
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
. A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9234792

A method for the recovery of data after a computer system
failure: The development of Constant Random Access Memory
(CRAM)® recovery system

Brevett, Renford Adolphus Benito, Ph.D.

Iowa State University, 1992

Copyright ©1992 by Brevett, Renford Adolphus Benito. All rights reserved.

U M I
300 N. ZeebRcl.
Ann Arbor, MI 48106

A method for the recovery of data after a

computer system failure: The development of

Constant Random Access Memory (CRAM)® Recovery System

by

Renford Adolphus Benito Brevett

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Education and Technology

Approved:

In Charge of Major Work

For the Graduate College

Iowa State University
Ames, Iowa

1992

Copyright ® Renford A. B. Brevett, 1992. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

ii

TABLE OF CONTENTS

CHAPTER L INTRODUCTION 1
Statement of the Problem 2
Purpose of the Study 3
Need for the Study 4
Delimitations of the Study 5
Limitation of the Study 6
Procedure of the Study 6
Definitions of Terms 9

CHAPTER II. LITERATURE REVIEW 12
Computer System and Software Failures 13
Software Testing 18
Computer Reliability and Validity Testing 20
Data Recovery System 23
Operating System and Software Development 26
Terminate-and Stay-Resident (TSR) Method 27
Undocumented DOS 29

CHAPTER III. DESIGN METHODS AND PROCEDURES 31
Questions of the Study 31
Hypothesis of the Study 32
Methodology of the Study 33

CHAPTER IV. RESULTS OF ANALYSIS AND HYPOTHESIS TESTING 38
Hypothesis 1 38

Installation 40
Organizing the hard disk 43
Checking for free clusters 45
Writing the FAT 49

12-Bit FAT 49
16-Bit FAT 50

Formatting CRAM 52
Protecting CRAM from DOS 53
Writing the directory area 54
CRAM'S Operation 54

Using hardware interrupt 57
Using software interrupt 59
Using the keyboard interrupt 59

iii

Using the clock interrupt 60
Using the DOS idle interrupt 60

Use of Undocumented DOS 60
Using the DOS Swappable Data Area (SDA) 62
Determination of CRAM refresh period 62
Saving Memory 63
Memory Restoration 65
Context Switching 66
Working With Memory Control Blocks 69
Saving CRAM Data 73
Restoring Memory 73

Hypothesis 2 82
Results of software testing 82
Recovering from a power failure 82

Hypothesis 3 85
Time delay 85

CHAPTER V. SUMMARY AND RECOMMENDATIONS 94
Discussion to Question 1 94

Implications for future research 95
Discussion to Question 2 97

Development problems 97
Implementation problems 101
Implications for future research 101

Discussion to Question 3 102
Summary 103

REFERENCES 104

ACKNOWLEDGMENTS Ill

APPENDIX A. INSTALLATION GUIDE 112
Introduction 113
System Preparation Prior to CRAM Installation 113
CRAM Installation 114
Invoking CRAM 115
Switches Used With CRAM 115
System Requirements 116

APPENDIX B. USER MANUAL 118
Introduction 120
Some DOS Error Codes Returned by CRAM 121

iv

Error Codes Specific to CRAM 122
Re-installing CRAM 124
Getting Information About CRAM 126
Editing CRAM 127
Transferring CRAM To a Different Disk and/or Computer 127
Removing CRAM From the Hard Disk and System 128

APPENDIX C. CRAM SOURCE CODE 130
TSR.H 131
CRAM.H 132
DISK.C 140
CRAMUTIL.C 146
CRAMINT.C 155
CRAMMEM.C 160
CRAMTOOL.C 168
CRAM.C 182
INSTALL.C 209

APPENDIX D. SOURCE CODES FOR SOME USEFUL UTILITIES 216
GEN UTIL.C 217
CRAMINFO.C 223

V

LIST OF FIGURES

Figure 1. CRAM's development showing the goals assigned to each task 39

Figure 2. Layout of CRAM on the Hard Disk 44

Figure 3. Disk layout showing fragmented files 46

Figure 4. Disk layout after running Norton Utility disk organizing program
(Speed Disk) 47

Figure 5. Installation Flow Chart 48

Figure 6. Flow diagram showing the start-up process for a DOS machine and the
determination of CRAM's status 55

Figure 7. CRAM's process screen indicators 56

Figure 8. Flow Diagram showing CRAM's operations 58

Figure 9. Layout of the Program Segment Prefix (PSP) 67

Figure 10. Layout of DOS Swappable Data Area (SDA) 68

Figure 11. Code to find free clusters on the disk 70

Figure 12. Code to make a directory entry that protect CRAM from DOS ... 71

vi

Figure 13. Code to write to the FAT 72

Figure 14. Code showing the main memory saving routine 74

Figure 15. Code showing the method used to restore memory 75

Figure 16. Code for the main memory loop 76

Figure 17. Code to show the calculation of memory checksum 77

Figure 18. Code to check for CRAM in memoiy to make sure it is the first
program in memory after the DOS shell (COMMAND.COM) 79

Figure 19. MS-DOS environment after the start-up process 80

Figure 20. Layout of memory after CRAM was loaded 81

Figure 21. Software conflicts and the number of partial and full restoration of the
system by CRAM 83

Figure 22. Benchmark program code 86

Figure 23. Delay times for some benchmark functions 87

Figure 24. Delay times for some benchmark functions contd 88

Figure 25. Graph of sieve numerical test 90

Figure 26. Graph of Video display test 91

vii

Figure 27. Graph of random numbers generation test 92

Figure 28. Code used to set MCB 99

Figure 29. Code to get MCB 100

Figure lA. CRAM's process screen indicators 125

1

CHAPTER I. INTRODUCTION

Over the past decade, much computerization has occurred in industries,

schools, and homes. Computers are being used as tools, tutors, and tutee. Many

people have become dependent on computers to perform a variety of calculations,

bookkeeping, word processing, and other tasks. In order for the computer to reliably

and continuously perform its assigned tasks the hardware and software must be

designed to operate with a high degree of reliability. Since modem computers are

generally reliable, most improvements by computer designers and programmers are

directed towards building faster machines and higher storage capability. Although

the storage capacity and speed of the machines is important, the designers neglect the

area of system recovery and data loss. Data loss from a power outage can be

catastrophic in that very important information, which may either be very expensive

or time consuming to obtain may be lost. The following questions could be posed:

1. What are the major causes of computer system failure?

2. What methods can be used to save the system's data for easy access in

case of a system failure?

3. How can data be recovered from a failed system?

4. What are the costs associated with system recovery by alternative

methods?

2

5. What measurable effects do alternative systems have on system

performance?

6. Can a recovery system be developed that utilizes only software in

contrast to hardware solutions?

7. What are the major problems to be encountered in developing a

software-based recovery system?

Statement of the Problem

Regardless of the computer's general reliability, unfortunate incidents, such as

keyboard lock-up, software failures, and power outages, over which the user has no

control, sometimes lead to the loss of data in memory. Most existing software

products do not have the capability to restore data lost from memory. The user is

compelled to either develop habits of frequently saving their data or repeat the work

if there is a failure. Computer failures occur in a learning situation or from power

interruption. The new computer student or new software user may make incorrect

inputs or connections of peripherals. This can lead to a computer failure or

interruption. It is important that an inexpensive method be developed for use in

such situations in order to restore the system from a failure. This project will

investigate the development of a software solution to restore the system from an

interruption. The approach used employs a hard disk drive for memory storage. To

3

be considered a practical recovery system, it should have little effect on the execution

time of other applications running in the system. This study raised three basic

questions:

1. Can a software system be developed that will provide recovery from a system

failure?

2. What problems exist in achieving a software-only recovery system?

3. What is the degradation in application program performance when utilizing a

software recovery system?

Purpose of the Study

The purpose of this study is twofold. First it will concentrate on development

of a software based solution to a computer system recovery. The goal is to reduce

frustrations, delays and industrial process down-time.

Secondly, it is the intention that this project will demonstrate the feasibility of

incorporating system recovery methods directly in the design of the computer's

operating system and, by doing so, reduce the total cost of computer systems with

high reliability.

4

Need for the Study

Attempts have been made by some computer system designers to use

Uninterruptible Power Supplies (UPS) or a fast switching power generator, to supply

electricity when the power is off, to help in system recovery. Another method

involves periodic "dumps" of files to the tape or disk for use in the event of a failure.

A third method is the use of static memory that can retain data when power is turned

off. These methods can be used to recover some of the system data if there was a

power failure. Also according to Beizer (1988) some UPS do a fine job of switching

from the power line to the battery and keeping things going during blackout, but

when the power is restored, they may throw in their own nasty piece of electrical

noise, thereby creating the very same problem one was trying to avoid. There are,

however, many other reasons that a system may need to be recovered, such as

keyboard lockup, memory parity error, failed UPS, and badly behaved software. It is

the belief of this investigator, that the added expense of a UPS system and/or a PC

board with static memory can be avoided. This study will investigate a method to

accomplish a system recovery using software and the available hard disk subsystem.

This method would be inexpensive and utilize exiting parts of the system. The

experimental system developed in this study will be referred to as the CRAM

(Constant Random Access Memory) Recovery System.

5

Delimitations of the Study

To develop a system that is portable and compatible to all existing computer

systems would take a veiy long time and may even be impossible due to the rapid

change of operating systems. The following delimitations were imposed to speed up

development and testing time:

1. The software was designed to run on IBM and compatible

microcomputers with the following specifications:

a) Only the IBM-PC XT version is fully supported.

b) The system memory is 640k,

c No extended or expanded memory was used in the test

version.

d. The video modes supported are MDA, HGA, CGA, &

EGA.

e. Graphic modes of PGA, VGA or above are not

supported.

f. The operating system used was DOS 3.x (DOS 4.0 or

above were not supported in the test version).

No attempt will be made to generalized to other processing units operating

under different conditions.

6

2. Time did not permit field testing of the software so testing of the

software was done only by the researcher.

3. The programs used for benchmark testing were limited to eight readily

available programs and DOS utilities. Any number or kinds of

programs could be used but the ones chosen are frequently used by

computer operators and thus likely to be the kind encountered by the

CRAM system when installed.

Limitation of the Study

Information about some DOS functions are not available and thus may affect

performance of the CRAM system, if changes are made to those functions in future

releases of DOS.

Procedure of the Study

The study was conducted in the Department of Industrial Education and

Technology at Iowa State University. The literature was reviewed to identify the

current methods used, if any, for system recovery. The various methods of system

backup such as use of UPS, tape backup and software timed backup were

investigated. Procedures for system recovery were also studied. At the time of this

7

study no method was found that could provide system recovery from a power outage

without the use of a UPS system. It is the hypothesis of this study that the system

can be recovered by using software, thus eliminating the added cost of a UPS. The

software would also have the added advantage of being able to backup and restore

the system without an action by the user. Some UPS systems require the user to be

present to save or backup the system within a limited time.

The experimental design required development of software to

a. install a program in the computer that will monitor and backup the

system at either a predefined interval or intervals depending on usage,

b. attempt to detect internal and external system failure,

c. upon detection of such failure, the program will attempt to close down

the system gracefully and warn the user, and

d. restore the system to a state prior to the failure.

Following development of the experimental software, it was tested for

reliability and validity. The ability of the program to restore the system using

different applications determined the reliability of the system. Validity of the system

was determined by examining the degradation in the system's performance using

representative benchmark programs.

The theoretical basis for the experimental software development are discussed

in chapter 2 and include:

8

1) Computer system and software failures.

2) Software testing methods.

3) Computer reliability and validity testing.

4) Operating system and software development.

5) The use of Terminate-and-stay-Resident (TSR) software.

6) The use of Undocumented Disk Operating System functions.

7) Currently available data recovery systems and problems of data

recovery.

8) Systems development methods.

9

Definitions of Terms

ASCII code American Standard Code for Information Interchange. Most

commonly used method of encoding the alphabetic and

numerical characters into bits.

Chip An electronic component inside the computer that is identified

by many pins projecting down from its sides into a socket.

Context Switching The process of rapidly switching one processor among several

operations to give the illusion of concurrent processing. This

applies also to a simple switching of the process to execute a

different process from the current one.

CRAM Constant Random Access Memory. This is the area where

memory is saved for restoration on the hard disk. The software

for this project is also referred to by this name.

Crash A computer is said to crash when its software or hardware

caused the system to be so confused that it no longer performs

useful functions.

10

DPT Disk Parameter Table. A table of values that describes the

layout of the hard disk.

DTA Data Transfer Area. A memory buffer used by a program to

temporary store data to be sent to the disk or read from the

disk.

FAT File Allocation Table. A table of numbers found on every MS-

DOS disk which tells the status and use of a section of the disk.

Firmware Software not intended to be modified and is electronically

programmed into a chip inside the computer.

Interrupt (INT) Routines inherent to the operating system that can be accessed

by other programs and are activated by hardware or software.

IRQ Interrupt Request. Interrupts generated by external devices and

are tied directly to a pin on the CPU.

Lock-up A computer crash when the keyboard will not accept any input.

11

MCB Memory Control Block. MS-DOS divides the first mega-byte of

memory into contiguous blocks with a paragraph of control codes

at the beginning of each.

PSP Program Segment Prefix. A collection of unrelated data

elements required by programs.

SDA Swappable Data Area. This is a portion of memory used by

DOS to store the current context of the system.

Sector A formatted disk is divided into circular regions called track.

The track is subdivided into sectors. Each sector holds the

minimum block of data DOS writes to the disk (current

minimum is 512 bytes).

TSR Terminate-and-Stay-Resident. Program that stays in memory

and operates in the background.

UPS Uninterruptible Power Supply. Supplies the computer with

electricity, from recharged batteries, for a period of time after a

power failure.

12

CHAPTER II. LITERATURE REVIEW

Computer reliability, the causes and solution to hardware and software failures

and, data loss and procedures to restore data are all current research topics (Levy &

Silberschatz, 1991). Industry is making demands on developers to develop fail-safe

systems by introducing recovery systems, such as a resource recovery system (Bacon,

1991; Klopp, 1990; Maslak, Showalter & Szczygielski, 1991; Tam & Hsu, 1990) and

file recovery system (Barnes, et al., 1991). These recovery systems could use the

cache technology for fast transfer and transparent operation (Grossman 1985; Rich,

1986 & Sando, 1985). The current state of the art involves various backup techniques

that are found to be either relatively slow or unreliable (Kaczeus, 1990). Some of the

constraint on developing this type of system is speed of operation, automation and

reliability.

Researchers in this area need to rely on current developments and have an

aptitude to peruse many unpublished and unrefereed literature sources to amass

information that will keep up with current findings. Currently government and

business organizations are studying the problems that will be encountered towards the

end of this decade, and which is believed will involve the storage of gigabytes (GB)

of data per day (Lopez, 1992). Lopez states that if problems like these are to be

solved by the turn of the century, it is important to have a knowledge of the current

and advancing hardware and software technologies for archival, retrieval, and

13

distribution of large volumes of data. The prediction by Mason (1984) and Crecine

(1986) was that computers would be used more intensely as the technology increase.

The approach used to review the literature for this type of experimental design

was examine previous work done in related areas such as

a. Computer system and software failures,

b. software testing,

c. computer reliability and validity testing,

d. operating system and software development,

e. terminate-and-stay-resident (TSR) method,

f. undocumented DOS functions, and

g. data recovery system.

Computer System and Software Failures

According to Chantico (1991) the automation of daily business has brought

about an element of computer dependence. The loss of data and the annoying

unscheduled down time can be very expensive. For educators' computer lockup,

system failure or power failure can be very frustrating and embarrassing at times. In

order to develop a fail-safe system one needs to know the environment in which that

14

system exists and what causes the system to fail. There are many different ways to

classify failure in computer systems. Transient errors have been estimated to occur at

the rate of 5 to 100 times that of permanent failures (Adams, 1991). Researchers are

always investigating methods for error detection (Spector, 1984). Tasch (1990)

identify humans as important in error detection. According to Tash, failure detection

has been recognized as one of the functions where computers and human operators

can complement one another. Bondavalli (1990) discussed the classification of

computer failures. He outlined three major guidelines to computer systems failure

classification:

1. A failure classification should be able to be applied to every system.

2. The classification must be as detailed as possible.

3. The treatment of failures following a detection, are to be considered as a

second step.

Classification of failures has one major advantage of characterizing systems with

respect to their failure modes, that is providing designers with the a way to choose

the most appropriate detection techniques for each particular system.

A summary of reasons for system failures, from Bondavalli (1990), Lua (1990) and

Garcia-Molina (1990) includes:

Inadequate input validation: This occurs when the software allows an

illegal data input to slip through and sent for processing.

15

Design miscalculation: This is the inadequate safety margins built into

the system to cope with exceptional conditions.

System control faults: This may result from faulty logic in either the

operating system or the user's own control software.

Hardware faults: Any component of the system may develop a fault.

Software faults: Programs are written by people and prone to fault at

any stage. The longer and more complex a program is, the more faults

it is likely to have.

Human mistakes: The major source of error is the human operator.

Faults such as using the wrong version of a file or program, responding

incorrectly to console messages from the operating system or user

programs.

Preventing failures is much less costly than correcting errors in the system

after a failure. Measures have be taken to minimize the occurrence of failures.

Methods used to prevent errors include:

Surge protector. These devices are designed to stop spikes that occur in the

power line from lighting bolt or sudden voltage change in the power line.

Power line filter. These are like surge protectors but generally more expensive

(Mace, 1988). They smooth out peaks and valleys in the voltage which can affect the

performance of the computer or lead to random failures.

16

Uninterruptible Power Supply (UPS): Alternative methods for supplying

uninterruptible power have been sought for the past five years. A UPS is a battery

system that provides power to the computer for 10 minutes to an hour after the

power goes out (Mace, 1988). The governing factor in the type of UPS is the

Ampere/hour rating. The UPS needed for a system depends on the power

requirements of equipment that will be plugged into the UPS, and how many boards

are installed inside each computer. Proper backup procedures and the use of

Uninterruptible Power Supplies (UPS) are some of the many measures taken by

industries to curb this problem (Mace, 1988). One example uses a UPS on a plug-in

board inside the computer. A further development of this product was made to

include the saving of the system to the hard disk.

ITT Power Systems developed a similar product called the PowerSave 500.

According to Harold Ramsey (1992), systems developer at ITT, the major differences

between these two products are the way in which the system is interrupted and the

amount of memory that each program occupies when loaded into the system.

Ramsey, the major technical designer of the PowerSave 500, said the use of Interrupt

Request (IRQ) and the ability to use its own on board memory makes his product

more efficient. There are also differences in the ability of each product to capture

extended and expanded memory. These systems can be very expensive, bulky, noisy

and inconvenient.

17

A recent development is a battery-free rotary options for UPS system

(Lengefeld, 1990). This system described by Lengefeld can provide up to one minute

of uninterrupted power without the use of batteries.

Data integrity and the ability to restore the computer to its prior state after a

system lock-up or power outage are of increasing concern to end users both in

education and industry. Some of the methods used to save data for future retrieval

are:

Floppy backup: This is the storing of information in a compressed form on several

floppy disk. Most fast backup programs fail at times. Mace, in his book said "I have

never had a floppy backup program that didn't fail me." These programs use direct

memory access (DMA) transfer. DMA refers to chips inside the computer that can

send data to and from memory without using the central processing unit (CPU)

(Tammaru, 1985). This means that information can be sent to the diskette while the

program is requesting input from the keyboard.

Bernoulli cartridges: This provides storage on removable cartridges and are close to

the hard disk in performance. The cartridges can wear out when used on a daily

bases.

Tape backup: Magnetic tapes that are similar to audio tapes are used to store data.

This method is common for use with local area networks. This method of backup,

which stores all files on the hard disk to the tape is slow. The backup procedure is

often done at the end of the day, month and year. A separate tape is usually used

18

for each day. According to Beaudin (1992), the older system are um-eliable and tends

to cancel out very often. A new technology is growing in this area using 4mm digital

audio tapes rather than the old reel to reel and the more expensive 8mm tapes.

Periodic save by some software: This is the saving of the data files that the program is

using to the disk. Some word processors like WordPerfect use this method to keep a

running journal to the disk of the activity of the file that is being edited.

Disk Mirroring: This method uses two similar disk to save identical information. Both

disk are updated at the same time.

Redundancy in system: Many database systems according to levy (1990), Lucente

(1991) and Yanney (1986) increase reliability by employing a fair amount of system

redundancy. This involves both software and hardware redundancy. More than one

copy of the system are kept at remote sites in case of disaster or system failure.

The choice of the system to implement will be determined from a careful

procedure of software testing.

Software Testing

One of the major areas of software development that is becoming of great

importance is Software Testing (Gary, 1986; Han, 1986; Kinoshita & Saluja, 1986).

