
An interactive graphical approach

to off-line programming

jZTStS

7JT?

by

James J. Troy

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major: Mechanical Engineering

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1992

11

TABLE OF CONTENTS

1. INTRODUCTION 1

2. LITERATURE REVIEW 3

2.1 Evolution of Robot Programming 3

2.2 Theoretical Background 4

3. KINEMATICS AND PATH GENERATION 7

3.1 Coordinate Systems 7

3.2 Forward and Inverse Kinematics 13

The Algebraic Method 15

The Geometric Method 15

Geometric/Algebraic Solution for a 5-DOF Robot 15

3.3 Path Generation 20

Joint Space Methods 21

4. SOFTWARE DEVELOPMENT 25

4.1 Graphical Off-line Programming Requirements 25

4.2 Basic Computer Graphics Concepts 26

Object Modeling 26

Cameras 26

Rendering, Lighting, and Materials 28

4.3 Interface Controls 28

4.4 Major Subsystems 29

Path Subsystem 31

Objects Subsystem 33

Robot Subsystem 34

Material and Lighting Subsystems 34

Ill

File Input/Output Subsystems 34

Animation Subsystem 35

5. RESULTS 36

5.1 Using the Interface 36

Inverse Kinematics Testing 36

Generating Paths 37

5.2 Off-line Programming Testing 38

Tasks Performed 39

Time Savings 39

Cycle Time Estimations 42

Position Accuracy 42

Calibration 43

Manipulator Force and Collisions 44

User Comments 45

6. CONCLUSIONS AND RECOMMENDATIONS 46

6.1 Future Work 46

6.2 Closing Remarks on Computer Graphics 47

BIBLIOGRAPHY 48

APPENDIX A: USERS MANUAL AND SAMPLE FILES 51

APPENDIX B: ROBOT SPECIFICATIONS 65

IV

LIST OF FIGURES

Figure 3.1 Frame definitions for a rotational joint (a) and translational joint (b) 8

Figure 3.2 Frame assignments for a 5-DOF articulated robot 9

Figure 3.3 Generalized frame diagram 12

Figure 3.4 Positioning modes: (a) world mode, (b) tool mode 17

Figure 3.5 Geometry for calculating 02 and 03, (a) top view, (b) side view 18

Figure 3.6 A splined segment with intermediate control points 21

Figure 4.1 Solid model of the Mitsubishi RV-M1 robot 27

Figure 4.2 A slider 29

Figure 4.3 Graphical interface: (a) path subsystem, (b) objects subsystem 30

Figure 4.4 Object transformation diagrams 33

Figure 5.1 Test equipment 38

Figure 5.2 Comparison of simulation and actual component palletizing 40

Figure 5.3 Comparison of simulation and actual Lego block assembly 41

Figure 5.4 Signature model 43

Figure A1 RS screen layout 53

V

LIST OF TABLES

Table 3.1 D-H parameter table for the 5-DOF robot of Figure 3.2

VI

NOMENCLATURE

In order to clarify the mathematical notation used in this thesis, a brief explanation

may be useful. Coordinate frame transformations will be specified by an upper case T

with leading superscripts and subscripts in the form AT, which describes frame A relative

to frame B. Upper case characters inside brackets, {/4} for example, refer to a specific

coordinate system. An upper case P with leading superscript and following subscript

denotes a 3-D vector, BPA for example, which relates the origin of reference frame A to

the origin of reference frame B. The word “frame” is sometimes used in place of “coordi¬

nate system”, and should not be confused with the frames (images) of an animation.

Vll

ACKNOWLEDGMENTS

I would like to thank my major professor and friend Martin Vanderploeg, as well as

the members of by committee, Professors James Bernard and John Jackman.

In addition, I would also like to thank fellow graduate students (and former students)

in the Visualization Lab: Terran Boylan, Jim Lynch, Afshin Mikaili, Jay Shannan, Todd

Teske, and Jeff Trom, for their comments, advice, and diversions during the course of by

research.

And finally, I thank my parents for their encouragement throughout my many years in

college.

1

1. INTRODUCTION

Off-line programming is the creation of a set of instructions to control robot manipu¬

lators and other programmable devices of a workcell without actually using the equip¬

ment. The addition of a computer graphics interface greatly enhances the usefulness of

off-line programming. The advantages of programming a robot in this manner include:

• The ability to visualize the arrangement of a workcell layout before equipment is pur¬

chased

• Creating and testing device control code without taking equipment out of production

• The convenience of being able to program different types of robots using a common

graphics based instruction set

• Faster program modification

• Increased safety

This thesis describes the initial stages in the development of interactive graphical

software for off-line programming. The approach taken here uses “solid” models to repre¬

sent all components of the robot’s workcell, and displays the simulated movement of

these components through animated computer graphics. The main topics covered in this

thesis will be forward and inverse kinematics, path generation, and the creation of an

interactive graphical interface. The application of these topics has led to off-line pro¬

gramming software that was tested by simulating a five degree of freedom articulated

robot. Simulation data was then translated to the robot’s device control code and tested on

the actual robot.

2

Kinematic position generation will be used to generate all motion (i.e., the dynamic

properties of mass and inertia will not be taken into account). The reason for this

approach is that most production robots in use today are driven by electric servo motors

with high gear reduction ratios. Generating motion in this manner creates high frequency

vibrations which have quick settling times. Robots of this type are considered “stiff’

position control devices and do not usually require dynamic models to obtain adequate

simulations.

Software of the type presented here is already sold commercially but is quite expen¬

sive and source code is usually not available. The availability of the source code is neces¬

sary to make modifications and enhancements, and to have complete control over the user

interface. The main objective of the research presented in this thesis is the development

of graphical off-line programming software for a specific robot, that can be modified to

allow additional robot models (and other programmable devices) to be added later.

The off-line programming software (named RS, for Robot Simulator) developed dur¬

ing this research is written in C and makes extensive use of the graphics routines of Sili¬

con Graphics’ Graphics Library (GL). Testing of the device control code written out by

RS was performed on a five degree of freedom Mitsubishi RV-M1 robot. In order to

obtain feedback on the use of this software, testing was also performed by undergraduate

students with varying degrees of computer graphics and robotics experience. Results

include comments about the usefulness of this software, as well as modifications needed

to improve its functionality.

3

2. LITERATURE REVIEW

This literature review gives an overview of research in off-line programming, starting

with the historical evolution of robot programming followed by a summary of the theoret¬

ical background of robot simulation and off-line programming.

2.1 Evolution of Robot Programming

In order to get a better understanding of why graphical off-line programming has

become an important aspect in robotic workcell design, it is useful to discuss the evolu¬

tion of robot programming.

When robots were initially introduced, the only method of programming was teaching

manipulator positions on-line. On-line programming involves directing the robot to the

desired goal position using a teach pendant and then recording the position directly into

the memory of the machine controller. A variety of proprietary languages, like AML and

VAL II, are now available that can be used with the teach pendant to give better on-line

programming control [1].

Early off-line programming evolved from advances in computer numerical control

(CNC). Some off-line programming software used high level languages like BASIC [2],

but lacked capabilities necessary to graphically simulate the program before transferring

it to the machine controller.

4

Derby [3], and Patt and Derby [4] developed PC based software that used wireframe

computer graphics to simulate robot workcells. Due to computer hardware limitations,

these programs lacked the ability to be dynamically interactive (which is the ability to

calculate and graphically display changes as an input variable is being changed from one

state to another). This type of interaction is necessary to give the robot programmer a

more complete understanding of the robot’s motion and to create a more efficient off-line

programming environment.

More recent software developments have been designed for use on more powerful

graphics workstations. These software packages are capable of simulating and animating

solid models at relatively high update rates. Packages like World Modeler, developed by

Mirolo and Pagello [5] and Jack by Phillips et al. [6], have many advanced functions, but

most research of this type has focused only on graphical simulation. Since these types of

programs lack the ability to translate graphical simulation data into the device control

code needed to drive the robot, they cannot be used for off-line programming.

Interactive computer graphics software with off-line programming capabilities are

commercially available such as, CimStation by Silma and IGRIP by Deneb (see [7] [8]

[9]). These programs have many advanced features: collision detection, signature models,

and dynamic simulation, as well as the ability to write device control code. But these pro¬

grams often cost more than the hardware on which they are run. With the recent introduc¬

tion of fast and relatively inexpensive graphics workstations, this cost differential

becomes more significant.

2.2 Theoretical Background

One of the most important aspects of off-line programming is that of the underlying

kinematic and dynamic equations that control the position and movement of the robot.

Most approaches to kinematic simulation are based on notation developed by Denavit and

Hartenberg [10], which describes a method of defining coordinate frames attached to

5

moving links. These frame descriptions are used to develop 4x4 transformation matrices

which give the relative positions of one link to another. Ho and Sriwattanathamma [11]

present a symbolic matrix manipulation program to automate the derivation of the link

transformations from the Denavit-Hartenberg parameters

Several approaches exist for deriving inverse kinematics. These can be broken down

into two general categories: numerical and closed form solutions. Stone [12] presents

numerical solution methods based on Newton-Raphson and Jacobi iterative algorithms.

Phillips et al. [6] present a more computationally efficient numerical approach than tradi¬

tional numerical solutions, but these still suffer from numerical convergence problems.

