INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photograbhed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
. A Bell & Howel! Information Company

300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9284792

A method for the recovery of data after a computer system
failure: The development of Constant Random Access Memory
(CRAM)® recovery system

Brevett, Renford Adolphus Benito, Ph.D.

Iowa State University, 1992

Copyright ©1992 by Brevett, Renford Adolphus Benito. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

A method for the recovery of data after a
computer system failure: The development of
Constant Random Access Memory (CRAM)® Recovery System
by

Renford Adolphus Benito Brevett

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirement for the Degree of
DOCTOR OF PHILOSOPHY

Major: Industrial Education and Technology

Approved:

Signature was redacted for privacy.
In Charge of Major Work

Signature was redacted for privacy.
Farfhe Maior Denaréfaent

Signature was redacted for privacy.

For the Grdduaie College

Iowa State University
Ames, Iowa

1992

Copyright © Renford A. B. Brevett, 1992, All rights reserved.

ii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ittt i, 1

Statement of the Problem 2
Purpose of the Studyttt 3
Needforthe Studyciiiiiiiiiiiinereriinneeennnnnns 4
Delimitationsof the Study ittt 5
Limitation of the Study it 6
Procedure of the Studyo i, 6
Definitions of Terms00ttt ittt nnennn. 9
CHAPTER II. LITERATUREREVIEWcciiiiienennnn.. 12
Computer System and Software Failures 13
Software Testingcuvttiiniiiiiieierieeerenionesneeeeeenns 18
Computer Reliability and Validity Testing 20
Data Recovery Systemccviiiiiiiiiiiinniionnseernnenans 23
Operating System and Software Development 26
Terminate-and Stay-Resident (TSR) Method 27
Undocumented DOS ittt i i s it 29
CHAPTER III. DESIGN METHODS AND PROCEDURES 31
Questionsof the Study i i, 31
Hypothesis of the Study it iiiiii i, 32
Methodology of the Study i, 33
CHAPTER IV. RESULTS OF ANALYSIS AND HYPOTHESIS TESTING 38
Hypothesis 1ttt it et et ieneiannnnnn 38
Installationot 40
‘Organizing the hard disk iviiiiunoan, 43
Checking for free clusterscciviiii . 45
Writingthe FAT i, 49

12-Bit FAT ... i e i it 49

16-Bit FAT it e i 50

Formatting CRAM ittt ettt i iiiennnnnanns 52
Protecting CRAM fromDOSoovien... 53
Writing the directory areaoy 54
CRAM'S Operationvoviinnivnnn e nnrenns 54

Using hardware interruptot 57

Using software interruptc.ocitviivnnrennn 59

Using the keyboard interrupt, 59

iii

Using the clock interrupt ovviie e e e 60

Using the DOS idle interruptccvvvvnun.. 60

Use of Undocumented DOS, 60

Using the DOS Swappable Data Area (SDA) 62
Determination of CRAM refresh period 62

Saving Memoryoviiiii ittt 63

Memory Restorationccciiiiiirrennnnennnn. 65

Context Switching ittt 66

Working With Memory Control Blocks 69

Saving CRAM Datacoiiiiiiiiiiiiiiniiinnay 73

Restoring MemOTIY . . v oo vt iiiit i ieninn et s innnnesens 73

Hypothesis 2ottt imi i i it i e it 82
Results of software testmg 82

Recovering from a power failure 82

Hypothesis 3 . ..ottt i i e it cii e 85
Timedelayc0iiiiiiiiiiiiii it iinnnas 85

CHAPTER V. SUMMARY AND RECOMMENDATIONS 94
Discussionto Question 1 ittt it 94
Implications for future research 95

Discussion to Question 2ttt i i e 97
Development problemscoiiiiiiiiiirinnnan. 97
Implementation problems L 101

Implications for future researchot 101

Discussion to Question 3 i 102
SUMMMALY . ottt ittt et e e onanians 103
REFERENCESttt ittty 104
ACKNOWLEDGMENTS ittt tiintiinanneennnns 111
APPENDIX A, INSTALLATIONGUIDEcivinrerrnneennans 112
Introductiono v i it e 113
System Preparation Prior to CRAM Installation 113
CRAM Installation0uiiiniiiiiii i innennnn 114
Invoking CRAM i i it it e 115
Switches Used With CRAM ittt i, 115
System Requirementsoutiiiiiniineeinennnninneese 116
APPENDIX B. USERMANUALttt 118
Introductionov it i i e e 120

iv

Error Codes Specific to CRAM iiiiiiiin it innnns 122
Re-installing CRAM ittt it it 124
Getting Information About CRAM e, 126
Editing CRAM i i et et e 127
Transferring CRAM To a Different Disk and/or Computer 127
Removing CRAM From the Hard Disk and System 128
APPENDIX C. CRAMSOURCECODEciiititnnnennneennn, 130
TSR H ..o e e e e 131
CRAMH .. i e it e e e 132
DISK C . e e e e e 140
CRAMUTIL.C ..ttt it ittt it cananes 146
CRAMINT.C .. e e e e e e 155
CRAMMEM.C ... i i ittt e i e 160
CRAMTOOL.C .. ot i e ittt e it e e naes 168
CRAM. C . i i e e e 182
INSTALLC . ..ttt ittt ittt et tet e cnaeonnnnnsans 209
APPENDIX D. SOURCE CODES FOR SOME USEFUL UTILITIES 216
GEN UTIL.C i it it et i e 217

CRAMINFO.C ... ittt i e i, e e 223

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

LIST OF FIGURES

CRAM'’s development showing the goals assigned to each task 39
Layout of CRAMonthe HardDisk 44
Disk layout showing fragmented files 46

Disk layout after running Norton Ultility disk organizing program
(Speed DisK) .. ovvii it ettt e ittt e et e 47

Installation Flow Chartcu ittt iiinrernnnns 48

Flow diagram showing the start-up process for a DOS machine and the

determination of CRAM’sstatuscc0uuunnn. 55
CRAM'’s process screen indicatorsoovvvviinneneenne, 56
Flow Diagram showing CRAM’s operations 58
Layout of the Program Segment Prefix (PSP) 67
Layout of DOS Swappable Data Area (SDA) 68
Code to find free clustersonthedisk 70

Code to make a directory entry that protect CRAM from DOS ... 71

Figure 13.

Figure 14,

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

vi

Code towrite tothe FAT iiiiiiniieninnn, 72
Code showing the main memory saving routine 74
Code showing the method used to restore memory 75
Code for the main memoryloopcoiiivinvinnnn. 76
Code to show the calculation of memory checksum 77

Code to check for CRAM in memory to make sure it is the first
program in memory after the DOS shell (COMMAND.COM) 79

MS-DOS environment after the start-up process 80
Layout of memory after CRAM was loaded 81

Software conflicts and the number of partial and full restoration of the

systemby CRAM. i, 83
Benchmark programcodec0iiiiiiiiiiiiiny 86
Delay times for some benchmark functions 87
Delay times for some benchmark functions contd, 88
Graph of sieve numerical testcciiiiinnn, 90
Graph of Video display testcciiivivenn... 91

Figure 27.

Figure 28,

Figure 29.

Figure 1A.

vii

Graph of random numbers generationtest 92
Codeusedtoset MCB, 99
Codetoget MCB ittt iiinneninennnnan. 100
CRAM’s process screen indicatorscoovvvvuuenn.. 125

CHAPTER L. INTRODUCTION

Over the past decade, much computerization has occurred in industries,
schools, and homes. Computers are being used as tools, tutors, and tutee. Many
people have become dependent on computers to perform a variety of calculations,
bookkeeping, word processing, and other tasks. In order for the computer to reliably
and continuously perform its assigned tasks the hardware and software must be
designed to operate with a high degree of reliability. Since modern computers are
generally reliable, most improvements by computer designers and programmers are
directed towards building faster machines and higher storage capability. Although
the storage capacity and speed of the machines is important, the designers neglect the
area of system recovery and data loss. Data loss from a power outage can be
catastrophic in that very important information, which may either be very expensive

or time consuming to obtain may be lost. The following questions could be posed:

1. What are the major causes of computer system failure?

2. What methods can be used to save the system'’s data for easy access in
case of a system failure?

3. How can data be recovered from a failed system?

4. What are the costs associated with system recovery by alternative

methods?

5. What measurable effects do alternative systems have on system
performance?

6. Can a recovery system be developed that utilizes only software in
contrast to hardware solutions?

7. What are the major problems to be encountered in developing a

software-based recovery system?

Statement of the Problem

Regardless of the computer’s general reliability, unfortunate incidents, such as
keyboard lock-up, software failures, and power outages, over which the user has no
control, sometimes lead to the loss of data in memory. Most existing software
products do not have the capability to restore data lost from memory. The user is
compelled to either develop habits of frequently saving their data or repeat the work
if there is a failure. Computer failures occur in a learning situation or from power
interruption. The new computer student or new software user may make incorrect
inputs or connections of peripherals. This can lead to a computer failure or
interruption. It is important that an inexpensive method be developed for use in
such situations in order to restore the system from a failure. This project will
investigate the development of a software solution to restore the system from an

interruption. The approach used employs a hard disk drive for memory storage. To

be considered a practical recovery system, it should have little effect on the execution

time of other applications running in the system. This study raised three basic

questions:

1. Can a software system be developed that will provide recovery from a system
failure?

2, What problems exist in achieving a software-only recovery system?

3. What is the degradation in application program performance when utilizing a

software recovery system?

Purpose of the Study

The purpose of this study is twofold. First it will concentrate on development
of a software based solution to a computer system recovery. The goal is to reduce
frustrations, delays and industrial process down-time.

Secondly, it is the intention that this project will demonstrate the feasibility of
incorporating system recovery methods directly in the design of the computer’s

operating system and, by doing so, reduce the total cost of computer systems with

high reliability.

Need for the Study

Attempts have been made by some computer system designers to use
Uninterruptible Power Supplies (UPS) or a fast switching power generator, to supply
electricity when the power is off, to help in system recovery. Another method
involves periodic "dumps" of files to the tape or disk for use in the event of a failure.
A third method is the use of static memory that can retain data when power is turned
off. These methods can be used to recover some of the system data if there was a
power failure. Also according to Beizer (1988) some UPS do a fine job of switching
from the power line to the battery and keeping things going during blackout, but
when the power is restored, they may throw in their own nasty piece of electrical
noise, thereby creating the very same problem one was trying to avoid. There are,
however, many other reasons that a system may need to be recovered, such as
keyboard lockup, memory parity error, failed UPS, and badly behaved software. It is
the belief of this investigator, that the added expense of a UPS system and/or a PC
board with static memory can be avoided. This study will investigate a method to
accomplish a system recovery using software and the available hard disk subsystem.
This method would be inexpensive and utilize exiting parts of the system. The

experimental system developed in this study will be referred to as the CRAM

(Constant Random Access Memory) Recovery System.

Delimitations of the Study

To develop a system that is portable and compatible to all existing computer
systems would take a very long time and may even be impossible due to the rapid
change of operating systems. The following delimitations were imposed to speed up

development and testing time:

1. The software was designed to run on IBM and compatible
microcomputers with the following specifications:
a) Only the IBM-PC XT version is fully supported.
b) The system memory is 640k.
¢ No extended or expanded memory was used in the test
version.
d. The video modes supported are MDA, HGA, CGA, &
EGA.
e. Graphic modes of PGA, VGA or above are not
supported.
f. The operating system used was DOS 3.x (DOS 4.0 or
above were not supported in the test version).
No attempt will be made to generalized to other processing units operating

under different conditions.

2. Time did not permit field testing of the software so testing of the
software was done only by the researcher.

3. The programs used for benchmark testing were limited to eight readily
available programs and DOS utilities. Any number or kinds of
programs could be used but the ones chosen are frequently used by

computer operators and thus likely to be the kind encountered by the

CRAM system when installed.

Limitation of the Study

Information about some DOS functions are not available and thus may affect
performance of the CRAM system, if changes are made to those functions in future

releases of DOS.

Procedure of the Study

The study was conducted in the Department of Industrial Education and
Technology at Iowa State University. The literature was reviewed to identify the
current methods used, if any, for system recovery. The various methods of system
backup such as use of UPS, tape backup and software timed backup were

investigated. Procedures for system recovery were also studied. At the time of this

study no method was found that could provide system recovery from a power outage
without the use of a UPS system. It is the hypothesis of this study that the system
can be recovered by using software, thus eliminating the added cost of a UPS. The
software would also have the added advantage of being able to backup and restore
the system without an action by the user. Some UPS systems require the user to be
present to save or backup the system within a limited time.
The experimental design required development of software to
a. install a program in the computer that will monitor and backup the
system at either a predefined interval or intervals depending on usage,
b. attempt to detect internal and external system failure,
(A upon detection of such failure, the program will attempt to close down
the system gracefully and warn the user, and

d. restore the system to a state prior to the failure.

Following development of the experimental software, it was tested for
reliability and validity. The ability of the program to restore the system using
different applications determined the reliability of the system. Validity of the system
was determined by examining the degradation in the system’s performance using
representative benchmark programs.

The theoretical basis for the experimental software development are discussed

in chapter 2 and include:

1)
2)
3)
4)
3)
6)
7)

8)

Computer system and software failures.

Software testing methods.

Computer reliability and validity testing,

Operating system and software development.

The use of Terminate-and-stay-Resident (TSR) software.

The use of Undocumented Disk Operating System functions.
Currently available data recovery systems and problems of data
recovery. |

Systems development methods.

Definitions of Terms

ASCII code American Standard Code for Information Interchange. Most
commonly used method of encoding the alphabetic and

numerical characters into bits.

Chip An electronic component inside the computer that is identified

by many pins projecting down from its sides into a socket.

Context Switching The process of rapidly switching one processor among several

operations to give the illusion of concurrent processing. This
applies also to a simple switching of the process to execute a

different process from the current one.

CRAM Constant Random Access Memory. This is the area where
memory is saved for restoration on the hard disk. The software

for this project is also referred to by this name.

Crash A computer is said to crash when its software or hardware
caused the system to be so confused that it no longer performs

useful functions.

10

DPT Disk Parameter Table. A table of values that describes the

layout of the hard disk.

DTA Data Transfer Area. A memory buffer used by a program to

temporary store data to be sent to the disk or read from the

disk.

FAT File Allocation Table. A table of numbers found on every MS-

DOS disk which tells the status and use of a section of the disk.

Firmware Software not intended to be modified and is electronically

programmed into a chip inside the computer.

Interrupt (INT) Routines inherent to the operating system that can be accessed

by other programs and are activated by hardware or software.

IRQ Interrupt Request. Interrupts generated by external devices and

are tied directly to a pin on the CPU.

Lock-up A computer crash when the keyboard will not accept any input.

MCB

PSP

SDA

Sector

TSR

UPS

11

Memory Control Block. MS-DOS divides the first mega-byte of
memory into contiguous blocks with a paragraph of control codes

at the beginning of each.

Program Segment Prefix. A collection of unrelated data

elements required by programs.

Swappable Data Area. This is a portion of memory used by

DOS to store the current context of the system.

A formatted disk is divided into circular regions called track.
The track is subdivided into sectors. Each sector holds the
minimum block of data DOS writes to the disk (current

minimum is 512 bytes).

Terminate-and-Stay-Resident. Program that stays in memory

and operates in the background.

Uninterruptible Power Supply. Supplies the computer with

electricity, from recharged batteries, for a period of time after a

power failure.

12

CHAPTER II. LITERATURE REVIEW

Computer reliability, the causes and solution to hardware and software failures
and, data loss and procedures to restore data are all current research topics (Levy &
Silberschatz, 1991). Industry is making demands on developers to develop fail-safe
systems by introducing recovery systems, such as a resource recovery system (Bacon,
1991; Klopp, 1990; Maslak, Showalter & Szczygielski, 1991; Tam & Hsu, 1990) and
file recovery system (Barnes, et al., 1991). These recovery systems could use the
cache technology for fast transfer and transparent operation (Grossman 1985; Rich,
1986 & Sando, 1985). The current state of the art involves various backup techniques
that are found to be either relatively slow or unreliable (Kaczeus, 1990). Some of the
constraint on developing this type ofi system is speed of operation, automation and
reliability.

Researchers in this area need to rely on current developments and have an
aptitude to peruse many unpublished and unrefereed literature sources to amass
information that will keep up with current findings. Currently government and
business organizations are studying the problems that will be encountered towards the
end of this decade, and which is believed will involve the storage of gigabytes (GB)
of data per day (Lopez, 1992). Lopez states that if problems like these are to be
solved by the turn of the century, it is important to have a knowledge of the current

and advancing hardware and software technologies for archival, retrieval, and

13

distribution of large volumes of data. The prediction by Mason (1984) and Crecine

(1986) was that computers would be used more intensely as the technology increase.

The approach used to review the literature for this type of experimental design

was examine previous work done in related areas such as

a.

b.

Computer system and software failures,
software testing,

computer reliability and validity testing,
operating system and software development,
terminate-and-stay-resident (TSR) method,

undocumented DOS functions, and

data recovery system.

Computer System and Software Failures

According to Chantico (1991) the automation of daily business has brought

about an element of computer dependence. The loss of data and the annoying

unscheduled down time can be very expensive. For educators’ computer lockup,

system failure or power failure can be very frustrating and embarrassing at times. In

order to develop a fail-safe system one needs to know the environment in which that

14

system exists and what causes the system to fail. There are many different ways to
classify failure in computer systems. Transient errors have been estimated to occur at
the rate of 5 to 100 times that of permanent failures (Adams, 1991). Researchers are
always investigating methods for error detection (Spector, 1984). Tasch (1990)
identify humans as important in error detection. According to Tash, failure detection
has been recognized as one of the functions where computers and human operators
can complement one another. Bondavalli (1990) discussed the classification of

computer failures. He outlined three major guidelines to computer systems failure

classification:

1. A failure classification should be able to be applied to every system.

2. The classification must be as detailed as possible.

3. The treatment of failures following a detection, are to be considered as a

second step.

Classification of failures has one major advantage of characterizing systems with
respect to their failure modes, that is providing designers with the a way to choose
the most appropriate detection techniques for each particular system.
A summary of reasons for system failures, from Bondavalli (1990), Lua (1990) and
Garcia-Molina (1990) includes:

- Inadequate input validation: This occurs when the software allows an

illegal data input to slip through and sent for processing.

15

- Design miscalculation: This is the inadequate safety margins built into
the system to cope with exceptional conditions.

- System control faults: This may result from faulty logic in either the
operating system or the user’s own control software.

- Hardware faults: Any component of the system may develop a fault.

- Software faults: Programs are written by people and prone to fault at
any stage. The longer and more complex a program is, the more faults
it is likely to have.

- Human mistakes: The major source of error is the human operator.,
Faults such as using the wrong version of a file or program, responding
incorrectly to console messages from the operating system or user

programs.

Preventing failures is much less costly than correcting errors in the system
after a failure. Measures have be taken to minimize the occurrence of failures.
Methods used to prevent errors include:

Surge protector: These devices are designed to stop spikes that occur in the
power line from lighting bolt or sudden voltage change in the power line.

Power line filter: These are like surge protectors but generally more expensive
(Mace, 1988). They smooth out peaks and valleys in the voltage which can affect the

performance of the computer or lead to random failures.

16

Uninterruptible Power Supply (UPS): Alternative methods for supplying
uﬂintermptible power have been sought for the past five years. A UPS is a battery
system that provides power to the computer for 10 minutes to an hour after the
power goes out (Mace, 1988). The governing factor in the type of UPS is the
Ampere/hour rating. The UPS needed for a system depends on the power
requirements of equipment that will be plugged into the UPS, and how many boards
are installed inside each computer. Proper backup procedures and the use of
Uninterruptible Power Supplies (UPS) are some of the many measures taken by
industries to curb this problem (Mace, 1988). One example uses a UPS on a plug-in
board inside the computer. A further development of this product was made to
include the saving of the system to the hard disk.

ITT Power Systems developed a similar product called the PowerSave 500.
According to Harold Ramsey (1992), systems developer at ITT, the major differences
between these two products are the way in which the system is interrupted and the
amount of memory that each program occupies when loaded into the system.
Ramsey, the major technical designer of the PowerSave 500, said the use of Interrupt
Request (IRQ) and the ability to use its own on board memory makes his product
more efficient. There are also differences in the ability of each product to capture

extended and expanded memory. These systems can be very expensive, bulky, noisy

and inconvenient.

17

A recent development is a battery-free rotary options for UPS system
(Lengefeld, 1990). This system described by Lengefeld can provide up to one minute
of uninterrupted power without the use of batteries.

Data integrity and the ability to restore the computer to its prior state after a
system lock-up or power outage are of increasing concern to end users both in
education and industry. Some of the methods used to save data for future retrieval
are:

Floppy backup: This is the storing of information in a compressed form on several
floppy disk. Most fast backup programs fail at times. Mace, in his book said "I have
never had a floppy backup program that didn’t fail me." These programs use direct
memory access (DMA) transfer. DMA refers to chips inside the computer that can
send data to and from memory without using the central processing unit (CPU)
(Tammaru, 1985). This means that information can be sent to the diskette while the
program is requesting input from the keyboard.

Bernoulli cartridges: This provides storage on removable cartridges and are close to
the hard disk in performance. The cartridges can wear out when used on a daily
bases.

Tape backup: Magnetic tapes that are similar to audio tapes are used to store data.
This method is common for use with local area networks. This method of backup,
which stores all files on the hard disk to the tape is slow. The backup procedure is

often done at the end of the day, month and year. A separate tape is usually used

18

for each day. According to Beaudin (1992), the older system are unreliable and tends
to cancel out very often. A new technology is growing in this area using 4mm digital
audio tapes rather than the old reel to reel and the more expensive 8mm tapes.
Periodic save by some software: This is the saving of the data files that the program is
using to the disk. Some word processors like WordPerfect use this method to keep a
running journal to the disk of the activity of the file that is being edited.

Disk Mirroring: This method uses two similar disk to save identical information. Both
disk are updated at the same time.

Redundancy in system: Many database systems according to levy (1990), Lucente
(1991) and Yanney (1986) increase reliability by employing a fair amount of system
redundancy. This involves both software and hardware redundancy. More than one
copy of the system are kept at remote sites in case of disaster or system failure.

The choice of the system to implement will be determined from a careful

procedure of software testing.

Software Testing

One of the major areas of software development that is becoming of great
importance is Software Testing (Gary, 1986; Han, 1986; Kinoshita & Saluja, 1986).
Hetzel (1984), in a quote from the preface to Glen Myers, Art of Software Testing,

noted that approximately 50% of the elapsed time and over 50% of the total cost are

19

associated with testing a program or system being developed. There is however, a
fuzziness in the measurement of computer systems. Software testing therefore,
includes various definitions such as: executing a program or system with the intent of
finding errors, verifying that the software satisfies specified requirements, identifying
differences between expected and actual results, and evaluating an attribute or
capability of a program or system. Hetzel further emphasized that testing could be
divided into three groups and various sub-groups thus forcing quality to become
tangible and visible as the final outcome to testing. The three groups and
corresponding sub-groups are shown below:
Functionality (exterior quality)

Correctness

Reliability

Usability

Integrity

Engineering (interior quality)
Efficiency
Testability
Documentation

Structure

20

Adaptability (future quality)

Flexibility

Reusability

Maintainability
It was also noted that any proposed testing methodology must provide a means of
answering the following major questions:

L. What should be tested?

2. When should testing stop?

3. Who does the testing?

Falk (1987) states that bug hunting is a serious business, however it is an
unfortunate fact that it’s impossible to eliminate every bug from a program. He
further notes that software developers can now turn to specialists such as AGS

Information Services (Cincinnati, Ohio) and Programming Environments (Tinton

Falls, New Jersey) for software testing.

Computer Reliability and Validity Testing

The need for reliability and validity testing of computer systems is a major
concern to industries (Daniels, 1987). He further noted that the safe operation of

computer systems, in both their software and hardware continues to be a key issue in

21

many real time applications, when people, environment, investment or goodwill can
be at risk.

The majority of Software designers and users are from a wide range of
backgrounds such as computer science, engineering, mathematics, or physics, which
leads to differing views on the usefulness and applicability of software testing.
Daniels cited two major approaches: the computer science approach and the
engineering modeling approach. The computer science approach aims at achieving
logically correct and error-free software by stringent testing of competently produced
code. The engineering modeling approach, on the other hand, seeks to model the
failure mechanisms in software with a view to fitting the model to a developing body
of code and thereby making a quantified assessment of its reliability. It is the latter
approach that was taken by this project and thus the role of statistics in software
reliability was assessed. Reliability in a software context remains controversial both
in human factors applications and in computer software science. Some forms of
reliability include: producers perceived reliability, which is the quantification somehow
arrived at by the producer; user perceived reliability, initially based on that of the
producer, modified subjectively according to past experience; inherent reliability, a
true, but unknown, measure of the closeness of the software to an ideal version; in-
use reliability, a true, but unknown, measure of the extent to which the software will

perform correctly in the user environment; adaptive reliability which is like in-use

22

reliability except that the user adapt their behavior, i.e. modify the user environment
to side-step deficiencies in the software which might otherwise be reported as faults.

Koren (1986) pointed out that the most obvious characteristic of a reliable
system is the time the system is available and operating normally. Reliability and
integrity, as summarized from Beaudin (1992), Belli (1991), Kaczeus and Lion (1990)
has six contributing factors:
(1) Availability can be measured and thus is a contributing factor to reliability.
Availability is the proportion of the total time scheduled for operation that the
system is actually available for normal service, and expressed as:

Availability = (MTBF)/(MTBF + MTTR)

- Mean Time Before Failure (MTBF)

- Mean Time To Repair (MTTR)
(2) Graceful degradation of the system happens when failed components are in
the system but operation continues in a restricted mode. It is preferred to have a
degraded service rather than a collapsed system.

(3) Fail-safety is the preclusion of certain potentially disastrous events from
occurring in the system.

(4) Data integrity is the ability of the system to prevent errors in its data-base, to
detect them as early as possible and correct them or confine their effects.

(5) System integrity is the ability of the system to detect faults in its own

operation, and to correct them at least to limit the damage they cause.

23

(6) Recovery capability is the most important factor of all in reliability and
integrity; whatever kind of difficulties the system gets into, it must be possible to get
it out again, in a reasonable time and at acceptable cost.

Koren (1986) and Belli (1991) suggested the introduction of redundancy into
the system to improve reliability and availability. The suggestion was to use
instruction retries and program rollbacks. Koren further noted that several

researchers have analyzed recovery technique and all differ in their assumptions and

objectives.

Data Recovery System

The mechanism and responsibility for recovery are distributed to many
different programs, files, hardware devices, procedures and people. Gibbons (1976)
suggested five subsystems which are still considered today in systems development:

System supervision: Monitor the system to detect errors as early as possible,
before they cause serious damage. When an error is detected it may inform a human
operator or take action to correct the error.

Activity recording: Information about the processing activity of the system must
be recorded, to support the recovery functions. Periodic ’snapshots’ of the system are

placed on recorded journal in the form of file dumps or checkpoints. The record of

24

the changing state of processing provides a basis for recovery from future failures; it
may also be useful in diagnosing the cause of the failure.

Investigation and decision: Error information is important and should be
collected and analyzed, with a view to improve the system to prevent its recurrence.
It is also important to collect data on the performance of the recovery programs and
procedures, both on their speed and on their effectiveness.

Repair and recovery: The aftermath of a computer system failure is a plan for
recovery. A combination of human effort and computer procedures is put into effect
to design a plan for recovery. This include reformatting, repairing and altering of
both hardware and software.

Maintenance and improvement:. Errors are diagnosed to obtain information
about the cause of failure. An improvement on the system, using the historical
information will attempt to prevent the failure from recurring.

Johnson (1991), Bennett (1991) and Upahyaya shared the view of using
rollback recovery system to restore system failures. Information is stored on stable
storage media during failure-free execution, allowing certain states of each process to
be recovered after a failure.

Many data recovery systems encountered are geared at disk file recovery.
There are two assumptions that were made by developers: the users will have access
to the tools and know how to use them, and that the operating system and

application software will maintain a certain level of standards. Both assumptions

25

were endorsed by the kind of software supplied with the operating system such as
COPY, CHKDSK, RECOVER, DEBUG, BACKUP, and RESTORE, and the
available third party software. Even more recently the introduction of MIRROR,
REBUILD, UNFORMAT, and UNDELETE were added commands to DOS version
5.0. Even though some are useful, the DOS utilities are usually poorly documented
and users are unaware of their potential. Mueller (1991) states that many users are
not aware that CHKDSK command, which is usually used for simple inspection of a
disk file structure, can be used to repair a damaged file structure. He also noted that
users do not know that the COPY command can be used for recovering from file or
file system (file allocation table [FAT] and directory) damage.

Several levels of disk or data damage may exist. Only two primary levels can
be recovered by present data recovery techniques: Unreadable sectors and Corrupted
sectors.

Unreadable sectors are caused by physical damage, or magnetic damage.
Physical damage is irreversible while magnetic damage is reversible. In both cases,
however, data is lost in these sectors. Corrupted sectors are sectors with corrupted
data (data with invalid information or data not linked to any part of the file system)
that can be restored to the original condition by DOS utility programs or a third
party disk recovery software.

These products are also faced with one other major problem-that of the changing

Disk Operating System (DOS).

26

Operating System and Software Development

The operating system is a set of software tools designed to make it easy for
people and programs to make optimum use of a computer (King, 1988). All
computers must have an operating system installed in order to run user’s programs.
MS-DOS is an operating system for 16-bit, 8086/8088-based computers. DOS is an
acronym for Disk Operating System. DOS was designed with the assumption that
files will be found on the disk and that a disk is needed before useful work can be
done. Since the introduction of MS-DOS in 1981 there has been enhancement to
accommodate new hardware environments, fix problems, and generally improve its
operation (Angermeyer, 1986). These enhancements, although resulted in more
powerful capabilities, produce incompatibility with older versions.

The introduction of DOS version 5.0 has introduced an even more difficult
problem-that of knowing where in the memory space important information lies. The
use of the so called high memory area, memory above 640k, kept many board and
software designers busy and left them puzzled about how to design for the future.
Most new products are designed for the new, more powerful 286, 386, 486, etc., and
what ever the next generation of computers turns out to be. Many schools and home
computer users are using the IBM-PC XT or compatible and are thus left out when
new designs are introduced. This design project utilized the IBM-PC XT. The

method selected to provide system recovery in this study seems to pose some

27

interesting problems according to Jim Kyle (1992), co-author for the book
"Undocumented DOS". He said in his electronic mail:
This principle is simple enough, but the problem is that the memory
you try to save and restore ALSO includes the program and variables

that are controlling the save process, so when they get restored they will
suffer amnesia, forget that they are restoring, and start saving again (p.

1).
The technique used in this study attempts to alleviate that problem. A program is
needed that can reside in memory, save and restore memory without affecting its own
code. The DOS operating system, running as a single user single task system

supports two ways to accomplished this task: using a terminate-and-stay-resident

program, and using a device driver.

Terminate-and Stay-Resident (TSR) Method

A TSR program has the ability to operate in the background while other
programs are running in the foreground. According to Boling (1992), TSR programs
have been the mainstay of the DOS operating system since its introduction in DOS
version 2.0. The main problem with a TSR program is that it robs the system of
some memory and thus may not be well behaved with memory hungry software.

Boling noted that:

TSRs should be totally unobtrusive to the system and at the same time
available to the user. This contradictory goal causes TSR programmers
to jump through what seems to be endless series of hoops that are

28

necessary for compatibility with an operating system not originally
designed to accommodate TSRs (p. 44).

The problem of compatibility will soon be overcome with the emerging standards
proposed by the TSR programming community. According to Wadlow (1987),
Borland International, one of the first companies with a commercial set of resident
applications, has proposed a standard that has been well received in some places.

Steven Baker (Waite Group, 1988), differentiates two types of TSR programs.
First, there are the simplest extensions to MS-DOS that extend the hardware features
and do not need to use any MS-DOS function calls. Once resident, this type of TSR
makes no DOS function calls.

The second type of TSRs is more complex in that, once resident, it must make
DOS function calls (such as disk 1/O). The difficulty in using TSRs is determining
when DOS or an application program can be interrupted. This is a major problem
because MS-DOS function calls are not reentrant or recursive, i.e., one cannot make
several calls within calls. If a TSR interrupts a MS-DOS function call that is in
| progress to make another MS-DOS call, the first call will be trashed and lost with a
crash of the system or other unpleasant result.

The second method to launch a program that can work in the background is

using device driver. This method differ from TSR only in the way it is initiated and

where in memory it is loaded.

29

This project uses a TSR program. To accomplish the extraordinary task of
TSRs and to adapt them for this project in particular it is imperative to use some of

the "undocumented" DOS functions.

Undocumented DOS

Undocumented DOS according to Schulman et al. (1990) is:

...the body of functions and data structures that can reasonably be

considered part of MS-DOS or PC-DOS but that are either not

mentioned in the microsoft or IBM documentation or that are marked

"Reserved" (p. xiii).
These functions according to Boling (1992) were in fact documented everywhere but
in the MS-DOS technical reference. It was however, a pleasant sight and an
indication of the stability of these functions in future versions of MS-DOS, when they
were included in the Programmer’s Reference in recent release of MS-DOS version
5.0. Michels (Waite Group, 1988), also see DOS as partly undocumented. He
contended that there are still several MS-DOS functions that are either poorly
documented or not documented at all. He also recommended the use of a "break-out
switch" debugger (a resident debugger that can be activated with a special hardware
switch) in order to stop the machine and examine the computer system state at any
time. Knowledge of the system at that level will promote better programs that take

advantage of all of MS-DOS internal functions. The art of system reliability is the

recovery of the system to the point it was before an interrupt.

30

This experimental design capitalized on the systems development methods
used by developers in the field of computer science and engineering.

The review shows that the area of computer failure, reliability and integrity,
and data loss and recover are emerging topic for researchers. The continually
changing technology in these areas and the proliferation of computers in all sectors of

society propel individuals to investigate means to attain high reliability and integrity

and data safety.

31

CHAPTER III. DESIGN METHODS AND PROCEDURES
Questions of the Study
This study focused on the following major research questions:

Can a software system be developed that will provide recovery from system
failure due to

a) power disruption

b) accidental re-booting

c) software errors?

What problems exist in achieving a software-only recovery system on the IBM
PC-XT compatible machine?
a) Are the majority of applications software compatible to a

software recovery system?

b) What resources are required for acceptable performance?
c) What situations such as software errors in application programs,

are not recoverable?

32

3. What is the degradation in application program performance when utilizing a
software recovery system in comparison to performance when the recovery

system is not used?

a) What is the degradation for numerically intensive applications?
b) What is the degradation for disk intensive application?

c) What is the degradation for keyboard intensive applications?

Hypothesis of the Study

Research hypotheses to be tested are as follows:
1. A software system recovery program can be developed which provides

recovery from power interruptions, system resets and software system crashes.

2. Standard application software such as disk utilities, word-processing programs,
spreadsheet programs and statistical analysis programs will operate successfully

with a software recovery system.

3. System degradation as measured by the difference in seconds for standard

comparison programs operating with and without the software recovery system

will not be greater than 0.1 second.

33

Methodology of the Study

To provide answers to the questions and hypothesis above, the following

methods were employed:

Hypothesis 1:

A systems approach was employed to develop an experimental software

recovery system referred to henceforth as CRAM. This method included:

a. Identifying the desired operational characteristics of the software, i.e.
operational goals and specification of user interface.

b. Analyzing the system resources available within which the system must
perform. Included are the CPU, DOS, BIOS & RAM .

