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NOMENCLATURE 

In order to clarify the mathematical notation used in this thesis, a brief explanation 

may be useful. Coordinate frame transformations will be specified by an upper case T 

with leading superscripts and subscripts in the form AT, which describes frame A relative 

to frame B. Upper case characters inside brackets, {/4} for example, refer to a specific 

coordinate system. An upper case P with leading superscript and following subscript 

denotes a 3-D vector, BPA for example, which relates the origin of reference frame A to 

the origin of reference frame B. The word “frame” is sometimes used in place of “coordi¬ 

nate system”, and should not be confused with the frames (images) of an animation. 
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1. INTRODUCTION 

Off-line programming is the creation of a set of instructions to control robot manipu¬ 

lators and other programmable devices of a workcell without actually using the equip¬ 

ment. The addition of a computer graphics interface greatly enhances the usefulness of 

off-line programming. The advantages of programming a robot in this manner include: 

• The ability to visualize the arrangement of a workcell layout before equipment is pur¬ 

chased 

• Creating and testing device control code without taking equipment out of production 

• The convenience of being able to program different types of robots using a common 

graphics based instruction set 

• Faster program modification 

• Increased safety 

This thesis describes the initial stages in the development of interactive graphical 

software for off-line programming. The approach taken here uses “solid” models to repre¬ 

sent all components of the robot’s workcell, and displays the simulated movement of 

these components through animated computer graphics. The main topics covered in this 

thesis will be forward and inverse kinematics, path generation, and the creation of an 

interactive graphical interface. The application of these topics has led to off-line pro¬ 

gramming software that was tested by simulating a five degree of freedom articulated 

robot. Simulation data was then translated to the robot’s device control code and tested on 

the actual robot. 
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Kinematic position generation will be used to generate all motion (i.e., the dynamic 

properties of mass and inertia will not be taken into account). The reason for this 

approach is that most production robots in use today are driven by electric servo motors 

with high gear reduction ratios. Generating motion in this manner creates high frequency 

vibrations which have quick settling times. Robots of this type are considered “stiff’ 

position control devices and do not usually require dynamic models to obtain adequate 

simulations. 

Software of the type presented here is already sold commercially but is quite expen¬ 

sive and source code is usually not available. The availability of the source code is neces¬ 

sary to make modifications and enhancements, and to have complete control over the user 

interface. The main objective of the research presented in this thesis is the development 

of graphical off-line programming software for a specific robot, that can be modified to 

allow additional robot models (and other programmable devices) to be added later. 

The off-line programming software (named RS, for Robot Simulator) developed dur¬ 

ing this research is written in C and makes extensive use of the graphics routines of Sili¬ 

con Graphics’ Graphics Library (GL). Testing of the device control code written out by 

RS was performed on a five degree of freedom Mitsubishi RV-M1 robot. In order to 

obtain feedback on the use of this software, testing was also performed by undergraduate 

students with varying degrees of computer graphics and robotics experience. Results 

include comments about the usefulness of this software, as well as modifications needed 

to improve its functionality. 
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2. LITERATURE REVIEW 

This literature review gives an overview of research in off-line programming, starting 

with the historical evolution of robot programming followed by a summary of the theoret¬ 

ical background of robot simulation and off-line programming. 

2.1 Evolution of Robot Programming 

In order to get a better understanding of why graphical off-line programming has 

become an important aspect in robotic workcell design, it is useful to discuss the evolu¬ 

tion of robot programming. 

When robots were initially introduced, the only method of programming was teaching 

manipulator positions on-line. On-line programming involves directing the robot to the 

desired goal position using a teach pendant and then recording the position directly into 

the memory of the machine controller. A variety of proprietary languages, like AML and 

VAL II, are now available that can be used with the teach pendant to give better on-line 

programming control [1]. 

Early off-line programming evolved from advances in computer numerical control 

(CNC). Some off-line programming software used high level languages like BASIC [2], 

but lacked capabilities necessary to graphically simulate the program before transferring 

it to the machine controller. 
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Derby [3], and Patt and Derby [4] developed PC based software that used wireframe 

computer graphics to simulate robot workcells. Due to computer hardware limitations, 

these programs lacked the ability to be dynamically interactive (which is the ability to 

calculate and graphically display changes as an input variable is being changed from one 

state to another). This type of interaction is necessary to give the robot programmer a 

more complete understanding of the robot’s motion and to create a more efficient off-line 

programming environment. 

More recent software developments have been designed for use on more powerful 

graphics workstations. These software packages are capable of simulating and animating 

solid models at relatively high update rates. Packages like World Modeler, developed by 

Mirolo and Pagello [5] and Jack by Phillips et al. [6], have many advanced functions, but 

most research of this type has focused only on graphical simulation. Since these types of 

programs lack the ability to translate graphical simulation data into the device control 

code needed to drive the robot, they cannot be used for off-line programming. 

Interactive computer graphics software with off-line programming capabilities are 

commercially available such as, CimStation by Silma and IGRIP by Deneb (see [7] [8] 

[9]). These programs have many advanced features: collision detection, signature models, 

and dynamic simulation, as well as the ability to write device control code. But these pro¬ 

grams often cost more than the hardware on which they are run. With the recent introduc¬ 

tion of fast and relatively inexpensive graphics workstations, this cost differential 

becomes more significant. 

2.2 Theoretical Background 

One of the most important aspects of off-line programming is that of the underlying 

kinematic and dynamic equations that control the position and movement of the robot. 

Most approaches to kinematic simulation are based on notation developed by Denavit and 

Hartenberg [10], which describes a method of defining coordinate frames attached to 
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moving links. These frame descriptions are used to develop 4x4 transformation matrices 

which give the relative positions of one link to another. Ho and Sriwattanathamma [11] 

present a symbolic matrix manipulation program to automate the derivation of the link 

transformations from the Denavit-Hartenberg parameters 

Several approaches exist for deriving inverse kinematics. These can be broken down 

into two general categories: numerical and closed form solutions. Stone [12] presents 

numerical solution methods based on Newton-Raphson and Jacobi iterative algorithms. 

Phillips et al. [6] present a more computationally efficient numerical approach than tradi¬ 

tional numerical solutions, but these still suffer from numerical convergence problems. 

Fu et al. [13] discuss techniques to derive closed form solutions to the inverse kinematics 

problem that are much more efficient than numerical methods. Among these are alge¬ 

braic, geometric, and quaternion based methods. 

Although dynamics will not be dealt with explicitly in this thesis, much work in robot¬ 

ics deals with this topic. Fu et al. [13] discusses various closed form and numerical solu¬ 

tions for forward and inverse dynamics. Nikravesh [14] discusses methods of formulating 

equations for multi-body dynamics, which can be solved by numerical methods. Isaacs 

and Cohen [15] present methods of producing dynamic simulation systems for computer 

animation. Davis [16] presents experimental results from a modal analysis of a “stiff’ 

position control robot. 

Path generation algorithms which are used to control trajectory in three dimensions 

are based on either joint space interpolation or cartesian space interpolation. Fu et al. [13] 

and Craig [17] describe joint space methods which are based on fitting splined curves 

through a set of predefined control points. Fu et al. [13] describes cartesian space methods 

(to trace straight lines in 3-D space) using homogeneous transformation matrix and dual 

quaternion approaches. 
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Another area of robotics research that is important in developing efficient off-line pro¬ 

gramming systems is the development of robot signature models. Signatures are used to 

covert the ideal positions developed in a robot simulation to a set of corresponding posi¬ 

tions which compensate for manufacturing and calibration variations of an individual 

robot. Stone [12] develops a signature modeling technique in which the actual kinematic 

parameters of an individual robot can be identified and used to create correction functions 

for that robot. 

In order to write more “intelligent” device control code, off-line programming soft¬ 

ware can be used in conjunction with task level programming. Latombe [18] makes 

extensive use of computer graphics simulation in his work with robot motion planning to 

analyze and explain various artificial intelligence and spacial reasoning algorithms. 
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3. KINEMATICS AND PATH GENERATION 

The basis for all graphical simulation involves defining the position of objects in three 

dimensions, and describing how the position of these objects change with time. In off-line 

programming, the positioning problem involves locating the manipulator (hand or tool) at 

certain precision points within the robot’s workspace. The following sections will focus 

on position and motion generation for a five degree of freedom articulated robot, specifi¬ 

cally dealing with coordinate systems, forward and inverse kinematics, and path genera¬ 

tion. 