Fu et al. [13] discuss techniques to derive closed form solutions to the inverse kinematics

problem that are much more efficient than numerical methods. Among these are alge¬

braic, geometric, and quaternion based methods.

Although dynamics will not be dealt with explicitly in this thesis, much work in robot¬

ics deals with this topic. Fu et al. [13] discusses various closed form and numerical solu¬

tions for forward and inverse dynamics. Nikravesh [14] discusses methods of formulating

equations for multi-body dynamics, which can be solved by numerical methods. Isaacs

and Cohen [15] present methods of producing dynamic simulation systems for computer

animation. Davis [16] presents experimental results from a modal analysis of a “stiff’

position control robot.

Path generation algorithms which are used to control trajectory in three dimensions

are based on either joint space interpolation or cartesian space interpolation. Fu et al. [13]

and Craig [17] describe joint space methods which are based on fitting splined curves

through a set of predefined control points. Fu et al. [13] describes cartesian space methods

(to trace straight lines in 3-D space) using homogeneous transformation matrix and dual

quaternion approaches.

6

Another area of robotics research that is important in developing efficient off-line pro¬

gramming systems is the development of robot signature models. Signatures are used to

covert the ideal positions developed in a robot simulation to a set of corresponding posi¬

tions which compensate for manufacturing and calibration variations of an individual

robot. Stone [12] develops a signature modeling technique in which the actual kinematic

parameters of an individual robot can be identified and used to create correction functions

for that robot.

In order to write more “intelligent” device control code, off-line programming soft¬

ware can be used in conjunction with task level programming. Latombe [18] makes

extensive use of computer graphics simulation in his work with robot motion planning to

analyze and explain various artificial intelligence and spacial reasoning algorithms.

7

3. KINEMATICS AND PATH GENERATION

The basis for all graphical simulation involves defining the position of objects in three

dimensions, and describing how the position of these objects change with time. In off-line

programming, the positioning problem involves locating the manipulator (hand or tool) at

certain precision points within the robot’s workspace. The following sections will focus

on position and motion generation for a five degree of freedom articulated robot, specifi¬

cally dealing with coordinate systems, forward and inverse kinematics, and path genera¬

tion.

3.1 Coordinate Systems

The coordinate system used in this thesis is based on Denavit-Hartenberg [10] nota¬

tion for lower-pair mechanisms. This method identifies link parameters that describe the

position of each link relative to an adjacent link. Each link is described by two angles:

a;_ ^ and 0(., and two linear offsets: at_ x and di-x. For any lower pair joint (revolute or

translational) three of the four Denavit-Hartenberg (D-H) parameters are fixed and one is

variable. For a revolute joint the variable parameter will be 0(., for translational joints it is

the link offset di_l. Figures 3.1a and 3.1b show these parameters as specified for rota¬

tional and translational joints respectively.

8

Figure 3.1 Frame definitions for a rotational joint (a) and translational joint (b)

The parameters are specified as follows:

• a-_ j = distance from Zj.j to z, relative to axis xj_j

• a._ j = angle from Zj.j to zx relative to axis XJ.J

• dx = distance from xj_i to Xj relative to axis zx

• 0(. = angle from XJ.J to Xj relative to axis zx

When assigning these parameters, it is useful to make a table listing the four values

for each link. It is possible to have different parameter values depending on how the local

coordinate frames of each link are assigned. However, any rotation or translation of the

variable parameter takes place about or along the local z-axis.

For the five degree of freedom articulated robot, which will be analyzed throughout

this thesis, the frame assignments and D-H parameter table are shown in Figure 3.2 and

Table 3.1 respectively.

9

Figure 3.2 Frame assignments for a 5-DOF articulated robot

Table 3.1 D-H parameter table for the 5-DOF robot of Figure 3.2

i ai- l ai-l d, 0. 1

i 0° 0 h 0i

2 90° 0 0 02

3 0° L2 0 03

4 0° h 0 04

5 -90° 0 0 05

6 180° 0 -^4 0

Now that the D-H parameters have been assigned, they will be used to determine the

link transformations using 4x4 matrices. The general equation for this transformation is

given by Equation 3.1.

10

cos0(. —sin0(. 0 ai-i

sin0.cosa. . cosOcosa. , -sina. . -sina. ,d.

sin0(sina(._ j cos0;sina._ t cosa(._j cosai_ldi

0 0 0 1

(3.1)

Once all the link transformation matrices have been defined, they can be multiplied

together (in the correct order) to get the transformation matrix relating the coordinate sys¬

tem of any one link to any other link in the system. For example, the transformation

matrix describing the position of link 3 relative to link 0 can be calculated as,

In general, the transformation matrix of reference frame M relative to frame N is

Nrp N>Y* N + \rp M — 2rp M ~ 1 op (0 \
M1 - N+\l N+21 - M-\l M1

The transformations of each link of the 5-DOF robot, based on the D-H parameters of

Figure 3.2, are given in Equations 3.3 to 3.8.

0
1 T =

cos0j -sin0j 0 0

sin0j cos0j 0 0

0 0 1L,

0 0 0 1

(3.3)

1
2 T =

cos02 -sin02 0 0

0 0-10
sin02 cos02 0 0

0 0 1

(3.4)

0

11

cos03 -sin03 0 L2

2rp — sin03 cos03 0 0

0 0 10
0 0 0 1

(3.5)

3
4 T =

cos04 -sin04 0 L3

sin04 cos04 0 0

0 0 10
0 0 0 1

(3.6)

4
5 T =

cos05 -sin05 0 0

0 0-10
sin05 cos05 0 0

0 0 0 1

(3.7)

5
6 T =

10 0 0
0-100
0 0 -1 L4

0 0 0 1

(3.8)

These transformations will be used later in this chapter to derive the inverse kinematics of

the robot.

In order to graphically display the link positions, the transformations of each link (as

well as moving objects in the workcell) must be calculated relative to a stationary coordi¬

nate system. This involves premultiplying the transformations described in the base coor-

dinate system by the base frame relative to the stationary frame transformation, fiT, as

shown by Equation 3.9.

Srp _ Srp Brp Wrp
T1 ~ BJ W1 T1 (3.9)

12

where the indices S, B, W, and T refer to the stationary, base, wrist, and tool frames

respectively, as shown by the frame diagram in Figure 3.3.

Figure 3.3 Generalized frame diagram

For the 5-DOF robot the ^T and ^T transformations are specified by the user, and the
D

WT transformation is given by Equation 3.10.

0j 1 j 2j 3r 4^ (3.10)

When deriving the inverse kinematics, it is sometimes necessary to invert a transform

before premultiplying, such as,

This can be accomplished using Equation 3.11,

13

B
A T =

A pT ApTAp
BK ^B

00 0 1

(3.11)

where R is the 3x3 rotation matrix and APB is the column vector of x, y, and z positions

of frame B relative to frame A. Now that the transformations have been defined, it is pos¬

sible to formulate the forward and inverse kinematic equations.

3.2 Forward and Inverse Kinematics

Positioning the links of a robot involves finding a set of joint variables and link trans¬

formations for a particular manipulator goal point, this can be accomplished in two ways:

forward (or direct) kinematics, and inverse kinematics. Forward kinematics involves cal¬

culating the position of the robot’s manipulator in cartesian coordinates, as a function of

the joint variables. This is done by premultiplying the wrist transformation matrix by all

previous link transformations until the position of the wrist relative to the base is found

(as shown by Equation 3.10). Positioning the manipulator using only forward kinematics

involves moving each joint independently in order to reach the desired cartesian goal

point. Using this method, it is often very difficult and time consuming to get accurate

manipulator placement.

Since the position of the manipulator is the desired quantity, and not the joint angles,

it is more intuitive to specify the manipulator goal position in cartesian space and then

compute the required joint angles. This is the basic concept behind inverse kinematics. In

general, finding inverse kinematic equations is a much more difficult problem than deriv¬

ing the forward kinematics; forward kinematics involves straightforward matrix multipli¬

cation, while inverse kinematics usually involves solving non-linear systems to obtain

individual joint variables.

14

The solution to the inverse kinematics problem can be found by using one of two

methods, a numerical approach or a closed form (analytical) approach. The numerical

solution formulation is easier to develop and can be applied in a logical manner to any

general mechanism (meaning the computer can generate and solve the equations). This

generality has a major drawback; since numerical methods are based on iterative tech¬

niques, they require significant computational effort. At current levels of computing capa¬

bilities, an accurate solution cannot be obtained fast enough for realistic interactive

operation for systems with many degrees of freedom. Higher efficiencies can be obtained

from numerical solution techniques if larger tolerances on the solution are specified, and/

or the solution to the current position is relatively close to the previous solution (see

[12]). Unfortunately, large tolerances in the accuracy of kinematic solutions are usually

not acceptable in robotic programming. Furthermore, requiring the solutions to be rela¬

tively close to each other means that the programmer would have to move the mouse (or

other input device) slowly, since fast movements would cause large positioning displace¬

ments which would slow down the iterative convergence of the numerical solution algo¬

rithm.