Hetzel (1984), in a quote from the preface to Glen Myers, Art of Software Testing,

noted that approximately 50% of the elapsed time and over 50% of the total cost are

19

associated with testing a program or system being developed. There is however, a

fuzziness in the measurement of computer systems. Software testing therefore,

includes various definitions such as: executing a program or system with the intent of

finding errors, verifying that the software satisfies specified requirements, identifying

differences between expected and actual results, and evaluating an attribute or

capability of a program or system. Hetzel further emphasized that testing could be

divided into three groups and various sub-groups thus forcing quality to become

tangible and visible as the final outcome to testing. The three groups and

corresponding sub-groups are shown below:

Functionality (exterior quality)

Correctness

Reliability

Usability

Integrity

Engineering (interior quality)

Efficiency

Testability

Documentation

Structure

20

Adaptability (future quality)

Flexibility

Reusability

Maintainability

It was also noted that any proposed testing methodology must provide a means of

answering the following major questions:

1. What should be tested?

2. When should testing stop?

3. Who does the testing?

Falk (1987) states that bug hunting is a serious business, however it is an

unfortunate fact that it's impossible to eliminate every bug from a program. He

further notes that software developers can now turn to specialists such as AGS

Information Services (Cincinnati, Ohio) and Programming Environments (Tinton

Falls, New Jersey) for software testing.

Computer Reliability and Validity Testing

The need for reliability and validity testing of computer systems is a major

concern to industries (Daniels, 1987). He further noted that the safe operation of

computer systems, in both their software and hardware continues to be a key issue in

21

many real time applications, when people, environment, investment or goodwill can

be at risk.

The majority of Software designers and users are from a wide range of

backgrounds such as computer science, engineering, mathematics, or physics, which

leads to differing views on the usefulness and applicability of software testing.

Daniels cited two major approaches: the computer science approach and the

engineering modeling approach. The computer science approach aims at achieving

logically correct and error-free software by stringent testing of competently produced

code. The engineering modeling approach, on the other hand, seeks to model the

failure mechanisms in software with a view to fitting the model to a developing body

of code and thereby making a quantified assessment of its reliability. It is the latter

approach that was taken by this project and thus the role of statistics in software

reliability was assessed. Reliability in a software context remains controversial both

in human factors applications and in computer software science. Some forms of

reliability include: producers perceived reliability, which is the quantification somehow

arrived at by the producer; user perceived reliability, initially based on that of the

producer, modified subjectively according to past experience; inherent reliability, a

true, but unknown, measure of the closeness of the software to an ideal version; in-

use reliability, a true, but unknown, measure of the extent to which the software will

perform correctly in the user environment; adaptive reliability which is like in-use

22

reliability except that the user adapt their behavior, i.e. modify the user environment

to side-step deficiencies in the software which might otherwise be reported as faults.

Keren (1986) pointed out that the most obvious characteristic of a reliable

system is the time the system is available and operating normally. Reliability and

integrity, as summarized from Beaudin (1992), Belli (1991), Kaczeus and Lion (1990)

has six contributing factors:

(1) Availability can be measured and thus is a contributing factor to reliability.

Availability is the proportion of the total time scheduled for operation that the

system is actually available for normal service, and expressed as:

Availability = (MTBF)/(MTBF + MTTR)

- Mean Time Before Failure (MTBF)

- Mean Time To Repair (MTTR)

(2) Graceful degradation of the system happens when failed components are in

the system but operation continues in a restricted mode. It is preferred to have a

degraded service rather than a collapsed system.

(3) Fail-safety is the preclusion of certain potentially disastrous events from

occurring in the system.

(4) Data integrity is the ability of the system to prevent errors in its data-base, to

detect them as early as possible and correct them or confine their effects.

(5) System integrity is the ability of the system to detect faults in its own

operation, and to correct them at least to limit the damage they cause.

23

(6) Recovery capability is the most important factor of all in reliability and

integrity; whatever kind of difficulties the system gets into, it must be possible to get

it out again, in a reasonable time and at acceptable cost.

Koren (1986) and Belli (1991) suggested the introduction of redundancy into

the system to improve reliability and availability. The suggestion was to use

instruction retries and program rollbacks. Koren further noted that several

researchers have analyzed recovery technique and all differ in their assumptions and

objectives.

Data Recoveiy System

The mechanism and responsibility for recovery are distributed to many

different programs, files, hardware devices, procedures and people. Gibbons (1976)

suggested five subsystems which are still considered today in systems development:

System supervision: Monitor the system to detect errors as early as possible,

before they cause serious damage. When an error is detected it may inform a human

operator or take action to correct the error.

Activity recording: Information about the processing activity of the system must

be recorded, to support the recovery functions. Periodic 'snapshots' of the system are

placed on recorded journal in the form of file dumps or checkpoints. The record of

24

the changing state of processing provides a basis for recovery from future failures; it

may also be useful in diagnosing the cause of the failure.

Investigation and decision: Error information is important and should be

collected and analyzed, with a view to improve the system to prevent its recurrence.

It is also important to collect data on the performance of the recovery programs and

procedures, both on their speed and on their effectiveness.

Repair and recovery: The aftermath of a computer system failure is a plan for

recovery. A combination of human effort and computer procedures is put into effect

to design a plan for recovery. This include reformatting, repairing and altering of

both hardware and software.

Maintenance and improvement: Errors are diagnosed to obtain information

about the cause of failure. An improvement on the system, using the historical

information will attempt to prevent the failure from recurring.

Johnson (1991), Bennett (1991) and Upahyaya shared the view of using

rollback recovery system to restore system failures. Information is stored on stable

storage media during failure-free execution, allowing certain states of each process to

be recovered after a failure.

Many data recovery systems encountered are geared at disk file recovery.

There are two assumptions that were made by developers: the users will have access

to the tools and know how to use them, and that the operating system and

application software will maintain a certain level of standards. Both assumptions

25

were endorsed by the kind of software supplied with the operating system such as

COPY, CHKDSK, RECOVER, DEBUG, BACKUP, and RESTORE, and the

available third party software. Even more recently the introduction of MIRROR,

REBUILD, UNFORMAT, and UNDELETE were added commands to DOS version

5.0. Even though some are useful, the DOS utilities are usually poorly documented

and users are unaware of their potential. Mueller (1991) states that many users are

not aware that CHKDSK command, which is usually used for simple inspection of a

disk file structure, can be used to repair a damaged file structure. He also noted that

users do not know that the COPY command can be used for recovering from file or

file system (file allocation table [FAT] and directory) damage.

Several levels of disk or data damage may exist. Only two primary levels can

be recovered by present data recovery techniques: Unreadable sectors and Corrupted

sectors.

Unreadable sectors are caused by physical damage, or magnetic damage.

Physical damage is irreversible while magnetic damage is reversible. In both cases,

however, data is lost in these sectors. Corrupted sectors are sectors with corrupted

data (data with invalid information or data not linked to any part of the file system)

that can be restored to the original condition by DOS utility programs or a third

party disk recovery software.

These products are also faced with one other major problem-that of the changing

Disk Operating System (DOS).

26

Operating System and Software Development

The operating system is a set of software tools designed to make it easy for

people and programs to make optimum use of a computer (King, 1988). All

computers must have an operating system installed in order to run user's programs.

MS-DOS is an operating system for 16-bit, 8086/8088-based computers. DOS is an

acronym for Disk Operating System. DOS was designed with the assumption that

files will be found on the disk and that a disk is needed before useful work can be

done. Since the introduction of MS-DOS in 1981 there has been enhancement to

accommodate new hardware environments, fix problems, and generally improve its

operation (Angermeyer, 1986). These enhancements, although resulted in more

powerful capabilities, produce incompatibility with older versions.

The introduction of DOS version 5.0 has introduced an even more difficult

problem-that of knowing where in the memory space important information lies. The

use of the so called high memory area, memory above 640k, kept many board and

software designers busy and left them puzzled about how to design for the future.

Most new products are designed for the new, more powerful 286, 386, 486, etc., and

what ever the next generation of computers turns out to be. Many schools and home

computer users are using the IBM-PC XT or compatible and are thus left out when

new designs are introduced. This design project utilized the IBM-PC XT. The

method selected to provide system recovery in this study seems to pose some

27

interesting problems according to Jim Kyle (1992), co-author for the book

"Undocumented DOS". He said in his electronic mail:

This principle is simple enough, but the problem is that the memory
you try to save and restore ALSO includes the program and variables
that are controlling the save process, so when they get restored they will
suffer amnesia, forget that they are restoring, and start saving again (p.
1).

The technique used in this study attempts to alleviate that problem. A program is

needed that can reside in memory, save and restore memory without affecting its own

code. The DOS operating system, running as a single user single task system

supports two ways to accomplished this task: using a terminate-and-stay-resident

program, and using a device driver.

Terminate-and Stay-Resident (TSR) Method

A TSR program has the ability to operate in the background while other

programs are running in the foreground. According to Boling (1992), TSR programs

have been the mainstay of the DOS operating system since its introduction in DOS

version 2.0. The main problem with a TSR program is that it robs the system of

some memory and thus may not be well behaved with memory hungry software.

Boling noted that:

TSRs should be totally unobtrusive to the system and at the same time
available to the user. This contradictory goal causes TSR programmers
to jump through what seems to be endless series of hoops that are

28

necessary for compatibility with an operating system not originally
designed to accommodate TSRs (p. 44).

The problem of compatibility will soon be overcome with the emerging standards

proposed by the TSR programming community. According to Wadlow (1987),

Borland International, one of the first companies with a commercial set of resident

applications, has proposed a standard that has been well received in some places.

Steven Baker (Waite Group, 1988), differentiates two types of TSR programs.

First, there are the simplest extensions to MS-DOS that extend the hardware features

and do not need to use any MS-DOS function calls. Once resident, this type of TSR

makes no DOS function calls.

The second type of TSRs is more complex in that, once resident, it must make

DOS function calls (such as disk I/O). The difficulty in using TSRs is determining

when DOS or an application program can be interrupted. This is a major problem

because MS-DOS function calls are not reentrant or recursive, i.e., one cannot make

several calls within calls. If a TSR interrupts a MS-DOS function call that is in

progress to make another MS-DOS call, the first call will be trashed and lost with a

crash of the system or other unpleasant result.

The second method to launch a program that can work in the background is

using device driver. This method differ from TSR only in the way it is initiated and

where in memory it is loaded.

29

This project uses a TSR program. To accomplish the extraordinary task of

TSRs and to adapt them for this project in particular it is imperative to use some of

the "undocumented" DOS functions.

Undocumented DOS

Undocumented DOS according to Schulman et al. (1990) is:

...the body of functions and data structures that can reasonably be
considered part of MS-DOS or PC-DOS but that are either not
mentioned in the microsoft or IBM documentation or that are marked
"Reserved" (p. xiii).

These functions according to Doling (1992) were in fact documented everywhere but

in the MS-DOS technical reference. It was however, a pleasant sight and an

indication of the stability of these functions in future versions of MS-DOS, when they

were included in the Programmer's Reference in recent release of MS-DOS version

5.0. Michels (Waite Group, 1988), also see DOS as partly undocumented. He

contended that there are still several MS-DOS functions that are either poorly

documented or not documented at all. He also recommended the use of a "break-out

switch" debugger (a resident debugger that can be activated with a special hardware

switch) in order to stop the machine and examine the computer system state at any

time. Knowledge of the system at that level will promote better programs that take

advantage of all of MS-DOS internal functions. The art of system reliability is the

recovery of the system to the point it was before an interrupt.

30

This experimental design capitalized on the systems development methods

used by developers in the field of computer science and engineering.

The review shows that the area of computer failure, reliability and integrity,

and data loss and recover are emerging topic for researchers. The continually

changing technology in these areas and the proliferation of computers in all sectors of

society propel individuals to investigate means to attain high reliability and integrity

and data safety.

31

CHAPTER III. DESIGN METHODS AND PROCEDURES

Questions of the Study

This study focused on the following major research questions:

Can a software system be developed that will provide recovery from system

failure due to

a) power disruption

b) accidental re-booting

c) software errors?

What problems exist in achieving a software-only recovery system on the IBM

PC-XT compatible machine?

a) Are the majority of applications software compatible to a

software recovery system?

b) What resources are required for acceptable performance?

c) What situations such as software errors in application programs,

are not recoverable?

32

What is the degradation in application program performance when utilizing a

software recovery system in comparison to performance when the recovery

system is not used?

a) What is the degradation for numerically intensive applications?

b) What is the degradation for disk intensive application?

c) What is the degradation for keyboard intensive applications?

Hypothesis of the Study

Research hypotheses to be tested are as follows:

A software system recovery program can be developed which provides

recovery from power interruptions, system resets and software system crashes.

Standard application software such as disk utilities, word-processing programs,

spreadsheet programs and statistical analysis programs will operate successfully

with a software recovery system.

System degradation as measured by the difference in seconds for standard

comparison programs operating with and without the software recovery system

will not be greater than 0.1 second.

33

Methodology of the Study

To provide answers to the questions and hypothesis above, the following

methods were employed:

Hypothesis 1:

A systems approach was employed to develop an experimental software

recovery system referred to henceforth as CRAM. This method included:

a. Identifying the desired operational characteristics of the software, i.e.

operational goals and specification of user interface.

b. Analyzing the system resources available within which the system must

perform. Included are the CPU, DOS, BIOS & RAM .

c. Classifying the major system components required to perform identified system

functions including:

direct disk I/O

scanning system for pertinent systems operational variables

manipulating the FAT

creating disk file storage areas

protecting disk storage area

loading RAM segments from disk

34

direct video output

process interruption

determining segments changed by software activity

saving CPU registers

copying RAM segments to disk

initiating a recovery process

restoring CPU registers from disk

passing control from the recovery system to the recovered

software system

d. Assemblying components into executable files.

e. Developing and testing program functions.

f. Testing and revising the system.

g. Evaluating the system operational characteristics.

Hypothesis 2:

To test the validity of the experimental recovery system, sample application

programs were executed with the CRAM recovery software installed. The power was

interrupted and the system was reset from the keyboard using the <CTRL>-

<ALT>- keys combination while the application programs were running.

Results were classified as conflict, partial recovery and full recovery.

35

A conflict is when the executing program cannot coexist with CRAM, producing

unpredictable behavior or causing the system to lock-up.

A partial recovery is when the restoration seems to occur but the system lock-up

immediately or when attempt is made to enter information at the keyboard.

A full recovery is when the system is in the state it was before the interruption and

the behavior is in all respect what was expected. Nine well known commercial

programs were used in this test and their recovery state categorized into one of the

above classifications.

The application programs used for testing were

Norton Utility version 4.50

WordStar release 3.3 Ip

WordStar 2000 release 1.01

Turbo C+ + version 1.00

Sideways version 2.01

Lotus 123 version 2.01

WindowDOS Capture Utility

DOS resident print for DOS version 3.3

WordPerfect version 5.1

36

Hypothesis 3:

The system was tested using the following method:

1. Generating sample time duration for execution of 8 benchmark programs

described as follows:

a) Sieve of Erotosthenes:

b) Disk I/O write :

c) Disk I/O read :

d) Keyboard interrupt :

e) Video display :

f) DOS idle interrupt :

g) Clock interrupt :

h) Random number :

Generating 16380 prime numbers.

Writing 512 characters to a file on the hard

disk.

Reading 512 characters from a file on the

hard disk.

Scanning of the keyboard interrupt.

Writing 512 characters to the video screen.

Scanning the DOS idle interrupt.

Scanning the clock interrupt.

Generating 2000 random numbers.

2. Aggregation of the 100 samples into 20 groups for purposes of data analysis

and plotting.

3. Use of the Students t-test for differences between independent means of

samples generated with the recovery system installed and without the system

37

installed. Significance was established by testing for rejection of the null

hypothesis of, no difference between means at the 0.05 level.

38

CHAPTER IV. RESULTS OF ANALYSIS AND HYPOTHESIS TESTING

The results of this study answered three questions reflected in the following

three hypothesis:

Hypothesis 1

A software system recovery program can be developed which provides recovery

from power interruptions, system resets and software system crashes.

The hypothesis was confirmed, the results below demonstrate the feasibility of

the system's development.

The software CRAM was developed to answer the above question. The

development of CRAM followed the modular and systems approach to software

development. Modular in that each section was developed and tested separately and

systems in that the project was divided into various tasks and development followed a

define path. The study was divided into two major areas: Installation and Operation.

Installation was further divided into System check. Disk scanning and Disk

preparation. Operation was further divided into System start-up. Memory save,

Memoiy restoration, and Data maintenance. The diagram in Figure 1 shows how

CRAM'S development was subdivided into various tasks and the goals for each task.

39

CRAIVf SYSTEM

INSTALLATION }
SYSTEM CHECKING 1

1. Ostannlns memory alz*
2. Hnd in* numiMr or floppy

cMcs and hard dWcs
3. D«l«rmin« v«(t«o adaptar
4. Datvmlnai

DISK SCANNING

1. Dclermin* nunttar of
*ra« dualara

2. ctwcKtortypvof FAT
raoordlng mathod

4 DISK PREPARATION

1. Format ar«a to «tor* CRAM
2. updoMthadlractaryaraa
3. WrtiaFATlntormation

I
OPERATION

SYSTEM START-UP

1. ChacklorCRAM
2. Datnrmina M naad to cal

3. Chactc tor airora
4. CtwefcHCRiUMlsclawi
5. Paasoomrottomarnorynva

MEMORY SAVE

1. Baad mamory aapinai*! &
alora Iham in CRAM

2. UpdaMMCa
3. Sav« Intamipl wactors, vtdao,

SOA, BIOS, & CRAM
t̂al tntamaHon

4. Updata aaaonlndtoators

MEMORY RESTORATION

1. naad intarmailon storad in
CRAMhaadv

2. Oalannlna maihod ol raatoration
3L RaaddatattromdWcli

polca Into mamory
4.
5. Haaat MCa. intarrupt vactors.

vWa»8DA.&BK)@
e. Laundi imairuptad procaaa
7. Alart usar ol pral>iama, atrora.

oroonnptMlon

Figure 1. CRAM'S development showing the goals assigned to each task

40

An IBM-PC XT compatible computer from Cordata running at lOMhz was

used for both development and testing of the software. In order to gain low level

interface to both the machine and the operating system most of the code was written

in "C". Turbo C version 2.0 was chosen because it was available and provides a good

integrated environment for software development. Some codes were done in

assembly language to access low level interface to DOS that were either not available

in "C" or provided better data access speed. Turbo Assembler version 2.0 was chosen

because of availability.

CRAM is a unique software tool because it was designed to be a replacement

for a standard UPS system. The power of this tool lies in the use of Undocumented

DOS functions, memory management tool, disk management, context switching and

the timely backup of the system to the hard disk.

Installation

The installation process involves checking the system and the preparation of

the storage area on the disk. Files stored on the disk must be preserved, while a

large enough space should be prepared for CRAM. CRAM must operate in the

background and should minimize overhead on the system. System overhead, the time

used by the executing program, will slow the system down. System degradation below

41

an acceptable level is undesirable. There are two major methods of saving files to

the disk:

Method 1. Using the DOS I/O functions.

Method 2. Using the system BIOS for direct I/O.

Method 1 would introduce an overhead on the system. It would also means

that the file will be saved according to the format DOS uses. DOS save files in a

best-fit-by-cluster way, which means sections of the file could be at different locations

on the disk. This create what is commonly known as file fragmentation. An

additional overhead would be added for the seek time for each section of the file.

Method 2 on the other hand would give CRAM complete control over where

the file is located on the disk. This method allows CRAM to bypass the FAT in the

event of a corrupted FAT of disk file table. The seek time overhead could be at a

minimum if the file is stored in consecutive clusters, since only the address of the first

cluster is needed.

The two methods are compared in terms of overhead below using the

following general formula:

0

Eg - seek time to a cluster

t, - seek time to a track

42

tf - time to execute DOS function call

K - a constant of seek time for disk that park their head after each

I/O

s - the number of different areas where the file is stored.

Method 1:

(2)
0

If files are stored in consecutive clusters the formula for the total

overhead would be:

(3)

If t(, is small and negligible then both methods would yield the same value for

total overhead.

Method 2:

(4)

s = 1, since only one seek was needed.

K varies with the disk drives but will be the same for both methods.

43

Method 2 was chosen for this project since this method allows access to the

disk even when the FAT is damaged, and will always yield lower or the same

overhead. A special program was written to prepare the disk for CRAM and install

CRAM on the hard disk. The program INSTALL.EXE was used to install CRAM

on the hard disk. The diagram below in Figure 2 shows the layout of the various

section of CRAM on the hard disk.

The program first checks each cluster on the disk for the CRAM identification

marker and a special security code. The disk must be a non-removable hard disk. It

can be either the bootable default disk or any other hard disk sub-system installed in

the computer. The disk is next checked for a space large enough to hold the system's

memory and all the software needed to run CRAM. If there is not enough space on

the disk, CRAM will not be installed. The disk must have, in addition to the

minimum space required for CRAM, two or more extra free clusters. One cluster in

CRAM is used for storing vital information for the operation of CRAM including the

CRAM identification marker and copyright notice.

Organizing the hard disk

In order to gain the fastest disk access and reliability of data the hard disk was

first organized using a third party disk organizing software Norton Disk Doctor

(1989). Any other disk organizing or disk optimization software could be used. The

44

of
Sectors

1

3

variable

32

1

4

varies

CRAM VITAL INFORMATION AREA (CVIA)

INTERRUPT VECTORS & DOS BIOS AREA

M A I N M E M O R Y

STORAGE AREA

V I D E O S C R E E N M E M O R Y A R E A

MEMORY CONTROL BLOCK (MCB)

SWAPPABLE DATA AREA (SDA)

STACK MEMORY AREA

Figure 2. Layout of CRAM on the Hard Disk

45

disk will be analyzed by these software for fragmented space. Deleted files are only

marked with a special code and the area is available for other files to use. However,

the new file may need less space and thus leave some clusters unused. Norton Disk

Doctor will arrange all the files on the disk to achieve the most efficient use of the

disk. Figure 3 shows a fragmented disk and Figure 4 shows the same disk

unfragmented by Norton Utility disk compression program.