3.1 Coordinate Systems 

The coordinate system used in this thesis is based on Denavit-Hartenberg [10] nota¬ 

tion for lower-pair mechanisms. This method identifies link parameters that describe the 

position of each link relative to an adjacent link. Each link is described by two angles: 

a;_ ^ and 0(., and two linear offsets: at_ x and di-x. For any lower pair joint (revolute or 

translational) three of the four Denavit-Hartenberg (D-H) parameters are fixed and one is 

variable. For a revolute joint the variable parameter will be 0(., for translational joints it is 

the link offset di_l. Figures 3.1a and 3.1b show these parameters as specified for rota¬ 

tional and translational joints respectively. 
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Figure 3.1 Frame definitions for a rotational joint (a) and translational joint (b) 

The parameters are specified as follows: 

• a-_ j = distance from Zj.j to z, relative to axis xj_j 

• a._ j = angle from Zj.j to zx relative to axis XJ.J 

• dx = distance from xj_i to Xj relative to axis zx 

• 0(. = angle from XJ.J to Xj relative to axis zx 

When assigning these parameters, it is useful to make a table listing the four values 

for each link. It is possible to have different parameter values depending on how the local 

coordinate frames of each link are assigned. However, any rotation or translation of the 

variable parameter takes place about or along the local z-axis. 

For the five degree of freedom articulated robot, which will be analyzed throughout 

this thesis, the frame assignments and D-H parameter table are shown in Figure 3.2 and 

Table 3.1 respectively. 
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Figure 3.2 Frame assignments for a 5-DOF articulated robot 

Table 3.1 D-H parameter table for the 5-DOF robot of Figure 3.2 

i ai- l ai-l d, 0. 1 

i 0° 0 h 0i 

2 90° 0 0 02 

3 0° L2 0 03 

4 0° h 0 04 

5 -90° 0 0 05 

6 180° 0 -^4 0 

Now that the D-H parameters have been assigned, they will be used to determine the 

link transformations using 4x4 matrices. The general equation for this transformation is 

given by Equation 3.1. 
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cos0(. —sin0(. 0 ai-i 

sin0.cosa. . cosOcosa. , -sina. . -sina. ,d. 

sin0(sina(._ j cos0;sina._ t cosa(._j cosai_ldi 

0 0 0 1 

(3.1) 

Once all the link transformation matrices have been defined, they can be multiplied 

together (in the correct order) to get the transformation matrix relating the coordinate sys¬ 

tem of any one link to any other link in the system. For example, the transformation 

matrix describing the position of link 3 relative to link 0 can be calculated as, 

In general, the transformation matrix of reference frame M relative to frame N is 

Nrp   N>Y* N + \rp M — 2rp M ~ 1 op (0 \ 
M1 - N+\l N+21 - M-\l M1 

The transformations of each link of the 5-DOF robot, based on the D-H parameters of 

Figure 3.2, are given in Equations 3.3 to 3.8. 

0 
1 T = 

cos0j -sin0j 0 0 

sin0j cos0j 0 0 

0 0 1L, 

0 0 0 1 

(3.3) 

1 
2 T = 

cos02 -sin02 0 0 

0 0-10 
sin02 cos02 0 0 

0 0 1 

(3.4) 

0 



11 

cos03 -sin03 0 L2 

2rp — sin03 cos03 0 0 

0 0 10 
0 0 0 1 

(3.5) 

3 
4 T = 

cos04 -sin04 0 L3 

sin04 cos04 0 0 

0 0 10 
0 0 0 1 

(3.6) 

4 
5 T = 

cos05 -sin05 0 0 

0 0-10 
sin05 cos05 0 0 

0 0 0 1 

(3.7) 

5 
6 T = 

10 0 0 
0-100 
0 0 -1 L4 

_0 0 0 1_ 

(3.8) 

These transformations will be used later in this chapter to derive the inverse kinematics of 

the robot. 

In order to graphically display the link positions, the transformations of each link (as 

well as moving objects in the workcell) must be calculated relative to a stationary coordi¬ 

nate system. This involves premultiplying the transformations described in the base coor- 

dinate system by the base frame relative to the stationary frame transformation, fiT, as 

shown by Equation 3.9. 

Srp _ Srp Brp Wrp 
T1 ~ BJ W1 T1 (3.9) 
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where the indices S, B, W, and T refer to the stationary, base, wrist, and tool frames 

respectively, as shown by the frame diagram in Figure 3.3. 

Figure 3.3 Generalized frame diagram 

For the 5-DOF robot the ^T and ^T transformations are specified by the user, and the 
D 

WT transformation is given by Equation 3.10. 

0j 1 j 2j 3r 4^ (3.10) 

When deriving the inverse kinematics, it is sometimes necessary to invert a transform 

before premultiplying, such as, 

This can be accomplished using Equation 3.11, 
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B 
A T = 

A pT  ApTAp 
BK ^B 

00 0 1 

(3.11) 

where R is the 3x3 rotation matrix and APB is the column vector of x, y, and z positions 

of frame B relative to frame A. Now that the transformations have been defined, it is pos¬ 

sible to formulate the forward and inverse kinematic equations. 

3.2 Forward and Inverse Kinematics 

Positioning the links of a robot involves finding a set of joint variables and link trans¬ 

formations for a particular manipulator goal point, this can be accomplished in two ways: 

forward (or direct) kinematics, and inverse kinematics. Forward kinematics involves cal¬ 

culating the position of the robot’s manipulator in cartesian coordinates, as a function of 

the joint variables. This is done by premultiplying the wrist transformation matrix by all 

previous link transformations until the position of the wrist relative to the base is found 

(as shown by Equation 3.10). Positioning the manipulator using only forward kinematics 

involves moving each joint independently in order to reach the desired cartesian goal 

point. Using this method, it is often very difficult and time consuming to get accurate 

manipulator placement. 

Since the position of the manipulator is the desired quantity, and not the joint angles, 

it is more intuitive to specify the manipulator goal position in cartesian space and then 

compute the required joint angles. This is the basic concept behind inverse kinematics. In 

general, finding inverse kinematic equations is a much more difficult problem than deriv¬ 

ing the forward kinematics; forward kinematics involves straightforward matrix multipli¬ 

cation, while inverse kinematics usually involves solving non-linear systems to obtain 

individual joint variables. 
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The solution to the inverse kinematics problem can be found by using one of two 

methods, a numerical approach or a closed form (analytical) approach. The numerical 

solution formulation is easier to develop and can be applied in a logical manner to any 

general mechanism (meaning the computer can generate and solve the equations). This 

generality has a major drawback; since numerical methods are based on iterative tech¬ 

niques, they require significant computational effort. At current levels of computing capa¬ 

bilities, an accurate solution cannot be obtained fast enough for realistic interactive 

operation for systems with many degrees of freedom. Higher efficiencies can be obtained 

from numerical solution techniques if larger tolerances on the solution are specified, and/ 

or the solution to the current position is relatively close to the previous solution (see 

[12]). Unfortunately, large tolerances in the accuracy of kinematic solutions are usually 

not acceptable in robotic programming. Furthermore, requiring the solutions to be rela¬ 

tively close to each other means that the programmer would have to move the mouse (or 

other input device) slowly, since fast movements would cause large positioning displace¬ 

ments which would slow down the iterative convergence of the numerical solution algo¬ 

rithm. 

The closed form approach offers a substantial increase in computational efficiency 

over the numerical approach. This type of solution can be calculated fast enough to allow 

systems with many degrees of freedom to be dynamically interactive, i.e., graphically dis¬ 

playing position changes at high update rates. The drawback of the closed form approach 

is in the development of the equations which explicitly solve for the joint variables. There 

are no completely general methods for deriving closed form inverse kinematic solutions 

(meaning a computer can’t derive the equations on its own). In fact, closed form solutions 

are not possible for some types of mechanisms. Special conditions must be met for a 

closed form solution to exist: joints must be parallel or at right angles to each other. For¬ 

tunately, almost all robots are designed to meet this criteria. One additional advantage 

that a closed form approach has over a numerical one is the ability to easily find all solu- 
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tions to a positioning problem. Due to the limitations of the numerical method for inverse 

kinematic positioning, closed form approaches will be used in this thesis. The techniques 

for deriving closed form solutions that will be discussed include the algebraic and geo¬ 

metric methods, along with a hybrid method involving both algebraic and geometrical 

solutions. 

The Algebraic Method 

The algebraic solution technique involves symbolically multiplying the transforma- 
D 

tion matrices that make up the WT transformation of Equation 3.10. Trigonometric identi¬ 

ties are then used to reduce combinations of certain elements of this transformation to 

equations involving a single variable. This method of pulling the individual joint vari¬ 

ables out of the transformation matrix can be very difficult (or impossible) for some of the 

variables in systems having many degrees of freedom. 

The Geometric Method 

Geometric solution techniques involve breaking the system down into a plane for each 

pair of links and geometrically solving for the variables in that plane. This method is usu¬ 

ally less complex than the algebraic approach. 

