the OPTION ?, 

then LINE % prompts for the file line number from which the screen is to 

start listing the calendars entries. The file is listed one screen at a 

time followed by a prompt to continue to the next screen or return to 

main menu. 

The list option does not allow changes to be made in the calendar 
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file and only lists the file. If changes are to be made to the calendar 

file, then "E" or blank Is entered at the Initial OPTION %. 

The calendar screen assigns a calendar date to each time scale 

point, sets the project start date, and defines three work day calendars. 

When the screen Is first entered using the edit option, the cursor will 

be on the START DAY DATE. If the proper value Is displayed press enter, 

otherwise type the start date In day/month/year format (01JUN85, e.g.) 

and enter. The cursor will then move under the DAY column where a time 

scale point number can be typed and enter. The cursor will then move to 

the CALENDAR DATE column where the calendar date can be typed and enter. 

At this point, the cursor will be under the NO.l column so that a "N", If 

the day Is not a work day, or a "Y", If the day Is a work day, can be 

typed and enter. The worked day calendars can be entered until the 

cursor returns to the DAY column. 

If an error Is made, the line can be retyped. For deletion of a date 

in the sequence, type a "D" In the DAY column and then the day number. 

To add a date in sequence, type "I" in the DAY column and then type In a 

new line as shown in figure A-3. 

Activity Input File 

Option "A" calls the activity input screen. When the option is 

first entered, the activity file can be either listed "L" or edited "E" 

as in the calendar option. If "E" or blank is entered, the screen is 

set for editing as in figure A-4. 
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ID DESCRIPTION 
1 ACTIVITY 7 
2 ACTIVITY 5 
3 ACTIVITY 8 
4 ACTIVITY 12 
5 ACTIVITY 14 
6 ACTIVITY 6 
7 ACTIVITY 9 
8 ACTIVITY 11 
9 ACTIVITY 13 
10 ACTIVITY 10 

ACTIVITIES 
MAXIMUM ID NUMBER 10 

SCH.DATE DUR CAL RESOURCES TYPE 
01JUN85S 10 1 30 1 

10 1 10 
14 1 42 
20 1 80 
50 1 100 
20 1 20 
13 1 52 
24 1 72 
30 1 90 
12 1 60 

11 ERROR 
Dll 

OPTION ? 

Figure A-4. Activity Input screen 

On entering the screen, the cursor will be at MAXIMUM ID NUMBER 

This number limits the number of activity IDs that the system needs to 

process and so greatly reduces the processing time when lower numbers 

are selected. The number can be changed at any time and is initially 

set at the maximum capacity of the system. 

cursor will move to the ID column so that the activity data; 

identification number; description; schedule date followed by start "S" 

or finish "F"; activity duration in work days; activity calendar number 

as defined on the calendar screen; total resources assigned to the 

activity; and the type identification of the resource (1-5) can be 

entered. 

If an error is made, the line is reentered. If a line needs to be 
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deleted, enter "D" in the ID column and the activity identification 

number. Since activities are uniquely defined by ID numbers, the "I" 

option is not available on the "A" screen. 

Relationship Input File 

Option "R" calls the relationships screen. When the screen is 

first entered, the file can be either listed "L" or edited "E" as in the 

calendar option. If "E" or blank is entered, the screen is set for 

editing as in figure A-5. 

RELATIONSHIPS 
NUMBER OF RELATIONSHIPS 16 
REL. PRED. SUCC. TYPE LAG CAL 
1 1 2 S 0 G 
2 1 3 N G G 
3 1 8 N G G 
4 1 9 N G G 
5 1 4 S G G 
6 1 5 S G G 
7 2 10 N G G 
8 3 6 N G G 
9 4 6 N G G 
10 3 7 N G G 
11 4 7 N G G 
12 5 10 F G G 
13 7 10 N 0 G 
14 8 10 N G 0 
15 6 10 F G G 
16 9 10 F G 0 

OPTION ? 

Figure A-5. Relationships input screen 

On entering the screen, the cursor will be at NUMBER OF 

RELATIONSHIPS. This entry limits the number of relationships the 

will process and can be changed at any time. When first entering 

system 

the 
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screen, the number will be set at the maximum number of relationships 

the system can hold. 

After typing the current number of relationships and entering, the 

cursor will move to the REL column. Now the relationships data, the 

relationship identification number, the predecessor identification 

number, the successor Identification number, the relationship type ("S"-

start to start, "N"-f1nish to start, "F"-f1nish to finish, and "B"-

finish to start), the lag in working days, and the calendar of the lag 

can be entered. 

Deletions and insertions are the same as for the calendar screen. 

Processing the PPM Network 

The calendar, activity, and relationships files complete the input 

of the PDM network data. To process the network, select "U" from the 

master menu and enter. The results are listed on five output screens, 

two (2) of which have the same format but a different listing sequence. 

Critical Path Li sting in Early Start Seguence 

Option "RE" calls the critical path listing In early start 

sequence. When the screen is first entered, a second option of LINE % 

pauses the program so that the listing can be started on any report line 

number entered. 

The report consists of the project duration in the CPM time scale 

Increments and two (2) output lines for each activity. Line one (1) is 

the activity identification; the description of the activity; the 

schedule date, start or finish; the duration in worked days; the 
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activity calendar number; the total resources for the activity; the type 

of resource; the total float In work days; the free float In work days; 

and an asterisk for critical activities. The second line Is the CPM 

time scale early start time and the early start date; the early finish 

time and date; late start time and date; and late finish time and date. 

The report is listed one screen at a time as shown in figure A-6, 

CRITICAL PATH TABLE 
PROJECT DURATION 70 

ID DESCRIPTION SCH.DATE DUR CAL RESOURCES TYPE TF FF 
EARLY START EARLY FINISH LATE START LATE FINISH 

1 ACTIVITY 7 01JUN83S 10 1 30 1 0 0 
3 -03JUN85 14-14JUN85 3 -03JUN85 14-14JUN85 

2 ACTIVITY 5 10 1 10 1 28 28 
3 -03JUN85 14-14JUN85 41-11JUL85 54-24JUL85 

4 ACTIVITY 12 20 1 80 1 5 5 
3 -03JUN85 28-28JUN85 10-10JUN85 35-05JUL85 

5 ACTIVITY 14 50 1 100 1 0 0 
3 -03JUN85 70-09AUG85 3 -03JUN85 70-09AUG85 

3 ACTIVITY 8 14 1 42 1 1 0 
17-17JUN85 34-04JUL85 18-18JUN85 35-05JUL85 

8 ACTIVITY 11 24 1 72 1 4 4 
17-17JUN85 48-18JUL85 21-21JUN85 54-24JUL85 

9 ACTIVITY 13 30 1 90 1 10 10 
17-17JUN85 56-26JUL85 31-01JUL85 70-09AUG85 

6 ACTIVITY 6 20 1 20 1 6 6 
35=05JLU85 62=C1AU685 45-15JUL85 70-0SAuSS5 

7 ACTIVITY 9 13 1 52 1 1 1 
35-0RJUL85 53-23JUL85 38-08JUL85 54-24JUL85 

10 ACTIVITY 10 12 1 60 1 0 0 
55-25JUL85 70-09AUG85 55-25JUL85 70-09AUG85 

OPTION ? 

Figure A-6. Critical path listing screen 

followed by a prompt to continue to the next screen by entering blank or 

to return to main menu by entering any option. 
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Critical Path Table Listing in Input Sequence 

The "RA" option calls the same report and screen format as the "RE" 

option above with the exception that the activities are listed In 

ID number sequence. The report Is used primarily to check the validity 

of the data input. 

Resource Listing 

The "RS" option calls for a resource listing by CPM time scale 

point and date. When the screen is first entered, a second option of 

LINE 2 pauses the program so that the report can be started on any line 

number entered. 

Figure A-7 is the resource screen for the example problem. The 

RESOURCES 
START DAY DATE 01JUN85 

DAY DATE TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5 
1 01JUN85 0 0 0 0 0 
2 02JUN85 0 0 0 0 0 
3 03JUN85 10 0 0 0 0 
4 04JUN85 10 0 0 0 0 
5 05JUN85 10 0 0 0 0 
6 06JUN85 10 0 0 0 0 
7 07JUNS5 10 0 0 0 0 
8 08JUN85 0 0 0 0 0 
9 09JUN85 0 0 0 0 0 
10 10JUN85 10 0 0 0 0 
11 11JUN85 10 0 0 0 0 
12 12JUN85 10 0 0 0 0 
13 13JUN85 10 0 0 0 0 
14 14JUN85 10 0 0 0 0 
15 15JUN85 0 0 0 0 0 

OPTION ? 

Figure A-7. Resource report screen 
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report consists of the start date of the project and a listing of the 

daily usage of each of the five (5) types of resources. 

The report is listed one (1) screen at a time followed by a prompt 

to continue to the next screen by entering blank or to return to main 

menu by entering any option. 

If all the screens of the resource listing are displayed and 

summarized, the resources usage, which in this case would be men per 

day, would be as in table A-3. Although this is not a report of the RDM 

Table A-3. Resource usage report summary 

Date Men Date Men Date Men Date Men 

16JUN85 0 01JUL85 11 16JUL85 13 31JUL85 8 
17JUN85 15 02JUL85 11 17JUL85 13 01AUG85 8 
18JUN85 15 03JUL85 11 18JUL85 13 02AUG85 7 
19JUN85 15 04JUL85 11 19JUL85 10 03AUG85 0 
20JUN85 15 05JUL85 13 20JUL85 0 04AUG85 0 
21JUN85 15 06JUL85 0 21JUL85 0 05AUG85 7 
22JUN85 0 07JUL85 0 22JUL85 10 06AUG85 7 
23JUN85 0 08JUL85 13 23JUL85 10 07AUG85 7 
24JUN85 15 09JUL85 13 24JUL85 6 08AUG85 7 
25JUM85 15 1CJUL85 13 25JUL85 11 CSAUG85 7 
26JUN85 15 11JUL85 13 26JUL85 11 10AUG85 0 
27JUN85 15 12JUL85 13 27JUL85 0 11AUG85 0 
28JUN85 15 13JUL85 0 28JUL85 0 12AUG85 0 
29JUN85 0 14JUL85 0 29JUL85 8 13AUG85 0 
3DJUN85 0 15JUL85 13 30JUL85 8 14AUG85 0 

program listed here, the table and following graph, figure A-8, are the 

mandays curve for the minimum activity man counts needed to complete the 

example ten (10) activity network in fifty (50) days. 
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15 + 

Mandays 
10 ••••• 

5 + 

0  +  . .+  . .— .+  . .—+—. ,  + .  . .+  . .—+— 
3 10 20 30 40 50 60 70 

Project day 

Figure A-8. Mandays curve 

Bachart or Gantt Chart 

The "BC" option calls the Gantt or bar chart. Since most barcharts 

would exceed not only the height, but also the width of the computer 

display screen, the Intermediate options of START 7. and LINE % allow the 

screen display of the chart to be started at any selected time scale 

point and at any activity line. The Barchart for the example precedence 

diagram is shown in figure A-9. 

The report consists of a time scale, a list of activity 

identification numbers, activity descriptions, and a set of bars 

representing the scheduled times for the listed activity with a "C" for 

critical, "X" for noncritical, and for free float. 
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ID 
1 

DESCRIPTION 
ACTIVITY 7 

2 ACTIVITY 5 

4 ACTIVITY 12 

5 ACTIVITY 14 

3 ACTIVITY 8 

8 ACTIVITY 11 

9 ACTIVITY 13 

6 ACTIVITY 6 

7 ACTIVITY 9 

10 ACTIVITY 10 

BARCHART 
01JUN85 15JUN85 29JUN85 
1 08JUN85 22JUN85 06JUL85 
CCCCC CCCCC 

XXXXX 

XXXXX 

CCCCC 

OPTION ? 

Figure A-9. Barchart screen 

XXXXX 

XXXXX 

CCCCC 

1 1 1 1 1 

XXXXX XXXXX 
1 

1 
CCCCC CCCCC CCCCC 

1 
CCCCC 

XXXXX XXXXX XXXX-
1 

XXXXX XXXXX XXXXX 
1 
XXXXX 

XXXXX XXXXX XXXXX 
1 
XXXXX 

1 
X 

1 
XXXXX 

1 
X 

1 

XXXXX 

Precedence Diagramming Method BASIC Code 

The BASIC prOgrâm Cûuê fOr tnê rurî iïiëtnOu 13 rôtnêr CwiïîpTêX, 

depending on multiple branching, multiple subroutines, and extensive 

reuse of report headings and output lines. Because of these 

complexities, the code will only be listed rather than documented in 

detai1. 

Precedence Diagramming Method — MAIN-PDM 

1 REM * PRECEDENCE DIAGRAMMING METHOD * 
2 REM MAIN-PDM-

3 ACT=100 
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4 CAL=1464 
5 REL=300 
6 DIM A(ACT,10) 
7 DIM A$(ACT) 
8 DIM H(5) 
9 DIM R(REL,5) 
10 DIM S$(ACT) 
11 DIM S(REL) 
12 DIM Z$(CAL) 
13 EN=0 
14 NACT=100 
15 NREL=0 
16 U=0 
17 CLS 
18 PRINT "" 
19 LOCATE 2,20:PRINT 
20 LOCATE 4,28:PRINT 
21 LOCATE 6,29:PRINT 
22 LOCATE 7,19:PRINT 
23 LOCATE 8,31:PRINT 
24 LOCATE 10,30:PRINT 
25 LOCATE 11,22:PRINT 
26 LOCATE 12,22:PRINT 
27 LOCATE 14.26:PRINT 
28 LOCATE 15,19:PRINT 
29 LOCATE 16,27:PRINT 
30 GOSUB 623 
31 GOSUB 623 
32 LOCATE 21,9:INPUT " 
33 U=U+1 
34 1=1 
35 V=2 
36 X=1 
37 Y=CAL 
38 Z=1 
39 IF P$="C" THEN GOSUB 126 
40 V=3 
41 X=2 
42 Y=NACT 
43 1=2 
44 IF P$="A" THEN GOSUB 126 
45 V=4 
46 X=3 
47 Y=NREL 
48 Z=3 
49 IF P$="R" THEN GOSUB 126 
50 V=0 

"PRECEDENCE DIAGRAM NETWORKING MENU" 
"M-RETURN TO MENU" 
"* DATA FILES *" 

"C-CALENDAR A-ACTIVITY R-RELATION" 
"U-UPDATE" 
"* REPORTS *" 

"RE-BY STARTS RA-BY ACTIVITY" 
"RS-RESOURCES BC-BARCHART" 
"* FILE MAINTENANCE *" 

"E-EDIT L-LIST I-INSERT D-DELETE" 
"S-SAVE F-FETCH" 

",P$ 



52 Y=NACT 
53 Z=4 
54 1=2 
55 IF P$="RE" THEN GOSUB 126 
56 V=1 
57 IF P$="RA" THEN GOSUB 126 
58 X=5 
59 Y=9999 
60 Z=5 
61 IF P$="RS" THEN GOSUB 126 
62 X=6 
63 Y=NACT 
64 Z=6 
65 IF P$="BC" THEN GOSUB 397 
66 IF U=1 THEN 33 
67 IF P$="U" THEN GOSUB 156 
68 IF P$<>"F" THEN 100 
69 OPEN "I".#1,"DATA" 
70 FOR C=1 TO CAL 
71 INPUT #1.Z$(C) 
72 NEXT C 
73 FOR R=1 TO REL 
74 FOR 1=1 TO 5 
75 INPUT #1,B$ 
76 R(R,I)=VAL(B$) 
77 NEXT I 
78 NEXT R 
79 FOR A=1 TO ACT 
80 INPUT #1.A$(A) 
81 INPUT #1,S$(A) 
82 IF S$(A)="X" THEN S$(A)=" 
83 INPUT #1,B$ 
84 S(A)=yAL(B$) 
85 FOR 1=1 TO 10 
86 INPUT #1.B$ 
87 A(A,I)=VAL(B$) 
88 NEXT I 
89 NEXT A 
90 INPUT #1,B$ 
91 NACT=VAL(B$) 
92 INPUT #1,B$ 
93 NREL=VAL(B$) 
94 INPUT #1.B$ 
95 BEGIN=VAL(B$) 
96 INPUT #1.8$ 
97 EN=VAL(B$) 
98 INPUT #1,B$ 
99 CLOSE #1 
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100 IF P$<>"S" THEN 125 
101 OPEN "0",#1."DATA" 
102 FOR C=1 TO CAL 
103 PRINT #1.Z$(C) 
104 NEXT C 
105 FOR R=1 TO REL 
106 FOR 1=1 TO 5 
107 PRINT #1,STR$(R(R.I)) 
108 NEXT I 
109 NEXT R 
110 FOR A=1 TO ACT 
111 PRINT #1,A$(A) 
112 IF S$(A)=" " THEN PRINT #1,"X" 
113 IF S$(A)<>" " THEN PRINT #1,S$(A) 
114 PRINT #1.STR$(S(A)) 
115 FOR 1=1 TO 10 
116 PRINT #1.STR$(A(A,I)) 
117 NEXT I 
118 NEXT A 
119 PRINT #1,STR$(NACT) 
120 PRINT #1,STR$(NREL) 
121 PRINT #1,STR$(BEGIN) 
122 PRINT #1,STR$(EN) 
123 PRINT #1,B$ 
124 CLOSE #1 
125 GOTO 16 
126 IF P$<>"L" AND 1=1 THEN GOSUB 147 
127 IF P$<>"L" AND 1=2 THEN GOSUB 131 
128 IF P$="L" THEN GOSUB 131 
129 IF P$="L" OR P$="E" THEN 126 
130 RETURN 
131 U-1 
132 ON X GOSUB 596î600î604î6QSi6î3i616 