Checking for free clusters

The entire disk was checked for the number of free consecutive clusters that

could be used by CRAM. Clusters used by CRAM must be consecutive because no

other checking will be done during memory save. The first cluster, or the first sector

of the first cluster assigned to CRAM is the only information needed to instruct

CRAM where to save memory on the disk. This method eliminates the time that

would be used to check for correct sectors, and also, the seek time used during save

was reduced to only one initial seek. Once enough space is found on the disk the

system will be installed as illustrated by the flow diagram in Figure 5. Record of the

clusters used by CRAM must be recorded in the File Allocation Table (FAT).

46

Menu 3.1
Nap of space usage for the entire disk

7% of disk space is free

I III
represents •••

space ill
in use m

I I I
I I I
I I I
I I I
I I I

Each position r pr

Proportional Map of Disk Space
i i i i i i i i i i i i i i i i i
i i i i i i i i i i i i i i i i i
I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
I I I
I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
Iiiiiiiiij^iiiiilii
I I I I I I I I I I I I I I I I I
sents 21 clusters

Press any key to

i i i i i i i i i i
i i i i i i i i i i
IIIIIIIIII
IIIIIIIIII

i i i i i i i i i i i i

i i i i i i i i i i i i
I I I I I I I I I I I I
I I I I I I I I I0I
i i i i i i i i i i i
l/496th of th
continue...

m i l
m i l
m i l
m i l
m i l
m i l
m i
i i i i i i
iii!j!ii|

tofal disk space

Itew type
Directory

Drive
C!

Directory nawe
Miniiw

File name
Dir area

Figure 3. Disk layout showing fragmented files

47

Menu 3.1

represents
space I
in use •

I i i i i i i i i i i i i i
m i l
m i l
m i l
m i l
m i l
m i l
m i l
m i l
mii i

Each position represents

Map of space usage for the entire disk

6% of disk space is free

Proportional Map of Disk Space
i i m i i i i i i i i i i m i i m i i m i i
1 1 m u m I I I I I m i I I I I I I I I I 1 1
i i i i i i i i i i m m i m i m i m i i
I I m i m i l l I I I m i m i m i I I I
i m m m m m i m m m m i
i m m m i m i m m i i m i m
i i m i i i i i m m i m m m i m
i i m i m i i i i i i m i i m i i m i i
i m m m m m i m m m m i

Clusters, 1/495th of the total disk space
Press any key to continue...

I ten type
Directory

Drive
C:

Directory nawe
MITILITV

File name
Dir area

Figure 4. Disk layout after running Norton Utility disk organizing program (Speed
Disk)

48

FOR

TO
onAM AND pirr RAM INTO

UR PAT AND

IWDCHHUPT LOAD

Figure 5. Installation Flow Chart

49

Writing the FAT

Writing information directly to the FAT is very important to CRAM but must

be done carefully. Writing the incorrect information here can corrupt the disk file

system and could crash the hard disk. The method used by CRAM was as follows:

1. Locate the first cluster to store CRAM.

2. Check for minimum sectors needed.

3. Calculate the number of sectors needed.

4. Calculate the sector number at the beginning cluster.

5. Set start sector to that sector number.

6. Mark FAT to include all clusters that make up CRAM area of the disk.

7. Put End of File Marker in the last sector of CRAM.

First the format of the FAT writing scheme was determined. There are two

methods for writing the FAT: 12-bit and 16-bit. There may be other methods but

these two were the only known methods at the time of development.

12-Bit FAT This format is the more common and more complicated of the

two. Most floppy disks use this method for recording the FAT. The FAT is

organized as a table of 4096 numbers that range from 0 to 4095 (Oh through FFFh).

50

The number in each entry represents the status and use of the cluster that

corresponds to that FAT. The number in each entry must not exceed three

hexadecimal digit, which is a key element of how the 12-bit FAT entry is stored. The

FAT entries are organized in pairs, where each pair occupies three bytes. To decode

the information in the FAT use the following steps:

1. Multiply the FAT entry by bytes (multiply by 3, then divide by 2).

2. The result is the offset into the FAT, pointing to the entry that maps

the cluster. That entry contains the next cluster occupied by the file.

3. The result has four hexadecimal digits but three digits are needed.

Determine whether the FAT entry is odd or even.

4. If the entry is even, logical AND with OFFFh. If it is odd, shift the

result by 4.

5. If the resulting three digits falls between FF8h and FFFh this indicates

the end of the file. Otherwise the digits represents the number of the

next cluster occupied by the file.

16-Bit FAT This method of recording the FAT is associated with most hard

disks, capable of storing more than 4086 clusters. This method works the same as the

12-bit one, but is much simpler. The entries are four bits larger than that of the 12-

bit. The entries are therefore word values stored one after the other in the table.

The values therefore range from 0(KX)h to FFFFh (instead of GOOh to FFFh), the only

51

difference is the addition of the high-order hexadecimal F, To get the cluster values

it is simply a matter of reading the word value of the entry that is being queried.

After the FAT recording method was determined, the next step was to check

for consecutive free clusters. The minimum amount of clusters needed was

determined using a formula based on the FAT recording method, the number of

sectors per cluster and the number of sectors needed to store a DOS segment

(HYDE, 1988) of memory. To determine the number of sectors needed per segment

of memory each segment was considered to be 64K bytes wide and starting at

absolute address zero (0000:0000). The formula used was:

SectorsperSegmem = m^P^MKSegmrn,) ^, (S)
{Bytes per sector)

In the case of CRAM

Sectors per Segment = (65535 / 512) + 1 = 128

After recording the clusters reserved for CRAM, the sectors were formatted to

check for bad sectors and the integrity of data stored in those sectors.

52

Formatting CRAM

The disk area occupied by CRAM was first formatted to eliminate any bad

sectors. If any bad sectors were found another area of the disk would be chosen. If

no other area was available then the bad areas would be marked off to prevent

CRAM from writing to them. This was important since direct disk I/O was used to

save and retrieve data from CRAM. The following pseudo-code illustrates the format

procedure:

Search disk for minimum space
If space found > = minimum space
{

Check area for bad sectors
if bad sectors found

{
check for another area on disk
if no free chunk found

{
mark off bad sectors
adjust size of space needed

}
}

fill area of cram with a special character (e)
this is ascii character hex code EEh

Enter the file in the Directory area
Update the file size
Update the File Allocation Table (FAT)
Return the message that CRAM-DISK is ready

}

53

The method used by CRAM to access data stored in these sectors make it

imperative that CRAM's sectors be protected from DOS manipulation.

Protecting CRAM from DOS

CRAM needs to be protected from DOS operations such as DELETE,

RENAME, COPY and ERASE. CRAM should also be protected from other

commercial disk utilities programs. Unfortunately, there are some limitations to that.

The following steps were taken to protect CRAM.

1. The filename that was used as place holder in the directory area of the

disk was done in lower case letters. DOS does not recognize a lower

case filename as a valid directory entry.

2. The file name has imbedded "null" characters that cannot normally be

entered at the keyboard.

3. The file holder for CRAM was given the SYSTEM and READ ONLY

file attribute. This is useful to prevent software like Norton Utilities or

other Disk managers from moving the file clusters allotted to CRAM.

This is extremely important since CRAM uses only a block of

consecutive clusters.

The steps above was accomplished by inserting a special entry in the directory

area of the hard disk containing CRAM reserved sectors.

54

Writing the directory area

The entry into the directory area is the key to keeping CRAM away from

DOS. It can be seen that the file name "cram_xxxjmid" was recorded in lower case,

which DOS does not recognize as a legal file name. This entry is checked when

CRAM is invoked for the first time to find the location of the first cluster reserved

for CRAM. If this file exist and all necessary conditions are met for CRAM's

operation the file entry is updated.

CRAM'S Operation

The main task of CRAM is to operate in the background of the computer

performing timely backup of the computer system's memory to disk, with limited

interruption of the foreground process. The system boot-up process and the

subsequent loading of CRAM is demonstrated by the flow diagram in Figure 6. The

operation of CRAM was visible by symbolic display on the screen. Figure 7 shows

the symbols display by CRAM and the meaning of each. DOS has a built-in

mechanism whereby developers can extend the operating system using interrupts.

DOS stores a group of addresses between location 0000;0000h and 0000;0400h. Each

address points to a routine in memory that performs a specific task. By replacing

these routines with other codes the operation of that interrupt can be controlled.

55

TUnN COMPUTER ON
LOAD BIOS.

LOAD AUTOCXEOAAT

yr CRAM IN X.
VMJTOGXECBAT?

NO

YES

CRAM X,
(NSTALUiD

ONSVSTCMT
NO

YE*
nUN OTHER

PROORAM IN
AUrOEXECAAT

STOP
DATA NO

.CRAMT,

YES

NO NO 8CTMSTAU.
FIAO

YEO
YES

I REBOOT COMPUTER

COPY CRAM TO

EXIT AND LEAVE ORAM RESOENT.
(T*R INBTAULSO)

Figure 6. Flow diagram showing the start-up process for a DOS machine and the
determination of CRAM's status

56

Process Symbol Error

Saving Registers to CRAM $
Getting Registers and vital CRAM statistics n

Saving video memory to CRAM none
Resetting video memory none
Saving interrupt vector table to CRAM 0
Resetting interrupt vector table n
Normal CRAM operation in progress e
Putting CRAM vital information in CRAM «
Getting CRAM vital information from CRAM =
Resetting memory S
Loading CRAM ç
Saving DSA S
getting DSA from CRAM r
Restoring DSA a
Completion of DSA restoration 6

Figure 7. CRAM'S process screen indicators

57

Some interrupts are activated by events in the system. Thus there are two types of

interrupts hardware interrupts and software interrupts. This task was accomplished

by utilizing DOS hardware and software interrupts and replacing some of these

routines with new codes that do some operations that are specific to CRAM and also

allow other programs to have access to the original routine. The major interrupts

used by CRAM are the keyboard interrupt (9h), the clock interrupt (ICh) and the

DOS idle interrupt (28h). The flow Diagram in Figure 8 shows CRAM's operation

and how the various interrupts are used.

Using hardware interrupt Hardware interrupt occurs when any peripheral

device attached to the system requests the use of the CPU. This, in turn, will bar all

other attachments from accessing the CPU until that device completes its use of the

CPU. The hardware interrupt used by CRAM is interrupt number 09h, the keyboard

service routine. The number of keystrokes are monitored to determined if the system

needs to be transferred to CRAM. This interrupt was needed in cases where the

program running in memory disable the other interrupts. The keyboard interrupt is

always available but some programs that redirect inputs to receive from remote

location, like a communication program using TTY (teletype protocol), thus under

the control of another computer, may disable this interrupt.

58

TO

TO

Twmukme#

INO

KBV

[NO

NO
NO

YES iNtemupT «VTABUlt^

ma

NO

Figure 8. Flow Diagram showing CRAM's operations

59

Using software interrupt Software interrupts are routines provided by the

system Basic Input-Output System (BIOS) that are activated by a predetermined

event. The software interrupts used by CRAM are interrupts ICh, the timer

interrupt service routine and interrupt 28h, the DOS idle interrupt routine. The

timer routine is activated 18.2 times per second by the system clock while the DOS

idle interrupt routine is activated whenever the system is waiting for input from the

console (keyboard). These two interrupts are continuously monitor the system by

providing the timing for critical events and scanning the keyboard. Some programs

disable the DOS idle interrupt, thus the clock interrupt is left to monitor the system.

The clock interrupt was observed to conflict with some programs when used by

CRAM. All three interrupts were then included in this project to enable CRAM to

operate under most conditions.

Using the kevboard interrupt This interrupt was used to record the

number of keys entered at the console. Knowledge of the number of keys enabled

CRAM to determine if memory needed to be saved. This interrupt was the only

method of interface to the console when some program running in the foreground

does not use the other interrupts. Many graphics programs and word processors like

WordPerfect^ do not use the DOS idle interrupt and therefore, would make CRAM

become dormant for the duration of WordPerfect's existence in the system.

^WordPerfect is a trademark of WordPerfect Corporation

60

Using the clock interrupt The clock interrupt was used to monitor the

systems RAM. One segment is checked in a round robin method every 18.2 seconds.

At the completion of a cycle a flag is set for the idle interrupt or the keyboard to

transfer RAM to CRAM.

Using the DOS idle interrupt This interrupt, when used by other programs

running in the system or not hooked by any software, monitors the systems clock and

various flags set by the clock or the keyboard interrupt. This interrupt routine will

then transfer RAM to CRAM if the flags are set or the time since the last save

exceeds the limit set by CRAM. CRAM must interrupt the system when any of the

above interrupt is initiated. This interruption should only be done when the state of

the system is in a safe mode and an interruption will not cause the system to "crash".

The system must be constantly interrogated to know its state. The regular DOS

functions does not provide a means to interrogate the system; a check of the

undocumented DOS functions reveal some function that can provide this information.

Use of UndQCttmgntgd PQS

The operation of CRAM requires access to all vital information about every

programs running in the system and about CRAM itself. This information include

knowing:

61

1. What state DOS is currently in

2. How to get the current DTA

3. How to set the DTA to a new location

4. The extended error information for the current process

5. How to get the address of the DOS information area

The above information is not fully documented but belong to a pool of

information called Undocumented DOS.

This project would not be possible without the use of some undocumented

DOS functions. These functions use the interrupt 21h service routine with the listed

number as subroutines of this interrupt. Undocumented DOS functions used in

CRAM were:

1. 34h GET INDOS Flag Address

2. 50h Set Active Process Data Block

3. 51h Get Active Process Data Block

4. 5D06h Get DOS Data Area Address

5. 5D0Ah Set DOS Extended Error Information

6. 5D0B Get DOS Data Areas

A very important area that worth further discussion is the DOS information

area known as the DOS Swappable Data Area.

62

Using the DOS Swappahle Data Area fSDA^

The SDA is accessed using the undocumented INT 21h function 5D06h for

DOS 3.1 through 3.3, and function 5D0Bh for DOS 4JC. This is a block of data,

typically about 73Ch bytes in size, that contains the current context of MS-DOS. The

context of DOS includes the current PSP, and the three MS-DOS stacks. CRAM

therefore, saves the SDA and later restores it after completing a task. This allows

CRAM to pop up at any time without the danger of violating the non-reentrancy

associated with DOS. This method does not require CRAM to wait until the DOS

flags indicate it is safe. CRAM transfers this area of memory to disk each time a

memory block is transferred to disk, which plays a significant role in restoring the

system after an interruption. The number of times the memory is transferred to the

disk depends on the refresh period.

Determination of CRAM refresh period

Updating information in CRAM was approached from a conservative

assumption that power interruption is eminent at any time. Therefore, memory was

checked for changes 18.2 times per second. This occurred when the system clock

pulse is recorded by the hardware interrupt vectors 8(08h) and 28(lCh). Each

segment was checked using the checksum method. Checksum is the summing of the

63

memory bytes. This number can be very large, therefore, since only the upper 2

bytes are significant, the result was shifted right by 8 to conserve memory and

storage. The following formula was used:

Checksum = {Totalmemory segments) < < 8 (^)

A flag is set for each segment to indicate areas of memory that has been changed.

After all segments are checked the disk transfer will take place at a non-critical time.

CRAM is also refreshed based on the number of keys pressed since the last memory

save. The default setting is 50 keystrokes but can be changed at anytime. CRAM

intercepts interrupt 09h, which is used to monitor the keyboard activities.

During each saving of memory to CRAM all the registers, the interrupt

vectors, the SDA, and the video screen are also transferred to disk.

Saving Memorv

Memory is saved periodically after the flag indicating that all segments have

been checked for changes. Segments that were changed are the only ones saved.

This process involves the storing of each segment of memory in the number of sectors

calculated from equation 1. After CRAM is loaded the save routine is vectored to

interrupt 28h. CRAM could also be forced to save by any other program running in

the system that activates this interrupt, or by pressing the following key sequence

64

"<CTRL>-<ALT>-<5 on the keypad>". After checking the flags for saving the

segments, the process of saving memory is done. The following steps shows how

memory is saved:

1. Save the DSA.

2. Set the PSP to that of CRAM.

3. Set the DTA to that of CRAM.

4. Check the MCB and repair if needed.

5. Save the MCB.

6. Save interrupt vector table.

7. Save all flagged memory segments.

8. Save the video screen.

9. Save the stack.

10. Save all registers.

11. Update CRAM header information.

When power is interrupted using the reset button or unplugging the computer

the system must be restored.

65

Memory Restoration

The memory restoration process involves a very rigid sequence of events.

There can be no delays between events if interrupts are not disabled in all intervals

between events. CRAM will re-boot the system when invoked for the first time.

This will ensure the resetting of the original ROM BIOS and machine codes. After

CRAM is loaded the restoration routine is vectored to interrupt FCh. CRAM could

also be forced to restore by any other program running in the system that activates

this interrupt, or by pressing the following key sequence "<CTRL>-<ALT>-<LEFT

SHIFT>-<5 on the keypad>". Unlike the force-save key combination the force-

restore key combination cannot be changed by the user.

Memory is restored in the following order:

1. Restore all segments of memory.

2. Reset the video memory area.

3. Reset all registers.

4. Set the Data Transfer Area to that of the interrupted program.

5. Set the Program's Segment Prefix to that of the interrupted program.

6. Reset the interrupt vector table.

7. Reset the DOS Swappable Data Area.

8. Reset or Rebuild the Memory Control Block.

66

9. Reset the TSR's stack.

10. Jump to the location where the TSR was prior to the systems

interruption.

The sequence of events above is one method of context switching.

Context Switching

The hardest and most interesting part of the project was context switching

during a restoration of the system's memory. Context switching during the saving of

memoiy to CRAM was trivial compared with the restoration process. Context

switching is a method of manipulating the computer registers and stacks to simulate a

multi-user system and give different programs control of the system. This was

accomplished by the use of the information stored in each application's Program

Segment Prefix (PSP) and data in the DOS Swappable Data Area (SDA). Figure 9

shows the content of the PSP and Figure 10 shows the content of DOS SDA.

Another part of the restoration process that is very important and must be

discussed when using context switching is the Memory Control Blocks (MCB).

67

Int 20h

Segment, end of allocation block

Reserved

Long call to MS-DOS function dispatcher

Previous contents of termination handler interrupt
vector (int 22h)

Previous contents of Ctrl-C interrupt vector (Int 23h)

Previous contents of critical-error handler interrupt
vector (Int 24h)

Reserved

Segment address of environment block

Reserved

Default file control block #1

Default file control block #2

OOFFh
Command tail and default disk transfer area (buffer)

Figure 9. Layout of the Program Segment Prefix (PSP)

68

Offset

OOh Critical error flag

Olh InDOS flag

02h Drive on which critical error occurred or FFh

03h Locus of last error

04h Extended error code of last error

06h Suggested action for last error

07h Class of last error

OSh ES:DI pointer for last error

OCh Current DTA

lOh Current PSP

12h Stores SP across an INT 23

14h Return code from last process termination

16h Current drive

17h Extended break flag (1 BYTE)

lEh

24h

26h

to

Available memory block (3 WORD size)

Total memory installed (WORD)

DOS Stacks and other important data

73Ch Some values are unknown to the public

Figure 10. Layout of DOS Swappable Data Area (SDA)

69

Working With Memory Control Blocks

After restoring memory, and sometimes during DOS operation, the memory

control blocks can be damaged and thus need repair. The MCBs are like the FAT if

corrupted the entire system will suffer "diarrhea" and crash. The disk system will not

be affected but data in memory will be lost. A routine is called by CRAM to repair

the MCB, if during its monitoring of the system, the MCE was found to be corrupted

or unlinked.

The software was developed and tested in individual modules to facilitate easy

debugging. The first objective was to device a method to safely prepare the hard disk

to make the most efficient use of the space reserved for CRAM. The number of free

clusters on the disk was determined using the code shown in Figure 11. Note the

need to check for the method used to encode the File Allocation Table (FAT).

The entry into the directory area was done using the code found in Figure 12.

Lower case characters were used for the file name. This entry will not be seen when

the DIR command is entered at the DOS prompt. The FAT must be updated to

mark off the clusters used by CRAM. The code segment in Figure 13 was used to

update the FAT. After preparing the disk, routines were written to save the system's

memory to the disk.