Geometric/Algebraic Solution for a 5-DOF Robot 

A method combining the geometric approach with the algebraic method worked best 

for the 5-DOF robot of analyzed in this thesis. The geometric method was used to solve 

for angles 02 and 03, and the algebraic method was used to solve for angles 0p 04, and 

05. These equations will be the basis for inverse kinematic positioning, and will be con¬ 

nected to the user interface controls explained in the next chapter. 

Manipulator Positioning. Starting with the transformation relating the wrist frame of 

the robot to the base frame, as in Equation 3.10, results in Equation 3.12. 
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C1C234C5 + 5'l,S5 

51C234C5 “ Cl55 

5234C5 

_C1C234S5 + 'S1C5 

-51C23455 “ C1C5 

—^234^5 

c 15 234 C1 ( c23^3 + c2^2^ 

5l‘S234 ^1 (C23^3 + c2^ 

~c234 ^1 + s2^2 + s23^3 

0 0 0 1 

(3.12) 

(In order to make better use of space, cos(0j) has been shortened to cx and 

cos (02 + 03) is now c23, etc.). This matrix is completely known since it is derived from 

the position variables entered by the user. For later reference, matrix of Equation 3.12 

will described in terms of its elements as, 

rll r12 r13 '14 

r21 r22 r23 r24 

r31 r32 r33 r34 

0 0 0 1 

(3.13) 

Since the elements of this matrix are not all independent, the user can enter data 

describing the position and orientation of WT by specifying three position and three rota¬ 

tion variables. One method of specifying these variables is to assign x, y, and z cartesian 

positions and roll, pitch, and yaw (y, (3, a) rotations based in the stationary coordinate 
D 

system. WT can then be represented as, 

Brp _ Orp 
W1 - 51 

cacP casPsy-sacy casPcy+sasy x 

sacP sasPsy+cacy sasPcy- easy y 
-sP cPsy cPcy z 

0 0 0 1 

(3.14) 

For the 5-DOF robot, only the cartesian position variables (x, y, and z) will be 

assigned by the user (y, P, and a will be defined by the joint space variables 04 and 05). 
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Changing position variables can be performed either directly (by changing x, y, and z 

independently), or in terms of the manipulator coordinate system. These functions will be 

applied in terms of a world (stationary) mode and a tool (manipulator) mode as shown in 

Figure 3.4. 

Figure 3.4 Positioning modes: (a) world mode, (b) tool mode 

Deriving Joint Angles. From Equation 3.12 and 3.13, joint variable 0j can be 

obtained from the arctangent of elements r14 and r^, 

0 l (3.15) 

Note that a solution to this equation is not possible if 02 = -90° and 03 = 0°, but due to 

the design of this robot, this condition will never arise. 

Breaking down the robot into planes, as shown in Figures 3.5, gives the second joint 

variable, as shown in the following set of equations. 



18 

Figure 3.5 Geometry for calculating 02 and 03, (a) top view, (b) side view 

<t> = atan 
z~Li \ 

IfT?) 

L] = jc2 + y2+ {z-Ll)
2 + L1

2-2L2Jj + y2V^L^1 
cosy 

x2+y2+ (z - Lj)1 + L2-L\ 

2 L2^
2 + y2T7z^L^ 

2 i / 2 _ j 2, 

y = acos 

02 = (f) ± y (3.16) 
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The third joint variable can also be calculated by using the geometric representation 

of Figure 3.5. Starting with the law of cosines, 

x2 + y2+ (z-Lj)2 = L2 + L3 - 2L2L3cos (180° - 03) 

COS(18O°-03) = —cos03 

which results in, 

03 = +acos I 
+ yi+iz-Ll)

2-L2-L2 

2 L2L3 
(3.17) 

Now that angles 0j, 02, and 03 are known, the angle 04 can be found using elements 

from the matrix of Equations 3.12 and 3.13, which results in, 

0 4 atan Jr 13 + r23 ^ 

_r33 > 
(3.18) 

Finally, 05 can be also found by from Equations 3.12 and 3.13 through the following 

derivation, resulting in Equation 3.19. 

a = cos0jcos(02+03+04) 

b = sinOj 

c = sin0jcos (02 + 03 + 04) 

d = cos0j 

0 5 atan 
Oil+ r2i) (b~d) - (r12 + r22) (a + c) \ 

(rn + r2i) (a + c) + (rn + r22) (b-d) J 
(3.19) 
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3.3 Path Generation 

Path generation refers to the methods used to define the trajectory that the robot’s 

manipulator will follow in three dimensional space with respect to time. Two different 

types of path generation will be discussed. The first involves specifying an interpolation 

scheme that operates directly on the joint variables, usually called joint space interpola¬ 

tion. This can be as simple as linear interpolation of joint angles from one control point to 

the next, or more complex, involving polynomial splines and multiple control points. 

Another type of path generation operates on a path defined in terms of cartesian variables, 

referred to as cartesian space interpolation. This type of path generation may involve 

moving the manipulator in a perfectly straight line or generating an arc or circle, and is 

used in applications like welding, painting, applying adhesives, and some types of assem¬ 

bly. 

Of the two, the joint space method is less complicated to use and is less computation¬ 

ally intensive. Is used in situations when the cartesian path that the manipulator follows 

between control points is not critical. It is important to note that, in general, linear joint 

space paths will not result in linear cartesian movement of the manipulator. In addition, 

obtaining a kinematic solution using cartesian space methods is not always possible since 

a user may unknowingly define a linear manipulator path that passes outside the robot’s 

workspace, or one that exceeds its acceleration limits. However, generating a kinematic 

solution between control points is always guaranteed when using joint space interpola¬ 

tion. Furthermore, it is possible to approximate cartesian path generation by using joint 

space interpolation and a large number of control points. These issues are important to 

consider when deciding which method to use. This thesis will focus on joint space 

schemes since they are relatively easy to implement on most robot controllers, and since 

they provide good control for many positioning operations. 
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Joint Space Methods 

There are many types of joint space interpolation schemes, most are based on polyno¬ 

mial splines. In order to get continuous velocity and acceleration between segments, a 

polynomial of at least third degree is required. Splined cubic polynomials are the lowest 

order polynomial that satisfies this requirement. 

Cubic Splines. A cubic spline is a set of cubic polynomials combined together, that 

can be made to have continuous first and second derivatives at the intermediate (or via) 

control points as shown in Figure 3.6. This figure shows one segment with three via 

points and four splined cubic polynomials (cl through c4). The segment start and end 

points are defined to have zero velocity. The velocity of each via point is determined by 

its position in the segment. The complete path that the robot follows will be made out of 

many segments of this type. 

Figure 3.6 A splined segment with intermediate control points 



22 

The general form of a cubic polynomial is, 

0 (t) — QQ + <3t11 + #2^ ^3^ (3.20) 

which gives velocity and acceleration equations of, 

0 (t) = + 2a2r + 3fl^^ (3.21) 

0 (0 = 2a2 + 6a3t (3.22) 

In order to calculate values of aD through a^ for each cubic in the segment, four con¬ 

straint variables must be specified: initial and final position, and initial and final velocity, 

as listed in Equations 3.23 to 3.26, 

0(0) = 0Q (3.23) 

0 (tf) = e, (3.24) 

0(0) = 0O (3.25) 

®
. 

11 (3.26) 

where t ranges from 0 to jy during each cubic of the segment. Using these conditions, the 

cubic coefficients are: 

ao = e0 (3.27) 

ax = 0O (3.28) 

*2 = 1(0 -eo)-i(20o + 0 ) 
tf 

1 tf 
(3.29) 
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a3 = -\ (e/“V + \ (0/~0o) (3.30) 
lf ff 

In order to make cubic splines easier to use, 0O and 0y can be assigned automatically. 

The simplest way of doing this is by assigning a velocity at a via point based on the aver¬ 

age velocity between adjacent points, and assigning zero velocity at the start and end of 

the segment. 

For most types of robots, the maximum angular velocity and acceleration will be spec¬ 

ified instead of At for each cubic in the segment. When the maximum angular accelera¬ 

tion or deceleration, 0m, is specified for the starting or ending point of the cubic, At can 

be calculated as shown in Equations 3.31 and 3.32 for the acceleration and deceleration 

cases respectively, 

- (260 + 6,)+J(280 + 8/ + 69m(8/-e0) 

0„ 

(20.+ 0O) ± J(2(L+ 0Q)2 - 60 (0/-+ 0O) 
At =  J-   L—H. (3.32) 

m 

If the value of At calculated by Equation 3.31 or 3.32 causes the maximum angular 

velocity, 0m, to be exceeded, At can be recalculated as follows, 

A = Qj-- 0Q 

B = e„-e0 

C = 

D — 20o + 
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, 2 D2 

2A (B+D) ±1(2A (B+D))2 - 12A2 (C£ + ^-) 
At =    = — (3.33) 

D2 

2 (CB + ±j) 

The sum of all individual A?’s will be used to give an estimate of the cycle time for a 

particular task. 