133 GOSUB 627 
134 IF P$<>"" AND G=99999! THEN RETURN 
135 IF G<=0 OR G>Y THEN G=1 
136 FOR W=G TO Y 
137 ON Z GOSUB 345,349,353,359,377,405 
138 IF L<19 THEN 143 
139 GOSUB 623 
140 LOCATE 21,9:INPUT "",P$ 
141 IF P$<>"" THEN RETURN 
142 ON X GOSUB 596,600,604,608,613,616 
143 NEXT W 
144 GOSUB 623 
145 LOCATE 21,9:INPUT "",P$ 
146 RETURN 
147 U=1 
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148 W=0 
149 ON X GOSUB 596.600,604,608,613,616 
150 GOSUB 623 
151 ON V-1 GOSUB 429,479,531 
152 IF 6»99999! AND ?$<>"" THEN RETURN 
153 IF W<Y THEN W=W+1 
154 IF L<19 THEN 150 
155 GOTO 149 
156 CLS 
157 FOR D=1 TO CAL 
158 IF B$=MID$(Z$(D),4,7) THEN 161 
159 NEXT D 
160 D=1 
161 BEGIN=D 
162 FOR A=1 TO NACT 
163 IF ""=MID$(S$(A),1,1) THEN 174 
164 A(A,3)=BEGIN 
165 A(A,4)=CAL 
166 IF " "=MID$(S$(A).2.7) THEN 174 
167 FOR G=BE6IN TO CAL 
168 D=G 
169 H$=MID$(S$(A),2,7) 
170 IF H$=MID$(Z$(G),4,7) THEN 172 
171 NEXT G 
172 IF "S"=MID$(S$(A),1,1) THEN A(A.3)=D 
173 IF "F"=MID$(S$(A),1,1) THEN A(A,4)=D+1 
174 NEXT A 
175 FOR R=1 TO NREL 
176 S(R)=R 
177 NEXT R 
178 IF NREL<=1 THEN 195 
179 Y=NREL 
180 Y«INT(Y/2) 
181 FOR Z=1 TO NREL-Y 
182 IF R(Z+Y,1)=0 THEN 193 
183 H(1)=R(S(Z+Y),1) 
184 H(2)=R(S(Z+Y),2) 
185 H(3)=S(Z+Y) 
186 FOR W=Z TO 1 STEP -Y 
187 IF R(W,1)=0 THEN 193 
188 IF R(S{W),1)<H(1) THEN 192 
189 IF R(S(W),1)=H(1) AND R(S(W),2)<H(2) THEN 192 
190 S(W+Y)=S(W) 
191 NEXT W 
192 S(W+Y)=H(3) 
193 NEXT Z 
194 IF Y>1 THEN 180 
195 6=1 
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196 FOR 1=1 TO NACT 
197 IF ""=MID$(S$(I),1,1) THEN 241 
198 DUR=A(I,5) 
199 CL=A(I,6) 
200 N0W=A(I,3) 
201 GOSUB 665 
202 A(I,3)=N0W+CDUR 
203 IF NREL=0 THEN 241 
204 FOR F=G TO NREL 
205 R=S(F) 
206 IF R(R,1)<I OR R(R,1)=0 THEN 239 
207 IF R(R,1)>I THEN 240 
208 J=R(R,2) 
209 IF J>NACT THEN 240 
210 N0W=A(I.3) 
211 X=R(R,3) 
212 IF XOl AND X<>3 THEN 217 
213 CL=A(I,6) 
214 DUR=A(I.5) 
215 GOSUB 676 
216 NOW=NOW-CDUR 
217 CL=R(R,5) 
218 DUR=R(R,4) 
219 IF DUR>=0 THEN 224 
220 DUR=-DUR 
221 GOSUB 676 
222 NOW=NOW-CDUR 
223 GOTO 226 
224 GOSUB 665 
225 NOW=NOW+CDUR 
226 IF X02 AND X<>3 THEN 238 
227 CL=A(J,6) 
228 DUR=A(J.5) 
229 GOSUB 676 
230 X=NOW 
231 NOW=NOW-CDUR 
232 GOSUB 665 
233 IF X=NOW+CDUR THEN 238 
234 DUR=DUR-1 
235 NOW=X 
236 GOSUB 676 
237 NOW=NOW-CDUR 
238 IF A(J,3)<N0W THEN A(J,3)=N0W 
239 NEXT F 
240 G=F 
241 NEXT I 
242 EN=0 
243 FOR A=1 TO NACT 
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244 IF ""=MID$(S$(A).1.1) THEN 249 
245 F=A(A.3) 
246 G=A(A,4) 
247 IF "F"=MID$(S$(A),1,1) AND F>6 THEN F=G 
248 IF EN<F THEN EN=F 
249 NEXT A 
250 FOR A=1 TO NACT 
251 IF ""=MID$(S$(A).1,1) THEN 253 
252 IF "F"<>MID$(S$(A),1.1) OR EN<A(A,4) THEN A(A,4)=EN 
253 NEXT A 
254 IF NREL=0 THEN 274 
255 6=1 
256 FOR X=1 TO NACT 
257 J=NACT-X+1 
258 IF ""=MID$(S$(J),1,1) THEN 273 
259 IF G=NREL THEN 264 
260 FOR Y=G TO NREL 
261 IF J>=R(S(NREL-Y+1),1) THEN 263 
262 NEXT Y 
263 G=Y 
264 FOR F=1 TO NREL-G+1 
265 R=S(F) 
266 IF J<>R(R,2) THEN 272 
267 I=R(R,1) 
268 IF I>NACT THEN 272 
269 N0W=A(J,4) 
270 GOSUB 630 
271 IF N0W<A(I,4) THEN A(I,4)=N0W 
272 NEXT F 
273 NEXT X 
274 G=1 
275 FOR 1=1 TO NACT 
276 IF «-=MïD$(S$(î),ia) THEN 323 
277 A(I.8)=CAL 
278 IF NREL=0 THEN 292 
279 FOR F=G TO NREL 
280 R=S(F) 
281 IF R(R,1)<I THEN 291 
282 IF R(R,1)=I THEN 285 
283 G=F 
284 GOTO 292 
285 J=R(R,2) 
286 IF J>NACT THEN 291 
287 N0W=A(J,3) 
288 GOSUB 630 
289 H=N0W-A(I,3) 
290 IF H>=0 AND H<A{I.8) THEN A(I,8)=H 
291 NEXT F 
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292 CL=A(I,6) 
293 X=A(I.3) 
294 Y=A(I,4) 
295 F=Y-X 
296 IF CL<=0 OR X<=0 OR Y<=0 THEN 308 
297 F=0 
298 IF X=Y THEN 308 
299 IF X<Y THEN 302 
300 X=Y 
301 Y=A(I,3) 
302 FOR Z=X TO Y-1 
303 IF Z>CAL THEN 305 
304 IF "N"=MID$(Z$(Z),CL,1) THEN 306 
305 F=F+1 
306 NEXT Z 
307 IF A(I.3)>A(I.4) THEN F=-F 
308 A(I,7)=F 
309 IF A(I,7)<A(I,8) THEN A(I.8)=A(I,7) 
310 H=1 
311 DUR=A(I,5) 
312 IF DUR=0 THEN H=0 
313 N0W=A(I,3) 
314 GOSUB 676 
315 A(I,3)=N0W-H 
316 A(I,2)=N0W-CDUR 
317 N0W=A(I,4) 
318 GOSUB 676 
319 NOW=NOW-CDUR 
320 GOSUB 665 
321 A(I,4)=N0W 
322 A(I,1)=N0W+CDUR-H 
323 NEXT I 
324 FOR A«1 TO NACT 
325 S(A)=A 
326 NEXT A 
327 IF NACT<=1 THEN 343 
328 Y=NACT 
329 Y=INT(Y/2) 
330 FOR Z=1 TO NACT-Y 
331 IF •"•=MID$(S$(Z+Y),1,1) THEN 341 
332 H(1)=A(S(Z+Y),2) 
333 H(2)=S(Z+Y) 
334 FOR W=Z TO 1 STEP -Y 
335 IF ""=MID$(S$(W),1,1) THEN 341 
336 IF A(S(W),2)<H(1} THEN 340 
337 IF A(S(W),2)=H(1) AND S(W)<H(2) THEN 340 
338 S(W+Y)=S(W) 
339 NEXT W 
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340 S(W+Y)=H(2) 
341 NEXT Z 
342 IF Y>1 THEN 329 
343 EN=EN-BEGIN 
344 RETURN 
345 IF " "=MID$(Z$(W),1,10) OR LEN(Z$(W))=0 THEN RETURN 
346 LOCATE L,21:PRINT WrLOCATE L.27rPRINT MID$(Z$(W),4,7):LOCATE L,36 

rPRINT MID$(Z$(W),1,1):L0CATE L,41:PRINT MID$(Z $(W),2,1):LOCATE 
L.46:PRINT MID$(Z$(W),3.1) 

347 L=L+1 
348 RETURN 
349 IF ""=MID$(S$(W).1,1) THEN RETURN 
350 LOCATE L.6:PRINT W:LOCATE L,11;PRINT A$(W):LOCATE L,44:PRINT 

MID$(S$(W),2,7);MID$(S$(W),l,l)rL0CATE L,52rPRINT A(W.5):L0CATE 
L,56:PRINT A(W,6):LOCATE L,60:PRINT A(W,9):LOCATE L,70:PRINT A(W,10) 

351 L=L+1 
352 RETURN 
353 IF R(W.1)=0 THEN RETURN 
354 T=R(W,3) 
355 GOSUB 692 
356 LOCATE L,21:PRINT W:LOCATE L,26:PRINT R(W,1):L0CATE L,33:PRINT 

R(W,2):L0CATE L,40:PRINT P$:LOCATE L,44:PRINT R(W,4):L0CATE L,48 
:PRINT R(W.5) 

357 L=L+1 
358 RETURN 
359 A=W 
360 IF V=0 THEN A=S(W) 
361 IF A=0 THEN RETURN 
362 IF ""=MID$(S$(A),1,1) THEN RETURN 
363 LOCATE L,1:PRINT A:LOCATE L.6:PRINT A$(A):LOCATE L,39:PRINT 

MID$(S$(A),2,7);MID$(S$(A).1,1):L0CATE L,47:PRINT A(A,5):L0CATE 
L,51rPRINT A(A,6):LOCATE L.55:PRINT A(A,9):LOCATE L,64:PRINT 
A (A. 10): LOCATE L,65:PRINT A(A,7):LCCATE L.73;PRIN'T A(A,S) 

364 IF A(A,7)<>0 THEN 366 
365 LOCATE L,78:PRINT 
366 L=L+1 
367 H=A(A.2) 
368 FOR G=ll TO 56 STEP 15 
369 IF G=26 THEN H=A(A,3) 
370 IF G=41 THEN H=A(A,4) 
371 IF G=56 THEN H=A(A,1) 
372 IF H<=0 OR H>CAL THEN 374 
373 LOCATE L,G:PRINT H: LOCATE L,G+4:PRINT "-";MID$(Z$(H).4,7) 
374 NEXT G 
375 L=L+1 
376 RETURN 
377 FOR 1=1 TO 5 
378 H(I)=0 
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379 NEXT I 
380 FOR A=1 TO NACT 
381 IF ""=MID$(S$(A),1,1) OR A(A.9)<=0 OR A(A,2)>W THEN 391 
382 CL=A(A.6) 
383 IF W>CAL OR CL=0 THEN 385 
384 IF "N"=MID$(Z$(W).CL,1) THEN 391 
385 DUR=A(A,5) 
386 IF DUR=0 THEN 391 
387 IF A(A,3)<W THEN 391 
388 1=1 
389 IF A(A,10)>0 AND A(A.10)<6 THEN I=A(A,10) 
390 H(I)=H(I)+(A(A.9)/DUR) 
391 NEXT A 
392 LOCATE L,3:PRINT W:LOCATE L.15:PRINT H(1):L0CATE L,27:PRINT H(2) 

:LOCATE L,39:PRINT H(3):L0CATE L,51;PRINT H(4):L0CATE L,63:PRINT 
H(5) 

393 IF W>CAL THEN 395 
394 LOCATE L.8:PRINT MID$(Z$(W),4,7) 
395 L=L+1 
396 RETURN 
397 CLS 
398 LOCATE 1,25:PRINT "BARCHART":LOCATE 21,1:PRINT "START ?":LOCATE 21,8 

:INPUT "",P$ 
399 GOSUB 655 
400 IF P$<>"" AND 6=99999! THEN RETURN 
401 V=G 
402 IF 6=99999! THEN V=BE6IN 
403 60SUB 131 
404 RETURN 
405 A=S(W) 
406 IF A=0 THEN RETURN 
407 IF ""=MID$(S$(A),1,1) THEN RETURN 
408 LOCATE L.1:PRINT A:LOCATE L.5:PRINT ASfAliLOCATE L+1.37:PRINT "!" 

:LOCATE L+1,44:PRINT LOCATE L+l,51:PRINt "|":LOCATE L+1,58 
:PRINT "|":LOCATE L+1,65:PRINT "|";LOCATE L+1,72:PRINT " I "  

409 IF A(A,2)>V+34 OR A(A,1)<V THEN 427 
410 CL=A(A,6) 
411 DUR=A(A.5) 
412 F=A(A,7) 
413 1=0 
414 IF A(A,2)>V THEN I=A(A.2)-V 
415 FOR H=I TO 41 
416 IF A(A,1)<V+H THEN 427 
417 IF H+V>CAL OR CL=0 THEN 419 
418 IF "N"=MID$(Z$(V+H),CL,1) THEN 426 
419 IF F<0 OR DUR=0 OR A(A,3)<V+H THEN 425 
420 IF F=0 THEN 423 
421 LOCATE L,H+37:PRINT "X" 
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422 GOTO 426 
423 LOCATE L,H+37:PRINT "C" 
424 GOTO 426 
425 LOCATE L.H+37:PRINT 
426 NEXT H 
427 L=L+2 
428 RETURN 
429 IF WOO THEN 431 
430 LOCATE 2,41:INPUT "",P$ 
431 IF W<=0 THEN 433 
432 LOCATE L,22:INPUT "",P$ 
433 GOSUB 655 
434 IF P$="" THEN 438 
435 IF P$="I" THEN 452 
436 IF P$="D" THEN 443 
437 IF (W>0 AND G=99999!) OR P$="L" OR P$="M" OR P$="A" OR P$="R" OR 