C. Classifying the major system components required to perform identified system

functions including:

direct disk I/O

- scanning system for pertinent systems operational variables
- manipulating the FAT

- creating disk file storage areas

- protecting disk storage area

- loading RAM segments from disk

34

- direct video output

- process interruption

- determining segments changed by software activity

- saving CPU registers

- copying RAM segments to disk

- initiating a recovery process

- restoring CPU registers from disk

- passing control from the recovery system to the recovered

software system

d. Assemblying components into executable files.

e. Developing and testing program functions.

f. Testing and revising the system.

g Evaluating the system operational characteristics.
Hypothesis 2:

To test the validity of the experimental recovery system, sample application
programs were executed with the CRAM recovery software installed. The power was
interrupted and the system was reset from the keyboard using the <CTRL>-
<ALT>- keys combination while the application programs were running.

Results were classified as conflict, partial recovery and full recovery.

35

A conflict is when the executing program cannot coexist with CRAM, producing
unpredictable behavior or causing the system to lock-up.
A partial recovery is when the restoration seems to occur but the system lock-up
immediately or when attempt is made to enter information at the keyboard.
A full recovery is when the system is in the state it was before the interruption and
the behavior is in all respect what was expected. Nine well known commercial
programs were used in this test and their recovery state categorized into one of the
above classifications.

The application programs used for testing were

- Norton Utility version 4.50

- WordStar release 3.31p

- WordStar 2000 release 1.01

- Turbo C+ + version 1.00

- Sideways version 2.01

- Lotus 123 version 2.01

- WindowDOS Capture Utility

- DOS resident print for DOS version 3.3

- WordPerfect version 5.1

Hypothesis 3:

36

The system was tested using the following method:

L Generating sample time duration for execution of 8 benchmark programs

described as follows:

a)
b)

g)
h)

Sieve of Erotosthenes:

Disk I/O write

Disk I/0O read

Keyboard interrupt
Video display
DOS idle interrupt
Clock interrupt

Random number

and plotting.

Generating 16380 prime numbers.

Writing 512 characters to a file on the hard
disk.

Reading 512 characters from a file on the
hard disk.

Scanning of the keyboard interrupt.
Writing 512 characters to the video screen.
Scanning the DOS idle interrupt.

Scanning the clock interrupt.

Generating 2000 random numbers.

Aggregation of the 100 samples into 20 groups for purposes of data analysis

Use of the Students t-test for differences between independent means of

samples generated with the recovery system installed and without the system

37

installed. Significance was established by testing for rejection of the null

hypothesis of, no difference between means at the 0.05 level.

38

CHAPTER 1IV. RESULTS OF ANALYSIS AND HYPOTHESIS TESTING

The results of this study answered three questions reflected in the following

three hypothesis:

Hypothesis 1

A software system recovery program can be developed which provides recovery
from power interruptions, system resets and software system crashes.

The hypothesis was confirmed, the results below demonstrate the feasibility of
the system’s development.

The software CRAM was developed to answer the above question. The
development of CRAM followed the modular and systems approach to software
development. Modular in that each section was developed and tested separately and
systems in that the project was divided into various tasks and development followed a
define path. The study was divided into two major areas: Installation and Operation.
Installation was further divided into System check, Disk scanning and Disk
preparation. Operation was further divided into System start-up, Memory save,
Memory restoration, and Data maintenance. The diagram in Figure 1 shows how

CRAM'’s development was subdivided into various tasks and the goals for each task.

39

CRAM SYSTEM

l INSTALLATION ' ' OPERATION I
""'I SYSTEM CHECKING I —l SYSTEM START-UP l

1. Determine memory size 1. Check for CRAM
2. Find the numbaer of foppy 2. Determina ¥ nesd 0 call
disks and herd disks MamoTy Save
3. Determine video adapter 3. Check for efirors
4, Determine processor 4. Check it CRAM Ig clean
S. Pass oontrol to memory save

_l DISK SCANNING l —-‘ MEMORY SAVE l

1. Determine number of 1. Read memory segments &
Voo clusters store them in CRAM
2. Check for type of FAT 2. Update MCB
rscording method 3. Seve Intermupt vectors, video,
SDA, BIOS, & CRAM
vital information

1. Format area 10 store CRAM
2. Update the directory area

—-I DISK PREPARATION l 4. Update acreen indicators
_! MEMORY RESTORATION '

3. Write FAT 1. Reed intformation stored in
CRAM header

Figure 1. CRAM'’s development showing the goals assigned to each task

40

An IBM-PC XT compatible computer from Cordata running at 10Mhz was
used for both development and testing of the software. In order to gain low level
interface to both the machine and the operating system most of the code was written
in "C". Turbo C version 2.0 was chosen because it was available and provides a good
integrated environment for software development. Some codes were done in
assembly language to access low level interface to DOS that were either not available
in "C" or provided better data access speed. Turbo Assembler version 2.0 was chosen
because of availability.

CRAM is a unique software tool because it was designed to be a replacement
for a standard UPS system. The power of this tool lies in the use of Undocumented

DOS functions, memory management tool, disk management, context switching and

the timely backup of the system to the hard disk.

Installation

The installation process involves checking the system and the preparation of
the storage area on the disk. Files stored on the disk must be preserved, while a
large enough space should be prepared for CRAM. CRAM must operate in the
background and should minimize overhead on the system. System overhead, the time

used by the executing program, will slow the system down. System degradation below

41

an acceptable level is undesirable. There are two major methods of saving files to
the disk:

Method 1. Using the DOS I/O functions.

Method 2. Using the system BIOS for direct I/O.

Method 1 would introduce an overhead on the system. It would also means
that the file will be saved according to the format DOS uses. DOS save files in a
best-fit-by-cluster way, which means sections of the file could be at different locations
on the disk. This create what is commonly known as file fragmentation. An
additional overhead would be added for the seek time for each section of the file.

Method 2 on the other hand would give CRAM complete control over where
the file is located on the disk. This method allows CRAM to bypass the FAT in the
event of a corrupted FAT of disk file table. The seek time overhead could be at a
minimum if the file is stored in consecutive clusters, since only the address of the first

cluster is needed.

The two methods are compared in terms of overhead below using the

following general formula:

s
OH,, =Y Ep +t,+K 0y
0

E. - seek time to a cluster

t, - seek time to a track

42

te - time to execute DOS function call

K - a constant of seek time for disk that park their head after each
I/O

s - the number of different areas where the file is stored.

Method 1:

|
oym,=zoj Eg+t+K @)

If files are stored in consecutive clusters the formula for the total

overhead would be:

OH ., =Et +1,+K (©)

If t4 is small and negligible then both methods would yield the same value for

total overhead.

Method 2:

OH, =Et+K)

s = 1, since only one seek was needed.

K varies with the disk drives but will be the same for both methods.

43

Method 2 was chosen for this project since this method allows access to the
disk even when the FAT is damaged, and will always yield lower or the same
overhead. A special program was written to prepare the disk for CRAM and install
CRAM on the hard disk. The program INSTALL.EXE was used to install CRAM
on the hard disk. The diagram below in Figure 2 shows the layout of the various

section of CRAM on the hard disk.

The program first checks each cluster on the disk for the CRAM identification
marker and a special security code. The disk must be a non-removable hard disk. It
can be either the bootable default disk or any other hard disk sub-system installed in
the computer. The disk is next checked for a space large enough to hold the system’s
memory and all the software needed to run CRAM. If there is not enough space on
the disk, CRAM will not be installed. The disk must have, in addition to the
minimum space required for CRAM, two or more extra free clusters. One cluster in

CRAM is used for storing vital information for the operation of CRAM including the

CRAM identification marker and copyright notice.

Qrganizing the hard disk

In order to gain the fastest disk access and reliability of data the hard disk was

first organized using a third party disk organizing software Norton Disk Doctor

(1989). Any other disk organizing or disk optimization software could be used. The

of
Sectors

1

variable

32

varies

44

CRAM VITAL INFORMATION AREA (CVIA)

INTERRUPT VECTORS & DOS BIOS AREA

MAIN MEMORY

STORAGE AREA

VI DE O SCREEN MEMORY AREA

MEMORY CONTROL BLOCK (MCB)

SWAPPABLE DATA AREA (SDA)

STACK MEMORY AREA

Figure 2. Layout of CRAM on the Hard Disk

45

disk will be analyzed by these software for fragmented space. Deleted files are only
marked with a special code and the area is available for other files to use. However,
the new file may need less space and thus leave some clusters unused. Norton Disk
Doctor will arrange all the files on the disk to achieve the most efficient use of the
disk. Figure 3 shows a fragmented disk and Figure 4 shows the same disk

unfragmented by Norton Utility disk compression program.

ki fr 1 r

The entire disk was checked for the number of free consecutive clusters that
could be used by CRAM. Clusters used by CRAM must be consecutive because no
other checking will be done during memory save. The first cluster, or the first sector
of the first cluster assigned to CRAM is the only information needed to instruct
CRAM where to save memory on the disk. This method eliminates the time that
would be used to check for correct sectors, and also, the seek time used during save
was reduced to only one initial seek. Once enough space is found on the disk the
system will be installed as illustrated by the flow diagram in Figure 5. Record of the

clusters used by CRAM must be recorded in the File Allocation Table (FAT).

46

Menu 3.1 .
Map of space usage for the entire disk

7% of disk space is free
Proportional Map of Disk Space

R L L R L T LT LT LR LT L
pepresents sonnaNaRIoRNERuNRRRORRRREERIRuERRERIRENRRRNRInIY
_SPace SRRERERRRORRRRRRERRRRUNRRRIRIRRRUBRRNRRRRERUTTNEE
in Use anERRNERIRROUREERRRUOERRREBRERRERRRRRINRURRETNENE
IeREERRRNORENRRAND JLLLET T EETT T
LT L TR I st a e TR T LT RN EAT I
O N OO LR L L
nunUUNIEERnUanUENNENNn
s nnne g e nEioonsannnnnaniiesnnannnineg

% L LR L R L TR PR NN R R TN TN AN NIRRT G
Each position represents 21 clusters, 1/4%96th of the total disk space
Press any key to continue...

[tew t Drive
Directggge ¢

Figure 3. Disk layout showing fragmented files

47

Menu 3.1 L.
Map of space usage for the entire disk

6% of disk space is free

Proportional Map of Disk Space
§ USNRUEDNDEEEERARCEUBUUNEIRERRERENORANBEERRRERDRIENN

Pepresents ERRANONUNRBRRUEURRRERRUNOURRNORRRGRRRRRNRRRRERNN LD
.space ORUBRBRNSUOEREARNEERRIONNREARRORARDRRNRRARENMRINNE
in use ERRENRERERRRRINERERRNRREROOONERURERNENEREIRURINNIETE

1)
oot

Each posxtx't:r: l;;;;';sl;l::g g“g ‘tluste ":',:'%396%6 é’»‘heE ':%o%al disk space
Press any key to continue...

File name
Dir area

Figure 4. Disk layout after running Norton Utility disk organizing program (Speed
Disk)

48

INTRODUOCTION LOQO
AND SVYEBTEM CHECK

!

GATHER ALL INFORMATION
ABOUT SYETEM

v

OHECK FOR DISK SFAOE
FOR ORAM

v

FORMAT CRAM AREA WITH A
SPEICIAL FORMAT OCODE

v

COPY OCODED INFORMATION TO
CRAM AND PUT RAM INTO CRRAM

!

SET UP PAT AND DIRIECTORY AREA
TO PREVENT CRAM FROM BEING UBED BY DOS

v

mmmmumaerunrm
TO MONITOR RAM AND CRAM

!

AECODE AUTOEXXEC.BAT AND
SET ORAM FOR EMPTY

Figure 5. Installation Flow Chart

49

Writing the FAT

Writing information directly to the FAT is very important to CRAM but must
be done carefully. Writing the incorrect information here can corrupt the disk file

system and could crash the hard disk. The method used by CRAM was as follows:

1. Locate the first cluster to store CRAM.

2. Check for minimum sectors needed.

3. Calculate the number of sectors needed.

4, Calculate the sector number at the beginning cluster.
S. Set start sector to that sector number.

6. Mark FAT to include all clusters that make up CRAM area of the disk.

7. Put End of File Marker in the last sector of CRAM.

First the format of the FAT writing scheme was determined. There are two
methods for writing the FAT: 12-bit and 16-bit. There may be other methods but

these two were the only known methods at the time of development.

12-Bit FAT This format is the more common and more complicated of the
two. Most floppy disks use this method for recording the FAT. The FAT is

organized as a table of 4096 numbers that range from 0 to 4095 (Oh through FFFh).

50

The number in each entry represents the status and use of the cluster that

corresponds to that FAT. The number in each entry must not exceed three

hexadecimal digit, which is a key element of how the 12-bit FAT entry is stored. The

FAT entries are organized in pairs, where each pair occupies three bytes. To decode

the information in the FAT use the following steps:

L.
2.

Multiply the FAT entry by 1% bytes (multiply by 3, then divide by 2).
The result is the offset into the FAT, pointing to the entry that maps
the cluster. That entry contains the next cluster occupied by the file.
The result has four hexadecimal digits but three digits are needed.
Determine whether the FAT entry is odd or even.

If the entry is even, logical AND with OFFFh. If it is odd, shift the

result by 4.

If the resulting three digits falls between FF8h and FFFh this indicates
the end of the file. Otherwise the digits represents the number of the

next cluster occupied by the file.

16-Bit FAT This method of recording the FAT is associated with most hard

disks, capable of storing more than 4086 clusters. This method works the same as the

12-bit one, but is much simpler. The entries are four bits larger than that of the 12-

bit. The entries are therefore word values stored one after the other in the table.

The values therefore range from 0000h to FFFFh (instead of 000h to FFFh), the only

51

difference is the addition of the high-order hexadecimal F. To get the cluster values
it is simply a matter of reading the word value of the entry that is being queried.

After the FAT recording method was determined, the next step was to check
for consecutive free clusters. The minimum amount of clusters needed was
determined using a formula based on the FAT recording method, the number of
sectors per cluster and the number of sectors needed to store a DOS segment
(HYDE, 1988) of memory. To determine the number of sectors needed per segment
of memory each segment was considered to be 64K bytes wide and starting at

absolute address zero (0000:0000). The formula used was:

Sectors perSegment = (Bytesper 64K Segment) | &)
(Bytes persector)

In the case of CRAM
Sectors per Segment = (65535 /512) + 1 = 128

After recording the clusters reserved for CRAM, the sectors were formatted to

check for bad sectors and the integrity of data stored in those sectors.

52

The disk area occupied by CRAM was first formatted to eliminate any bad
sectors. If any bad sectors were found another area of the disk would be chosen. If
no other area was available then the bad areas would be marked off to prevent
CRAM from writing to them. This was important since direct disk I/O was used to

save and retrieve data from CRAM. The following pseudo-code illustrates the format

procedure:

Search disk for minimum space
If space found > = minimum space

Check area for bad sectors
if bad sectors found

{

check for another area on disk
if no free chunk found

mark off bad sectors
adjust size of space needed

}

fill area of cram with a special character (€)
this is ascii character hex code EEh

Enter the file in the Directory area

Update the file size

Update the File Allocation Table (FAT)

Return the message that CRAM-DISK is ready

}

53

The method used by CRAM to access data stored in these sectors make it

imperative that CRAM’s sectors be protected from DOS manipulation.

Pr ing CRAM from D

CRAM needs to be protected from DOS operations such as DELETE,
RENAME, COPY and ERASE. CRAM should also be protected from other
commercial disk utilities programs. Unfortunately, there are some limitations to that.
The following steps were taken to protect CRAM.

1. The filename that was used as place holder in the directory area of the
disk was done in lower case letters. DOS does not recognize a lower
case filename as a valid directory entry.

2. The file name has imbedded "null" characters that cannot normally be
entered at the keyboard.

3. The file holder for CRAM was given the SYSTEM and READ ONLY
file attribute. This is useful to prevent software like Norton Ultilities or
other Disk managers from moving the file clusters allotted to CRAM.
This is extremely important since CRAM uses only a block of
consecutive clusters.

The steps above was accomplished by inserting a special entry in the directory

area of the hard disk containing CRAM reserved sectors.

54

The entry into the directory area is the key to keeping CRAM away from
DOS. It can be seen that the file name "cram_xxx.xmd" was recorded in lower case,
which DOS does not recognize as a legal file name. This entry is checked when
CRAM is invoked for the first time to find the location of the first cluster reserved

for CRAM. If this file exist and all necessary conditions are met for CRAM’s

operation the file entry is updated.

CRAM'’S Operation

The main task of CRAM is to operate in the background of the computer
performing timely backup of the computer system’s memory to disk, with limited
interruption of the foreground process. The system boot-up process and the
subsequent loading of CRAM is demonstrated by the flow diagram in Figure 6. The
operation of CRAM was visible by symbolic display on the screen. Figure 7 shows
the symbols display by CRAM and the meaning of each. DOS has a built-in
mechanism whereby developers can extend the operating system using interrupts.
DOS stores a group of addresses between location 0000:0000h and 0000:0400h. Each
address points to a routine in memory that performs a specific task. By replacing

these routines with other codes the operation of that interrupt can be controlled.

55

TURN COMPUTER ON
LOAD B108.

LOAD DOS
LOAD AUTOEXEC.BAT

RESET COMPUTRR
DATA & REGISTERS

¥

l BEXIT AND LEAVE CRAM RESIDENT. '
{ (TBR INBTALLED)

Figure 6. Flow diagram showing the start-up process for a DOS machine and the
determination of CRAM’s status

56

Process Symbol Error
Saving Registers to CRAM)
Getting Registers and vital CRAM statistics n
Saving video memory to CRAM none
Resetting video memory none

Saving interrupt vector table to CRAM
Resetting interrupt vector table

Normal CRAM operation in progress
Putting CRAM vital information in CRAM
Getting CRAM vital information from CRAM
Resetting memory

Loading CRAM

Saving DSA

getting DSA from CRAM

Restoring DSA

Completion of DSA restoration

PR"TIMO NIl 8§ a DO

Figure 7. CRAM'’s process screen indicators

57

Some interrupts are activated by events in the system. Thus there are two types of
interrupts hardware interrupts and software interrupts. This task was accomplished
by utilizing DOS hardware and software interrupts and replacing some of these
routines with new codes that do some operations that are specific to CRAM and also
allow other programs to have access to the original routine. The major interrupts
used by CRAM are the keyboard interrupt (9h), the clock interrupt (1Ch) and the

DOS idle interrupt (28h). The flow Diagram in Figure 8 shows CRAM’s operation

and how the various interrupts are used.

Using hardware interrupt Hardware interrupt occurs when any peripheral

device attached to the system requests the use of the CPU. This, in turn, will bar all
other attachments from accessing the CPU until that device completes its use of the
CPU. The hardware interrupt used by CRAM is interrupt number 09h, the keyboard
service routine. The number of keystrokes are monitored to determined if the system
needs to be transferred to CRAM. This interrupt was needed in cases where the
program running in memory disable the other interrupts. The keyboard interrupt is
always available but some programs that redirect inputs to receive from remote
location, like a communication program using TTY (teletype protocol), thus under

the control of another computer, may disable this interrupt.

58

Figure 8.

Flow Diagram showing CRAM’s operations

59

Using software interrupt Software interrupts are routines provided by the

system Basic Input-Output System (BIOS) that are activated by a predetermined
event. The software interrupts used by CRAM are interrupts 1Ch, the timer
interrupt service routine and interrupt 28h, the DOS idle interrupt routine. The
timer routine is activated 18.2 times per second by the system clock while the DOS
idle interrupt routine is activated whenever the system is waiting for input from the
console (keyboard). These two interrupts are continuously monitor the system by
providing the timing for critical events and scanning the keyboard. Some programs
disable the DOS idle interrupt, thus the clock interrupt is left to monitor the system.
The clock interrupt was observed to conflict with some programs when used by

CRAM. All three interrupts were then included in this project to enable CRAM to

operate under most conditions.

Using the keyboard interrupt This interrupt was used to record the

number of keys entered at the console. Knowledge of the number of keys enabled
CRAM to determine if memory needed to be saved. This interrupt was the only
method of interface to the console when some program running in the foreground
does not use the other interrupts. Many graphics programs and word processors like
WordPerfect! do not use the DOS idle interrupt and therefore, would make CRAM

become dormant for the duration of WordPerfect’s existence in the system.

'WordPerfect is a trademark of WordPerfect Corporation

60

Using the clock interrupt The clock interrupt was used to monitor the

systems RAM. One segment is checked in a round robin method every 18.2 seconds.

At the completion of a cycle a flag is set for the idle interrupt or the keyboard to

transfer RAM to CRAM.

Using the DOS idle interrupt This interrupt, when used by other programs

running in the system or not hooked by any software, monitors the systems clock and
various flags set by the clock or the keyboard interrupt. This interrupt routine will
then transfer RAM to CRAM if the flags are set or the time since the last save
exceeds the limit set by CRAM. CRAM must interrupt the system when any of the
above interrupt is initiated. This interruption should only be done when the state of
the system is in a safe mode and an interruption will not cause the system to "crash".
The system must be constantly interrogated to know its state. The regular DOS
functions does not provide a means to interrogate the system; a check of the

undocumented DOS functions reveal some function that can provide this information.

Use of Undocumented DOS

The operation of CRAM requires access to all vital information about every

programs running in the system and about CRAM itself. This information include

knowing:

61

1. What state DOS is currently in

2. How to get the current DTA

3. How to set the DTA to a new location

4, The extended error information for th‘e current process

5. How to get the address of the DOS information area

The above information is not fully documented but belong to a pool of

information called Undocumented DOS.
This project would not be possible without the use of some undocumented
DOS functions. These functions use the interrupt 21h service routine with the listed

number as subroutines of this interrupt. Undocumented DOS functions used in

CRAM were:
1. 34h GET INDOS Flag Address
2. 50h Set Active Process Data Block
3. 51h Get Active Process Data Block
4, 5D06h Get DOS Data Area Address

5. SDOAh Set DOS Extended Error Information

6. SD0B Get DOS Data Areas

A very important area that worth further discussion is the DOS information

area known as the DOS Swappable Data Area.

62
in DA

The SDA is accessed using the undocumented INT 21h function SD06h for
DOS 3.1 through 3.3, and function SD0Bh for DOS 4x. This is a block of data,
typically about 73Ch bytes in size, that contains the current context of MS-DOS. The
context of DOS includes the current PSP, and the three MS-DOS stacks. CRAM
therefore, saves the SDA and later restores it after completing a task. This allows
CRAM to pop up at any time without the danger of violating the non-reentrancy
associated with DOS. This method does not require CRAM to wait until the DOS
flags indicate it is safe. CRAM transfers this area of memory to disk each time a
memory block is transferred to disk, which plays a significant role in restoring the

system after an interruption. The number of times the memory is transferred to the

disk depends on the refresh period.

Determination of CRAM refresh period

Updating information in CRAM was approached from a conservative
assumption that power interruption is eminent at any time. Therefore, memory was
checked for changes 18.2 times per second. This occurred when the system clock
pulse is recorded by the hardware interrupt vectors 8(08h) and 28(1Ch). Each

segment was checked using the checksum method. Checksum is the summing of the

63

memory bytes. This number can be very large, therefore, since only the upper 2
bytes are significant, the result was shifted right by 8 to conserve memory and

storage. The following formula was used:

Checksum = (Totalmemorysegments) < <8 (6)

A flag is set for each segment to indicate areas of memory that has been changed.
After all segments are checked the disk transfer will take place at a non-critical time.
CRAM is also refreshed based on the number of keys pressed since the last memory
save. The default setting is 50 keystrokes but can be changed at anytime. CRAM
intercepts interrupt 09h, which is used to monitor the keyboard activities.

During each saving of memory to CRAM all the registers, the interrupt

vectors, the SDA, and the video screen are also transferred to disk.

Saving Memory

Memory is saved periodically after the flag indicating that all segments have
been checked for changes. Segments that were changed are the only ones saved.
This process involves the storing of each segment of memory in the number of sectors
calculated from equation 1. After CRAM is loaded the save routine is vectored to
interrupt 28h. CRAM could also be forced to save by any other program running in

the system that activates this interrupt, or by pressing the following key sequence

64

"<CTRL>-<ALT>-<5 on the keypad >". After checking the flags for saving the
segments, the process of saving memory is done. The following steps shows how
memory is saved:

1. Save the DSA,

2. Set the PSP to that of CRAM.

3. Set the DTA to that of CRAM.

4, Check the MCB and repair if needed.

5. Save the MCB.

6. Save interrupt vector table.

7 Save all flagged memory segments.
8. Save the video screen.

9. Save the stack.

10. Save all registers.

11, Update CRAM header information.

When power is interrupted using the reset button or unplugging the computer

the system must be restored.

65

Memory Restoration

The memory restoration process involves a very rigid sequence of events.
There can be no delays between events if interrupts are not disabled in all intervals
between events. CRAM will re-boot the system when invoked for the first time.
This will ensure the resetting of the original ROM BIOS and machine codes. After
CRAM is loaded the restoration routine is vectored to interrupt FCh. CRAM could
also be forced to restore by any other program running in the system that activates
this interrupt, or by pressing the following key sequence "<CTRL>-<ALT>-<LEFT
SHIFT>-<S5 on the keypad>". Unlike the force-save key combination the force-
restore key combination cannot be changed by the user.

Memory is restored in the following order:

L. Restore all segments of memory.

2. Reset the video memory area.

3. Reset all registers.

4. Set the Data Transfer Area to that of ;he interrupted program.

S. Set the Program’s Segment Prefix to that of the interrupted program.
6. Reset the interrupt vector table.

7. Reset the DOS Swappable Data Area.

8. Reset or Rebuild the Memory Control Block.

66

9. Reset the TSR’s stack.
10. Jump to the location where the TSR was prior to the systems
interruption.

The sequence of events above is one method of context switching.

Context Switching

The hardest and most interesting part of the project was context switching
during a restoration of the system’s memory. Context switching during the saving of
memory to CRAM was trivial compared with the restoration process. Context
switching is a method of manipulating the computer registers and stacks to simulate a
multi-user system and give different programs control of the system. This was
accomplished by the use of the information stored in each application’s Program
Segment Prefix (PSP) and data in the DOS Swappable Data Area (SDA). Figure 9
shows the content of the PSP and Figure 10 shows the content of DOS SDA.

Another part of the restoration process that is very important and must be

discussed when using context switching is the Memory Control Blocks (MCB).

Offset

0000h " Int 20h

0002h
0004h
0005h
000Ah

000Eh
0012h

0016h

002Ch
002Eh

005Ch

006Ch

0080h

00FFh

67

Segment, end of allocation block

Reserved I

Long call to MS-DOS function dispatcher |

Previous contents of termination handler interrupt
vector (int 22h)

Previous contents of Ctrl-C interrupt vector (Int 23h)

Previous contents of critical-error handler interrupt
vector (Int 24h)

Reserved I’

Segment address of environment block "

Reserved

Default file control block #1

Default file control block #2

Command tail and default disk transfer area (buffer)

Figure 9. Layout of the Program Segment Prefix (PSP)

68

Offset
00h Critical error flag
O1h InDOS flag
02h Drive on which critical error occurred or FFh
03h Locus of last error
04h Extended error code of last error
06h Suggested action for last error
07h Class of last error
08h ES:DI pointer for last error
0Ch Current DTA
10h Current PSP
12h Stores SP across an INT 23
14h Return code from last process termination
16h Current drive
17h Extended break flag (1 BYTE)
1Eh Available memory block (3 WORD size)
24h Total memory installed (WORD)
26h
to l DOS Stacks and other important data

73Ch l Some values are unknown to the public

Figure 10. Layout of DOS Swappable Data Area (SDA)

69

Working With Memory Control Blocks

After restoring memory, and sometimes during DOS operation, the memory
control blocks can be damaged and thus need repair. The MCBs are like the FAT if
corrupted the entire system will suffer "diarrhea" and crash. The disk system will not
be affected but data in memory will be lost. A routine is called by CRAM to repair
the MCB, if during its monitoring of the system, the MCB was found to be corrupted
or unlinked.

The software was developed and tested in individual modules to facilitate easy
debugging. The first objective was to device a method to safely prepare the hard disk
to make the most efficient use of the space reserved for CRAM. The number of free
clusters on the disk was determined using the code shown in Figure 11. Note the
need to check for the method used to encode the File Allocation Table (FAT).

The entry into the directory area was done using the code found in Figure 12.
Lower case characters were used for the file name. This entry will not be seen when
the DIR command is entered at the DOS prompt. The FAT must be updated to
mark off the clusters used by CRAM. The code segment in Figure 13 was used to

update the FAT. After preparing the disk, routines were written to save the system’s

memory to the disk.

70

int get_fatfree(struct free_fat *freefat, WORD clust_req)
{

long i, j, m, f pos;
DWORD f begin, f end, f size=0, f mark=0;
WORD f entry; WORD fatsize; union FATS *f ptr;

DOSsec= 1; fatsize = bpb.nspf; nsects = 1;j =i = OL;
for (m=0; m<fatsize; m+ +)

if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) != 0)
return(-result);

fpos =i =0L;

while ((f pos + sizeof(f ptr) +1) <= (nsects * bpb.bps))
{

switch(dpt.sysid)

case D _FATI6:
{ fpos = ((i* 2) % bpb.bps);
f ptr = (union FATS *) (&buffer(f pos]);
f entry = f ptr->fat_16.fatl6;
i++;j++;
break;

}
case D_FATIZ2:
case 0:

{
fpos = (((i *3) / 2) % bpb.bps);
f ptr = (union FATS *) (&buffer(f pos]);
ifi & 1) f entry = f ptr->fat_12 hi.fatl2;
else f entry = f ptr->fat 12 lo.fatl2;
i++j++;
break;

}

... See Appendix C.

Figure 11. Code to find free clusters on the disk

71

int put f name(struct free_fat f free, DWORD data_sec)
{

BYTE update=0; WORD f _entry; WORD fat_entry[2]; struct dir_entry d_entry;
struct dir_entry tmp _d_entry=
{
‘cram_mem","xmd",0xCL," CRAM V1.1", 0x00, 0x00, 0x00, 0x00
I
long i, j, k, logical__sector; WORD start_cluster = 0;
struct date ddate; struct time dtime;
start_cluster = f free.fbegin;
getdate(&ddate), gettime(&dtime);
tmp _d_entry.f attrib=(ARCHIVE|R_O|SYSTEM|HIDDEN);
tmp _d_entry.f name[4] = OxFF;
tmp _d_entry.f reserved[0] = OxFF;
tmp_d_entry.f start_cluster = f free.fbegin;
tmp_d_entry.f size "= (long)((f " free.fsize+1) * bpb.bps * bpb.spc);
DOSsec = (bpb.nspf * bpb.nfats) + 1;
nsects = 1; i = OL; j = (long)((bpb.nroot_dir * 32) / bpb.bps);
for (k=0; k<j; k+ +)
{
i =0L;
if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) != 0)
return(-result);
while(i < (bpb.bps))
{
memcpy(&d_entry, &buffer(i], 32);
if (memcmp(tmp_d_entry.f name, d_entry.f name, 8) = = 0x00) update = 80;

... See Appendix C.

return(0);

}

Figure 12. Code to make a directory entry that protect CRAM from DOS

72

int put_fat(struct free_fat freefat, DWORD data_sec)

DWORD i, j, k, m, f pos; DWORD f begin, f end, f size=0, f mark=0;
WORD f entry; WORD fatsize, cps; union FATS *f ptr;
cps = dpt.sysid == D FATI2 ? (bpb.bps *2 / 3)+1 : (bpb.bps / 2);

for (k=0; k<bpb.nfats; k+ +)

{

DOSsec= ((k*bpb.nspf)+1+ (f_free.fbegin / cps));

fatsize = (f free.fsize / cps) + 1; nsects = 1; j = ((f_free.fbegin / cps) * cps); i = OL;
for (m=0; m<fatsize+1; m+ +)

{
if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) != 0)

return(result);
fpos =i =0L;
while ((f_pos + sizeof(f ptr) +1) <= (nsects * bpb.bps))

switch(dpt.sysid)
{
case D_FATI6:
{ fpos=((i* 2) % bpb.bps)

f ptr = (union FATS *) (&buffer(f pos]);

f entry = f ptr->fat_16.fat16;
if (f entry == 0 && j > = f free.foegin && j < = f free.fend)

ifj == f free.fend)
{

f entry = OxFFFF;

}
else f entry =j +1;
f_ptr->fat_16.fatl6 = f entry;

... See Appendix C.

return(0);

Figure 13. Code to write to the FAT

73

Saving CRAM Data

The function put_memory shown in Figure 14 was used to save the system’s
memory to the hard disk. The Norton Utility package was used to view the disk to
see if the data on disk is the same as was in the corresponding location in memory.
The success of this stage led to the development of routines to restore the memory

from data stored on disk.

Restoring Memory

This stage requires routines to get the data from the disk and routines to
"poke" the data into memory. The code segment in Figure 15 was used to restore the
memory. During the development of this area some problems developed which is
described below. The next stage is the development of a method to scan memory
and to determine, if any, segments changed since an earlier check of memory. The
segments that were changed is transferred to the disk on the next clock cycle. The
routine in Figure 16 was used to scan memory segments. This function is initiated by
either the DOS idle interrupt, the keyboard interrupt, or the clock interrupt. The
code in Figure 17 shows how to calculate the checksum for each segment of memory,

tagging any segment that have been changed since the last checksum calculation on

that memory segment.

74

int put_memory(void)

}or (seg=START SEG; seg < maxmem; seg+ =4096)

i =0L;

scr(0] [0].s_char = O0x00D8;

scr[0] [0]s attr = ((scr[0] [0].s_attr > > 4)
+ (scr{0] [0].s attr << 4)) & Ox77;

if (start_flag ==
{

offs = START OFF;
DOSsec = (c_ header.mem _sec + ((WORD)((seg - sav_start) >> 12)
* (0x10000/0x200)));

}
else
{
offs = 0;
DOSsec = (long)(c_header.mem_sec + (((seg - sav_start) >> 12)
* (0x10000/0x200)) - ((0x10000/0x200) - sec _segl_end));

/* calculate the number of sectors per 64k segment */
SEC SEG = (WORD)((0x10000 - offs) / (bpb.bps));
if (DOSsec < reserved_sec) return(-1);
for (j=0; j<SEC SEG; j++)
{ .
movedata(seg, (offs+i), FP_SEG(buffer), FP_OFF (buffer), (bpb.bps *nsects));
stohst(drive, hst TRACK, hst HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(WRITE, hstDRIVE NUM, hst HEAD, hst.TRACK,
hst. SECTOR, nsects, buffer)) != 0)
return(result);
DOSsec + +;
i += bpb.bps;

Figure 14. Code showing the main memory saving routine

75

int reset_memory(void)
{ ..
for (j=0; j<SEC SEG; j+ +)
{

scr(0] [0].s_char = 0x0087;
scr[0] [0].s_attr = ((scr[0] [0].s_attr >> 4) + (scr[0] [0].s_attr << 4)) & 0x77;
conv_mem ptr = MK_FP(seg, offs+i);
stohst(dnve, hst TRACK, hst. HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(READ, hst DRIVE_NUM, hst. HEAD, hst. TRACK,
hst. SECTOR, nsects, buffer)) != 0) retum(result),

if(filler == 0)
{

movedata(FP_SEG(&buffer[c_header.offs_filler]),

FP_OFF (&buffer[c_header.offs_filler]),seg, (offs+i+c_header.offs filler),
((bpb.bps * nsects)-c_header.offs_filler));

conv_mem_ptr = MK __FP(seg, offs+i+c_header.offs_filler);

j=0L; filler = I;

} else

{
if (seg == 0x2000 && DEBUG && ((offs+i) > 0x7E00));
else

movedata(FP_SEG(&buffer[0]), FP_OFF (&buffer[0]),seg, (offs+i),
(bpb.bps * nsects));

DOSsec+ +; i += bpb.bps;

}
ZANWNWWWWWWWNWWN\\ RESET REGISTERS AND DSA/////////////7*/
reset_video(); DOSsec + = bpb.nspt;

while(*diskette != 0x00); /* wait for disk drive to stop spinning */

disable();

AX = c_header.AX; BX = c_header.BX; CX = c_header.CX; DX = c_header.DX;
ES =C headerES DS = C_4 " header.DS; _CS = c_header.CS; SS =c header SS;
SP = C_ headerSP DI = C_ headerDI SI =c header SI; BP =c headerBP
FLAGS =C headerFLAGS

“enable();

... See Appendix C.
}

Figure 15. Code showing the method used to restore memory

76

void mem_save(void)
{ o
if (savetime > = timelag && !reset_mem)
{
save_DSA(); SaveDosSwap(); SetPSP(c_header.cram_psp);
regs.h.ah = SET_DTA; sregs.es=c_header.cram_dta_seg;
regs.x.dx = c_header.cram _dta_off;
intdosx(®s, ®s, &sregs); GetExtErr(&c_header.Errinfo);
if(! mcb_chk(get_mcb()))

{

putstr(" < <-00->>==== ERROR in MCB Chain ===<<-00->>");
result = set MCB(0); scr{0] [79].s_char = result + 0x30;
}
else
{
result = save_MCB(); scr[0] [79].s_char = result + 0x30;
}

get_time_date();
DOSsec = c_header.curr_mem_sec;
if ((START SEG > = sav_end) || (maxmem > sav_end))
{
START SEG = sav_start;
maxmem = sav_start + Ox1000;

DOSsec = header mem_sec;
¢_header.curr_mem_sec = DOSsec;
start flag = 0;
sec_segl end = 0;

}

capture_mem();
put_header();
save_interrupt();

... See Appendix C.