The closed form approach offers a substantial increase in computational efficiency

over the numerical approach. This type of solution can be calculated fast enough to allow

systems with many degrees of freedom to be dynamically interactive, i.e., graphically dis¬

playing position changes at high update rates. The drawback of the closed form approach

is in the development of the equations which explicitly solve for the joint variables. There

are no completely general methods for deriving closed form inverse kinematic solutions

(meaning a computer can’t derive the equations on its own). In fact, closed form solutions

are not possible for some types of mechanisms. Special conditions must be met for a

closed form solution to exist: joints must be parallel or at right angles to each other. For¬

tunately, almost all robots are designed to meet this criteria. One additional advantage

that a closed form approach has over a numerical one is the ability to easily find all solu-

15

tions to a positioning problem. Due to the limitations of the numerical method for inverse

kinematic positioning, closed form approaches will be used in this thesis. The techniques

for deriving closed form solutions that will be discussed include the algebraic and geo¬

metric methods, along with a hybrid method involving both algebraic and geometrical

solutions.

The Algebraic Method

The algebraic solution technique involves symbolically multiplying the transforma-
D

tion matrices that make up the WT transformation of Equation 3.10. Trigonometric identi¬

ties are then used to reduce combinations of certain elements of this transformation to

equations involving a single variable. This method of pulling the individual joint vari¬

ables out of the transformation matrix can be very difficult (or impossible) for some of the

variables in systems having many degrees of freedom.

The Geometric Method

Geometric solution techniques involve breaking the system down into a plane for each

pair of links and geometrically solving for the variables in that plane. This method is usu¬

ally less complex than the algebraic approach.

Geometric/Algebraic Solution for a 5-DOF Robot

A method combining the geometric approach with the algebraic method worked best

for the 5-DOF robot of analyzed in this thesis. The geometric method was used to solve

for angles 02 and 03, and the algebraic method was used to solve for angles 0p 04, and

05. These equations will be the basis for inverse kinematic positioning, and will be con¬

nected to the user interface controls explained in the next chapter.

Manipulator Positioning. Starting with the transformation relating the wrist frame of

the robot to the base frame, as in Equation 3.10, results in Equation 3.12.

16

C1C234C5 + 5'l,S5

51C234C5 “ Cl55

5234C5

_C1C234S5 + 'S1C5

-51C23455 “ C1C5

—^234^5

c 15 234 C1 (c23^3 + c2^2^

5l‘S234 ^1 (C23^3 + c2^

~c234 ^1 + s2^2 + s23^3

0 0 0 1

(3.12)

(In order to make better use of space, cos(0j) has been shortened to cx and

cos (02 + 03) is now c23, etc.). This matrix is completely known since it is derived from

the position variables entered by the user. For later reference, matrix of Equation 3.12

will described in terms of its elements as,

rll r12 r13 '14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1

(3.13)

Since the elements of this matrix are not all independent, the user can enter data

describing the position and orientation of WT by specifying three position and three rota¬

tion variables. One method of specifying these variables is to assign x, y, and z cartesian

positions and roll, pitch, and yaw (y, (3, a) rotations based in the stationary coordinate
D

system. WT can then be represented as,

Brp _ Orp
W1 - 51

cacP casPsy-sacy casPcy+sasy x

sacP sasPsy+cacy sasPcy- easy y
-sP cPsy cPcy z

0 0 0 1

(3.14)

For the 5-DOF robot, only the cartesian position variables (x, y, and z) will be

assigned by the user (y, P, and a will be defined by the joint space variables 04 and 05).

17

Changing position variables can be performed either directly (by changing x, y, and z

independently), or in terms of the manipulator coordinate system. These functions will be

applied in terms of a world (stationary) mode and a tool (manipulator) mode as shown in

Figure 3.4.

Figure 3.4 Positioning modes: (a) world mode, (b) tool mode

Deriving Joint Angles. From Equation 3.12 and 3.13, joint variable 0j can be

obtained from the arctangent of elements r14 and r^,

0 l (3.15)

Note that a solution to this equation is not possible if 02 = -90° and 03 = 0°, but due to

the design of this robot, this condition will never arise.

Breaking down the robot into planes, as shown in Figures 3.5, gives the second joint

variable, as shown in the following set of equations.

18

Figure 3.5 Geometry for calculating 02 and 03, (a) top view, (b) side view

<t> = atan
z~Li \

IfT?)

L] = jc2 + y2+ {z-Ll)
2 + L1

2-2L2Jj + y2V^L^1
cosy

x2+y2+ (z - Lj)1 + L2-L\

2 L2^
2 + y2T7z^L^

2 i / 2 _ j 2,

y = acos

02 = (f) ± y (3.16)

19

The third joint variable can also be calculated by using the geometric representation

of Figure 3.5. Starting with the law of cosines,

x2 + y2+ (z-Lj)2 = L2 + L3 - 2L2L3cos (180° - 03)

COS(18O°-03) = —cos03

which results in,

03 = +acos I
+ yi+iz-Ll)

2-L2-L2

2 L2L3
(3.17)

Now that angles 0j, 02, and 03 are known, the angle 04 can be found using elements

from the matrix of Equations 3.12 and 3.13, which results in,

0 4 atan Jr 13 + r23 ^

_r33 >
(3.18)

Finally, 05 can be also found by from Equations 3.12 and 3.13 through the following

derivation, resulting in Equation 3.19.

a = cos0jcos(02+03+04)

b = sinOj

c = sin0jcos (02 + 03 + 04)

d = cos0j

0 5 atan
Oil+ r2i) (b~d) - (r12 + r22) (a + c) \

(rn + r2i) (a + c) + (rn + r22) (b-d) J
(3.19)

20

3.3 Path Generation

Path generation refers to the methods used to define the trajectory that the robot’s

manipulator will follow in three dimensional space with respect to time. Two different

types of path generation will be discussed. The first involves specifying an interpolation

scheme that operates directly on the joint variables, usually called joint space interpola¬

tion. This can be as simple as linear interpolation of joint angles from one control point to

the next, or more complex, involving polynomial splines and multiple control points.

Another type of path generation operates on a path defined in terms of cartesian variables,

referred to as cartesian space interpolation. This type of path generation may involve

moving the manipulator in a perfectly straight line or generating an arc or circle, and is

used in applications like welding, painting, applying adhesives, and some types of assem¬

bly.

Of the two, the joint space method is less complicated to use and is less computation¬

ally intensive. Is used in situations when the cartesian path that the manipulator follows

between control points is not critical. It is important to note that, in general, linear joint

space paths will not result in linear cartesian movement of the manipulator. In addition,

obtaining a kinematic solution using cartesian space methods is not always possible since

a user may unknowingly define a linear manipulator path that passes outside the robot’s

workspace, or one that exceeds its acceleration limits. However, generating a kinematic

solution between control points is always guaranteed when using joint space interpola¬

tion. Furthermore, it is possible to approximate cartesian path generation by using joint

space interpolation and a large number of control points. These issues are important to

consider when deciding which method to use. This thesis will focus on joint space

schemes since they are relatively easy to implement on most robot controllers, and since

they provide good control for many positioning operations.

21

Joint Space Methods

There are many types of joint space interpolation schemes, most are based on polyno¬

mial splines. In order to get continuous velocity and acceleration between segments, a

polynomial of at least third degree is required. Splined cubic polynomials are the lowest

order polynomial that satisfies this requirement.

Cubic Splines. A cubic spline is a set of cubic polynomials combined together, that

can be made to have continuous first and second derivatives at the intermediate (or via)

control points as shown in Figure 3.6. This figure shows one segment with three via

points and four splined cubic polynomials (cl through c4). The segment start and end

points are defined to have zero velocity. The velocity of each via point is determined by

its position in the segment. The complete path that the robot follows will be made out of

many segments of this type.

Figure 3.6 A splined segment with intermediate control points

22

The general form of a cubic polynomial is,

0 (t) — QQ + <3t11 + #2^ ^3^ (3.20)

which gives velocity and acceleration equations of,

0 (t) = + 2a2r + 3fl^^ (3.21)

0 (0 = 2a2 + 6a3t (3.22)

In order to calculate values of aD through a^ for each cubic in the segment, four con¬

straint variables must be specified: initial and final position, and initial and final velocity,

as listed in Equations 3.23 to 3.26,

0(0) = 0Q (3.23)

0 (tf) = e, (3.24)

0(0) = 0O (3.25)

®
.

11 (3.26)

where t ranges from 0 to jy during each cubic of the segment. Using these conditions, the

cubic coefficients are:

ao = e0 (3.27)

ax = 0O (3.28)

*2 = 1(0 -eo)-i(20o + 0)
tf

1 tf
(3.29)

23

a3 = -\ (e/“V + \ (0/~0o) (3.30)
lf ff

In order to make cubic splines easier to use, 0O and 0y can be assigned automatically.

The simplest way of doing this is by assigning a velocity at a via point based on the aver¬

age velocity between adjacent points, and assigning zero velocity at the start and end of

the segment.

For most types of robots, the maximum angular velocity and acceleration will be spec¬

ified instead of At for each cubic in the segment. When the maximum angular accelera¬

tion or deceleration, 0m, is specified for the starting or ending point of the cubic, At can

be calculated as shown in Equations 3.31 and 3.32 for the acceleration and deceleration

cases respectively,

- (260 + 6,)+J(280 + 8/ + 69m(8/-e0)

0„

(20.+ 0O) ± J(2(L+ 0Q)2 - 60 (0/-+ 0O)
At = J- L—H. (3.32)

m

If the value of At calculated by Equation 3.31 or 3.32 causes the maximum angular

velocity, 0m, to be exceeded, At can be recalculated as follows,

A = Qj-- 0Q

B = e„-e0

C =

D — 20o +

24

, 2 D2

2A (B+D) ±1(2A (B+D))2 - 12A2 (C£ + ^-)
At = = — (3.33)

D2

2 (CB + ±j)

The sum of all individual A?’s will be used to give an estimate of the cycle time for a

particular task.