More complex methods that assure continuous acceleration for cubic splines are pre¬ 

sented by Fu et al. [13]. Other types of joint space interpolation including higher order 

polynomials and combinations of linear segments with parabolic blends, are presented by 

Craig [17]. Deciding on which type of interpolation to use depends on the capabilities of 

the control system used to drive the robot. For the 5-DOF robot used in this study, the 

cubic spline will be used to interpolate the joint variables. 
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4. SOFTWARE DEVELOPMENT 

This chapter discusses the creation of off-line programming software based on the 

kinematic positioning and path generation principles developed in Chapter 3. Included is: 

1) a summary of requirements for viable off-line programming in a graphical environ¬ 

ment, 2) a basic review of computer graphics concepts, 3) a description of the user inter¬ 

face controls, and 4) an explanation of the major subsystems included in the robot 

simulator. Specific information on the operation of the program is presented in the pre¬ 

liminary users manual in Appendix A. 

4.1 Graphical Off-line Programming Requirements 

In order to create a basic graphical off-line programming environment, the following 

concepts and functions need to be addressed. 

♦ Objects of the workcell must be represented as solid models. 

♦ Viewing position cameras must be defined. 

♦ The user must be given the ability to interactively place objects anywhere within the 

robot’s workcell. 

♦ Dynamic control of the forward and inverse kinematic positioning functions must be 

implemented. 

♦ A method of assigning and saving path control points must be defined. 

♦ A method of associating positions of objects with the position of the robot’s manipula¬ 

tor at any location along its path must be defined. 
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• A method for translation of graphical simulation data to device control code must be 

implemented. 

• File input and output functions must be included. 

Each of these topics will be discussed in this chapter. 

4.2 Basic Computer Graphics Concepts 

Object Modeling 

In order to visualize the objects that make up the workcell, data describing the 3-D 

geometry must be created and imported into the computer. This data can be represented 

either as polygons or as curves and surfaces (NURBS for example). Polygonal data is 

much less complex and can be rendered at higher update rates than curve and surface 

data. For this reason, the polygon based data structure will be used to represent the object 

models usually referred to as “solid” models. There are many commercial packages avail¬ 

able for creating solid models. The solid model of the robot tested in this thesis, shown in 

Figure 4.1, was created using the I-DEAS solid modeling package. Although solid model¬ 

ers may have different methods of representing data internally, most have the ability to 

write out this data as a list of 3-D points and a list describing how these points are con¬ 

nected to form the polygons that make up each object. The method used to import the 

polygon information into the robot simulator is based on the BYU format, and was chosen 

due to its relatively compact data representation [19]. 

Cameras 

Once the polygonal data describing the object models has been imported, viewing 

parameters must be set to display this data. In order to create an interactive environment 

for working with solid models, the user must be given the ability to dynamically change 

the viewing position that is displayed on the screen. A viewing position, or camera, is 

generally described by a look-at point (the point in 3-D space at which the camera is 
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pointing) and a look-from point (the location where the camera itself is positioned). These 

points will be internally represented as a 4 x 4 viewing matrix. Another 4x4 matrix 

called the perspective matrix, which defines the field of view, will also be associated with 

each camera. Recall from Chapter 3 that all location of the links of the robot were also 

described by 4 x 4 matrices. These matrices will be multiplied by the viewing matrix and 

the perspective matrix in order to obtain the graphical image of the object model pro¬ 

jected onto the computers two dimensional screen. In addition, camera positions can be 

interpolated from one position to another. Cameras can also be constrained to move with, 

or follow, the robot’s manipulator. This feature can give the user the ability to follow a 

particular object throughout a manufacturing or assembly process. 

Figure 4.1 Solid model of the Mitsubishi RV-M1 robot 
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Rendering, Lighting, and Materials 

The final step in visualizing the solid models is to determine how they will be dis¬ 

played. The rendering mode refers to the way an object is drawn, or shaded. The simplest 

method of drawing an object is to display it in wireframe, which consists of drawing lines 

connecting the points that make up the object. A more realistic method of shading an 

object involves defining materials (or set of color properties) and lighting sources. The 

material assigned to an object defines how light is reflected from its surface. The light 

source defines color and the direction of the light. This information can then be used to 

shade, or fill in, the polygons that make up the object model. Two types of shading are 

used by the robot simulator: flat shading and smooth (Gouraud) shading. A complete 

description of rendering is beyond the scope of this thesis. A detailed review can be found 

in any text dealing specifically with computer graphics, for example, Foley et al. [20] or 

the SGI Graphics Library Programming Guide [21]. 

Having defined the basic concepts of representing and viewing object models, the 

operational structure of the off-line programming interface for the robot simulator, RS, 

will be the focus of the remainder of this chapter. 

4.3 Interface Controls 

A primary issue when creating a graphical interface is deciding how to dynamically 

control an input variable. Dynamic control of a variable (not to be confused with the 

dynamics of motion generation) is the ability to continuously calculate the function 

dependent on that variable and visualizing the change as it happens, as opposed to making 

a change and then waiting for the update to occur after the request is entered. This is anal¬ 

ogous to turning up the volume on a radio and hearing the sound level increase as you 

turn the knob, instead of finding out how much you changed the volume after you let go 

of the knob. This type of feedback leads to more efficient control and convergence to a 

desired solution. One of the most useful dynamic controls in computer graphics is a mov- 
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ing input device like the slider of Figure 4.1. Input devices like the slider are controlled 

by positioning to cursor on the slider and holding down a mouse (or keyboard) button 

while dragging the cursor across the screen. Many of the parameters in the robot simula¬ 

tor are changed by controls of this type. 

Figure 4.2 A slider. 

The basic layout of the simulator screen is divided into four main areas. The main por¬ 

tion of the screen is taken up by the viewing window, which displays the solid model 

geometry, as shown in Figure 4.2. The lower left of the screen is the area where the slider 

controls for each subsystem will be displayed. Near the center of the screen (just under 

the lower right of the viewing window) is a set of buttons and a slider for controlling cam¬ 

eras, rendering modes, and animating the simulation (using the VCR button arrange¬ 

ment). The lower right of the screen is taken up by a command window which displays 

commands as they are executed. Just above the command window is the main menu 

which gives access to each of the subsystems in the simulator. The area above the main 

menu is used to display the controls of each subsystem menu. Keyboard function keys are 

used to define and control the viewing parameters associated with each camera. 

4.4 Major Subsystems 

The basic functions listed in the beginning of this chapter are divided into several sub¬ 

systems which are accessed from the main menu. The design and functions of these sub¬ 

systems are described in the following sections. 



Figure 4.3 Graphical interface: (a) path subsystem, (b) objects subsystem 
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Path Subsystem 

The path subsystem, which is displayed in Figure 4.2a, controls forward and inverse 

kinematic positioning as well as the selection of path control points and the computation 

of splined segments. This is the primary subsystem used to create a simulation. 

Kinematics. The set of sliders in the lower left corner of the screen are used to control 

manipulator positioning. The first three sliders are used to control x, y, and z cartesian 

space positioning of the manipulator, and are tied directly to the inverse kinematics algo¬ 

rithm. The next six control each of the robot’s joints independently (the sixth one is not 

used for the RV-M1, since it is a 5-DOF robot). These sliders are tied to the forward kine¬ 

matics algorithm. (Actually, the forward kinematics algorithm is also called by an update 

to the cartesian sliders; the inverse kinematics code calculates the joint angles, which are 

then used by the in the forward kinematics calculations to find the 4x4 transformation 

matrix for each link.) The last slider in the set controls whether the gripper (or tool) is 

open or closed. If the user changes a variable to a position that is out of the robot’s work¬ 

space, the program will reset the variable (and move the slider) back to the last correct 

value. The options menu to the left of these sliders controls the inverse kinematics posi¬ 

tioning mode. Three kinematic modes are available: world and tool coordinate position¬ 

ing, and a wrist roll compensation mode (which corrects for wrist rotation when the z-axis 

of the tool aligns with the stationary z-axis). 

Path Generation. The buttons on the right of the screen control the path generation 

functions. Currently, only the joint space interpolation mode is operative, and the only 

joint space interpolation available is the cubic spline with continuous velocity at the via 

points. The joint positions along the path (i.e., starting, ending, and via points) are stored 

within the program in two lists, called point and path. The point list contains the values 

associated with each control points. The path list is calculated after all the point values 

have been set and contains the joint variables associated with each animation frame in the 

simulation. These values are determined by the cubic coefficients derived in Chapter 3 
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(see Equations 3.27 through 3.30). The method of applying these equations uses a value 

of At determined by a maximum speed and acceleration set by the user and the actual 

joint velocity specifications supplied by the robot manufacturer (see Appendix B). The 

value of At is set for each segment of the path, not for each individual via point (for 

example, if a segment contains three via points, the time per cubic will be ^ for each of 

the four cubics in that segment). 