Figure 16. Code for the main memory loop

77

long mem_checksum(WORD seg_start, WORD offs_start, DWORD mem_size)

long sum =0x0000L, cnt=0, k, |, m, n;

long i, seg, offs;

WORD far *s_mem;

ldiv t cal;

cal = ldiv(mem_size, Ox10000);

k = cal.quot;

| = cal.rem;

for (seg=seg_start; seg< =(k*0x1000); seg+ =0x1000)

cnt =0;
if (k!=0)
{n = Ox10000;
offs = 0;
}
else
{

n = mem_size;
offs = offs_stant;

}
s_mem = MK FP(seg, offs);
while(cnt < n)
{
sum += *(s_mem+ +);
cnt + =sizeof(s_mem);

}
}

cnt = 0; offs = 0;
if (k!=10)

sum += *(s_mem+ +);
put_hex(*(s_mem));
cnt + =sizeof(s_mem);

}
sum = (sum >> 2);
return((long)sum);

Figure 17. Code to show the calculation of memory checksum

78

This module was tested by observation of the codes displayed on the screen.
This type of software, because of its unique operation, must be tested using

observational evaluation.

The software was developed and installed on an IBM-PC XT compatible. One
major requirement of CRAM is that it must be the first program to be in memory
after the command interpreter, DOS COMMAND.COM. The code in Figure 18 was
used to check for the presence of CRAM in memory each time the program begins
execution. If other programs were installed then CRAM will abort the process and
issue an error message. Figure 19 and 20 show the layout of memory before CRAM
was installed and after installation respectively. It should be noted from Figure 20
that CRAM TSR is located between the resident portion of the command shell and
the Transient Program Area (TPA), the area where all other users programs are
executed.

The program developed above showed that a system can be developed that
can provide recovery after a failure. This was demonstrated by unplugging the
computer, fe-booting the system, or using the reset button to reset the system. The

test of the software answered the next hypothesis.

79

MCB far *IS_CRAM(MCB far *mcb)
{

buf(0] = *\0%

mcb = get_cmd_mcb(mcb);

tmpmch = mch;

tmpowner = mcb->owner;

for (33)

switch (mcb->type)

case 'M’ : /* Mark : belongs to MCB chain */

{
mcb = MK _FP(FP_SEG(mcb) + mcb->size + 1, 0);

if(tmpowner = = mcb- >owner)
tmpmcb = mcb; break;

}
case 'Z’ : /* Zbikowski : end of MCB chain */
{
s = progname_fm_psp(FP_SEG(tmpmcb) + 1);
while((s) && (i <= 128))
buffi++] = *s++;
if (strstr(buf,"CRAM") != NULL)
{

return(tmpmcb);

}
else

{
printf("\b\b");
put_str("\n\r CRAM cannot continue :: need to be the first");
put_str("\n\r Program to load in your Autoexec.bat file");
put_str("\n\r the file {");
put _stribuf);put_str("} was found instead\n\r");
return((MCB far *)NULL);

Figure 18. Code to check for CRAM in memory to make sure it is the first
program in memory after the DOS shell (COMMAND.COM)

Figure 19.

Top of RAM »

0000:0400h »

0000:0000h »

80

ROM bootstrap routine

Transient part of Shell

Transient Program Area
(TPA)
— VVVVVVVVVVVVVVVVVVVVVVVV —

AAAAAAAAAAAANAAAANAAAAAANAAA

Transient Program Area

Resident part of Shell

Installable drivers

File control blocks

Disk buffer cache

DOS kernel

BIOS

Interrupt vectors

MS-DOS environment after the start-up process

Top of RAM »

0000:0400h »

0000:0000h »

81

" ROM bootstrap routine

" Transient part of Shell

|

Transient Program Area

VVVVVVVVVVVVVVVVVVVVVVVVY =

AAAAAAAAAAAAAAAAAAAAAAAA e

"- Transient Program Area

(TPA)

CRAM TSR

Resident part of Shell g

Installable drivers

File control blocks

Disk buffer cache

DOS Kernel

BIOS

Interrupt vectors

—

§ The default is COMMAND.COM

Figure 20.

Layout of memory after CRAM was loaded

82

Hypothesis 2

Standard application software such as disk utilities, word-processing programs,
spreadsheet programs and statistical analysis programs will operate successfully with a

software recovery system.

This hypothesis was partially confirmed as the results demonstrate.

Nine commercial software packages, shown in Figure 21, were used to analyze
CRAM to determine if the system could be restored. Each software was tested
separately and the system was either partially restored, fully restored to its original
state before the interruption or there was a conflict. A partial restoration is defined
as when the system appear to restore but not fully operational or error symbols
indicate unpredictable events. A conflict is defined as when the presence of CRAM

caused the executing program to lockup the system or gives unpredictable result.

R i m W ilure; Softwar nfli

The system was tested for performance after a power failure. This area was

the major premise on which the project was developed. The power switch and the

83

Number of Number of Restorations after S
Commercial Conflicts executions with 5 sec. lag time
Software with Partial Full
CRAM

Norton Utilities 0 1 4
WordStar 2 1 2
WordStar 2000 0 4 1
Turbo C 0 5 0
Sideways 0 1 4
Lotus 123 5 0 0
Capture (TSR) 3 2 0
DOS Print (TSR) 0 1 4
WordPerfect 1 4 0

Figure 21. Software conflicts and the number of partial and full restoration of the
system by CRAM.

84

reset button on the computer were used to simulate power failure. Each program
was executed five times with CRAM resident in memory and five times with CRAM
not in memory. Figure 21 shows the list of programs that were tested and the
associated conflicts. It was noted that about 75% of the time the system was
restored. However, only 33% were full restoration. This could be due to the way in
which both WordStar 2000, WordPerfect and Turbo C used the timer interrupt. It
was observed that the display error symbol indicated, in most cases of partial
restoration, that the timer interrupt was active.

Further analysis was done based on recovering from power failure: software

conflicts and the time delay of other programs brought on by CRAM’s presence in

the system. problems.

85

Hypothesis 3

System degradation as measured by the difference in seconds for standard

comparison programs operating with and without the software recovery system will not be

greater than 0.1 second.

This hypothesis was partialy confirmed and rejected for two of the
benchmarks. The results below will show the benchmarks that indicate significance.
The program code in Figure 22 was used to measure time differences between

eight processes. Observation were made first without CRAM loaded and then with

CRAM loaded and running in the background.

Tim |

During the saving of memory all other processes that were in operation paused
for a brief moment. This delay was noticeable because of the speed of the IBM-PC
XT. This time will vary with the speed of the micro-processor. The delay time also
depends on the number of changed segments in memory. The type of disk used, that
is the size and access time, also contributed to the length of the delay.

There is also a time delay due to CRAM operating in the background. Figure
23 and Figure 24 show the difference in execution time for five processes when

CRAM is in memory and when not in memory.

86

#include <stdio.h>
#include <bios.h>
#define true 1
#define false 0
#define size 8190
#define sizepl 8191
char flags([sizepl];

int main(void)
{
register int iter;
register int i, k, prime, count;
char tempstr[10];
int tl, t2;
printf("Enter the number of iterations desired: ");
gets(tempstr);
iter = atoi(tempstr);
while(iter--)

printf("\nlteration %2d", iter);

count = 0;

t1 = biostime (0, 0),

for (i = 0;i <= size; i+ +) flags[i] = true ;
for (i = 0; i<= size; i+ +)

if {(ﬂags{ i)

prime =i + i+ 3;
k =i + prime;
while (k < = size)

{
flags(k] = false;
k + = prime;

}

count+ +;

}
}
t2 = biostime (0, 0);

Figure 22, Benchmark program code

87

b
£
¥
w
o £
e
-
O kos
N.I-
£, 58
"m.'cc W
4> Sfod Ko .M
5O SN O X
% 5o P S
.m‘me.lhmn
- Q0
L4 e NAX
CSeomebb - o
o3 Se>asves
12“??““
U] tN.l
a0t urkl.
”“dlwoeca
£ggessas
MW"R".IGA‘
E2 R332
“Rk“meee
".M.-..hun.lnnnn
saadsS333
| I I I B B B AN
O UDIND DO
2 =
: §
-l
=4
& ¥z
=3
*
L
os
{1
zx
]
L
o
=y

oyl ool

ine execute w
ine execute w

b

P - Rou
Q - Rou

Process

Data group averages of five samples per group

SO OO TN AN OO CD
) o T o 003 05 0dl (D) o) o 0o CRCDAI O3 O v o CI O3
332m42323332n‘4423324

=
§33oacfiaaaaaEiuEEE e

llllllllllllllllllll

BN B P B £ A0 P B £ B B BN P e P P B Bl B N
OB T e O O OO NCOCO O BN TN O
IO 4
2C
llllllllllllllllllll

ITIIZITITTIIIJILZIIBIND

SO EME 4RSS REERE
DOCEOEEEEREEMEOEORNEEEED
llllllllllllllllllll

A A A AL A A A AR AL AL AL AL A A A AL A A
V3 P QTP QIO Y I OIS T K I e

3IBLRERIILERYIVLLLLIG

NN NNAN NN NN
B A e I e e e N M e R M M My M0 e iy -]
ANNINLOLD DU LD LIS DL LS WU
COOEIEREEOIRHSIMOTRBERD

ANEBAN NN DN A
O D A\D = D AD CO = B AD E = GO F B B A B B =
SEETTESITOITIZDEIDDR

llllllllllllllllllll

0.000% 10.632% 51.099% 0.329% 1.265%

3.337% 5.158% -1.899%

y
Fev. 8

Total

fiver
Std,

Delay times for some benchmark functions

Figure 23.

t
E characters
CRAN 1f in memory

tput of 31
g p: zﬁh (tw
M
rigdgn nﬂnbm

ad 512 charactens
board intermu

tersupt

Y
creen ou
ac

1

/0 write 512 characters

3 - Disk 170 re
4 - Generate ke
5 = Video

6 - Gener

7 - Genera

§ - Genera

t

at
Data group averages of five samples per group

1 - Seive benchwark

88
2 - Disk |

Routines
ot in wenory

o with CRAN n
e uith CRIN in wemory
@

i
te wi

P - Routine execu
Q - Routine execu

Pracess

B R N Rt e S
W I W I CITICIUIICI W IV I T e D
e = e 0 o @ & o o o o o o ° o o o o o =

o D CDLPHTHOD DD
vl g il S ol] wond
—1) vl C) e} 8D e o
DI ED R DRDEDIRIIDCED

W =BT V-t 1. -]

OO MEMEOM I DN

WSIFU ISR NN WNANR N UNANUIIMGND
FETFFFTTTFETETEISISE

SEETRISRIEITIITIISS
- L2~ 1~ -] [~ -]

SRR O TN OO TN O EN R G O OO L~

LBIRRCLLEERILILICLGC LR

NS TECNTOTNT H T N OR R SN TN N O
ST P P I I P LD P) 7 O O o Qe i o

LBRELRREEESLRRRCLRReS

et e e A e

Delay times for some benchmark functions contd.

Figure 24.

89

The graphs in Figures 25 thru 27 give a graphical picture of the differences.

The processes are:

1
2

7
8

Numerical calculation using the well known sieve routine.
Disk I/O write of 512 bytes.

Disk I/O read of 512 bytes.

Scan of the keyboard.

Video out of 512 bytes.

Scan of interrupt 28h (a call to CRAM if installed) .
Generate clock interrupt

Generate 2000 random numbers

Two measurements were taken of the time to execute each process, one while

CRAM was installed (Q), and one when CRAM was not installed (P).

A degradation of 3.23% for the sieve numerical calculation, 1.25% for the

random number generation, and 9.6% for the video display operation was observed.

Very little effect was noted for most of the other operation except for times when

CRAM'’s presence may delay the clock interrupt by 0.05 seconds. The data collected

from the random number generating process show some overlapping which indicate a

need to test the means for differences. A t-test was done on this data and the t-values

are shown in Figure 23. There was no significant difference between the mean delay

time for generating random numbers whether CRAM was running or not. Thus it

Time in Seconds

1.09

1.06

Figure 25.

90

Seive of EBrostothenes Benchmark

CRAM Not In Memory vs. Cram In Memory

I} 1 1 1 1 1 H L 1 | 1 1 1 1 1 ! 1 I 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 172 18 19 20

Samp les

O Not 1n Memory + In Memory

Graph of sieve numerical test

Time In Seconds

2 S 3 4o D A a4

Figure 26.

R N Y S i S G S

S
(%))

.49
.48
47
.46
.45
.44
.43
.42
.41

-
S

.39
.38
.37
.36
.35
.34

33
.32
.31

91

Video Display Output

CRAM Not In Memory vs. Cram In Memory

| 1 1 1 1] 1 (] | | 1 i 1 1 1

0 11 12 13 14 1S 16 17 18 18 20

Samp les

O Not In Memory + In Mamory

Graph of Video display test

92

Generating Random Numbers

CRAM Not 1n Mamory vs. Cram In Mamory

0.155 -

0. 145 |-

Time In Seconds

0.125 -

1. 2 3 4 S 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

Samptes
O Not In Memory + In Memory

Figure 27. Graph of random numbers generation test

93

can be resolved that CRAM does not affect program execution that involves random

number generation.

In summary, the results of this study demonstrated that

a) a method can be used to save data to disk for easy access,

b) software can be used to implement a hardware solution, although some
hardware and software problems need to be resolved or circumvented,

and

c) the system suffers a negligible speed degradation of less than 0.01

second.

94

CHAPTER V. SUMMARY AND RECOMMENDATIONS

The intent of this study was to develop a software based system to restore the
computer’s memory after a catastrophic failure, and provide a system to replace the
existing hardware systems such as Uninterruptible Power Supplies. The researcher

was faced with three fundamental questions discussed below:

Discussion to Question 1

Can a software system be developed that will provide recovery from a system failure?

A software program was developed that constantly monitors the computer’s
Random Access Memory (RAM). Memory is saved to disk for future retrieval if a
change was detected. The software developed is called Constant Random Access
Memory (CRAM). CRAM was designed to be expandable to include the use of
extended memory, expanded memory and the DOS high memory block. Although
this project did not include these areas in its development, it was designed to
incorporate these techniques in future development. One question that was posed by
this method of saving memory is "what would result from a power failure in the
middle of a memory save process?" The present method will not be affected to any
great extent by such occurrence because memory, where most of the program’s

critical data and information is located, is saved first. The program’s code can be

95

reloaded from disk. This question could, however, be answered in a more practical
way by recommending future development to this project to include the following
procedure: memory could be swapped to a work area of the disk and later swapped
into CRAM. This would provide a complete safety buffer which means that memory
could always be restored free of error, in one period required to save all segments of
memory that were changed. This method was not included in this project at this time
because this implementation was for the IBM PC-XT, which is a relatively slow
machine. The introduction of too many disk accesses would slow the system down
considerably. The faster machines such as the IBM PC-AT or models 386 and 486

could be tested for degradation in speed if such a procedure were introduced into the

overall processing.

Implications for future research

This software needs much improvement in its design to include the newer
model machines. Although attempt was made not to write code that is machine
dependent this was violated in some instances to speedup development. The
checksum method used in this study could be substituted with the tagged memory
technique suggested by Adams (1991). This would reduce the memory scanning time.

The system is design with redundancy checking that could be eliminated to decrease

the overall scan time.

96

CRAM could be interfaced with many other application and DOS itself. DOS
could be merged with codes that are implemented in the windows environment.
Another growing concern among industries is data safety in local area networks.
CRAM could be enhanced to opérate at each work-station. Local area network with
a star bus configuration rely heavily on the server for data reliability and availability.
CRAM could be used to improve reliability and availability.

Since most workable codes compiled to an object file can be transferred to
firmware and the code for CRAM is not machine dependent, it is the author’s belief
that future development of DOS or the ROM BIOS could include CRAM as part of
its operating system code. Melear (1986), noted that the improve technology in
EEPROM will play an important roll in the development of firmware.

CRAM could also be used as an addition security to existing UPS system, with
proper interfacing.

This study could be extended to other systems such as Unix and OS/2 .

97

Discussion to Question 2

What problems exist in achieving a software-only recovery system?

Development problem

The use of DOS, a single user system, to simulate a multi-user system using
TSR programs, poses some interesting and challenging problems. It is difficult to
restore a system using a TSR program since the TSR program needs to be running at
the same time. This problem was overcome by first loading CRAM at the same
relative position for both saving and restoring memory. CRAM was loaded
immediately after the command interpreter. This enabled the restoration to only
start at memory location after the interpreter. Memory locations before the
interpreter were not saved or restored. However, some important areas like the Bios
area and the interrupt vector table, stored in lower memory, were saved and restored.

Secondly, the restore routine was executed as a separate interrupt. This
allowed the routine to execute after the TSR was fully loaded into the system.

Thirdly, all areas of memory are constantly monitored and transferred to
CRAM if memory was changed by software running in the system.

Another problem faced was the context switching after a restoration.

Although the Program’s Segment Prefix for the TSR replaced the PSP of the

98

interrupted process, the system would hang when attempting to load a new program.
The problem was discovered in the way DOS updates the MCB. There was no
information available on the method used by DOS to update the MCB. This
problem was alleviated by the constant monitoring of the MCB and the updating of
the MCB at the time of restoration. The routine in Figure 28 and Figure 29 were
used to repair the MCB.

The third problem was the unusual and unexpected failure of the interrupted
process to release the memory it occupied when terminated. This occurred after a
system restoration. This problem was solved by monitoring the terminating address
stored in the programs PSP. This address was updated if changed unexpectedly.

Turbo C version 2.0, used in the development of this project also introduced
some problems that may be caused from bugs in the compiler itself. It was
discovered that the use of function STRSTR and STRUPR to check for the character
"R" in the command line variable ARGV gives unpredictable side effects. It was
later determined that this phenomena contributed to the trashing of the MCB and
the program’s inadvertent lack of releasing memory when terminated. This could be
as catastrophic as a power outage without a backup or equivalent to the 1989

disruption of telephone service because of a problem in the telephone software code.

99

set_mcb_chain(BYTE “buffer)

{
MCB far *mcb;
struct MCB_TBL far *tbiptr;
int i =0j=0;

j = atoi(&buffer[511]);
for{(;;)
tbiptr = (struct MCB _TBL far *)(&buffer[i]);

mch = MK_FP(thptr: >addr,0);

mcb->type = tbiptr- >mcb.type;

mcb->owner = tbiptr- >mcb.owner;

mcb->size = tbiptr- >mcb.size;

if (mcb->type == M’ && j > 0)
{

i+ =sizeof(struct MCB_TBL);
; J-
/* mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0); */

else
return (tbiptr->mcb.type == 'Z’);

}

Figure 28. Code used to set MCB

100

int get_mcb_chain(MCB far * mcb, BYTE *buffer)

MCB_TBL far *tbiptr;
inti =0, j=0;
for ()
{tblptr = (MCB_TBL far *)(&buffer[i]);
tbiptr- >mcb.type = mcb- >type;

tbiptr- >mcb.owner = mcb->owner;
tbiptr- >mcb.size = mcb- >size;

thiptr->addr = (WORD) FP_SEG(mcb);

if (mcb->type == "M’)
{
mcb = MK _FP(FP_SEG(mcb) + mcb->size + 1, 0);
i+ =sizeof(struct MCB_TBL);

J++;
}
else
itoa(j, &buffer[511},16); /*Store the number of MCBs */
retumn (j); /*Return the number of MCBs present */
}
}

Figure 29. Code to get MCB

101

Implementation problem

Nine commercial programs were tested for restoration using CRAM. It was
noted that about 75% of the time the system was restored. However, only 33% were
full restoration. This could be due to the way in which both WordStar 2000,
WordPerfect and Turbo C used the timer interrupt. It was observed that when the
display error symbol indicated, in most cases of partial restoration, that the timer
interrupt was active. It may be That the timer interrupt was used improperly or

should not be interrupted.

Implications for rer rch

The development of this system for multi-user multi-task machine would
eliminate the problems associated with using a TSR program. The location of
CRAM in memory would be still important, since all of memory must be restored
including the area occupied by CRAM. CRAM must not be over-written during the
restoration process.

The second area that may affect future development is the version of Turbo C
compiler that is used. The problem in the compiler that caused the executable code

to trash the Memory Control Block (MCB) should be fixed.

102

Discussion to Question 3

What is the degradation in application program performance when utilizing a software

recovery system?

The time delay due to CRAM operating in the background, based on the
difference in execution time for five processes when CRAM is in memory and when
not in memory was analyzed.

The processes are:

1 Numerical calculation using the well known sieve routine.

2 Disk I/O write of 512 bytes.

3 Disk I/O read of 512 bytes.

4 Scan of the keyboard.

5 Video out of 512 bytes.

6 Scan of interrupt 28h (a call to CRAM if installed) .

7 Generate clock interrupt

8 Generate 2000 random numbers

Two measurements were taken of the time to execute each process, one while
CRAM was installed, and one when CRAM was not installed.

A degradation of 3.3% for the sieve numerical calculation, 1.3% for the
random number generation, 5.2% for the disk I/O write operation, and 10.6% for the

video display operation was observed. Less than 1% change was noted for most of

103

the other operation except for times when CRAM’s presence may delay the clock
interrupt by 0.05 seconds. A t-test was done on the data collected from the random
number generating process which show some overlapping which indicate a possibility
of no differences in the means. There was no significant difference between the
mean delay time for generating random numbers whether CRAM was running or not.
Therefore, it can be concluded that CRAM does not affect program execution that

involves random number generation.

One unresolved finding is the increase in disk read operation when CRAM is
in memory. This may be due to the continuous activation of the timer interrupt by

CRAM. This interrupt provides a counter for the disk read/write head settling time.

Summary

A great percentage of the time for this study was spent writing the code for
the software. This system when implemented could safe-guard an IBM-PC XT
computer, under some circumstances, from data loss due to a power failure. This
implementation is completely software driven and requires no interaction from the
user once installed. This system is transparent to the user and is only visible by
symbols displayed on the video screen. For some applications the degradation in
speed is negligible but for applications requiring many disk access the operating

speed may be noticeable.

104

REFERENCES

Adams, S. J., Simms, T. (1991). A Tagged Memory Technique for Recovery From
Transient Errors in Fault Tolerant Systems. Pr ings - 1990 Real-Tim

Systems Symposium. by IEEE, p 312-321.
Adams, P. M,, Tondo, C. L. (1990). Writing DOS Device Drivers in C, Englewood

Cliffs, New Jersey: Prentice Hall, Inc.

Angermeyer, J., Jaeger, K. (1986). The Waite Group’s MS-DOS Developer’s Guide.

Indianapolis, Indiana: Howard W. Sams & Company.

Bacon, D. F. (1991). Transparent Recovery in Distributed Systems Position Papér.

Operating Systems Review (ACM), 25 (2), 91-94.
Bailey, R. W. (1983). Human Error in Computer Systems. Englewood Cliffs, New

Jersey: Prentice Hall, Inc.

Barkakati, N. (1989). Turbo C Bible. Indianapolis Indiana. The Waite Group, Inc.
Howard W. Sams & Company.

Barnes, C. C., Coleman, A., Showalter, J. M., Walker, M. L. (1991). VM/ESA
Support for Coordinated Recovery of Files. IBM Systems Journal, 30 (1), 107-
125,

Bassiouni, M. A, (1986). System and Program Models of Storage Allocation For

Reducing Seek Delay. The Computer Journal, 29 (1), 47-51.

Beaudin, T. (1992). Unattended Backup Keeps IS Staff Levels Low. Systems
3X /400, January p 53-54.

Beizer, B. (1988). The Frozen Keyboard, Blue Ridge Summit, Pennsylvania: TAB
Professional and Reference Books.

Belli, F., Jedrzejowicz, P. (1991). An Approach to the Reliability Optimization of

Software with Redundancy. IEEE Transactions on Software Engineering, 17

(3), 310-312.

Bellin, D., Suchman, S. (1990). The Structured Systems Development Manual,

Englewood Cliffs, New Jersey: Prentice Hall, Inc.

105

Bennett, R. B., Bitner, W. J., Musa, M. A,, Ainsworth, M. K. (1991). Systems
Management for Coordinated Resource Recovery. IBM Systems Journal, 30
(1), 90-106.

Beynon-Davies, P. (1989). Information Systems Development. Houndmills,
Basingstoke, Hampshire and London: Macmillan Education Ltd.

Boling, D. (1992). Strategies and Techniques for Writing State-of-the-Art TSRs that
Exploit MS-DOS 5. Microsoft m rnal, 7 (1), 41-59.

Bondavalli, A., Simoncini, L. (1990). Failure Classification With Respect to
Detection. Proceedings of the 2nd IEEE Worksh n _Future Trends of

Distributed Computing Systems. by IEEE, p 47-53.

Borland, (1988). Turbo C Version 2.0 (TC). Scotts Valley, California: Borland
International, Inc.

Borland, (1988). Turbo Assembler Version 2,0 (TASM), Scotts Valley, California:

Borland International, Inc.

Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson, J.,

Stevens, R., (1987). Portable Programs for Parallel Processors. New York,

New York: Holt, Rinehart and Winston, Inc.

Brown, R, Kyle, J. (1991). PC Inter : A Programmer’s Referen
and Third-Party Calls, Addison-Wesley Publishing Company, Inc.

Chantico Publishing Company, Inc. (1991). Disaster Recovery Handbook. Blue

Ridge Summit Pennsylvania: Tab Professional and Reference Books.

Chu, J. L., Torabi, H. R., Towler, F. J. (1991). A 128kb CMOS Static Random-

‘Access Memory. IBM Journal of Research and Development, 35 (3), 321-329.

Collins, G., Blay, G. (1982). Structured Systems Development Techniques: Strategic
__l_m_g_mjyﬁm_’[g_s_t_& Marshfield, Massachusetts: Pitman Publishing Inc.

Colvin, N. J. (1989). System Bios for IBM PC/XT/AT Computers and Compatibles,

Phoenix Technologies Ltd. Addison-Wesley Publishing Company, Inc.

Crecine, J. P. (1986). The Next Generation of Personal Computers. EDUCOM
Bulletin, Spring, 2-10.

106

Daniels, B. K. (1987). Achieving Safety and Reliability with Computer Systems New

York, New York: Elsevier Science Publishing Co., Inc.
De Peyster, D (1989). On The Wild Side. PC Resource, May, 6.

Dettmann, T. R. (1988). DOS Programmer’s Reference, Carmel, Indiana: Que

Corporation.

Dettmann, T. R. (1989). DOS Programmers’s Reference. 2nd Edition. Carmel,

Indiana: Que Corporation.

DeYoung, B. (1984). Resource Sharing of Micro Software, or, What Ever Happened

to All That CP/M Compatibility? Microcomputers for Information
Management, 1 (4), 313-324.

Duncan, R. (1988). Advanced MSDOS Programming. Second Edition, Redmond,

Washington: Microsoft Press, A Division of Microsoft Corporation.

Ely. D. P. (1990). Trends and Issues in Educational Technology. Tech Trends, 35 (4),
9-11.

Falk, H. (1987). New Tools Help Exterminate Software Bugs. Computer Design,
October, 52-58.

Friedman, A. L., Cornford, D. S. (1989). Computer Systems Development: History,
Qrganization and Implementation, New York, New York: John Wiley &

Sons, Inc.

Garcia-Molina, H., Polyzois, C. A. (1990). Issues in Disaster Recovery. Digest of

Papers Thirty Fifth IEEE Computer Society International Conference
COMPCON 89, by IEEE, p 573-577.

Garland. V. E. (1990). Computers in 2001: Preparing Educational Administrators.
Tech Trends, 35 (3), 17-22.

Gibbons, T. (1976). Integrity and Recovery in Computer Systems. Rochelle Park,

New Jersey: Hayden Book Company.

Grossman, C. P. (1985). Cache-DASD Storage Design for Improving System

Performance. IBM Systems Journal, 24 (3-4), 316-334.

107

Han, S. H., Malek, M. (1986). Two-Dimensional Multiple-Access Testing for
Random-Access Memories. IEEE, p 248-251.

Hetzel, W. (1984). mpl i ftware Testing Wellesley, MA:
Information Sciences, Inc.

Hisano, T. (1986). Transparent Memory: A Hardware Solution to the Memory

Conflict Problem. Systems and Computers in Japan, 17 (11), 100-108.

Hyde, R. L. (1988). Overview of Memory Management. Byte, April, p 219-225.

Johnson, D. B., Zwaenepoel, W. (1991). Transparent Optimistic Rollback Recovery.

Operating Systems Review (ACM), 25 (2), 99-102.

Kaczeus, S. (1990). Disk Reliability is a Function of Design as Well as Manufacture.

Computer Technology Review, 10 (9), 59-60, 62-63.

King, R. P., Halim, N., Garcia-Molina, H. Polyzois, C. A. (1990) Overview of

Dlsaster Recovery for Transaction Processmg Systems Qgggd ngs -
nternational Conference on Distri IEEE, p 286-

293.
King, R. A. (1987). The MS-DOS Handbook, Alameda, CA: SYBEX Inc.

Kinoshita, K., Saluja, K. K. (1986). Built-in Testing of Memory Using An On-chip

Compact Testing Scheme. [EEE Transactions on Computers. C-35 (10) 862-

870.
Klopp, C. (1990). Vulnerability Awareness Improves Contingency Planning.

Computers & Security, 9 (4), 309-311.
Koren L., Koren, Z., Su, S. Y. H. (1986). Analysis of a Class of Recovery

Procedures. IEEE Transactions on Computers, C-35 (8), 703-711.

Kyle, J. (1992). Electronic mail communication, Compuserve, 76703,762.

Lengefeld, H. C. (1990). Battery-Free Rotary Options Are Available For Today’s
UPS. Computer Technology Review, Special Winter Issue, 132-135.

Levary, R. R,, Edwards, W. D. (1986). Analyzing The Impact of Adding a New
Software System on Main Memory Usage. Computer Journal, 29 (6), 522-526.

108

Levy, E. (1991). Incremental Restart. Proceedings - International Conference on
Data Engineering, by IEEE, p 640-648.

Levy, E., Silberschatz, A. (1990). Log-Driven Backups: A Recovery Scheme for
Large Memory Database Systems. Proceedings of th

th
Conference on Information Technology, by IEEE, p 99-109.

Lion, K. (1990). Digital Audio Tape as a Backup for the AS/400. Computer
Technology Review, 10 (16), 83-84, 88.

Littlewood, B. (1987). Software Reliability Boston Massachusetts: Blackwell Scientific
Publications.

Lopez, A. M. Jr. (1992). Mass Storage and Communication: The Big Byte in The
90s. Interface, 14 (1), 47-54.

Lua, K. T. (1990). Failure of Instruction Prefetching of 8088/286/386

Microprocessors in XT/AT systems. Microprocessing and Microprogramming,

29 (2), 97-106.

Lucente, M. A, Harris, C. H., Muir, R. M. (1991). Memory System Reliability
Improvement Through Associative Cache Redundancy. IEEE Journal of

Solid-State Circuits, 26 (3), 404-409.
Mace, P. (1988). The Paul Mace Guide to Data Recovery, New York, New York:

Simon & Schuster, Inc.

MacKenzie, F. B. (1987). Automated Secondary Storage Management. Annually
History of Computer, 9 (1), 29-35.

Maslak, B. A., Showalter, J. M., Szczygielski, T. J. (1991). Coordinated Resource
Recovery in VM/ESA. IBM Systems Journal, 30 (1), 72-89.

Mason, R. M. (1984). Current and Future Microcomputer Capabilities: Selecting the

Hardware. Microcomputers for Information Management, 1 (1), 1-13.

Matick. R. E. (1986). Impact of Memory Systems on Computer Architecture and
System Organization. IBM Systems Journal, 25 (3-4), 274-305.

Melear, C. (1986). Applications For Microcomputers With E**2PROM. Conference
Record - Electroni¢, p 12.

109

Miller, A. R. (1986). Memory Manipulations. Part 1: Arabic Versus Roman. Part 2:
Adjusting Memory Size. Byte, 11 (11) 232-234, 236, 238-245,

Mueller, S. (1991). Guide To Data Recovery. Carmel, Indiana: Que Corporation.

Newman, I. A,, Stallard, R. P., Woodward, M. C. (1987). Hybrid Multiple Processor
Garbage Collection Algorithm. Computer Journal, 30 (2), 119-127.

Newport, D. F., Alley, G. T., Bryan, W. L., Eason, R. O., Bouldin, D. W. (1986).
IEEE, p 578-581.

Norton, P. (1989). The Norton Utilities Software Package,

Norton, P. (1985). The Peter Norton Programmer’ i he IBM P
Redmond, Washington: Microsoft Press, A division of Microsoft Corporation.

Phillips, D. (1986). COMPLEAT Multiprocessor System. Electronic Products, 29
(8), 75-81.

Purdum, J. (1989). C Programmer’s Toolkit, Carmel, Indiana: Que Corporation.

Ramsey, H. (1990). Telephone conversation about the PowerSave at IIT Power
Systems.

Rich, M. (1986). Method of Flexible Catch RAM Display For Memory Testing.

Digest of Papers - International Test Conference. by IEEE, p 222.

Sando, S. (1985). Achieving Nanosecond Cache Performance With GAAS. Wescon
nference Record, A r_Distri Western Periodical for

IEEE, 6 pages.

Sargent III, M., Shoemaker, R. (1986). The IBM PC from the Inside Out, Revised
Edition. Addison-Wesley Publishing Company, Inc.

Schildt, H. (1988). C: Power User’s Guide, Berkeley, California: McGraw-Hill, Inc.

Schulman, A., Michels, R. J., Kyle, J., Paterson, T., Maxey, D., & Brown R., (1990).
n mented DOS: A Programmer’s Gui Reserved MS-DOS Functions

and Data Structures. New York, New York: Addison-Wesley Publishing
Company, Inc.

110

Schustack, S. (1989). Variation in C, Redmond, Washington: Microsoft Press, A
division of Microsoft Corporation.