More complex methods that assure continuous acceleration for cubic splines are pre¬

sented by Fu et al. [13]. Other types of joint space interpolation including higher order

polynomials and combinations of linear segments with parabolic blends, are presented by

Craig [17]. Deciding on which type of interpolation to use depends on the capabilities of

the control system used to drive the robot. For the 5-DOF robot used in this study, the

cubic spline will be used to interpolate the joint variables.

25

4. SOFTWARE DEVELOPMENT

This chapter discusses the creation of off-line programming software based on the

kinematic positioning and path generation principles developed in Chapter 3. Included is:

1) a summary of requirements for viable off-line programming in a graphical environ¬

ment, 2) a basic review of computer graphics concepts, 3) a description of the user inter¬

face controls, and 4) an explanation of the major subsystems included in the robot

simulator. Specific information on the operation of the program is presented in the pre¬

liminary users manual in Appendix A.

4.1 Graphical Off-line Programming Requirements

In order to create a basic graphical off-line programming environment, the following

concepts and functions need to be addressed.

♦ Objects of the workcell must be represented as solid models.

♦ Viewing position cameras must be defined.

♦ The user must be given the ability to interactively place objects anywhere within the

robot’s workcell.

♦ Dynamic control of the forward and inverse kinematic positioning functions must be

implemented.

♦ A method of assigning and saving path control points must be defined.

♦ A method of associating positions of objects with the position of the robot’s manipula¬

tor at any location along its path must be defined.

26

• A method for translation of graphical simulation data to device control code must be

implemented.

• File input and output functions must be included.

Each of these topics will be discussed in this chapter.

4.2 Basic Computer Graphics Concepts

Object Modeling

In order to visualize the objects that make up the workcell, data describing the 3-D

geometry must be created and imported into the computer. This data can be represented

either as polygons or as curves and surfaces (NURBS for example). Polygonal data is

much less complex and can be rendered at higher update rates than curve and surface

data. For this reason, the polygon based data structure will be used to represent the object

models usually referred to as “solid” models. There are many commercial packages avail¬

able for creating solid models. The solid model of the robot tested in this thesis, shown in

Figure 4.1, was created using the I-DEAS solid modeling package. Although solid model¬

ers may have different methods of representing data internally, most have the ability to

write out this data as a list of 3-D points and a list describing how these points are con¬

nected to form the polygons that make up each object. The method used to import the

polygon information into the robot simulator is based on the BYU format, and was chosen

due to its relatively compact data representation [19].

Cameras

Once the polygonal data describing the object models has been imported, viewing

parameters must be set to display this data. In order to create an interactive environment

for working with solid models, the user must be given the ability to dynamically change

the viewing position that is displayed on the screen. A viewing position, or camera, is

generally described by a look-at point (the point in 3-D space at which the camera is

27

pointing) and a look-from point (the location where the camera itself is positioned). These

points will be internally represented as a 4 x 4 viewing matrix. Another 4x4 matrix

called the perspective matrix, which defines the field of view, will also be associated with

each camera. Recall from Chapter 3 that all location of the links of the robot were also

described by 4 x 4 matrices. These matrices will be multiplied by the viewing matrix and

the perspective matrix in order to obtain the graphical image of the object model pro¬

jected onto the computers two dimensional screen. In addition, camera positions can be

interpolated from one position to another. Cameras can also be constrained to move with,

or follow, the robot’s manipulator. This feature can give the user the ability to follow a

particular object throughout a manufacturing or assembly process.

Figure 4.1 Solid model of the Mitsubishi RV-M1 robot

28

Rendering, Lighting, and Materials

The final step in visualizing the solid models is to determine how they will be dis¬

played. The rendering mode refers to the way an object is drawn, or shaded. The simplest

method of drawing an object is to display it in wireframe, which consists of drawing lines

connecting the points that make up the object. A more realistic method of shading an

object involves defining materials (or set of color properties) and lighting sources. The

material assigned to an object defines how light is reflected from its surface. The light

source defines color and the direction of the light. This information can then be used to

shade, or fill in, the polygons that make up the object model. Two types of shading are

used by the robot simulator: flat shading and smooth (Gouraud) shading. A complete

description of rendering is beyond the scope of this thesis. A detailed review can be found

in any text dealing specifically with computer graphics, for example, Foley et al. [20] or

the SGI Graphics Library Programming Guide [21].

Having defined the basic concepts of representing and viewing object models, the

operational structure of the off-line programming interface for the robot simulator, RS,

will be the focus of the remainder of this chapter.

4.3 Interface Controls

A primary issue when creating a graphical interface is deciding how to dynamically

control an input variable. Dynamic control of a variable (not to be confused with the

dynamics of motion generation) is the ability to continuously calculate the function

dependent on that variable and visualizing the change as it happens, as opposed to making

a change and then waiting for the update to occur after the request is entered. This is anal¬

ogous to turning up the volume on a radio and hearing the sound level increase as you

turn the knob, instead of finding out how much you changed the volume after you let go

of the knob. This type of feedback leads to more efficient control and convergence to a

desired solution. One of the most useful dynamic controls in computer graphics is a mov-

29

ing input device like the slider of Figure 4.1. Input devices like the slider are controlled

by positioning to cursor on the slider and holding down a mouse (or keyboard) button

while dragging the cursor across the screen. Many of the parameters in the robot simula¬

tor are changed by controls of this type.

Figure 4.2 A slider.

The basic layout of the simulator screen is divided into four main areas. The main por¬

tion of the screen is taken up by the viewing window, which displays the solid model

geometry, as shown in Figure 4.2. The lower left of the screen is the area where the slider

controls for each subsystem will be displayed. Near the center of the screen (just under

the lower right of the viewing window) is a set of buttons and a slider for controlling cam¬

eras, rendering modes, and animating the simulation (using the VCR button arrange¬

ment). The lower right of the screen is taken up by a command window which displays

commands as they are executed. Just above the command window is the main menu

which gives access to each of the subsystems in the simulator. The area above the main

menu is used to display the controls of each subsystem menu. Keyboard function keys are

used to define and control the viewing parameters associated with each camera.

4.4 Major Subsystems

The basic functions listed in the beginning of this chapter are divided into several sub¬

systems which are accessed from the main menu. The design and functions of these sub¬

systems are described in the following sections.

Figure 4.3 Graphical interface: (a) path subsystem, (b) objects subsystem

31

Path Subsystem

The path subsystem, which is displayed in Figure 4.2a, controls forward and inverse

kinematic positioning as well as the selection of path control points and the computation

of splined segments. This is the primary subsystem used to create a simulation.

Kinematics. The set of sliders in the lower left corner of the screen are used to control

manipulator positioning. The first three sliders are used to control x, y, and z cartesian

space positioning of the manipulator, and are tied directly to the inverse kinematics algo¬

rithm. The next six control each of the robot’s joints independently (the sixth one is not

used for the RV-M1, since it is a 5-DOF robot). These sliders are tied to the forward kine¬

matics algorithm. (Actually, the forward kinematics algorithm is also called by an update

to the cartesian sliders; the inverse kinematics code calculates the joint angles, which are

then used by the in the forward kinematics calculations to find the 4x4 transformation

matrix for each link.) The last slider in the set controls whether the gripper (or tool) is

open or closed. If the user changes a variable to a position that is out of the robot’s work¬

space, the program will reset the variable (and move the slider) back to the last correct

value. The options menu to the left of these sliders controls the inverse kinematics posi¬

tioning mode. Three kinematic modes are available: world and tool coordinate position¬

ing, and a wrist roll compensation mode (which corrects for wrist rotation when the z-axis

of the tool aligns with the stationary z-axis).

Path Generation. The buttons on the right of the screen control the path generation

functions. Currently, only the joint space interpolation mode is operative, and the only

joint space interpolation available is the cubic spline with continuous velocity at the via

points. The joint positions along the path (i.e., starting, ending, and via points) are stored

within the program in two lists, called point and path. The point list contains the values

associated with each control points. The path list is calculated after all the point values

have been set and contains the joint variables associated with each animation frame in the

simulation. These values are determined by the cubic coefficients derived in Chapter 3

32

(see Equations 3.27 through 3.30). The method of applying these equations uses a value

of At determined by a maximum speed and acceleration set by the user and the actual

joint velocity specifications supplied by the robot manufacturer (see Appendix B). The

value of At is set for each segment of the path, not for each individual via point (for

example, if a segment contains three via points, the time per cubic will be ^ for each of

the four cubics in that segment).

The method of storing joint variables for the path requires the 4x4 transformation

matrices to be calculated while the animated simulation is being displayed. This method

is not as computationally efficient as storing the matrices, since the same set of matrices

must be recalculated each time the simulation is played. The major advantage of storing

only the joint variables is reduced memory usage, since only one variable needs to be

stored instead of the 16 elements that make up each transformation matrix. An option will

be provided later to give the user a choice of storing the 4 x 4 transformation matrices for

increased speed when memory is not in limited supply.