P$="U" OR P$="RE" OR P$="RA" OR P$="RS" OR P$="BC" THEN RETURN 
438 IF W>0 THEN 460 
439 G=0 
440 IF P$<>"" THEN B$=P$ 
441 LOCATE 2,41:PRINT B$ 
442 RETURN 
443 LOCATE L,21:PRINT "D ":LOCATE L,22:INPUT "",P$ 
444 GOSUB 655 
445 IF G=99999! THEN 443 
446 FOR H=G TO CAL-1 
447 Z$(H)=Z$(H+1) 
448 NEXT H 
449 Z$(CAL)=" 
450 LOCATE L,22:PRINT P$ 
451 GOTO 477 
452 LOCATE L,21:PRINT "I ":LOCATE L,22:INPUT "",P$ 
453 GOSUB 655 
454 IF G=99999! THEN 453 
455 FOR H=G TO CAL-1 
456 H$=Z$(H+1) 
457 Z$(H+1)=Z$(G) 
458 Z${G)=H$ 
459 NEXT H 
460 IF G<=CAL THEN W=G 
461 IF W<»0 THEN 429 
462 LOCATE L,21:PRINT W:LOCATE L,27:INPUT "",P$ 
463 GOSUB 625 
464 IF LEN(Z$(M))=0 THEN Z$(W)="YYY 
465 IF P$<>"" THEN Z$(W)=MID$(Z$(W),1,3)+P$ 
466 LOCATE L,27:PRINT MID$(Z$(W).4.7) 
467 G=36 
468 FOR H=1 TO 3 
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469 LOCATE L.G:INPUT "".P$ 
470 IF P$<>"Y" AND P$<>"N" AND P$<>"" THEN 469 
471 IF P$="" THEN 474 
472 IF H=1 THEN Z$(W)=P$+MID$(Z$(W),2.9) 
473 IF H>1 THEN Z$(M)=LEFT$(Z$(W).H-1)+P$+MID$(Z$(W).H+1.10-H) 
474 LOCATE L.GrPRINT MID${Z$(W),H,1) 
475 G=G+5 
476 NEXT H 
477 L=L+1 
478 RETURN 
479 IF WOO THEN 481 
480 LOCATE 2.48:INPUT "",P$ 
481 IF W<=0 THEN 483 
482 LOCATE L.7:INPUT "",P$ 
483 GOSUB 655 
484 IF P$="" THEN 491 
485 IF P$="I" THEN 482 
486 IF P$="D" THEN 494 
487 IF G=99999! THEN RETURN 
488 IF W>0 THEN 504 
489 IF 6<=ACT THEN NACT=G 
490 Y=NACT 
491 IF W>0 THEN 504 
492 LOCATE 2.47;PRINT NACT;" 
493 RETURN 
494 LOCATE L.6:PRINT "D ":LOCATE L.7:INPUT "".P$ 
495 GOSUB 655 
496 IF G=99999! THEN 495 
497 A$(G)="" 
498 S$(6)="" 
499 FOR H=1 TO 10 
500 A(G,H)=0 
501 NEXT H 
502 LOCATE L.7:PRINT P$ 
503 GOTO 528 
504 IF G<=NACT THEN W=G 
505 IF W<=0 THEN 479 
506 IF LEN(S$(W))=0 THEN S$(W)=" 
507 LOCATE L,6:PRINT W:LOCATE L,11:INPUT "",P$ 
508 GOSUB 625 
509 IF P$0"" THEN A$(W)=P$ 
510 LOCATE L.11;PRINT A$(W):LOCATE L,44:INPUT "".P$ 
511 IF P$="" THEN 514 
512 IF RIGHT$(P$,1)0" " AND RIGHT$(P$.1)<>"S" AND RIGHT$(P$.1)<>"F" 

THEN 510 
513 S$(W)=RIGHT$(P$,1)+LEFT$(P$,7) 
514 LOCATE L,44:PRINT MID$(S$(W),2,7);LEFT$(S$(W).l) 
515 LOCATE L,53:INPUT "",P$ 
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516 GOSUB 655 
517 IF G099999! THEN A(W.5)=G 
518 LOCATE L.52:PRINT A(W.5): LOCATE L,57;INPUT "" ,P$ 
519 GOSUB 655 
520 IF G<=3 THEN A(W,6)=G 
521 LOCATE L.56:PRINT A(W,6):LOCATE L,61:INPUT 
522 GOSUB 655 
523 IF G099999! THEN A(W.9)=G 
524 LOCATE L,60:PRINT A(W.9):LOCATE L,71:INPUT "".PS 
525 GOSUB 655 
526 IF G099999! AND G>0 AND G<6 THEN A(W,10)=G 
527 LOCATE L,70:PRINT A(W,10) 
528 L=L+1 
529 G=0 
530 RETURN 
531 IF WOO THEN 533 
532 LOCATE 2,50:INPUT "",P$ 
533 IF W<=0 THEN 535 
534 LOCATE L,22;INPUT "",P$ 
535 GOSUB 655 
536 IF P$="" THEN 543 
537 IF P$="I" THEN 559 
538 IF P$="D" THEN 546 
539 IF G=99999! THEN RETURN 
540 IF M>0 THEN 569 
541 IF G<=REL THEN NREL=G 
542 Y=NREL 
543 IF W>0 THEN 569 
544 LOCATE 2,49:PRINT NREL 
545 RETURN 
546 LOCATE L,21:PRINT "D ":LOCATE L,22:INPUT "",P$ 
547 GOSUB 655 
548 IF G®S93S9î THEN 547 
549 FOR F=G TO NREL-1 
550 FOR H=1 TO 5 
551 R(F,H)=R(F+1.H) 
552 NEXT H 
553 NEXT F 
554 FOR H=1 TO 5 
555 R(NREL.H)=0 
556 NEXT H 
557 LOCATE L,22:PRINT P$ 
558 GOTO 593 
559 LOCATE L,21:PRINT "I ":LOCATE L.22:INPUT «",P$ 
560 GOSUB 655 
561 IF G=99999! THEN 560 
562 FOR F=G TO NREL 
563 FOR H=1 TO 5 
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564 H(H)=R(F+1,H) 
565 R(F+1,H)=R(G,H) 
566 R(G,H)=H(H) 
567 NEXT H 
568 NEXT F 
569 IF G<=NREL THEN W=G 
570 IF W<=0 THEN 531 
571 LOCATE L.21:PRINT W:LOCATE L.27:INPUT "",P$ 
572 GOSUB 625 
573 GOSUB 655 
574 IF G099999! THEN R(W,1)=G 
575 IF R(W,1)<1 OR R(W,1)>NACT THEN 571 
576 LOCATE L,26:PRINT R(W,1):L0CATE L,34:INPUT "",P$ 
577 GOSUB 655 
578 IF G099999Î THEN R(W,2)=G 
579 IF R(W,1)>=R(W,2) OR R(W,2)<=0 THEN 576 
580 LOCATE L,33:PRINT R(W,2):L0CATE L,40:INPUT "",P$ 
581 T=R(W,3) 
582 IF P$<>"" THEN 584 
583 GOSUB 692 
584 GOSUB 687 
585 R(W,3)=T 
586 LOCATE L,40:PRINT P$:LOCATE L.45:INPUT "".P$ 
587 GOSUB 655 
588 IF G099999! THEN R(W.4)=G 
589 LOCATE L.44:PRINT R(W.4):LOCATE L,49:INPUT "",P$ 
590 GOSUB 655 
591 IF 6<=3 THEN R(W,5)=G 
592 LOCATE L,48:PRINT R(W,5) 
593 L=L+1 
594 G=0 
595 RETURN 
596 CLS 
597 LOCATE 1,32:PRINT "CALENDAR"; LOCATE 2,25:PRINT "START DAY DATE" 

: LOCATE 2,41:PRINT B$:LOCATE 3,20:PRINT " DAY DATE NO.l NO.2 
NO. 3" 

598 L=4 
599 RETURN 
600 CLS 
601 LOCATE 1.32:PRINT "ACTIVITIES":LOCATE 2,28:PRINT "MAXIMUM ID NUMBER" 

: LOCATE 2,47:PRINT NACT:LOCATE 3,7;PRINT "ID DESCRIPTION";LOCATE 
3,44:PRINT "SCH.DATE DUR CAL RESOURCES TYPE" 

602 L=4 
603 RETURN 
604 CLS 
605 LOCATE 1,29:PRINT "RELATIONSHIPS":LOCATE 2,22:PRINT "NUMBER OF RELAT 

lONSHIPS":LOCATE 2,49:PRINT NREL:LOCATE 3,22:PRINT "REL. PRED. SUCC. 
TYPE LAG CAL" 
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606 L=4 
607 RETURN 
608 CLS 
609 LOCATE 1,30:PRINT "CRITICAL PATH TABLE":LOCATE 2,30:PRINT "PROJECT D 

URATION ";EN:LOCATE 3,2:PRINT "ID DESCRIPTION":LOCATE 3,39:PRINT 
"SCH.DATE DUR CAL RESOURCE TYPE TF FF CR" 

610 LOCATE 4,12:PRINT "EARLY START EARLY FINISH LATE START LATE 
FINISH" 

611 L=5 
612 RETURN 
613 GOSUB 596 
614 LOCATE 1,32:PRINT "RESOURCES":LOCATE 3,4:PRINT "DAY DATE TYPE 

1 TYPE 2 TYPE 3 TYPE 4 TYPE 5" 
615 RETURN 
616 CLS 
617 LOCATE 1,35:PRINT "BARCHART":LOCATE 3,1:PRINT "ID DESCRIPTION" 

: LOCATE 3,36:PRINT V:LOCATE 3,43:PRINT V+7:L0CATE 3,50:PRINT V+14 
: LOCATE 3,57:PRINT V+21:L0CATE 3,64:PRINT V+28:LOCATE 3,71:PRINT 
V+35 

618 IF V+21>CAL THEN 621 
619 IF " "=MID$(Z$(V+35),4,7) OR LEN(Z$(V+35))=0 THEN 621 
620 LOCATE 2,37:PRINT MID$(Z$(V),4,7):LOCATE 2.51:PRINT MID$(Z$(V+14).4, 

7);L0CATE 2,65:PRINT MID$(Z$(V+28),4,7):LOCATE 3,44:PRINT MID$(Z$(V+ 
7),4,7):LOCATE 3,58:PRINT MID$(Z$(V+21),4,7):LOCATE 3,72;PRINT 
MID$(Z$(V+35),4,7) 

621 L=4 
622 RETURN 
623 LOCATE 21,1:PRINT "OPTION ?" 
624 RETURN 
625 LOCATE 21,1:PRINT " " 
626 RETURN 
627 LOCATE 21,1:PRINT "LINE ?":LOCATE 21,8:INPUT "",P$ 
628 GOSUB 655 
629 RETURN 
630 H=R(R,3) 
631 IF H=2 OR H=3 THEN 636 
632 DUR=A(J,5) 
633 CL=A(J,6) 
634 GOSUB 676 
635 NOW=NOW-CDUR 
636 DUR=R(R,4) 
637 CL=R(R,5) 
638 IF DUR>=0 THEN 643 
639 DUR=1-DUR 
640 GOSUB 665 
641 N0W=N0W+CDUR-1 
642 GOTO 645 
643 GOSUB 676 
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644 NOW=NOW-CDUR 
645 IF HOl AND H03 THEN RETURN 
646 CL=A(I,6) 
647 DUR=A(I,5). 
648 GOSUB 665 
649 H=NOW 
650 NOW=NOW+CDUR 
651 GOSUB 676 
652 IF H=NOW-CDUR THEN RETURN 
653 N0W=N0W-1 
654 RETURN 
655 IF P$="" THEN 660 
656 G=LEN(P$) 
657 FOR H=1 TO G 
658 G$=MID$(P$,H,1) 
659 IF G$="." OR G$="0" OR G$="l" OR G$="2" OR G$="3" OR G$="4" OR 

G$="5" OR G$="6" OR G$="7" OR G$="8" OR G$="9" OR (H=l AND G$="-") 
THEN 662 

660 6=99999! 
661 RETURN 
662 NEXT H 
663 6=VAL(P$) 
664 RETURN 
665 CDUR=DUR 
666 IF CL=0 THEN RETURN 
667 CDUR=0 
668 IF DUR=0 THEN RETURN 
669 FOR T=1 TO OUR 
670 CDUR=CDUR+1 
671 D=N0W+CDUR-1 
672 IF D>CAL OR D<=0 THEN 674 
673 IF "N"=MID$(Z$(D),CL,1) THEN 670 
674 NEXT T 
675 RETURN 
676 CDUR=DUR 
677 IF CL=0 THEN RETURN 
678 CDUR=0 
679 IF DUR=0 THEN RETURN 
680 FOR T=1 TO DUR 
681 CDUR=CDUR+1 
682 D=NOW-CDUR 
683 IF D>CAL OR D<=0 THEN 685 
684 IF "N"=MID$(Z$(D).CL,1) THEN 681 
685 NEXT T 
686 RETURN 
687 T=0 
688 IF P$="S" THEN T=1 
689 IF P$="F" THEN T=2 



690 IF P$="B" THEN T=3 
691 RETURN 
692 P$="N" 
693 IF. T=1 THEN P$="S" 
694 IF T=2 THEN P$="F" 
695 IF T=3 THEN P$-"B" 
696 RETURN 
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APPENDIX B: CORNER CUT METHOD 

The dual simplex method has been proven through actual applications 

to be a consistent method for solving LP problems. Although the method 

has not been Improved upon In the general application. In specific 

applications, variations of the method can be faster or more precise. 

The corner cut method Is a variation of the dual simplex method 

developed to Increase the precision maintained In solving a problem with 

nonlinear constraints approximated with supporting planes. Specifically 

for reducing the error inherent in finding the most geometric distant 

constraint from the simplex current point. 

There is a penalty for maintaining greater precision in that the 

number of iterations to reach an optimal solution is increased over the 

dual simplex method. But if the application requires the precision, as 

in the nonlinear problem were very small errors can greatly effect the 

optimal solution, the "corner cut" method is a valuable tool. 

Theory of Corner Cut Method 

The corner cut method, like the simplex method, starts with the 

solution point (0,0) at the origin defined by the zero axes. If this 

current point is not a feasible point, then it violates a set of 

constraints. From this set of constraints, the method evaluates all of 

the intersections that each constraint makes with the constraints 

defining the current point. From the intersection points of each 

constraint, the point with the minimum value of the objective function 
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is selected. If a tie is found for a constraint, then the point 

associated with the smallest column number in the tableau is selected. 

Of all the violated constraints and their minimum objective 

function value points, the constraint with the point that has maximum 

value of the objective is selected as the pivot row for a simplex 

transformation. If a tie is found, then the point associated with the 

constraint farthest from the current point is used. 

The current point is then set equal to the point selected above, 

and the tableau is transformed. This procedure is repeated until no 

violated constraints can be found, the current point is a minimum 

feasible solution. 

The Two Dimensional Case of the Corner Cut Method 

To visualize the method and to provide a geometry for the 

algorithm, the two (2) dimensional example 16 LP problem: 

minimize a*X+b*Y 

subject to; X >=0 (B-1) 
Y>-0 (B-2) 

c*X+d*Y>-e (B=3) 
g*X+h*Y>=f (B-4) 

a,b,c,d,e,f,g,h>0 

is defined where all the lower case letters are positive coefficients, 

and all constraints are in the greater than or equal form. The positive 

restrictions on the X and Y variables, as well as the nonnegative 

coefficients of the objective function, are requirements of the corner 

cut method (the dual version) as they are for the dual simplex method. 

Figure B-1 is the example 16 problem in graphic form. 
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\l .x=o 
(O.e) 

.c*X+d*Y=e 

Feasible region 
Y axis 

...g*X+h*Y=f 

a*X+b*Y=0 ...Y=0 

(0,0) Current point (e,0) 
N- c \ X axis 

Figure B-1. Corner cut method example 16 

The similarities of the corner cut method and the simplex method 

continues into the tableau where example 16 is shown in tableau B-1 with 

the pivot row still to be determined. 

1 X Y 

2= I 0 I a b I 

0 

0 

1 

0 1 I 
+ 

x= 

s= 1 p' I 

Tableau B-1. Corner cut method example 16 tableau 

The transformation of any constraint, as with the dual simplex 
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method, can be found with the augmented B Inverse matrix by: 

+ + + 
1 -a , â' ) * I 1 I 9' 1 = 1 -a+â'l-lÇ . â'?-l 1 

I B-IF I ÏÏ-1 I 
+ + + 

The first constraint (B-1), X>=0, Is transformed as follows: 

+——+ + 
1 - 0 . 1 , 0 1 * 1 1 1 0  0  1 0 , 1 , 0 1  

0  1 1 0  
I 

0  1 0  1  
+---—+. + 

where the slack x Is nonnegatlve and the constraint Is not violated. 

Constraint (B-2) Is transformed as: 

Again, the slack y Is nonnegatlve so the constraint Is not violated. 

Constraint (B-3) Is transformed as: 

In this case, the slack si Is negative so It Is one of the set of 

violated constraints. The violated constraint (B-3) intersects the 

current point's basis constraints X>=0 and Y>=0 at the two (2) point as 

shown in figure B-2. These points can be found directly from the 

tableau by a "partial" simplex pivot on the columns of the tableau which 

are associated with the intersections and are identified by the positive 

I -0 , 0 , 1 I ----> I 0 , 0 , 1 I 

e , c , u I V I -e , c , a I 
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b\l.x=o 
(0,e) t&New.poInt 

c*X+d*Y=e 
Feasible region 

Y axis 

(0,0) Current point (e,0) New point 
c nNjC axis 

Figure B-2. Corner cut method example 16, iteration one 

elements of the transformed constraint. (This step is the same as the 

dual simplex search for a pivot element. If no positive elements can 

be found, the constraint and the problem are Infeasible and the 

procedure stops.) 