Sinutko, M. (1987) Memory Access to Multiple-Sensitivity Information. Qgggd ngs
f th nth International ium on Multiple-Val i

IEEE, p 109 116.
Smith, D. D., Bulgren, W. G. (1987). Memory Management Algorithms for Buffer

Pool Systems. IEEE Computer Society, p 83-89.

Spector, A. Z. (1984). Computer Software for Process Control. Scientific American,
25 1 (3), 174-186.

Tam, V., Hsu, M. (1990). Fast recovery in Distributed Shared Virtual Memory

Systems. Proceedings of the 10th International Conference on Distributed
Computing Systems. by IEEE, p 38-45.

Tammaru, T. (1985). Memory Addressing Arrangement. Technical Digest AT&T
Technology. 77, p 47.

Tasch, U,, Sheridan, T. B. (1990). On-Line Model Based Topographic Search of
System Failures. Journal of the Franklin Institute, 327 (2), 251-258.

Upadhyaya, S. J. (1990). Rollback Recovery in Real-Time Systems with Dynamic
Constraints. Proceedings - IEEE Computer Society’s International Computer

Software & Applications Conference, by IEEE, p 524-529.
Wadlow, Thomas A. (1987). Memory Resident Programming on the IBM PC.

Addison-Wesley Publishing Company, Inc.

Waite, M. (1988). Th i roup’s MS-DOS Developers and Power
Indianapolis, Indiana. Howard W, Sams & Company.

Wallace, R. H., Stockenberg, J. E., Charette, R. N. (1987). A _Unified Methodology
for Developing Systems, New York, New York: Intertext Publications, Inc.

Yanney, R. M., Hayes, J. P. (1986). Distributed Recovery in Fault-Tolerant

Multiprocessor Networks. IEEE Transactions on Computers. C-35 (10), 871-
878.

111

ACKNOWLEDGMENTS

I would like to sincerely thank the many people who helped me throughout my
doctoral program. Especially, I would like to thank my major professor, Dr. William
Miller, for his advice and timely suggestions which contributed to the successful
completion of this dissertation. His encouragement and guidance were gratefully
appreciated.

I also want to thank the Department Chair, Dr. John Dugger, along with the
other members of my committee. In addition, I am grateful to the office staff in the
Department of Industrial Education and Technology for their assistance while I was
away from campus.

Finally, I am indebted to my lovely wife, Dr. Carol A. S. Brevett, for her
contribution in editing this manuscript. She showed continual patience, perseverance

and care while the computer diverted my thoughts and dreams at night and held me

hostage during the day.

112

APPENDIX A. INSTALLATION GUIDE

113

Introduction

CRAM is a memory resident software tool designed to replace a standard UPS
system. This software, when installed on any IBM-PC XT or compatible computer,
will monitor the computer’s main memory and save it to disk when changes are
detected. This software uses no additional hardware and a small amount of memory
overhead. To start CRAM you must first have a PC-XT equipped with a hard disk
system. CRAM can use a floppy disk but disk access speed will decrease
dramatically. The floppy disk system can be used for transferring information to
other systems as will be seen later in this manual. CRAM must be installed on the
system using the installation program. This version was developed for the XT and
thus may give unpredictable results when running on any other system. The video
drivers supported are MDA, CGA and EGA. Programs running in graphic mode
may experience problems in the restoration of the video screen. Although the

program may be totally restored, the screen images may not be completely restored.

System Preparation Prior to CRAM Installation

The system must be prepared before CRAM is installed in order to get the

best performance and also to prevent CRAM from failing to install because the free

114

clusters on the disk are not next to each other but scattered throughout the disk

(fragmented).

First obtain a copy of either the Norton disk optimizing utility or any other
disk organizing utility. It is a good idea to run either the Norton Disk Doctor utility
first to analyze the disk or DOS check disk utility (CHKDSK). Now run the
optimization program to organize the disk using the full optimization option

according to the software you choose. This process may take awhile depending on

the size of the hard disk.

CRAM Installation

After the optimization process is completed, the Install program which
accompanies the CRAM software should be executed. Place the CRAM installation
disk in one of the drives. Enter INSTALL. This process will take a whﬂe again
depending on the size of the hard disk. The install program will check the disk to
make sure CRAM was not installed before. It will also check for an area of the disk
to install the software and the area to save memory. If no errors were encountered
the program will show that CRAM was installed successfully and that the installation
process is complete. The program will pause for about one second, then it will re-

boot the system to load CRAM into the system.

115

Invoking CRAM

To start CRAM enter CRAM at the DOS prompt. CRAM must be supplied
with two or more of the switches found under "Switches used with CRAM" below.

Once installed feedback from CRAM is evident by a symbolic display character in the
upper left corner of the screen and other indicators on the top row of the screen.
See Figure 1A in the appendix for the meaning of these symbols. If CRAM was not

ins,talled, follow the above directions found under "CRAM installation" before

invoking CRAM.

Switches Used With CRAM

CRAM must be supplied with a combination of two or more of the following

switches:

-h keyl key2 hot keys used to force CRAM to save memory
keyl is a code for special keys:
1 = Right Shift
2 = Left Shift
4 = CTRL
8 = ALT

116

Keys can be combined like 12 for CTRL-ALT
key2 is any other non-special key (regular ASCII
characters)
to start-up by first saving all of memory and setting some vital
parameters
to start-up but no initial saving of memory or setting of vital
parameters
drive that CRAM will use to save memory
to start-up then restore memory to the process stored in CRAM
to extract CRAM from memory and reset the system to run
without CRAM

to extract CRAM from both memory and the entire disk system

System Requirements

The following are the minimum requirements needed for CRAM to install and

operate.
1.
2.

An IBM-PC XT or compatible
Hard disk with at least 700K bytes of free space
At least 512K memory (only about 64k is required for CRAM’s

operation but most software needs at least 512k to run)

117

4, MDA, CGA or EGA video adapter

5. At least one floppy drive (3% or 5%)

118

APPENDIX B. USER MANUAL

119

© 1o92 Reatort &.

120

Introduction

Guidelines for the use of CRAM do not warrant a users manual, however, the
information provided here will help other developers understand the inner working of
CRAM. CRAM, unlike other software, is not a utility or a user processing program
but a tool that requires almost no user interaction after installation. CRAM uses a
Real-time Symbolic Feedback System (RSFS). This is the constant display of the
systems processes and error conditions by way of indicators on the screen. There are
four sets of indicators. The symbols are shown in the Table below. The first is a one
character symbol that tells what area of CRAM is being processed. The second set
is a group of flags and a counter. The third is the lower byte of the DOS flag
register. The fourth set indicates the areas of memory that are being changed by a

process, flagged to be saved or already saved by CRAM.

ERROR 03
ERROR 04
ERROR 10
ERROR 20

ERROR 80

121

Some DOS Error Codes Returned by CRAM

Disk is write protected.
Could not find disk sector.
Error in data transfer.
Diskette controller failed.

Disk timed out error.

122

Error Codes Specific to CRAM

CRAM cannot continue

Another program other than CRAM was found to be loaded in memory after the

command interpreter. CRAM must be the first file loaded after the command

interpreter.

DISK ERROR saving memory

The disk is bad or CRAM is corrupted.

Drive is not a CRAM disk
A drive that was specified in the -L switch does not have a copy of CRAM installed

on it. You need to run INSTALL and use the -L switch to indicate the drive to use

to install CRAM.

ERROR with SWAP_SAVE

Maybe not enough memory to save information in the DOS Swappable Data Area.

ERROR formatting track

An invalid track number was specified.

123

ERROR reading sector

The sector may be damaged.

ERROR errnum reading Disk Parameter Table (DPT)
The drive specified either has a damaged DPT or does not have one. The drive
specified could be invalid or the hard disk is damaged. Ermum is the DOS error

number that caused this error.

ERROR errnum Reading BIOS Parameter Block (BPB)
An attempt was made to read a disk with damaged BPB. The drive specified could
be invalid. This error message also reports the drive, head and sector of the last disk

access. Ermum is the DOS error number that caused this error.

ERROR in Memory Control Block (MCB)

The memory control block has invalid entries. CRAM will fix this error so there is

no need to be alarmed.

ERROR writing sector

The sector may be damaged.

124

CRAM not Installed on disk
CRAM was unable to find the CRAM ID on the disk. It is likely that CRAM was

not installed on the disk.

ERROR initializing DOS Swappable Area (SDA)

CRAM could not use the DOS SDA. There may be insufficient memory or CRAM

is corrupted.

ERROR saving memory::save_mem
CRAM encounters a problem with the hard disk or disk used to save memory.

Either the disk is bad or CRAM was corrupted.

*** See Figure 1A for the symbolic error codes. ***

Re-installing CRAM

If CRAM needs to be reinstalled after de-installation or installed to a newly

reformatted disk, the following procedures must be followed:

1. You must be the registered owner of the software.

2. The disk must be the in the same machine.

125

Process Symbol Error
Saving Registers to CRAM @
Getting Registers and vital CRAM statistics n
Saving video memory to CRAM none
Resetting video memory none
Saving interrupt vector table to CRAM ¢
Resetting interrupt vector table Q
Normal CRAM operation in progress €
Putting CRAM vital information in CRAM L
Getting CRAM vital information from CRAM =
Resetting memory s
Loading CRAM ¢
Saving DSA)
getting DSA from CRAM r
Restoring DSA a
8

Completion of DSA restoration

Figure 1A, CRAM’s process screen indicators

126

3. The system must be in its original state when first installed (i.e. has all the
peripherals that were present at the time of first installation).
4, If you are the registered owner of the software but 2 and/or 3 above cannot
be satisfied call or write:
Renford A. B. Brevett
109 Newton Drive
Bear, DE. 19701
(302) 325-0876
You will be given instructions or a new copy of the software.
5. If all of the above was satisfied then you only need to run the installation

program (INSTALL) and CRAM will be installed on the hard disk and will re-

install itself without any further intervention.

Getting Information About CRAM

The program CRAMINFO.EXE on the CRAM disk allows access to
information about CRAM. Below is a sample of the output from CRAMINFO. The

information in CRAM can be accessed at anytime.

127

Editing CRAM

The program CRAMEDIT.EXE on the CRAM disk allows the editing of data
in CRAM. This program should only be used by experienced programmers. This
tool is useful in editing CRAM which can then be restored with the edited
information. If the system was in a critical error state and was saved by CRAM in
that state without correction then CRAMEDIT could be used to edit memory before

attempting to restore CRAM. Note that CRAM should not be running in memory

while editing CRAM.

Transferring CRAM To a Different Disk and/or Computer

CRAM can be used to transfer information between two systems. This feature
is useful if you are working on a project at school or work and want to continue at
home without losing the data or the place you were at in your project. This is done
by using a 3% floppy disk to transport the system. The following procedure is used to

transfer CRAM to another system:

1 Start the system without CRAM running

2. Run the installation program using the drive switches to indicate the new

drive.

128

ex. INSTALL-i-LB

CRAM will be installed on the B drive
3. CRAM will now save memory to drive B.
4, After turning off the computer remove the floppy disk.
S. Insert the floppy disk in the drive of the other system.
6. Start the system without CRAM loaded.
7. At the DOS prompt start CRAM by entering:

CRAM -u -L B or A {A or B for the floppy drive with CRAM }

8. After the restoration you can continue where you were at the office.
Removing CRAM From the Hard Disk and System

CRAM was designed to use a hard disk for normal operations. Another
feature of CRAM is transferring an entire operation from one computer to another
or one disk to another. To do this the system must have a 3% floppy disk drive. To

transfer CRAM use the following procedure:

1. Start the system without CRAM running,.
2. At the DOS prompt enter CRAM /t source-drive destination drive
ex. CRAM /tCB

3. CRAM will request the original disk

4,

129

After transferring CRAM to the original disk CRAM will be removed from

the system and disk.

130

APPENDIX C. CRAM SOURCE CODE

131

TSR.H TSR macros, variables and functions declaration.

/® TSR Prototype file and common variables */
#define INTERRUPT void interrupt far

yypedef struct {
unsigned es, ds, di, si, bp, sp;
unsigned bx, dx, cx, ax, ip, cs, flags;
} INTERRUPT _REGS;

/® Prototypes for functions in CRAMUTIL.C */
int DosBusy(void);

int Int28DosBusy(void);

void InitinDos(void);

unsigned GetPSP(void);

void SetPSP(unsigned segPSP);

int InitDosSwap(vaid);

/"* Prototypes for functions in TSRUTILASM */
int far deinstali(void);

void far idle_int_chain(void);

void far init_intr(void);

void interrupt far new _int10(void);
void interrupt far new_int13(void);
void interrupt far new_im25(void);
void interrupt far new_imt26(void);

void far tmer_int_chain(void);

/* Prototypes for functions in STACKASM */
void far set_stack(void);
void far restore_stack(void);

/* Common variables */
extern char far * indos_ptr;
extern char far * crit_err_ptr;

132

CRAMH Macros, definitions and functions declarations not found in TSR.H.

/o CRAMH
CRAM declarations
Copyright for fowa State University by Renford A. B. Brevett.

[112] /
/® Declaration of constants to be used by Biosdisk function. ./
#define RESET (x00 /* Resets disk system e/
#define STATUS 0x01 /* Return the status of last disk operation */
#define READ 02 /* Reads one or more disk sectors 4
#define WRITE x03 /* Writes one or more disk sectors 4
#define VERIFY 0x04 /*® Verifies one or more disk sectors 4
#define FORMAT 0x05 /* Formats a track 4

#define MAX SEG x10 /* Maximnm segments supported by CRAM amount®/
/* in paragraphs of 64K (0x10 ® 64 = IMeg °/
#define MAXPART 4 /* Maximun partition on a Fix Disk e/

#define D UNUSED 0 /* System ID Unused Partition */
#define D FATI2 1 /* 12 Bit fats s/
#define D FATI6 4 /* 16 Bit fats */

#define D EXTPAR 5 /* Extended DOS Partition */
#define D 40PAR 6 /* 4.0 >32MD Partition s/

#define RO 0x01 /* Read Only File Auribue */
#define HIDDEN x02 /* Hidden File Auribute */
#define SYSTEM (x04 /* System File Auribute %/
#define VOLUME (x08 /* Volume Entry Auribute */
#define SUBDIR 0x10 /* Subdirectory Entry Auribute */
#define ARCHIVE (x20 /* Archive Enury Auribute */
#define UNUSED Ox00 /* Directory Entry never used */
#define ERASED OxES /* Erased Directory Entry %/
#define DIRRECTORY (x2E /* Directory Entry Auribute */

#define SIG ("Copyright(c) 1991 Renford A. B. Breven at lowa State University *)
#define LINEFEED &x0D

#define SPACE .
#deftine COLON e
#define RDGT ">>"
#define LDGT W

#define PARAGRAPHS(x) ~ ((FP_OFF(x) + 15) >> 4)

#define KEYBOARD PORT . (x60 /* KEYBOARD Data Port */

#define KEYBRD SHIFTSTATUS Qx02 /* CHECK KEYBOARD SHIFT STATUS */
#define KEYBRD READY (x01 /* Check for Character in KEYBOARD buffer %/
#define KEYBRD READ (x00 /* Read Character from KEYBOARD buffer %/
#define RIGHT SHIFT ~ (x01

#define LEFT SHIFT 02

#define CTRL_KEY x4
#define ALT KEY 08
#define FIVEKEY., avC
#define DELKEY xS3

#define INSTALL CHECK 0x00
#define INSTALLED OFF

133

#define DEINSTALL x01
#define KEY MAX Qx14 /°* Number of keystrokes before next save */

#define GET PSP_DOS2 x5l

#define GET PSP DOSs3 x62

#define SE' T_PSP x50

#define PSP_TERMINATE (x0A /* Termination addr. in our PSP %/
#define PSP_PARENT PSP 0x16 /* Parent's PSP from our PSP %/
#define PSP_ENV_ADDR &x2C /* environment address from PSP */

#define STDERR fileno(stdout)
#define MAX_WID 12

#define GET DOSSWAP3 Qx5d06
#define GET DOSSWAP4 ~ (x5d0b
#define SWAP_LIST LIMIT 20

#define GET EXTERR 0x59
#define SET EXTERR Q5doa
#define GET _INDOS o34
#define GET CRIT ERR 0x5D06

#define SET DTA 14 /* SET Disk Transfer Address */
#define GET " DTA Ox2F /* GET Disk Transfer Address */
#define DOS_EJGT &4C /* DOS terminate (exit) */
#ifdef TURBOC _

#define GE TVECT(.\:) getveci(x)

#else

#define GETVECT(x) _dos_getvect(x)

#endif

typedef void far *FP;

#define MK_S(addr) ((FP) (FP_SEG(addr< <§)))

#define MK_O(addr1) ((FP)(((DWORD)(addrl)-((DWORD)(addr1) < <4))))

#define MCB_FM _SEG(seg) ((seg) - 1)

#define IS PSP(rm:b) (FP_SEG(mcb) + 1 == (mcb)->owner)
#define ENV_FM_PSP(psp_seg) (*((WORD far *) MK_FP(psp_seg, (x2c)))
#define TERM FM_PSP(psp_seg) MK_FP(psp_seg, Qx0A)

EE R R E R X EEE & ¥

/‘B:::BS::HS::========I================Iﬂﬂ========
=‘/

/* Some Common Variables °*/

exern it DEBUG;

/* Declaration of TYPES used in CRAM */

ypedef void (interrupt far *INTVECT)();
typedef unsigned char BYTE; /* Redefine unsigned char as BYTE 4
opedef unsigned WORD; /® Redefine unsigned as WORD 4

typedef unsigned long DWORD; /* Redefine unsigned long as Double WORD */
yypedef enum { FALSE, TRUE } BOOL;

opedef struct {
BYTE gpe; /* 'M'sin chain; 'Z'=at end %/

WORD owner; /* PSP of the owner %/
WORD size; /* in 16-byte paragraphs */
BYTE unused(3];

BYTE dos4(8];

} MCB;

typedef struct MCB_TBL

WORD addr;
MCB meb;
DWORD term_addr;

}MCB_TBL;

/* Definitions and functions for video control */
ypedef struct SCR_LOC

char s _char, s_attr;
} SCR_LOC; /® One screen location

typedef SCR_LOC SCRLINE [80]; /*® One screen line
struct bits

unsigned bit0 :
unsigned bitl :
unsigned bit2 :
unsigned bit3 :
unsigned bitd :
unsigned bit$:
unsigned bit6 :
unsigned bit7 :
k

struct bits_16

struct bits lobits;
struct bits hibits;
k

struct CRAM _ver
{
unsigned major : 3;
unsigned minor : 3;
unsigned beta : I;
unsigned test : I;
k

/* Declaration of STRUCTURES used in CRAM */

134

*/

Y/

struct DPT /* A structure to hold information for the %/

Y/

{ /* Disk Parameter Table
BYTE bootid;

BYTE starthead;

BYTE suartsec;

BYTE starttrack;

BYTE sysid;

BYTE endhead;

135

BYTE endsec;

WORD endtrack;
DWORD firstsec_in_part;
DWORD numsecs_in_part;
k

struct BPB /* A structure to hold information for the */
{ /* Bios Parameter Block Y

struct HST /* A Structure to hold information for the */

{ /* Head, Sector and Track when converting */
unsigned char LETTER; /* from absolute DOS sector V4
unsigned char DRIVE NUM;
unsigned HEAD;
unsigned SECTOR;
long TRACK;

k

struct ExtErr

{
unsigned int errax;
unsigned int errbx;
unsigned int errcx;

k

struct dir_entry
{

BYTE f name[8];

BYIE [ext{3];

BYTE [aurib;

BYTE f reserved([10];
WORD [time;
WORD f date;
WORD f stant_cluster;
DWORD f{ size;

b

struct CRAM_HEADER

DWORD ID;
WORD (S, DS, ES, SS;

136

WORD AX, BX, CX, DX;

WORD BP, D, Si, SP;

WORD IP, PSP, FLAGS;

WORD date;

WORD time;

BYTE f access(64];

WORD checksum;

DWORD clusters;

DWORD start_cluster;

BYTE password[16];

struct ExErr Errinfo;

WORD start_addr;

DWORD f size;

WORD int_checksum;

WORD offs_filler;

WORD sec_segl_end;

WORD video_sec;

WORD dsa_sec;

WORD mcb_sec;

WORD stack_sec;

WORD int_sec;

WORD mem_sec;

WORD curr_mem_sec;

WORD data_sec;

it dsa_size;

WORD dta_seg;

WORD dra_off;

DWORD terminate_addr;

WORD cram_dta_seg;

WORD cram_dia_off;

WORD cram_psp;

BYTE save_seg flag/{MAX SEG];

WORD seg_checksum{MAX SEG);

WORD sector_in_cram{MAX_SEG];

WORD size of seg{MAX_SEG];

BYTE reserve_for_seg{MAX SEG];
i

struct PSP_INFO

WORD resevl;

WORD sys_mem; /* in 16 bytes blocks */
WORD resev2;

BYTE DOScall[S];

WORD bytes_in_seg;

DWORD term_addr; /* IP, CS Y
DWORD cnuri_c_addr; /* IP, CS Y/
DWORD hard_err_addr; /* IP, CS 4
BYTE resev3[22];

WORD env_addr;

BYTE resevd[34];

BYTE DOScali2(12};

BYTE FCBI[16];

BYTE FCB2[16];

DWORD resevS;

BYTE DTA[128];

A
struct F_HEADER

137

WORD filetype;

WORD bytes_in_last_page;

WORD f size; /* in 512 bytes page */

WORD relo_entries;

WORD h_size;

WORD minalloc; /® minimum memory required */
WORD maxalloc; /® maximum memory required */
WORD SS; /® S8 relative to start of program */
WORD SP;

WORD checksum;

WORD IP;

WORD CS;

WORD off 2 RT;

WORD ovrl_link;
kb

struct partition

{

BYTE code[446];

struct DPT DPT tbi{MAXPART];
WORD DOSsig;

k
union FATS

{

/* use as FATS fat_I6f16 = ?
or FATSfat 12 lofatl2 = ?
or FATSfal 12 hifail2 = ?

Y/

struct

unsigned int far16 : 16;
} fat 16
struct

{
unsigned int fatl2 : 12;
unsigned int xx @ 4;
} fat_12 lo;
struct
{
unsigned int xxx : 4;
unsigned int fatl2:12;
} fat_12_hi;

struct free_fat
{

DWORD fbegin;
DWORD fend;
DWORD fsize;
k

/® Prototypes in GEN _UTIL.c ¢/

extern unsigned pus_chr(int c);

extern unsigned put_str(char far *s);

extern unsigned put_num(unsigned long w, unsigned wid, unsigned radix);
#define pus_hex(u) pus_num(u, 4, 16)

138

#define pud bit(u) put_num(y, 2, 16)
#define put_long(ul) put_num(ul, 9, 10)
#define pusstr(s) { pus_str(s); put_str("\r\n"); }
extern unsigned fstrlen(const char far *s);

extern int LPT(char *s);
extern void gotoXY(int x, int y);

extern void curr_cursor(int %, int %);

extern void set_cursor_type(int t);

extern void clear_screen(char ch);

extern void clear_win(int x1, int yl, int x2, int y2, char ch, BYTE aurib);
extern int vmode();

externint scroll_lock();

extern int get_char();

extern void clrEol(void);

eqern void (*helpfunc)(void);

/* Protoyypes in CRAMTOOLS.c %/

extern struct CRAM ver ¢_ver;
exern imt geifal_info(struct free_fa: *freefa, WORD clust_req);
extern long mem_checksum(WORD seg_start, WORD offs_start, DWORD mem_size);
extern int get fatfree(struct free_fat *freefat, WORD clust_req);
externint pul_fai(struct free_fat freefa, DWORD data_sec);
externint put f name(struct free_fat f free, DWORD data_sec);
extern long get f name(void);

exern char pause(int err_num);

extern imt show_disk(void);

extern long get_daia_sec(void);

extern int ckeckdisk(void);

/* Prototypes in CRAMMEM.c %/

extern mcb_chk(MCB far *mcb);

exiern MCB far “get_mcb (void);

extern char far *progname_fm_psp(unsigned psp);

extern void display progname(MCB far *mcb);

extern MCB far *get_cmd_mcb(MCB far *mcb);

extern MCB far *IS_CRAM(MCB far *mcb);

extern BOOL belongs(void far *vec, unsigned star, unsigned size);
exern void display(MCB far *mcb);

exiern char far *env(MCB far *mcb);

extern void display_cmdline(MCB far *mcb);

extern void display_vectors(MCB far *mcb);

extern WORD low_mem(MCB far *mcb);

extern int get_mcb_chain(MCB far * mcb, BYTE *buffer);
extern it set_mcb_chain(BYTE *buffer, WORD psp);
extern MMCB(char *buffer);

/"* Prototypes in CRAMUTIL.c*/

extern int color adpt(void);

extern it SaveDosSwap(void);

extern void RestoreDosSwap(void);

externs int save_DSA(void);

extern int reset_DSA(void);

extern int get_drive_info(char *drv);

extern void GetExtErr(struct ExtErr *Eminfo);
extern void SatExEmr(struct ExEmr *Enrinfo);

139

extern DWORD sector2cluster(DWORD sector);
extern DWORD cluster2sector(DWORD cluster);

/® Prototypes in CRAMINT.C %/

extern void tsr_exit(void);
extern void usage(char *);

extern ing

UnlinkVect(int Vect, INTVECT Newlnt, INTVECT OldiInt);

extern void parse_cmd line(int arge, char *argv(]);

/* Prototypes in DISKC %/

extern int
extern int
extern int
extern int
extern int
extern int
extern int

extern int
extern int

stohst(int drive, long track, int head, long *DOSsec,
struct BPB *bpb, struct DPT *dpt, struct HST *hst);

getDPT(unsigned drive, struct DPT *dpt);

getBPB(int drive, int head, long track, int sector, struct BPB *bpb);

getsector(int drive, int nsects, long *DOSsec, struct BPB *bpb,
struct DPT *dpt, BYTE *buffer);

putsector(int drive, int nsects, long *DOSsec, struct BPB *bpb,
struct DPT *dpt, BYTE far *buffer);

[fmiurack(int drive, int nsects, long track, int head, long *DOSsec,
Struct BPB *bpb, struct DPT *dpt);

printBPB(struct BPB bpb);

printDPT (struct DPT dpt); /*® Prints the Disk Parameter Table */

printsector(BYTE *buffer);

140

DISK.C Functions used most disk I/0.
Joeee DISK.C

File of declaration and some general disk functions
Copyright for Iowa State University by Renford A. B. Brevett.

.l"/

#include <bios.h>
#include <stdio.h>
#include <dos.h>
#include <dir.h>
#inciude <stdlib.h>
#include <mem.h>
#include <stringh>
#include <math.h>
#include <conioh>
#include "cram.h"

/‘BB:.:----nnu----ﬂ---==============B==ﬂ==!====n===================

===== ‘/
int printDPT(struct DPT dpt) /* Prints the Disk Parameter Table */
{
printf("\r\n\tBoot ID %Xn"

"\r\n\tStart Head %d"
"\r\n\eStart sector %d"
"\r\n\tStart Track %d"
"\r\n\tFAT System ID %0d"
"\r\n\tEnd Head %d"
"\r\n\tEnd Sector Pod”
"\r\n\tEnd Track %d"

"\r\n\tFirst Partition sec. %ld"

"\r\n\tSectors in Partition %eld\r\n",
dpt.bootid, dpt.starthead, dpt.startsec, dpt.starttrack,
dpt.sysid, dpt.endhead, dpt.endsec, dpt.endtrack,
dpt.firstsec_in_pan, dpt.numsecs_in_part);
return(0);

}
int getDPT(unsigned drive, struct DPT *dpt)

/.
Gets the Disk Parameter Table for the drive given by the parameter
drive. The parameter dpt is a pointer to the structure that hold
the result.
v/
{
unsigned int offset = 0x01BE;
int result;
BYIE s 4 1;
BYTE buffer(512);

result = biosdisk(2,drive,0,0,1,1,buffer);
if (result I= 0)
{

141

result = biosdisk(2,drive,0,0,1,1,buffer);

if (result 1= 0)
{
printf("Error %d reading Disk Parameter Table (DPT)", result);
rewn(result);
) }
memcpy(&dpi->bootid, &buffer[offset + +], 1);

memcpy(&dpt- >starthead, &buffer[offset+ +], 1);
memcpy(&dpt- > startsec, &buffer[offset+ +], 1);
memcpy(&dpt- > starttrack, &buffer[offset+ +], 1);

memcpy(&dpt- > sysid, &buffer(offset+ +], 1);
memcpy(&dpt->endhead, &buffer[offset+ +], 1);
memcpy(&dpt- >endsec, &bufferfoffset+ +], 1);

memcpy(&dpe->endtrack, &buffer[offset+ +], 1);
memcpy(&dpt- > firstsec_in_pant, &buffer[offset], 4);
memcpy(&dpt->numsecs_in_part, &buffer[offset+4], 4);
s = dpt->endsec;
dpt->endsec =(s & Ox3F);
¢t = dpt->endtrack;
r = (s & &xCO);
dpt->endtrack = (t | (r << 2));
return(result);

}

int getBPB(int drive, int head, long track, int sector, struct BPB *bpb)
/a
Gets the Bios Parameter Block of drive. The BPB is found on the drive
using the head, track and sector passed to the function. A pointer
to the BPB structure bpb hold the result.
*/
{
int result;
BYTE buffer(512];

result = biosdisk(2,drive,head,track,sector, 1,buffer);
if (result != 0)
{

result = biosdisk(2,drive head,track,sector,1,buffer);
if (result != 0)

printf("\r\n ERROR %d Reading Disk Parameter Block (BPB)", result);
printf("\r\n drive:%-2.2d head:%d sector:%d \r\n",
drive, head, sector);
return(result);
; }
memapy(&bpb->jmpcode, &buffer(0], 2);
memcpy(&bpb- >jmpaddr, &buffer(2], 1);
memcpy(&bpb->sysid, &buffer[3], 8);
memcpy(&bpb- >bps, dbuffer(11], 2);
memepy(&bpb->spe, &buffer(13], 1);
memcpy(&bpb- >ressec, &buffer[14], 2);
memcpy(&bpb- >nfats, &buffer(16], 1);
memcpy(&bpb- >nroot_dir, &bufer(17], 2);
memcpy(&bpb- >ndsksect, &buffer[19], 2);
memcpy(&bpb->fmiid, &buffer(21], 1);
memcpy(&bpb->nspf, &buffer(22), 2);
memcpy(&bpb->nspt, &buffer(24], 2);

142

memcpy(&bpb- >nsides, &buffer(26], 2);
memcpy(&bpb->nres_sec, &buffer(28], 4);
memcpy(&bpb->vol_s 32, &buffer(32], 4);
memcpy(&bpb- >endbp, &buffer(510], 2);
return(result);

}

int printBPB(struct BPB bpb)

/.
Prints the Bios Parameter Block. The pointer bpb must point to a structure
afier a previous getBPB.

Y/

pﬁ,"f("\r\n-:::::::a:::::a Boot Record ==========================\r\n");

printf("\r\n\t Jump Code %4X \r\n\¢"
" Jump Address %2X \r\n\t"
" System ID %.% \r\n\t"
* Bytes per Sector ed \r\n\t"
" Sectors per Cluster %d \r\n\¢"
" Reserve Sectors %d \r\n\t"
" Number of Fats %d \r\n\t"

* Number of Root Dir. %d \r\n\¢"

* Number of Disk Sectors ~ %ld \r\n\t"

" Media Format ID. %2X \r\n\t"

* Number of Sectors per FAT %d \r\n\t"

* Number of Sectors per Track %d \r\n\t"

* Number of Sides %d \r\n\t"

" Number of Reserve Sectors %d \r\n\t"

" Voulme 32 Bit value Polu \r\n\t"

"\r\”nnn---nunx=-== Wo’da(Endngoothcord ===z 94X

===================\r\”"‘

bpb.jmpcode,bpb.jmpaddr,8,bpb.sysid, bpb.bps,bpb.spe, bpb.ressec, bpb.nfats, bpb.nroot_dir,
(long)bpb.ndsksect, bpb.fmtid, bpb.nspf,bpb.nspt, bpb.nsides,bpb.nres_sec,(DWORD)bpb.vol_s_32,bpb.endbp);

return(0);

}

int printsector(BYTE *buffer)
/‘
Prints the sector painted to by buffer. Buffer must be alloted enough
memory and passed afier a previous call to getsector.
Y
{
inti=0 j=1,x = 5
prinsf("\r\n");
gotaxy(l, wherey());
for(i=0; I<512; i+ +)
{

ifg>=4

{
printf(*\r\n");
j=L
x = 52

) gotoxy(l,wherey());

gotoxy(j + 2, wherey())prinif("%-2.2X "\ buffer(if);
gotoxy(x,wherey());
if (buffer(i] == x07 || buffer(i] == O%0A || buffer[i] = = (x00)

143

pute(’;, stdour);

else
putc(buffer(i], stdout);
j+=3
X+

return(0);

}

int stohst(int drive, long track, int head, long *DOSsec,
struct BPB *bpb, struct DPT *dpt, struct HST *hst)

/*
stohst convert a absolute DOS sector to its head, track, sector number
needed for bios calls. To reverse the process DOSsec must first
be assigned the value -1 before a call to stohst.

*/

{

int result=0;

ldiv_t head_cal;

ldiv ¢t track_cal;

ldiv ¢ sector_cal;

int sector = I;

int drv;

long maxsides = 2L;
int skaptrack;

long spy

if (drive > 0x79)

{
drv = ((dnive - &x80) + 2);
maxsides = dpt->endhead;
skiptrack = bpb- > nspt;

else
{
drv = drive;
maxsides = 1L;
skiptrack = 0;
}
spt = bpb- >nspt;
if(*DOSsec = = -1)

*DOSsec = (sector-1) + (head * spt)
+ (track ® spt * (maxsides +1));

}
else

{
head cal = ldiv(°DOSsec +skiptrack, (long)spt);
track cal = ldiv(*DOSsec + skiptrack, (long)(sp¢ * (maxsides+1)));
track = (long)rack_cal.quot;
head = (int)(head_cal.quot % (maxsides + 1));
sector cal = ldiv(*DOSsec +skiptrack, (long) spt);
sector = 1 + (int) sector_cal.rem;

}

hst->HEAD = head;

144

hst->SECTOR = sector;
hst->TRACK = track;
hst->DRIVE_NUM = drive;
hst->LETTER = 'A’'+drv;
return(result);

int getsector(int drive, int nsects, long *DOSsec, struct BPB *bpb,
struct DPT *dpt, BYTE *buffer)
/*

Gets an absolute sector on drive and buffer will point to the content
of the sector.