Objects. In order to allow the robot to manipulate objects during a simulation, objects

may be constrained to the tool position at any start point of a segment. This constraint is

defined when the object(s) is selected from the current objects menu, by associating the

current object position with the current tool position. When an object is first selected, a

transformation matrix is created to relate the position of the object to the tool, QT, as

shown by Equation 4.1. The QT matrix can then be used to calculate the position of the

object relative to the stationary reference frame at each update position of the tool, as

shown by Equation 4.2.

Srrl— 1 Srp

T1 Ol

S

o r

(4.1)

(4.2)

33

n r 3 S /

Where jT and QT are the initial object pickup positions, and ^T' and QT' are these posi¬

tions at a later time. A set of these matrices will be defined for each object that is associ¬

ated with the current tool position. Diagrams of these frame transformations are shown in

Figure 4.3.

Figure 4.4 Object transformation diagrams

Objects Subsystem

The objects subsystem, shown in Figure 4.2b, handles positioning, material assign¬

ment, and rendering mode for all objects in the workcell (except the robot). The sliders

for controlling position are located in the lower left. These six variables (x, y, z, roll,

pitch, and yaw) are used to set or change the initial transformation matrix of an object rel¬

ative to the stationary reference frame. The material associated with each object is chosen

from the pallet of available materials (which is defined in the materials subsystem). Ren¬

dering modes for each object are also defined within this subsystem. These rendering def¬

initions are activated when the “DEFINED” option is selected from the main rendering

mode menu. The rendering modes available are, bounding box (which is a simple block

representation of the object), wireframe, flat shaded, and smooth (Gouraud) shading.

34

Robot Subsystem

The robot subsystem operates in much the same way as the object subsystem for

defining positioning, material assignment, and rendering mode for each robot. This sub¬

system will eventually allow the user to load multiple or different types of robots (cur¬

rently only the RV-M1 model is functional). This feature will allow the user to create

graphical position data for one type of robot and then use the same data to evaluate of dif¬

ferent types of robots performing the same specified task.

Material and Lighting Subsystems

The combination of the material and lighting parameters define the appearance of all

components of the workcell. The material subsystem allows the user to define a pallet of

materials that can be applied to objects and robot solid models. This subsystem controls

the ambient, diffuse, specular, and emitted properties of light falling on any solid model

assigned to a material. The lighting subsystem allows definition of up to eight light

sources. The lighting parameters that can be modified are the light source positions and

color definitions.

File Input/Output Subsystem

Input and Output of status, points, and device control files are handled by the file

input/output subsystem. The status file contains information about the workcell environ¬

ment (lighting, camera positions), and about objects that make up the workcell (robots,

fixturing). The points file contains the joint variables in the points list, and information

about speed and acceleration settings. The device control file contains the operating com¬

mands written in the language of the robot’s controller. Sample files that can be read or

written by the simulator are given in Appendix A.

35

animation Subsystem

This subsystem allows the user to send frames from an animated simulation to a file oi

o a frame storage device (for example, an Abekas A60). These frames can then be played

t a rate of thirty frames per second to create a true “real time” animation a robot Simula-

ion.

36

5. RESULTS

The off-line programming software developed over the course of the research was

evaluated at several stages during its development. The initial evaluations dealt with the

function of the interface and the efficiency of the inverse kinematics algorithm. The sec¬

ond phase of testing looked at the efficiency of the off-line programming aspects of the

software from a user point of view.

5.1 Using the Interface

Connecting the position and path generation equations with the graphical interface

presented many challenges, some concerning the methods used in obtaining the position

solutions, and others pertaining to the functions available for creating the path that the

robot will follow in three dimensional space.

Inverse Kinematics Testing

As described earlier, the method selected to obtain inverse kinematics solutions was

the closed form approach. Testing was also preformed using the numerical approach, but

it did not lend itself the environment required for off-line programming. A brief descrip¬

tion of this testing may provide useful insight as to the reasons why the closed form solu¬

tion technique is the preferred solution method.

Interactive inverse kinematic solutions using numerical methods can be generated in

many ways, but all rely on making an initial guess at the joint solutions for a particular

37

cartesian goal, and then iterating by comparing these solutions to those generated by the

forward kinematics equations. Several methods of applying numerical techniques to com¬

puter graphics also exist. One involves updating the solution set once for every cycle

through the graphics update loop. This type algorithm will continue iterating as long as

the user continues to hold down the mouse button after a position change has been

requested. This allows the user to decide when the solution is good enough to stop the

iteration process. Application of this technique proved to be to slow for interactive use.

Updating the position in this manner is very inefficient since the graphics must be

updated for each iteration. A more efficient method involves setting a tolerance on an

acceptable error for each joint and then updating the graphics only after an adequate solu¬

tion has been reached. This method may become more usable for dynamic interaction as

computers become faster, but even an extremely fast computer will have trouble converg¬

ing on a solution when the desired position is far away from the current position. Some of

these convergence problems can be solved by giving the numerical algorithm a set of heu¬

ristic instructions to follow for getting itself out of trouble. For example, if the desired

solution is to far away from the current position, a set of intermediate positions could be

defined so that a final solution could be arrived at by first solving the intermediate steps.

Solving a set of intermediate positions for each joint obviously slows down the calcula¬

tion even more.

Closed form solutions do not have these types of convergence problems. Application

of the closed form solution for the 5-DOF robot presented in Chapter 3 resulted in fast

update rates that were efficient enough to allow dynamic interaction. For these reasons,

the closed form method was developed for use in the robot simulator.

Generating Paths

The only method currently available in RS for generating a path uses a continuous

velocity cubic spline. Other joint space methods (including different versions of the cubic

38

spline), and cartesian space methods are planned for future development. The addition of

these types of path generation functions would give the simulator better compatibility

with many different types of commercially available robots. Fortunately, the cubic spline

closely approximates the joint space control of the Mitsubishi RV-M1, on which all test¬

ing was performed.

Testing of the software consisted of a variety of simple tasks involving graphically

simulating a Mitsubishi RV-M1 robot positioning objects in the workcell, then translating

the graphical commands to the robot’s device control code, and transferring the code to

the robot’s control computer. Testing of this code was then performed on the actual robot.

A diagram showing the test equipment and transfer of information is shown in Figure 5.1.

5.2 Off-line Programming Testing

a

graphics workstation personal computer

RS 232 cable

controller robot

Figure 5.1 Test equipment

39

The reason the PC is included in the loop is because it is dedicated to controlling only

the devices of a particular workcell. Using an expensive graphics workstation to do this

task would be an inefficient use of resources. But recently, with the drastic reduction in

the price of entry level graphical workstations, the PC may soon be replaced by a dedi¬

cated workstation that can perform graphical off-line programming as well as workcell

device control.

Tasks Performed

The actual tasks used for testing initially consisted of moving and stacking wooden

blocks within the workcell, then proceeded to palletizing objects, (Figure 5.2), and then

assembling structures with interlocking “Lego” blocks (Figure 5.3). The object palletiz¬

ing and assembly tasks were chosen in order to test general positioning and data transfor¬

mation accuracy, and because they are relatively common types of tasks for the RV-M1

robot.

Time Savings

Results showed that programming these types of tasks could be performed off-line in

approximately 25% of the time required to create the same program using on-line pro¬

gramming techniques (i.e., using a teach pendant). Much of this time savings came from

the ability to easily recover from programming mistakes. Graphical simulation can easily

point out positioning errors, that can be quickly modified. In addition, when graphically

programming a robot off-line, the user can accidently force the manipulator through the

floor or into other objects without the fear of damaging the robot. Whereas in the actual

workcell, these types of mistakes may cause serious damage to the robot (and its sur¬

rounding) or at least require the user return the robot to its home position to reset joint

sensors.

Fi
gu

re
 5

.2
 C

om
pa

ri
so

n
of

 s
im

ul
at

ed
 a

nd
 a

ct
ua

l
co

m
po

ne
nt

 p
al

le
ti

zi
ng

F
ig

ur
e

5.
3

C
om

pa
ri

so
n

of
 s

im
ul

at
ed

 a
nd

 a
ct

ua
l

L
eg

o
bl

oc
k

as
se

m
bl

y

42

Another source of time savings comes from the ability to quickly position the robot’s

manipulator at goal points, and to easily modify these points. Special positioning func¬

tions that are not available on the teach pendant can be added to the simulator to reduce

programming time even further. An example of one type of special position function that

was added to the RV-M1 position control interface was a joint lock which could be used

to disable wrist rotation.

Cycle Time Estimations

Cycle times predicted by the simulations were underestimated by about 20%. This

error was due to the lack of data on the acceleration characteristics of the robot’s servo

motors. Knowledge of the actual acceleration parameters and further testing should

reduce this error.

Position Accuracy

After the device control code was transferred to the robot and tested, it was sometimes

necessary to do some minor on-line, or touch up, positioning in order to get the robot to

perform the desired task. The touch up programming was usually limited to a few milli¬

meters and was attributed mainly to inaccurate positioning (or inaccurate measurement of

positions) of the objects in the actual workcell.