The method of storing joint variables for the path requires the 4x4 transformation 

matrices to be calculated while the animated simulation is being displayed. This method 

is not as computationally efficient as storing the matrices, since the same set of matrices 

must be recalculated each time the simulation is played. The major advantage of storing 

only the joint variables is reduced memory usage, since only one variable needs to be 

stored instead of the 16 elements that make up each transformation matrix. An option will 

be provided later to give the user a choice of storing the 4 x 4 transformation matrices for 

increased speed when memory is not in limited supply. 

Objects. In order to allow the robot to manipulate objects during a simulation, objects 

may be constrained to the tool position at any start point of a segment. This constraint is 

defined when the object(s) is selected from the current objects menu, by associating the 

current object position with the current tool position. When an object is first selected, a 

transformation matrix is created to relate the position of the object to the tool, QT, as 

shown by Equation 4.1. The QT matrix can then be used to calculate the position of the 

object relative to the stationary reference frame at each update position of the tool, as 

shown by Equation 4.2. 

Srrl— 1 Srp 

T1 Ol 

S 

o r 

(4.1) 

(4.2) 
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Where jT and QT are the initial object pickup positions, and ^T' and QT' are these posi¬ 

tions at a later time. A set of these matrices will be defined for each object that is associ¬ 

ated with the current tool position. Diagrams of these frame transformations are shown in 

Figure 4.3. 

Figure 4.4 Object transformation diagrams 

Objects Subsystem 

The objects subsystem, shown in Figure 4.2b, handles positioning, material assign¬ 

ment, and rendering mode for all objects in the workcell (except the robot). The sliders 

for controlling position are located in the lower left. These six variables (x, y, z, roll, 

pitch, and yaw) are used to set or change the initial transformation matrix of an object rel¬ 

ative to the stationary reference frame. The material associated with each object is chosen 

from the pallet of available materials (which is defined in the materials subsystem). Ren¬ 

dering modes for each object are also defined within this subsystem. These rendering def¬ 

initions are activated when the “DEFINED” option is selected from the main rendering 

mode menu. The rendering modes available are, bounding box (which is a simple block 

representation of the object), wireframe, flat shaded, and smooth (Gouraud) shading. 
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Robot Subsystem 

The robot subsystem operates in much the same way as the object subsystem for 

defining positioning, material assignment, and rendering mode for each robot. This sub¬ 

system will eventually allow the user to load multiple or different types of robots (cur¬ 

rently only the RV-M1 model is functional). This feature will allow the user to create 

graphical position data for one type of robot and then use the same data to evaluate of dif¬ 

ferent types of robots performing the same specified task. 

Material and Lighting Subsystems 

The combination of the material and lighting parameters define the appearance of all 

components of the workcell. The material subsystem allows the user to define a pallet of 

materials that can be applied to objects and robot solid models. This subsystem controls 

the ambient, diffuse, specular, and emitted properties of light falling on any solid model 

assigned to a material. The lighting subsystem allows definition of up to eight light 

sources. The lighting parameters that can be modified are the light source positions and 

color definitions. 

File Input/Output Subsystem 

Input and Output of status, points, and device control files are handled by the file 

input/output subsystem. The status file contains information about the workcell environ¬ 

ment (lighting, camera positions), and about objects that make up the workcell (robots, 

fixturing). The points file contains the joint variables in the points list, and information 

about speed and acceleration settings. The device control file contains the operating com¬ 

mands written in the language of the robot’s controller. Sample files that can be read or 

written by the simulator are given in Appendix A. 
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animation Subsystem 

This subsystem allows the user to send frames from an animated simulation to a file oi 

o a frame storage device (for example, an Abekas A60). These frames can then be played 

t a rate of thirty frames per second to create a true “real time” animation a robot Simula- 

ion. 
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5. RESULTS 

The off-line programming software developed over the course of the research was 

evaluated at several stages during its development. The initial evaluations dealt with the 

function of the interface and the efficiency of the inverse kinematics algorithm. The sec¬ 

ond phase of testing looked at the efficiency of the off-line programming aspects of the 

software from a user point of view. 

5.1 Using the Interface 

Connecting the position and path generation equations with the graphical interface 

presented many challenges, some concerning the methods used in obtaining the position 

solutions, and others pertaining to the functions available for creating the path that the 

robot will follow in three dimensional space. 

Inverse Kinematics Testing 

As described earlier, the method selected to obtain inverse kinematics solutions was 

the closed form approach. Testing was also preformed using the numerical approach, but 

it did not lend itself the environment required for off-line programming. A brief descrip¬ 

tion of this testing may provide useful insight as to the reasons why the closed form solu¬ 

tion technique is the preferred solution method. 

Interactive inverse kinematic solutions using numerical methods can be generated in 

many ways, but all rely on making an initial guess at the joint solutions for a particular 



37 

cartesian goal, and then iterating by comparing these solutions to those generated by the 

forward kinematics equations. Several methods of applying numerical techniques to com¬ 

puter graphics also exist. One involves updating the solution set once for every cycle 

through the graphics update loop. This type algorithm will continue iterating as long as 

the user continues to hold down the mouse button after a position change has been 

requested. This allows the user to decide when the solution is good enough to stop the 

iteration process. Application of this technique proved to be to slow for interactive use. 

Updating the position in this manner is very inefficient since the graphics must be 

updated for each iteration. A more efficient method involves setting a tolerance on an 

acceptable error for each joint and then updating the graphics only after an adequate solu¬ 

tion has been reached. This method may become more usable for dynamic interaction as 

computers become faster, but even an extremely fast computer will have trouble converg¬ 

ing on a solution when the desired position is far away from the current position. Some of 

these convergence problems can be solved by giving the numerical algorithm a set of heu¬ 

ristic instructions to follow for getting itself out of trouble. For example, if the desired 

solution is to far away from the current position, a set of intermediate positions could be 

defined so that a final solution could be arrived at by first solving the intermediate steps. 

Solving a set of intermediate positions for each joint obviously slows down the calcula¬ 

tion even more. 

Closed form solutions do not have these types of convergence problems. Application 

of the closed form solution for the 5-DOF robot presented in Chapter 3 resulted in fast 

update rates that were efficient enough to allow dynamic interaction. For these reasons, 

the closed form method was developed for use in the robot simulator. 

Generating Paths 

The only method currently available in RS for generating a path uses a continuous 

velocity cubic spline. Other joint space methods (including different versions of the cubic 
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spline), and cartesian space methods are planned for future development. The addition of 

these types of path generation functions would give the simulator better compatibility 

with many different types of commercially available robots. Fortunately, the cubic spline 

closely approximates the joint space control of the Mitsubishi RV-M1, on which all test¬ 

ing was performed. 

Testing of the software consisted of a variety of simple tasks involving graphically 

simulating a Mitsubishi RV-M1 robot positioning objects in the workcell, then translating 

the graphical commands to the robot’s device control code, and transferring the code to 

the robot’s control computer. Testing of this code was then performed on the actual robot. 

A diagram showing the test equipment and transfer of information is shown in Figure 5.1. 

5.2 Off-line Programming Testing 

a 

graphics workstation personal computer 

RS 232 cable 

controller robot 

Figure 5.1 Test equipment 
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The reason the PC is included in the loop is because it is dedicated to controlling only 

the devices of a particular workcell. Using an expensive graphics workstation to do this 

task would be an inefficient use of resources. But recently, with the drastic reduction in 

the price of entry level graphical workstations, the PC may soon be replaced by a dedi¬ 

cated workstation that can perform graphical off-line programming as well as workcell 

device control. 

Tasks Performed 

The actual tasks used for testing initially consisted of moving and stacking wooden 

blocks within the workcell, then proceeded to palletizing objects, (Figure 5.2), and then 

assembling structures with interlocking “Lego” blocks (Figure 5.3). The object palletiz¬ 

ing and assembly tasks were chosen in order to test general positioning and data transfor¬ 

mation accuracy, and because they are relatively common types of tasks for the RV-M1 

robot. 