Y/

{
int resuly;

static struct HST hst;
stohst(drive, hst. TRACK, hst. HEAD, (long *)DOSsec, bpb, dpi, &hst);
result = biosdisk(2, hst DRIVE_NUM, hst. HEAD, hst. TRACK, hst.SECTOR,
nsects,buffer);
if (result != 0)
{
result = biosdisk(2, hst. DRIVE_NUM, hst HEAD, hst. TRACK, kst SECTOR,
asects,buffer);
if (result 1= 0)

{
printf("\r\n Error %d Reading Sector %ld", result, *DOSsec);
printf("\r\nDrive %c T:%Id S:%d H:%d [Rel. Sector:%ld]\r\n",
hst LETTER, hst. TRACK, hst.SECTOR,hst HEAD, *DOSsec);
return(resuit);

}

}
return(result);
}

int putsector(int drive, int nsects, long *DOSsec, struct BPB *bpb,
struct DPT *dpt, BYTE far *buffer)
/.
Writes nsects sectors to drive starting at absolute sector DOSsec.
The pointer buffer must point to the information to write,
Y/
{
ins resuly;
static struct HST hst;
char *pbuf;

stohst(dnive, hst. TRACK, hst HEAD, DOSsec, bpb, dpt, &hst);

pbuf = (char ®)buffer;

result = biosdisk(WRITE, hst DRIVE_NUM, hst HEAD, hst. TRACK, hst.SECTOR,

nsects, &pbuf[0]);
if (result I= 0)
{
prinaf("\r\nn Error %d Writing Sector %ld", result, *DOSsec);
printf("\r\nDrive %c T:%ld S:%d H:%d [Rel. Sector:%ld]\r\n",
hst. LETTER, hst. TRACK, hst. SECTOR hst HEAD, *DOSsec);

return(result);

145

retum(result);
}

int fttrack(ine drive, int nsects, long track, int head, long *DOSsec,
struct BPB *bpb, struct DPT *dpt)
/‘
Format a track on drive.
4
{ .
int result, i;
BYTE *buf;

struct HST hst;

stohst(drive, track, head, DOSsec, bpb, dpt, &hst);
buf = malloc (bpb- >nspt®4);
gotoxy(1, wherey());
printf("Formating DiskDrive: < %c: > with %d Sectors Per Track ',
hst LETTER, bpb- >nspt);
switch (bpb->bps)
{

case 128 : sizecode = O;break;
case 256 : sizecode = 1 break;
case 512 : sizecode = 2:break;
case 1024; sizecode = 3;break;
case 2048: sizecode = 4;break;

for (i = 0;i<9 i+ +)
{
bufli*4] = hst.TRACK;
buffi * 4 +1] = hstHEAD;
buffi*4 +2) =i + I;
buffi * 4 +3] = sizecode;
}

result = biosdisk(FORMAT, hst DRIVE_NUM, hst. HEAD, hst TRACK, hst SECTOR,
nsects, &buf);
gotaxy(wherex(), wherey());
printf(" H:%d T:%id S:%d", head, track, kst SECTOR);

if (result != 0)

prinef(" \r\nError %d Formating Sector %ld", result, *DOSsec);
pringf("\r\nDrive %c \r\nT:%Id S:%d H:%d [Rel. Sector:%ld]\r\n",
hstLETTER, track, hst. SECTOR, head, *DOSsec);
) 8oto end;

end:

free(buf);

rewurn(result);

}

146

CRAMUTIL.C Most functions used to manipulate CRAM.

/* CRAMUTIL.C 4
/‘..

Utilities used with CRAM to control interrupts and memory

Copyright by Renford A. B. Brevett at Iowa State University.

soR /

#include <stdlib.h>
#include <dos.h>
#include <sudios>
#include <mem.h>
#include <string.h>
#include <stdargh>
#include <bios.h>
#include <io.h>
#include "tsr.h"
#include "cram.h”

extern SCRLINE far *scr;

extern int drive;

extern long DOSsec;

extern struct DPT dpy;

extern struct BPB bpb;

extern struct HST hst;

extern long result;

extern long maxsectors;

extern long maxsides;

extern long maxtracks;

extern int skiptrack;

extern struct CRAM_HEADER c¢_header;
extern BYTE buffer(];

extern BYTE swap_save_buf{];

extern DWORD data_sec, reserved_sec;

struct swap_lis /* format of DOS 4+ SDA list */

void far* swap ptr;
imt swap_size;
k

/* variables for 3x swap work */

char far 'swap_plr; /* pointer to dos swap area */

char far * swap_save; /* pointer to our local save area */

static int swap | .uze _indos;

static int swap_size always

static int size;

/* variables for 4x swap work */

static int swap_couni; /* count of swappable areas */

static struct swap_list swp_list{SWAP_LIST_LIMIT]; /*list of swap areas*/

static char far *swp_save[SWAP_LIST LIMIT]; /* out save area */
static int swp_flag{SWAP_LIST LIMIT]; ~ /* flags if has been swapped */

147

static int dos _level; /* for level dependent code °/

int dos _critical = 0; /* in critical section, can'’t swap */
char far *indos_ptr=0;

char far *crit_err_ptr=0;

extern BYTE far °diskeute;
static union REGS regs;
static union REGS rg;

/* Prototypes */

void get_time_date(void);

DWORD cluster2sector(DWORD cluster);

DWORD sector2cluster(DWORD sector);

int SaveDosSwap(void);

void RestoreDosSwap(void);

int save_DSA(void);

int reset_DSA(void);

void GetExtErr(struct ExtErr *Errinfo);

void SetExtErr(struct ExtErr *Errinfo);

int get_drive_info(char *drv);
.=======ﬂ=================== —————

EE R R EEE R EREREREEREREEREREERERE BRSNS

/* Functions to manage DOS flags */

'ses0®

Function: Init InDos Pointers
Initialize pointers to InDos Flags

‘l“./

void InitinDos(void)

union REGS regs;
struct SREGS segregs;

regshak = GET INDOS;
intdosx(®s, ®s, &segregs);

/* pointer to flag is returned in ES:BX %/
FP_SEG(indos_ptr) = segregs.es;
FP_OFF(indos ptr) = regsx.bx;

if (_osmajor < 3) /* flag is one byte after InDos */
crit_err_pur = indos pir + I;

else if (_osmajor==3 && _osminor == 0) /* flag is one byte before */
crit_err_ptr = indos ptr - I;

else

{
regsx.ax = GET_CRIT ERR;
intdosx(®s, ®s, &segregs);
/* pointer o flag is reasrned in DS:SI °/
FP_SEG(crit_err_pzr) = segregs.ds;
FP_OFF(cris_err_per) = regsx.si;

}

}

/'.‘.'

Function: DosBusy

This function will non-zero if DOS is busy
.“‘./

int DosBusy(void)

if (indos_per && crit_err_ptr)

148

return (*crit_err ptr || %indos_per);
else
return OxFFFF; /*® return dos busy if flags are not set */
}

cosen
Function: Int28DosBusy
This function will reaurn non-zero if the InDos flag is > 1 or
the critical ervor flag is non zero. To be used inside of an
INT 28 loop. Note that inside INT 28, InDOS = = 1 is normal, and
indicates DOS is *not® busy; InDOS > 1 inside INT 28 means it is.

(112})

int Int28DosBusy(void)
{

if (indos_ptr && crit_err_ptr)
return (*crit_err_ptr || (%indos_pir > 1));
else
return &cFFFF; /* return dos busy if flags are not set */
}

/* Functons w manage DOS swap areas */

/‘ [12 1)
Function: InitDosSwap
Initialize pointers and sizes of DOS swap area. Return zero if success

int InitDosSwap(void)
{

union REGS regs;
struct SREGS segregs;

if ((_osmajor = = 3) && (_osminor > = 10))
dos _level = 3;
else if (_osmajor > = 4)
dos_level = 4;
else
dos level = 0
if (dos level == 3) /* use 215D06 ¢/

regsx.ax = GET_DOSSWAP3;
intddosx(®s ®s, disegregs);

/® poinzer to swap area is resurned in DS:SI */
FP_SEG(swap pir) = segregsds;
FP_OFF(swap_per) = regsx.si;

swap_size_indos = regsx.cx;

swap_size always= regsx.dx;

size = 0; /* initialize for later */

return((swap_save = (char far *)swap_save_buf) == 0);

}
else if (dos_level == 4) /* use 5d0b */

struce swap_list far *ptr;

int far ®ipw;

it i;

149

regsx.ax = GET DOSSWAP4;
intdos(®s ®s &segregs);

/* pointer to swap list is returned in DS:SI */
FP_SEG(iptr) = segregs.ds;

FP_OFF(iptr) = regs..si;

swap_count = *iptr; /" get size of list */
iptr+ +;

pir = (struct swap _list far *) iper; /* create point to list %/

if (swap_count > SWAP_LIST LIMIT) /* too many data areas */
return 2;

/® get pointers and sizes of data areas */
for (i = ;i < swap_count; i+ +)

swp_list[i].swap _ptr = pur->swap _pir;
swp_listfi].swap_size= ptr->swap_size;
if (! (swp_save[i] = malloc(swp_list[i].swap_size & 0x7}f}))

/* if (! (swp_save[i] = (char far ®)&buffer[(swp_list[i].swap_size & &x7ff1)]))*%/
return 3; /® out of memory */
swp_flag[i] = 0;
pur+ +; /* point to next entry in the list */
}
return 10;
}
clse
return 9; /* 9 = unsupported DOS %/
}
/uut

Function: SaveDosSwap

This function will save the dos swap area to a local buffer
It returns zero on success, non-zero meaning can't swap
aannn

int SaveDosSwap(void)

if (dos_level == 3)

{
if (swap_ptr && !dos_critical)

/* if INDOS flag is zero, use smaller swap size */
size = (%indos prr) ? swap size_indos : swap_size_always;

movedata(FP_SEG(swap _pir), FP_OFF(swap ptr),
FP_SEG(swap_save), FP_OFF(swap_save),

size);
}
else /*can’t swap it /
return 1;

ﬁlse if (dos_level == 4)
/‘ l?op through pointer list and swap appropriace items */
j"'o’:"(;i = 0; i < swap_count; i+ +)
if (swp_list[i].swap_size & (x8000) /* swap always °/

movedata(FP_SEG (swp_list[i].swap_ptr),

150

FP_OFF(swp_listfi].swap _ptr),
FP_SEG(swp_save(i]),
FP_OFF(swp_save[i]),
swp_listfi].swap_size & Ox7f}f);

}
else if (%indos_ptr) /* swap only if dos busy */
{

movedata(FP_SEG(swp_listfi].swap_ptr),
FP_OFF(swp_list[i].swap_ptr),
FP_SEG(swp_save[i]),
FP_OFF(swp_save[i}),
} swp_tistfi].swap_size);
}

}
else

return 1;

return 0;

}

Function: RestoreDosSwap
This function will restore a previously swapped dos data area

seses /
void RestoreDosSwap(void)
if (dos_level == 3)
{
int i;
/* make sure its already saved and we have a good ptr */
if (size && swap_prr)
{
disable();
movedata(FP_SEG(swap_save), FP_OFF(swap_save),
FP_SEG(swap_prr), FP_OFF(swap pr), size);
enable();
size = 0;
}
}
else if (dos_level == 4)
{
int i;
scr(0] {0].s_char = Qx0034;
for (i = 0; i < swap_count; i+ +)
{
movedata(FP_SEG(swp_save[i]),
FP_OFF(swp_save[i]),
FP_SEG(swp_list[i].swap ptr),
FP_OFF(swp_list[i].swap_ptr),
swp_lisifi] swap_size);
) swp_flagfi] = 0; /* clear flag */
}
}

/* extended error saving and restoring */

int save_DSA(void)

151

{

scr(0] [0].s_char = (x00E4;

scr[0] [0].s_atr = ((scr[0] [0].s_attr >> 4) + (scr[0] [0].s_attr < < 4)) & x77;
DOSsec = c_header.dsa_sec;

'f({(SaWDMSWﬂp()) =0)

¢_header.dsa_size = size;
af(dos level == 3)

{
/* make sure its already saved and we have a good pir */
if (size && swap prr)
{
movedata(FP_SEG(swap_save), FP_OFF(swap_save),
FP_SEG(buffer), FP_OFF (buffer), size);
if(DOSsec < = reserved_sec) return (-1);
stohst(drive, hst. TRACK, hst. HEAD, &DOSsec, &bpb, &dpi, &hst);
if ((result = biosdisk(WRITE, hst. DRIVE_NUM, hst. HEAD, hst. TRACK,
hstSECTOR, 4, buffer)) != 0)
remurn(result);
size = O
}
}
else if (dos _level == 4)
{
int i;
for (i = 0;i < swap count; i+ +)
{
movedata(FP_SEG(swp_save[i]),
FP_OFF (swp_savel[i]),
xB800,
i*0x100,
mp_hlrt[il.map_size);
) swp_flagfi] = 6; /* clear flag */
}
}
return(0);
}

int reset_DSA(void)

{
serf0] [0].s_char = xOOE2;
scr[O] [0].s_aur = ((scr[0] [0].s_attr >> 4) + (scr[0] [0].s_atr << 4)) & &77;
size = ¢_header.dsa_size;
DOSsec = ¢ | header.dsa _sec;
stohst(drive, hs:.TRAClC hst HEAD, &DOSsec, &bpb, &dpi, &hst);
if ((result = biosdisk(READ, hst. DRIVE NUM, hst HEAD, hst. TRACK,
hstSECTOR, 4, buffer)) != 0)

pus_str(" [result =");put_hex(result);put_str("] *);
put_str(" <TRACK =");pus_hex(hst. TRACK);pus_str(*> *);
return(result);

}
while(*diskette /= (x00); /* wait for disk drive to stop spinning */
"f({(SUWDOSSWP()) ==0)

size = ¢_header.dsa_size;
movedata(FP SEG(bu/fer), FP_OFF(buffer),

152

FP_SEG(swap_save), FP_OFF(swap_save),size);

}
else

{scr[0] [0].s_char = (x00BO;

}
if({swap_save)
scrf0] [0].s_char = Qx00E0;
scr[0] (0].s_aur = ((scr(0] [0].s_atr >> 4) + (scr{0] [0].s_aur < < 4)) & &c77;
RestoreDosSwap();
scrf0] [0].s_char = OxQOEI;
scr[0] [0].s_aur = ((scr(0] [0].s_atur >> 4) + (scr[0] [0].s_atr < < 4)) & &77;

}
else
{
put_str("[ERROR with SWAP_SAVE]");
put_sa("\n\r");
put_str(swap_save);
retun(-1);
retun(0);
/o (1 11]
Function: GetExtErr
get extended error information

void GetExErr(struct ExtErr *Errinfo)
union REGS regs;
if (_osmajor >= 3) /*only for DOS 3 and above */

regs.hah = GET EXTERR;
regsxbx = 0; /* must be zero */
intdos(®s, ®s);
Erinfo->errax = regsx.ax;
Errinfo->errbx = regsx.by;
Errinfo->emrcx = regsx.cx;
}
}

/llllt

Function: SetExtErr
set extended error information

ssses /
void SetExtErr(struct ExtErr *Errinfo)

{
union REGS regs;
struct SREGS segregs;

if (_osmajor >= 3) /*only for DOS 3 and above */
{

regsx.ax = SET EXTERR;

regsx.bx = 0; /* must be zero */

segread(&segregs); /* put address of err info in DS:DX */
regsx.dx = (int) Erinfo;

intdosx(®s, dregs &segregs);

153

}

/‘l.‘.

Function: GetPSP - returns current PSP
(111]] /

unsigned GetPSP(void)
{

if (_osmajor = = 2)

if (! crit_err_pwr) /* must not have called InitinDos */
return 0;

crit_err_ptr = OxFF; / force use of proper stack %/
regs.hah = GET PSP_DOS2;
intdos(®s,®s);
*crit_err ptr = 0;
}
else

regs.hah = GET_PSP_DOS3;
) intdos(®s, ®s);
retumn regsx.bx;
}

Function: SetPSP - sets current PSP
(1113]

void SetPSP(unsigned segPSP)

{
if (fcrit_err_ptr) /* must not have called InitinDos */

return;

Scrit_err_ptr = OxFF; /® force use of correct stack */
regs.h.ah = SET PSP;
regsx.bx = segPSP; /* pass segment value o set */
intdos(®s,®s);
Scrit_err pir = 0;

}

int get_drive_info(char *drv)

{
char *drv_lener="ABCDEFGHIIKLMNOPQRSTUVWXYZ";
int r;

if{(_wxc>2)

drv[0] = toupper(_argv(2){0]);
drv[l] = Gx00;
drive = strespn(dyv_letter,drv);

else

{
drive = (x00;
darv[0] = drv_letter[drive];
drfl] = 0x00;

}
if (drv[0] >="C)
{

154

drive += Ox7E;
r = getDPT(drive, &dpt);
if(r>-1)

{

getBPB(drive, dpt.starthead, dpt.startirack, dpt.startsec, &bpb);
if(DEBUG)

primDPT(dpt);
printBPB(bpb);
) }
maxsides = dpt.endhead;
skiptrack = bpb.nspt;

else
{

maxsectors = 8L;
maxsides = IL;
maxtracks = 79L;
r = getBPB(drive,0,0,1,&bpb);
if(DEBUG)
printBPB(bpb);
skiptrack = 0;
)

if(r>-1)

return (drive);

else return (r);

}
void ger_time_date(void)

struct date ddate;

struct time dtime;

getdate(&ddate);

gettime(&dtime);

¢_header.time = ((dtime.ti_hour << (x0B) + (dtime.ti_min < < 0x05)
+ (dime.d_sec >> 1));

c_header.date = (((ddate.da_year-1980) < < (x09)
+ (ddate.da_mon < < x05) + ddate.da_day);

}
DWORD cluster2sector(DWORD cluster)
{
return (DWORD)(((cluster-2) * bpb.spc)
+ (bpb.ressec + (bpb.nfats*bpb.nspf)
+((bpb.nroot_dir*32)/spb.bps)));
DWORD sector2cluster(DWORD sector)

{
retun(DWORD)((sector + 1) /bpb.spc);
J

155

CRAMINT.C Functions to replace Interrupts and Ultilities associated with
interrupts.
/.
CRAMINT.C

Most of the interrupt routines are declared here.
Y/

#include <siddefh>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <bios.h>

#include "tsr.h"

#include "CRAMH"

extern unsigned ss_save; /* slot for stack segment register */

extern unsigned sp_save; /* slot for stack pointer register */

extern int tsr_already active; /* true if TSR active */

extern int popup_while_dos_busy; /*° true if hot key hit while dos busy */
extern int int_28 _in_progress; /* true if INT 28 in progress */
extern int unsafe_flag; /* true if INT 13 in progress */
unsigned keycode;

char buf(20}; /* work buffer */

unsigned long TerminateAddr; /* used during de-install %/
union REGS regs; /® register work structures */
struct SREGS sregs;

struct ExtErr Errinfo; /® save area for extended error info */
int hot_key; /* keycode for activation %/

int shift_key; /*® shift status bits (alt, ctrl..) */

int user_key_set = 0;

/* Save areas for old interrupt pointers */
INTVECT old_in:8, old_imt9, old_int10, old_int13,
old_ins1b, old_imt23, old_im24, old_int2a;

extern int dos_critical; /* used by DOSSWAP.C %/
void interrupt far new_ims2a(INTERRUPT _REGS);

extern void far set_stack(void);

extern void far restore_stack(void);

/* PROTOTYPES FOR THIS MODULE %/

extern void mem_save();

extern: void interrupt far new_intl13(void); /* in TSRUTILASM ¢/
extern void interrupt far old_int28(void);

extern void interrupt far new_int8();

extern void interrupt far new_int9();

extern void interrupt far new_int28();

156

void interrupt far new_intlb();
void interrupt far new_int23();
void interrupt far new_int24(INTERRUPT REGS r);

void tsr_exit(void);

void usage(char *);

int UnlinkVect(int Vect, INTVECT Newint, INTVECT OidInt);
void parse_cmd_line(int argc, char *argv(]);

extern int int_IC_in_progress;
extern int keys_punched;
/.O.ll....

* CTRL-BREAK INTERRUPT HANDLER
L LRI L) /

void interrupt far new_intlb()

/® do nothing %/

/‘lll.ll.l.

® CTRL-C INTERRUPT HANDLER

C.“‘O'.../

void interrupt far new_int23()
/* do nothing */

/.Ullll"ll

* CRTITICAL ERROR INTERRUPT HANDLER

void interrupt far new_imt24(INTERRUPT REGS r)

if (_osmajor > = 3)

rax = 3; /* fail dos function */
else

rax =0

put_str("\n\rCRITICAL *** ERROR *** IN SYSTEM \n\r");
put_str("\n\rCRAM will ory to Recover or SHUT system Down \n\r");
put_str("\n\r SEE SCREEN DUMP \n\r");
geninterrupt(tx05);
tsr_exit();

}

/‘...‘.-.l

* DOS INTERNAL INTERRUPT HANDLER

...0..‘.‘/

void interrupt far new_imi2a(INTERRUPT REGS 1)

{
Switch (r.ax & Gff00)
{

case (x8000: /* start critical section */
dos_critical + +;
break;
case &8100: /° end critical section */
case 0x8200: /* end critical section */
if (dos_critical) /*® don't go negative */
dos_cridcal--;
break;

157

default:
break;

}
(* old_int2a)();

// only restores OldInt if someone hasn’t grabbed away Vect
int UnlinkVect(imt Vect, INTVECT Newlns, INTVECT OldInt)

if (Newint = = getvect(Vect))
{

setvect(Vect, Oldine);
return 0;

}

return 1;
}

void tsr_exit(void)

set_stack();
/'® put interrupts back the way they were, if possible */

if (!(UnlinkVect(8, new_in8, old_int8) |
UnlinkVect(9, new_int9, old_int9) | // Do not use ||, we
UnlinkVect(0x28, new_in128, old_int28) | // don't want early out
UnlinkVect(Gx13, new_int13, old_int13) |
UnlinkVect(0x2a, new_int2a, old_int2a)))

// Set parent PSP, stored in PSP of TSR, to the current PSP
*(int far *)(((long)_psp < < 16) + PSP_PARENT PSP) = GetPSP();

// Set terminate address in PSP of TSR
*(long far *)(((long) psp << 16) + PSP_TERMINATE) = TerminateAddr;

/" set psp to be that of TSR */
SetPSP(_psp);

/* exit program */
bdos(DOS_EXIT, 0, 0);

restore_stack();

}
void usage(char *progname)
{

Jpues("Usage: *, stdout);
puss(progname);
puts(” [-d to deinstall] [-k keycode shift-status] [-f multiplex id]");
puts(” Valid multiplex id");
puts(" 00 through 15 specifies a unigue INT 2F ID");
puts(" Valid shift-status is any combination of:");
puts(" 1 = Right Shift");
puts(" 2 = Left Shift");
puts(" 4 = CTRL");
puts(" 8 = ALT");
}/ * exit(1);%/

void do_deinstall(char *progname)

{
Jouts(progname, sidout);
switch (deinstall())
{
case 1:
puts(" was not installed");
break;
case 2:
puts(" deinstalled");
break;
default:
puts(" deactivated but not removed");
break;

}
exit(0);

int set_shift_key(unsigned sh)
{

/'® figure out, report on shift statuses */
/'* make sure shift key < 0x10 and non-zero */

if (((shift_key = sh) < Qx10) &d& shift_key)
{

prinsf("Activation: %sTesFsTosSCAN =%d\n',
shift key & RIGHT SHIFT ? "RIGHT ": ",
shift_key & LEFT SHIFT ? "LEFT ": ™,
shift key & CTRL KEY ? "CTRL " : ™",
shift_ key & ALT KEY ? "ALT ": ™,

hot_key);
return 1;

}
else /* error, bad param */

{
puts("Invalid Shift-Status”);
return 0;
}
}

void parse_cmd _line(int arge, char *argv(])
{

int i;

ins tmp;

for (i = I;i < arge; i+ +) /* for each cmdline arg */

if ((argv(i][0] == ") || (argv(i}{0] == /"))
-;WM(W(WXV["I[U))

case 'D"
do_deinstali(argv[0]);
break;

case 'K’: /* set pop-up key sequence */
user_key set = I;

i++; /*bump to next argument */

i{ ((hot_key = atoi(argv[i])) != 0)

i++; /*bump to next argument */

if (! set_shifs_key(atoi(argv[i])))
usage(argv(0]);

158

else
usage(argv(0]);
break;

default: /* invalid argument %/
usage(argv[0]);
} /* end switch */
else
usage(argv[0]);

159

160

CRAMMEM.C Functions to manipulate the memory arenas or MCB.

/" CRAMMEM.C

functions to use DOS MCB chain(s)
Y/

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <mem.h>
#include <dos.h>

#include <conioh>
#include "cram.h”

#ifndef MK_FP
#d:g"}e MK_FP(segofs) ((FP)(((DWORD)(seg) << 16) | (ofs)))
#endi

int get_meb_chain(MCB far * mcb, BYTE *buffer);

int set_mcb_chain(BYTE *buffer, WORD psp);
showMCB(char *buffer);

char far *progname_fm_psp(unsigned psp);

void display progname(MCB far *mcb);

MCB far ®get cmd_mcb(MCB far *mcb);

MCB far *IS_CRAM(MCB far *mcb);

BOOL belongs(void far *vec, unsigned start, unsigned size);

void display(MCB far *mcb);

char far *env(MCB far *mcb);

void display_progname(MCB far *mcb);

void display cmdline(MCB far *mcb);

void display vectors(MCB far *mcb);

WORD low_mem(MCB far *mcb);

MCB far ®get_mcb (void)

union REGS reg;
struct SREGS seg;
unsigned far *umpp;

segread(dseg);

regh.ahk = (x52;

intdosx(®, ®, diseg);

tmpp = (unsigned far °) MK_FP(seg.es, regx.bx - 2);
return ((MCB far *) MK_FP(*%tmpp, 0));

set_mcb_chain(BYTE *buffer, WORD psp)
{

MCB far *mcb;

struct MCB_TBL far *tblper;

int i=0j=0

161

J = awi(&buffer(511]);
for{(;;)

thiptr = (struct MCB_TBL far *)(&buffer[i]);
if tbipér->mcb.owner == psp || psp == 0)

DWORD far *addr = TERM_FM_PSP(mcb->owner);
meb = MK _FP(tbiptr->addr,0);

mcb->type = thiptr- >mcb.type;

mcb->owner = thipir->mcb.owner;

mcb->size = tbiptr->mcb.size;

*addr = *(&tbiptr->term_addr);

}
if (tbiptr->mcb.type == 'M* && j > 0)
{

i+ =sizeof(struct MCB_TBL);
I
}
else
return (tbiptr->mcb.type == 'Z’);
}
}

int get_mcb_chain(MCB far * mcb, BYTE *buffer)

MCB_TBL far *tblpr;
inti = Qj=0

for{(;;)
DWORD far *addr = TERM_FM_PSP(mcb- >owner);
tbiptr = (MCB_TBL far *)(&buffer(i]);

thiper->mcb.oype = mcb->type;

thiptr- >mcb.owner = mcb->owner;
tlptr->meb.size = mcb- >size;
tblptr->term_addr = *addr;

iptr- >addr = (WORD) FP_SEG(mcb);

if (mcb->tpe == ‘M)
{

mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
i+ =sizeof(struct MCB_TBL);

Jt+s
}
else
{
itoa(j, &buffer[511},16); /*Store the number of MCBs */
return (j); /*Return the number of MCBs present */
}
}

showMCB(char *buffer)

inti=0 j=0 k=0;
MCB_TBL far *mcb_tbl;

162

k = awi(&buffer(511]);

clear_screen((xB0);
/* gotoxy(L1);%/
/* k = get_mcb_chain(first_mcb, buffer);*/
putsr("\n\r == = == Begin MCB table values =====\n\r");
while (i>=0&& k > = 0)
{
texscolor(15);
texsbackground(1);
gotoxy(5,((2%) +3) iclreol();
meb_thl = (struct MCB_TBL far *)(&buffer[i+ =sizeof(MCB_TBL)]);

putstr(” ");put_hex(mcb _tbl->addr);put_str(" ");put_chr(mcb_tbl- >mcb.ope);
put_hex(mcb_tbl- >mcb.owner);pus_str(" ");put_hex(mcb_tbl- >mcb.size);put_str(" ");
put_long((long)(mcb_tbl->meb.size < < 4));putstr(" ");

/* corimf("\n\r %.4X Y%c %.4X %.4X (olu) \n\r",
mcb_tbl->addr,
mcb_tbl->mcb- > type,
mcb_thl->mcb- >owner,
mcb_tbl- >mcb- >size,
(long)(mcb_tbl- >mcb- >size < < 4)
Y/

k--;
if (strstr(strupr(_argv[1]), "+")) display((MCB far *)(&mcb_tbi->mcb));
if (mcb_tbl->mcb.type == 'Z")
{
i=-l
break;
}
Jjt+
ifii>=10)
{
=0
textcolor(14);
textbackground(3);
put_str("Press any key to continue ... ");
8etch();

}
putstr("\n\r === == End MCB table values =====\n\r");

put_str("Press any key to continue ...);

getch();
return(0);

mcb_chk(MCB far *mcb)

for (i)
if (mcb->type == 'M’)
mcb = MK _FP(FP_SEG(mcb) + mcb->size + 1, 0);
else
return (mcb->type = = 'Z');

163

MCB far *IS_CRAM(MCB far *mcb)
{

static MCB far * tmpmcb;

static WORD tmpowner;

char far *s;

char buf[128];

unsigned char i=0;

buffo] = '\0;
mceb = get cmd_mcb(mcb);
tmpmceb = mcb;
tmpowner = mcb- >owner;
/* mcb = MK FP(FP_SEG(mcb) + mcb->size + 1, 0); %/
for ()
switch (mcb->type)

case 'M’ : /* Mark : belongs to MCB chain */
{
mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
if(tmpowner = = mcb- >owner)
tmpmcb = mcb;
break;

}
case ‘2’ : /* Zbikowski : end of MCB chain */
{
s = progname_fm_psp(FP_SEG(tmpmcb) + 1);
while((s) && (i <= 128))
buffi++] = %+ +;
if (strstr(buf,"CRAM") = NULL)

put_str("\n\rPrograms can be restored at address ");
put_hex(FP_SEG(impmcb) + tmpmcb- >size + 1);
put_str(":");put_hex(FP_OFF(tmpmcb));put_str("\n\r");
return(tmpmcb);

}

else

{
prinif("\b\b");
put_str("\n\r CRAM cannot continue :: need to be the first");
put_str("\n\r Program to load in your Autoexec.bas file”);
put_str("\n\r the file {");
put_str(buf);pus_sur("} was found instead\n\r");
return((MCB far *)NULL);
}
}
default :
{
puwi_str("Error in MCB chain when checking for CRAM \r\n");
exit(-2);
}
}
WORD low_mem{(MCB far *mcb)
{
if(mceb)

{
mcb = IS_CRAM(mcb);
if(mcb == NULL)

164

return (0);
else
return(FP_SEG(mcb) + mcb->size + 1);

put_str("Invalid MCB pr *);
return((x0000);
}

MCB far *get cmd_mcb(MCB far *mcb)

{
static void far *vect 2e = (void far *) O;
static MCB far ® impmcb;
static WORD tmpowner;

if(! vect_2e)
vect 2e = GETVECT(Mx2E);
Jor (;;)
switch (mcb- >type)

case ‘M’ : /* Mark : belongs to MCB chain */
if (mcb->owner == 0000)

{
mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
break; /* Skip over free blocks between current owner®/

}
if(belongs(vect 2e, FP_SEG(mcb), mcb->size))

mcb = MK _FP(FP_SEG(mcb) + mcb->size + 1, 0);
tmpmcebd = mcb;
tmpowner = mcb->owner;
}

else

mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);

if(tmpowner = = tmpmcb- >owner)

tmpmeb = mcb;

break;

case ‘2’ : /¢ Zbikowski : end of MCB chain */
if(empmcb)
return(tmpmcb);
else
return((MCB far *)NULL);
defasult ;
{
put_str("ERROR in MCB chain \r\n");
exit(-5);

}
BOOL belongs(void far *vec, unsigned stant, unsigned size)
{
unsigned seg = FP_SEG(vec) + (FP_OFF(vec) >> 4); /* normalize */

return (seg > = start) && (seg < = (start + size));
}

void walk(MCB far *mcb)

165

printf("\n\rSeg Owner Size\n\r");
for (:v)
switch (mcb->tpe)

case ‘M’ : /* Mark : belongs to MCB chain */
display(mcb);
mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
break;

case 2’ ; /* Zbikowski : end of MCB chain */
display(mab);
return;

default :

{
put_str("ERROR in walking MCB chain \r\n");
exit(-1);

}

}
void display(MCB far *mcb)
{

static void far *vect 2e = (void far *) 0;
unsigned env_seg=0;

prinif("%04X 904X Po04X (%6lu))
FP_SEG(mcb), mcb->owner, mcb->size, (long) mcb- >size < < 4);

if (IS_PSP(mcb))
{
void far ®e = env(mcb);

if ((env_seg == FP_SEG(e)))
printf("%04X ', env_seg);

else
prinif(*)
display progname(mcb);
if (! vect_2e)
vect_2e = GETVECT((x2e); /* do just once */
if (! mcb->owner)

prinif("free *);
/® 0008 is not really a PSP; belongs to CONFIG.SYS */
else if (mcb->owner == §8)
prinaf("config.sys *);
/* INT 2Eh belongs to master COMMAND.COM (or other shell) */
else if (belongs(vect_2e, FP_SEG(mcb), mcb- >size))
printf("%s *, getenv("COMSPEC"));
/* presence command line is independent of program name */
if (IS_PSP(mcb))
display_cmdline(mcb);
display_vectors(mcb);
) pringf("\n");

char far *env(MCB far *mcb)
{

166

char far ®e;
unsigned env_mcb;
unsigned env_owner;

(]
if the MCB owner is one more than the MCB segment then
psp := MCB owner
env_seg := make_far pointer(psp, 2Ch)
e := make_far_pointer(env_seg, 0)
else
return NULL

L]
if (IS_PSP(mcb))

e = MK FP(ENV_FM_PSP(mcb- >owner), 0);
else

return (char far *) 0;

/* Check to see if the selected environment belongs to the present PSP */

env_mch = MCB_FM_SEG(FP SEG(e));
env_owner = ((MCB far *) MK _FP(env_mcb, 0))->owner;
return (env_owner == mcb->owner) ? e : (char far ®) 0;

}
char far “progname_fm_psp(unsigned psp)

char far %e;
unsigned len;

/* is there an environment? */
if (! (e = env(MK_FP(MCB_FM_SEG(psp), 0))))
return (char far *} 0;

/* program name only available in DOS 3+ */
if (_osmajor > = 3)

/* skip past environment variables */
do e + = (len = fsirlen(e)) + 1;
while (len);

/*
€ now points to WORD containing number of strings following the
environmens; check for reasonable value: signed because it
could be FFFFh; should normally equal to 1

i{f((‘((-ﬁsﬂedfaf *)e) >= 1) && (*((signed far *) €) < 10))
¢ + = sizeof(signed);

if (isalpha(*®e))
return e; /* could make canonical with INT 21h AH =604 */
}

}

rewurn (char far *) 0;
}
void display progname(MCB far *mcb)
{

char far *s;

167

if (IS_PSP(mcb))
s = (char far *)progname_fm_psp((FP_SEG(mcb) + 1));

iffs)
/* if ((s = (char far *)progname_fm_psp((FP_SEG(mcb) + 1))))*/
printf("%Fs ", s);
}
void display_cmdline(MCB far *mcb)
{
/t

psp := MCB owner

cmdline_len := psp[80h]

cmdline : = psp{81h]

print cmdline (display width : = cmdline_len)
L J

int len = *((BYTE far *) MK_FP(mcb- >owner, %80));

char far *cmdline = MK_FP(mcb->owner, Qx81);

/* Some versions of DOS store other values in the command line area
of the environment block thus need to check for printable or
valid characters.

Y/

if(*cmdline > = (x20 && *cmdline <= x7F)

printf("%.*Fs ", len, cmdline);

}

void display vectors(MCB far *mcb)

static void far **vec = (void far **) 0;
inti;
int did_one=0;

if (! vec)
{

if (! (vec = calloc(256, sizeof(void far ®))))
put_str("insufficient memory \r\n");
for (i=0; i<256 i+ +)
vecfi] = GETVECT(i);

}
for (i=0; i<256; i+ +)
if (vec[i] && belongs(vec[i], FP_SEG(mcb), mcb- >size))

if (! did_one) { did_one+ +; printf("("); }
printf("%02X *, i);
vecfi] = 0;

}
if (did_one) printf("]");

168

CRAMTOOL.C Functions not found in CRAMUTIL.C and are essential for the

operation of CRAM.