Touch up programming was required in the palletizing case, since the holes in the fix-

turing were somewhat irregular and did not precisely match the solid model. The Lego

assembly, on the other hand, worked correctly without any on-line touch up. This can be

attributed to the consistent shape of the Lego blocks and accurately constructed solid

models.

43

Calibration

Another source of error was due to individual robot calibration variations and the lack

of a signature model in the robot simulator to correct for it. The addition of signature

models will allow the user to modify the ideal goal position data set generated by the

robot simulator to an equivalent set of positions designated for the calibration of a spe¬

cific robot. This feature would allow the user to create one program that could be trans¬

ferred to many robots (of the same type) without making on-line program modifications

to compensate for the differences of individual robots. This type of data transformation

would take place just before the device control code was written out for a specific robot.

A diagram of one type of signature model is shown in Figure 5.4. This model is used

to alter graphical position values before they are written into the device control code file.

The graphical position changes in this model are based on an error map of the robot’s

workspace. Creating the map involves moving the robot’s manipulator through a set of

positions defined in a device control file and then comparing the positions to those mea¬

sured by an external device.

Figure 5.4 Signature model

44

In the absence of a signature model, fixture positions can sometimes be modified or

purposely misaligned in order to compensate for minor calibration errors, but this is only

a temporary solution.

Manipulator Force and Collisions

Another problem encountered was that of controlling the pressure applied by the

robot’s gripper during the simulation. It is very difficulty to judge how much gripper

force is needed to lift an object without knowing information about the contact surfaces

and the weight of the object. This was another area that occasionally needed on-line fine

tuning. A more accurate prediction of gripper force could be obtained if gravity and spe¬

cific object parameters (like mass and friction coefficients) were taken into account.

Collisions between the robot and objects in the workcell are sometimes difficult to

predict without some type of collision detection algorithm. In a graphical environment, a

problem can be addressed by having the user zoom in close enough to the area of interest

to visually detect most types of interference. However, in the actual workcell, collisions

may still occur. Collisions may go undetected when the cameras are not positioned cor¬

rectly to view a particular operation, or when the simulation update rate is too large and

skips over a trouble spot. Some of these types of collisions can be solved by varying pro¬

gramming techniques. For example, while assembling Legos, most types of collisions

were avoided by approaching goal points from different orientations and avoiding situa¬

tions where linear movement was required over a large distance (since control of the RV-

M1 is limited to joint space movement). Another way to reduce collisions is by using

some type of collision detection algorithm, which could be set up to give a warning when

two objects are within a specified range of each other. This feature would notify the user

of potential problems that may arise during the actual robot operation that may have been

overlooked in the simulation.

45

User Comments

Some of the comments and suggested improvements expressed by people who have

used RS for off-line programming are expressed below:

♦ A quick method of adjusting the fine-tuning (or resolution) of the sliders is needed.

One possibility would be to have one of the mouse buttons control large position

changes and use another button for fine positioning.

• The user should be allowed to enter shortcut command sequences from the command

window.

• Menu layout is somewhat cluttered.

• Conveyors and other independently moving devices should be added to the simulator.

♦ A workspace map is needed to help with initial positioning of objects within the work¬

cell.

♦ Better device control code translation is needed (i.e., a complete signature model for

each robot).

♦ A help menu should be added.

• The user should be allowed to measure positions off the screen by selecting points with

the mouse.

46

6. CONCLUSIONS AND RECOMMENDATIONS

This thesis presents the initial stages of development of an interactive graphical robot

simulator with off-line programming capabilities.

Forward and inverse kinematic equations were developed to control positioning of a

five degree of freedom robot. Cubic splines were applied to interpolate joint variables for

path generation.

A graphical interface was developed to allow dynamic control over kinematic posi¬

tioning and path generation equations. This interface allows the user to graphically simu¬

late a workcell and then translate simulation data to device control code for use on the

actual robot.

Testing was performed on a Mitsubishi RV-M1 robot to verify the software functional¬

ity, and to suggest possible improvements to the interface as well as overall capabilities.

6.1 Future Work

This is a partial list of improvements and additional functions planned for future

development of the robot simulator.

• Additional joint space and cartesian space path generation capabilities should be devel¬

oped.

• Additional testing should be performed in a manufacturing environment.

47

• Additional robot models should be added to create a library of available models to

choose from. Each model must include a solid model of the robots forward and inverse

kinematic equations, and a device control code translator.

• Robot signature models should be added to compensate for differences among individ¬

ual robots, thereby reducing on-line touch up programming.

• Collision detection algorithms can be added in order to notify the user of interference

as well as to let the robot know if it has something in its grasp.

• Multi-body dynamics post processing of kinematically defined paths would allow more

accurate simulation of robots in which mass and inertia properties play important roles.

• The program could be modified to allow feedback from sensors to be simulated.

• The ability to directly create programs with proprietary languages, like VAL II and

AML, could be incorporated.

• An independent language could be created to control all programmable devices in the

workcell (like conveyers), as well as dealing with logical programming (like error

recovery). Ideally, this type of programming could be done with graphical icons.

• An independent language would also allow users to attach their own control algorithms

and task level or artificial intelligence programs.

6.2 Closing Remarks on Computer Graphics

It has become more apparent to me over the course of my research that the area of

computer graphics is beginning to play a more important role in engineering. The field of

computer graphics was once considered only a specialized area of computer science, but

is now becoming a tool that can be used to change the way people in many different fields

think about finding solutions. Since visualizing the solutions that computers generate is

such a powerful tool for finding solutions quickly, it has become increasingly important to

design software with computer graphics in mind. The ability to dynamically change a

variable (like grabbing a slider with the cursor) also has tremendous potential in the

teaching of engineering concepts.

48

BIBLIOGRAPHY

[1] Ackerman, W. B. and Dennis, J. B. “VAL - A Value-Oriented Algorithmic Language,

Preliminary Reference Manual.” MIT Laboratory for Computer Science Report No.

MIT/LCS/TR-218. MIT Press, 1979.

[2] Woodcock, R. “Robot Basic Integrates Functions to Facilitate Off-line Program¬

ming.” Electronics, v 57, n 14, pp 124-127, July 1984.

[3] Derby, S. “GRASP From Computer Aided Robot Design to Off-line Programming.”

Robotics Age, v 5, n 2, pp 11-13, February 1984.

[4] Patt, T. J. and Derby, S. “The Off-line Programming and Simulation of a Dual

Manipulator Assembly Robot.” Computers in Engineering, Conference Proceedings

published by ASME, pp 365-375, 1988.

[5] Mirolo, C. and Pagello, E. “A Solid Modeling System for Robot Action Planning.”

Computer Graphics and Applications, pp 55-69, January 1989.

[6] Phillips, C. B., Zhao, J., and Badler, N. I. “Interactive Real-time Articulated Figure

Manipulation Using Multiple Kinematic Constraints.” Computer Graphics, SIG-

GRAPH Conference Proceedings, ACM Press, v 24, n 4, pp 245-250, July 1990.

[7] Webster, J. “Simulating the Factory Floor.” Computer Graphics World, v 13, n 6, pp

54-59, June 1990.

49

[8] Mogal, J. S. “IGRIP - A Graphics Simulation Program for Workcell Layout and Off-

Line Programming.” Robots 10 Conference proceedings, published by Robots Inter¬

national of the SME, pp 65-77, 1986.

[9] Chan, S. E, Webster, R. H., and Case, K. “Robot Simulation and Off-Line Program¬

ming.” Computer Aided Engineering Journal, Loughborough Univ. of Technology, v

5, n 4, pp 157-162, August 1988.

[10] Denavit, J. and Hartenberg, R. S. “A Kinematic Notation for Lower-Pair Mecha¬

nisms Based on Matrices.”/. Applied Mechanics, pp 215-221, 1955.

[11] Ho, C. Y. and Sriwattanathamma, J. Robot Kinematics: Symbolic Automation and

Numerical Synthesis. Ablex Publishing Corporation, Norwood, NJ, 1990.

[12] Stone, H. W. Kinematic Modeling, Identification, and Control of Robotic Manipula¬

tors. Kluwer Academic Publishers, Boston, 1987.

[13] Fu, K. S., Gonzalez, R. C., and Lee, C. S. G. Robotics: Control, Sensing, Vision, and

Intelligence. McGraw-Hill, New York, 1987.

[14] Nikravesh, P. E. Computer-Aided Analysis of Mechanical Systems. Prentice-Hall,

Englewood Cliffs, NJ, 1988.

[15] Isaacs, P. and Cohen, M. F. “Controlling Dynamic Simulation with Kinematic Con¬

straints, Behavior Functions and Inverse Dynamics.” Computer Graphics, SIG-

GRAPH Conference Proceedings, ACM Press, v 21, n 4, pp 215-224, July 1987.

[16] Davis, J. L. “Analytical and experimental dynamic characterization of the Mitsub¬

ishi RV-M1 robot.” M.S. Thesis, Iowa State University, Ames, IA, 1991.

[17] Craig, J. J. Introduction to Robotics: Mechanics and Control. Addison-Wesley,

Reading, MA, 1986.

50

[18] Latombe, J. C. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA

1991.

[19] Christiansen, H. N. Movie RYU Training Text. Community Press, Provo, UT, 1986.