Time Savings 

Results showed that programming these types of tasks could be performed off-line in 

approximately 25% of the time required to create the same program using on-line pro¬ 

gramming techniques (i.e., using a teach pendant). Much of this time savings came from 

the ability to easily recover from programming mistakes. Graphical simulation can easily 

point out positioning errors, that can be quickly modified. In addition, when graphically 

programming a robot off-line, the user can accidently force the manipulator through the 

floor or into other objects without the fear of damaging the robot. Whereas in the actual 

workcell, these types of mistakes may cause serious damage to the robot (and its sur¬ 

rounding) or at least require the user return the robot to its home position to reset joint 

sensors. 
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Another source of time savings comes from the ability to quickly position the robot’s 

manipulator at goal points, and to easily modify these points. Special positioning func¬ 

tions that are not available on the teach pendant can be added to the simulator to reduce 

programming time even further. An example of one type of special position function that 

was added to the RV-M1 position control interface was a joint lock which could be used 

to disable wrist rotation. 

Cycle Time Estimations 

Cycle times predicted by the simulations were underestimated by about 20%. This 

error was due to the lack of data on the acceleration characteristics of the robot’s servo 

motors. Knowledge of the actual acceleration parameters and further testing should 

reduce this error. 

Position Accuracy 

After the device control code was transferred to the robot and tested, it was sometimes 

necessary to do some minor on-line, or touch up, positioning in order to get the robot to 

perform the desired task. The touch up programming was usually limited to a few milli¬ 

meters and was attributed mainly to inaccurate positioning (or inaccurate measurement of 

positions) of the objects in the actual workcell. 

Touch up programming was required in the palletizing case, since the holes in the fix- 

turing were somewhat irregular and did not precisely match the solid model. The Lego 

assembly, on the other hand, worked correctly without any on-line touch up. This can be 

attributed to the consistent shape of the Lego blocks and accurately constructed solid 

models. 
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Calibration 

Another source of error was due to individual robot calibration variations and the lack 

of a signature model in the robot simulator to correct for it. The addition of signature 

models will allow the user to modify the ideal goal position data set generated by the 

robot simulator to an equivalent set of positions designated for the calibration of a spe¬ 

cific robot. This feature would allow the user to create one program that could be trans¬ 

ferred to many robots (of the same type) without making on-line program modifications 

to compensate for the differences of individual robots. This type of data transformation 

would take place just before the device control code was written out for a specific robot. 

A diagram of one type of signature model is shown in Figure 5.4. This model is used 

to alter graphical position values before they are written into the device control code file. 

The graphical position changes in this model are based on an error map of the robot’s 

workspace. Creating the map involves moving the robot’s manipulator through a set of 

positions defined in a device control file and then comparing the positions to those mea¬ 

sured by an external device. 

Figure 5.4 Signature model 
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In the absence of a signature model, fixture positions can sometimes be modified or 

purposely misaligned in order to compensate for minor calibration errors, but this is only 

a temporary solution. 

Manipulator Force and Collisions 

Another problem encountered was that of controlling the pressure applied by the 

robot’s gripper during the simulation. It is very difficulty to judge how much gripper 

force is needed to lift an object without knowing information about the contact surfaces 

and the weight of the object. This was another area that occasionally needed on-line fine 

tuning. A more accurate prediction of gripper force could be obtained if gravity and spe¬ 

cific object parameters (like mass and friction coefficients) were taken into account. 

Collisions between the robot and objects in the workcell are sometimes difficult to 

predict without some type of collision detection algorithm. In a graphical environment, a 

problem can be addressed by having the user zoom in close enough to the area of interest 

to visually detect most types of interference. However, in the actual workcell, collisions 

may still occur. Collisions may go undetected when the cameras are not positioned cor¬ 

rectly to view a particular operation, or when the simulation update rate is too large and 

skips over a trouble spot. Some of these types of collisions can be solved by varying pro¬ 

gramming techniques. For example, while assembling Legos, most types of collisions 

were avoided by approaching goal points from different orientations and avoiding situa¬ 

tions where linear movement was required over a large distance (since control of the RV- 

M1 is limited to joint space movement). Another way to reduce collisions is by using 

some type of collision detection algorithm, which could be set up to give a warning when 

two objects are within a specified range of each other. This feature would notify the user 

of potential problems that may arise during the actual robot operation that may have been 

overlooked in the simulation. 
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User Comments 

Some of the comments and suggested improvements expressed by people who have 

used RS for off-line programming are expressed below: 

♦ A quick method of adjusting the fine-tuning (or resolution) of the sliders is needed. 

One possibility would be to have one of the mouse buttons control large position 

changes and use another button for fine positioning. 

• The user should be allowed to enter shortcut command sequences from the command 

window. 

• Menu layout is somewhat cluttered. 

• Conveyors and other independently moving devices should be added to the simulator. 

♦ A workspace map is needed to help with initial positioning of objects within the work¬ 

cell. 

♦ Better device control code translation is needed (i.e., a complete signature model for 

each robot). 

♦ A help menu should be added. 

• The user should be allowed to measure positions off the screen by selecting points with 

the mouse. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

This thesis presents the initial stages of development of an interactive graphical robot 

simulator with off-line programming capabilities. 

Forward and inverse kinematic equations were developed to control positioning of a 

five degree of freedom robot. Cubic splines were applied to interpolate joint variables for 

path generation. 

A graphical interface was developed to allow dynamic control over kinematic posi¬ 

tioning and path generation equations. This interface allows the user to graphically simu¬ 

late a workcell and then translate simulation data to device control code for use on the 

actual robot. 

Testing was performed on a Mitsubishi RV-M1 robot to verify the software functional¬ 

ity, and to suggest possible improvements to the interface as well as overall capabilities. 

6.1 Future Work 

This is a partial list of improvements and additional functions planned for future 

development of the robot simulator. 

• Additional joint space and cartesian space path generation capabilities should be devel¬ 

oped. 

• Additional testing should be performed in a manufacturing environment. 
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• Additional robot models should be added to create a library of available models to 

choose from. Each model must include a solid model of the robots forward and inverse 

kinematic equations, and a device control code translator. 

• Robot signature models should be added to compensate for differences among individ¬ 

ual robots, thereby reducing on-line touch up programming. 

• Collision detection algorithms can be added in order to notify the user of interference 

as well as to let the robot know if it has something in its grasp. 

• Multi-body dynamics post processing of kinematically defined paths would allow more 

accurate simulation of robots in which mass and inertia properties play important roles. 

• The program could be modified to allow feedback from sensors to be simulated. 

• The ability to directly create programs with proprietary languages, like VAL II and 

AML, could be incorporated. 

• An independent language could be created to control all programmable devices in the 

workcell (like conveyers), as well as dealing with logical programming (like error 

recovery). Ideally, this type of programming could be done with graphical icons. 

• An independent language would also allow users to attach their own control algorithms 

and task level or artificial intelligence programs. 

6.2 Closing Remarks on Computer Graphics 

It has become more apparent to me over the course of my research that the area of 

computer graphics is beginning to play a more important role in engineering. The field of 

computer graphics was once considered only a specialized area of computer science, but 

is now becoming a tool that can be used to change the way people in many different fields 

think about finding solutions. Since visualizing the solutions that computers generate is 

such a powerful tool for finding solutions quickly, it has become increasingly important to 

design software with computer graphics in mind. The ability to dynamically change a 

variable (like grabbing a slider with the cursor) also has tremendous potential in the 

teaching of engineering concepts. 
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APPENDIX A 

USERS MANUAL AND SAMPLE FILES 

• Preliminary RS Users Manual 

• RS input status file (needed to load initial data into the robot simulator) 

• RS output points file (list of path points) 

• RS output device control code (in BASIC for the RV-M1) 
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Preliminary RS Users Manual 

This manual is intended to give the first time user the basic information necessary to 

use RS to create a robotic simulation and to write out a device control code file. 

Starting RS 

RS can be started in two way, by typing rs, or by typing rs and the name of a status 

file, for example, rs blocks.olp. The status file contains information about the workcell 

environment (lighting, camera positions) and about objects that make up the workcell 

(robots, fixturing), see the sample status file at the end of this manual. Note in the sample 

status file under the OBJECT GEOMETRY section, that geometry files must be read into 

RS using the BYU format. An updated status file can be written out from within RS to 

save any changes that may have been made during a session. 

Once RS has started up, notice that the display is divided into four main areas, as 

shown in Figure Al. The majority of the screen is taken up by the viewing window which 

displays the workcell as seen through the current camera. The command window in the 

lower right of the screen displays commands that have been executed. Just above the 

command window is the main menu that selects which subsystem is currently active, this 

menu is visible from any of the subsystems. Above the main menu is the section of the 

screen used to display the menus of the current subsystem. To the left of the main menu, 

just below the viewing window, is a bank of buttons and a slider that are used to control 

animation, cameras, and global rendering mode. The lower left of the screen is taken up 

by sliders which control positioning of the robot manipulator, this section will change 

form depending on which subsystem is currently active. 
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Figure A1 RS screen layout 

The rest of this manual will describe the basic steps necessary to create a device con¬ 

trol file off-line, which includes; positioning objects in the workcell, creating a path, and 

writing out a device control file. The robot used in the example will be a Mitsubishi RV- 

M1 (other robot models will be added later). 