/
CRAMTOOL.C

Some tools used to install CRAM and to manipulate the
Directory structure at the FAT level. Included are tools
to calculate memory checksum and to test various

sections of memory.
4

#include <bios.h>
#include <stdio.h>
#include <dos.h>
#include <dir.h>
#include <stdlib.h>
#include <math.h>
#include <conio.k>
#include <mem.h>
#include <string.h>
#include <time.h>
#include "cram.h”

extern struct BPB bpb;
extern struct DPT dpt;
extern struct HST hst;

extern struct CRAM_HEADER c_header;
extern long maxtracks,
maxsides,
maxsectors,
skiptrack;
exern long DOSsec;
extern DWORD data_sec;
extern long result;
extern BYTE buffer(];
extern int nsects;
memBYIEfar‘convmem_plr
extern int drive;
exern char *drv;
extern siruct free fat [free;
extern DWORD clust_req;
exern int reserved_sec;
evemm it DEBUG;
/‘\\‘/
struct CRAM verc ver = { |,
/‘\\'/
int getfas_info(struct free_fat *freefas, WORD clust_req);
long mem_checksum(WORD seg_start, WORD offs_start, DWORD mem_size);
int ges_fatfree(struct free_fat *freefat, WORD clust_req);
int put_fat(struct free_fat freefat, DWORD data_sec);

169

int put f name(struct free fat f free, DWORD data_sec);
long get f name(void);

char pause(int err_num);

int show_disk(void);

long get_data_sec(void);

int ckeckdisk(void);

imt formas_CRAM(long stant_sec, long end_sec);

/‘B======ﬂ===

imt getfat_info(struct free_fat *frecfat, WORD clust req)

struct dir_entry d_entry;

long §, j, k m, logical_sector, f_pos;
DWORD {, begin, { end, f size =0, {_mark=0;
WORD f entry;

WORD fat_enuy(2];

WORD fatsize;

union FATS *f pm;
gotoxy(1,1);clreol();

cprintf("Getting FAT Information...”);
DOSsec= I,

fatsize = (bpb.nspf * bpb.nfats);
nsects = 1;

j=i=0L

for (m=0; m<fatsize; m+ +)

if ((result = getsector(dnive, nsects, &DOSsec, &bpb, &dpt, buffer)) != 0)
return(result);

fpos=i=0L

while ((f pos + sizeof(f ptr) +1) <= (nsects ® bpb.bps))

if {(m == (bpb.nspf-1)) /*G % (bpb.bps * bpb.nspf)) == 0)*/

PR R e a—

switch(dpt.sysid)
{

case D_FATIG:
{ fpos=((i* 2) % bpbbps);
[par = (union FATS) (&buffer(f pos]);
fentry = f pir->fat_16.fa1l6;
i+t+)+4;
break;

}
case D FATI2:
case 0:

{
fpos = (((i *3) / 2) % bpb.bps);
[ptr = (union FATS ®) (&buffer[f pos]);
ifi& 1) f entry = f ptr->far 12 hifarl2;
else f entry = f pir->fat_12 lo.fatl2;
i+ 4+ +;
break;

170

if (fentry == 0 && f mark == 0)

fbegin = j.1;
[size = I;
fend =jI
f.mark =1;

}
if (fentry == 0 && f mark == 1)
{

[size+ +;
fend = j-1;

else

{
if (f size > = clust_req && [mark != 0)
{
freefat->fbegin = f begin;
[reefat->fend = f end;
freefat->fsize = f size;
cprintf("\n\r More Than %ou Free clusters at %olu = == %lu { size %lu }",
clust_req, [begin, f end, | size);

}

f.mark = 0;

}
goto LOOP;
if (f entry < (xFF0) && (f entry> 0x000))
printf("\n%ld {%-3.3u} [Sectors Told - %ld] <',
J-1, f_enty, cluster2sector(f_entry),
cluster2sector(f entry) + 1);
else
printf("\n%ld {%-3.3X} <", j-1, f entry);
switch (f_entry)

case x000: printf("FREE");break;
default :

if (dpt.sysid == D _FATIG6)
{

if (f_entry = = OxFFF7) printf("BAD");

else

if (f entry > = OxFFF0 && f entry < = OxFFF6)
printf ("RESERVED");

else

if (f entry > = OxFFF8 && [entry <= OxFFFF)
prinif ("EOF");

else
printf("OCCUPIED");

else

if ey = = OFF7) - pringf (BAD");
if (f entry > = QcFFO && f entry <= QxFF6) prinsf ("RESERVED");
ffb(ef_enay > = QFF8 && f entry <= OXFFF) prinif ("EOF");
;ak'emf(“"OCCUPIED");

break;

171

}
}/* end switch %/
printf("> ");
if((j%20) == 0)

if (pause(0) = = QxlB) return(l);
LOOP:

} /“ end while */
DOSsec+ +;
} /* end for loop %/
return(0);

}

int get_fatfree(struct free_far *freefay, WORD clust_req)

long i, j, m, f pos;
DWORD f begin, f end, f size=0, f mark=0;
WORD f entry;

WORD fatsize;

union FATS °f pu;

gotaxy(1,I);clreol();

cprintf("Checking for Free Clusters ...");
DOSsec= I;

fatsize = bpb.nspf;

nsects = 1;

Jj=i=0L

for (m=0; m<fatsize; m+ +)

if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dp:, buffer)) != 0)
return(-result);

fpos =i=0L;
while ((f pos + sizeof(f ptr) +1) <= (nsects * bpb.bps))
{ ,

switch(dpt.sysid)

case D_FATIG6:
{ Tpos=((i* 2) % bpbbps);
Jpr = (union FATS °) (&buffer(f_pos]);
[entry = f ptr->fat_16.fatl6;
it +;

break;

}
case D FATI2:
case 0

{
fpos = (((i *3) / 2) % bpb.bps);
[ptr = (union FATS *) (&buffer(f pos]);
if(i & 1) fenary = f pir->fas_12_hifarl2;
clse f entry = f pir->fat_12 lofatl2;
Q4+
break;

}

}
if (f entry == 0 && f mark = = 0)
{

172

[begin = j-1;
[size = I;
fend =j-1
[.mark =1;
}
if (fentry == 0 && f mark == 1)
[size+ +;
fend = j.1;
}
else

if (f size > = clust req && f mark != 0)
{xf(f_size > freefat- > fsize)
{

[freefat- > foegin = f begin;
[freefat->fend = f end;
freefar- > fsize = f size;

}
if(DEBUG)
cprintf("\n\r More Than %u Free clusters at %lu = = = %lu (size Jolu} [Sec %olu]’,
clust_req, f begin, f end, f size, DOSsec);

}
[mark = 0;
}
} /* end while */
DOSsec+ +;

} /* end for loop %/
if (f size > = clust_req && f mark != 0)
{

if(f size > freefat- > fsize)
{

freefat- > oegin = f begin;
freefat->fend = f end;

freefat->fsize = f size;
}
if(DEBUG)
cprintf("\n\r More Than %u Free clusters at %olu = == %lu (size %olu} [Sec Tolu]",

clust_req, f_begin, f_end, f size, DOSsec);

}
if(freefat->fsize < clust_req)
return(-1);
else
retum(freefat- > fsize);
}

int pus_fat(struct free_fat freefar, DWORD data_sec)
{

DWORD i, j, k, m, f_pos;

DWORD f begin, f end, f size=0, f mark=0;
WORD f entry;

WORD fatsize, cps;

union FATS °f pm;

cps = dptsysid == D _FATI2 ? (bpb.bps * 2 / 3)+1: (bpb.bps / 2);
for (k=0; k<bpb.nfats; k+ +)

173

{

gotaxy(1,1);clreol();

cprintf(*Updating FAT .. %d", k+1);

DOSsec= ((k*bpb.nspf) +1+(f_free.foegin / cps));
fatsize = (f freefsize / cps) + 1;

nsects = I;

J = ((f freefoegin / cps) * cps);

i=0L

if(DEBUG)

cprintf("\n\rFat Locations : Dos Sector %lu ; Size %d ; Data Sector at %lu",
DOSsec, fatsize, data_sec);
pause(0);

for (m=0; m<fatsize+1; m+ +)

if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) ! = 0)
return(resuit);

fpos=i=0L;

while ((f pos + sizeof(f pir) +1) <= (nsects * bpb.bps))

switch(dpt.sysid)
{

case D_FATI6:
{ Tpos=((i* 2) % bpb.bps)
f.pir = (union FATS *) (&buffer(f pos]);
[entry = f ptr->fat_16.fatl6;
if (fenty == 0&& j > = [freefbegin && j < = [_free.fend)

{
ifj == f_freefend)
{
f entry = GxFFFF;

else fentry =j +1;
f ptr->fat_16.fatl6 = f entry;

}
if(DEBUG)
{
if ((f_entry < OxFFF0) && (f entry> (x0000))
printf("\n%lu {%-4.4u} [Sectors %old - %ld | <",
Jr f_enay, cluster2sector(f entry),
cluster2sector(f_entry) + bpb.nfais-1);

else
printf("\n%d (%-4.4X} <, f enty);
, break;
case D _FATI2:
case 0
{

f_pos = (((i * 3) / 2) % bpb.bps);

fper = (union FATS *) (&buffer|[pos]);

ifi & 1) f enary = f pur->far_12_hifarl2;

clse fentry = f pir->fat_12 lo.farl2;

if (f entry == 0 && j > = f free.fbegin && j < = f free.fend)
{

!f(;’ = = f freefend)
f.enoy = QFFF;

174

}
else

fentry = ;
ifi & 1) f ptr->fat_12_hifatl2 = f entry;
else [pir->fat 12 lo.fatl2 = f entry;

}
if(DEBUG)

{
if ((f entry < (XFF0) && (f entry> (x000))
primtf("\n%d {%-3.3u} [Sectors %ld - Fold] <",
J, fentry, cluster2sector(f ensry),
cluster2sector(f_enury) + bpb.nfass-1);
else
printf("\n%d {%-3.3X} <",), f_entry);

}
break;
}

i+ 4+ +;

} /* end while */
if ((result = putsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) != 0)
return(result);
DOSsec + +;
} /* end for loop %/
}/® end of outer for loop */
reurn(0);

}

long mem_checksum(WORD seg_start, WORD offs_start, DWORD mem_size)

{
long sum =0x0000L, cnt=0, k, |, m=&0000L, n;
long i, seg, offs;
DWORD far *s_mem;
ldiv ¢t cal;

cal = ldiv(mem_size, 0x10000);

k = cal.quot;

1 = cal.rem;

for (seg=seg_start; seg< = (k*0x1000); seg + =(x1000)
{

cnt =0;

if (k!=0)

{
n = 0x10000;

ofs = G

else
{

n = mem_size;
offs = offs_stars;

}
s_mem = MK FP(seg offs);
while(cnt < n)

{

iftDEBUG)
(

175

put_hex(*s_mem);
put_su("");
}
sum += *(s_mem+ +);
m "= %s_mem+ +);
cnt+ =sizeof(s_mem);

}
if(DEBUG)
{

gotoxy(1,1);
printf("%Fp',s_mem);
}
}
cnt = 0;
offs = O
ifik!=0)
while(cnt < 1)
{
s_mem = MK _FP(seg, offs);
iffDEBUG)

gotoxy(1,1);
printf("%Fp',s_mem);
}
m "= %(s_mem+ +);
sum += s mem+ +);
put_hex(*(s_mem));
cnt+ =sizeof(s_mem);

}
if(DEBUG)
{

gotoxy(60,i);
printf("TeFp',s_mem);

sum = (sum >> 8); /® Put value in lower 16 bits (upper 2 bytes) */
m = (m<<8); /*Putvaluein upper 16 bits (2 bytes) 4
rewrn(sum|m); /* Ored sum with m to get a uniqgue CHECKSUM */

}
int get_fat_info(void)
{

struct dir_entry d_eniry;

long i, j, %, m, logical_sector;
WORD f{ eniry;

WORD fat_entry(2];

WORD fatsize;

union FATS fats;

DOSsec= 1;
fatsize = (bpb.nspf * bpb.nfais);
nsects = 1;

j:linOL;

/* use as FATS fat 1616 = ?

or FATS.fat 12 lofati2 = ?

or FATS.fat 12 hifaul2 = ?
Y

for (m=0; m<fatsize; m+ +)

176

{
if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer}) != 0)
return(result);
while (i < (nsects * bpb.bps))

if {((l' % (bpb.bps * bpb.nspf)) == 0)

i=6
pn')uf(”\nalﬂsssgasa:nﬂa:n:=\anCopyafFAT\n:ua--============\n”);

}
memcpy(&fat_entry[0], &buffer(i], 2);
memcpy(&fat_entry(1], &buffer(i+1], 2);
fat_entry[0] = (fas_entry[0] & OxOFFF);
fat_entry[1] = (fat_entry[1] >> 4);
for(k = Gk < 2 k++)

{
fenary = fas_entry[k];
if ((f_entry < OxFF0) && (f entry> 0x000))
prinef("\n%ld {%-3.3u} [Sectors %old - Pold | <",
Jj+k [entry, cluster2sector(f entry),
cluster2sector(f_entry) + 1);
else
printf("\n%id {%-3.3X} <', j+k [enry);
t‘jl'g‘_emy == (000) printf("FREE");
e

if (f_entry == (xFF7) prinsf ("BAD");
else

if (f_entry > = xFF0 && f entry <= (xFF6) printf ("RESERVED");
else

if (f entry > = OcFF8 && f entry <= OxFFF) prinsf ("EOF");

else

printf("OCCUPIED");
}pn'mf(">)

i+=3j+=2
ifG%20) == 0)
{

if (pause(0) = = Qx1B) return(1);
}
}
rewn(0);
}

int put f name(struct free_fat f free, DWORD data_sec)
{

BYTE update=0;

WORD f entry;

WORD fat_enty(2];

struct dir_entry d_entry;
struct dir_ensry tmp_d_entry=

{
“CRAM_MEM","XMD",0xC1," CRAM V1.1, &x00, Gx00, x00, (<00
k
long i, j, k, logical _sector;
WORD start_cluster = 0;
struct date ddate;
struct time dtime;

/.

177

gotaxy(1,1);cireol();
cprintf("Updating Directory ...");
start_cluster = f free.fbegin;
getdate(&ddate);
gettime(&dtime);
tmp_d_entry.f attrib=(ARCHIVE|R_O|SYSTEM|HIDDEN);
tmp_d_emry.f name(4] = OxFF;
tmp_d_entry.f reserved[0] = /*0x00%/ OxFF;
tmp_d_entry.f start_cluster = f free.foegin;
tmp_d_entry.f size = (long)((f_free fsize+1) * bpb.bps * bpb.spc);
DOSsec = (bpb.nspf * bpb.nfats) + 1;
nsects = I;
i=0L
J = (long)((bpb.nroot_dir * 32) / bpb.bps);
if(DEBUG)
{

cprintf("\n\rData Start at %lu \n\r", data_sec);
cprinif(*Start Cluster at %d\n\r", start_cluster);

}
for (k=0 k<j; k+ +)
{

i=0L;
if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer /*&buffer((k*bpb.bps)]*/)) != 0)
return(-result);
while(i < (bpb.bps))
{

memcpy(&d_entry, &buffer(i], 32);
if (memcmp(tmp_d_entry.f name, d_entry.f name, 8) == (x00)
update = 80;

if((d_enuyfname == NULL
|| d_entry.f name(0] == 0(x00
|| (d_entry.f name(0] == OxES && d_entry.f name(1] == (x00)
|| (d_entry.f name[0] = = (xE5 && d_entry.f name(4] == (xFF)
H (d_entry.f name[0] == OxES &&

(memcmp(&tmp_d_eniry.f reserved[1], &d_enuy.f reserved(l], 4) = = 0x00))

|| (memcmp(tmp_d_entry.f name, d_entry.f name, 8) = = 0x00)
) && (update == 0 || update = = 80))

imp_d_entry.f time = (dtime.ti_hour < < (x0B)
+(dtime.ti_min < < 0x05)
+ (int)(dtime.ti_sec >> 1);
tmp_d_enury.f date = (((ddate.da year-1980) < < (x09)
+(ddate.da_mon < < @x05)
+ddate.da_day);
tmp_d_entry.f size = c_header.f size;%/
memcpy(&d_entry, &tmp _d_entry, 32);
memcpy(&buffer(i], &imp _d_enty, 32);
update + +;

}
else if (d_entry.f name[0] == xES && d_entry.f name[l] == (x00)
{

memset(&d_enwry.f name[0}, '\0, 32);
memcpy(&buffer(i], &d_eniry, 32);

)
i(DEBUG)
printf("\n%.%5.%. s a[%6-2.2u] {%-.°s}t{%o-6.6u)}d{%-6.6u}c{R-6.6u)s{Fo-6.6lu}",
8d_enwry.f name,
3d_entry.f ea,

178

d_entry.f_aurib,

10,d_entryf reserved,

d_entry.f time,

d_enuy.f_date,

d_enuy.f stant_cluster,

d_enryf size ;
i+=32%

}
if ((result = putsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer/*&buffer{k*bpb.bps]*/)) != 0)
return(-result);

if (update != 0) break;
DOSsec + +;

DOSsec = (bpb.nspf ® bpb.nfats) + 1;
if (update > 80) return (-1);
else
retumn(0);
}

long get_f name(void)
{

BYTE update=0;

WORD f entry;

WORD fat_entry[2];

struct dir_eniry d_entry;
struct dir_enyry tmp_d_entry=

{
"CRAM_MEM","XMD",0xC1," CRAM V1.1", 0x00, (x00, (x00, Gx00
b
long i, j, k, logical_sector;
DWORD start_cluster = 0;

tmp_d_enwry.f atrib=(ARCHIVE|R_O|SYSTEM|HIDDEN);
tmp_d_entry.f name(4] = OxFF;

imp_d_entry.f reserved[0] = /*0x00°/ OxFF;
strepy(d_enery.f name, "filename”);

DOSsec = (bpb.nspf * bpb.nfats) + 1;

nsects = I;

i=0L

J = (long)((bpb.nroot_dir * 32) / bpb.bps);

for (k=0; k<j; k+ +)

if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) != 0)
return(-result);
DOSsec + +;
i=0L;
w?z‘lc((i < (bpb.bps)) && d_entry.f name[0] != 0x00)

memcpy(&d_enury, &buffer(i], 32);
if {((memcmp(emp_d_enay.f name, d_entry.f name, 8) == @x00))

swan_cluster = d_engy.f stan_cluster;
data_sec = cluster2secior(start_cluster);
return(start_cluster);

}
ifiDEBUG)
if ({(d_entryf name == NULL) || (d_entry.f name[0] = = 0x00))

179

i=i>>5
cprinsf("\n\r (%id) File(s) found on Disk in Drive [%.1s]", i, drv);

else
cprimtf("\n\r%.%.%.*s a[%-2.2u] {%-.*s}t{%-6.6u}d{%-6.6u)c{%-6.6u}s{%6-6.6lu}",

&8d_entry.f name,
3,d_entry.f exs,
d_entry.f attrib,
10d _entry.f reserved,
d_entry.f time,
d_entry.f date,
d_entry.f stant_cluster,
d_entry.f size);

it=3%

}

}
DOSsec = (bpb.nspf * bpb.nfats) + 1;
return(start_cluster);

}

char pause(int err_num)

{
char ch;

switch (err_num)

case 0: putch(x07);
cprintf ("\n\rPress any Key to Continue ...");
ch = getch();
break;
case 1: putch((x07);
cprintf ("\n\rPress any Key to Continue ...ESC t0 abon ..");
ch = getch();
if(ch == (xIB) exit(2);
break;

return(ch);

int show_disk(void)
{
Jor (DOSsec=0; DOSsec <bpb.ndsksect; DOSsec + +)
{
if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) != 0)

return(result);
else printsector(buffer);

retun(0);

long get_data_sec(void)
{

long dossec;
char idper;

180

char c_id[2](5] = {"RABB", "WGM_"};

nsects = I;
gotoxy(53,1);cprinif("Checking Sector ...");
for (dossec = 0; dossec <bpb.ndsksect; dossec + +)

{

if ((result = getsector(drive, nsects, &dossec, &bpb, &dpt, buffer)) != 0)
retumn(-result);

else

gotoxy(73, wherey()); printf("%olu’, dossec);
if((memcmp(&buffer[strlen(SIG) + sizeof(bpb) +sizeof(dpt)], c_id[0], 4) = = 0) &&
(memcmp(&buffer(508], c_id[1], 4) == 0))

{
gotoxy(1, wherey());
cprintf(“Sector %ld String at 1st idptr %-. %"
" String at 2nd idptr %-.% ",
dossec, 4, buffer[strlen(SIG) +sizeof(bpb) +sizeof(dpt)], 4, &buffer[508]);
return(dossec);

}
}

}
gotoxy(1,wherey());
cprintf("Foc%c Drive %.1s is NOT a CRAM disk *, 007, 0x07, drv);

return(-1);
}

int format_CRAM(long start_sec, long end_sec)

long dossec;
char *idptr;

nsects = I;
clear_win(1,1,79,2,(xB0,0);
gotoxy(40,1);
cprintf("Starts [%ld] Ends [76ld]", start_sec, end_sec);
if(start_sec < reserved_sec)
return(-1);

gotoxy(1,1);cprintf("Formatting CRAM Sector ...");
memset(buffer, 000, bpb.bps);
/* gotoxy(28, wherey()); cprindf("%ld", dossec);*/
if ((result = putsector(drive, nsects, &start_sec, &bpb, &dpt, buffer)) != 0)
rewirn(-resuit);
memset(buffer, '€ 'bpb.bps);
for (dossec=start_sec +1; dossec <end_sec; dossec + +)

gowxy(3Q wherey()); cprinif("%ld", dossec);
if ((result = putsector(drive, nsects, &dossec, &bpb, &dpy, buffer)) != 0)
retumn(-result);
}

gotoxy(Swherey() +2);
cprintf("%c%c Drive %.1s is Ready as a CRAM disk *, 0x07, 0x07, drv);

return(0);

}

int checkdisk(void)
{

181

textcolor(7);
textbackground(l);
cprintf("\n\r nspf=%d nfats =%d nres_sec =%d nroot_dir=%d bps=%d ",
bpb.nspf, bpb.nfats, bpb.nres_sec, bpb.nroot_ dll‘ bpb.bps);
reserved_sec = ((DWORD)(bpb. nspf*bpb.nfats) + (DWORD)bpb. nres_sec
+ (DWORD)((bpb.nroot_dir *32)/bpb.bps));
if(DEBUG)

cprintf("Last Result = %ld", result);
cprintf("\n\rLargest set of free consecutive Clusters Begins: olu "
"Ends %lu size %olu \n\rCRAM will be loaded at Cluster Jolu "
*sector Jolu\n\r Above Reserved Area at %lu’,
£ free focgin, | freefend, [free fiize, [free.foegin,
data_sec, reserved_sec);

pause(0);

cprinif("\n\rDrive Information for Drive #%d Letter %.2s",drive, drv);
result = get f name();
cprintf("\n\rReturn result value = %ld Sector Tolu", result, cluster2sector(result));
pause(1);
if(result <= 0)
result = get data_sec();
else

{
[free.foegin = result;
[free.fsize = clust_req;
}
clrser();
if (result <= 0)

{
result = get _falfreE(&f _ﬁ'ef, Cl.ll.ﬂ_mq),'
data_sec = cluster2sector((f_free.foegin));

}
else

data_sec = result;
if(DEBUG)

{

cprintf("Last Result = %ld", result);

cprintf("\n\rLargest set of free consecutive Clusters Begins: %lu "
"Ends %lu size %olu \n\rCRAM will be loaded at Cluster %olu "
"sector Folu\n\r Above Reserved Area at %olu’,
1 Jree foegin, f free fend, f. free.fiize, f free.begin,
data_sec, reserved_sec);

pause(0);

}
if (result > 0)
if ?‘ free.fsize > = clust_req)

[freefsize = clust_req,
ffreefend = f.ﬁ'eeMn + [free frize;
nf(data sec > reserved_sec)
= put_f name(f free, data_sec);
tf(mulx >=0)
result = put_fas(f free, data_sec);
}

return (0);

182

CRAM.C The main functions for the operation of CRAM.

/* CRAM.C ---- Constant Random Access Memory system */

#include <bios.h>
#include <stdio.h>
#include <dos.h>
#include <dirh>
#include <stdlib.h>
#include <math.h>
#include <conioh>
#include <mem.h>
#include <string.h>
#include <time.h>
#include <setjmp.h>
#include <alloc.h>
#include "tst.h"
#include “cram.h"

#define STACK SIZE 9728 /*9632%/ /*8192%/
#define VIDEO SEC SIZE 20 /*Reserve sectors to save 16K video memory®/
#define BYTES PER "TRACK 4609 /* Total bytes for 9 sectors plus 1 for null byte*/

/‘==============================—= —————————————————————

extern unsigned keycode;

extern int hot_key; /® keycode for activation */
extern int shift_key; /® shift status bits (alt, cal.) */
extern int user_key_set;
long chksum = (x0000;
°===ﬂ==ﬂ==================‘====‘=B====ﬂ=================
unsigned char multiplex_id;
struct dfree dskfree;
long dskavail,
sysmem;
DWORD maxmem = Oc4000L;
static DWORD sav_stant, sav_end;
int skiptrack;
int pe;
int DEBUG =0;
struct DPT dpy
struct BPB bpb;
struct HST hst;
int 5
imt cmd;
int drive;
int head;
long track;
int sector;
int nsects;
BYITE buffer[BYTES PER TRACK];
BYTE :wap_save_buﬂ1853],
char Ipe_buf[80J;
char Ipt_code[4] = "XXXX";

static BYTE signote[S12];

183

long result;
char an(3]="2 "
long maxsectors;
long maxsides;
long maxtracks;
long DOSsec;
unsigned long data_sec;
unsigned char far fconv_mem_pir;
ldiv ¢ seg_cal;
Idiv ¢ offs_cal;
ldiv_t seg off;
unsigned long seg = (x0000,
offs = Ox0000;
WORD lowmem;
"MCB far *mcb;
MCB far Sfirst_mcb;
unsigned long START SEG,
START OFF,
SEC SEG;
BYTE start_flag=0;
BYTE reset_mem;
WORD sec_segl_end =0;
unsigned long b J;
static unsigned long savetime = OL;
static BYTE timelag = Ox3C;
static time_t ¢, t2;
static WORD seg_saved=0;
struct CRAM_HEADER ¢_header;
char far *stack_ptr;
char far *otr;
char far *sig_per;
BYTE far *diskette;
struct bits_16 mem_flag: /* Bit fields for flag register */
struct bits_16 save_flag; /* Bit fields for memory segments to save %/
WORD word;
BYTE state = x07;
unsigned long memtop;
static jmp_buf cram_env;
struct date ddate;
struct time dtime;
extern struct SREGS sregs;
extern union REGS regs;
exiern SCRLINE far *scr;

extern MCB far *get_mcb (void);

DWORD
struct free_fat
DWORD

int

int

int

int

char

int

tsr_already_active
popup_while_dos_busy = 0; /* true if hot key hit while dos busy */
int_28_in_progress

unsafe_flag

reserved sec;
S free;
clust_req =500UL;
= 0; /° true if TSR active */

= 0; /* true if INT 28 in progress */
= 0; /* true if INT 13 in progress */
c_id[2])[5] = {"RABB", "WGM_");

int_IC _in_progress=0;

184

int keys_punched;

int Startup = 0;

WORD saveloop =0;

char far *pir1066 = MK_FP(0x106E,0x00);
static int onepass =0y

/“:2’."--=======.=-==ﬂ===============================8=====./

extern void gotoXY(int x, int y);
extern void clrEol(void);

extern char far * swap_ptr; /* pointer to dos swap area */
extern char far * swap_save; /* pointer to our local save area */
unsigned ss_save; /* slot for stack segment register */
unsigned sp_save; /* slot for stack pointer register %/
/* Saved areas for old interrupt pointers */
extern INTVECT old_int8, old_int9, old_int10, old_int13, old_int1b;
extern INTVECT oid_int23, old | int24;
extern INTVECT old_uuZa

INTVECT old_intIC, old_int25, old_ins26;
extern imt dos_cnitical; /* used by DOSSWAP.C ¢/

extern void far set_stack(void);
extern void far restore_stack(void);

/‘:====.ﬂ==================================ﬂ=============§==
void screen_display(int x, int y, char °s, int aurib);
long ¢_mem_checksum(WORD seg_start, WORD offs_start, DWORD mem _size);

extern void get time_date(void);
exern int LPT(char ®s);

extern void interrupt far new_int13(void); /* in TSRUTILASM */
extern void interrupt far new_int10(void); /* in TSRUTILASM */
extern void interrupt far new_imt25(void); /* in TSRUTILASM */
extern void interrupt far new_int26(void); /* in TSRUTILASM */
extern void interrupt far new_int2a();
extern void interrupt far new_int24();

void interrupt (®old_int28)();
void interrupt (*old_intFC)();
void interrupt (*gen_intFC)();

put_stack(void);
get_stack(void);

set MCB(WORD psp);

save_MCB(void);
capiure_mem(void);
save_video(void);
reset_Video(void);
save_interrupt(void);
reset_interrupt(void);
get_header(void);
put_header(void);
pius_memory(void);
reset_memory(void);
push_mem(void); -

SIFFIEEEYFYEYY

void interrupt far mem_reset();
void mem_save();

X

185

void interrupt far new_int8();
void interrupt far new_int9();
void interrupt far new_int28();
void interrupt far new_int1C();

/.“.lll-‘.

* DOS IDLE INTERRUPT HANDLER

'.""“.‘/

void interrupt far new_int28()
int_28_in_progress+ +;

if (/*popup_while_dos_busy &&*/ !dos_critical
&& tisr_already_active && lunsafe_flag)
{

tsr_already active = 2;
mem_save();
tsr_already_active = 0;
}
int_28_in_progress-«;
(* old_int28)();
}

* TIMER INTERRUPT HANDLER

sV INREE

void interrupt far new_int8()

if (lsr_already_active/* && popup_while_dos_busy*/ &&
!dos_critical && lunsafe_flag/® && !reset_mem?*/)

{
popup_while_dos_busy = 0;
tsr_already active = &
(*old_in8)(); /* process timer tick */
enable(); /* wurn interrupts back on */
mem_save();
tsr_already_active = 0;
}
else
(®old_imt8)(); /® process timer tick */
}
/. 280820008
* KEYBOARD INTERRUPT HANDLER
seessesens /
void interrupt far new_int9()
{

/* if (‘tsr_already active && popup while_dos_busy &&

!dos _critical && funsafe_flag &% 'reset mem)

.