[20] Foley, J. D., vanDam, A., Feiner, S., and Hughes, J. D. Computer Graphics Princi

pies and Practice. 2nd ed. Addison Wesley, Menlo Park, CA, 1990.

[21] Silicon Graphics Inc. Graphics Library Programming Guide. Mountain View, CA

1991.

51

APPENDIX A

USERS MANUAL AND SAMPLE FILES

• Preliminary RS Users Manual

• RS input status file (needed to load initial data into the robot simulator)

• RS output points file (list of path points)

• RS output device control code (in BASIC for the RV-M1)

52

Preliminary RS Users Manual

This manual is intended to give the first time user the basic information necessary to

use RS to create a robotic simulation and to write out a device control code file.

Starting RS

RS can be started in two way, by typing rs, or by typing rs and the name of a status

file, for example, rs blocks.olp. The status file contains information about the workcell

environment (lighting, camera positions) and about objects that make up the workcell

(robots, fixturing), see the sample status file at the end of this manual. Note in the sample

status file under the OBJECT GEOMETRY section, that geometry files must be read into

RS using the BYU format. An updated status file can be written out from within RS to

save any changes that may have been made during a session.

Once RS has started up, notice that the display is divided into four main areas, as

shown in Figure Al. The majority of the screen is taken up by the viewing window which

displays the workcell as seen through the current camera. The command window in the

lower right of the screen displays commands that have been executed. Just above the

command window is the main menu that selects which subsystem is currently active, this

menu is visible from any of the subsystems. Above the main menu is the section of the

screen used to display the menus of the current subsystem. To the left of the main menu,

just below the viewing window, is a bank of buttons and a slider that are used to control

animation, cameras, and global rendering mode. The lower left of the screen is taken up

by sliders which control positioning of the robot manipulator, this section will change

form depending on which subsystem is currently active.

53

viewing
window

inverse
kinemati<
controls

forward
kinematic
controls

subsystem
menu

main
menu

command
window

Figure A1 RS screen layout

The rest of this manual will describe the basic steps necessary to create a device con¬

trol file off-line, which includes; positioning objects in the workcell, creating a path, and

writing out a device control file. The robot used in the example will be a Mitsubishi RV-

M1 (other robot models will be added later).

Positioning Cameras

The camera positions can be set by using the function keys: FI translates, F2 zooms in

and out, F3 rotates, F4 changes viewing distance, and F5 controls the clipping planes. Six

camera positions can currently be defined, and will be saved in the status file when it is

written out. Additional camera functions (splined camera movements, for example) will

be added to the CAMERAS subsystem later.

54

Positioning Objects

The first step in creating an off-line simulation is to position the objects of the work¬

cell in locations within the workspace of the robot. First pick the OBJECTS subsystem

from the main menu. This subsystem controls object position, material (color), and ren¬

dering information for all objects other than the robot (which can be accomplished in a

similar manner in the ROBOTS subsystem). To position an object, make the desired

object the current object by selecting it from the current object menu. This object can now

be positioned anywhere in the workcell by moving the object sliders in the lower left of

the screen. If a mistake is made, click the RESET OBJECT POSITION button. Once the

desired position is obtained, click SET OBJECT POSITION. These positions will be writ¬

ten to the status file under the OBJECT POSITIONS heading when the status file is saved

(in the FILE I/O subsystem).

Creating A Path

Now that all the positions of the objects are set, switch to the PATH subsystem. This

subsystem controls selection of control points used to create a path, as well as calculating

the updated positions along the path itself. By default, the system is in the joint space

mode with a cubic splined path selected (which is currently the only type available in

RS). A path will be created by selecting several segments in which the robot will come to

a complete stop at the end points. Intermediate “via” points can be placed within a seg¬

ment at locations in space through which the robot must pass through, but not stop. (Note,

don’t use via points when simulating the RV-M1, since its device controller can’t interpret

them.) When staring a path the current point display will read 0:0 0, the first number indi¬

cates the current point, the second indicates the current segment, and the last refers to the

current via point in the segment.

To create path positions, use the sliders in the lower left of the screen to position the

manipulator. The three sliders at the top of this section (labeled x, y, z) control cartesian

55

space movement. Sliders J1 through J6 control the joint variables independently (J6 is not

operative for the RV-M1, since it is a 5-DOF robot). The status of the tool (opened or

closed) is controlled by the last slider. Trying to move the robot’s manipulator out of the

workspace in either the cartesian mode or joint mode will cause an error message to be

displayed in the command window.

Once the desired position of the manipulator has been reached, click on the ADD S/E

POINT button, then move the manipulator to the next position. The starting and ending

points of each segment must be made with S/E (start, end) points. Intermediate via points

can be added within a segment with the ADD VIA POINT button. To pick up one or more

of the objects within the workcell, select the object or objects from the CURRENT

OBJECTS menu just before clicking the ADD S/E POINT button. To release the objects

from the manipulator, deselect them from the CURRENT OBJECTS menu just after

clicking the ADD S/E point button. When all the points of a path have been selected,

click the COMPUTE button. This will compute the interpolated joint positions for the

path (a cubic spline in this case), and update the number of frames displayed in the frame

slider. To view the simulation, click RESET OBJECTS to put the objects back at their

staring positions and then click the forward arrow button (>) on the VCR like control

panel to view the animated simulation. Additional segments may be added to the end of

the path by following the same procedure. At any time while creating a path the user can

switch back to the OBJECTS subsystem to reposition objects. When the simulation is per¬

forming the desired tasks correctly, a device control file can then be written.

Writing Device Control Code

Click on the FILE I/O button from the main menu, this subsystem will allow the user

to read and write status, point, and device control files, as well as writing animation files

that can be used with other animation software packages. Click on the WRITE DEVICE

CONTROL FILE button; a menu will appear that asks for information about the robot,

56

type of communication, and robot signature model (to be added later). When the correct

parameters have been entered, click the WRITE button, and the device code will be writ¬

ten to a file. For the RV-M1, the device control code will be written out in BASIC. This

code can then be transferred to the robot’s control computer (by Ethernet or a floppy

disk).

57

Sample Status File

FILE: blocks.olp

CAMERA 1

fovy 350

aspect 1.5

clip 100.0 3000.0

polar 1500.0 900 0 0

lookat 0.0 0.0 150.0

CAMERA 2

fovy 350

aspect 1.5

clip 100.0 3000.0

polar 1500.0 300 -300 0

lookat 0.0 0.0 150.0

CAMERA 3

fovy 350

aspect 1.5

clip 100.0 3000.0

polar 1500.0 900 0 0

lookat 0.0 0.0 150.0

CAMERA 4

fovy 350

aspect 1.5

clip 100.0 3000.0

polar 1500.0 1800 0 0

lookat 0.0 0.0 150.0

CAMERA 5

fovy 350

aspect 1.5

clip 500.0 3500.0

58

polar 3000.0 000

lookat 0.0 0.0 150.0

CAMERA 6

fovy 350

aspect 1.5

clip 500.0 3500.0

polar 3000.0 000

lookat 0.0 0.0 0.0

LIGHT 1

on

00

00 .8 .1 .1 .1 0. 1. 1. 0.

LIGHT 2

on

00

00 .8 .1 .1 .1 0 . i t—i h-
1

O

LIGHT 3

on

.5 .5 .5 .1 .1 .1 -1, . 0. 1. 0.