70

int getjatfree(struct free Jot *freefat, WORD dust req)
{

long jpos;
DWORD fjjegin, f_end, fjize=0, fjnark=0;
WORDf_entry; WORD fâisàe; union FATS *fj)tr;

DOSsec= 1; fatsize = bpb.nspf; nsects = 1; j - i = OL;
for (m =0; m<fatsize; m++)
{

if ((result = getsector(drive, nsects, écDOSsec, &bpb, &dpt, buffer)) != 0)
retum('result);

f_pos = i = OL;
while ((f_pos + sizeof(fj)tr) +1) < = (nsects * bpb.bps))
{

switch(dpt.sysid)
{

case D_FAT16:
{ fj)os = ((i * 2) % bpb.bps);

fj)tr = (union FATS *) (&buffer[fj)os]);
f entry = /j}tr->fat_16.fatl6;
i+ +,7+ +;
break;

}
case D_FAT12:
case 0:
{

f _pos = (((i * 3) / 2) % bpb.bps);
f _ptr = (union FATS *) (&.buffer[f j)0sj);
if(i & 1) f_entry = fj)tr->fat_12_hLfatl2;
else f_entry = fj)tr->fatJ2Jo.fatl2;
i+ +,7+ +;
break;

}
... See Appendix C

}

Figure 11. Code to fînd free clusters on the disk

71

int put J name(struct freeJat f Jree, DWORD datajsec)
{

BYTE update=0; WORD f_entry; WORD fat_entry[2]; struct dir_entry djsntry;
struct dir_entry tmp_d_entry =
{
"cramjnem","xmd",OxCl," CRAM Vl.l", 0x00, 0x00, 0x00, 0x00

};
long i, j, k, logical_sector; WORD start_cluster = 0;
struct date ddate; struct time dtime;
start_cluster = /Jree.fbegin;
getdâte(&ddate); gettime(&dtime);
tmp_d_entry.f_attrib = (ARCHIVE | R_01 SYSTEM | HIDDEN);
tmp_d_entry.f_name[4] = OxFF;
tmp_d_entry.f_reserved[0] = OxÎFF;
tmp_d_entry.f_start_cluster = fjree.fbegin;
tmp_d_entry.f_size =(long)((f Jree.fsize+1) * bpb.bps * bpb.spc);
DOSsec = (bpb.nspf * bpb.nfats) + 1;
nsects = 1; i - OL; j = (long)((bpb.nroot_dir * 32) / bpb.bps);
for (k=0; k<j; k-¥ +)
{

i = OL;
if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) != 0)

retum(-result);
while(i < (bpb.bps))
{

memcpy(&d_entry, &buffer[i], 32);
if (memcmp(tmp_d_entry.f_name, d_entry.f_name, 8) = = 0x00) update = 80;

... See Appendix C
retum(O);

}

Figure 12. Code to make a directory entry that protect CRAM from DOS

72

int putJcU(stmct free Jot freefat, DWORD datajec)
{

DWORD i, j, ky m, f j)os; DWORD fjjegin, f_end, fjte=0, fjnark=0;
WORD f_entry; WORD fatsize, cps; union FATS *f j)tr;
cps = dpt.sysid = = DJFAT12 ? (bpb.bps * 2 / 3)+1 : (bpb.bps / 2);
for (k=0; k<bpb.nfats; k+^r)
{
DOSsec = ((k*bpb.nspf) + 1 + (fjree.fbegin / cps));
fatsize = (fjTee.fsize / cps) + l;nsects = 1; j = ((fjree.fbegin / cps) * cps); i = OL;
for (m= 0; m <fatsize + 1; m + +)
{

if ((result = getsector(drive, nsects, &DOSsec, &bpb, &dpt, buffer)) /= 0)
retum(result);

f_pos = i = OL;
while ((fj)os + sizeof(fj)tr) +1) <= (nsects * bpb.bps))
{

switch(dpt.sysid)
{

case D_FAT16:
{ fj)0S = ((i * 2) % bpb.bps);

fptr = (union FATS *) (&buffer[fpos]);
f_entry = f_ptr->fat_16.fatl6;
if (f_entry = = 0 && j > = f Jree.fbegin && j < - f Jree.fend)
{

if(j = = fjree.fend)
{

f_entry = OxFFFF;
}

else f_entry = j +1;
fj)tr->fat_16.fatl6 = f_entry;

}
}

... See Append C

retum(O);
}

Figure 13. Code to write to the FAT

73

Saving CRAM Data

The function putjnemory shown in Figure 14 was used to save the system's

memory to the hard disk. The Norton Utility package was used to view the disk to

see if the data on disk is the same as was in the corresponding location in memory.

The success of this stage led to the development of routines to restore the memory

from data stored on disk.

Restoring Memorv

This stage requires routines to get the data from the disk and routines to

"poke" the data into memory. The code segment in Figure 15 was used to restore the

memory. During the development of this area some problems developed which is

described below. The next stage is the development of a method to scan memory

and to determine, if any, segments changed since an earlier check of memory. The

segments that were changed is transferred to the disk on the next clock cycle. The

routine in Figure 16 was used to scan memory segments. This function is initiated by

either the DOS idle interrupt, the keyboard interrupt, or the clock interrupt. The

code in Figure 17 shows how to calculate the checksum for each segment of memory,

tagging any segment that have been changed since the last checksum calculation on

that memory segment.

74

int putjnemory (void)

for (seg=START SEG; seg < maxmem; seg+ =4096)
{

i = OL;
scrfOJ [0].s_char = OxOODS;
serf 0J [OJ.sjUtr = ((scr[OJ [0].s_attr >>4)

+ (scr[0] [OJ.sjUtr << 4)) & 0x77;
if (start Jlag == 0)
{

offs = START_OFF;
DOSsec = (cjieader.mem sec + ((WORD) ((seg - sav start) > > 12)

* (0x10000/0x200)));
}

else
{

offs = 0;
DOSsec = (long)(c header.mem sec + (((seg - savjtart) > > 12)

* (0x10000/0x200)) - ((0x10000/0x200) - sec segl end));
}

/* calculate the number of sectors per 64k segment */
SECJEG = (WORD)((0x10000 - ojfs) / (bpb.bps));
if (DOSsec < reserved_sec) retum(-l);
for O'=0; j<SEC_SEG; j++)
{

movedata(seg, (ojfs+i),FP_SEG(bujfer),FP_OFF(buffer), (bpb.bps *nsects));
stohst(drive, hst.TRACK, hst.HEAD, &DOSsec, &bpb, <Mpt, &kst);
if ((result = biosdisk(WRITE, hst.DRIVE NUM, hst.HEAD, hst.TRACK,

hst.SECTOR, nsects, buffer)) I- 0)
retum(result);

DOSsec + +;
/ + = bpb.bps;

Figure 14. Code showing the main memory saving routine

75

int reset jnemory(void)
{ -

for (j=0; j<SEC SEG;]++)
{

scr[0] [0].sj:har = 0x0087;
scrfOJ [OJ.s_attr = ((scr[0] [OJ.sjUtr >> 4) + (scr[OJ [OJ.sjzttr << 4)) & 0x77;
convjnem j)tr = MK_FP(seg, offs+i);
stoh^(drive, hst.TRACK, hst.HEAD, &DOSsec, &bpb, &dpt, &hst);
if ((result = biosdisk(READ, hst.DRIVEJSfUM, hst.HEAD, hst.TRACK,

hst. SECTOR, nsects, buffer)) /= 0) retum(result);
if (filler == 0)
{

movedata(FP_SEG(&buffer[cJieader.offsJîller]),
FP_OFF(&buffer[cjieader. off sJiller]),seg, (offs+i+c header, offsjiller),

((bpb.bps * nsects)-cJieader.offsJiller)};
convjnemjptr = MK_FP(seg, offs+i+cjieader.offsJiller);

j=OL; Jiller - 1;
} else
{

if (seg = = 0x2000 && DEBUG ((offs+i) > 0x7E00));
else

movedata(FP_SEG(&buffer[0]), FPJDFF(&buffer[0]),seg, (offs+i),
(bpb.bps * nsects));

}
DOSsec+ +/1 + = bpb.bps;

}
/ ' U N M U U U U U U U N U R E S E T R E G I S T E R S A N D D S A / / / / / / / / / / / / / / ' /

reset_video(); DOSsec + = bpb.nspt;
while(*diskette != 0x00); /* wait for disk drive to stop spinning */
disableO;
jAX = cJieaderAX;_BX - cJieader.BX;JOX = cJieader.CX;J)X - cJieader.DX;
_ES = cJieader.ES; J)S = cJieader.DS; _C5 = cJieader.CS; _SS = cjieader.SS;
_SP = cJieader.SP; JDI = cJieader.DI; JSI = cJieader.SI; _BP = cJteader.BP;
JFLAGS = cJieader.FLAGS;
enableO;

... See Appendix C
}

Figure 15. Code showing the method used to restore memory

76

void mem save(void)
{ . . .

if (savetime > = timelag && fresetjnem)
{

saveJDSAQ; SaveDosSwapO; SetPSP(cJieader.cram_psp);
regs.h.ah = SET_pTA; sregs.es=cjieader.cram_dta_seg;
regs.x.dx = c_header.cram_dta_ojf;
intdosxi®s, ®s, &sregs); GetExtErr(&cJieader.ErrInfo);
if(! mcb_chk(get_mcb()))
{

putstr(" < <-00' >> = = = = ERROR in MCB Chain = = = < <-oo- > > ");
result = set_MCB(0); scr[0] [79].s char = result + 0x30;

}
else
{

result = save_MCB(); scrfOJ [79].s_char = result + 0x30;
}
getjimedateQ;
DOSsec = c_header.currjnem_sec;
if ((START_SEG > = sav_end) 11 (maxmem > sav end))
{

STARTJSEG = savjtart;
maxmem = sav Jtart + 0x1000;
DOSsec = cjtëâder.mem_sec;
cJieader.currjnemjec = DOSsec;
startJlag = 0;
secjegljnd = 0;

}
capturejnemQ;
putJieaderQ;
saveJnterruptQ;

... See Append C.

Figure 16. Code for the main memory loop

77

long mem_checksum(WORD segjtart, WORD ojfsjtart, DWORD memjize)

long sum=OxOOOOL, cnt=0, k, I, m, n;
long h seg, offs;
WORD far *s_mem;
Idivj col;
col = ldiv(memjte, 0x10000);
k = caLquot;
I = caLrem;
for (seg-segjtart; seg< =(k*QxlOOO); seg+ =0x1000)
{

cnt =0;
i f (k!= 0)
{

n = 0x10000;
of fs = 0;

}
else

{
n = memjize;
offs = offs start;

}
sjnem = MK_FP(seg, offs);
while (cnt < n)
{

sum + = *(sjnem + +);
cnt+ =sizeof(sjnem);

}
}
cnt = 0; offs - 0;
i f (k!= 0)

sum + = *(sjnem + +);
putjiex(*(sjnem));
cnt+ =sizeof(s_mem);

}
sum = (sum > > 2);
return ((long)sum);

}

Figure 17. Code to show the calculation of memory checksum

78

This module was tested by observation of the codes displayed on the screen.

This type of software, because of its unique operation, must be tested using

observational evaluation.

The software was developed and installed on an IBM-PC XT compatible. One

major requirement of CRAM is that it must be the first program to be in memory

after the command interpreter, DOS COMMAND.COM. The code in Figure 18 was

used to check for the presence of CRAM in memory each time the program begins

execution. If other programs were installed then CRAM will abort the process and

issue an error message. Figure 19 and 20 show the layout of memoiy before CRAM

was installed and after installation respectively. It should be noted from Figure 20

that CRAM TSR is located between the resident portion of the command shell and

the Transient Program Area (TPA), the area where all other users programs are

executed.

The program developed above showed that a system can be developed that

can provide recovery after a failure. This was demonstrated by unplugging the

computer, re-booting the system, or using the reset button to reset the system. The

test of the software answered the next hypothesis.

79

MCBfar *IS_CRAM(MCB far *mcb)
{

buf[0] = '\0';
mcb - get_cmdjncb(mcb);
tmpmcb = mcb;
tmpowner = mcb-> owner;
for (;;)

switch (mcb-> type)
{

case 'M' : /* Mark : belongs to MCB chain */
{

mcb - MK_FP(FP_SEG(mcb) + mcb- >size + 1, 0);
if (tmpowner = = mcb-> owner)
tmpmcb = mcb; break;

}
case 'Z' : /* Zbikowski : end of MCB chain */

{
s = progname fin psp(FP SEG(tmpmcb) + 1);
while((s) && (i < = 128))"

buf[i++J = *s++;
if (strstr(buf, "CRAM") != NULL)
{
retum(tmpmcb);
}
else
{

printf("\b\b");
putjtr("\n\r CRAM cannot continue :: need to be the first");
putjitr("\n\r Program to load in your Autoexec.bat file");
putjtr("\n\r the file {");
put str(buf);put str("} was found instead\n\r");
retimi((MCB far *)NULL);

Figure 18. Code to check for CRAM in memory to make sure it is the first
program in memory after the DOS shell (COMMAND.COM)

80

Top of RAM •

0000:0400h »

0000;0000h •

ROM bootstrap routine

Transient part of Shell

Transient Program Area
(TPA)

• vwvwwwwwwwwww •
. A ,

Transient Program Area

Resident part of Shell

Installable drivers

File control blocks

Disk buffer cache

DOS kernel

BIOS

Interrupt vectors

Figure 19. MS-DOS environment after the start-up process

81

Top of RAM •

ROM bootstrap routine

Transient part of Shell

Transient Program Area
(TPA)

11-VWWWWWWVWWWWW

Transient Program Area

C R A M T S R

Resident part of Shell î

Installable drivers

File control blocks

Disk buffer cache

DOS kernel

BIOS

Interrupt vectors
0000:0400h »

OOOOrOOOOh •

5 The default is COMMAND.COM

Figure 20. Layout of memory after CRAM was loaded

82

Hypothesis 2

Standard application software such as disk utilities, word-processing programs,

spreadsheet programs and statistical analysis programs will operate successfully with a

software recovery system.

This hypothesis was partially confirmed as the results demonstrate.

Results of software testing

Nine commercial software packages, shown in Figure 21, were used to analyze

CRAM to determine if the system could be restored. Each software was tested

separately and the system was either partially restored, fully restored to its original

state before the interruption or there was a conflict. A partial restoration is defined

as when the system appear to restore but not fully operational or error symbols

indicate unpredictable events. A conflict is defined as when the presence of CRAM

caused the executing program to lockup the system or gives unpredictable result.

Recovering from a power failure: Software conflicts

The system was tested for performance after a power failure. This area was

the major premise on which the project was developed. The power switch and the

83

Number of Number of Restorations after 5
Commercial Conflicts executions with 5 sec. lag time

Software with Partial Full
CRAM

Norton Utilities 0 1 4
WordStar 2 1 2
WordStar 2000 0 4 1
Turbo C 0 5 0
Sideways 0 1 4
Lotus 123 5 0 0
Capture (TSR) 3 2 0
DOS Print (TSR) 0 1 4
WordPerfect 1 4 0

Figure 21. Software conflicts and the number of partial and full restoration of the
system by CRAM.

84

reset button on the computer were used to simulate power failure. Each program

was executed five times with CRAM resident in memory and five times with CRAM

not in memory. Figure 21 shows the list of programs that were tested and the

associated conflicts. It was noted that about 75% of the time the system was

restored. However, only 33% were full restoration. This could be due to the way in

which both WordStar 2000, WordPerfect and Turbo C used the timer interrupt. It

was observed that the display error symbol indicated, in most cases of partial

restoration, that the timer interrupt was active.

Further analysis was done based on recovering from power failure: software

conflicts and the time delay of other programs brought on by CRAM's presence in

the system, problems.

85

Hypothesis 3

System degradation as measured by the difference in seconds for standard

comparison programs operating with and without the software recovery system will not be

greater than 0.1 second.

This hypothesis was partialy confirmed and rejected for two of the

benchmarks. The results below will show the benchmarks that indicate significance.

The program code in Figure 22 was used to measure time differences between

eight processes. Observation were made first without CRAM loaded and then with

CRAM loaded and miming in the background.

Time delay

During the saving of memory all other processes that were in operation paused

for a brief moment. This delay was noticeable because of the speed of the IBM-PC

XT. This time will vary with the speed of the micro-processor. The delay time also

depends on the number of changed segments in memory. The type of disk used, that

is the size and access time, also contributed to the length of the delay.

There is also a time delay due to CRAM operating in the background. Figure

23 and Figure 24 show the difference in execution time for five processes when

CRAM is in memory and when not in memory.

86

^include <stdio.h>
#include <bios.h>
^define true 1
if=define false 0
^define size 8190
#d^me sizepl 8191
char flags[sizepl];

int main(void)
{

register int iter;
register int i, k, prime, count;
char tempstr[10];
int tl, t2;
printfC'Enter the number of iterations desired: ");
gets(tempstr);
iter = atoi(tempstr);
while(iter-)
{

printf("\nIteration %2d", iter);
count = 0;
tl = biostime (0,0);
for (i = 0; i < = size; i++) flags[i] - true ;
for (i = 0; i< = size; i+ +)
{

if (flags[ij)
{

prime = / + / + 3;
k = i + prime;
while (k < = size)
{

flags[kj = false;
k + = prime;

}
count+;

}
}

t2 = biostime (0, 0);

Figure 22. Benchmark program code

87

Routines:!
2

P^'^Routine execute with CRAM not in Hemry
Q - Routine execute with CRAM in wewory

Seive WnchNark ,
Disk I/O write 512 characters
Disk 1/0 read 512 characters
Generate keyboard interrupt ,
Video screen output of 512 characters
Generate interrupt 28h or CRAM if in Nenory
Generate clock interrupt.
Generate 2000 randoM nuMkrs

Data group averages of five samples per group

PI P3 P4

1:11 II
•II
I
II

Total 21.71448

M.

(P vs Q>
Change

.0549

I
ill
8.00003
1.98461

ill

!1
-0.22389

I
1;
1;
0.

I:
0.

S:

000

3
I
009

110

PS
1.3297

11

II
1:1
1:1
1:1!

0.04392 26.56066

SiSSilS i:M
S:ffi

P6

O.N09

i [
0.0000

1:1
0.(
0.1
O.00G

l:li
0.0800
0.0800
0.0000
0.0000
0.0000
0.0000

1:1
1:99115

P7

a
p
:g
M II

l:E

l:!i
2.'92770

P8

0:1319
::ig;
0.1428

011319
0.1289

if3i
0.1319

1:11
0.1428 8:H;|
0.1319

011428

«

O!^47

3.337% 5.158% -1.099% 0.000% 10.632% 51.099% 0.329% 1.265%

Figure 23. Delay times for some benchmark functions

Pfocess:

Routines:!
2

P - Routine execute with CRAN not in wewopy
Q - Routine execute Hith CAN in wwopy

3
4

!

Seive lenchwtfk .
Disk I/O write 512 characteps
Disk I/O read 512 characters
Generate key]>oard interrupt,
Video screen output of 512 ctaracters
Generate interrupt 28h or CRAN if in
Generaje interrupt.
Generat randoN nuiAers

Data group averages of five sawples per group

Q1

'«1
.318
.209
289
318

#;

i
I

Q2

S:iSi
!:ill
III

il
0.0549

II
0.0549

Q3

lili !ii! IE
0.0001 0.00001 0.0801

Q4

0.

•ItMt

!:Z

11
1:E
L.
0.0000
0.0110

i

1
i

96

Î:

b
3.783:

sssss

11
0.0110

0.9439 29.3845 10.2198
g:jg| ;:!%
0.00602 0.00007 1.3172

Bli
i!i

Q7

0 0000
0.0000
0.0110

[

»
i

0.0110
0.0110

0.06588

:%
0.00003

Q8

o!

8:
0.
0.

8:

I
0.

I
0.

i .

319
428
209

I
538
319

i
209

l&l
428
319
319

2.63720
0.13186

8:%

Total
Average
Std. Dev
Variance

Figure 24. Delay times for some benchmark functions contd.

89

The graphs in Figures 25 thru 27 give a graphical picture of the differences.

The processes are:

1 Numerical calculation using the well known sieve routine.

2 Disk I/O write of 512 bytes.

3 Disk I/O read of 512 bytes.

4 Scan of the keyboard.

5 Video out of 512 bytes.

6 Scan of interrupt 28h (a call to CRAM if installed) .

7 Generate clock interrupt

8 Generate 2000 random numbers

Two measurements were taken of the time to execute each process, one while

CRAM was installed (Q), and one when CRAM was not installed (P).

A degradation of 3.23% for the sieve numerical calculation, 1.25% for the

random number generation, and 9.6% for the video display operation was observed.

Very little effect was noted for most of the other operation except for times when

CRAM'S presence may delay the clock interrupt by 0.05 seconds. The data collected

from the random number generating process show some overlapping which indicate a

need to test the means for differences. A t-test was done on this data and the t-values

are shown in Figure 23. There was no significant difference between the mean delay

time for generating random numbers whether CRAM was running or not. Thus it

90

S e i v e o f E r o s t o t h e n e s B e n c h m a r k
CRAM Not In Memory vs. Cram In Memory

1 . 1 2

1 0 9

1 . 0 0

107

1 1 i 1 1 i 1 , 0 6
1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 IB 17 ia 19 20

Samp les

• Not In Memory + In Memory

Figure 25. Graph of sieve numerical test

91

V i d e o D i s p l a y O u t p u t
CRAM Not In Memory vs. Cram In Memory

1 49

1.48

1 .47

1.46

1 4 5

1 .44

1 .43

1.42

1 .41

1. 39

1 38

1 .37

1 , 36

1.35

1. 32

i. 1 1 1 i 1
1 2 3 4 5 6 7 8 3 10 11 12 13 14 15 16 17 18 19 20

Samp les

• Not In Memory + In Memory

Figure 26. Graph of Video display test

92

Generating Random Numbers
CRAM Not In Memory vs. Cram In Memory

0.16

D. 155

0.15

0. 145

14

0. 135

13

0. 125

2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 10 19 20

Samples

• Not In Memory + In Memory

Figure 27. Graph of random numbers generation test

93

can be resolved that CRAM does not affect program execution that involves random

number generation.