BYTE s key=0;

enable();

keycode = inp(KEYBOARD_PORT);

s_key = bioskey(KEYBRD_SHIFTSTATUS);

if((s_key & (ALT KEY|CTRL KEY)) == (ALT KEY|CTRL_KEY) && keycode= = DELKEY)
{

while(bioskey(KEYBRD_READY)) bioskey(KEYBRD _READ);

/t
/-

186

screen_display(10, 24,"\n\r WILL NOT RE-BOOT \n\r", WHITE +(RED < <4) + BLINK);
ousp(QxS1, (inp(0x61)|0x80));

(®old_int9)();

goto kyb_ret;

}
if((s_key & (CTRL_KEY|LEFT _SHIFT))

== (CTRL_KEY|LEFT SHIFT) && keycode = =FIVEKEY)

if(ldos _critical && lunsafe_flag && reset_mem)
(popup_while_dos_bwy =0
(*old_im9)(); /* send key to old int routine */
sr_already_active = 9;
keys_punched =0;
enable(); */
reset_mem = 2;
mem_save();
(*gen_intFC)();%/
enable();
tsr_already_active = (;
}
else
{
popup_while_dos_busy = I;
(* old_int9)(j;

}

}
if (ltsr_already_active/* && popup_while_dos_busy®/ &&

Idos _critical && lunsafe flag/* && Freset _mem?*/)

{
if (keycode 1= hot_key)
{

f (usafe o)

popup_while_dos_busy = 0;
(%ld_int9)(); /* send key to old int routine */
if(keycode) keys punched+ +;
if (keys punched >= (2 * KEY MAX))
{

tsr_already_active = 9;

keys_punched =0;
savetime = timelag;
enable();
mem_save();
enable();
tsr_already_active = 0;
}
}
}M kyb_re;
else
(* old_ins9)();
if ((S_l;e.v & shift_key) = = shift_key)
1}; (‘unsafe_flag)

popup_while_dos _busy = 0;
(*old uu9)(), /* send key to old int routine */

187

tsr_already_active = 9;
keys_punched =0;
savetime = timelag;
enable();

reset_mem = I;
mem_save();

enable();
tsr_already_active = 0;

else
{
popup_while_dos_busy = I;
(* old_int9)();
}
}

(® old_in9)();

else

}
else

(* old_ine9)();
kyb_ret:
enable();

}

long c_mem_checksum(WORD seg_start, WORD offs_start, DWORD mem_size)

{
long sum =x0000L, cnt=0, k, I, m=Qx0000L, n;
long § seg, offs;
DWORD far *s_mem;
idiv t cal;

cal = ldiv(mem_size, (x10000);

k = cal.quot;

I = calrem;

for (seg=seg_start; seg < =(k*Qx1000); seg+ =0x1000)
{

cnt =0;

if (k 1= 0)
{
n = (x10000;
offs = O

else

n = mem_size;
offs = offs_stars;

}
s_mem = MK _FP(seg offs);
while(cnt < n)

if(DEBUG)
{

put_hex(*s_mem);
put_sa("");
}
sum += %5 mem+ +);
m”~= %s_ mem+ +);
cnt+ =sizeof(s_mem);

188

zy}'(DEBUG)

gotoxy(1,1);
printf("%Fp",s_mem);
}
}
ent = 0
offs = O
if(k!=0)
while(cnt < 1)
{
s_mem = MK _FP(seg offs);
if(DEBUG)

gotoxy(1,1);
primef("%Fp',s_mem);

m "= *(s_mem+ +);
sum += %(s_mem+ +);
pus_hex(*(s_mem));
cnt+ =sizeof(s_mem);

}
if(DEBUG)
{

8otoxy(60,i);
printf("RBFp',s_mem);

}
sum = (sum >> 8); /* Put value in lower 16 bits (upper 2 bytes) */
m = (m<<8); /*Putvaluein upper 16 bis (2 bytes) 4
reurn(sum|m); /® Ored sum with m to get a unique CHECKSUM */

void interrupt mem_reset(void)

{

reset_memory();
}

void screen_display(int x, int y, char *s, int attrib)
BYTE index=0;

scr(0] [2].s_char = popup_while_dos busy + Ox30;
scr(0] [3].s_char = tsr_already active + 0x30;
scr[0] (4].s_char = unsafe flag + (x30;
scr[0] [5].s_char = int_28_in_progress+ Gx30;
scr[0] [6].s_char = (savetime>10 ? savetime/10 : savetime) + (x30;
scr[0] [6].s aur = ((scr[0] [0].s atr >> 4)
+ (scr[0] [0].s_attr < < 4)) & (Ox77 + (savetime/10));
scr[0] [7).s char = stariup + Ox30;
scr(0] [8].s_char = dos_critical + Gx30;
scr(0] [9].s_char = ((keys_punched > 10) ? keys_punched/10 :keys_punched) + 0x30;
scr(0] [9].s_aur = ((scr[0] [0].s_atr > > 4)
+ (scr[0] [0].s_aur < < 4)) & (0x77+ (keys_punched/10));
scr{0] [10].s_char = int_IC in_progress + Qx30;
word = ¢_header.FLAGS;

189

memcpy(&mem_flag ,&word, 2);

scrf0] [12].s char = mem_flaglobits.bit7 + Qx30;
scr(0] [13].s_char = mem_flag.lobits.bit6 + Qx30;
scr[0] [14].s_char = mem_flag.labits.bit5 + Qx30;
scrf0] [15].s_char = mem_flag.lobits.bit4 + Gx30;
scrf0] [16].s char = mem _flag.lobits.bit3 + Qx30;
ser[0] [17].s_char = mem_flag.lobits.bit2 + 0x30;
scr[0] [18].s_char = mem_flag.lobits.bit] + Qx30;
scr{0] [19].s_char = mem_flag.lobits.bit0 + (x30;

ser[0] [60].s_char = save_flag.hibits.bit7 + state;
scr[0] [61).s_char = save_flag.hibits.bit6 + state;
scr0] [62].s char = save_flag.hibits.bit5 + state;
scr[0] [63].s_char = save_flag.hibits.bit4 + state;
scr[0] [64].s char = save_flag.hibits.bit3 + state;
scr[0] [65].s_char = save flag.hibits.bit2 + state;
scr[0] [66].s char = OxCE;

scr[0] [67].s_char = save_flag.hibits.bit]l + state;
scr[0] [68].s_char = save_flag.hibits.bit) + state;
scr[0] [69].s_char = save_flag.lobits.bit7 + state;
scr{0] [70].s_char = save_flag.lobits.bit6 + state;
scrf0) [71].s_char = save_flag.lobits.bitS + state;
scr[0] [72].s_char = save_flag.lobits.bit4 + state;
scr[0] [73].s_char = save_flag.lobits.bit3 + state;
scr{0] [74].s_char = save_flag.lobits.bit2 + state;
scr{0] [75].s_char = save_flag.lobits.bit] + state;
ser[0] [76].s_char = save_flag.lobits.bit0 + state;
index = x;

while (*s)

if (index > 80)

index = x;
if(y!=25)y++;

else

{
scrly]findex].s_aur = atnib;
serfy]findex+ +].s_char = %+ +;
}

}

void interrupt far new_int1C()

int_1C _in_progress = I;
if (Ytsr_already_active/* && popup_while_dos_busy®/ &&
!dos_critical && !unsafe_flag /*&& 'reset_mem®/)
{

(* old_imtIC)();
tsr_already _active = 1;

/* enable();*/
screen_display(10, 24, ™,(14 + (RED << 4)));
chksum = c_mem_checksum(START SEG, 0x0000, Gx1000);
if((c_ header.save _seg flag[(BYTE)(START SEG/0x1000)] = chksum) = =

¢_header.seg_checksum{(BYTE)(START SEG/0x1000)])
¢_header.seg_checksum[(BYTE)(START SEG/0x1000)] = chksum;

/* mem_save();*/

enable();
tsr_already_active = 0;
}

190

int_IC_in_progress = 0;

void mem_save(void)
{
scr(0] (0].s_char = OxOOEE;
scr[0] [0].s_aur = ((scr[0] [0].s_ater >> 4)
+ (scr(0] [0].s_aur << 4)) & &77;
/* if (onepass == 0)

scr(1] [75].s_char = ®pir1066;
scr{l1] [76].s_char = *(ptrl066+1);
ser(1] [77].s_char = *(pr1066+2);
onepass+ +;

screen_display(10, 24, ",(14 + (RED << 4)));

set_stack();

¢_header.PSP = GetPSP();

/* Save the DTA for the on going process */
regs.h.ah = GET DT4;

intdosx(®s, ®s, &sregs);
¢_header.dia_seg = sregs.es;

¢_header.dta_off = regsx.bx;

*sig ptr = 'R; *(sig_ prr + 1) = 'B}
if (reset_mem == 2)

saveloop =0;
maxmem = sav_end;
START SEG = sav_start;
savetime = 0;
if (_arge > 3)

timelag = (BYTE)atoi(_argv(3]);
if(imelag == 0) timelag = &3C;

get_header();
SetPSP(_psp);
/* Setup CRAM's DTA %/

regs.hah = SET DTA;
sregs.es=_psp;

regsx.dx = Ox80;
intdosx(®s, ®s, &sregs);

DOSsec = c_header.mem_sec;
¢_header.curr_mem_sec = DOSsec;
stant_flag = 0;
reset_mem = 0;
if (tine_IC in_progress) time(&tl);

/o srepy(ipt_buf

" Kmusanuxcsazsa BEGIN sszsasssaas RESTORATION REPORT

LPT(Ipt_buf);

191

Ipt_code[0] = 0x0A4;
Ipt_code(1]=LINEFEED;
Ipt_code[2] =x00;
LPT(lpt_code); */

(“gen_intFC)();
START SEG = sav_start;

maxmem = sav_start + (x1000;
DOSsec = ¢_header.mem_sec;
¢_header.curr_mem_sec = DOSsec;
start flag = 0;

sec_segl end = (;

capture_mem();

put_header();

if (fine_IC in_progress) time(&tl);
putstr("End of Memory Installation");
reset_mem = 0;

goto contd;

if (reset_mem ==1)

SaveDosSwap();
start_flag = 0;
SetPSP(c_header.cram_psp);
/* Setup CRAM’s DTA %/
regs.hah = SET DTA;
sregs.es=c_header.cram_dta_seg;
regsx.dx = ¢_header.cram_dta_off;
intdosx(®s, ®s, &sregs);
GetExtErr(&c_header.Errinfo);
capture_mem();
put_header();
push_mem();
get_header();
start_flag =0;
reset_mem = 0;
get_time_date();
capture_mem();
pus_header();
if (Yint_IC in_progress) time(&tl);
savetime = 0;
if (_Large > 3)
timelag = (BYTE)atoi(_argv[3]);

if (timelag == 0) timelag = 0x3C;
RestoreDosSwap();
SeatEaErn(&c_header.Errinfo);

} golo conid;

if (savetime > = timelag && 'reset_mem)

{
save_DSA();
SaveDosSwap();
SetPSP(c_header.cram_psp);

/* Setup CRAM’s DTA %/
regs.h.ah = SET DTA;
sregs.es=c_header.cram_dta_seg;
regsx.dx = c_header.cram_dta_off;
intdosx(®s, ®s, &sregs);

192

GetExtErr(&c_header.Errinfo);
if(! meb_chk(get_mcb()))
{

putsir(® < <-00->>===m==== ERROR in MCB Chain ===a==axa<<-00->>");
result = set MCB(0);
scr[0] [79].s_char = result + (x30;

}
else
{
result = save MCB();
ser(0] [79].s_char = result + (x30;
get_time_date();

DOSsec = ¢_header.curr_mem_sec;
if((START SEG > = sav_end) || (maxmem > sav_end))

START SEG = sav_stary;

maxmem = sav_start + Qx1000;

DOSsec = ¢_header.mem_sec;
c_header.curr_mem _sec = DOSsec;

start_flag = 0;

/*c_header.sec_segl end = sec_segl end = 0;°/
sec_segl end = 0;

/* c_header.clusters = sector2cluster((c_header.dsa_sec+4));*/

capture_mem();

put_header();

save_interrupt();

if(DEBUG)

{
put_hex(START _SEG);put_str(COLON);
put_hex(maxmem),put_str(SPACE);
put_hex(DOSsec);put_str(SPACE);
put_str(LDGT);
put_hex(sec_segl_end);put_str(RDGT);

}

'f(put_n;mwry() = 0)

savetime = 0;

DOSsec = ¢_header.mem_sec;

c_ header.curr _mem_sec = DOSsec;

start flag = 0

putstr("\n\rERROR saving memory::save_mem ");
if (line_IC in_progress) time(dul);

}

else

¢_header.curr_mem_sec = DOSsec;
save_video();

DOSsec + =bpb.nspt;

savetime = 0;

pus_stack();

START SEG + = (x1000;

maxmem = sav_end; /* + = Qx1000;%/
capare_mem();

put_header();

}
if (Yins_1C in_progress) time(d&ul);

193

SetExtErr(&c_header.Errinfo);
RestoreDosSwap();
} /° end of if savetime = timelag */

contd:
restore_stack();
setjmp(cram_env);

if (fine_IC in_progress)
{

time(&t2);

savetime = (long)(12 - t1);
}
else

if(reset_mem) savetime+ +;

SetPSP (c_header.PSP);
regs.h.ah = SET_DTA;
sregs.ds = c headerd:a _seg;
regsx.dx = c_header dua_off;
intdosx(®s, ®s, &sregs);

/* (*old_ini28)();%/
}

int capture_mem(void)

unsigned k=0, m, save_k;
scr[0] [0].s_char = Qx0OEF;
scr[0] [0].s_aur = ((scr(0] [0].5_atr > > 4) + (scr[0] [0].s attr < < 4)) & &77;

disable();
¢_headerAX = AX;
¢_header BX = _BX;
c_header.CX = CX;
¢_header.DX = DX;
¢ headerCS - CS
c headcr.DS = DS
c__header.ES = _ES;
¢_header.SS = _SS;
c headcr.BP = BP
c header.D! = DI
c header SI = SI
c header SP = SP;
c headerFLAGS = FLAGS;
/* ¢_header.PSP = GetPSP(); s/ /* psp;%/
enable();
¢_header.int_checksum = (DWORDj)c_mem_checksum(0x0000, 0x0000, (x0400);
¢_header.checksum = 0;
for (m=0; m<k; m+ +) c_header.checksum = signote[m];
memcpy(&sgno:e[k],SlG sa'len(SIG) px
= strlen(SIG);
:ignote[lc-l] = (IA;
memcpy(dsignote(k], &dpssizeof(dpt) ;
k + = sizeof(dpt);
memcpy(&signote[k], &bpb,sizeof(bpb));
k+ = sizeof(bpb);
save k = k;
memcpy(&signote[k),&c_header,sizeof(c_header));

194

k + = sizeof(c_header);
memcpy(&signote[k],&cram_env, sizeof(cram_env));

k + = sizeof(cram_env);

for (m=0; m<k; m+ +) c_header.checksum + = signote[m];
memcpy(&signote[save_kj],&c_header,sizeof(c_header));
memcpy(dsignote[S08],&c_id[1),4);
memcpy(&signote[506], &k, 2);

signote[505] = Ox0I;

return(k);

int get_header(void)
{
long k=0L;

nsects = 1;

scrf[0] [0].s_char = 0x00F0;

scr[0] [0].s_atr = ((scr{0] [0].s_atr > > 4) + (scr[0] [0].5_aur << 4)) & (77

DOSsec = c_header.data_sec;

stohst(drive, hst. TRACK, hst. HEAD, &DOSsec, &bpb, &dpt, &hst);

if ((result = biosdisk(READ, hst DRIVE_NUM, kst. HEAD, hst. TRACK,
hst SECTOR, nsects, signote)) != 0)

requrn(result);

k = strien(SIG) + sizeof(dpt) + sizeof(bpb);

memcpy(&c_header, &signote[k], sizeof(c_header));

k + = sizeof(c_header);

memcpy(&cram_env, &signote[k], sizeof(cram_env));

k + = sizeof(cram_env);

retumn(k);

}
int put_header(void)

nsects = I;
scr(0) [0].s_char = (xOOEC;
scr(0] [0].s_aur = ((scr[0] [0].s_attr >> 4) + (scr[0] [0].s_anr < < 4)) & &x77;
DOSsec = ¢_header.data_sec;
if (DOSsec < reserved_sec) retumn(-1);
stohst(drive, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpt, &hst);
result = biosdisk(WRITE, hst DRIVE_NUM, hst. HEAD, hst. TRACK,
hst.SECTOR, nsects, signate);
return(resuit);
}

imt put_stack(void)
{
inti;

nsects = I;
scr{0] [0).s_char = (OOIF;
scr[0] [0].s_attr = ((scr[0] [0].s_attr >> 4) + (scr[0] [0].s aur < < 4)) & &77;
DOSsec = c_header.stack_sec;
if (DOSsec < reserved_sec) return(-1);
for (i=0; i<(STACK_SIZE /bpb.bps); i+ +)
{
disable();
mavedata(FP_SEG(stack_ptr), FP_OFF(stack_ptr) + (i*bpb.bps*nsects),
FP_SEG(buffer), FP_OFF(buffer), (bpb.bps * nsects));

195

enable();

stohst(drive, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpy, &hst);

result = biosdisk(WRITE, hst. DRIVE_NUM, hst HEAD, hst. TRACK,
hst.SECTOR, nsects, buffer);

DOSsec+ +;

}
return(result);
}

int get_stack(void)
{ .)
int i,

nsects = 1;

ser{0] [0].s_char = x001E;

ser[0] [0].s_atr = ((scr(0] [0].s_attr >> 4) + (scr[0] [0].s_atr << 4)) & (x77;
DOSsec = c_header.stack_sec;

for (i=0; c<(STACK SlZE/bpb bps); i+ +)

if (DOSsec < reserved_sec) return(-1);

stohst(drive, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpt, &hst);

result = biosdisk(READ, hst DRIVE_NUM, hst. HEAD, hst. TRACK,
hst. SECTOR, nsects, buffer);

disable();

maovedata(FP_SEG(buffer), FP_OFF(buffer), FP_SEG(siack _ptr),

FP_OFF(stack_ptr) + (i*bpb.bps*nsects), (bpb.bps * nsects));
enable();
DOSsec + +;

return(result);

}

int save_video(void)
{
nsects = &
state = Qx09;
DOSsec = c_header.video_sec;
if (DOSsec < reserved_sec) return(-1);
movedata(FP_SEG (scr)/*0xB800*%/, 0x0000, FP_SEG (buffer), FP_OFF(buffer), 0x1000);
stohst(drive, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpe, &hst);
if ((result = biosdisk(WRITE, hst DRIVE_NUM, hst HEAD, hst. TRACK,
hst. SECTOR, nsects, buffer)) != 0)
return(result);
seg saved | = (1 << (0xB000/0x1000));
memcpy(&save _ﬂag, &seg_saved,2);
¢_header.sector_in_cram{(BYTE)(0xB000/0x1000)] = DOSsec;
c_header..uze_of_seg[(BYTE)(atBooo/atIOOO)] =
(DOSsec +VIDEO_SEC SIZE) - ¢_header.sector_in_cram[(BYTE)(0xB000/0x1000)};
nsects = 1;
return(0);
}

int reset_video(void)
{
nsects = &
DOSsec = ¢_header.video_sec;
stohst(drive, hst. TRACK, hst. HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(READ, hst. DRIVE_NUM, hst. HEAD, hst. TRACK,

196

hst.SECTOR, nsects, buffer)) != 0)
return(result);
movedata(FP_SEG(buffer), FP_OFF(buffer), FP_SEG(scr)/*0xB800%/, &x0000, (x1000);
nsects = I;
return(0);

}

int save_interrupt(void)
{

ldiv t rem_sec;

nsects = 3;
state = Ox09;
scr{0] [0].s_char = Ox00ED;
scr(0] [0].s_aur = ((scr{0] [0].s_atr >> 4) + (scr{0] [0].s_attr << 4)) & x77;
disable();
movedata(Gx0000, 0x0000, FP_SEG(buffer), FP_OFF(buffer), x600);
enable(); :
DOSsec = ¢_header.data_sec +1;
rem_sec = ldiv(DOSsec, bpb.nspt);
if (rem_sec.rem < 3)
DOSsec += (bpb.nspt - rem_sec.rem);
if (DOSsec < reserved_sec) reaun(-1);
stohst(drive, hst. TRACK, hst. HEAD, &DOSsec, &bpb, &dpt, &hst);
result = biosdisk(WRITE, hst. DRIVE_NUM, hst HEAD, hst. TRACK,
hst. SECTOR, nsects, buffer);
seg saved | = (1 < < (Gx0000/0x1000));;
memcpy(&save_flag, &seg_saved,2);
¢_header.sector_in_cram[(BYTE)(Qx0000/0x1000)] = DOSsec;
¢_header.size_of seg((BYTE)(Qx0000/0x1000)] =
(DOSsec + nsects) - c_header.sector_in_cram{(BYTE)(0x0000/0x1000)];
return(result);

}
int reset_interrupt(void)
int x;

nsects = 3;
scr{0] [0).s_char = (xO0EA;
scr(0] [0].s_aur = ((scr({0] [0].s_aur >> 4) + (scr[0] [0).s_attr << 4)) & &77;
DOSsec = c_header.int_sec;
stohst(drive, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(READ, hst. DRIVE_NUM, hst. HEAD, hst. TRACK,
hst.SECTOR, nsects, buffer)) != 0)
return(result);
while(*diskette != (x00); /* wait for disk drive to stop spinning */
if(DEBUG)
put_str("{");pus_hex(DOSsec);pus_sir("}");
for (x=0; x<x600; x+ +)
{
) put_str(” ");pus_bit(buffer(x]);
LPT(buffer),;

}
disable();
movedata(FP_SEG(buffer), FP_OFF (buffer), (<000, 0x000, (x600);

197

enable();
return(0);

}

int put_memory(void)
{

spt = bpb.nspy;

nsects = I;

track = 1I;

head = 0;

state = (x09;

scr[0] [0].s_char = OxO0ES8;

scr[0] [0].s_atr = ((scr[0] [0].s_attr > > 4)
+ (scr[0] [0].s_atr < < 4)) & Ox77;

if(DEBUG)

{
put_hex(S TART_SEG)iput_str(™");
y ”a(mm),p‘“ s"-("{uy,)
put hex(DOSsec),pu, SV("-} .,)

}
for (seg=START SEG; seg < maxmem; seg+ =4096)

{
i=0L;
scr{0] [0].s_char = Ox00DS;
scr(0] [0].s_aur = ((scr(0] [0].s_attr >> 4)
+ (scr[0] [0].s_atir < < 4)) & &77;
if (start_flag == 0)

{
offs = START_OFF;
DOSsec = (c_ header.mem _sec + ((WORD)((seg - sav_stant) >> 12)
* (0x10000/0x200)));
}
else
{
offs = 0
DOSsec = (long)(c_header.mem_sec + (((seg - sav_start) >> 12)
* (0x10000/0x200)) - ((Qx10000/0x200) - sec_seg!_end));
}
¢_header.sector_in_cram{(BYTE)(seg/0x1000)] =DOSsec;
screen_display(10, 24, ™,(14 + (RED << 4)));
chksum = c_mem_checksum(START SEG, Gx0000, 0x1000);
if((c_ header.save _seg_flag[(BYTE)(START SEG/0x1000)] = chksum) =
¢_header.seg_checksum[(BYTE)(START SEG/0x1000)])
¢_header.seg_checksum{(BYTE)(START_SEG/0x1000)] = chksum;
/° pus_hex(chksum);put_sa(" ");°/
/* calculate the number of sectors per 6tk segment °/

SEC SEG = (WORD)((0x10000 - offs) / (bpb.bps));
if(DEBUG)

puws_hex(seg);put_str(":");
put_hex(offs),pus_str(" { =");
put_hex(DOSsec);pust_str("=} ");

pust_str(" [");put_hex(SEC_SEG);put_str("] *);

198

if (DOSsec < reserved_sec) return(-1);
for (j=0; j<SEC SEG; j++)

{
movedata(seg, (offs+i), FP_SEG (buffer), FP_OFF(buffer),
(bpb.bps * nsects));
stohst(drive, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(WRITE, hst. DRIVE_NUM, hst.HEAD, hst TRACK,
hst.SECTOR, nsects, buffer)) /= 0)

{
put_str(" [result=");put_hex(result),put_str("] ");
put_str(" <TRACK=");put_hex(hst. TRACK);put_str("> ");
put_str(" <HEAD =");put_hex(hst. HEAD);put ser("> ");
put_str(" <SECTOR ="),put_hex(hst. SECTOR);put_str("> *);
put_str(" <DOS SEC =");put_hex(DOSsec);put _str("> *);
return(result);
}
seg saved | = (1 < < (seg/0x1000));
memcpy(dsave_flag, &seg saved,2);
DOSsec + +;
i + = bpb.bps;

}
¢_header.size_of seg[(BYTE)(seg/0x1000)] =
DOSsec - ¢_header.sector_in_cram[(BYTE)(seg/0x1000)];

if (sta'{fﬂag ==

¢_header.sec_segl_end = DOSsec;
sec_segl_end = (DOSsec - ¢_header.mem_sec);

start_flag = I;
¢_header.curr_mem _sec = DOSsec;
}
if (seg > = sav_end)
{

seg saved = 0;
memcpy(&save_flag, &seg_saved,2);
state = x07;

return(0);

int reset_memory(void)

{
long filler=0L;

scr(0] [0].s_char = OxO0EB;

scr(0] [0].s_aar = ((scr(0] [0].s_attr >> 4) + (scr(Q] [0].5_aur < < 4)) & %77,
spt = bpb.nsps;

conv_mem pir = MK_FP(seg, offs);

nsects = I;

track = 1;

head = O;

sec_segl end = 0;

sec_segl _end = (c_header.sec_segl end - c_header.mem_sec);

DOSsec = (c_header.mem_sec + ((WORD)((START SEG - sav_stant) >> 12)
* (Gx10000/0x200)) - sec_segl_end);

199

iffDEBUG)

{
put_str("+ + + +");put_hex(c_header.mem_sec);

put_str("+ + + +");put_hex(DOSsec);
put_str("+ + + +");put_hex(c_keader.curr_mem_sec);
put_str("+ + + +");pus_hex(c_header.sec segl _end);putstr("//");
put_str("+ + + +");put_hex(sec_segl_end);putstr("//");
put_hex(START _SEG);put_str(":"); put_hex(maxmem),put_str(" {");
put_hex(DOSsec);put_str("} \n\r");

}

for (seg=START_SEG; seg < maxmem; seg+ =4096)
i = oL

scr[0] [0].s_char = (x009D;
scr[0] [0].s_attr = ((scr[0] [0].s_atr >> 4) + (scr[0] [0].s_atr << 4)) & x77;
/*
lwoa(seg, Ipt_buf; 16);
LPT(lps buf);*/
/* chksum = c_mem_checksum(seg, (x0000, (x1000);
c_header.seg_ checksum{ (BYTE)(seg/0x1000)] = chksurm;*/
/" put_hex(chksum);put_sur(" ");%/
/* loa(chksum, lpt_buf, 16);
LPT(Ipt_buf); LPT(Ipt_code);

if (start _ﬂ;g == 0)
DOSsec = (c_header.mem_sec + ((WORD)((seg - sav_star1) >> 12)
* (Ox10000/0x200)));

START OFF -= c_header.offs_filler;
stant flag = I;
offs = START OFF;

}

else

{

offs = 0

DOSsec = (long)(c_header.mem_sec + (((seg - sav_start) > > 12)
* (@x10000/x200)) - ((0x10000/0x200) - sec_seg!_end));
}

/* calculate the number of sectors per 64k segment */
SEC SEG = (WORD)((Gx10000 - offs) / (bpb.bps));
conv_mem ptr = MK _FP(seg, offs);
iffDEBUG)

{
gotoXY(1L,wherey()); cirEol();
pus_hex(seg);put_str(":"); pus_hex(offs +i);put_str(” {");
pus_hex(DOSsec),putsr ("} *);

}
Jor (j=0; j<SEC SEG; j++)

scr(0] [0].s_char = (x0087;
scr[0] [0].s_aur = ((scr[0] [0].s_aur > > 4) + (scr[0] [0].s_ aur < < 4)) & Ox77;
conv_mem _ptr = MK_FP(seg, offs+i);

stohst(drive, hst. TRACK, hst. HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(READ, hst. DRIVE_NUM, hst HEAD, hst. TRACK,
hst. SECTOR, nsects, buffer)) != 0)

200

return(result);
iffiller == 0)

{
if (DEBUG)
{
put_str("< <"); put_str((char far *)(conv_mem _ptr+c_header.offs_filler));
pussa(" > > 7);

}
movedata(FP_SEG(&buffer{c_header.offs_filler]),
FP_OFF(&buffer[c_header.offs_filler]),seg,
(offs +i+c_header.offs_filler),
((bpb.bps *® nsects)-c_header.offs_filler));
i{f(DEBUG)
{
pus_str("< <");put_hex((offs+i+c_header.offs_filler));
put_sir(" >>");put_str("< <"); put_str((char far *)(conv_mem _pir+c_header.offs_filler));
putstr(" > > ");put_sear("< <"); put_str((char *)buffer{c_header.offs_filler]);putstr(" > > ");
}
conv_mem _ptr = MK_FP(seg, offs+i+c_header.offs_filler);
j=0L;
filler = 1;

~else

{
if (seg == x2000 && DEBUG && ((offs+i) > Ox7E00));
else
movedata(FP_SEG(&buffer[0]), FP_OFF(&buffer[0]),seg (offs+i),
(bpb.bps * nsects));

}
DOSsec + +;
if(DEBUG == 1)
{
gotoxy(L wher Ey()),'
clreol();
printf("%Fp %lu’,conv_mem _pu, j);

i += bpb.bps;
}
}

/* Ipt_code[0] = 0xOC;
LPT(lpt_code);*/

/* pwt_header();*/

Z VWYY YWNNN\WN\\\\\ RESET REGISTERS AND DSA ////////////////////7%/

reset_video();

ser({0] [0].s_char = Ox00EB;

DOSsec + = bpb.nspt;

while(*diskette !'= 0x00); /* wait for disk drive to stop spinning */

BX = ¢_header.BX ;
CX = ¢_header.CX ;
DX = ¢ hcaderDX;
ES = ¢ header.ES ;
DS =cheader.DS
CS = c_ headerCS
§§ =c headerSS

201

_SP = ¢_header.SP ;

_DI = ¢_header.DI ;

_SI = c_header.SI ;

_BP = c_headerBP ;
_FLAGS = c_header.FLAGS ;
enable();

SetExtErr(&c_header.Erinfo);
/* Restoring DTA for saved process in CRAM */
/* regshah = SET DTA;
regsx.dx = c¢_header.dta_off;
sregs.ds = c_header.dta_seg;
intdosx(®s, dregs, &sregs);
SetPSP(c_header PSP);
Y/
ret:
while(*diskette != 0x00); /* wait for disk drive to stop spinning */
reset_interrupt();
delay(500); /' wait for interrupt if called */
while(*diskette != (x00); /* wait for disk drive to stop spinning */
reset DSA();
scr{0] [0].s_char = QxO0EB;
while(*diskette != 0x00); /* wait for disk drive to stop spinning */
savetime=0;
reses_mem = 0;
START SEG = sav_start;
maxmem = sav_start + (x1000;
DOSsec = c_header.mem_sec;
¢_header.curr_mem_sec = DOSsec;
start flag = 0;
sec_segl end = 0;
time(&tl);
if(! meb_chk(get_mcb()))
{

putstr(® < <-00->>===n=n= ERROR in MCB Chain == === =a=m=<<-00->>");
putstr(® < <-00-> >Fixing= ERROR in MCB Chain == ======< <-00->>");
result = set MCB(0);

scr[0] [79].s_char = result + (x30;

get_stack();
longjmp(cram_env, 1);
return(result);

}

int push_mem(void)
{

lowmem = low_mem(first_mcb); /‘ﬁndaddreuwherepmgmmcanbeloadcd 4
seg_off = Idiv(lowmem, Qx1000L); /* calculate the segment.offset pair */
START OFF = (seg_offrem << 4);

/* Make sure memory is align with sector size */

offs_cal = ldiv((START_OFF), (long)bpb.bps);

START _OFF -= c_header.offs_filler = offs_cal.rem;

START SEG = (seg_off.quot << 12),/* using 64k segment boundries */
c_header.stan_addr = lowmem;

¢_headerdata_sec = data_sec;

¢_header.curr_mem_sec = data_sec + I;

¢_headersec_segl end = 0;

sec_segl end = (;

202

get_time_date();
capture_memy();
save_irerrupt();
c_header.int_sec = DOSsec;
sav_sart = START SEG;
maxmem = sav_end
/* sav_end = maxmem; */
/® Skip to next track if now not at first sector in the track®/
/* seg_cal = ldiv(DOSsec, bpb.nspt);*/
DOSsec + =3; /* advance the number of sector for interrupt vector table */
if(DEBUG)
{
put_str("+ + + + ");put_hex(c_header.mem_sec);
pus_su("+ + + +");pus_hex(DOSsec);pusse("//");

¢_header.mem sec = DOSsec;
stant_flag = 0;
if (put_memory() = = 0)

{

¢_header.video_sec = DOSsec;

save_video();

DOSsec + =VIDEO SEC_SIZE;

¢_header.dsa_sec = DOSsec,

save_DSA();

DOSsec+ =4;

¢_header.mcb_sec = DOSsec;

DOSsec+ +;

¢_header.stack_sec = DOSsec;

¢_header.f size = (DWORD)((DOSsec + 4 - c_header.data_sec + 1) * 512);

¢_header.clusters = sector2cluster((DWORD)(DOSsec + 4 - ¢_header.data_sec + 1));

iffDEBUG)

{
put_str("+ + + +7);put_hex(c_header.mem_sec);
put_str("+ + + +");put_hex(DOSsec);
put_str("+ + + +");put_hex(c_header.curr_mem_sec);
put_str("+ + + +");put_hex(c_ “header.sec segl end),putstr("//");
put_str("+ + + +");pus_hex(sec_segl_end),putstr("//7);
}
capture_memy();
put_header();
DOSsec = c_header.curr_mem_sec = ¢_header.mem_sec;
/% header.sec _segl_ “end =%/

sec_segl end = 0;
}
else
{
piut_str("\n\rDISK ERROR saving memory\n\r");
maxmem = sav_start + (x1000;
start_flag = 0;
return (0);
}
int save_MCB(void)
{

intr=0;

203

scr[0] [0).s_char = Ox00AF;
scrf0] [0].s_aur = ((scr[0] [0].s_attr > > 4)
+ (scr[0] [0).s_attr << 4)) & (x77;

for (i=0; i<500; i+ +) buffer[i] = 0x0074;
nsects = 1;
r = get_mcb_chain(get_mcb(), buffer);
memcpy(&buffer(500],(const char *)"BMCB_CHAINW',11);
DOSsec = ¢_header.mcb_sec;
if (DOSsec < reserved_sec) retuirn(-1);
stohst(drive, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(WRITE, hst DRIVE_NUM, hst HEAD, hst. TRACK,
hst. SECTOR, nsects, buffer)) != 0)
{
put_str(" [result=");put_hex(result);pus_su("] *);
put_str(" <TRACK=");put_hex(hst. TRACK);put_str("> ");
put_str(" <HEAD =")put_hex(hst HEAD);put_str("> ");
put_str(" <SECTOR =");put_hex(hst. SECTOR);put_str("> ");
puwt_str(" <DOS SEC =");put_hex(DOSsec);put_ser("> ");
retumn(result);
}
DOSsec + +;
retirn(r);

}

int se¢ MCB(WORD psp)
{

intr=0;

scr{0] [0].s_char = Ox00AE;
scr{0] [0].s_aur = ((scr[0] [0].s_aur >> 4)
+ (scr[0] [0].s_atr << 4)) & &77;

nsects = I;
DOSsec = c_header.mcb_sec;
if (DOSsec < reserved_sec) retumn(-1);
stohst(drive, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(READ, hst DRIVE_NUM, hst HEAD, hst. TRACK,
hst. SECTOR, nsects, buffer)) != 0)
{

pus_str(" [result=");put_hex(result);pusstr("] *);
puwt_str(" <TRACK =");put_hex(hst. TRACK),putstr("> *);
put_su(" <HEAD =");pus_hex(hst HEAD),putsir("> *);
put_sir(" <SECTOR =");put_hex(hst SECTOR),putstr(*> *);
put_str(" <DOS SEC =");put_hex(DOSsec);putsa("> ");
return(result);
}

DOSsec + +;

r = set_mcb_chain(buffer, psp);

return(r);

void CRAMEXE03111992(void)

{
}

int CHKEXE (char *RBWGM)

204

{
reaurn((DWORD)(strtol(RBWGM + 5, &RBWGM, 16)) " biosequip());

int main(int arge, char *argv(])
{
unsigned far *fp;

nsects = I
scr = MK_FP((color_adpt() ? 0xB800 : xB000), 0x0000);

scr[0] [0].s_aur = ((scr[0] [0].s_aur >> 4) + (scr[0] [0].s_aur << 4)) & Ox77;
clear_screen(0xDB);
window(1,2,80,24);
clear win(1,2,79,24,0cB0,(WHITE +(BLUE << 4)));
drive = get_drive_info(drv);
reserved_sec = ((DWORD)(bpb.nspf*bpb.nfais) + (DWORD)bpb.nres_sec

+ (DWORD)((bpb.nroot_dir *32)/bpb.bps));

sec_segl_end = 0;
result = get f name();
if (result <= 0)
{
gotoxy(1,1);
cprinaf("ds:%eld drive [70.1s] CRAM not Installed on disk --> > See manual ',
resuly, drv);
gotoxy(1,22);
exit(90);
}
else
{

¢_header.start_cluster = result;
daia_sec = cluster2sector(resuit);
¢_header.data_sec = data_sec;
DOSsec = data_sec;
c_header.mem_sec = DOSsec;

}
/* c_header.start_cluster = sector2cluster(data_sec);*/
printf(" \n Data starts at SECTOR %lu {CLUSTER Plu}\n", data_sec,
¢_header.start_cluster);

first_meb = mcb = (MCB far *)get_mcb(); /* find first MCB %/
lowmem = low_mem(mcb); /* find address where programs can be loaded */
if (lowmem == 0)

exit(91);

seg_off = Wdiv(lowmem, Qx1000L); /* calculate the segment.offset pair */
START _OFF = (seg_offrem << 4);

/* Make sure memory is align with sector size */

offs_cal = ldiv((START OFF), (long)bpb.bps);

START OFF -= c_header.offs_filler = offs_cal.rem;

S‘TART SEG = (seg off quot << 12);/* using 64k segmens boundries */

InitInDos();
if (InitDosSwap() != 0)
{

putstr("ERROR initializing DOS Swappable Area. *);
exit(92);

205

sav_start = START SEG;
sav_end = maxmem;
if (arge > 3)

timelag =(BYTE)atoi(argv[3)]);
if(imelag = = 0) timelag = &3C;
if(arge < 1) exit(93);

scr(l1] [75].s_char = “pirl066;
scr(l] [76].5_char = *(ptrl066+1);
scr(l] [77).s_char = *(ptr1066+2);

if(swstr(strupr(argv(1]), 'I") = NULL)
{reset_mem = ;

¢_header.cram_psp = GetPSP();

/* Save the DTA for CRAM process */

regs.hah = GET DTA;
intdosx(&rzgs, ®s, &sregs);
¢_header.cram_dta_seg = sregs.es;
¢ headercram “dia _off = regs.x.bx;

¢_header.ID = Qx42424152;
setmem(&c_header.f access, (x40, &xDB);
setmem(&c_header.password, 10, '*');
setmem(&c_header.reserve_for_seg MAX SEG, '@’);
capture_mem();

put_header();

if(strser(strupr(argv(1]), "D") == NULL)
goto KEEP;

DEBUG = I;

¢_header.start_addr = lowmem;

| " header.data_ _sec = data_sec;

c headercurr mem_sec = data_sec + I;
capture_mem();

save_interrupt();

¢_header.int_sec = DOSsec;

sav_start = START SEG;

sav_end = maxmem;

/* Skip to next track if now not at first sector in the wack®/

seg_cal = ldiv(DOSsec, bpb.nspe);
DOSsec += (bpb.nspt - seg_cal.rem);
¢_header.mem_sec = DOSsec;

if (Pw{memo'y() ==0)

¢_header.video sec = DOSsec;
save_video();

DOSsec +=VIDEO _SEC SIZE;
c_header.mcb_sec = DOSsec;
DOSsec+ +;

¢_header.dsa_sec = DOSsec;
save_DSA();

capture_mem();

pus_header();

206

else

{
primtf("\n\rDISK ERROR saving memory\n\r");
rewurn (-1);

}

}
U'{(W(SWP’(G'EVIU); "U7) != NULL)

stant_flag = 0;
get_header();
if (signote[505] == (x01)
{
capture_mem();
signote[505] = 0x02;
put_header();
delay(1500);
poke(Qx0040,x0072, 0x1234);
cram_env[0]j ip = 0;
cram_env(0].j cs = FFFF;
cram_env[0]j di = O;
cram_env{0] j si = 0;
cram_env[0].j ds = QcFFFF;
cram_env[0].j es = OcFFFF;
longjmp(cram_env,2);

else
if (! signote[505])
exit(99);
lowmem = c_header.start_addr;
data_sec = ¢_header.data_sec;
seg_off = Idiv(lowmem, Qc1000L); /* calculate the segment:offset pair */
START OFF = (seg_offrem << 4);

/* Make sure memory is align with sector size */

offs_cal = ldiv((START _OFF), (long)bpb.bps);

START SEG = (seg_off.quot < < 12);/* using 64k segment boundries */
/%_header.sec_segl_end = 0;°%/

sec_segl end = 0;

sav_stant = START SEG;

sav_end = maxmem;

reset_mem = 2;

put_str("\n\r Restoring Memory at Address : *);

put_hex(lowmem);
put_str("\n\rl will give you control in a while Please Stand By...\n\r");

if(strstr(strupr(argv(1]), "D") != NULL)

DEBUG = I;
reset_memory();
DEBUG = 6
}
goto KEEP;
}

if(ststr(strupr(argv(1]), 'K") != NULL)
get_header();

207

start_flag = G;
lowmem = ¢_header.start_addr,

data_sec = ¢ headerdam _sec;
seg ojf = div(lowmem, Qx1000L); /* calculate the segment:offset pair %/
START OFF = (seg_offrem << 4);

/* Make sure memory is align with sector size */

offs_cal = ldiv((START._OFF), (long)bpb.bps);

START SEG = (seg_off.quot < < 12);/* using 64k segment boundries */
/%_header.sec_ssgl_end = 0;%/

sec_segl end = O;

sav_start = START SEG;

sav end = maxmem;

reset_mem = 2;

goto KEEP;

else

{

retumn(2);

KEEP:
sig_pir = MK_FP(FP_SEG(0x0000), FP_OFF(0x04FB));
diskenie = MK_FP(FP SEG(tx0000), FF_OFF(0s043F));
if ({('sim = R) && (*(sig_pr+1) == 'B))

printf("%c%:e \b\b\t\n\r CRAM already Installed \n\r", Cx07,0x07);
exit(-1);

hot_key = FIVEKEY;
set_shift_key(ALT KEY|CTRL_KEY);

get_header();

start_flag =

/*c_header.sec_segl_end = sec_segl_end = 0%/

sec_segl end = O;

START SEG = sav_start; /* Set to start of segment to save */

mawnem = START SEG + 0x1000; /* Set end of memory to save this */
/* is one segment boundary block */

DOSsec = ¢_header.mem_sec;

¢_header.curr mem_sec = DOSsec;

while(*diskette ! = (x00); /* wait for disk drive to stop spinning */

time(&sl);

stack_pir = malloc(STACK _SIZE);
stack_pur += STACK_SIZE;

disable();
inis_intr();
/* get inserrups vector °/

old_int8 = getveci(8); /* timer interrupt */
old_imt9 = getvect(9); /* keyboard interrupt */
old_int2a = getvect(Qx24); /* dos internal int */
old_int24 = getvect((x24);

old_intIC = getvect(axIC);

old_int28 = getvect(Qx28);

old_intFC = getvect((xFC);

208

old_int25 = getvect(Qe25);
old_int13 = getvect(Gx13);
old_in26 = gewect(0x26);
old_ine10 = gewect(Qx10);

/* set interrupts to our routines */
disable();

/v sevect(0x8, new_imt8);%/
setvect(Qx9, new_int9);
setvect(Qx2A4, new_int2a);
setvect(Qx24, new_int24);
setvecy(Qx1C, new_intIC);

/* setvect(Ocl10, new_int10);%/

/* setvect(0x25, new_int25);
setvect(0x26, new_in126);*/

/% setvect(0x13, new_int13);%/

/* setvect(0x28 mem_save);*/
setvect(Qx28 new_int28);
setvect(OxFC, mem_reset);
gen_intFC = getvect(xFC);
enable();
FP_SEG(p) = psp;
FP_OFF(fp) = PSP_ENV_ADDR;
farfree(fp);
segread(d&sregs);
memtop = sregs.ds + PARAGRAPHS (stack_ptr) - _psp;
setblock(_psp, memtop);
*sig_ptr = 'R; *(sig pr + 1) = "B’
if(strstr(strupr(argv(1]), "R") != NULL) goto ret;
printf("\r\nCRAM installed using %olu bytes of memory *, (unsigned long)(memtop * 16));
keep(0, memiop);

ret:
return(result);

209

INSTALL.C The installation routines used to prepare the hard disk and to install a
copy of the software.