LIGHT 4

on

.5 .5 .5 .1 .1 .1 -1. o

O

MATERIALS

1 .1 .1 . 1 .0 .4 .2 . 5 . 5 .5 10

2 .1 . 1 . 1 .0 .2 .4 . 5 . 5 .5 10

3 .1 . 1 . 1 .2 .4 .0 . 5 . 5 .5 10

4 .1 . 1 . 1 .4 .0 .4 . 5 . 5 .5 10

5 .1 . 1 . 1 .4 .4 .2 . 5 . 5 .5 10

6 .1 . 1 . 1 .2 .4 .4 . 5 . 5 .5 10

7 .1 . 1 . 1 .0 .4 .2 . 5 . 5 .5 10

8 .1 . 1 . 1 .8 .4 .4 . 5 . 5 .5 10

9 .1 . 1 . 1 .0 .0 .8 . 5 . 5 .5 10

10 .1 .1 .1 .8 .8 .8 .5 .5 . 5 10

11 .1 .1 .1 .2 .6 .5 .5 .5 . 5 10

59

12 .1 .1 .1 .3 .5 .6 .5 .5 .5 10

13 .1 .1 .1 .4 .4 .7 .5 .5 .5 10

14 .1 .1 .1 .5 .3 .1 .5 .5 .5 10

15 .1 .1 .1 .6 .2 .2 .5 .5 .5 10

16 .1 .1 .1 .7 .1 .3 .5 .5 .5 10

BGCOLOR

ROBOT MODELS

1 RVM1

ROBOT GEOMETRY

1 geom/rvmlsf.byu

OBJECT GEOMETRY

geom/blocks.byu

ROBOT POSITIONS

1 BS 0.0 0.0 0.0 90.0 0.0 0.0

1 TW 0.0 0.0 179.0 0.0 0.0 180.0

OBJECT POSITIONS

1 350.0 0.0 0.0 0.0 0.0 0.0

2 350.0 80.0 0.0 0.0 0.0 0.0

3 350.0 160.0 0.0 0.0 0.0 0.0

4 0.0 350.0 0.0 0.0 0.0 0.0

5 80.0 350.0 0.0 0.0 0.0 0.0

6 160.0 350.0 0.0 0.0 0.0 0.0

ROBOT ATTRIBUTES

1 smooth

2 smooth

3 smooth

4 smooth

5 smooth

6 smooth

7 flat

8 flat

9 flat

10 flat

OBJECT ATTRIBUTES

1 flat

2 flat

3 flat

4 flat

5 flat

6 flat

61

Sample Points File

POINTS FILE: blocks.pts

JOINT ANGLES

1 1 0 9.0 1. 0 0.0 0.0 0.0 90.0 0. 0 0.0 0.0

2 2 0 9.0 1. 0 -90.0 24 .4 -64.5 40 '.2 0.0 0.0 60.0

3 3 0 9.0 1. 0 -90.0 7. 4 -57 .8 50. 4 0.0 0.0 60.0

4 4 0 9.0 1. 0 -90.0 7. 4 -57 .8 50. 4 0.0 0.0 40.0

5 5 0 9.0 1. 0 -90.0 24 .2 -64.5 40 1.3 0.0 0.0 40.0

6 6 0 9.0 1. 0 -6.5 23. 8 -63 .3 39. 5 -6.5 0.0 40.0

7 7 0 9.0 1. 0 -6.5 14. 9 -61 .2 46. 2 -6.5 0.0 40.0

8 8 0 9.0 1. 0 -6.5 14. 9 -61 .2 46. 2 -6.5 0.0 60.0

9 9 0 9.0 1. 0 -6.5 23. 8 -63 .3 39. 5 -6.5 0.0 60.0

10 10 0 9.0 1.0 -77.1 22.4 -59.3 37.0 12.9 0.0 60.0

11 11 0 9.0 1.0 -77.1 5.7 - 52.2 46.4 12.9 0.0 60.0

12 12 0 9.0 1.0 -77.1 5.7 - 52.2 46.4 12.9 0.0 40.0

13 13 0 9.0 1.0 -77.1 22.4 -59.3 37.0 12.9 0.0 40.0

14 14 0 9.0 1.0 -18.9 19.9 -52.4 32.5 -18.9 0.0 40.0

15 15 0 9.0 1.0 -18.9 11.3 -50.0 38.7 -18.9 0.0 40.0

16 16 0 9.0 1.0 -18.9 11.3 -50.0 38.7 -18.9 0.0 60.0

17 17 0 9.0 1.0 -18.9 19.9 -52.4 32.5 -18.9 0.0 60.0

18 18 0 9.0 1.0 -65.4 15.8 -41.4 25.6 24.6 0.0 60.0

19 19 0 9.0 1.0 -65.4 -1.1 -31.4 32.5 24.6 0.0 60.0

20 20 0 9.0 1.0 -65.4 -1.1 -31.4 32.5 24.6 0.0 40.0

21 21 0 9.0 1.0 -65.4 15.8 -41.4 25.6 24.6 0.0 40.0

22 22 0 9.0 1.0 -12.9 28.3 -58.1 29.8 -12.9 0.0 40.0

23 23 0 9.0 1.0 -12.9 20.7 -59.2 38.5 -12.9 0.0 40.0

24 24 0 9.0 1.0 -12.9 20.7 -59.2 38.5 -12.9 0.0 60.0

25 25 0 9.0 1.0 -12.9 28.3 -58.1 29.8 -12.9 0.0 60.0

26 26 0 9.0 1.0 0.0 0. 0 0.0 90.0 0.0 0.0 0.0

OBJECT STATUS

110000000

220000000

330000000

4 4 0 1

5 5 0 1

6 6 0 1

7 7 0 1

8 8 0 0

9 9 0 0

10 10 0

11 11 0

12 12 0

13 13 0

14 14 0

15 15 0

16 16 0

17 17 0

18 18 0

19 19 0

20 20 0

21 21 0

22 22 0

23 23 0

24 24 0

25 25 0

26 26 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 10 0 0

0 10 0 0

0 10 0 0

0 10 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

63

Sample Device Control File

OPEN "COM1:9600,E,7,2,CS5000,DS5000" FOR RANDOM AS #1

PRINT #1, "PD i, 0.0, 589.0, 300.0, 0.0, 0.0"

PRINT #i, "PD 2, 350.4, 0.0, 121.2, -89.9, 0.0"

PRINT #i, "PD 3, 349.9, 0.0, 29.9, -90.0, 0.0"

PRINT #i, "PD 4, 349.9, 0.0, 29.9, -90.0, 0.0"

PRINT #i, "PD 5, 350.1, 0.0, 120.0, -90.0, 0.0"

PRINT #i, "PD 6, 39.9, 349.9, 120.1, -90.0, 6.5"

PRINT #i, "PD 7, 39.8, 349.6, 69.6, -90.1, 6.5"

PRINT #i, "PD 8, 39.8, 349.6, 69.6, -90.1, 6.5"

PRINT #i, "PD 9, 39.9, 349.9, 120.1, -90.0, 6.5"

PRINT #i, "PD 10, 350.3, 80.2, 120.2, -89.9, -12.9"

PRINT #i, "PD 11, 349.5, 80.1, 29.8, -90.1, -12.9"

PRINT #i, "PD 12, 349.5, 80.1, 29.8, -90.1, -12.9"

PRINT #i, "PD 13, 350.3, 80.2, 120.2, -89.9, -12.9"

PRINT #i, "PD 14, 119.9, 350.1, 120.1, -90.0, 18.9"

PRINT #i, "PD 15, 119.9, 350.1, 69.9, -90.0, 18.9"

PRINT #i, "PD 16, 119.9, 350.1, 69.9, -90.0, 18.9"

PRINT #i, "PD 17, 119.9, 350.1, 120.1, -90.0, 18.9"

PRINT #i, "PD 18, 349.9, 160.2, 119.9, -90.0, -24.6

PRINT #i, "PD 19, 350.0, 160.2, 30.2, -90.0, -24.6"

PRINT #i, "PD 20, 350.0, 160.2, 30.2, -90.0, -24.6"

PRINT #i, "PD 21, 349.9, 160.2, 119.9, -90.0, -24.6

PRINT #i, "PD 22, 80.1, 349.9, 160.0, -90.0, 12.9"

PRINT #i, "PD 23, 80.2, 350.0, 109.8, -90.0, 12.9"

PRINT #i, "PD 24, 80.2, 350.0, 109.8, -90.0, 12.9"

PRINT #i, "PD 25, 80.1, 349.9, 160.0, -90.0, 12.9"

PRINT #i, "PD 26, 0.0, 589.0, 300.0, 0.0, 0.0"

PRINT #i, "SP 9, H"

PRINT #i, "MO 1, C"

PRINT #i, "MO 2, O"

PRINT #i, "MO 3, O"

PRINT #i, "MO 4, C"

PRINT #i, "MO 5, C"

PRINT #i, "MO 6, C"

64

PRINT #1, "MO 7, C'

PRINT #1, "MO 8, O'

PRINT #i, "MO 9, O'

PRINT #i, "MO 10, O'

PRINT #i, "MO 11, O'

PRINT #i, "MO 12, C'

PRINT #i, "MO 13, C'

PRINT #i, "MO 14, C'

PRINT #i, "MO 15, C'

PRINT #i, "MO 16, O'

PRINT #i, "MO 17, O'

PRINT #i, "MO 18, O'

PRINT #i, "MO 19, O'

PRINT #i, "MO 20, C'

PRINT #i, "MO 21, C'

PRINT #i, "MO 22, C'

PRINT #i, "MO 23, C'

PRINT #i, "MO 24, O'

PRINT #i, "MO 25, O'

PRINT #i, "MO 26, C'

END

65

APPENDIX B

ROBOT SPECIFICATIONS

66

Mitsubishi RV-M1 Specifications

Robot Specifications

Fore arm
Upper arm

Wrist roll //
(J5 axis) 11

Hand installation
surface

(L) Left side

67

Item Specifications Remarks

Mechanical Structure
5 degrees of freedom, vertical articulated
robot

Operation
range

Waist rotation 300* (max. 1207sec) J1 axis

Shoulder rotation 130* (max. 72*/sec) J2 axis

Elbow rotation 110* (max. 109*/sec) J3 axis

Wrist pitch ±90* (max. 1007sec) J4 axis

Wrist roll ±180' (max. 163'/sec) J5 axis

Arm length
Upper arm 250mm

Fore arm 160mm

Weight capacity Max. 1.2kgf (including the hand weight)
75mm from the mechanical
interface (center of gravity)

Maximum path velocity 1000mm/sec (wrist tool surface) Speed at point P in Fig. 1.3.4

Position repeatability 0.3mm (roll center of the wrist tool surface)
Accuracy at point P in Fig.
1.3.4

Drive system Electrical servo drive using DC servo motors

Robot weight
Motor capacity

Approx. 19kgf
J1 to J3 axes: 30W; J4, J5 axes: 11W

68

69

Manipulator Specifications

Item Specifications Remarks

Type HM-01

Drive system DC servo motor drive

Opening/closing stroke 0 to 60mm

The’holding power can be set
in 16 steps.

Grip power Max. 3.5kgf

Ambient temperature 5 to 40#C

Service life More than 300,000 times

Weight 600gf