In summary, the results of this study demonstrated that

a) a method can be used to save data to disk for easy access,

b) software can be used to implement a hardware solution, although some

hardware and software problems need to be resolved or circumvented,

and

c) the system suffers a negligible speed degradation of less than 0.01

second.

94

CHAPTER V. SUMMARY AND RECOMMENDATIONS

The intent of this study was to develop a software based system to restore the

computer's memory after a catastrophic failure, and provide a system to replace the

existing hardware systems such as Uninterruptible Power Supplies. The researcher

was faced with three fundamental questions discussed below:

Discussion to Question 1

Can a software system be developed that will provide recovery from a system failure?

A software program was developed that constantly monitors the computer's

Random Access Memory (RAM). Memory is saved to disk for future retrieval if a

change was detected. The software developed is called Constant Random Access

Memory (CRAM). CRAM was designed to be expandable to include the use of

extended memory, expanded memory and the DOS high memory block. Although

this project did not include these areas in its development, it was designed to

incorporate these techniques in future development. One question that was posed by

this method of saving memory is "what would result from a power failure in the

middle of a memory save process?" The present method will not be affected to any

great extent by such occurrence because memory, where most of the program's

critical data and information is located, is saved first. The program's code can be

95

reloaded from disk. This question could, however, be answered in a more practical

way by recommending future development to this project to include the following

procedure: memory could be swapped to a work area of the disk and later swapped

into CRAM. This would provide a complete safety buffer which means that memory

could always be restored free of error, in one period required to save all segments of

memory that were changed. This method was not included in this project at this time

because this implementation was for the IBM PC-XT, which is a relatively slow

machine. The introduction of too many disk accesses would slow the system down

considerably. The faster machines such as the IBM PC-AT or models 386 and 486

could be tested for degradation in speed if such a procedure were introduced into the

overall processing.

Implications for future research

This software needs much improvement in its design to include the newer

model machines. Although attempt was made not to write code that is machine

dependent this was violated in some instances to speedup development. The

checksum method used in this study could be substituted with the tagged memory

technique suggested by Adams (1991). This would reduce the memory scanning time.

The system is design with redundancy checking that could be eliminated to decrease

the overall scan time.

96

CRAM could be interfaced with many other application and DOS itself. DOS

could be merged with codes that are implemented in the windows environment.

Another growing concern among industries is data safety in local area networks.

CRAM could be enhanced to operate at each work-station. Local area network with

a star bus configuration rely heavily on the server for data reliability and availability.

CRAM could be used to improve reliability and availability.

Since most workable codes compiled to an object file can be transferred to

firmware and the code for CRAM is not machine dependent, it is the author's belief

that future development of DOS or the ROM BIOS could include CRAM as part of

its operating system code. Melear (1986), noted that the improve technology in

EEPROM will play an important roll in the development of firmware.

CRAM could also be used as an addition security to existing UPS system, with

proper interfacing.

This study could be extended to other systems such as Unix and OS/2 .

97

Discussion to Question 2

What problems exist in achieving a software-only recovery system?

Development problems

The use of DOS, a single user system, to simulate a multi-user system using

TSR programs, poses some interesting and challenging problems. It is difficult to

restore a system using a TSR program since the TSR program needs to be running at

the same time. This problem was overcome by first loading CRAM at the same

relative position for both saving and restoring memory. CRAM was loaded

immediately after the command interpreter. This enabled the restoration to only

start at memory location after the interpreter. Memory locations before the

interpreter were not saved or restored. However, some important areas like the Bios

area and the interrupt vector table, stored in lower memory, were saved and restored.

Secondly, the restore routine was executed as a separate interrupt. This

allowed the routine to execute after the TSR was fully loaded into the system.

Thirdly, all areas of memory are constantly monitored and transferred to

CRAM if memory was changed by software running in the system.

Another problem faced was the context switching after a restoration.

Although the Program's Segment Prefix for the TSR replaced the PSP of the

98

interrupted process, the system would hang when attempting to load a new program.

The problem was discovered in the way DOS updates the MCB. There was no

information available on the method used by DOS to update the MCB. This

problem was alleviated by the constant monitoring of the MCB and the updating of

the MCB at the time of restoration. The routine in Figure 28 and Figure 29 were

used to repair the MCB.

The third problem was the unusual and unexpected failure of the interrupted

process to release the memory it occupied when terminated. This occurred after a

system restoration. This problem was solved by monitoring the terminating address

stored in the programs PSP. This address was updated if changed unexpectedly.

Turbo C version 2.0, used in the development of this project also introduced

some problems that may be caused from bugs in the compiler itself. It was

discovered that the use of function STRSTR and STRUPR to check for the character

"R" in the command line variable ARGV gives unpredictable side effects. It was

later determined that this phenomena contributed to the trashing of the MCB and

the program's inadvertent lack of releasing memory when terminated. This could be

as catastrophic as a power outage without a backup or equivalent to the 1989

disruption of telephone service because of a problem in the telephone software code.

99

set mcb_chain(BYTE *buffer)
{ "

MCB far *mcb;
struct MCB TBL far *tblptr;
int i = 0, j=0;

j = atoi(&buffer[511]);
for (;;)
{

tblptr = (struct MCB_TBL far *)(&buffer[i]);
mcb = MK_FP(tblptr'>addr,0);
mcb->type = tblptr->mcb.type;
mcb'> owner = tblptr->mcb.owner;
mcb-> size = tblptr->mcb.size;
if (mcb-> type = = 'M'&&j > 0)
{

i + =sizeof (struct MCBJTBL);
H

}
/* mcb = MK_FP(FP_SEG(mcb) + mcb-> size + 1, 0); */

else
return (tblptr->mcb.type = = 'Z');

}
}

Figure 28. Code used to set MCB

100

int getjncb_chain(MCB far * mcb, BYTE *buffer)
{

MCB_TBL far *tblptr;
int i - 0, j=0;

for (;;)
{

tblptr = (MCBJTBL far *}(&buffer[i]);

tblptr->mcb.type = mcb-> type;
tblptr->mcb.owner = mcb-> owner;
tblptr->mcb.size = mcb-> size;

tblptr->addr = (WORD) FP_SEG(mcb);

if (mcb-> type = = 'M')
{

mcb = MKjFP(FP_SEG(mcb) + mcb- >size + 1, 0);
i 4- =sizeof (struct MCBJTBL);
j+ +;

}
else

{
itoa(l, &buffer[511],16); /*Store the number of MCBs */
return (j); /^Return the number of MCBs present */

}
}

Figure 29. Code to get MCB

101

Implementation problems

Nine commercial programs were tested for restoration using CRAM. It was

noted that about 75% of the time the system was restored. However, only 33% were

full restoration. This could be due to the way in which both WordStar 2000,

WordPerfect and Turbo C used the timer interrupt. It was observed that when the

display error symbol indicated, in most cases of partial restoration, that the timer

interrupt was active. It may be That the timer interrupt was used improperly or

should not be interrupted.

Implications for future research

The development of this system for multi-user multi-task machine would

eliminate the problems associated with using a TSR program. The location of

CRAM in memory would be still important, since all of memory must be restored

including the area occupied by CRAM. CRAM must not be over-written during the

restoration process.

The second area that may affect future development is the version of Turbo C

compiler that is used. The problem in the compiler that caused the executable code

to trash the Memoiy Control Block (MCB) should be fixed.

102

Discussion to Question 3

What is the degradation in application program performance when utilizing a software

recovery system?

The time delay due to CRAM operating in the background, based on the

difference in execution time for five processes when CRAM is in memory and when

not in memory was analyzed.

The processes are:

1 Numerical calculation using the well known sieve routine.

2 Disk I/O write of 512 bytes.

3 Disk I/O read of 512 bytes.

4 Scan of the keyboard,

5 Video out of 512 bytes.

6 Scan of interrupt 28h (a call to CRAM if installed) .

7 Generate clock interrupt

8 Generate 2000 random numbers

Two measurements were taken of the time to execute each process, one while

CRAM was installed, and one when CRAM was not installed.

A degradation of 3.3% for the sieve numerical calculation, 1.3% for the

random number generation, 5.2% for the disk I/O write operation, and 10.6% for the

video display operation was observed. Less than 1% change was noted for most of

103

the other operation except for times when CRAM's presence may delay the clock

interrupt by 0.05 seconds. A t-test was done on the data collected from the random

number generating process which show some overlapping which indicate a possibility

of no differences in the means. There was no significant difference between the

mean delay time for generating random numbers whether CRAM was running or not.

Therefore, it can be concluded that CRAM does not affect program execution that

involves random number generation.

One unresolved finding is the increase in disk read operation when CRAM is

in memoiy. This may be due to the continuous activation of the timer interrupt by

CRAM. This interrupt provides a counter for the disk read/write head settling time.

Summaiy

A great percentage of the time for this study was spent writing the code for

the software. This system when implemented could safe-guard an IBM-PC XT

computer, under some circumstances, from data loss due to a power failure. This

implementation is completely software driven and requires no interaction from the

user once installed. This system is transparent to the user and is only visible by

symbols displayed on the video screen. For some applications the degradation in

speed is negligible but for applications requiring many disk access the operating

speed may be noticeable.

104

REFERENCES

Adams, S. J., Simms, T. (1991). A Tagged Memory Technique for Recovery From
Transient Errors in Fault Tolerant Systems. Proceedings - 1990 Real-Time
Systems Symposium, bv IEEE, p 312-321.

Adams, P. M., Tondo, C. L. (1990). Writing DOS Device Drivers in C. Englewood
Cliffs, New Jersey: Prentice Hall, Inc.

Angermeyer, J., Jaeger, K. (1986). The Waite Group's MS-DOS Developer's Guide.
Indianapolis, Indiana: Howard W. Sams & Company.

Bacon, D. F. (1991). Transparent Recovery in Distributed Systems Position Paper.
Operating Systems Review (ACMl 25 (2), 91-94.

Bailey, R. W. (1983). Human Error in Computer Systems. Englewood Cliffs, New
Jersey: Prentice Hall, Inc.

Barkakati, N. (1989). Turbo C Bible. Indianapolis Indiana. The Waite Group, Inc.
Howard W. Sams & Company.

Barnes, C. C., Coleman, A., Showalter, J. M., Walker, M. L. (1991). VM/ESA
Support for Coordinated Recovery of Files. IBM Systems Journal. 30 (1), 107-
125.

Bassiouni, M. A. (1986). System and Program Models of Storage Allocation For
Reducing Seek Delay. The Computer Journal. 29 (1), 47-51.

Beaudin, T. (1992). Unattended Backup Keeps IS Staff Levels Low. Systems
3X/400. January p 53-54.

Beizer, B. (1988). The Frozen Keyboard. Blue Ridge Summit, Pennsylvania: TAB
Professional and Reference Books.

Belli, F., Jedrzejowicz, P. (1991). An Approach to the Reliability Optimization of
Software with Redundancy. IEEE Transactions on Software Engineering. 17
(3), 310-312.

Bellin, D., Suchman, S. (1990). The Structured Systems Development Manual.
Englewood Cliffs, New Jersey: Prentice Hall, Inc.

105

Bennett, R. B., Bitner, W. J., Musa, M. A., Ainsworth, M. K. (1991). Systems
Management for Coordinated Resource Recovery. IBM Systems Journal. 30
(1), 90-106.

Beynon-Davies, P. (1989). Information Systems Development. Houndmills,
Basingstoke, Hampshire and London: Macmillan Education Ltd.

Boling, D. (1992). Strategies and Techniques for Writing State-of-the-Art TSRs that
Exploit MS-DOS 5. Microsoft Systems Journal. 7 (1), 41-59.

Bondavalli, A., Simoncini, L. (1990). Failure Classification With Respect to
Detection. Proceedings of the 2nd IEEE Workshop on Future Trends of
Distributed Computing Systems, by IEEE, p 47-53.

Borland, (1988). Turbo C Version 2.0 (TO. Scotts Valley, California: Borland
International, Inc.

Borland, (1988). Turbo Assembler Version 2.0 (TASM). Scotts Valley, California:
Borland International, Inc.

Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson, J.,
Stevens, R., (1987). Portable Programs for Parallel Processors. New York,
New York: Holt, Rinehart and Winston, Inc.

Brown, R., Kyle, J. (1991). PC Interrupts: A Programmer's Reference to BIOS. DOS,
and Third-Party Calls. Addison-Wesley Publishing Company, Inc.

Chantico Publishing Company, Inc. (1991). Disaster Recovery Handbook. Blue
Ridge Summit Pennsylvania: Tab Professional and Reference Books.

Chu, J. L., Torabi, H. R., Towler, F. J. (1991). A 128kb CMOS Static Random-
Access Memory. IBM Journal of Research and Development. 35 (3), 321-329.

Collins, G., Blay, G. (1982). Structured Systems Development Techniques: Strategic
Planning to System Testing. Marshfield, Massachusetts: Pitman Publishing Inc.

Colvin, N. J. (1989). System Bios for IBM PC/XT/AT Computers and Compatibles.
Phoenix Technologies Ltd. Addison-Wesley Publishing Company, Inc.

Crecine, J. P. (1986). The Next Generation of Personal Computers. EDUCOM
Bulletin. Spring, 2-10.

106

Daniels, B. K. (1987). Achieving Safety and Reliability with Computer Systems New
York, New York: Elsevier Science Publishing Co., Inc.

De Peyster, D (1989). On The Wild Side. PC Resource. May, 6.

Dettmann, T. R. (1988). DOS Programmer's Reference. Carmel, Indiana: Que
Corporation.

Dettmann, T. R. (1989). DOS Programmers's Reference. 2nd Edition. Carmel,
Indiana: Que Corporation.

De Young, B. (1984). Resource Sharing of Micro Software, or. What Ever Happened
to All That CP/M Compatibility? Microcomputers for Information
Management. 1 (4), 313-324.

Duncan, R. (1988). Advanced MSDOS Programming. Second Edition. Redmond,
Washington: Microsoft Press, A Division of Microsoft Corporation.

Ely. D. P. (1990). Trends and Issues in Educational Technology. Tech Trends. 35 (4),
9-11.

Falk, H. (1987). New Tools Help Exterminate Software Bugs. Computer Design.
October, 52-58.

Friedman, A. L., Comford, D. S. (1989). Computer Systems Development: History.
Organization and Implementation. New York, New York: John Wiley &
Sons, Inc.

Garcia-Molina, H., Polyzois, C. A (1990). Issues in Disaster Recovery. Digest of
Papers Thirty Fifth IEEE Computer Society International Conference
COMPCON 89. by IEEE, p 573-577.

Garland. V. E. (1990). Computers in 2001: Preparing Educational Administrators.
Tech Trends. 35 (3), 17-22.

Gibbons, T. (1976). Integrity and Recovery in Computer Systems. Rochelle Park,
New Jersey: Hayden Book Company.

Grossman, C. P. (1985). Cache-DASD Storage Design for Improving System
Performance. IBM Systems Journal. 24 (3-4), 316-334.

107

Han, S. H., Malek, M. (1986). Two-Dimensional Multiple-Access Testing for
Random-Access Memories. IEEE, p 248-251.

Hetzel, W. (1984). The Complete Guide to Software Testing Wellesley, MA:
Information Sciences, Inc.

Hisano, T. (1986). Transparent Memory: A Hardware Solution to the Memory
Conflict Problem. Systems and Computers in Japan. 17 (11), 100-108.

Hyde, R. L. (1988). Overview of Memory Management. Bvte. April, p 219-225.

Johnson, D. B., Zwaenepoel, W. (1991). Transparent Optimistic Rollback Recovery.
Operating Systems Review (ACM). 25 (2), 99-102.

Kaczeus, S. (1990). Disk Reliability is a Function of Design as Well as Manufacture.
Computer Technologv Review. 10 (9), 59-60, 62-63.

King, R. P., Halim, N., Garcia-Molina, H. Polyzois, C. A. (1990). Overview of
Disaster Recovery for Transaction Processing Systems. Proceedings -
International Conference on Distributed Computing Systems, bv IEEE, p 286-
293.

King, R. A. (1987). The MS-DOS Handbook. Alameda, CA: SYBEX Inc.

Kinoshita, K., Saluja, K. K. (1986). Built-in Testing of Memory Using An On-chip
Compact Testing Scheme. IEEE Transactions on Computers. C-35 (10) 862-
870.

Klopp, C. (1990). Vulnerability Awareness Improves Contingency Planning.
Computers & Security. 9 (4), 309-311.

Koren I., Koren, Z., Su, S. Y. H. (1986). Analysis of a Class of Recovery
Procedures. IEEE Transactions on Computers. C-35 (8), 703-711.

Kyle, J. (1992). Electronic mail communication, Compuserve, 76703,762.

Lengefeld, H. C. (1990). Battery-Free Rotary Options Are Available For Today's
UPS. Computer Technologv Review. Special Winter Issue, 132-135.

Levaiy, R. R., Edwards, W. D. (1986). Analyzing The Impact of Adding a New
Software System on Main Memory Usage. Computer Journal. 29 (6), 522-526.

108

Levy, E. (1991). Incremental Restart. Proceedings - International Conference on
Data Engineering, by IEEE, p 640-648.

Levy, E., Silberschatz, A, (1990). Log-Driven Backups: A Recovery Scheme for
Large Memory Database Systems. Proceedings of the 5th Jerusalem
Conference on Information Technology, by IEEE, p 99-109.

Lion, K. (1990). Digital Audio Tape as a Backup for the AS/400. Computer
Technology Review. 10 (16), 83-84, 88.

Littlewood, B. (1987). Software Reliability Boston Massachusetts: Blackweli Scientific
Publications.

Lopez, A. M. Jr. (1992). Mass Storage and Communication: The Big Byte in The
90s. Interface. 14 (1), 47-54.

Lua, K. T. (1990). Failure of Instruction Prefetching of 8088/286/386
Microprocessors in XT/AT systems. Microprocessing and Microprogramming.
29 (2), 97-106.

Lucente, M. A., Harris, C. H., Muir, R. M. (1991). Memory System Reliability
Improvement Through Associative Cache Redundancy. IEEE Journal of
Solid-State Circuits. 26 (3), 404-409.

Mace, P. (1988). The Paul Mace Guide to Data Recovery. New York, New York:
Simon & Schuster, Inc.

MacKenzie, F. B. (1987). Automated Secondary Storage Management. Annually
History of Computer. 9 (1), 29-35.

Maslak, B. A., Showalter, J. M., Szczygielski, T. J. (1991). Coordinated Resource
Recovery in VM/ESA. IBM Systems Journal. 30 (1), 72-89.

Mason, R. M. (1984). Current and Future Microcomputer Capabilities: Selecting the
Hardware. Microcomputers for Information Management. 1 (1), 1-13.

Matick. R. E. (1986). Impact of Memory Systems on Computer Architecture and
System Organization. IBM Systems Journal. 25 (3-4), 274-305.

Melear, C. (1986). Applications For Microcomputers With E**2PROM. Conference
Record - Electronic, p 12.

109

Miller, A. R. (1986). Memory Manipulations. Part 1: Arabie Versus Roman. Part 2:
Adjusting Memory Size. Bvte. 11 (11) 232-234, 236, 238-245.

Mueller, S. (1991). Guide To Data Recovery. Carmel, Indiana: Que Corporation.

Newman, I. A., Stallard, R. P., Woodward, M. C. (1987). Hybrid Multiple Processor
Garbage Collection Algorithm. Computer Journal. 30 (2), 119-127.

Newport, D. F., Alley, G. T., Bryan, W. L., Eason, R. O., Bouldin, D. W. (1986),
IEEE, p 578-581.

Norton, P. (1989). The Norton Utilities Software Package.

Norton, P. (1985). The Peter Norton Programmer's Guide to the IBM PC.
Redmond, Washington: Microsoft Press, A division of Microsoft Corporation.

Phillips, D. (1986). COMPLEAT Multiprocessor System. Electronic Products. 29
(8), 75-81.

Purdum, J. (1989). C Programmer's Toolkit. Carmel, Indiana: Que Corporation.

Ramsey, H. (1990). Telephone conversation about the PowerSave at IIT Power
Systems.

Rich, M. (1986). Method of Flexible Catch RAM Display For Memory Testing.
Digest of Papers - International Test Conference, bv IEEE, p 222.

Sando, S. (1985). Achieving Nanosecond Cache Performance With GAAS. Wescon
Conference Record. A paper Distributed bv Western Periodicals Co. for
IEEE, 6 pages.

Sargent III, M., Shoemaker, R. (1986). The IBM PC from the Inside Out. Revised
Edition. Addison-Wesley Publishing Company, Inc.

Schildt, H. (1988). C: Power User's Guide. Berkeley, California: McGraw-Hill, Inc.

Schulman, A., Michels, R. J., Kyle, J., Paterson, T., Maxey, D., & Brown R., (1990).
Undocumented DOS: A Programmer's Guide to Reserved MS-DOS Functions
and Data Structures. New York, New York: Addison-Wesley Publishing
Company, Inc.

110

Schustack, S. (1989). Variation in C. Redmond, Washington: Microsoft Press, A
division of Microsoft Corporation.

Sinutko, M. (1987). Memory Access to Multiple-Sensitivity Information. Proceedings
of the Seventeenth International Svmposium on Multiple-Valued Logic, bv
IEEE, p 109-116.

Smith, D. D., Bulgren, W. G. (1987). Memory Management Algorithms for Buffer
Fool Systems. IEEE Computer Society, p 83-89.

Spector, A. Z. (1984). Computer Software for Process Control. Scientific American.
25 1 (3), 174-186.