Positioning Cameras 

The camera positions can be set by using the function keys: FI translates, F2 zooms in 

and out, F3 rotates, F4 changes viewing distance, and F5 controls the clipping planes. Six 

camera positions can currently be defined, and will be saved in the status file when it is 

written out. Additional camera functions (splined camera movements, for example) will 

be added to the CAMERAS subsystem later. 
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Positioning Objects 

The first step in creating an off-line simulation is to position the objects of the work¬ 

cell in locations within the workspace of the robot. First pick the OBJECTS subsystem 

from the main menu. This subsystem controls object position, material (color), and ren¬ 

dering information for all objects other than the robot (which can be accomplished in a 

similar manner in the ROBOTS subsystem). To position an object, make the desired 

object the current object by selecting it from the current object menu. This object can now 

be positioned anywhere in the workcell by moving the object sliders in the lower left of 

the screen. If a mistake is made, click the RESET OBJECT POSITION button. Once the 

desired position is obtained, click SET OBJECT POSITION. These positions will be writ¬ 

ten to the status file under the OBJECT POSITIONS heading when the status file is saved 

(in the FILE I/O subsystem). 

Creating A Path 

Now that all the positions of the objects are set, switch to the PATH subsystem. This 

subsystem controls selection of control points used to create a path, as well as calculating 

the updated positions along the path itself. By default, the system is in the joint space 

mode with a cubic splined path selected (which is currently the only type available in 

RS). A path will be created by selecting several segments in which the robot will come to 

a complete stop at the end points. Intermediate “via” points can be placed within a seg¬ 

ment at locations in space through which the robot must pass through, but not stop. (Note, 

don’t use via points when simulating the RV-M1, since its device controller can’t interpret 

them.) When staring a path the current point display will read 0:0 0, the first number indi¬ 

cates the current point, the second indicates the current segment, and the last refers to the 

current via point in the segment. 

To create path positions, use the sliders in the lower left of the screen to position the 

manipulator. The three sliders at the top of this section (labeled x, y, z) control cartesian 
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space movement. Sliders J1 through J6 control the joint variables independently (J6 is not 

operative for the RV-M1, since it is a 5-DOF robot). The status of the tool (opened or 

closed) is controlled by the last slider. Trying to move the robot’s manipulator out of the 

workspace in either the cartesian mode or joint mode will cause an error message to be 

displayed in the command window. 

Once the desired position of the manipulator has been reached, click on the ADD S/E 

POINT button, then move the manipulator to the next position. The starting and ending 

points of each segment must be made with S/E (start, end) points. Intermediate via points 

can be added within a segment with the ADD VIA POINT button. To pick up one or more 

of the objects within the workcell, select the object or objects from the CURRENT 

OBJECTS menu just before clicking the ADD S/E POINT button. To release the objects 

from the manipulator, deselect them from the CURRENT OBJECTS menu just after 

clicking the ADD S/E point button. When all the points of a path have been selected, 

click the COMPUTE button. This will compute the interpolated joint positions for the 

path (a cubic spline in this case), and update the number of frames displayed in the frame 

slider. To view the simulation, click RESET OBJECTS to put the objects back at their 

staring positions and then click the forward arrow button (>) on the VCR like control 

panel to view the animated simulation. Additional segments may be added to the end of 

the path by following the same procedure. At any time while creating a path the user can 

switch back to the OBJECTS subsystem to reposition objects. When the simulation is per¬ 

forming the desired tasks correctly, a device control file can then be written. 

Writing Device Control Code 

Click on the FILE I/O button from the main menu, this subsystem will allow the user 

to read and write status, point, and device control files, as well as writing animation files 

that can be used with other animation software packages. Click on the WRITE DEVICE 

CONTROL FILE button; a menu will appear that asks for information about the robot, 
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type of communication, and robot signature model (to be added later). When the correct 

parameters have been entered, click the WRITE button, and the device code will be writ¬ 

ten to a file. For the RV-M1, the device control code will be written out in BASIC. This 

code can then be transferred to the robot’s control computer (by Ethernet or a floppy 

disk). 
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Sample Status File 

# FILE: blocks.olp 

CAMERA 1 

fovy 350 

aspect 1.5 

clip 100.0 3000.0 

polar 1500.0 900 0 0 

lookat 0.0 0.0 150.0 

CAMERA 2 

fovy 350 

aspect 1.5 

clip 100.0 3000.0 

polar 1500.0 300 -300 0 

lookat 0.0 0.0 150.0 

CAMERA 3 

fovy 350 

aspect 1.5 

clip 100.0 3000.0 

polar 1500.0 900 0 0 

lookat 0.0 0.0 150.0 

CAMERA 4 

fovy 350 

aspect 1.5 

clip 100.0 3000.0 

polar 1500.0 1800 0 0 

lookat 0.0 0.0 150.0 

CAMERA 5 

fovy 350 

aspect 1.5 

clip 500.0 3500.0 
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polar 3000.0 000 

lookat 0.0 0.0 150.0 

CAMERA 6 

fovy 350 

aspect 1.5 

clip 500.0 3500.0 

polar 3000.0 000 

lookat 0.0 0.0 0.0 

LIGHT 1 

on 

00 

00 .8 .1 .1 .1 0. 1. 1. 0. 

LIGHT 2 

on 

00 

00 .8 .1 .1 .1 0 . i t—i h-
1 

O
 

LIGHT 3 

on 

.5 .5 .5 .1 .1 .1 -1, . 0. 1. 0. 

LIGHT 4 

on 

.5 .5 .5 .1 .1 .1 -1. o
 

O
 

MATERIALS 

1 .1 .1 . 1 .0 .4 .2 . 5 . 5 .5 10 

2 .1 . 1 . 1 .0 .2 .4 . 5 . 5 .5 10 

3 .1 . 1 . 1 .2 .4 .0 . 5 . 5 .5 10 

4 .1 . 1 . 1 .4 .0 .4 . 5 . 5 .5 10 

5 .1 . 1 . 1 .4 .4 .2 . 5 . 5 .5 10 

6 .1 . 1 . 1 .2 .4 .4 . 5 . 5 .5 10 

7 .1 . 1 . 1 .0 .4 .2 . 5 . 5 .5 10 

8 .1 . 1 . 1 .8 .4 .4 . 5 . 5 .5 10 

9 .1 . 1 . 1 .0 .0 .8 . 5 . 5 .5 10 

10 .1 .1 .1 .8 .8 .8 .5 .5 . 5 10 

11 .1 .1 .1 .2 .6 .5 .5 .5 . 5 10 
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12 .1 .1 .1 .3 .5 .6 .5 .5 .5 10 