#include <bios.h>
#include <dirh>
#include <math.h>
#include <conio.h>
#include <time.h>
#include <setjmp.h>
#include <mem.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <process.h>
#include <io.h>
#include <fent.h>
#include <sys\types.h>
#include <sys\stat.h>
#define BREAK int 0x23

#include "tst.h"
#include "cram.h”

struct BPB bpb;

struct DPT dpt;

struct HST hst;

struct CRAM_HEADER c¢_header;

long maxaracks, maxsides, maxsectors, skipirack;
extern DWORD cluster2sector(DWORD);

long DOSsec;

int result;

BYTE buffer(512);

BYTE swap_save_buf[1853];

int nsects;

unsigned char far *conv_mem_ptr;

int drive=0;

char *drv="2";

DWORD data_sec, reserved_sec;

struct free_fat f free;

DWORD clust_req =600UL;

BYTE far *diskette;

int DEBUG = ¢;

char vlogof] ={

T 3 T 3 T 3 T 3 3

210

" Constant Random Access Memory data recovery system for the IBM PC f
" Copyright (c) 1992 by Renford A. B. Brevett at lowa Slat; University '

" This software replaces a standard Uninterruptible Power Supply (UPS)
" Also recover from keyboard lockup, system crash, & memory parity errors ’,
" Memory will be saved automatically and restored if power is interrupted *,

b

extern int get drive_info(char *drv);

extern int get_fatfree(struct free_fat *freefas, WORD clust req);
extern int put_f name(struct free_fat f free, DWORD data_sec);
extern int pus_fas(struct free_fat freefat, DWORD data_sec);
extern long get [name(void);

extern int format_CRAM(long start_sec, long end_sec);

char curdir MAXPATH];
char command_input{80];

void interrups (*oldctrl_c)();
char *SAVE_DIR(char *path);
void shell_install(void);

void interrupt ctrl_c(void)

QOW(IJ):

cprintf(" %c CTRL-C Disabled ",0x07);

cprintf("Do you want to abont the Instalation [Y/N] ");
i);(wupper(getch()) =='7)

/* put code to remave CRAM here */
/% cprimtf("\n\r Not Supported yet YOU need to do so on your own");
cprintf("\n\r See manual for Instructions ");*/
gotaxy(1,1);
cputs("\bThanks for trying CRAM; need help call (302) 325-0876 or mail to addr. in manual");
gotaxy(1,24);
disable();
setvect(x23,0ldctrl_c);
enable();
exit(95);
}
else
retrn;
}

char *SAVE_DIR(char ®path)

{
srepy(path, "X:\\ >");
pathf0] = ‘A’ + gedisk();
getcurdir(0, path +3);
return (path);

}

void shell_install(void)
{

211

int ¢c_handle, c2_handle;

FILE “inf, *outf;

char autobuff{12] = (" "}

char buf{80];

BYTE bigbuf[40960];

char *src = "A:\\autoexec.bat’,
*dst = "C:\\autoexec.bat";

char tokensep[] = "\t/, "

char “token;

int flag=0;

struct frime ¢_fime;

char ch(8] = "Echo \n\0%

sre[0] = ‘A’ + getdisk();

strepy(dsy, drv);

sre[1] = '\0;

strcat(src, "CRAM.EXE ");

streat(dst, ":\\CRAM.EXE");

clear_win(1,1,79,2,GB0,0);

gotoxy(1,1);cprintf("Copying %.%s to %.%", 11, src, 11, dst);
chmod (src, S_IWRITE);

chmod (dst, S_IWRITE);

if((c_handle = open(src, O RDWR|O_BINARY)) != -1)

char *chk="CRAMEXE";
long bytesread =99, i, save_f pos=0, f size;

¢2_handle = open(dst, O_WRONLY|O_BINARY|O_CREAT, S IREAD);
getfime(c_handle, &c_frime);
ultoa(biosequip(), buf, 16);
Iseek(c_handle, OL, OL);
Iseek(c2_handle, OL, OL);
[size = filelength(c_handle);
while(save_f pos <= f size && (bytesread > 0))
{

if (bytesread == 99) bytesread = 0;
save_f pos + = bytesread;
bytesread = (unsigned int)read(¢_handlebigbuf, sizeof(bigbuf));
for(i=0; i<bytesread; i+ +)
if(bigbuffi] == chk[0])
if(memcmp(chk, &bigbuffi], 7) == 0)
{

memcpy(&bigbufli +7], &buf, 4);

}
Iseek(c_handle, save_f pos, OL);
write(c_handie,bigbuf,byesread);
Iseek(c2_handle,save_f pos, OL);
write(c2_handle, bigbuf, bytesread);

}

/* Put system protection ID check Here */
setftime(c_handle, &c_ftime);
setftime(c2_handle, &c_flime);
close(c_handle);
close(c2_handle);

/* chmod (src, S_IREAD); */
chmod (dst, S_IREAD);

clear_win(1,1,79,2,0x50,0);
gotoxy(l,1);cprintf("Checking AUTOEXEC.BAT ...");

/l

212

strepy(sre, dst);
strepy(src +3, "autoexec.bat”);
if (access(src,2) == -1 || access(src,0) == 0)

if (access(sr,2) == -1)
chmod(src,S_ITWRITE);
gotoxy(65,1);puts(src);
strepy (dst, src);
src[12] =0 src[13] ='L’; src[14] =D’
rename(ds, src);
inf = fopen(src,'r");
while(fgets(command_input, sizeof(command_input), inf) != NULL)
{
strepy(buf, command_input);
token = strtok(command_inpuwt, tokensep);
while(token != NULL)
{
if (strnicmp(token, "CRAM /u",7) == 0)
flag =
token = strtok(NULL, tokensep);
}
}
rewind(inf);
}
l'f{(-’ fag)
clear_win(1,1,79,2,0x80,0);
gotoxy(1,1);cprintf("Updating AUTOEXEC.BAT ...");
outf = fopen(dst, 'w");
strepy(autobuff,"CRAM /u ");
streat(autobuff,drv);
autobuff[9] ='\n’;
autobuff(10] ='\0%;
autobuff{11] ="'\0%;
Jputs("Echo off\n', outf);
fputs("Cls\n", outf);
fputs(autobuff, outf);
fpuss("If ERRORLEVEL 99 goto install\n", owtf);
fputs("goto end\n", outf);
fpwts(Tinstali\n", outf);
autobuff(é] = iy
[puts(autobuff, outf);
ch(S] = (xl3;
Jouss(ch, outf);
ch(S5] = x07;
Jputs(ch, outf);
ch[5] = (X07;
Jouss(ch, outf);
gotoxy(27,1);cprintf("Copying %.% to %.%", 11, src, 11, dst);
if (access(src,0) == 0)%/
while(fgets(command_inpus, sizeof(command _input), inf) != NULL)

[puts(command_input, outf);

}
foues("\n:end\n", outf);
[feloseall();
chmod(src,S_IREAD);
chmod(dst,S_IREAD);

213

}
clear_win(1,1,79,2,0x50,0);
}

int main(void)

unsigned long seg, offs, i;
Ildiv_t seg_cal, offs_cal;
long result;

textcolor(7);
textbackground(1);
drive = get_drive_info(dr);
clear_screen(CxB0);
i=0;
for (i = 0;i<16; i+ +)

{

gotaxy(3, S+i);
; cputs(logofi]);

textattr(RED +(GREEN < <4));
gotoxy(10,5+8);
cprintf("Version %u.%.2u [, c_ver.major, c_ver.minor);
if(c_ver.test) cprimsf(* EVALUATION *);
if(c_ver.beta) cprimif(" BETA ");
if (c_ver.test || c_ver.beta) cprintf("COPY }");
else
{
cprinif("Licence to : %.°%s lic# 7.°s",
c_header.f access[0], ¢_header.f access,
¢_header.password[0],c_header.password);
}
gotoxy(1,6 +i);
textattr(WHITE + (BLUE < <4));
reserved_sec = ((DWORD)(bpb.nspf*bpb.nfais) + (DWORD)bpb.nres_sec
+ (DWORD)((bpb.nroot_dir *32)/bpb.bps});
ifstrstr(strupr(_argv(1]), "-D"))

DEBUG = I;
}
switch(dpt.sysid)
{
case D FATIG:
{
clust req = S00UL;
break;
}
case D_FATI2:
case 0:
clust_req = 600UL;
break;
}
oldctrl ¢ = getvect(tx23);
disable();
sevect((x23,ctri_c);
enable();

result = get f name();
if(result <= 0)

214

{
if (strstr(strupr(_argv(1]), "-F"))
result = get_data_sec();
if (result <= 0)
{
result = get_fatfree(&f free, clust_req);
data_sec = cluster2sector((f free.foegin));

else }
data_sec = result;
}
else
{
f_free.foegin = result;

[freefsize = clust_req;
[free.fend = result + clust_req - 1;
result = cluster2sector(result);

}

if(DEBUG)

{

gotaxy(1,22);

cprinif("Last Result = %ld", result);

cprinif("\n\rLargest set of free consecutive Clusters Begins: %olu "
"Ends %lu size %lu \n\rCRAM will be loaded at Cluster %lu "
"sector %lu [Above Reserved Area at %lu]’,
{ free.foegin, f free fend, f free fsize, [free.fbegin,
data_sec, reserved_sec);

pause(0);

}
if (result > 0)
if (f_freefsize > = clust_req)
{

f freefsize = clust_req;
ffreefend = f free foegin + f free frize;
if(data_sec > reserved_sec)
result = put f name(f free, data_sec);
SAVE_DIR(curdir);
shell_install();
chdir(curdir);
if(result > = 0)
{
result = put_fai(f free, data_sec);
format_CRAM(data_sec, cluster2sector(f free.fend));
gotaxy(3, 22);
textattr(WHITE + (RED < <4) + BLINK);
cputs("\bCRAM Installed Successfully on drive ");
textattr(YELLOW + (RED < <4));
cputs(drv);
cputs("; The file AUTOEXEC.BAT on ");
cputs(drv);
cputs(" is updated *);
8otaxy(3,23);
cputs(” You need to Re-Boot your computer to stant CRAM
texicolor(7);
textbackground(1);

else

n),,

215

{
gotoxy(1,1);
cprintf("%c%cDo you want to REformat CRAM [Y/N] " 0x07, 0x07);

if(wupp;r(gerch()) ==7)
format_CRAM(data_sec, cluster2sector(f free.fend));

}
gotaxy(3, 22);
tectaur(WHITE + (RED < <4) + BLINK);

cputs(” \bCRAM Already Installed on drive *);
texaur(YELLOW +(RED < <4));

cpuis(drv);

cputs("; The file AUTOEXEC.BAT on ");

cputs(drv);

cputs(" is updated *);

8otoxy(3,23);

cputs(” You need to Re-Boot your computer to start CRAM ")y
textcolor(7);

textbackground(1);

result = 0;

}
}
if (result < 0)

{
gotaxy(1,22);
textatr(WHITE + (RED < <4) + BLINK);
cputs(” \b\bUnable 10 load CRAM on drive ");
textatir(YELLOW +(RED < <4));
cputs(drv);
cputs(" : Insufficient Disk space or Disk is fragmented ");
cputs("\n\r If you did not run a disk organizing utility,");
cputs(” Do so now and re-run CRAM ");
textcolor(7);
textbackground(1);

}
/* clear_win(1,1,79,2,0:B0,0);%/
gotoxy (1,1);
cputs("\bThanks for trying CRAM; need help call (302) 325-0876 or mail to addr. in manual”);
gotoxy(1,24);
disable();
setvect(0x23,0ldctrl_c);
enable();
requrn (0);

216

APPENDIX D. SOURCE CODES8 FOR SOME USEFUL UTILITIES

217

GEN_UTIL.C Routines used for screen display and other DOS operation but

not essential to CRAM’s operation.

/* GEN UTIL.C 4

/ e
Utilities used with CRAM for general I/0 and control of memory
Copyright for lowa State University by Renford A. B. Breveu.

E 1T] /

#include <stdlib.h>
#include <dos.h>
#include <stdio.h>
#include <mem.h>
#include <string.h>
#include <stdarg.h>
#include <biosh>
#include <io.h>
#include <conio.h>
#include "cram.h”

#define STDERR fileno(stdout)
#define KEYBRD_READY 01
#define MAX_WID 12

]

static union REGS regs;*/
static union REGS rg;

/* Prototypes */
int color_adpt(void);
SCRLINE far *scr;

unsigned put_str(char far *s);

unsigned put_num(unsigned long u, unsigned wid, unsigned radix);
unsigned put_chr(int c);

#define put_hex(u) pwst_num(u, 4, 16)

#define put_long(ul) put_num(ul, 9, 10)

#define putstr(s) { pus_str(s); pus_sr("\r\n"); }

int LPT(char *s);
void gotoXY(int x, int y);

void curr_cursor(int °x, int *y);
void set_cursor_type(ine t);
void clear_screen(char ch);
void clear_win(int x1, int yl, int x2, int y2, char ch, BYTE aurib);
int vmode();

int scroll_lock();

imt get char();

void clrEol(void);

void (*helpfunc)(void);

/.ﬂﬁ88.'=-.=B5=ﬂ=”-==33=="ﬂﬂﬂﬂﬂ:=IS.BHIBHBBBR================‘/

int color_adpe(void)

218

/* Return 0 if monochrome adapter, 1 if color adapter */

return ((biosequip() & 0x0030) != Qx0030);
}

/.======I== ______
int LPT(char %)
{

inti=0
while (®s)
{i++;
if (i > 80)
{
i=0
biosprint(0, Ox000A, 0);
biosprint(0, &x000D, 0);

}
biosprine(0,%s, 0);
S+ +;

rewrn (0);

/* TSR STDERR output routines, no malloc */
/* returns length of far string */

#ifdef MSC VER
#define fstrlen(s) _fstrlen(s) // MSC 6.0
#else

size_t fstrlen(const char far °s) // MSC 5.1

size tlen = O;
while (%s+ +) len+ +;
return len;

}
#endif

size_t strien(const char *s) // _TURBO C_

{
size_tlen = O;
while (*s+ +) len+ +;
return len;

}

unsigned doswrite(int handle, char far °s, unsigned len)
{

unsigned bytes;
bytes = _write(handle,(void *)s, len);
return bytes;

}

unsigned put_sir(char far *s)

return doswrite(STDERR, s, fstrlen(s));

}

219

unsigned put_chr(int c)

}

return doswrite(STDERR, (void far ®) &, 1);

unsigned put_num(unsigned long u, unsigned wid, unsigned radix)

/‘

int

{

}

char buff MAX_WID+1], *p;
int i, digi;
if (wid > MAX_WID)
return (0);
for (i=wid-1, p=&buff{wid-1]; i > = 0; i--, p--, 4 /= radix)

{
digit = u % radix;
% = digit + ((digit < 10) 2°0°: ‘A’ - 10);

}
buffwid] = 0;
return (doswrite(STDERR, (void far *) buf, wid));

Substitute for printf function */
_Cdec! TSRprintf (const char *fmt, ...)

static char buf{128};

int len;

va_list marker;

va_start(marker, fmt);

len = vsprimif(buf, fint, marker);
va_end(marker);

return doswrite(STCERR, (void far *) buf, len);

unsigned get_str(char far *s, unsigned len)

}
/‘

unsigned rcount;

/* give TSRs a chance by calling INT 28h */

while (! bioskey(KEYBRD_READY))
geninterrupt(x28);

if (((rcount = _read(STDERR, (void *)s, len)) != 0) || (rcount < 3))
return G

sfrcount-2] = '\0’

rewrn rcount-2;

ibmpe.c Y/

* Low-level functions addressing BIOS & PC Hardware
Y/

/.

--------- -- POSILion tRe CUTSOT -=ev-srseneee ®f

220

void gotoXY(int x, int y)

rgx.ax = (x0200;
rgxbx = 0
rgxdx = ((y << 8) & Oxfj00) + x;
) int86(0x10, &rg, drg);
A — return the cursor position ------es--- - 8/
void curr_cursor(int *x, int %)
{
rgx.ax = x0300;
rgxbx = 0;
ini86(16, &rg, &rg);
*x = rghdl
Yy = rghdh;
}
[/® weereencecs SE CUTSOF IYPE --vnwsmannnnnan s/
void set_cursor_type(int 1)
{
ngx.ax = x0100;
rgxbx = 0;
ngXcx = 4
) int86(16, &rg, &rg);
/*page*/
char aurib = 7;
A — clear the screen ------veeeeee %/
void clear_screen(char ch)
{
scr = MK_FP((color_adpt() ? (xB800: 0xB000), 0x0000);
gotoXY(0, 0);
rghal = ch;
rghah = 9;
rgxbx = (scr[wherex()][wherey()]._ar);
rgx.cx = 2000;
) ine86(Qx10, &rg, &rg);

void clear win(ing x1, int yl, int x2, imt y2, char ck, BYTE aurib)
{
scr = MK_FP((color_adps() ? 0xB800: (xB0OQ), Qx0000);
gocaXY(xI-l,' yl-1);
rghal = chy
rgluak = 9 -

rgx.bx = aurib ? aurib&0x77 : (scr{wherex()][wherey()].s_attr);

rgx.cx = ((y2-p1)+2)* ((x2-x1) ? 80 : 80); /*2000;*/
) int86(0x10, &rg, &sg);

/® wmmmeemeee return the video mode -e-e-v----- %/

int vmode()

rghahk = 15;
ini36(16, drg, &rg);
retumn rg.h.al;
}
/® —=---- test for scroll lock -------- ./
int scroll_lock()
{
rgx.ax = x0200;
inB6(0x16, &rg, &rg);
return rg.h.al &: Ox10;
}
void (*helpfunc)(void);
int helpkey = 0;
int helping = 0;
AR get a keyboard character seeeseeseaseee s/
int get_char()
int c;
while (1)
rghah = I;
int86(0x16, &rg, &rg);
if (rgxflags & (x40) {
int86(0x28, &rg, &rg);
continue;
}
rghah = G
ineB6(Qe16, drg, drg);
if (ghal == 0)
¢ =rghah | 125
else
¢ = ghal;
if (c == helpkey && helpjunc) {
if (*helping) {
helping = I;
(*helpfunc)();
helping = 0;
continue;
}
}
break;
}
return ¢;
}

void gotoXY(int x, int y)
union REGS r;

rhah = 2;
rhdl = x
rhdh = y;
rhbh = 0;

221

222

int86(0x10, &r, &r);
}
4
void clrEol(void)
{
union REGS r;

scr = MK_FP((color_adpt() ? (xB800: 0xB000), 0x0000);
rhah = 6

rhal = O

rh.ch = wherey();

rh.cl = wherex();

rhdl = 79;

rh.dh = wherey();

rh.bh = (scr[wherex()](wherey()].s_aitr);

int86(0x10, &r, &r);

223

CRAMINFQ.C Routines used to access information in CRAM. These routines

can be used with any other software to gain access to

information stored in CRAM.

#include <mem.h>
#include <stringh>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <setjmp.h>
#include <time.h>
#include <alloc.h>
#include "tsr.h"
#include "cram.h"

struct date ddate;
struct time dtime;

#define SIG "Copyright(c) 1991 Renford A. B. Brevett at Iowa State University "
#define LINEFEED 13

#define SPACE ax20

#define PSP_ENV_ ADDR (x2C /* environment address from PSP */
#define STACK SIZE 8192

#define BYTES PER TRACK 4609 /* Toual bytes per track plus 1 for null byte®/
#define PARAGRAPHS(x) ((FP_OFF(x) + 15) >> 4)

/O

extern unsigned put_str(char far °s);

extern unsigned put_num(unsigned long u, unsigned wid, unsigned radix);

#define put_hex(u) put_num(u, 4, 16)

#define put_bit(u) put_num(u, 2, 16)

#define put_long(ul) put_num(ul, 9, 10)

_#/dEﬁnc putstr(s) { put_str(s); put_str("\r\n"); }

unsigned char multiplex_id;

struct dfree dskfree;
long dskavail,
sysmems;
DWORD maanem = (x4A000L;
static DWORD sav_star, sav_end;
int skiptrack;
int pe;
int DEBUG = 0;
struct DPT dpt;
struct BPB bpb;
struct FHIST hst;
int spl;
int cmd;
int drive;
int head;
long track;

int sector;

224

in: nsects;

BYTE buffer(BYTES PER TRACK];

BYTE swap_save_buf[1852];

static BYTE signote[512];

int result;

char darn(3]="2Z %;

long maxsectors;

long maxsides;

long maxtracks;

long DOSsec;

unsigned long data_sec;

unsigned char far *conv_mem_pir;

Idiv_t seg_cal;

Idiv_t offs_cal;

ldiv_¢ seg off;

unsigned long seg = (x0000,
offs = 0x0000;

WORD lowmem;

MCB far *mcb;

MCB far *first_mcb;

unsigned long START SEG,
START OFF,
SEC _SEG,
REM SEC;

static BYTE start_flag=0;

BYTE reset_mem;

WORD sec_segl end =0;

unsigned long b Ji

unsigned long savetime = OL;

static BYTE tmelag = &3C;

static unsigned long secloop;

static time_t ti, i2;

struct CRAM_HEADER ¢_header;

char far *stack_ptr;

char far *pur;

char far *sig_ptr;

char far *sig;

unsigned far *p;

unsigned memtop;

Jmp_buf cram_env;

struct ExtErr *Errinfo;

WORD header_size;
char c_id(2](4];
DWORD reserved sec;

struct free fat f free;

DWORD clust req =500UL;
extern struct SREGS sregs;
externs union REGS regs;
extern SCRLINE far *scry
extern MCB far *ges_mcb (void);

char far *diskeue;
/‘ﬂ:==.ﬂ=!===========I===== ————————

int get_header(void)

{
long k=0L;

225

nsects = I;

scr(0] [0].s_char = (0x00F0;

scr(0] [0].s_atr = ((scr[0] [0].s_attr >> 4) + (scr[0] [0].s_aur < < 4)) & 0x77;

DOSsec = data_sec;

if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt,
signote)) != 0)

rewurn(result);

memepy(&sig, dsignote(k], /*sizeof(sig)*/strlen(SIG));

k + = strien(SIG);

memcpy(&dpt, &signote[k], sizeof(dpt));

k += sizeof(dpt);

memcpy(&bpb, &signote[k], sizeof(bpb));

k + = sizeof(bpb);

memcpy(&c_header, &signote[k], sizeof(c_header));

k + = sizeof(c_header);

memcpy(&cram_env, &signote(k], sizeof(cram_env));

k + = sizeof(cram_env);

memcpy(&header_size,&signote[506], sizeof(header_size));

memcpy(&c_id{1] ,&signote[508], 4);

memcpy(&c_id[0] ,&¢c_header.ID, 4);

rewun(k);
}

int reset_video(void)
{
nsects = &
DOSsec = c_header.video_sec;
stohst(dnve, hst. TRACK, hst HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(READ, hst. DRIVE_NUM, hst HEAD, hst TRACK,
hst.SECTOR, nsects, buffer)) != 0)
return(result);
movedata(FP_SEG(buffer), FP_OFF (buffer), &xB800, 0x0000, 0x1000);
nsects = 1;
retim(0);

}
void print_regs(void)

printf("\n\r\n\r Registers saved for the ongoing process in CRAM \n\r");
printf(- "\r\n CS = %.4X DS = %.4X ES = %4X SS = %.4X"
"\\nAX = %4X BX = %4X CX = %.4X DX = %.4X"
“\r\n BP = %.4X DI = %.4X SI = %.4X SP = %.4X"
"\r\n IP = %.4X PSP = %.4X FLAGS = %.4X\r\n"
"\r\n CRAM PSP = %.4X",
c_header.CS,
¢_header.DS,
¢_header.ES,
¢_header.SS,
¢_header AX,
¢_header.BX,
¢_header.CX,
¢_header.DX,
¢_header.BP,
¢_header.Dl,
¢_header.SI,
¢_header.SP,
¢_header.IP,
¢_header.PSP,
¢_header. FLAGS,

226

¢_header.cram_psp);

int printHeader(void)

{
char c_ID[5] = {'%’ %’ %, %,"\0'};
unsigned day, month, year, hour,min,sec;
char am_pm(3] = {'a,'m’'\0’};
if (((c_header.time & (xF800) > > (x0B) > = 12)

am_pm[0] = p’
else
am_pm[0] = ‘a’;
memcpy(&c_ID, &c_headerD, 4);
printf("\r\n CRAM ID. %.%s %.%s"
“\r\n DATE & TIME OF LAST SAVE: %.2u-%.2u-%u
"\r\n ACCESS INFORMATION %-.%s",
4,c_id[0],
4c_id[1],

(c_header.date & 0x1EQ) > > (x05,
(c_header.date) & OxIF,
1980 + ((c_header.date & 0xFE00) > > (x09),
(((c_header.time & 0xF800) > > Gx0B)>12)
? ((c_header.time & OxF800) > > (x0B) -12
! ((c_header.time & OxF800) > > Ox0B),
(c_header.time & Ox7E0) > > 0x05,
(c_header.time & xIF) * 2,
am_pm,

%.2u:%.2u:%. 2u%6s"

16, (c_header.f access{0] == (x00 ? "NOT assigned” : c_header.f access)

»

printf("\r\n CRAM CHECKSUM %.4X"
"\r\n TOTAL CLUSTERS OCCUPIED BY CRAM %lu"
"\r\n CLUSTER WHERE CRAM STARTS %lu’,
c¢_header.checksum,
¢_header.clusters,
¢_header.start_cluster);
pringf("\r\n ALL PASSWORDS %-. %"
"\r\n EXTENDED ERROR INFO %.4X:%.4X:%.4X (ax:bx:cx)"
"\r\n SEGMENT AT START OF CRAM %.4X™
"\r\n CRAM FILE SIZE %lu BYTES"
"\r\n CHECKSUM FOR INTERRUPT VECTOR Po4X™
*"\r\n SIZE OF MEMORY FILLER %u BYTES"
"\r\n SECTOR AT END OF FIRST SEGMENT IN CRAM Fous”,

4, (c_header password[0] = = (x00 ? "NONE" : ¢_header.password),

¢_header.Errinfo.errax,
¢_header Enrinfo.errbx,
¢_header Errinfo.errcx,
¢_header.start_addr,
¢_header f size,
¢_header.int_checksum,
¢_header.offs_filler,
¢_header.sec_segl_end

k

pringf("\r\n SECTOR AT START OF VIDEO MEMORY
"\r\n SECTOR AT START OF DSA MEMORY
"\r\n SECTOR AT START OF MCB MEMORY

%‘n
%“n

227

"\r\n SECTOR AT START OF STACK MEMORY Pous”

"\r\n SECTOR AT START OF INTERRUPT VECTOR MEMORY ~ %ou"
"r\n SECTOR AT START OF CRAM MEMORY Pou”

"\r\n SECTOR OF LAST CRAM MEMORY SAVED Pou”
"\r\n SECTOR AT START OF CRAM HEADER Pou"

"\r\n SIZE OF DOS SDA %d”

"\r\n DISK TRANSFER (DTA) ADDRESS [CRAM] [%.4X:%.4X]"
"\rin DISK TRANSFER (DTA) ADDRESS [process] [%.4X:%.4X]",
¢_header.video_sec,

¢_header.dsa_sec,

¢_header.mcb_sec,

¢_header.stack_sec,

¢_header.int_sec,

c_header.mem_sec,

¢_header.curr_mem_sec,

¢_header.data_sec,

¢_header.dsa_size,

¢_header.cram_dta_seg,

¢_header.cram_dta_off;

¢_header.dia_seg,

¢_header.dia_off

»
pause(0);
printf("\r\nCRAM SEGMENTS REGISTERS INFORMATION \r\n\r\n"
“SEGMENT FLAG CHECKSUM SECTOR SIZE RESERVE");

for (i=0; i<MAX SEG; i+ +)
WORD j;

Jj =i *axl1000;
printf("\n\r %.4X %o %.4X %.4X %.4X %c",
b :
¢_header.save_seg_flag[i] + OxFA,
¢_header.seg_checksumfij,
c_header.sector_in_cramfij,
¢_header.size_of segfi],
c_header.reserve_for_segfi]
)

}
cprintf(“\n\rSIZE OF HEADER : [%u] ", header_size);
return(0);

}
void printJmp(void)
printf("\r\n\r\nLast JMP information \r\n");

prinef(

"\r\n CS = %.4X DS = %.4X ES = %.4X SS = %o.4X"
"\r\n BP = %.4X DI = %.4X SI = %.4X SP = %.4X"
"\r\n IP = %.4X FLAGS = %.4X",

cram_env[0]] cs,

cram_env[0].i ds

cram_env([0]] es,

cram_env[0] j_ss,

cram_env(0].j bp,

cram_env(0] j di,

cram_env[0]. si

cram_env[0].j sp,

228

cram_env{0].j_ip,
cram_env([0].j_flag

»

/* typedef struct {
unsigned j_sp, J_ss,
unsigned j flag j cs;
unsigned j ip, j_bp;
unsigned j di, j es;
unsigned j si, j ds;

} jmp_buf(1];
Y/

}

int main(int argc, char *argv(])
{
unsigned long seg, offs=0L;
ldiv_t seg_cal, offs_cal;
DWORD cksum;

if(arge > 1)
if(strstr(strupr(argv(1]),"M") != NULL)
{

clrser();

i=5

cksum = mem_checksum(0x0000,0x0000, 0x400);
gotoxy(Li+ +);

printf ("Interrupt Memory Checksum : %.8X",cksum);
cksum = (xBB;

cksum = mem_checksum(x0000,0x0000, OxA0000);
gotoxy(Li+ +);

printf ("Total Memory Checksum(640K) : %.8X",cksum);
cksum = (xBB;

cksum = mem_checksum(0x0000,0x0000, (x100000);
gotoxy(l,i+ +);

printf ("Total Memory Checksum(1 Meg.): %.8X");
cksum = OxBB;

cksum = mem_checksum(0x0000,0x0000, 0x10);
gotoxy(Li+ +);

printf (*Test Memory Checksum ! %.8X",cksum);

) pause(0);

drive = get _drive_info(drv);
printf("\n\r Drive Information for Drive #%d leter %.2s", drive, drv);
result = get f name();
if (result > 0)
data_sec = clusterlsector(result);
else
data_sec = get daia_sec();
get_header();
/* geifar_info(&f free, clust_req);*/

if(data_sec <= 0) _exit(2);
else

{
printBPB(bpb);
pause(l);
printDPT (dpt);
pause(l);
printmp();

229

prine_regs();
pause(1);
printHeader();
pause(l);

return (0);