Tam, v., Hsu, M. (1990). Fast recovery in Distributed Shared Virtual Memory
Systems. Proceedings of the 10th International Conference on Distributed
Computing Systems, bv IEEE, p 38-45.

Tammaru, T. (1985). Memory Addressing Arrangement. Technical Digest AT&T
Technology. 77, p 47.

Tasch, U., Sheridan, T. B. (1990). On-Line Model Based Topographic Search of
System Failures. Journal of the Franklin Institute. 327 (2), 251-258.

Upadhyaya, S. J. (1990). Rollback Recovery in Real-Time Systems with Dynamic
Constraints. Proceedings - IEEE Computer Society's International Computer
Software & Applications Conference, bv IEEE, p 524-529.

Wadlow, Thomas A. (1987). Memory Resident Programming on the IBM PC.
Addison-Wesley Publishing Company, Inc.

Waite, M. (1988). The Waite Group's MS-DOS Developers and Power Users.
Indianapolis, Indiana. Howard W, Sams & Company.

Wallace, R. H., Stockenberg, J. E., Charette, R. N. (1987). A Unified Methodology
for Developing Systems. New York, New York: Intertext Publications, Inc.

Yanney, R. M., Hayes, J. P. (1986). Distributed Recovery in Fault-Tolerant
Multiprocessor Networks. IEEE Transactions on Computers. C-35 (10), 871-
878.

I l l

ACKNOWLEDGMENTS

I would like to sincerely thank the many people who helped me throughout my

doctoral program. Especially, I would like to thank my major professor, Dr. William

Miller, for his advice and timely suggestions which contributed to the successful

completion of this dissertation. His encouragement and guidance were gratefully

appreciated.

I also want to thank the Department Chair, Dr. John Dugger, along with the

other members of my committee. In addition, I am grateful to the office staff in the

Department of Industrial Education and Technology for their assistance while I was

away from campus.

Finally, I am indebted to my lovely wife. Dr. Carol A. S. Brevett, for her

contribution in editing this manuscript. She showed continual patience, perseverance

and care while the computer diverted my thoughts and dreams at night and held me

hostage during the day.

112

APPENDIX A. INSTALLATION GUIDE

113

Introduction

CRAM is a memory resident software tool designed to replace a standard UPS

system. This software, when installed on any IBM-PC XT or compatible computer,

will monitor the computer's main memory and save it to disk when changes are

detected. This software uses no additional hardware and a small amount of memory

overhead. To start CRAM you must first have a PC-XT equipped with a hard disk

system. CRAM can use a floppy disk but disk access speed will decrease

dramatically. The floppy disk system can be used for transferring information to

other systems as will be seen later in this manual. CRAM must be installed on the

system using the installation program. This version was developed for the XT and

thus may give unpredictable results when miming on any other system. The video

drivers supported are MDA, CGA and EGA Programs running in graphic mode

may experience problems in the restoration of the video screen. Although the

program may be totally restored, the screen images may not be completely restored.

System Preparation Prior to CRAM Installation

The system must be prepared before CRAM is installed in order to get the

best performance and also to prevent CRAM from failing to install because the free

114

clusters on the disk are not next to each other but scattered throughout the disk

(fragmented).

First obtain a copy of either the Norton disk optimizing utility or any other

disk organizing utility. It is a good idea to run either the Norton Disk Doctor utility

first to analyze the disk or DOS check disk utility (CHKDSK). Now run the

optimization program to organize the disk using the full optimization option

according to the software you choose. This process may take awhile depending on

the size of the hard disk.

CRAM Installation

After the optimization process is completed, the Install program which

accompanies the CRAM software should be executed. Place the CRAM installation

disk in one of the drives. Enter INSTALL. This process will take a while again

depending on the size of the hard disk. The install program will check the disk to

make sure CRAM was not installed before. It will also check for an area of the disk

to install the software and the area to save memory. If no errors were encountered

the program will show that CRAM was installed successfully and that the installation

process is complete. The program will pause for about one second, then it will re

boot the system to load CRAM into the system.

115

Invoking CRAM

To start CRAM enter CRAM at the DOS prompt. CRAM must be supplied

with two or more of the switches found under "Switches used with CRAM" below.

Once installed feedback from CRAM is evident by a symbolic display character in the

upper left corner of the screen and other indicators on the top row of the screen.

See Figure lA in the appendix for the meaning of these symbols. If CRAM was not

installed, follow the above directions found under "CRAM installation" before

invoking CRAM.

Switches Used With CRAM

CRAM must be supplied with a combination of two or more of the following

switches:

-h keyl key2 hot keys used to force CRAM to save memory

keyl is a code for special keys:

1 = Right Shift

2 = Left Shift

4 = CTRL

8 = ALT

116

Keys can be combined like 12 for CTRL-ALT

key2 is any other non-special key (regular ASCII

characters)

-i to start-up by first saving all of memory and setting some vital

parameters

-k to start-up but no initial saving of memory or setting of vital

parameters

-1 drive drive that CRAM will use to save memory

-u to start-up then restore memory to the process stored in CRAM

-X to extract CRAM from memory and reset the system to run

without CRAM

-XX to extract CRAM from both memory and the entire disk system

System Requirements

The following are the minimum requirements needed for CRAM to install and

operate.

1. An IBM-PC XT or compatible

2. Hard disk with at least 700K bytes of free space

3. At least 512K memory (only about 64k is required for CRAM's

operation but most software needs at least 512k to run)

117

MDA, CGA or EGA video adapter

At least one floppy drive (3h or 5%)

118

APPENDIX B. USER MANUAL

119

120

Introduction

Guidelines for the use of CRAM do not warrant a users manual, however, the

information provided here will help other developers understand the inner working of

CRAM. CRAM, unlike other software, is not a utility or a user processing program

but a tool that requires almost no user interaction after installation. CRAM uses a

Real-time Symbolic Feedback System (RSFS). This is the constant display of the

systems processes and error conditions by way of indicators on the screen. There are

four sets of indicators. The symbols are shown in the Table below. The first is a one

character symbol that tells what area of CRAM is being processed. The second set

is a group of flags and a counter. The third is the lower byte of the DOS flag

register. The fourth set indicates the areas of memory that are being changed by a

process, flagged to be saved or already saved by CRAM.

121

Some DOS Error Codes Returned by CRAM

ERROR 03 Disk is write protected.

ERROR 04 Could not find disk sector.

ERROR 10 Error in data transfer.

ERROR 20 Diskette controller failed.

ERROR 80 Disk timed out error.

122

Error Codes Specific to CRAM

CRAM cannot continue

Another program other than CRAM was found to be loaded in memory after the

command interpreter. CRAM must be the first file loaded after the command

interpreter.

DISK ERROR saving memoiy

The disk is bad or CRAM is corrupted.

Drive is not a CRAM disk

A drive that was specified in the -L switch does not have a copy of CRAM installed

on it. You need to run INSTALL and use the -L switch to indicate the drive to use

to install CRAM.

ERROR with SWAP SAVE

Maybe not enough memory to save information in the DOS Swappable Data Area.

ERROR formatting track

An invalid track number was specified.

123

ERROR reading sector

The sector may be damaged.

ERROR ermum reading Disk Parameter Table (DPT)

The drive specified either has a damaged DPT or does not have one. The drive

specified could be invalid or the hard disk is damaged. Ermum is the DOS error

number that caused this error.

ERROR ermum Reading BIOS Parameter Block (BPB)

An attempt was made to read a disk with damaged BPB. The drive specified could

be invalid. This error message also reports the drive, head and sector of the last disk

access. Ermum is the DOS error number that caused this error.

ERROR in Memory Control Block (MCB)

The memory control block has invalid entries. CRAM will fix this error so there is

no need to be alarmed.

ERROR writing sector

The sector may be damaged.

124

CRAM not Installed on disk

CRAM was unable to find the CRAM ID on the disk. It is likely that CRAM was

not installed on the disk.

ERROR initializing DOS Swappable Area (SDA)

CRAM could not use the DOS SDA, There may be insufficient memory or CRAM

is corrupted.

ERROR saving memo:y::save mem

CRAM encounters a problem with the hard disk or disk used to save memory.

Either the disk is bad or CRAM was corrupted.

••• See Figure lA for the symbolic error codes. •••

Re-installing CRAM

If CRAM needs to be reinstalled after de-installation or installed to a newly

reformatted disk, the following procedures must be followed:

1. You must be the registered owner of the software.

2. The disk must be the in the same machine.

125

Process Symbol Error

Saving Registers to CRAM «
Getting Registers and vital CRAM statistics n

Saving video memory to CRAM none
Resetting video memoiy none
Saving interrupt vector table to CRAM 0
Resetting interrupt vector table n
Normal CRAM operation in progress €

Putting CRAM vital information in CRAM 00
Getting CRAM vital information from CRAM
Resetting memoiy s
Loading CRAM Ç
Saving DSA z
getting DSA from CRAM r
Restoring DSA a
Completion of DSA restoration 0

Figure lA. CRAM's process screen indicators

126

3. The system must be in its original state when first installed (i.e. has all the

peripherals that were present at the time of first installation).

4. If you are the registered owner of the software but 2 and/or 3 above cannot

be satisfied call or write:

Renford A. B. Brevett
109 Newton Drive
Bear, DE. 19701
(302) 325-0876

You will be given instructions or a new copy of the software.

5. If all of the above was satisfied then you only need to run the installation

program (INSTALL) and CRAM will be installed on the hard disk and will re

install itself without any further intervention.

Getting Information About CRAM

The program CRAMINFO.EXE on the CRAM disk allows access to

information about CRAM. Below is a sample of the output from CRAMINFO, The

information in CRAM can be accessed at anytime.

127

Editing CRAM

The program CRAMEDIT.EXE on the CRAM disk allows the editing of data

in CRAM. This program should only be used by experienced programmers. This

tool is useful in editing CRAM which can then be restored with the edited

information. If the system was in a critical error state and was saved by CRAM in

that state without correction then CRAMEDIT could be used to edit memory before

attempting to restore CRAM. Note that CRAM should not be running in memory

while editing CRAM.

Transferring CRAM To a Different Disk and/or Computer

CRAM can be used to transfer information between two systems. This feature

is useful if you are working on a project at school or work and want to continue at

home without losing the data or the place you were at in your project. This is done

by using a 3^ floppy disk to transport the system. The following procedure is used to

transfer CRAM to another system:

1. Start the system without CRAM running

2. Run the installation program using the drive switches to indicate the new

drive.

128

ex. INSTALL -i -L B

CRAM will be installed on the B drive

3. CRAM will now save memory to drive B.

4. After turning off the computer remove the floppy disk.

5. Insert the floppy disk in the drive of the other system.

6. Start the system without CRAM loaded.

7. At the DOS prompt start CRAM by entering:

CRAM -u -L B or A {A or B for the floppy drive with CRAM }

8. After the restoration you can continue where you were at the office.

Removing CRAM From the Hard Disk and System

CRAM was designed to use a hard disk for normal operations. Another

feature of CRAM is transferring an entire operation from one computer to another

or one disk to another. To do this the system must have a3h floppy disk drive. To

transfer CRAM use the following procedure:

1. Start the system without CRAM running.

2. At the DOS prompt enter CRAM /t source-drive destination drive

ex. CRAM /t C B

3. CRAM will request the original disk

129

4. After transferring CRAM to the original disk CRAM will be removed from

the system and disk.

130

APPENDIX C. CRAM SOURCE CODE

131

TSR.H TSR macros, variables and functions declaration.

/• TSR Prototype file and common variables */

ifdefme INTERRUPT void interrupt far

typedef struct {
unsipied es, ds, di, si, bp, sp;
unsigned bx, dx, cx, ax, ip, cs, flags;
} INTERRUPT_REGS;

/• Prototypes for functions in CRAMUTIL.C */
int Do^usy(void);
int Int28DosBusy(void);
void ImtInDos(void);
unsigned GetPSP(void);
void SetPSP(unsigned segPSP);
int InitDosSwap(void);

/* Prototypes for functions in TSRUTILASM */
int far deinstaU(void};
void far idleJntjhain(void);
void far imtJntr(void);

void interrupt far new jntl0(void);
void interrupt far newJrul3(void);
void interrupt far newJnt2S(void);
void interrupt far new jnt26(void};

void far timerJntjhain(void);

/* Prototypes for functions in STACKASM •/
void far set_stack(void);
void far restore jtack(void);

/• Common variables */
extern char far * indos j>tr;
extern char far * critjrr j>tr;

132

CRAM.H Macros, definitions and functions declarations not found in TSR.H.

/"•• CRAM.H
CRAM declarations
Copyright for Iowa Slate University by Renford A. B. Brevett

/* Declaration of constants to be used by Biosdisk function. */

4define RESET 0x00 /• Resets disk system •/
^define STATUS 0x01 /'Return the status of last disk operation */
f̂define READ 0x02 /'Reads one or more disk sectors •/

itdefine WRITE 0x03 /* Writes one or more disk sectors */
§define VERIFY 0x04 /' Verifies one or more disk sectors */
f define FORMAT 0x05 /* Formats a track */
tdefine MAX_SEG 0x10 /* Mœàmnm segments supported by CRAM amount*/

/' in paragraphs of 64K (0x10 * 64k - IMeg •/
^define MAXPART 4 /* Mœdmun partition on a Fix IXsk •/

êdefine D UNUSED 0 /* System ID Unused Partition •/
^define D~FAT12 1 /* 12 BUfats '/
^define D~FAT16 4 /• 16 BU fats */
^define DFXTPAR J /• Exunded DOS Partition '/
itdefine D_40PAR 6 /* 4.0 >32Mb Partition '/

4deftne R_0 0x01/* Read Only File Attribute •/
êdefine HIDDEN 0x02/* Hidden File Attribute */
êdefine SYSTEM 0x04 /• System File Attribute */
^define VOLUME 0x08/* Volume Erttry Attribute */
^define SUBDIR 0x10 /* Subdirectory Entry Attribute */
itdefine ARCHIVE 0x20/* Archive Entry Attribute '/
§define UNUSED 0x00 /• Directory Entry never used •/
itdefiite ERASED OxES /* Erased Directory Entry */
^define DIRRECTORY Ox /̂* Directory Entry Attribute •/

4^define SIG ('Copyright(c) 1991 Renford A. B. Brevett at Iowa State University ')
^define LINEFEED OxOD
^define SPACE
î define COLON
*defineRDGT ">>"
tdeflneLDGT "<< "
^^define PARACRAPHS(x) ((FP_OFF(x) + 15) >> 4)

*defitte KEYBOARD PORT 0x60 /• KEYBOARD Data Port */
êdefitu KEYBRDJHIFTSTATUS 0x02 /• CHECK KEYBOARD SHIFT STATUS •/
êdefbte KEYBRD READY OxOl /* Check for Character in KEYBOARD buffer */
^define KEYBRD'READ 0x00/• Read Character fivm KEYBOARD buffer •/
^define RIGHT SHIFT QxOI
^define LEFT SHIFT 0x02
^define CTRL KEY 0x04
êdefûteALT KEY 0x08
êdefrne FIVEKEY 0»4C
^define DELKEY CbcSS
^define INSTALL CHECK 0x00
§define INSTALLED OxFF

133

êdefine DEINSTALL 0x01
t̂define KEYJiAX 0x14 /* Number of keystrokes before next save */

êdefine GET PSP DOS2 OxSl
^define GET'PSP~DOS3 0x62
tdefine SET~PSP~ 0x50
^define PSP'TERMINA TE QxOA /• Termination addr. in our PSP */
êdefine PSP~_PARENT_PSP 0x16 /• Parent's PSP fwm our PSP •/
êdefine PSP_ENV_ADDR Ox2C /• environment address from PSP •/

î define STDERR fileno(stdout)
*defwe MAX WID 12
^define GET~DOSSWAP3 QxSd06
^define GET DOSSWAP4 QxSdOb
^define SWAP UST UMIT 20

éfdefîne GET EXTERR
^define SET'eXPERR
^define GET INDOS
§defme GET CRIT ERR

ifdefine SET DTA
tdefine GET DTA
*define DOS'jXrr

*ifdef _TURBOC_
^define GETVECT(x)
Hlse
^define GETl̂ CT(x)
tendif

0x59
OxSdOa

0x34
0x5D06

OxlA /• SET Disk Transfer Address •/
Ox2F /* GET Disk Transfer Address •/
Ox4C /* DOS terminate (exit) •/

getveci(x)

dos_getvect(x)

typedef void far "FP;

êdefine MK S(addr) ((FP) (FP SEG(addr< <S)))
êdefîne MKjO(addrl) ((FP}(((DWOm)(addrl).((DWORD)(addrl) < < 4))))

*defme MCB_FMJEG(seg) ((seg) -1)
êdefine IS PSP(mcb) (FP SEG(mcb) + 7 = = (mcb)->owner)
êdefine ENV_FM_PSP(psp_seg) '('((WORDfar *) MK_FP(pq>jeg, Qx2c)))
êdefine TERM_FM_PSP(psp_seg) KOC_FP(pspjeg, QxQA)

a a s s s a s s a B s s s B S s a a a s s s s s s s s s s s a s s s i s a s E S X s s s B a s a
= . /

/• Sorr^e Common Variables */

extern int DEBUG;

/• Declaration of TYPES used in CRAM '/

typedef void (interrupt far *INTVECT)();
tjpedef unsigned char BYTE; /• Redefine unsigned char as BYTE '/
typedef unsigned WORD; /* Redefine unsigned as WORD */
typedef unsigned long DWORD; /' Redefine unsigned long as Double WORD •/
typedef enum { FALSE, TRUE } BOOL;

typedef struct {
BYTE type; /• 'M'̂ in chain; 'Z'=at end •/

134

WORD amer; /• PSP of the owner •/
WORD size; /* in 16-b ̂paragraphs */
BYTE unused{3);
BYTE dos4[8];
; MCB;

lypedef struct MCE TBL
{

WORD addn
MCB mcb;
DWORD termjuldr;

)MCBTBL;

/• Definitions and functions for video control */

typedef struct SCR LOC
{

char s_char, sjutr;
} SCR_LOC; /• One screen location */

typedef SCRJLOC SCRUNE [80J; /* One screen line */

struct bits
{
unsigned bitO : 1;
unsigned bit! ; 1;
unsigned bit! ; 1;
unsigned bit3 ; 1;
unsigned bit4 ; 1;
unsigned bitS : 1;
unsigned bit6 :1;
unsigned bit? : 1;
}!

struct bits 16
{

struct bits kbits;
struct bits hibits;

};

struct CRAM ver
{

unsigned major: 3;
unsig^d minor; 3;
unsigned beta ; 1;
unsigned lest ; 1;

};

/* Declaration of STRUCTURES used in CRAM •/

struct DPT /* A structure to hold information for the */
{ /• Disk Parameter Table •/
BYTE bootid;
BYTE starthead;
BYTE startsec;
BYTE starttracki
BYTE sysid;
BYTE endhead;

135

BYTE endsec;
WORD endtrack;
DWORD firstsecjn_part;
DWORD numsecs injxtrt;
}:

struct BPB /* A structure to hold information for the •/
{ /• Bios Parameter Block '/
unsigned jmpcode;
BYTE jmpaddr;
BYTE sysid[8];
WORD bps;
BYTE spc;
WORD ressec;
BYTE nfats;
WORD nrootjiir;
WORD ndsksect;
BYTE fmtid;
WORD nspf;
WORD nspt;
WORD nsides;
WORD nressec;
DWORD volj_32;
WORD endbp;
};

struct HST /• A Structure to hold information for the */
{ /• Head, Sector and Track when converting •/

unsigned char LETTER; /• ftvm absolute DOS sector
unsigned char DRIVE_NUM;
unsigned HEAD;
unsigned SECTOR;
long TRACK;

}!

Struct ExtErr
{

unsigned int errax;
unsigned int errlvc;
unsigned int errcx;

}!

struct dir entry
{

BYTE f name[8]i
BYTE fjaal3];
BYTE fjotaib;
BYTE fjeserved[10];
WORD 7 (WKT
WORD fjate;
WORD f start cluster;
DWORD 7 size;

};

struct CRAM HEADER
{

DWORD ID;
WORD CS,DS,ES.SS;

136

WORD AX,BX,CX,DX;
WORD BP,DI,SI,SP;
WORD IP, PSP, FLAGS;
WORD date;
WORD time;
BYTE f_access[64];
WORD checksum;
DWORD clusters;
DWORD startjiuster;
BYTE password[16];
struct ExtErr Errlnfo;
WORD start addr;
DWORD fjxe;
WORD litt checksum;
WORD offiJUler;
WORD secjegljnd;
WORD video jec;
WORD dsajec;
WORD mcbjec;
WORD stackjec;
WORD irujec;
WORD memjec;
WORD currjnem jec;
WORD data jec;
int dsajize;
WORD dta seg;
WORD dta~_off;
DWORD terminatejiddr;
WORD cramjUajeg;
WORD cram_dta_off;
WORD cram j>sp;
BYTE save_segjiag[MAX_SEGJ;
WORD seg checksum[MÀX SEG);
WORD secar in cram[MAX SECJ;
WORD âzeoJ_sëg[MAX_SEG];
BYTE reserveJorjeg[MÂX_SEG];

};

struct PSP INFO
f
WORD resevl;
WORD sys mem; /• in 16 bytes blocks */
WORD reûv2;
BYTE DOScaU[5J;
WORD bytes in seg;
DWORD term addr; /• IP, CS •/
DWORD cntrTc addr, /• IP, CS '/
DWORD hard'or addr; /• IP, CS •/
BYTE resevSihf
WORD envjtddr;
BYTE resev4l34J;
BYTE DOScaU2ll2];
BYTE FCBI[16];
BYTE FCB2116};
DWORD resevS;
BYTE DTAfl28J;

}!

struct FJIEADER

137

{
WORD flletype;
WORD bytes in last jMge;
WORD fjxë;
WORD retojnoies;
WORD hjixe;
WORD minailoc;
WORD mwcaUoc;
WORD SS;
WORD SP;
WORD checksum;
WORD IP;
WORD CS;
WORD off 2 RT;
WORD ovrt link;

};

struct partition
{

BYTE code[446];
struct DPT DPT tbifMAXPART);
WORD DOSsis

}!

union FATS
{
/• use as FATS.fat 16.fl6 = ?

or FATS.fat 12 lo.fatl2 = ?
or FATS.fat'12~M.fatl2 - ?