— ^  

z =  I  O l a !  I  a ^  I  a  I  
I  c  I c i  

X —  I  0 I  1 I  
I  I  I  >  I  e  I  1  I  

y =  I  0  I  0  I  I  c  I  c  I  
I I I 

s =  I  - e  I  c  I  I  0  I  0  I  
•f"" ———— 

i 0 I 1 i 
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This partial transformation yields the value of the objective 

function and the coordinates for one (1) of two (2) intersection points. 

z=a*e x=e y=0 
c c 

The second point of intersection can be found in a similar manner 

with a partial pivot on the third column of the tableau: 

+ +—+ + +—+ 
z= I 0 1 b I I b*e 1 _ 1 

I d I I 
x= I 0 I 0 I + +—+ 

I I I > I 0 I - I 
y= I 0 I 1 I I II 

I e I I 
s= I -e I d I I d I ~ I 

+ +—+ + +—+ 
I - I - I 
+ +—+ 

resulting in: 
z=b*e x=0 y=e 

"T" ÏÏ 

Of the two (2) possible points associated with constraint (B-3) 

only the first point needs to be considered assuming the objective 

function values: 

minimum (a*e,b*e)=a*e 
c d c 

Transforming the fourth constraint (B-4): 

I -f » g » h I ——> I -f , g , h I 

results in a negative slack s2, so constraint (B-4) is also part of the 

violated constraints. This constraint again has two (2) intersection 

points as shown in figure B-3. 
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Y axis 

.X=0. 

.Feasible region, 

.a*X+b*Y=a*f 

(O.f) + 

g*X+h*Y=s 
a*X+b*Y=a*f 

(0,0) Current point 
X axis 

Figure B-3. Corner cut method example 16, iteration one 

New point (f,0) 
g CL 

To find the value of the objective function for the intersection 

points of the new constraints, only the objective function of the 

partial pivot need to be performed: 

resulting in: 

z= 

x= 

y= 

s= 

+—+—+ 
I 0 I a I 
 ̂ «i «• «M ̂  W M *4* 

I 0 i 1 I 
I I I 
I 0 I 0 I 

I -f I g I 
+ +—+ 

+ +—+ 
I ^ I _ I 
I ~ I I 
+ +—+ 

1 - 1  
I I 

I - I - I 
+ +—+ 
I - I - I 
+ +—+ 

z=a*f 

and: 
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z= I 0 I b I I b*f I I 
I h I I 

I  "  1 * 1  
s= 1 -f I h I 

I M* I «V I 
+ + + 

Of the two (2) possible points associated with constraint (B-4) 

only the second point needed to be considered assuming the objective 

function values: 

minimum (a*f,a*f)=a*f 
g h h 

Of the two violated constraints and their minimum Intersection 

points, select the maximum value of the objective function. Assuming: 

maximum (a*e,a*f)=a*e 
c "FT c 

If there Is a tie, then the tie Is broken by the greatest distance 

to the constraint or: 

maximum ((-e)"2 A-fVZ ) 
c"2+d"2 g"2+h"2 

Using the selected transformed constraint as the pivot row and with 

p ' =  I  - e  .  c  ,  d  I  

a Gauss-Jordan elimination pivoting on the first column, the tableau is 

transformed to represent the new point. 

The result of the transformation is shown In tableau B-2 and figure 

B-4. 
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z= 1 a*e j a b-a*d j 
I — I — I 
+ + + 

x =  1  e  I  1  - d  I  
I c i  c l  
I ! ! 

y =  I  0  I  0  I I  
+ + + 

sl= I 0 I 1 0 1 
+ + + 

Tableau B-2. Corner cut method example 16 tableau. Iteration one 

Y axis j 
.Feasible region. 

i !...Y=O 
+ + 

(0,0) (e,0) Current point 
c \|VX axis 

Figure B-4. Corner cut method example 16, iteration one 

With the new simplex tableau the constraints can again be 

transformed. In this set of constraint transformation, t%e 

transformation is not completed if the first element is positive and 

constraint is not a violated constraint. 
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For constraint (B-1) the transformation Is: 

For constraint (B-2); 

- 0 , 1 ( 0 1  — >  I  e ^  »  -  »  -
c 

-0 , 0 , 1 I —> I 0 , - , -

For constraint (B-3): 

I  - e  f  c  »  d  I  — >  I  0  ,  -  I  

For constraint (B-4): 

I -f , g ,h I —> I e*g-f . g , h-d*g I 
c c 

Constraint (B-4) as shown In figure B-5 Is violated. Assuming that 

j.X=0 

Y axis 

.c*X+d*Y=e 

.Feasible region. 

, a*X+b*Y=a*f.. ..... 
•g  IX . • •  

_ K\ ; IV 

( ( d*f-h*e ), ( c*f-q*eTf^. New,, pol nt 
(g*h-c*h} (c*h-g*d; 

I "k 
a*X+b*Y=a*e-(e*q-c*f)*(b*c-a*d 7\ k 

— (c*R-g*d c \fck 

j*x+h*Y=f ! !!!!!!! &L 

(o!o) (£,0) Current point New point (f,0) 
c \ X axis g 

Figure B-5. Corner cut method example 16, Iteration two 

the transformed constraint elements are; 
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e*g-f<0 g>0 h-d*g>0 
c c 

then the minimum value of the objective function Is with a pivot on the 

second column. 

minimum (a*e-(e*g-c*f)*a,a*e-(e*g-c*f)*(b*c-a*d))=a*e-(e*g-c*f)*(b*c-a*d) 
c c g c (c*h-g*d) c c (c*h-g*d) c 

Again using the transformation of constraint (B-4) as the pivot row: 

p'= I (e*g-c*f) « c*g .1 I 
(h*c-g*d) (h*c-g*d) 

results In tableau B-3 as the new simplex tableau. 

2= 

X= 

y= 

s2= 

a*e-
c 

(e*g-c*f) 
(c*fi-g*d) 

*(b*c-a*d) 
c 

e+(e*q-c*f)*d 
c (c*fi-g*d) c 

-(e*g-c*f) 
(c*n-g*d) 

(b*c-a*d) 
c 

l+( c*g )*d 
(c*h-g*d) c 

-c*q 
(c*h-g*d) 

c*b-a*d 

-d 
c 

+ + +-. 

Tableau B-3. Corner cut method example 16 tableau, solution 

The new point can now be evaluated by the transformation of the 

constraints. Again, the transformation is stopped if the constraint is 

not violated. 

For constraint (B-1) the transformation is: 

I -0 , 1 , 0 I -—> I e+(g*e-c*f)*d ,- I 
c (c*h-g*d) c 

For constraint (B-2): 

1 - 0 . 0 , 1  •>| -(q*e-c*f) ,-
(« :c*h-g*d) 
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For constraint (B-3): 

I "6 » c » d I ——> I 0 I 

For constraint (B-4): 

I "f * 9 » h I —I 0 I 

All the constraints are satisfied so the current point Is a 

feasible solution. To determine If the solution Is optimal* the 

objective function Is set equal to or less than the current point's 

value of the objective function minus an amount determined by the 

desired accuracy and transformed into a pivot row as if it were a 

constraint. 

a*X+b*Y<=a*e-(c*f-g*e)*(b*c-a*d)-sma11 amount 
c (c*h-g*d) c 

If the current solution is optimal, the objective function pivot row 

will be infeasible. 

Corner Cut Method BASIC Code 

The corner cut method was derived from the dual simplex method by 

modifying the simplex pi voting rules to improve the computational 

accuracy in solving CP problems. The BASIC computer code for the method 

is based on the simplex tableau and uses the same array formats and 

variable definitions as the dual simplex program. 

All programms listed in the text consist of a main calling routine 

and a series of input, output, and processing subroutines. These 

routines are listed in the text as well as on a computer disk compatible 

with IBM micro-computers. 



479 

Corner Cut Main routine — File MAIN-CRN 

The corner cut main routine (MAIN-CRN) dimensions nine (9) arrays; 

writes the options menu to the screen as shown in figure B-6; calls the 

M-RETURN TO MENU 

O-OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPES 
B-BOUNDED VARIABLES 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
N-NEW PROBLEM 
S-SAVE F-FETCH 

l*X*2*Y>=c l*X*(2*Y-3*Z)>=c l*Y+a*(X-b)"2>=c 

Figure B-6. Corner cut method main menu screen 

utility subroutines UTIL-OPT, UTIL-ERS, UTIL-CON, UTIL-CHX; calls the 

data input and output subroutines INPT-OBJ, INPT-CON, INPT-TYP, INPT-

BND, and REPT-SMP; times and calls the processing algorithm ALGR-CRN; 

and saves and fetches the input data to the ASCI disk file "DATA". 

1 REM * CORNER CUT METHOD * 
2 REM MAIN-CRN 

3 REM BI# - MACHINE INFINITE 
4 REM CO - PIVOT COLUMN FOR SIMPLEX TRANSFORMATION 
5 REM ER - ERROR KEY 
6 REM 
7 REM IR - MAXIMUM NUMBER OF ITERATIONS 
8 REM MD - NUMBER OF CONSTRAINTS 

CORNER CUT METHOD 

NUMBER OF CONSTRAINTS 
NUMBER OF VARIABLES 
MAXIMUM ITERATIONS 
LOWER BOUND OF OBJECTIVE 

1000 
0 

10 
14 

OPTION ? 
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9 REM ND - NUMBER OF VARIABLES 
10 REM RO - PIVOT ROW FOR SIMPLEX TRANSFORMATION 
11 REM SM# - MACHINE ZERO 
12 REM A#(MD+2,ND+8) - ORIGINAL DATA AND KEYS 
13 REM B#(2*ND+1,ND+1) - PRIMAL-DUAL MATRIX 
14 REM H#(ND+1) - SOLUTION FROM LAST ITERATION 
15 REM M#(ND+1.2) - UPPER AND LOWER BOUNDS ON VARIABLES 
16 REM P#(ND+1) - WORK VECTOR 
17 REM R(MD+2) - CONSTRAINT TYPE (l-">=",0-"=",-l-"<=") 
18 REM S#(ND+1) - COLUMN SWITCHES 
19 REM T#(ND+1,ND+1) - REINVERSION WORK SPACE 
20 REM X#(ND) - SOLUTION VECTOR 
21 REM 

Sets MD to the default number of constraints and ND to the number of 
variables in the CP problem to be optimized. Sets IN to the number of 
iterations before reinversion of the augmented ÏÏ matrix. Sets the 
default limit on number of iterations to 1000. Sets BI# to a number 
considered machine infinite and SM# to a number considered machine zero. 

22 MD=0 
23 ND=0 
24 IN=20 
25 IR=1000 
26 BI#=1E+10 
27 SM#=1E-10 

Prompts and reads from the keyboard the number of constraints MD; 
the number of variables ND; the maximum number of iterations IT; and the 
lower bound on the objective function DS. 

28 CLS 
29 LOCATE 1*1:PRINT "CORNER CUT METHOD" 
30 LOCATE 3,1:PRINT "NUMBER OF CONSTRAINTS":LOCATE 3,31:INPUT "",L$ 
31 GOSUB 1870:REM UTIL-CHX 
32 IF Z#<>BI# THEN MD=Z# 
33 LOCATE 3,30:PRINT MD," 

CATE 4,31:INPUT "",L$ 
34 GOSUB 1870:REM UTIL-CHX 
35 IF Z#<>BI# THEN ND=Z# 
36 LOCATE 4.30:PRINT ND," 

ATE 5,31:INPUT "",L$ 
37 GOSUB 1870:REM UTIL-CHX 
38 IF Z#<>BI# THEN IR=Z# 
39 LOCATE 5,30:PRINT IR," 

E":LOCATE 6,31:INPUT "".L$ 
40 GOSUB 1870:REM UTIL-CHX 
41 IF Z#<>BI# THEN DS=Z# 

":LOCATE 4,1:PRINT "NUMBER OF VARIABLES":L0 

":LOCATE 5.1:PRINT "MAXIMUM ITERATIONS":LOC 

LOCATE 6,1:PRINT "LOWER BOUND ON OBJECTIV 
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42 LOCATE 6.30:PRINT DS," 

Dimensions the objective function and constraint coefficients array 
A#(MD+2,ND+8). 

The array structure of the corner cut method is the same as for the 
dual simplex method with only one (1) exception. The last row of the 
A#(MD+2,ND+8) array, or row MD+2, is the negative of the coefficients of 
the objective function. This row is used to define the constraint used 
to prove optimality. 

Dimensions the augmented ÏÏ Inverse and augmented B matrix array 
B#(2*ND+1,ND+1), the holding array H#(ND+1) for the last current point 
values; the upper and lower bounds array M#(ND+1,2); the pivot row array 
P#(ND+2); the constraint type array R(MD+2); the relnversion work array 
T#(ND+l,ND+l); and the solution array X#(ND). 

43 DIM A#(MD+2,ND+8) 
44 DIM B#(2*ND+1,ND+1) 
45 DIM H#(ND+1) 
46 DIM M#(ND+1,2) 
47 DIM P#(ND+2) 
48 DIM R(MD+2) 
49 DIM S#(ND+1) 
50 DIM T#(ND+1,ND+1) 
51 DIM X#(ND) 

Initializes the constraint type array to greater than or equals. 

52 FOR 1=2 TO MD+2 
53 R(I)=1 
54 NEXT I 

Prints the option menu to the screen; calls the option line 
subroutine UTIL-OPT; and pauses for the entry of either "M", "0", "A", 
"C", "B", "U", "R". "N", "S", "F" for the option variable L$. 

55 LOCATE 8,15: PRINT 
56 LOCATE 10,10:PRINT "0-
57 LOCATE 11,10: PRINT "C-
58 LOCATE 12,10:PRINT "A-
59 LOCATE 13.10:PRINT "B 
60 LOCATE 14,10:PRINT "U 
61 LOCATE 15,10:PRINT "R 
62 LOCATE 17,10:PRINT "S 
63 LOCATE 18,10:PRINT "N-
64 LOCATE 23,1:PRINT "1*X*2*Y>' 
65 GOSUB 1800:REM UTIL-OPT 

"M-RETURN TO MENU" 
•OBJECTIVE COEFFICIENTS" 
•CONSTRAINT VALUES" 
•A MATRIX COEFFICIENTS" 
•UPPER BOUNDED VARIABLES" 
•EXECUTE ALGORITHM" 
•REPORT LISTING" 
•SAVE F-FETCH" 
•NEW PROBLEM" 
•C 1*X*(2*Y-3*Z)>=C 1*Y+A*(X-B)'2>=C" 
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66 LOCATE 21,8:INPUT "",L$ 

Calls either the objective function input subroutine INP-OBJ, the 
constraint input subroutine INPT-CON, the constraint type Input 
subroutine INPT-TYP, the upper and lower bounds input subroutine INPT-
BND, the processing subroutine ALGR-KEY, or the report subroutine REPT-
SMP based on the option variable L$. 

67 CLS 
68 H=0 
69 G=2 
70 IF L$<>"0" THEN 73 
71 GOSUB 1200:REM INPT-OBJ 
72 GOTO 67 
73 IF L$<>"A" THEN 76 
74 GOSUB 1300:REM INPT-CON 
75 GOTO 67 
76 IF L$<>"C" THEN 79 
77 GOSUB 1400:REM INPT-TYP 
78 GOTO 67 
79 IF L$<>"B" THEN 82 
80 GOSUB 1500:REM INPT-BND 
81 GOTO 67 
82 IF L$<>"U" THEN 90 
83 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

»2)  )  
84 GOSUB 3000:REM ALGR-KEY 

Sets the last current point of the corner cut method to the optimal 
solution. 

85 FOR 1=1 TO ND 
So AWVI)=Dr(1^1,1) 
87 NEXT I 
88 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

,2))-TM 
89 GOTO 55 
90 IF L$<>"R" THEN 93 
91 GOSUB 2200:REM REPT-SMP 
92 GOTO 67 

Saves the contents of MD, ND, M#(ND+1,2), A#(MD+2,ND+8), and 
R(ND+1) to disk file "DATA" as an ASCI file if option "S" is selected. 

93 IF L$<>"S" THEN 112 
94 OPEN "0",#1,"DATA" 
95 PRINT #1,STR$(MD) 
96 PRINT #1,STR$(ND) 
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97 FOR 1=1 TO ND+1 
98 FOR J=1 TO ND+1 
99 PRINT #1,"" 
100 NEXT J 
101 PRINT #l,STR$(M#(I.l)) 
102 PRINT #1.STR$(M#(I.2)) 
103 NEXT I 
104 FOR 1=1 TO MD+1 
105 FOR J=1 TO ND+8 
106 PRINT #1.STR$(A#(I,J)) 
107 NEXT J 
108 PRINT #1,STR$(R(I)) 
109 NEXT I 
110 CLOSE #1 
111 GOTO 55 

Loads to MD, ND, M#(ND+1,2), A#(MD+2,ND+8), and R(ND+1) from the 
disk file "DATA" if option "F" is selected. 