13 .1 .1 .1 .4 .4 .7 .5 .5 .5 10 

14 .1 .1 .1 .5 .3 .1 .5 .5 .5 10 

15 .1 .1 .1 .6 .2 .2 .5 .5 .5 10 

16 .1 .1 .1 .7 .1 .3 .5 .5 .5 10 

BGCOLOR 

ROBOT MODELS 

1 RVM1 

ROBOT GEOMETRY 

1 geom/rvmlsf.byu 

OBJECT GEOMETRY 

geom/blocks.byu 

ROBOT POSITIONS 

1 BS 0.0 0.0 0.0 90.0 0.0 0.0 

1 TW 0.0 0.0 179.0 0.0 0.0 180.0 

OBJECT POSITIONS 

1 350.0 0.0 0.0 0.0 0.0 0.0 

2 350.0 80.0 0.0 0.0 0.0 0.0 

3 350.0 160.0 0.0 0.0 0.0 0.0 

4 0.0 350.0 0.0 0.0 0.0 0.0 

5 80.0 350.0 0.0 0.0 0.0 0.0 

6 160.0 350.0 0.0 0.0 0.0 0.0 

ROBOT ATTRIBUTES 

1 smooth 

2 smooth 

3 smooth 

4 smooth 

5 smooth 

6 smooth 

7 flat 

8 flat 



9 flat 

10 flat 

OBJECT ATTRIBUTES 

1 flat 

2 flat 

3 flat 

4 flat 

5 flat 

6 flat 
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Sample Points File 

# POINTS FILE: blocks.pts 

JOINT ANGLES 

1 1 0 9.0 1. 0 0.0 0.0 0.0 90.0 0. 0 0.0 0.0 

2 2 0 9.0 1. 0 -90.0 24 .4 -64.5 40 '.2 0.0 0.0 60.0 

3 3 0 9.0 1. 0 -90.0 7. 4 -57 .8 50. 4 0.0 0.0 60.0 

4 4 0 9.0 1. 0 -90.0 7. 4 -57 .8 50. 4 0.0 0.0 40.0 

5 5 0 9.0 1. 0 -90.0 24 .2 -64.5 40 1.3 0.0 0.0 40.0 

6 6 0 9.0 1. 0 -6.5 23. 8 -63 .3 39. 5 -6.5 0.0 40.0 

7 7 0 9.0 1. 0 -6.5 14. 9 -61 .2 46. 2 -6.5 0.0 40.0 

8 8 0 9.0 1. 0 -6.5 14. 9 -61 .2 46. 2 -6.5 0.0 60.0 

9 9 0 9.0 1. 0 -6.5 23. 8 -63 .3 39. 5 -6.5 0.0 60.0 

10 10 0 9.0 1.0 -77.1 22.4 -59.3 37.0 12.9 0.0 60.0 

11 11 0 9.0 1.0 -77.1 5.7 - 52.2 46.4 12.9 0.0 60.0 

12 12 0 9.0 1.0 -77.1 5.7 - 52.2 46.4 12.9 0.0 40.0 

13 13 0 9.0 1.0 -77.1 22.4 -59.3 37.0 12.9 0.0 40.0 

14 14 0 9.0 1.0 -18.9 19.9 -52.4 32.5 -18.9 0.0 40.0 

15 15 0 9.0 1.0 -18.9 11.3 -50.0 38.7 -18.9 0.0 40.0 

16 16 0 9.0 1.0 -18.9 11.3 -50.0 38.7 -18.9 0.0 60.0 

17 17 0 9.0 1.0 -18.9 19.9 -52.4 32.5 -18.9 0.0 60.0 

18 18 0 9.0 1.0 -65.4 15.8 -41.4 25.6 24.6 0.0 60.0 

19 19 0 9.0 1.0 -65.4 -1.1 -31.4 32.5 24.6 0.0 60.0 

20 20 0 9.0 1.0 -65.4 -1.1 -31.4 32.5 24.6 0.0 40.0 

21 21 0 9.0 1.0 -65.4 15.8 -41.4 25.6 24.6 0.0 40.0 

22 22 0 9.0 1.0 -12.9 28.3 -58.1 29.8 -12.9 0.0 40.0 

23 23 0 9.0 1.0 -12.9 20.7 -59.2 38.5 -12.9 0.0 40.0 

24 24 0 9.0 1.0 -12.9 20.7 -59.2 38.5 -12.9 0.0 60.0 

25 25 0 9.0 1.0 -12.9 28.3 -58.1 29.8 -12.9 0.0 60.0 

26 26 0 9.0 1.0 0.0 0. 0 0.0 90.0 0.0 0.0 0.0 

OBJECT STATUS 

110000000 

220000000 

330000000 



4 4 0 1 

5 5 0 1 

6 6 0 1 

7 7 0 1 

8 8 0 0 

9 9 0 0 

10 10 0 

11 11 0 

12 12 0 

13 13 0 

14 14 0 

15 15 0 

16 16 0 

17 17 0 

18 18 0 

19 19 0 

20 20 0 

21 21 0 

22 22 0 

23 23 0 

24 24 0 

25 25 0 

26 26 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 10 0 0 

0 10 0 0 

0 10 0 0 

0 10 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Sample Device Control File 

OPEN "COM1:9600,E,7,2,CS5000,DS5000" FOR RANDOM AS #1 

PRINT #1, "PD i, 0.0, 589.0, 300.0, 0.0, 0.0" 

PRINT #i, "PD 2, 350.4, 0.0, 121.2, -89.9, 0.0" 

PRINT #i, "PD 3, 349.9, 0.0, 29.9, -90.0, 0.0" 

PRINT #i, "PD 4, 349.9, 0.0, 29.9, -90.0, 0.0" 

PRINT #i, "PD 5, 350.1, 0.0, 120.0, -90.0, 0.0" 

PRINT #i, "PD 6, 39.9, 349.9, 120.1, -90.0, 6.5" 

PRINT #i, "PD 7, 39.8, 349.6, 69.6, -90.1, 6.5" 

PRINT #i, "PD 8, 39.8, 349.6, 69.6, -90.1, 6.5" 

PRINT #i, "PD 9, 39.9, 349.9, 120.1, -90.0, 6.5" 

PRINT #i, "PD 10, 350.3, 80.2, 120.2, -89.9, -12.9" 

PRINT #i, "PD 11, 349.5, 80.1, 29.8, -90.1, -12.9" 

PRINT #i, "PD 12, 349.5, 80.1, 29.8, -90.1, -12.9" 

PRINT #i, "PD 13, 350.3, 80.2, 120.2, -89.9, -12.9" 

PRINT #i, "PD 14, 119.9, 350.1, 120.1, -90.0, 18.9" 

PRINT #i, "PD 15, 119.9, 350.1, 69.9, -90.0, 18.9" 

PRINT #i, "PD 16, 119.9, 350.1, 69.9, -90.0, 18.9" 

PRINT #i, "PD 17, 119.9, 350.1, 120.1, -90.0, 18.9" 

PRINT #i, "PD 18, 349.9, 160.2, 119.9, -90.0, -24.6 

PRINT #i, "PD 19, 350.0, 160.2, 30.2, -90.0, -24.6" 

PRINT #i, "PD 20, 350.0, 160.2, 30.2, -90.0, -24.6" 

PRINT #i, "PD 21, 349.9, 160.2, 119.9, -90.0, -24.6 

PRINT #i, "PD 22, 80.1, 349.9, 160.0, -90.0, 12.9" 

PRINT #i, "PD 23, 80.2, 350.0, 109.8, -90.0, 12.9" 

PRINT #i, "PD 24, 80.2, 350.0, 109.8, -90.0, 12.9" 

PRINT #i, "PD 25, 80.1, 349.9, 160.0, -90.0, 12.9" 

PRINT #i, "PD 26, 0.0, 589.0, 300.0, 0.0, 0.0" 

PRINT #i, "SP 9, H" 

PRINT #i, "MO 1, C" 

PRINT #i, "MO 2, O" 

PRINT #i, "MO 3, O" 

PRINT #i, "MO 4, C" 

PRINT #i, "MO 5, C" 

PRINT #i, "MO 6, C" 
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PRINT #1, "MO 7, C' 

PRINT #1, "MO 8, O' 

PRINT #i, "MO 9, O' 

PRINT #i, "MO 10, O' 

PRINT #i, "MO 11, O' 

PRINT #i, "MO 12, C' 

PRINT #i, "MO 13, C' 

PRINT #i, "MO 14, C' 

PRINT #i, "MO 15, C' 

PRINT #i, "MO 16, O' 

PRINT #i, "MO 17, O' 

PRINT #i, "MO 18, O' 

PRINT #i, "MO 19, O' 

PRINT #i, "MO 20, C' 

PRINT #i, "MO 21, C' 

PRINT #i, "MO 22, C' 

PRINT #i, "MO 23, C' 

PRINT #i, "MO 24, O' 

PRINT #i, "MO 25, O' 

PRINT #i, "MO 26, C' 

END 
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APPENDIX B 

ROBOT SPECIFICATIONS 
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Mitsubishi RV-M1 Specifications 

Robot Specifications 

Fore arm 
Upper arm 

Wrist roll // 
(J5 axis) 11 

Hand installation 
surface 

(L) Left side 
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Item Specifications Remarks 

Mechanical Structure 
5 degrees of freedom, vertical articulated 
robot 

Operation 
range 

Waist rotation 300* (max. 1207sec) J1 axis 

Shoulder rotation 130* (max. 72*/sec) J2 axis 

Elbow rotation 110* (max. 109*/sec) J3 axis 

Wrist pitch ±90* (max. 1007sec) J4 axis 

Wrist roll ±180' (max. 163'/sec) J5 axis 

Arm length 
Upper arm 250mm 

Fore arm 160mm 

Weight capacity Max. 1.2kgf (including the hand weight) 
75mm from the mechanical 
interface (center of gravity) 

Maximum path velocity 1000mm/sec (wrist tool surface) Speed at point P in Fig. 1.3.4 

Position repeatability 0.3mm (roll center of the wrist tool surface) 
Accuracy at point P in Fig. 
1.3.4 

Drive system Electrical servo drive using DC servo motors 

Robot weight 
Motor capacity 

Approx. 19kgf 
J1 to J3 axes: 30W; J4, J5 axes: 11W 
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Manipulator Specifications 

Item Specifications Remarks 

Type HM-01 

Drive system DC servo motor drive 

Opening/closing stroke 0 to 60mm 

The’holding power can be set 
in 16 steps. 

Grip power Max. 3.5kgf 

Ambient temperature 5 to 40#C 

Service life More than 300,000 times 

Weight 600gf 