V
struct

{
unsigned int fatl6 :16;

} f<"J^
struct

{
unsighted int fatl2 :12;
unsigned int xoc : 4;

} fatJ2Jo;
struct

{
unsigned int xxx ; 4;
unsigned int fatl2:12;

}fatJ2_hi;
};

struct free Jot
{

DWORD ftiegin;
DWORD fend;
DWORD faze;

};

/• Prototypes in GENJUTILc •/

extern unsig^d put_chr(int c);
extern unsigned put jttr(char far *s};
extern unsig/ned put_num(unsigned long u, unsigned wid, unsigned radix);
itdefine putjlex(u) put_num(u, 4, 16)

/• in 512 bytes page '/

/* minimtm memory required */
/• maximum memory required •/

/• SS relative to start of program •/

138

^define putj)it(u) putjum(u, 2,16)
^define putJong(tU) putjum(ut, 9,10)
^define puâtr(s) {putjôî[s);putjtr('\r\n'');}
extern unsigned fiHrten(cona char far *s);

extern int LPT(char *s};
extern void gotoXY(int x, int y);
extern void curr_cursor(int *x, int *y);
extern void set_cursorjype(int t);
extern void clearjcrcen(char ch);
extern void clearjvin(int xl, int yl, intx2, intyT, char ch, BYTE attrib);
extern int vmodeQ;
extern int scroUJock();
extern int get_char();
extern void clrEol(void);
extern void Chelpfimc)(void);

/• Prototypes in CRAMTOOLS.c */

extern struct CRAMyer c_ver;
extern int getfatJnfo(stmct free Jat 'freefat, WORD clustjeq);
extern long mem_checksum(WORD segjtart, WORD ojfsjtart, DWORD mem size};
extern int getJatfree(struct freeJat 'freefat, WORD clustjeq);
extern int putJat(struct free Jat freefat, DWORD datasec);
extern int putJ namefstruct freeJat f Jree, DWORD datajec);
extern long g<etJ_name(void);
extern char pattse(int err num);
extern int show_disk(void);
extern long get_data_sec(void);
extern int ckeckdisk(void);

/* Prototypes in CRAMMEM.c */

extern mcb_chk(MCB far *mcb);
extern MCB far 'get mcb (void);
extern char far *prognameJm j>sp(unsipiedpsp);
extern void SspUxy j)rogname(MCB far *mcb);
extern MCB far *get_cmdjncb(MCB far *mcb);
extern MCB far *ISjCRAM(MCB far 'mcb);
extern BOOL belongs(void far *vec, unsigned start, unsigned size);
extern void display(MCB far *mcb);
extern char far *env(MCB far *mcb);
extern void dî lay_cnulline(MCB far *mcb);
extern void deployyectors(MCB far 'mcb);
extern WORD low_mem(MCB far 'mcb);
extern int get_mcb_chain(MCB far ' mcb, BYTE 'buffer);
extern int set_mcb_chain(BYTE 'buffer, WORD p^);
extern shôwMCB(char 'buffer);

/'Prototypes inCRAMUTILc'/

extern int color jidpt(void);
extern int SavebosSwap(void);
extern void RestoreDosSwap(void);
extern int saveJ)SA(void);
extern int resetJ)SA(void);
extern int get_Mve_info(char 'drv);
extern void GetExtErr(struct ExtErr 'Errlnfo);
extern void SetExtErr(struct ExtErr 'Errlnfo);

139

extern DWORD sector2cluster(DWORD sector);
extern DWORD ctuster2sector(DWORD cluster};

/• Prototypes in CRAMINT.C •/

extern void tsr_exit(void);
extern void usage(char *);
extern int UnUnkVect(int Vect, INTVECT Newint, INTVECT Oldint);
extern void parse_cmdjine(int argc, char *argvl});

/* Prototypes iit DISKC */

extern int stohst(int drive, long track, int head, long *DOSsec,
struct BPB 'bpb, struct DPT 'dpi, struct HST *hst);

extern int getDPT(tmsigned drive, struct DPT 'dpt);
extern int getBPB(int drive, int head, long track, int sector, struct BPB *bpb);
extern int getsector(int drive, int nsects, long "DOSsec, struct BPB *bpb,

struct DPT *dpt, BYTE 'buffer);
extern int pulsecior(ini drive, int nsects, long 'DOSsec, struct BPB *bpb,

struct DPT 'dpt, BYTE far 'buffer);
extern iiu fmttrack(int drive, int nsects, long track, int head, long 'DOSsec,

strttct BPB 'bpb, struct DPT 'dpt);
extern int printBPB(struct BPB bpb);
extern int printDPT(struct DPT dpi); /' Prints the Disk Parameter Table '/
extern int printsector(BYTE 'buffer);

140

DISK.C Functions used most disk I/O.

/•"• DISKC
File of declaration and some general disk junctions
Copyright for Iowa State University by Renford A. B. Brevett.

^include <bios.h>
^include <stdio.h>
êinclude <dos.h>
tinclude <dir.h>
êinciude <stdlib.h>
iHnclude <mem.h>
^include <string.h>
^include <math.H>
^include <conio.h>
#incltuie "cram.h"

int printDPT(antct DPT dpt) /• Prints the Disk Parameter Table •/
{

printfC\r\n\tBoot ID VoXh"
"\r\n\tStan Head %d"
"\r\n\tSian sector %d"
"\r\n\tStart Track %d"
yinitFATSystem ID %d"
"\r\n\tEnd Head %d"
"\r\n\tEnd Sector %d"
''\r\n\tEnd JYack %d'
"\r\n\tFirst Partition sec. %ld"
"\r\n\tSectors in Partition %W|r\n"

dpt.bootid, dptJtarthead, dpistartsec, dptstarttrack,
^t.sysid, dpLendhead, dpt.endsec, dpt.endtrack,
^Lfirstsecjn j>art, dpt,numsecsjn j>art);
retum(O);

}

int getDPT(imsigned drive, struct DPT *dpt)

/*
Gets the Disk Parameter Table for the drive given by the parameter
drive. The parameter dpt is a pointer to the structure that hold
the result,

V
{

unsigned int offset = OxOIBE;
int result;
BYTE s, t, r;
BYTE buffer[512j;

result « biosdisk(2,drive,0,0,I,l,buffer);
if (result !=• 0)

{

141

result = bios(Usk(2,drive,0,0,l,I,buffer);
if (result /= 0)

i
printfCErrw %d reading Disk Parameter Table (DPT)", result);
retunt(resuU):

}
}

memcpy(&dpt->bootid, &buffer[offis€t++], 1);
memcpy(Adpt- >starthead, Abuffer[offsei ++J, 1);
memcpy(Adpt->startsec, Abuffer[o^-¥+], 1);
memcpy(Ae^- >starttrack, &buffer[offset + +/, 1);
memcpy(Adpt->sysid, Abuffer[ojjset++J, 1);
memcpy(Adpt->endhead, 3J)uffer[of}iet++], I);
memcpy(Adpt- > endsec, àbuffer[offset + +/, 1);
memcpy(&dpt->endtrack, Abuffer[offsei++], 1);
memcpy(Adpt->firstsecjnjntrt, Abuffer[offset], 4);
memcpy(Adpt->munsecsJnjxirt, Abuffer[of^et+4], 4);
s = dpt->endsec;
dpt->endsec =(s& Ox3F);
t = dpt->endtrack;
r = (s A CbcCO);
dpt->endtrack = (f | (r < < 2));
retum(resuit);

}

int getBPB(int drive, int head, long track, int sector, struct BPB *bpb)

/•
Gets the Bios Parameter Block of drive. The BPB is found on the drive
using the head, track and sector passed to the fimction. A pointer
to the BPB structure bpb hold the result,

'/
{
int result;
BYTE buffer[S12];

result = biosdisk(2,drive,head,track,sector,l,buffer);
if (result !- 0)
{

result = biosdisk(2,drive,head,track,sector,l,buffer);
if (result!" 0)
{

printf(''\r\n ERROR %d Reading Disk Parameter Block (BPB)', result);
printf(''\r\n drive;%-12d head;%d sector;%d \r\n',

drive, head, sector);
retum(result);

}
}

memcpy(Al)pb- >jmpcode, âJ>uffer[0], 2);
memcpy(&b^>jmpaddr, Abuffer[2], 1);
memcpy(Abpb- >sysid, Abuffer[3], 8);
memcpy(êcbpb'>bps, êJ)uffer[ll], 2);
memcpy(àbpb- >spc, ddwff€r[13], 1);
memcpy(Abpb->ressec, &buffer[14J, 2);
memcpy(A^b- >nfats, &I}uffer[16], I);
memcpy(A^b- >nroot_dir, Abuffcr[17], 2);
memcpy(&^b->ndsksect, &bujfer[19], 2);
memcpy(Abpb->fmtid, &buffer[21], 1);
memcpy(Abpb- >nspf, &buffer[22}, 2);
memcpy(A^>b- >nspt, Abuffer[24J, 2);

142

memcpy(Abpb- >nsides, Abuffer[26J, 2);
memcpy(Abpb->nnsjec, &bujfer[28], 4);
memcpy(&bpb->volj_3 ̂ &buffer[32J, 4);
mentcpy(Abpb->endt ,̂ AbufferfSIO], 2);
retum(nsult):
}

int printBPB(struct BPB bpb)
/*

Prints the Bios Parameter Block. The pointer bpb must point to a structure
after a previous getBPB.

•/
{

printf(**\r\n ̂= = = = = = = = = = = = = = Boot Record = \r\r.");

printf(''\r\n\t Jump Code %4X \r\n\t"
" Jump Address \r\n\t'
"System ID %.*s \r\n\t"
" Bytes per Sector %d \r\n\t"
" Sectors per Cluster %d \r\n \t"
' Reserve Sectors %d
" Number of Fats %d \r\n\t"
" Number of Root Dir. %d \r\n\t'
' Number of Disk Sectors %ld \r\n\f'*
" Media Format ID. %2X \r\n \<"
" Number of Sectors per FAT %d \r\n
" Number of Sectors per Track %d \rl/i\t"
" Number of Sides %d \r\n\t''
" Number of Reserve Sectors %d \r\n\t''
" Voulme 32 Bit value %lu \r\« \r

= = = = = = B«i»i» = « = = fyord at End of Boot Record = = = = = %4X

bpb.impcode,bpb.jmpaddr,8,bpb.sysid,bpb.bps,bpb.spc,bpb.ressec,bpb,nfats,bpb.nroot_dir,
(long)bpb.ndd(sect,bpb.fintid,bpb.nspf,bpb.nspt,bpb.nsides,bpb.nres_sec,(DWORD)bpb.volj_32,bpb.endbp);

retum(O);
}

int printsector(BYTE 'buffer)

/•
Prints the sector pointed to by buffer. Buffer must be alloted enough
memory and passed after a previous call to getsector.

V
{
int i=0, j=l, X = 52/
printf('\r\n'')!
goU)xy(I, whertyO);

for(i- ̂i<SI2; i+ •*•)
{

if (J >"48)
{

printfC\r\n');
} - 1;
X = 52;
gotoxyil.whereyO);

}
gotoxy(j^2,wherey());printf('%-2.2X ',bu!Ter[i]);
gotoxy(x,whereyO);
if (buffer[i] = = 0x07 \ \ bufferfi] = = 0x04 11 bufferli] = = 0x00)

143

{
putc('. stdout);

}
else

putc(buffer[i], stdout);
;•+ =3;

*+ +;

}
retum(O);

}

int stohst(int drive, long track, int head, long 'DOSsec,
sovct BPB *bpb, struct DIH' *dpt, struct HST *hst)

/*
stohst convert a absolute DOS sector to its head, track, sector number
needed for bios calls. To reverse the process DOSsec must first
be assigned the value -1 before a call to stohst.

V
{
int resuU^O;
tdivj headjal;
Idivj track_cai;
Idivj sectorjai;
int sector « 1;
int drv;
long maxsides = 2L;
int skiptrack;
long spt;

if (drive > 0x79)
{

drv " ((drive - 0x80) + 2);
maxsides = dpt->endhead;
skiptrack - bpb->nspt;

}
else
{

drv = drive;
maxsides = IL;
skiptrack = 0;

}
spt » bpb->nspt;
ifCDOSsec = = -1)
{

'DOSsec = (sector-J) + (head *spt)
+ (track 'spt * (maxsides+1));

}
else

f
headjMl • ldivCDOSsec+skiptrack, (long)spt);
trackjal • ldiv(*DOSsec+skiptrack, (long)(spt • (maxsides+1)));
track » (long)track_caI.quot;
head - (int)(Head_çal.quot % (maxsides + I));
sectorial = ldiv(*DOSsec ̂ skiptrack, (long) spt);
sector = 7 + (int) sector ccd.rem;

}

hst->HEAD = head;

144

hsi->SECTOR = sector;
ha->TRACK = tracki
hst- >DRIVE_NUM = drive;
hst->LETTER • 'A'+drv;
relum(resuU);

}

itu getsector(int drive, int meets, long 'DOSsec, struct BPB *bpb,
struct DPT *dpt, BYTE 'buffer)

/•
Gets an absolute sector on drive and buffer will point to the content
of the sector.

V
{

int result;

static struct HST hst;
stohst(drive, hst.TRACK, hst.HEAD, (long *)DOSsec, bpb, dpt, AJist);
resuU " biosdisk(2, hst.DRIVE_NUM, hst.HEAD, hst.TRACK, hsuSECTOR,

nsects,buffer);
if (result /= 0)
{

resuU = biosdisk(2, hst.DRlVE_NUM, hst.HEAD, HstTRACK, hstSECTOR,
nsects,buffer);

if (result !" 0)
{

printf('\r\n Error %d Reading Sector %ld'', result, *DOSsec);
printf(''\r\nDrive %c T:%id S:%d H:%d [Rel. SecU3r;%ldJ\r\n',

hstLETTER, hsLTRACK, hstSECTOR,hstHEAD, "DOSsec);
retum(resuU);

}
}

retum(result);
}

int putsector(iiU drive, int nsects, long *DOSsec, struct BPB *bpb,
struct DPT 'dpt, BYTE far 'buffer)

/•
WHus nsects sectors to drive starting at absoUue sector DOSsee.
The pointer buffer must point to the information to write.

V
{

int result;
static struct HST hst;
char 'pbufi

stohst(dTive, hstTRACK, hstHEAD, DOSsec, bpb, dpt, &hst);
pbuf = (char *)buffer,
resuU - biosdiskCWRTTE, hstDRIVE_NUM, hstJiEAD, hst.TRACK, hst-SECTOR,

nsects, ApbuflO]);
if (result!" 0)
{

priruf(''\r\n Error %d Wnting Sector ^Id", result, 'DOSsec);
printf('\r\nDtive %c T:%ld S;%d H;%d (Rel. SecU)r;%ldJ\r\n'',

hstLETFER, hsi.TRACK, hstSECTOR,hstHEAD, 'DOSsec);
retum(resuU);

}

145

retum(resuU);
}

int flnwack(int drive, int nsects, long track, int head, long 'DOSsec,
struct BPB *bpb, struct DPT *dpt)

/*
Format a track on drive.

•/
{

int result, i;
BYTE *bufi
int sizecode;

struct HST hst;

stohst(drive, track, head, DOSsec, bpb, dpt, A/ist);
buf = maUoc (bpb->nspt*4);
gptoxy(l, whereyO);
prirufCFormating DiskDrive;<%c:> with %d Sectors Per Track "
HSLLETTER, bpb->nspt);
switch (bpb- >bps)
{

case 128 : sizecode = 0;break;
case 256 ; sizecode = l;break;
case 512 : sizecode = 2;breaki
case 1024; sizecode = 3;break;
case 2048; sizecode = 4;break;

}
for (i = 0; i<9; i+ +)
{

bufli • 4J = hstTRACK;
buffi *4+1} = hsŒEAD;
buf[i * 4 *2] i + 1;
buffi ' 4 +3] = sizecode;

}

result = biosdisk(FORMAT, hstjyRIVE NUM, hst.HEAD. hstTRACK, hstSECTOR,
rtsects, &buf);
goto)y(wherex(), whereyO);
printfC H:%d T:%ld S.%d", head, track, hstSECTOR);

if (result /= 0)
{

printfC \r\nError %d Formating Sector %ld'', result, *DOSsec);
prirttf(''\r\nDrTve %c \r\nT;%ld S;%dH;%d [Rel. Sector;%ldJ\r\n',

hstLETTER, track, hstSECTOR, head, *DOSsec);
goto end;

}
eruL
free(buf);
retum(resuU);

}

146

CRAMLI11L.C Most functions used to manipulate CRAM.

/• CRAMUTILC */

/*'*
UdMes used with CRAM to control interrupts and memory
Copyright by Renfbrd A. B. Brevett at Iowa State University.

.../
^include <stdlib.h>
^include <dos.h>
iHnctude <stdio.h>
pbtclude <mem,h>
iHnchtde <string.h>
#incUide <stdarg.h>
^include <bios.h>

<io.h>
#include "tsr-h"
^include 'aam.h'

extern SCRUNE far *scr;
extern int drive;
extern long DOSsec;
extern struct DPT dpi;
extern struct BPB bpb;
extern struct HST hst;
extern long
extern long
extern long
extern long
extern int
extern struct
extern BYTE
extern BYTE
extern DWORD

result;
maxsectors;
maxsides;
maxtracks;

sJdptrack;
CRAMJiEADER cjieader;

buffer!];
swap_save_bufj};

data sec, reserved sec;

struct swap list /'format of DOS 4* SDA list */

i
void far* swapj>tr;

int swap size;
};
/• variables far 3jc swap work */

char far * swapj>ir; /'pointer to dos swap area */
char far * swapjave; /'pointer to our local save area '/
suuic int swapjizejndos;
static int swapjizejUways;
static int size;

/* variables for 4.x swap work '/

static int swap_couiu; /' count of swappabie areas '/
static struct swapjist swpJistlSWAPJJSTJJMTT]; /'list of swap areas'/
static char far 'swp_save[slVAPJJSTJJAiiTJ; /' out save area '/
static int swpJ^g[SWAP_lJST_LÎAirT]; /' flags if has been swapped '/

147

static int dosjevel; /* far level dependent code */
int dosjridcal - 0; /*in critical section, can't swap */
char far *indosjptr^O;
char far *crit_errj>tr^O;
extern BYTE far 'diskette;
static union IŒCS regs;
static union REGS rg;

/• Prototypes •/

void getJiine_date(void);
DWORD cluster2sector(DWORD cluster);
DWORD sector2cluster(DWORD sector);
int SaveDosSwap(void);
void RestoreDosSwap(void);
int save_pSA(void);
int reset_DSA(void);
void CetExtErr(struct ExtErr *ErrInfo);
void SetExtErr(struct ExtErr 'Errlnfo);
int get_driveJnfo(char 'drv);

/* Functions to manage DOS flags */

Function; Init InDos Foiruers
Initialiie pointers to InDos Flags

void InitInDos(void)
{

union REGS regs;
struct SREGS segregs;

regs.h.ah - GETJNDOS;
intdosx(Aregs,Are^itsegregs);
/• pointer to flag is returned in ES;BX */
FP_SEG(indosjttr) = segregs.es;
FP_OFF(indosj)tr) = regsxbx;

if (_osnuijor < 3) /* flag is one byte after InDos •/
critjrrjur = indosj>tr + 1;

else ifljysmajor" "3 AA josminor = = 0) /*flog û one byte before */
critjrr jxr » indos j>tr -1;

else
{

regsx.ax = GET_CRIT_ERR;
intdosx(Aregs,Aiëg^ésëptff);
/* pointer to flag is returned in DS;SI */
FP_SEG(critjirj>tr) - segregs.ds;
FP OFF(crit enjptr) - regsjcji;

}
}

/
Function: DosBusy
This function will non-zero if DOS is busy
*«***/

int DosBusy(void)
{

if (indos jxr *4 critjrr j>tr)

148

return (*crit_errjptr 11 *indosjtr);
else

return OxFFFF; /* return dos busy if flags are not set */
}

yt****
Function: Int28DosBttsy
This function will return non-zero if the InDos flag is > 1 or
the critical error flag is non zero. To be used inside of an
INT 28 loop. Note that inside INT 28, InDOS == 1 is normal, and
indicates DOS is *not* busy; InDOS > 1 inside INT 28 means it is.

int Int2SDosBusy(void)
{

if (indos j>tr A& crit err j)tr)
return Ccritjrr j)tr 11 ('indosj>tr > 1));

else
return OxFFFF; /* return dos busy if flags are not set •/

}

/* Functions to manage DOS swap areas */

Function: InitDosSwap
Initialize pointers and sizes of DOS swap area. Return zero if success
#«***/

int IrUtDosSwap(void)
{

union REGS regs;
struct SREGS segregs;

if ((_osmajor ""3) &.& (_psminor > = 10))
dosjevel = 3;

else if (_osmajor >=4)
dosjevel = 4;

else
dosjevel = fljr

if (dos level ==3) /'use 215D06 '/
{

rtgsjc.ax = GETJX)SSWAP3;
intdosx(Aregf,Aregs,Asegregs);
/• pointer to swap area is returned in DS:SI */
FP_SEG(swapjptr) - segregs.ds;
FPJ>FF(swap_ptr) • regsjui;

swapjaejndos - regsjc-cx;
swapjizejUways" regsjc.(te;

size = 0; /* inidalize for later */
retum((swt ̂ save = (char far *)swap_save buf) = = 0);

}
else if (dos level • - /* use SdOb '/
{

struct swt^Jist far *plr,
int far *iptr;
int i;

149

regsjt.ax = GET_DOSSWAP4;
iMdosxféftgs,Jir^<tsegregs);
/* pointer to nwp list is returned in DS:Sl •/
FP_SEG(lptr) = segregs.ds;
FP_pFF(iptr) = regsxsi;
swapyount » *iptr; /* get size of list */
iptr+ +;
ptr " (struct swapjisi far *) iptr; /* create point to list •/

if (s*vap_cowu > SWAP LISTJJMTT) /* too many data areas •/
return 2;

/* get pointers and sizes of data areas */
for (i " 0;i < swap count; i++)
{

swpjist[i]swap_ptr = ptr-> swapj>tr;
swpjist[i].swap_size= per-> swapjize;

if (! (swp jave[i} = malloc(swp_list[iJ.swap_size & Ox7fff)))
/* if (! (swp_save[i] - (char far ')&buffer[(swp_Ustli].swap size A. Ox7fff)]))*/

return 3; /• out of memory */
Ĵog[i] = 0;

p<r++; /* point to next entry in the list */
}

return 10;
}
else

return 9; /* 9 = unsupported DOS */
}

Function; SaveDosSwap
This function will save the dos swap area to a local buffer
It returns zero on sttccess, non-zero meaning can't swap

int SaveDosSwap(void)
{

if (dos level ==3)
{

if (swap j>tr <&& fdos critical)
{

/• iflNDOS flag is zero, use smaller swap size */
size = (*indosjar) ? swap size indos ; swap size always;

movedata(FP_SEG(swapj>tr), FP_OFF(swapj>tr),
FP_SÉG(swap_save), FPJ)FF(swapjave),
size);

}
else /* can't swap if /

return 1;
}
else if (dos level *"4)
{

/• loop through pointer list and swap appropriate items */
int V
for (i = 0; i < swap count; i+ +>
{

if (swp list[i]jwap size A OxSOOO) /• swap always */
{

movedata(FP_SEG(swpJist[i]M>apjptr).