112 IF L$<>"F" THEN 137 
113 OPEN "I",#!."DATA" 
114 INPUT #1,X$ 
115 MD=VAL(X$) 
116 INPUT #1,X$ 
117 ND=VAL(X$) 
118 FOR 1=1 TO ND+1 
119 FOR J=1 TO ND+1 
120 INPUT #1,X$ 
121 NEXT J 
122 INPUT #1,X$ 
123 M#(I,1)=VAL(X$) 
124 INPUT #1,X$ 
125 M#(I,2)=VAL{X$) 
126 NEXT I 
127 FOR 1=1 TO MD+1 
128 FOR J=1 TO ND+8 
129 INPUT #1,X$ 
130 A#(I,J)=VAL(X$) 
131 NEXT J 
132 INPUT #1.X$ 
133 R(I)=VAL(X$) 
134 NEXT I 
135 CLOSE #1 
136 GOTO 55 
137 IF L$="N" THEN RUN 
138 GOTO 55 
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Utility Subroutines ~ Files UTIL-OPT, UTIL-ERS, UTIL-CON, and UTIL-CHX 

Same as for critical path method. 

Input Subroutines — Files INPT-OBJ, INPT-CON, INPT-TYP. and INPT-BND 

Same as for dual simplex method. 

Output Subroutine — File REPT-SMP 

Same as for dual simplex method. 

Constraint Keys Subroutine — File ALGR-KEY 

Same as for dual simplex method with nonlinear constraints. 

Corner Cut Algorithm Subroutine — File AL6R-CRN 

The corner cut algorithm first initializes a dual simplex tableau 

to represent a point at the origin and the set of constraints that form 

the zero axes. Then, in an iterative manner, proceeds through the 

following steps. 

(1) Evaluate all the constraints of the CP problem to find the set of 

violated constraints. If no constraint is violated, then set ER=1 

and return to main routine. Otherwise, go to step (2). 

(2) For each of the supporting planes of the violated constraints, find 

the point from among the intersection points of the plane and the 

constraints defining the current point which minimizes the value of 

the objective function. Set ER=2 if any violated constraint's 

supporting plane does not have an intersection point and return to 

the main routine. Otherwise go to step (3). 

(3) From the set of minimum points, one (1) for each violated 

constraints, let the point which maximizes the objective function be 
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the next point. If there Is a tie, then select as the new point the 

point defined by the supporting plane farthest from the current 

point. Go to step (4). 

(4) Using the transformed supporting plane that defined the selected 

new point as a pivot row, transform the simplex tableau using the 

Gauss-Jordan elimination so that the tableau represents the new 

point and its constraints. If the transformation fails, set ER=3 

and return to main routine. Otherwise, go to step (5). 

(5) Set the current point equal to the new point and return to step 

(1). If the cycle or iteration is repeated more than a preset 

limit, set ER=0 and return to the main routine. 

3300 REM *CORNER CUT ALGORITHM* 
3301 REM ALGR-CRN 

^Initializes the simplex tableau to represent the origin by setting 
the B matrix equal to the identity matrix. Sets the iteration count 
variable IT to zero (0), the current value of the objective OB# to zero 
(0), and the value of the last current solution to infinity. 

To set a lower limit to the value of the objective function, the 
last constraint in the A#(MD+2,ND+8) is set equal to the negative of the 
objective function. The function is set greater than or equal to the 
lower bound unless no bound is input, in which case it is set greater 
than or equal to negative infinity, 

3302 FOR 1=2 TO 2*ND+1 
3303 FOR 0=1 TO NO+1 
3304 B#(I,J)=0# 
3305 NEXT J 
3306 NEXT I 
3307 IT=0 
3308 0B#=0# 
3309 BB#=0# 
3310 A#(1,1)=0# 
3311 IF DSOO THEN B#(1,1)=DS 
3312 A#(MD+2,1)=-BI# 
3313 FOR 1=2 TO ND+1 
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3314 B#(1,I)=A#(1,I) 
3315 B#(I,I)=1#:B#(I.1)=M#(I,2) 
3316 B#(ND+I,I)=1#:B#(ND+I,1)=M#(I,2) 
3317 A#(MD+2,I)=-A#(1.I) 
3318 H#(I)=BI# 
3319 NEXT I 

Sets BB# equal to the current value of the objective and Increments 
the Iteration count by one (1). If the maximum count Is exceeded, then 
set ER=0 and return to the main routine. 

3320 BB#=OB# 
3321 IT=IT+1 
3322 ER=0 
3323 IF IT>IR THEN RETURN 
3324 ER=2 

Intlallzes, for the current Iteration, the distance variable MA# and 
the maximum value of the current value of the objective function to 
negative Infinity. 

3325 MA#=-BI# 
3326 OB#=-BI# 

Checks the upper bound for a violated constraint. If the 
constraint Is violated,, then for each positive coefficient In the 
transformed constraint find through a partial pivot the value of the 
objective function. 

To accommodate upper and lower bounds, the number of constraints Is 
automatically Increased to ND+l+ND+l+MD+1. The extra constraint on each 
group of contraints Is to allow for the offset of the objective function 
in the simplex tableau. This simplifies the addressing at the expense 
of phantom lines In the tableau. 

3327 FOR 1=2 TO ND+1 
3328 IF B#(I.1)-M#(I,2)>=0# THEN 3352 
3329 K#=BI# 
3330 FOR J=2 TO ND+1 
3331 IF M#(J,1)=BI# OR B#(I,J)<=SM# THEN 3343 
3332 L#=(B#(I,1)-M#(I,2))/B#(I,J) 

As an alternate to using a Gauss-Jordan elimination on the first 
row of the tableau, the solution for the new point can be found for each 
positive element of the transformed constraint and the values 
substituted into the objective function directly. This eliminates the 
error In the transformation. 
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3333 REM 
3334 A#=0# 
3335 FOR K=2 TO ND+1 
3336 IF A#(1.K)<>0# THEN A#=A#+A#(1,K)*(B#(K,1)-B#(K,J)*L#) 
3337 NEXT K 
3338 REM 
3339 REM A#=BB#-B#(1.J)*L# 
3340 IF A#>=K# THEN 3343 
3341 K#=A# 
3342 CC=J 
3343 NEXT J 

Sets M# equal to distance from the current point to the constraint. 

3344 M#=(B#(I,1)-M#(I.2))*(B#(I,1)-M#(I,2)) 

If the minimum point is less than the maximum value of the 
objective found so far on this iteration, then the constraint is not 
considered further. 

3345 IF K#<OB# THEN 3352 

Returns to the main routine with ER=2 if no intersection is found. 

3346 IF K#=BI# THEN RETURN 

Uses the distance variables M# and MA# to break the tie if the 
minimum point has an objective function value equal to the maximum value 
found so far on this iteration. Sets the OB# equal to the value of the 
objective at the new point, MA# equal to the constraints distance from 
the current point, RO equal to the row in the tableau for the upper 
bound, and CO to the column for the pivot. 

3347 IF K#=OB# AND MA#>=M# THEN 3352 
3348 OB#=K# 
3349 MA#=M# 
3350 RO=I 
3351 CO=CC 
3352 NEXT I 

As with the upper bound, finds the maximum minimum value of the 
objective for the lower bounds. 

3353 FOR J=2 TO ND+1 
3354 IF M#(J,1)=0# OR (M#(J,1)-B#(J,1))>=0# THEN 3378 
3355 K#=BI# 
3356 FOR 1=2 TO ND+1 
3357 IF M#(J,1)=BI# OR -B#(J,I)<=SM# THEN 3369 
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3358 L#=(M#(J,l)-B#(J,l))/(-B#(J.I)) 
3359 REM 
3360 A#=0# 
3361 FOR K=2 TO ND+1 
3362 IF A#(1,K)<>0# THEN A#=A#+A#(1.K)*(B#(K.1)-B#(K.I)*L#) 
3363 NEXT K 
3364 REM 
3365 REM A#=BB#-B#(1,I)*L# 
3366 IF A#>=K# THEN 3369 
3367 K#=A# 
3368 CC=I 
3369 NEXT I 
3370 M#=(M#(J.L)-B#(J,L))*(M#(J.L)-B#(J.L)) 
3371 IF K#<OB# THEN 3378 
3372 IF K#=BI# THEN RETURN 
3373 IF K#=OB# AND MA#>=M# THEN 3378 
3374 OB#=K# 
3375 MA#=M# 
3376 R0=J+ND+1 
3377 CO=CC 
3378 NEXT J 

As with the lower bounds, finds the maximum minimum value of the 
objective from among the A#(MD+2,ND+8) array constraints. 

3379 FOR K=2 TO MD+2 
3380 REM 
3381 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3382 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
3384 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANL 
3385 REM 
3386 P#(1)=-A#(K,1) 
3387 FOR 1=2 TO ND+1 
3388 P#(n=0# 
3389 P#(l)=P#(l)+A#(K,I)*B#(I.l) 
3390 NEXT I 
3391 SN=R(K) 
3392 IF SN=0 THEN SN=-SGN(P#(1)) 
3394 P#(1)=P#(1)*CDBL(SN) 
3395 IF P#(1)>=-SM# THEN 3428 
3396 Z#=0# 
3397 FOR 1=2 TO ND+1 
3398 Z#=Z#+A#(K.I)*A#(K.I) 
3399 IF A#(K,I)=0# THEN 3403 
3400 FOR J=2 TO ND+1 
3401 P#(J)=P#(J)+A#(K.I)*B#(I,J)*CDBL(SN) 
3402 NEXT J 
3403 NEXT I 
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3404 K#=BI# 
3405 FOR 1=2 TO ND+1 
3406 IF M#(I,1)=BI# OR P#(I)<=SM# THEN 3418 
3407 L#=P#(1 )./?#(I) 
3408 REM 
3409 A#=0# 
3410 FOR J=2 TO ND+1 
3411 IF A#(1,J)<>0# THEN A#=A#+A#(1,J)*(B#(J,1)-B#(J,I)*L#) 
3412 NEXT J 
3413 REM 
3414 REM A#=BB#-B#(1,I)*L# 
3415 IF A#>=K# THEN 3418 
3416 K#=A# 
3417 CC=I 
3418 NEXT I 
3419 M#=BI# 
3420 IF Z#>SM# THEN M#=(P#(1)*P#(1))/Z# 
3421 IF K#<OB# THEN 3428 
3422 IF K#=BI# THEN RETURN 
3423 IF K#=OB# AND MA#>=M# THEN 3428 
3424 OB#=K# 
3425 MA#=M# 
3426 R0=K+ND+1+ND+1 
3427 CO=CC 
3428 NEXT K 

Transforms the selected constraint and stores it in the pivot row 
array. 

3429 GOSUB 3600:REM TRAN-CON 

Sets the objective function less than or equal to the current value 
of the objective less .1 if no constraints were violated. If this 
constraint is infeasible, then the current solution is optimal. 

3430 IF 0B#>-BI# THEN 3434 
3431 A#(MD+2,l)=-BB#+.l# 
3432 ER=1 
3433 GOTO 3325 

Transforms the tableau using a Gauss-Jordan elimination on the 
pivot row and column CO. 

3434 GOSUB 3700:REM TRAN-INV 

Returns to the main routine with ER=3 if the tableau transformation 
fails. 
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3435 IF ER=3 THEN RETURN 
3436 GOTO 3320 

Constraint Transformation Subroutine — File TRAN-CON 

Same as for dual simplex method. 

Inversion Subroutine — File TRAN-INV 

Same as for dual simplex method. 

Relnverslon Subroutine — File TRAN-RIV 

Same as for dual simplex method. 

Parabolic Subroutines — Files PAR-TANA, PAR-TANL, or PAR-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Subroutines Files HYP-TANA. HYP-TANL. or HYP-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Sheet Subroutines — Files SHT-TANA. SHT-TANL, or SHT-TANG 

Same as for dual simplex method with nonlinear constraints. 

Corner Cut Method with Nonlinear Constraints: 
Solutions to Example 11 Minimum Project Man Count Problem 

The corner cut ntêthou Is used to solve the same problems as used in 

the text for the dual simplex method and its variations. 

Table B-1 can be used to reconstruct the corner cut method with 

nonlinear constraints from the computer disk and to organize subroutines 

from previous code listings. Since BASIC code is dependent on program 

line numbers for subroutine branching, the line numbers must be 

maintained as listed below. 
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Table B-1. Corner eut method with nonlinear constraints BASIC program 
table of contents 

File Program lines Page Routine 

MAIN-CRN 0001-0138 479 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-CON 1400-1440 65 
INPT-BND 1500-1523 67 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200-2224 69 
ALGR-KEY 3000-3057 200 
ALGR-CRN 3300-3434 495 
TRAN-CON 3600-3633 74 
TRAN-INV 3700-3743 76 
TRAN-RIV 3900- 3960 78 
PAR-TANL 4000- 4034 209 
HYP-TANL 4200- 4221 217 
SHT-TANL 4400- 4425 228 

Corner cut method 
Objective coefficient input subroutine 
Constraint coefficient input subroutine 
Constraint type input subroutine 
Variable bounds input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint key subroutine 
Corner cut algorithm subroutine 
Constraint transformation subroutine 
Basis inversion subroutine 
Basis reinversion subroutine 
Supporting line for parabolic subroutine 
Supporting line for hyperbolic subroutine 
Supporting plane for sheet subroutine 

The results of using the corner cut method with supporting planes 

derived with the line search alogrithm to solve the example 11 man count 

problem are summarized in table B-2. The data are arranged and 

displayed in the same format as in table 10 for the dual simplex method 

using supporting planes derived with the line search algorithm. 

The primary difference between the solutions found with the dual 

simplex method and the corner cut method is the increases in the number 

of iterations. The difference in the values of the objective function 

(simplex method 12.75378215430363, corner cut 12.75378215451283) are not 

evident when only eight (8) digits are listed for the solutions at 

the level of precision were IE-10 or less is assumed to be zero (0). 



Table B-2. Corner cut method, using supporting planes derived with the 
line search algorithm, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 
Itr. 152 136 150 147 133 
Sec. 393 342 367 384 361 
Obj. 12.75378 14.17086 15.94222 18.21968 21.25630 
T1 19.12823 17.21543 15.30260 13.38977 11.47694 
T2 48.67250 43.80527 38.93801 34.07073 29.20350 
T3 75.02407 67.52169 60.01927 52.51685 45.01447 
T4 100 90 80 70 60 
MS 0.13329 0.14810 0.16661 0.19041 0.22215 
M6 0.38965 0.43294 0.48706 0.55664 0.64942 
M7 1.56836 1.74262 1.96045 2.24051 2.61393 
M8 1.35390 1.50433 1.69237 1.93414 2.25650 
M9 1.89742 2.10824 2.37177 2.71059 3.16236 
MIO 2.40231 2.66924 3.00289 3.43187 4.00386 
Mil 1.25232 1.39147 1.56541 1.78904 2.08721 
M12 1.64363 1.82626 2.05454 2.34805 2.73939 
M13 1.11287 1.23652 1.39109 1.58981 1.85478 
M14 1 1.11111 1.25 1.42857 1.66666 

Table B-2. Continued 

Dur. 50 40 30 20 10 
Itr. 152 189 139 214 195 
Sec. 364 480 375 597 534 
Obj. 25.50756 31.88445 42.51260 63.76881 127.53782 
T1 9.56412 7.65130 5.73847 3.82564 1.91282 
T2 24.33624 19.46901 14.60175 9.73449 4.86725 
T3 37.51203 30.00963 22.50722 15.00482 7.50241 
T4 50 40 30 20 10 
M5 0.26658 0.33322 0.44430 0.66645 1.33290 
M6 0.77930 0.97413 1.29884 1.94827 3.89654 
M7 3.13672 3.92090 5.22787 7.84181 15.68360 
M8 2.70780 3.38474 4.51300 6.76950 - 13.53901 
M9 3.79483 4.74355 6.32473 9.48708 18.97416 
MIO 4.80462 6.00578 8.00771 12.01158 24.02318 
Mil 2.50465 3.13082 4.17443 6.26164 12.52328 
M12 3.28727 4.10909 5.47879 8.21819 16.43638 
M13 2.22574 2.78218 3.70957 5.56436 11.12873 
M14 2 2.5 3.33333 5 10 
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Table B-3 can be used to reconstruct the corner cut method with 

supporting planes derived with the Gordian algorithm from the computer 

disk and to organize subroutines from previous code listings. The line 

numbers must be maintained as listed below. 

Table B-3. Corner cut method with nonlinear constraints BASIC program 
table of contents 

File Program lines Page Routine 

MAIN-CRN 0001-0138 479 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-CON 1400-1440 65 
INPT-BND 1500-1523 67 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-•1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200- 2224 69 
ALGR-KEY 3000- 3057 200 
ALGR-CRN 3300--3434 495 
TRAN-CON 3600- 3633 74 
TRAN-INV 3700-3743 76 
TRAN-RIV 3900-3960 78 
PAR-TANG 4000-4018 211 
HYP-TANG 4200-•4226 219 
SHT-TANG 4400--4430 231 

Corner cut method 
Objective coefficient input subroutine 
Constraint coefficient input subroutine 
Constraint type input subroutine 
Variable bounds input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint key subroutine 
Corner cut algorithm subroutine 
Constraint transformation subroutine 
Basis Inversion subroutine 
Basis reinversion subroutine 
Supporting line for parabolic subroutine 
Supporting line for hyperbolic subroutine 
Supporting plane for sheet subroutine 

To run the corner cut method with another version of the nonlinear 

constraint subroutines requires changing the calling subroutine. The 

following lines must be changed in the corner cut algorithm AL6R-CRN to 

call the parabolic, hyperbolic, and sheet subroutines. 

3380 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANG 
3382 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANG 
3384 IF A#(K,ND+4)<>0# THEN GOSUB 4400:REM SHT-TANG 
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Table B-4. Corner cut method, using supporting planes derived with the 
Gordlan algorithm, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 
Itr, 192 215 192 218 160 
Sec. 412 439 391 435 335 
Obj. 12.75378 14.17086 15.94222 18.21968 21.25630 
T1 19.12826 17.21542 15.30258 13.38978 11.47696 
T2 48.67252 43.80526 38.93799 34.07073 29.20351 
T3 75.02414 67.52169 60.01926 52.51684 45.01445 
T4 100 90 80 70 60 
MS 0.13329 0.14810 0.16661 0.19041 0.22215 
M6 0.38965 0.43294 0.48706 0.55664 0.64942 
M7 1.56835 1.74262 1.96045 2.24051 2.61392 
MB 1.35390 1.50433 1.69237 1.93414 2.25650 
M9 1.89741 2.10824 2.37177 2.71059 3.16236 
MIO 2.40232 2.66924 3.00289 3.43187 4.00385 
Mil 1.25232 1.39147 1.56541 1.78904 2.08721 
M12 1.64363 1.82626 2.05454 2.34805 2.73939 
M13 1.11287 1.23652 1.39109 1.58981 1.85478 
M14 1 1.11111 1.25 1.42857 1.66666 

Table B-4. Continued 

Dur. 50 40 30 20 10 
Itr, 179 188 277 318 260 
Sec. 366 381 590 652 572 
Obj . 25.50756 31.88445 42.51260 63.76891 127.53782 
XI 9.56412 7.65129 5.73846 3.82564 1.91282 
X2 24.33625 19.46900 14.60174 9.73450 4.86725 
X3 37.51204 30.00963 22.50722 15.00481 7.50240 
X4 50 40 30 20 10 
X5 0.26658 0.33322 0.44430 0.66645 1.33290 
X6 0.77930 0.97413 1.29884 1.94827 3.89654 
X7 3.13672 3.92090 5.22788 7.84180 15.68361 
X8 2.70780 3.38475 4.51300 6.76950 . 13.53901 
X9 3.79483 4.74354 6.32472 9.48710 18.97418 
XIO 4.80462 6.00578 8.00771 12.01156 24.02314 
Xll 2.50465 3.13082 4.17442 6.26164 12.52329 
X12 3.28727 4.10909 5.47879 8.21819 16.43638 
X13 2.22574 2.78218 3.70957 5.56434 11.12871 
X14 2 2.5 3.33333 5.00000 10 
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The results of using the corner cut method with supporting planes 

derived with the Gordian algorithm to solve example 11 are summarized in 

table B-4. The data are arranged and displayed in the same format as in 

table 10 for the dual simplex method. 

Table B-5 can be used to reconstruct the corner cut method with 

deep cuts derived with the line search algorithm from the computer disk. 

Table B-5. Corner cut method BASIC program table of contents 

File Program lines Page Routine 

MAIN-CRN 0001-0138 479 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200- 2:224 69 
ALGR-KEY 3000-3057 200 
ALGR-CRN 3300-3434 495 
TRAN-CON 3600-3633 74 
TRAN-INV 3700- 3743 76 
TRAN-RIV 3900- 3960 78 
PAR-DEPL 4100- 4189 311 
HYP-DEPL 4300- 4285 318 
SHT-DEPL 4500- 4592 325 

Corner cut method 
Objective coefficient input subroutine 
Constraint coefficient input subroutine 
Constraint type input subroutine 
Variable bounds input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint key subroutine 
Corner cut algorithm subroutine 
Constraint transformation subroutine 
Basis Inversion subroutine 
Basis reinversion subroutine 
Deep cut for parabolic subroutine 
Deep cut for hyperbolic subroutine 
Deep cut for sheet subroutine 

To run the corner cut method with the deep cut subroutines, the 

following lines must be changed in the corner cut algorithm ALGR-CRN. 

3381 IF A#(K,ND+2)<>0# THEN GOSUB 4100:REM PAR-DEPL 
3383 IF A#(K,ND+3)<>0# THEN GOSUB 4300:REM HYP-DEPL 
3385 IF A#(K.ND+4)<>0# THEN GOSUB 4500:REM SHT-DEPL 

The results of using the corner cut method are summarized in table 
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B-6. The data are arranged and displayed In the same format as for the 

solutions found using Gomory's algorithm In table 19. 

Table B-6. Corner cut method, using deep cuts derived with the line 
search algorithm, solutions to the example 11 minimum 
project man count problem with hyperbolic man count functions 

Dur. 100 90 80 70 60 50 40 30 20 10 
Itr. 23 22 24 23 25 25 26 26 29 30 
Sec. 51 51 53 53 61 54 54 60 79 83 
Obj. 14.8 16.3 18.0 20.1 22.94 27.0 33.2 44.7 65 130.9 
T1 15 15 15 15 10 10 10 6 5 2 
T2 55 45 40 35 28 25 20 14 10 5 
T3 80 70 60 52 45 38 30 24 15 8 
T4 100 90 80 70 60 50 40 30 20 10 
M5 1 1 1 1 1 1 1 1 1 1.4 
M6 1 1 1 1 1 1 1 1.4 2 4 
M7 2 2 2 2 3 3 3 5 6 15 
M8 1 1.5 1.7 2 2.3 2.8 4 5 8 14 
M9 2 2 2.6 3 3 4.0 5 5 10 17 
MIO 3 3 3 3.4 4 5 6 10 12 30 
Mil 1.1 1.4 1.7 1.9 2 2.6 3.6 4 7 12 
M12 1.6 1.8 2 2.3 2.9 3.2 4 6 8 16 
M13 1.1 1.3 1.5 1.7 1.8 2.3 3 3.8 6 11.5 
M14 1 1.2 1.4 1.6 1.8 2 2.6 3.4 5 10 

Round Up Integer Solution to Minimum Project Man Count Problem 

Gomory's method Is an all Integer method so all the values of the 

solution in table 19 are integer. An interesting observation is that 

the round up solution to the corner cut method using deep cuts is also 

the Integer solution. 

Without proof, a good starting solution to the branch and bound 

method would be the round up solution. Not only has this been a good 

solution in all the cases tried to date, but the round up solution has 

also been the optimal solution for the minimum project man count problem. 
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APPENDIX C: ELLIPSOIDAL METHOD 

The variations of the simplex method are not the only means of 

solving the nonlinear problem. Another approach is the ellipsoidal 

method. Even though the method Is still no match for the simplex 

method, its potential for solving problems with almost any 

differentiable convex constraints makes it worth presenting as a 

alternate to the simplex methods. 

Theory of Ellipsoidal Deep Cut Method (Perfect Arithmetic) 

The objective function and feasible region of the LP problem can be 

written in matrix notation as: 

c'x<=z 

Âx>=â 

where the c vector is the coefficients of the objective function which 

in this example is linear, J is the coefficients of the constraint 

equations, and â is a vector of the constants of the constraint 

equations. 

As an initial solution for the algorithm, z is set equal to a very 

large number and x is set equal to the zero vector (0). This starting 

solution can be geometrically visualized as a point defining the center 

of a sphere constructed so that its radius r is large enough so that the 

circle contains all of the feasible region defined by the LP constraints. 

The objective function c'x is also included in the constraint set, but 

for the first iteration it is set less than or equal to z or infinity 
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X>=0 

m -ai*X-a2*Y>=-an 

X axis 
(0.0) 

(x-Xc)'H-l(x-Xc)>»l 

Y axis 

Figure C-1. Ellipsoidal method starting cirle in two dimensions 

so It Is not a boundary of the feasible region. 

This circle, or ellipsoid in later iterations, can be defined in 

matrix notation as a n dimension sphere with radius r centered at: 

Xc=Ô 
by the matrix: 

ïï=rrT 

and the set of x points: 

E111pse={ X e Real : (x-Xc)'H-l(x-Xc)<=l } 

As in the simplex method, a slack, in this case w-f, can be calculated 

for each of the 1 equations indicating the percentage of the ellipsoid's 

radius that is "cut off" or violated by the constraint. 
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wi=(a-ai'xc) 

If the violated constraint, say p, with the greatest slack wp Is found: 

Wp= maximum (w-f) for all 1 constraints 

p=1 of maximum constraint 

then the starting circle can be reduced in volume by "cutting" off that 

portion that lies outside the violated constraint and a new ellipse 

drawn around the remaining portion as shown in figure C-1. 

In matrix notation this results in: 

Xcnew"Xc+ dHap 

Hnew"G*( H-f*Hapap 'TT) 

(n+1) 

e=n'2*(l-wp"2) 

(n'2-1) 

f=l-(n-l)*(1-w) 
in+ird+wpi 

This new point can be checked with the constraints of the LP 

problem; and if a constraint is violated, a new point and smaller 

ellipsoid found. 

and 

Bp Hap 

where 
d=(l+n*Wp) 
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If the LP 1s not Infeaslble, an assumption of the method, then a 

point xc can be found that satisfies all the constraints by continually 

reducing the size of the ellipse. 

Once the constraints are satisfied, the objective function constant 

z Is set equal to 7'xc, and the objective function used as a cut through 

the center of the current ellipse. (Geometrically, passing a cut in the 

form of the objective function through the center of the ellipse reduces 

the volume of the ellipse even though the slack wi for the function is 

zero (0).) 

After the new point and ellipse resulting from the objective 

function cut Is found, the algorithm continues to reduce the volume of 

the ellipse with cuts derived from the constraints of the LP problem if 

they are violated or the objective function. This process continues 

until the ellipse is reduced to a radius of the desired precision and 

center of the ellipse is considered the optimal solution in the feasible 

region. 

Theory of Coffin's Method (Finite Arithmetic) 

The precision needed to execute the ellipsoidal algorithm can not 

be maintained on present day computers. Often the ÏÏ matrix or the 

matrix defining the ellipsoid becomes singular when one of the axes of 

the ellipsoid becomes small relative to the other axes. To circumvent 

this problem, the volume reduction formulas for the ellipsoid can be 

modified to tolerate the limit of sixteen (16) significant digits 

available on a sixteen (16) bit word computer. 
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A modification of the ellipsoidal algorithm by Goffin^S is used in 

the following computer code. Goffin factors the ÏÏ matrix Into a two 

"5 matrices: 

BB'«ÏÏ 

and then redefines the ellipsoid: 

Xc=ÏÏ 

B=rT 

and the slacks in terms of the B matrix: 

qi= âiBB'âi • 

wi= a-a-f'xc 

/ qi 

Wp=max1mum (w-f) for all 1 constraints 

p=1 of maximum constraint 

The transformation of the ellipsoid parameters are then: 

Xcnew"Xc*d*( ïff'ap' ) 

V"~qp 

lnew=e* B-(l- yT" )*(BB'âp'âpB)) 

( / ÔT" )"2 

where : 

d=(l+n*Wp) 

(n+1) 
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e=l+(l+n*Wp)'2 

24*n~2 

f=(n-l)*(l-wp) 

(n+l)*(l+wp) 

The following tableau Is used to store the Input data and B matrix 

of the ellipsoidal method. The similarities with the simplex tableau 

allows many of the input routines and reports to be shared by both 

methods. The corresponding program arrays used in the BASIC program 

code are given on the right hand column. 

program variable 

ÏÏ 1 0' Q#(1,ND+1) 

J5 1 ÏÏ Q#(2 to ND+1,ND+1) 

0 1 c^' A#(1.ND+1) 

-â 

c'xc+xeljxc' 

1 
-+-

1 

Â 

BpW 

A#{2 to MD+l,ND+8) 
(column one negative) 

B#(1,ND+1) 

Xc 1 B B#(2 to ND+1,ND+1) 

-ap ! ap rff(ND+i) 

Ellipsoidal Method BASIC Code 

The following code is a version of the ellipsoidal method proposed 

by Coffin. Several different versions of the method were tried, and the 

following method had the best convergence rate and numerical stability. 
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Considering the current Interest in the ellipsoidal method, future 

research will most likely improve the convergence rates demonstrated by 

Goffin's algorithm. 

All the BASIC programs listed in the text consist of a main calling 

routine and a series of input, output, and processing subroutines. 

The routines listed in the text are also on a computer disk which is 

compatible with IBM mirco-computers. 

Elipsoidal Method Main Routine — File MAIN-GOF 

The ellipsoidal method main calling routine (MAIN-GOF) dimensions 

ten (10) arrays; writes the option menu to the screen as shown in figure 

ELLIPSOID METHOD 

NUMBER OF CONSTRAINTS 
NUMBER OF VARIABLES 
MAXIMUM ITERATIONS 

10 
14 
1000 

M-RETURN TO MENU 

O-OBJECTIVE COEFFICIENTS 
A-CONSTRAINT COEFFICIENTS 
C-CONSTRAINT TYPES 
B-BOUNDED VARIABLES 
n_nnftnoATT/» /•AcerT/^rewxc 
U-EXECUTE ALGORITHM 
R-REPORT LISTING 
S-SAVE F-FETCH 
N-NEW PROBLEM 

OPTION ? 
0'X+X'QX=z 

l*X*2*Y>=c l*X*2*Y>=c l*Y*a*(X-b)"2>?c 

Figure C-2. Ellipsoid method main menu screen 

C-2; calls the utility subroutines UTIL-OPT, UTIL-ERS, UTIL-CON, UTIL-

CHX; calls the data input and output subroutines INPT-OBJ, INPT-CON, 
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INPT-TYP, INPT-BND, INPT-QUD, and REPT-SMP; calls and times the 

processing algorithms ALGR-KEY and ALGR-GOF; and saves and fetches the 

Input data to disk. 

1 REM ^ELLIPSOIDAL METHOD* 
2 REM MAIN-ELP 

3 REM BI# - MACHINE INFINITE 
4 REM ER - ERROR KEY 
5 REM IR - MAXIMUM NUMBER OF ITERATIONS 
6 REM MD - NUMBER OF CONSTRAINTS 
7 REM ND - NUMBER OF VARIABLES 
8 REM RO - PIVOT ROW FOR SIMPLEX TRANSFORMATION 
9 REM SM# - MACHINE ZERO 
10 REM SN - CONSTRAINT TYPE SIGN 
11 REM W# - DEPTH OF CUT INTO ELLIPSE IN PERCENTAGE OF RADIUS 
12 REM A#(MD+l,ND+8) - ORIGINAL DATA AND KEYS 
13 REM B#(ND+1,ND+1) - ELLIPSOID PARAMETRIC MATRIX 
14 REM M#(ND+1,2) - LOWER AND UPPER BOUNDS OF VARIABLES 
15 REM P#(ND+1) - PIVOT ROW VECTOR 
16 REM Q#(ND+1,ND+1) - QUADRATIC MATRIX 
17 REM R(MD+1) - TYPE OF CONSTRAINT (l-">=".0-"=",-l-"<=") 
18 REM V#(ND+1) - WORK AREA 
19 REM X#(ND) - SOLUTION VECTOR 
20 REM 

Sets MD to the default number of constraints and ND to the number 
of variables In the CP problem. Sets IR to the default maximum number 
of Iterations. Sets BI# to a number considered machine Infinite and SM# 
to a number considered machine zero. 

21 MD=0 
22 ND=0 
23 IR=1000 
24 BI#=1E+10 
25 SM#=1E-10 

Prompts and reads from the keyboard the number of constraints ND in 
the CP problem; the number of variables MD; and the maximum-number of 
iterations. 

26 CLS 
27 LOCATE 1,10:PRINT "ELLIPSOID METHOD" 
28 LOCATE 3,1;PRINT "NUMBER OF CONSTRAINTS":LOCATE 3,31:INPUT "".L$ 
29 GOSUB 1870:REM UTIL-CHX 
30 IF Z#<>BI# THEN MD=Z# 
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31 LOCATE 3,30:PRINT MD," LOCATE 4,1:PRINT "NUMBER OF VARIABLES" 
: LOCATE 4,31:INPUT "".L$ 

32 GOSUB 1870:REM UTIL-CHX 
33 IF Z#<>BI# THEN ND=Z# 
34 LOCATE 4,30:PRINT NO," ":LOCATE 5,1:PRINT "MAXIMUM ITERATIONS" 

:LOCATE 5,31:INPUT "",L$ 
35 GOSUB 1870:REM UTIL-CHX 
36 IF Z#<>BI# THEN IR-Z# 
37 LOCATE 5,30:PRINT IR." 

Dimensions the objective function and constraint coefficients array 
A#(MD+1,ND+8)5 the ellipsoid matrix array B#(ND+1,ND+1); the holding 
array H#(ND+1); the upper and lower bounds array M#(ND+1,2), the cut 
constraint P#(ND+1); the augmented TJ" matlx array Q#(ND+1,ND+1) for the 
quadratic objective function; the constraint type array R(MD+1); two 
working space arrays S#(ND+1) and V#(ND+1); and the solution array 
X#(ND). 

These arrays are the same as used In Beale's method with the 
exception of the B#(ND+1,ND+1) which is the ellipsoid matrix ? rather 
than the augmented B and augmented ÏÏ Inverse. 

38 DIM A#(MD+1,ND+8) 
39 DIM B#(ND+l,ND+l) 
40 DIM H#(ND+1) 
41 DIM M#(ND+1,2) 
42 DIM P#(ND+1) 
43 DIM Q#(ND+1,ND+1) 
44 DIM R(MD+1) 
45 DIM S#(ND+1) 
46 DIM V#(ND+1) 
47 DIM X#(ND) 
48 FOR 1-2 TO MD+1 

Prints the option menu to the screen; calls the option line routine 
UTIL-OPT; and pauses for the entry of "M", "0", "A", "C", "B", "Q", "U", 
"R", "S", "F", or "N" for the option variable L$. 

49 R(I)=1 
50 NEXT I 

51 LOCATE 8,15: PRINT 
52 LOCATE 10,10:PRINT 
53 LOCATE 11,10:PRINT 
54 LOCATE 12,10:PRINT 
55 LOCATE 13.10:PRINT 
56 LOCATE 14,10:PRINT 
57 LOCATE 15,10:PRINT 
58 LOCATE 16,10:PRINT 

"M-RETURN TO MENU" 
"O-OBJECTIVE COEFFICIENTS" 
"A-CONSTRAINT COEFFICIENTS" 
"C-CONSTRAINT TYPES" 
"B-BOUNDED VARIABLES" 
•»n_niiAnDATTr rncccrrr "Q-QUADRATIC COEFFICIENTS" 
"ll_i:YCrilTC AI CnOTTUM" "U-EXECUTE ALGORITHM 
"R-REPORT LISTING" 
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59 LOCATE 17,10:PRINT "S-SAVE F-FETCH" 
60 LOCATE 18.10:PRINT "N-NEW PROBLEM" 
61 LOCATE 22.1:PRINT " OX'+XQX'=z" 
62 LOCATE 23,1:PRINT ".l*X*2*Y>=c l*X*(2*Y-3*Z)>=c l*Y*a*(X-b)'2>=c" 
63 GOSUB 1800:REM UTIL-OPT 
64 LOCATE 21,8:INPUT •"•,L$ 

Calls either the objective function Input subroutine INPT-OBJ, the 
constraint Input subroutine INPT-CON, the constraint type subroutine 
INPT-CON, the upper and lower bounds Input subroutine INPT-BND, the W 
matrix Input subroutine INPT-QUD, the processing subroutine ALGR-KEY, or 
the report subroutine REPT-SMP based on the option variable L$. 

65 CLS 
66 H=0 
67 G=2 
68 IF L$<>"0" THEN 71 
69 GOSUB 1200:REM INPT-OBJ 
70 GOTO 65 
71 IF L$<>"A" THEN 74 
72 GOSUB 1300:REM INPT-CON 
73 GOTO 65 
74 IF L$<>"C" THEN 77 
75 GOSUB 1400:REM INPT-TYP 
76 GOTO 65 
77 IF L$<>"B" THEN 80 
78 GOSUB 1500:REM INPT-BND 
79 GOTO 65 
80 IF L$<>"Q" THEN 83 
81 GOSUB 1600:REM INPT-QUD 
82 GOTO 65 
83 IF L$<>"U" THEN 92 
84 TM=3D00-VML(HID$(TInE$,î,2))+60*VML(nID$(TIME$,4,Z))+VÂL(HID$(TîME$,7 

. 2 ) )  
85 GOSUB 3000:REM ALGR-KEY 

Sets the solution equal to the last ellipsoid center found In the 
ellipsoidal algorithm. 

86 0B#=B#(1,1) 
87 FOR 1=1 TO ND 
88 X#(I)=B#(I+1,1) 
89 NEXT I 
90 TM=3600*VAL(MID$(TIME$,1,2))+60*VAL(MID$(TIME$,4,2))+VAL(MID$(TIME$,7 

.2))-TM 
91 GOTO 51 
92 IF L$<>"R" THEN 95 
93 GOSUB 2200:REM REPT-SMP 
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94 GOiO 65 

Saves the content of MD, ND, Q#(ND+1,ND+1), M#(ND+1,2), 
A#(MD+l,ND+8). and R(MD+1) to the disk file "DATA" as an ASCI file if 
option "S" is selected. 

95 IF L$<>"S" THEN 113 
96 OPEN "0",#1,"DATA" 
97 PRINT #1,STR$(MD) 
98 PRINT #1,STR$(ND) 
99 FOR 1=1 TO ND+1 
100 FOR J=1 TO ND+1 
101 PRINT #1,STR$(Q#(I,J)) 
102 NEXT J 
103 PRINT #l.STR$(M#(I.l)) 
104 PRINT #1,STR$(M#(I.2)) 
105 NEXT I 
106 FOR 1=1 TO MD+1 
107 FOR J=1 TO ND+8 
108 PRINT #1.STR$(A#(I,J)) 
109 NEXT J 
110 PRINT #1,STR$(R(I)) 
111 NEXT I 
112 CLOSE #1 

Loads to MD, ND, Q#(ND+1,ND+1), M#(ND+1,2), A#(MD+1,ND+8), and 
R(MD+1) the disk file "DATA" if option "F" is selected. 

113 IF L$<>"F" THEN 139 
114 OPEN "I",#1,"DATA" 
115 INPUT #1.X$ 
116 MD=VAL(X$) 
117 INPUT #1,X$ 
118 ND=VAL(X$) 
119 FOR 1=1 TO ND+1 
120 FOR J=1 TO ND+1 
121 INPUT #1,X$ 
122 Q#(I,J)=VAL(X$) 
123 NEXT J 
124 INPUT #1,X$ 
125 M#(I.1)=VAL(X$) 
126 INPUT #1,X$ 
127 M#(I,2)=VAL(X$) 
128 NEXT I 
129 FOR 1=1 TO MD+1 
130 FOR J=1 TO ND+8 
131 INPUT #1,X$ 
132 A#(I,J)=VAL(X$) 
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133 NEXT J 
134 INPUT #1,X$ 
135 R(I)=VAL(X$) 
136 NEXT I 
137 CLOSE #1 
138 GOTO 51 

Restarts the execution of the program If option "N" Is selected. 

139 IF L$="N" THEN RUN 
140 GOTO 51 

Utility Subroutines — Files UTIL-OPT. UTIL-ERS. UTIL-CON. and UTIL-CHX 

Same as for critical path method. 

Input Subroutines ~ Files INPT-OBJ. INPT-CON. INPT-TYP, and INPT-BND 

Same as for dual simplex method. 

Input Subroutine — File INPT-QUD 

Same as for Beale's method. 

Report Subroutine — File REPT-SMP 

Same as dual simplex method. 

Constraint Key Algorithm — File ALGR-KEY 

Same as for dual simplex method with nonlinear constraints. 

^cffi2i_|_3^ A1 Qorithm ^ubroutlri^ 2% ALGR^GOF^ 

Coffin's algorithm is a modification of the ellipsoidal method 

designed to compensate for the lack of computer precision. For the 

mathematical formulation, see the section on the theory of the 

ellipsoidal method. 

3300 REM *GOFFIN'S ALGORITHM* 
3301 REM- ALGR-GOF 

Prompts for the radius of the starting sphere as shown in figure 
C-3 and intializes the ÏÏ matrix. 
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ELLIPSOID PARAMETERS 

NUMBER OF CONSTRAINTS 
NUMBER OF VARIABLES 
UPPER BOUND ON VARIABLES 

10 
14 

100 

(PRESS RETURN TO CONTINUE) 

Figure C-3. Ellipsoid parameter input screen 

3302 CLS 
3303 LOCATE 1.12:PRINT "ELLIPSOID PARAMETERS" 
3304 LOCATE 3,1:PRINT "NUMBER OF CONSTRAINTS":LOCATE 3,30:PRINT MD 
3305 LOCATE 4,1;PRINT "NUMBER OF VARIABLES":LOCATE 4,30:PRINT ND 
3306 LOCATE 5,1:PRINT "UPPER BOUND ON VARIABLES":LOCATE 5,31:INPUT "" 
3307 GOSUB 1870:REM DATA UTIL-CHX 
3308 IF Z#<>BI# THEN R#=Z#*CDBL(SQR(ND)) 
3309 LOCATE 5,30:PRINT R#/CDBL(SQR(ND)) 
3310 LOCATE 20,7;PRINT "(PRESS RETURN TO CONTINUE)" 
3311 LOCATE 5.31:INPUT "",L$ 
3312 IF L$<>"" THEN 3307 
3313 CLS 
3314 FOR 1=1 TO ND+1 
3315 H#(I)=BI# 
3316 FOR J=1 TO ND+1 
3317 B#(I.J)=0# 
3318 NEXT J 
3319 B#(I.I)=R# 
3320 NEXT I 

«.w WW «# • « w i  # w iiiowiiMic; III! i i i lue* oc va oiits 

iteration count IT and the error code ER=0. 

3321 B#(1,1)=BI# 
3322 IT=0 
3323 ER=0 

Increments the Iteration count by one (1), and if the count has 
exceeded the maximum count, sets ER=0 and returns to the main routine 

3324 IT=IT+1 
3325 IF IT>IR THEN RETURN 

Searches for the greatest slack from among the lower bounds. 

3326 R0=0 
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3327 W#=SM# 
3328 FOR 1=2 TO ND+1 
3329 IF B#(I,1)-M#(I.2)>=SM#/10# THEN 3338 
3330 C#=0# 
3331 FOR J=2 TO ND+1 
3332 C#=C#+B#(I.J)*B#(I.J) 
3333 NEXT J 
3334 IF W#>-(M#(I.2)-B#(I,1))/CDBL(SQR(C#)) THEN 3338 
3335 W#«(M#(I,2)-B#(I.1))/CDBL(SQR(C#)) 
3336 RO=I 
3337 Q#=C# 
3338 NEXT I 

Searches for the greatest slack from among the upper bounds. 

3339 FOR J=2 TO ND+1 
3340 IF M#(J.1)=0# THEN 3352 
3341 A#=M#(0.1) 
3342 IF A#=BI# THEN A#=0# 
3343 IF A#-B#(J,1)>«SM#/10# THEN 3352 
3344 C#=0# 
3345 FOR K=2 TO ND+1 
3346 C#=C#+B#(J,K)*B#(J.K) 
3347 NEXT K 
3348 IF W#>-(B#(J,1)-M#(J.1))/CDBL(SQR(C#)) THEN 3352 
3349 W#=(B#(J,1)-M#(J,1))/CDBL(SQR(C#)) 
3350 R0=J+ND+1 
3351 Q#=C# 
3352 NEXT J 

Searches for the greatest slack from among the CP problem 
constraints. 

3353 FOR K=2 TO MD+1 
3354 REM 
3355 IF A#(K,ND+2)<>0# THEN GOSUB 4000:REM PAR-TANL 
3356 IF A#(K,ND+3)<>0# THEN GOSUB 4200:REM HYP-TANL 
3357 IF A#(K.ND+4K>0# THEN GOSUB 4400:REM SHT-TANL 
3359 REM 
3360 A#=0# 
3361 FOR 1=2 TO ND+1 
3362 A#=A#+A#(K,I)*B#(I,1) 
3363 NEXT I 
3364 A#=A#(K.1)-A# 
3365 IF A#=0# THEN 3383 
3366 S=R(K) 
3367 IF S=0 THEN S=-SGN(A#) 
3368 A#=A#*S 
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3369 IF A#<=SM#/10# THEN 3383 
3370 C#=0# 
3371 FOR 1=2 TO ND+1 
3372 B#=0# 
3373 FOR J=2 TO ND+1 
3374 B#=B#-A#(K,J)*B#(J,I)*S 
3375 NEXT J 
3376 C#=C#+B#*B# 
3377 NEXT I 
3378 IF W#>=A#/CDBL(SQR(C#)) THEN 3383 
3379 W#=A#/CDBL(SQR(C#)) 
3380 R0=K+ND+1+ND+1 
3381 Q#=C# 
3382 SN=S 
3383 NEXT K 
3384 ER=2 
3385 IF W#>1# THEN RETURN 
3386 IF R0>0 THEN 3422 

Makes a cut constraint from the objective function If all the 
constraints are satisfied by the current center point of the ellipsoid 
and loads It Into the cut constraint array P#(ND+1). 

3387 A#=0# 
3388 FOR 1=2 TO ND+1 
3389 A#=A#+B#(I,1)*A#(1,1) 
3390 NEXT I 
3391 FOR 1=2 TO ND+1 
3392 B#=0# 
3393 FOR J=2 TO ND+1 
3394 B#=B#+B#(J,1)*Q#(J,I) 
3395 NEXT J 
3396 P#(I)=B# 
3397 NEXT I 
3398 FOR 1=2 TO ND+1 
3399 A#=A#+P#(I)*B#(I,1) 
3400 NEXT I 
3401 ER=1 
3402 IF ABS(B#(1.1)-A#)<=.0000001 THEN RETURN 
3403 B#(1.1)=A# 
3404 FOR 1=2 TO ND+1 
3405 P#(I)=-A#(1.I) 
3406 NEXT I 
3407 FOR 1=2 TO ND+1 
3408 FOR J=2 TO ND+1 
3409 P#(I)=P#(I)-2#*B#(J.1)*Q#(J,I) 
3410 NEXT J 
3411 NEXT I 
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3412 Q#=0# 
3413 FOR 1=2 TO ND+1 
3414 A#=0# 
3415 FOR J=2 TO ND+1 
3416 A#=A#+P#(J)*B#(J,I) 
3417 NEXT J 
3418 q#=Q#+A#*A# 
3419 NEXT I 
3420 W#=0# 
3421 GOTO 3442 

Loads Into the cut constraint array P#(ND+1) the lower bound 
constraint If It has the greatest slack. 

3422 IF R0>ND+1 THEN 3429 
3423 P#(1)=M#(R0.2) 
3424 FOR 1=2 TO ND+1 
3425 P#(I)=0# 
3426 NEXT I 
3427 P#(R0)=1# 
3428 GOTO 3442 

Loads Into the cut constraint array P#(ND+1) the upper bound 
constraint If It has the greatest slack. 

3429 IF R0>ND+1+ND+1 THEN 3438 
3430 J=R0-ND-1 
3431 P#(1)=0# 
3432 IF M#(J,1)<>BI# THEN P#(1)=-M#(J,1) 
3433 FOR K=2 TO ND+1 
3434 P#(K)=0# 
3435 NEXT K 
3436 P#(J)^=1# 
3437 GOTO 3442 

Loads Into the cut constraint array P#(ND+1) the CP problem 
constraint If it has the greatest slack. 

3438 K=R0-ND-1-ND-1 
3439 FOR J=1 TO ND+1 
3440 P#(J)=A#(K,J)*SN 
3441 NEXT J 

Transforms the ellipsoid. 

3442 GOSUB 3800:REM TRAN-ELP 

Returns to find a new center point. 
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3443 GOTO 3323 

Ellipsoid Transformation Subroutine — File TRAN-ELP 

The previous subroutine determined the cut row. The transformation 

subroutine uses the cut row to reduce the volume of the ellipsoid. For 

details of the algorithm, see the section on the theory of Goffln's 

method. 

3800 REM * ELLIPSOID TRANSFORMATION SUBROUTINE * 
3801 REM TRAN-ELP 

3802 A#=1#+(((1#+ND*W#)"2)/(24#*ND*ND)) 
3803 A#=A#*SQR(((ND*ND)*(1#-W#*W#))/((ND*ND)-1#)) 
3804 B#=(1#-SQR(((NO-1#)*(1#-W#))/((ND+1#)*(1#+W#))))/Q# 
3805 G#=((1#+ND*W#)/(ND+1#))/SQR( Q#) 
3806 FOR 1=2 TO ND+1 
3807 B#(1.I)=0# 
3808 V#(I)»0# 
3809 H#(I)=B#(I,1) 
3810 NEXT I 
3811 FOR 1=2 TO ND+1 
3812 IF P#(I)=0# THEN 3816 
3813 FOR J=2 TO ND+1 
3814 B#(1,J)=B#(1,J)-P#(I)*B#(I,J) 
3815 NEXT J 
3816 NEXT I 
3817 FOR 1=2 TO ND+1 
3818 IF B#(l,I)-0# THEN 3822 
3819 FOR J=2 TO ND+1 
3820 V#(J)=V#(J)+B#(1,I)*B#(J.I) 
3821 NEXT J 
3822 NEXT I 
3823 FOR 1=2 TO ND+1 
3824 B#(I.1)=B#(I.1)-G#*V#(I) 
3825 FOR J=2 TO ND+1 
3826 B#(I,J)=A#*(B#(I,J)-B#*(V#(I)*B#(1.J))) 
3827 NEXT J 
3828 NEXT I 
3829 RETURN 

Parabolic Subroutines — Files PAR-TANA, PAR-TANL, or PAR-TANG 

Same as for dual simplex method with nonlinear constraints. 
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Hyperbolic Subroutines — Files HYP-TANA, HYP-TANL, or HYP-TANG 

Same as for dual simplex method with nonlinear constraints. 

Hyperbolic Sheet Subroutines — Files SHT-TANA, SHT-TANL. or SHT-TANG 

Same as for dual simplex method with nonlinear constraints. 

Program Table of Contents 

Table C-1 can be used to reconstruct the ellipsoidal method with 

Table C-1. Ellipsoidal method with nonlinear constraints BASIC program 
table of contents 

File Program lines Page Routine 

MAIN-ELP 0001-0140 504 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-CON 1400-1440 65 
INPT-BND 1500-1523 67 
INPT-QUD 1600-1628 166 
UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 
REPT-SMP 2200- 2224 69 
AL6R-KEY 3000-3057 200 
ALGR-GOF 3300-•3443 508 
TRAN-ELP 3800-3829 513 
PAR-TANL 4000- 4034 209 
HYP-TANL 4200- 4221 217 
SHT-TANL 4400-•4425 228 

Ellipsoidal method 
Objective coefficient input subroutine 
Constraint coefficient input subroutine 
Constraint type input subroutine 
Variable bounds input subroutine 
Quadratic input subroutine 
Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Simplex report subroutine 
Constraint key subroutine 
Goffin's algorithm subroutine 
Ellipsoidal transformation subroutine 
Supporting line for parabolic subroutine 
Supporting line for hyperbolic subroutine 
Supporting plane for sheet subroutine 

nonlinear constraints from the computer disk and to organize subroutines 

from previous code listings. Since BASIC code is dependent on program 

line numbers for subroutine branching, the line numbers must be 

maintained as listed above. 
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Ellipsoidal Method: 
Solutions to Example 12 Minimum Project Supervision Cost Problem 

The results of the ellipsoidal method are summarized in table C-2. 

The data are arranged and displayed in the same format as Beale's method 

with nonlinear constraints solutions to example 12 in table 13. 

Because of the iterations and time required to reach a solution 

with the ellipsoidal method, it becomes evident that the method is 

impractical for solving the minimum project supervision cost problem. 

What is worse, the rate of convergence of the method is dependent on 

the volume of the starting sphere which is in turn dependent on the 

number of variables in the problem. 

Table C-2. Ellipsoidal method, using supporting planes derived with the 
line search algorithm, solutions to the example 12 minimum 
project supervision cost problem with hyperbolic man count 
and parabolic cost functions 

Dur. 100 90 80 70 60 
Itr. 5439 5352 5295 5308 5538 
Sec 16386 17147 16079 15582 16186 
Obj. 554.78019 554.78019 554.78019 556.79125 581.59038 
T1 16.84991 16.84828 16.84958 15.63109 13.04575 
T2 34.59347 34.59216 34.59351 32.57017 27.95653 
T3 52.98501 52.98307 52.98486 50.08570 43.30533 
T4 74.39797 74.39700 74.39859 69.99999 59.99999 
M5 0.18873 0.18873 0.18873 0.19965 0.23091 
M6 0.50245 0.50245 0.50244 0.53433 0.62415 
M7 1.78042 1.78059 1.78045 1.91925 2.29959 
MB 2.25433 2.25429 2.25429 2.36140 2.68262 
M9 2.71864 2.71873 2.71866 2.85460 3.25758 
MIO 2.80204 2.80191 2.80194 3.01291 3.59396 
Mil 1.93717 1.93719 1.93716 2.03165 2.31331 
M12 2.31257 2.31266 2.31257 2.45623 2.86158 
MIS 1.56391 1.55389 1.56388 1.65535 1.91675 
M14 1.34412 1.34414 1.34411 1.42857 1.66666 



516 

Table C-2. Continued 

Dur. 50 40 30 20 10 
Itr. 5496 5475 5680 5745 6730 
Sec. 16077 16043 16461 16722 19250 
Obj. 654.85701 831.36714 1270.72454 2619.40333 10124.15667 
T1 10.65908 8.41577 6.25999 4.15620 2.07484 
T2 23.32208 18.67314 14.01120 9.34397 4.67232 
T3 36.31350 29.17421 21.93596 14.64327 7.32509 
T4 49.99999 39.99999 29.99999 19.99999 9.99999 
MS 0.27538 0.34276 0.45587 0.68290 1.36516 
M6 0.74968 0.93778 1.25087 1.87687 3.75398 
M7 2.81450 3.56473 4.79233 7.21811 14.45890 
M8 3.15880 3.89963 5.16047 7.71044 15.39956 
M9 3.84869 4.76141 6.30933 9.43521 18.84818 
MIO 4.38388 5.54232 7.44044 11.20087 22.43072 
Mil 2.72857 3.37212 4.46543 6.67488 13.33269 
M12 3.43022 4.28422 5.70971 8.56166 17.12210 
M13 2.28769 2.84952 3.79106 5.68045 11.35624 
M14 2.00000 2.50000 3.33333 5.00000 10.00000 
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APPENDIX 0: BARANKIN AND DORFMAN METHOD 

Beale's method and the ellipsoidal method provided a means of 

solving the minimum project cost problem with quadratic cost funtlons. 

Another method for solving the QP problem which Is derived directly from 

the Kuhn-Tucker conditions Is the Barankin and Dorfman méthodes. 

Theory of Barankin and Dorfman Method 

The QP problem can be written in matrix notation as: 

minimize Px+x'W 

subject to: Âx<=â 

x>=ïï 

The Lagrangian function can be written for the problem as: 

ïï'Ik+X ' OJCHT' *(ÂX-Ï) 

from which the Kuhn-Tucker conditions are: 

c+2îîx+T'ïï>=îr 
x'(c+2^+X'u)=T 

x>«ïï 
7(x-a<=(T 

u' (7[x=a)^ïï 

ïï>=ïï 

where ïï is the vector of Lagrangian multipliers. 

Define two (2) more vectors V and y as: 

v=c+2Qx+Â'ïï 

Then, the Kuhn-Tucker conditions can be rewitten as: 
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In this form, the problem is now linear with the exception of the 

cross products or the restricted pairs. In this form, the QP problem 

can also be solved by the restricted pairs method. 

Barankin and Dorfman Method: 
Solutions to Example 17 Minimum Project Cost Problem 

The Barankin and Dorfman method requires more variables than Beale's 

method so the ten (10) activity example 10 would exceeds the capacity of 

the BASIC program without overlays. To provide an example network for 

the method, a two (2) activity network shown in figure D-1 will be used. 

Activity #1 Activity #2 

Duroi=10-X3 Duri2=20-X4 

Figure D-1. Network Diagram 

The QP problem for the minimum cost problem is then: 

minimize -X3-X4+10*X3'2+9*X4*2 

subject to: Xl-(10-X3)>=0 
X2-(20-X4)-Xl>=0 
X2<=Dur. 

The Barankin and Dorfman restricted pairs CP problem for the minimum 

cost problem with quadratic activity costs is: 

minimize 0 

subject to: -Xl-X3+Y5=-10 
-X2-X4+Xl+Y6=-20 

X2+Y7=Dur. 
-U8+U9-V11=0 
-U9+U10-V12=0 

20*X3-U8-V13=1 
18*X4-U9-V14=1 

X1*V11+X2*V12+X3*V13+X4*V14+Y5*U8+Y6*U9+Y7*U10=0 
X1,..X4,Y5,..Y7,U8,...U10,V11,...V14>=0 
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The restricted pairs solution to the Barankin and Dorfman 

formulation of the minimum cost problem with quadratic costs functions 

Is listed in table D-1 for six (6) different project durations. The same 

Table D-1. Restricted pairs method solutions to example 17 minimum cost 
problem 

Dur. 30 25 20 15 10 5 
Itr. 6 15 15 14 12 19 
Sec. 7 12 13 12 11 15 
Obj. 0.00 0.00 0.00 0.00 0.00 0 
XI 9.95 7.63157 5.26315 2.89473 0.52631 0 
X2 29.89444 25.00 20.00 15.00 10.00 5 
X3 0.05555 2.36842 4.73684 7.10526 9.47368 10 
X4 0.05 2.63157 5.26315 7.89473 10.52631 15 
Y5 0.00 0.00 0.00 0.00 0.00 0 
Y6 0.00 0.00 0.00 0.00 0.00 0 
Y7 0.10555 0.00 0.00 0.00 0.00 0 
US 0.00 46.36842 93.73684 141.10526 188.47368 199 
U9 0.00 46.36842 93.73684 141.10526 188.47368 269 
UIO 0.00 46.36842 93.73684 141.10526 188.47368 269 
Vll 0.00 0.00 0.00 0.00 0.00 70 
V12 0.00 0.00 0.00 0.00 0.00 0 
Via 0.00 0.00 0.00 0.00 0.00 0 
V14 0.00 0.00 0.00 0.00 0.00 0 

model solved using Beale's method is listed in table D-2. 

Table D-2. Beale's method solutions to the example 17 minimum cost 
problem 

Dur. 30 25 20 15 10 5 
Itr. 7 8 8 7 7 6 
Sec. 3 4 3 3 - 3 2 
Obj. -0.05277 113. 42105 463.68421 1050. 78947 1874. 73684 3000 
XI 9.95 7. 63157 5.26315 2. 89473 0. 52631 0 
X2 29.89444 25 20 15 10 5 
X3 0.05000 2. 36842 4.73684 7. 10526 9. 47368 10 
X4 0.05555 2. 63157 5.26315 7. 89473 10. 52631 15 
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APPENDIX E: PROGRAM DIRECTORY 

Table E-1. Program table of contents 

File Program lines Page Routines 

MAIN- 0001-0999 

MAIN-CPM 0001-0064 20 
MAIN-SMP 0001-0132 56 
MAIN-KLT 0001-0075 100 
MAIN-PDS 0001-0132 127 
MAIN-BEA 0001-0147 160 
MAIN-RST 0001-0153 261 
MAIN-GOM 0001-0137 288 
MAIN-6ND 0001-0156 344 
MAIN-PRS 0001-0141 382 
MAIN-PDM 0001-0696 450 
MAIN-CRN 0001-0138 479 
MAIN-ELP 0001-0140 504 

INPT- 1100-1799 

INPT-ACT 1100-1133 24 
INPT-OBJ 1200-1220 61 
INPT-CON 1300-1328 63 
INPT-TYP 1400-1440 65 
INPT-BND 1500-1523 67 
INPT-QUD 1600-1628 166 
INPT-PRS 1700-1723 388 

UTIL- 1800-1999 

UTIL-OPT 1800-1803 22 
UTIL-ERS 1850-1853 22 
UTIL-CON 1860-1866 22 
UTIL-CHX 1870-1882 23 

REPT- 2000-2999 

REPT-CPM 2000-2019 26 
REPT-CRV 2100-2125 105 
REPT-SMP 2200-2224 69 

Main routines 

Critical path method 
Dual simplex method 
Out-of-kilter method 
Primal-dual method 
Beale's method 
Restart method 
Gomory's method 
Branch and Bound method 
Restricted pairs method 
Precedence diagramming method 
Corner cut method 
Ellipsoidal method 

Input subroutines 

Activity Input subroutine 
Objective coefficient input subroutine 
Constraint coefficient Input subroutine 
Constraint type Input subroutine 
Variable bounds Input subroutine 
Quadratic Input subroutine 
Restricted pairs input subroutine 

Utilities 

Option line subroutine 
Erase option subroutine 
Continue line subroutine 
Data check subroutine 

Reports 

Critical path method report subroutine 
Cost curve report subroutine 
Simplex report subroutine 
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Table E-1. Continued 

File Program lines Page Routines 

ALGR-

ALGR-KEY 

ALGR-RST 
ALGR-BND 
ALGR-DBK 
ALGR-PRS 
ALGR-CPR 

ALGR-CPM 
ALGR-SMP 
ALGR-KLT 
ALGR-PDS 
ALGR-BEA 
ALGR-GOM 
ALGR-CRN 
ALGR-GOF 

TRAN-

3000-3549 Algorithms 

3000-3057 200 Constraint key subroutine 

3100-3249 Branch and bound subroutines 

3100-3122 266 Restart algorithm 
3100-3215 352 Branch and bound algorithm subroutine 
3100-3219 367 Driebeek's penalty algorithm subroutine 
3100-3270 391 Restricted pairs algorithm subroutine 
3250-3274 357 Node compressing subroutine 

3300-3549 Main algorithm subroutines 

3377 27 Critical path algorithm subroutine 
•3398 70 Dual simplex algorithm subroutine 
'3449 110 Out-of-klTter algorithm subroutine 
•3433 134 Primal-dual algorithm subroutine 
•3581 172 Beale's algorithm subroutine 
•3499 294 Gomory's algorithm subroutine 
•3434 495 Corner cut algorithm subroutine 
•3443 508 Goffln's algorithm subroutine 

3550-3999 Transformation subroutines 

3300-
3300 
3300-
3300 
3300-
3300 
3300 
3300 

TRAN-OBJ 3550-3584 139 Objective function transformation subr. 
TRAN=QUD 
TRAN-CON 
TRAN-INV 
TRAN-ELP 
TRAN-RIV 

3550-
3600. 
3700-
3800-
3900-

3553 
•3633 
•3743 
•3829 
-3960 

4000-4999 

PAR-TAN 4000-4099 

PAR-TANA 4000-4034 
PAR-TANL 4000-4034 
PAR-TANG 4000-4018 

180 Quadratic tableau transformation subr. 
74 Constraint transformation subroutine 
76 Basis inversion subroutine 

513 Ellipsoidal transformation subroutine 
78 Basis relnversion subroutine 

Supporting planes and cuts 

Supporting plane for parabolic subroutines 

206 Axial algorithm subroutine 
209 Line search algorithm subroutine 
211 Gordian algorithm subroutine 

PAR-DEP 4100-4199 Deep cut for parabolic subroutines 



523 

Table E-1. Continued 

File Program lines Page Routines 

PAR-DEPA 
PAR-DEPL 
PAR-DEPG 

4100-4189 
4100-4189 
4100-4175 

308 
311 
313 

HYP-TAN 4200-4299 

HYP-TANA 
HYP-TANL 
HYP-TANG 

4200-4221 
4200-4221 
4200-4226 

215 
217 
219 

HYP-DEP 4300-4399 

HYP-DEPA 
HYP=DEPL 
HYP-DEPG 

4300-4385 
4300-4385 
4300-4383 

316 
318 
320 

SHT-TAN 4400-4499 

SHT-TANA 
SHT-TANL 
SHT-TANG 

4400-4428 
4400-4425 
4400-4430 

225 
228 
231 

SHT-DEP 4500-4599 

SHT-DEPA 
SHT-DEPL 
SHT-DEPG 

4500-4593 
4500-4592 
4500-4587 

323 
325 
328 

CBH-TANG 
CBH-DEPG 
CBS-TANG 
CBS-DEPG 

4600-4628 
4700-4782 
4800-4832 
4900-4987 

251 
331 
254 
334 

Axial algorithm subroutine 
Line search algorithm subroutine 
Gordian algorithm subroutine 

Supporting plane for hyperbolic subroutines 

Axial algorithm subroutine 
Line search algorithm subroutine 
Gordian algorithm 

Deep cut for hyperbolic subroutines 

Axial algorithm subroutine 
Line search algorithm subroutine 
Gordian algorithm subroutine 

Supporting plane for hyperbolic sheet subr. 

Axial algorithm subroutine 
Line search subroutine 
Gordian algorithm 

Deep cut for hyperbolic sheet subroutines 

Axial algorithm 
Line search subroutine 
Gordian algorithm 

Supporting plane for cubic hyperbolic subr. 
Deep cut for cubic hyperbolic subroutine 
Supporting plane for cubic sheet subroutine 
Deep cut for cubic sheet subroutine 