150

FP_OFF(swpJiali]swapj>tr),
FP_SEG(swpjave[i]),
FP_OFF(swpjcM[i}),
swp Ust[i].swap ste A. Qx7fff);

}
else if (*indos j>tr) /* swap only if dos busy */
{

movedata(FP_SEG(swpJistli].swcpj>tr),
FP_OFF(s»j>Jist{ijM'ap j>tr),
FP_SEG(swpjave[i]),
FPJ)FF(swpjavt[i]),
swp Ust[i].swap size);

/
}

}
else

return 1;

return 0;
}

Function; RestoreDosSwap
This function will restore a previously swapped dos data area
***«*/

void Resta'eDosSwap(void)
{

if (dos level = = j)
{

Uui;
/* make sure its already saved and we have a good par •/
if (size && swap_ptr)
{

disableO;
movedata(FP_SEC(swapjave), FP_OFF(swapjave),

FP_SEG(swap jptr), FPJ)FF(swap j>tr), size);
enableO;
size = 0;

}
}
else if (dos level ==4)
{

inti;
scr[OJ [OJj_char = 0x0034;
far (i ' 0;i < swap count; /+ +>
{

movedaui(FP_SEG(swp_save[iJ),
FP_OFF(swpjave[i]),
FP_SEG(swpJisl[i]jwap_ptr),
FP_OFF(swpJisl{i}jwapj>tr),
swpjistlijjwapjize);

swp Jtag[i] = /• clear flag •/
}

}
}

/* extended error saving and restoring •/

int save_DSA(void)

151

{
scr[0] [OJjjhar = 0x00E4;
scr[0] [O]j_aor • ((scr[0] [0]jjm >> 4) •¥ (scr[0] [0]^jutr << 4))& 0x77;
DOSsec • c_header.dsa_sec;
if((SaveDosSwap()) -= 0)
{

cjuader.dsajize = size;
if (dos level ==3)

I
/* make sure its already saved and we have a good ptr */

if (size && swap j)tr)
{

movedata(FPJSEC(swap_save), FP_OFF(swapjave),
FP_SEG(buffer}, FPjOFF(buffer), size);

if(DOSsec < = reservedjec) return (-1);
stohst(drive, hstlHACl ̂hstJHEAD, ADOSsec, Abpb, Adpt, Ahst);
if ((result = biosdisk(WRITE, hst.DRIVE NUM, hsuHEAD, hst.TRACK,

hstSECTOR, 4, buffer)) 0)
remm(result);

size = 0;
}

}
else if (dos level ==4)
{

int i;
for (i = 0; i < swap count; i+ +>
{

movedata(FP_SEG(swp_save{i]),
FP OFF(swp save[i]),
OxBSOO,
I • Oxm
swpjist[ij.swap_size);
^JIog[i) = 0; /• clear flag •/

}
}

}
retum(O);

}

int reset DSA(void)
{

scrfOf [OJjjhar - OKOOE2;
scrfOJ [0]jjtttr - ((scrfOJ [Ojjjtttr >> 4) + (scr[0] [OJ.sjUtr << 4)) A 0x77;
size = c_header.dsajize;
DOSsec " cjieader.dsajec;
stohst(drive, latTRACK, hstJiEAD, ADOSsec, Abpb, Adpt, Ahst);
if((rtsuU - biosdisk(READ, hstJ>RIVE NUM, hstHEAD, hsuTRACK,

hstSECTOR, 4, buffer)) /- 0)
{

putjirC[result'•");putjiex(result};put_str(''j ");
putjarC <TRACK='');put_hex(hst.TRACK);putjtr(''> ");
retûm(resutt);

}
while(*diskette 0x00); /• wait for disk drive to stop spinning •/
if((SaveDosSwap()) == 0)
{

size " c_header.dsajize!
mavedata(FP^EG(buffer), FPJ)FF(buffer),

152

FP SEC(swap save), FP OFF(swtp save),size);
} ~ ~ ~ ~

else
{
scr[OJ fO/j char = OxOOBO;
}

if(swap save)
{

scrfOJ (0]^_char = OxOOEO;
I0]j_aar = ((scrfOJ {OJ.sjmr >> 4) •¥ (scrfOJ [OJj aw << 4))& 0x77;

RestortDosSwapO;
scrfO] lO].s_chaT = OkOOEI;
scr[OJ [OJ.S attr = ((scTfO] [0] ̂ aitr >> 4) + (scr[0] [0].s attr << 4)) à 0x77;

} ' ~
else

{
putjtrClERROR with SWAPJAVEJ");
putjtrC\n\r");
put_str(swapjave);
retum(-l);

}
retum(O);

}

/
Function: GetExtEtr
get extended error information
*««**/

void GetExtErr(struct ExtErr 'Errlnfo)
{

union REGS re^;

if (osmajor >=3) /• only for DOS 3 and above •/
{ ~

regs.h.ah = GETJXTERR;
regsjc.bx " 0; /* must be zero */
intdos(Aregs,diTegs);
Errlnfo->errax = regsxax;
Errlnfo->errbx = regsjc.bx;
ErrInfo->encx = regsjc.cx;

}

Function; SetExtErr
set extended error information
***#*/

void SetExtErr(stnict ExtErr 'Errlnfo)
{

union REGSregs;
struct SREGS segregs;

if (osmajor > " 3) /* only for DOS 3 and above •/
{ "

regsjc.ax - SETJSXTERR;
regsjc.bK •• 0; /* must be zero */
segread(âsegregs); /* put address of err info in DS;DX */
regsjc.dx = (int) Errlnfo;
intdosx(éregs,Aregs,&segress);

153

}
}

Function: GetPSP - returns current PSP
«/

unsigned GetPSP(void)
{

if (osmajor ==2 ̂
("

if (! critjrrj)tr) /* must not have called InitlnDos •/
return 0;

'critjrrj>tr = QxFF; /'force use of proper stack */
repJuah - GET_PSP_DOS2;
intdos(diregs, Aregs);
'crit err j>tr = 0;

}
else
{

reg!.h,ah = GET_PSP_DOS3;
intdos(®s,diregs);

}
return regs.x.bx;

Function: SetPSP - sets current PSP

void SetPSP(unsigned segPSP)
{

if (.'critjrrj)tr) /* must not have called InitlnDos */
return;

'critjrrj>tr • OxFF; /'force use of correct stack '/
regsJiah = SET_PSP;
regsjc.bx " segPSP; /'pass segment value to set '/

intdos(&Te^&Tegs);
'crit err j>tr = 0;

}

irU get drive info(char 'drv)
{

char 'drv_letter=''ABCDEFGHIJKLMNOPQRSTUVWXYZ";
intr;

if (Jtrgc > 2)
{
drv[0] - toupper(j!rgv[2}{0])!
drv[l] - (kOO;
drive » stK^(<bv letter,dm);
}

else
{

drive = QxOC ̂
drvfO] a drvjetter[drivej;
drvfl] " ùxÔd;

}
if(drv[0] >= 'C')
{

154

drive + • QxTE;
r " getDPT(drive, Adpt);
i f (r>- l)

{
getBPB(drive, dpt-starthead, dptstantrack, dptJtartsec, Abpb);
if(DEBUG)
{

prUuDPT(dpt);
priiUBPB(bpb);

}
}

maxsides = dptendhead;
sJdptrack = bpb.nspt;

}
else

{
maxsecton = 8L;
maxsides = IL;
maxtracks " 79L;
r = geiBPB(drive,0,0,l,Abpb);
if(DEBUG)

priiuBPB(bpb);
skiptrack = 0;

}
if(r > .1)
return (drive);
else return (r);

void get time date(void)
{

struct date ddate;
struct time dtime;
getdate(&ddate);
getdtne(Sidtime);
cjteader.time » ((dtimeMJiour < < OxOB) + (dtimeMjnin < < 0x05)

+ (dtimeMjec > > 1));
c header.date => (((ddaie.dajear-19S0) < < 0x09)

+ (ddate.da_mon < < 0x05) + ddcue.da day);
}

DWORD cluster2sector(DWORD cluster)
{
return (DWORD)(((cluster-2) • bpbspc)

+ (bpb.ressec + (bpb.nfats'̂ bMpf)
+((l .̂ttroot dir*32)/bpb.bps)));

DWORD sector2cluster(DWORD sector)
{

return (DWORD)((sector+I)/bpb^);
>

155

CRAMINT.C Functions to replace Interrupts and Utilities associated with

interrupts.

/•
CRAMINT.C

Most of the interrupt routines are declared here.

V

^include <stddefJt>
^include <stdiib.h>
êirKiude <stdio.h>
iHnchtde <como.h>
itinctude <dos.h>
^incUtde <i)ios.h>
^include "tsr.h'
^include 'CRAMJT

extern unsigned
extern unsigned

extern int
extern int
extern int
extern int
unsigned
char
unsigned long
union REGS
struct SREGS
struct ExtErr
int
int
int

/• Save areas for old interrupt pointers */
INTVECT oldJmS, old_ùtt9, oldJmlO ̂ oldJntl3,

old imlb, oldJnt23, oldJnt24, oldJntZa;

extern int dosjridcat; /* used by DOSSWAP.C */

void interrupt far newJnt2a(JNTERRUPT_REGS};
extern void fir setjtack(void):
extern void ftff restore _stack(void);

/• PROTOTYPES FOR THIS MODULE •/

extern void memjave();
extern void interrupt far newJntl3(void); /* in TSRUTILASM •/
extern void interrupt far oldJnt28(void);
extern void intemtpt far newJntSQ;
extern void interrupt far newjnt9();
extern void interrupt far newJnt28Qi

ssjave; /• slot for Oack segment register •/
spjave; /* slot for stack pointer register */

tsr alreadyjKtive; /• true if TSR active •/
popup whÛie dos busy; /* true if hot key Mt while dos busy */
int_28_in j>rogress; /* true if INT 28 in progress •/
unsafe Jlag; /• true if INT 13 in progress */
keycode;

buf[20J; /• work buffer •/
TerminateAddr; /• used during de-install */

regs; /' register work structures •/
sregs;

Errlnfo; /• save area for extended error info */
hotjcey; /* keycode for activation */
shift Jcey; /* shift status bits (ait, art..) */
user key jet = Ù-,

156

void interrupt fear newJntlbQ;
void intetrupt far newjnl23();
void interrupt far newJnt24(INTERRUPT_REGS r);

void tsrjxit(void);
void usage(char *);
int UnUnkVect(int Vect, INTVECT Newint, INTVECT OUUnt);
void parse_cmd_iine(int argc, char *argv[]);

extern int intJCJnprogress;
extern int keys_punched;

y»»»»»»»»»

• CTRL-BREAK INTERRUPT HANDLER

void interrupt far new intlb()
{

/* do not/ling */
)

/'
• CTRL-C INTERRUPT HANDLER

V
void interrupt far new int23()
{

/* do nothing */
}

/•
• CRTHICAL ERROR INTERRUPT HANDLER
****«***«*/

void interrupt far new int24(INTERRUPT REGS r)
{

if (osnujjor >"3)
r.ax » 3; /'fail dos function */

else
r.ax = 0;

putjtT('\n\rCRinCAL •" ERROR ••• IN SYSTEM \n\ry,
put \rCRAM will ay to Recover or SHUT system Down \n [r");
put~jtr('\n\r SEE SCREEN DUMP \/»\r">;
genintemtpt(0x05);
tsrjBdt();

/*
• DOS INTERNAL INTERRUPT HANDLER
«*#*###*# /

void interrupt far new im2a(INTERRUPT REGS r)
{

switch (r.ax A Oi^fOO)
{

case ùcSOOO; /• start critical section •/
dosjnitical+ +;
break;

case 0x8100; /' end critical section */
case 0x8200; /• end critical section */

if (dosjritical) /* don't gp negative */
dosjridcal-!

break;

157

default;
break;

}
(• old iiu2a)0;

}

//only restores Oldint if someone hasn't grabbed away Vect
int UnlinkVect(int Vect, INTVECT Newint, INTVECT Oldint)
{

if (Newint = = gftvect(Vect))
{

setvect(Vect, Oldint);
return 0;

}
return I;

}

void tsr exit(void)
{

setjtackQ;
/* put interrupts back the way they were, if possible */

if (!(UnlinkVect(8, new imS, oldJntS) \
UnlinkVect(9, new_int9, oldJnt9) | //Do not use \ \, we

UnlinkVect((M8, newJmlS, oldjntlk) \ //don't want early out
UnlinkVect(QxI3, newjntl3, oldJntIS) |
UnlinkVect(Qx2a, new intla, old int2a)))

{
// Set parent PSP, stored in PSP of TSR, to the current PSP
'(intfar *)(((long)j>sp << 16) + PSPJPARENTJSP) = GetPSPQ;

// Set terminate address in PSP of TSR
'(long far ')(((long)j>sp << /fi) + PSP TERMINATE) = TerminateAddr;

/* setpsp to be that of TSR •/
SetPSP(j)^);

/* exit program */
bdos(DOS EXIT, 0, 0);

}
restore stack();

}

void usage(char *progname)
{

fputsCUsagc: " stdout);
puts(proffume);
putsC I'd to deinstall] [-k keycode shifi-status] [-f multiplex id]");
putsC Valid multiplex id");
putsC 00 through 15 specifies a unique INT 2F ID");
putsC Valid shifi-aatus is any combination of:");
putsC 1 " /ûjgW Shift");
putsC 2 - Lefi Shift");
putsC 4 = CTRL");
putsC 8 =• Air);

/• exit(l);V
}

void do_deinstall(char *progname)

{
jpm(progftame, stdout);
switch (deinstaUO)
{

case 1;
putsC was not installed");
break;

case 2;
puts(" deinstalled");
break;

default:
putsC deactivated but not removed");
break;

}
exit(O);

int set shift key(unsipted sh)
{

/'figure out, report on shift stautses •/
/* make sure shift key < 0x10 and non-zero •/
if (((shift key " sh) < 0x10) <6<t shift key)
{

priraf("Activation! %s%s%s%sSCAN''%d\n"
shift key A RIGHT SHIFT ? "RIGHT " ;
shift'key A LEFT SHIFT ? "LEFT " ; 1
shift'key A CTRL KEY ? "CTRL " ;
shift'key A ALT KEY ? "ALT " : 1
hotjuy);

return 1;
}
else /* error, bad param •/
{

putsCInvalid Shift-Status");
return 0;

}

void parse cmd line(ini argc, char 'argv[])
{

int i;
im tmp;

for (i = 1; i < argc; i++) /'for each cmdline org '/
if((argv[iJ[OJ -- •-') || (argvfiJlO] == '/•))

switch(toupper(argv[iJ[lJ))
{

case 'D';
do_deinstall(argv[0]);
brâik;

case 'K"; /• set pop-up key sequence •/
userJceyjet = 1;
i++; /* bump to next argument'/
if ((hot key = atoi(argv[iJ)) /= 0)
{

i+ +; /• bump to next argument •/
if (f setjhift_key(atoi(argv[i])))

usage(argvlO]);
}

else
usage(argy[0]);

break;
default; /* invalid argument •/

usage(argv[OJ);
} /• end switch •/

else
t4sage(argv[0]);

160

CRAMMEM.C Functions to manipulate the memory arenas or MCB.

/• aîAMMEM.C

fimctions to use DOS MCB chain(s)

*/

^include <suUib.h>
^include <stdio.h>
IHnclude <ctype.h>
^include <strmg.h>
^include <mem.h>
IHnclude <dos.h>
^include <conio.h>
^include "aam.h"

mfndefMK FP
^define MK FP(seg,ofi) ((FP)(((DWORD)(seg) << 16) \ (op!)))
*endif

int get_mcb_chmn(MCB far * mcb, BYTE 'buffer);
int setjncbjham(BYrE 'buffer, WORDpsp);

showMCB(char 'buffer);
char far *progfuime_psp(unsigned psp);
void displayj>rogriatne(MCB far'mcb);
MCB far 'get and mcb(MCB far *mcb);
MCB far 'ISjCRAk(MCB far 'mcb);
BOOL bekngs(void far 'vec, unsipted start, unsigned size);
void displt^(MCB far 'mcb);
char far 'em>(MCB far 'mcb);
void display j)ropiame(MCB far 'mcb);
void display_cmdline(MCB far 'mcb);
void display_yectors(MCB far *mcb);
WORD low_mem(MCB far 'mcb);

MCB far 'get mcb (void)
{

urùon REGS reg;
struct SREGS seg
unsigned far tmpp;

segread(iseg);
reg.h.ah = Ûe5%
intdosx(Artg ireg, Aseg);
tmpp • (unsiffted far ') MK_FP(seg.es, regjc.bx - 2);
return ((MCB far ') MK FP(tnipp, 0));

}

set mcb chain(BYTE 'buffer, WORD psp)
{ ~

MCB far 'mcb;
structMCB_TBLfar 'tblptr,
int i = 0,i=0;

161

j " atoi(Abufferl511]);
for Ol)
{

tbiptr » (struct MCB_TBL far *)(Abuffer[i]);
if(tbtplr->mcb.owner •» = 11 psp =• =• oj
{

DWORD far *addr = TERM_FM_PSP(mcb->owner)!
mcb = MK_FP(tblptr->addr,0);
mcb->type = tbiptr->mcb.type;
incb->owner = iblplr->mcb.owner;
mcb->size = tbiptr->incbMze;
*addT " *(&tblptr->term addr);

Ï
if (tbiptr- >mcb.type == 'AfAAJ > 0)
{

i+ "àzeof(struct MCB TBL);
j"!

}
else

return (tbiptr- >mcb.type - = 'Z');
}

}

int get mcb cham(MCB far • mcb, BYTE 'buffer)
{

MCBJBL far tbiptr;
irai = 0, j=0:

for (a)
{

DWORD far 'addr = TERAf_FM_PSP(mcb- >owner);
tbiptr = (MCBJTBL far *)(&buffer[i]);

tblpa'->mcb.t ̂= mcb->type;
tblptr->mcb.owner = mcb->owner;
tbiptr->mcb.size = mcb->size;
tbiptr-> term _addr = *addr;
tbiptr- >addr = (WORD) FP_SEG(mcb);

if (mcb-> type =» 'Af)
{

mcb = MK_FP(FP_SEC(mcb) + mcb->size + 1, 0);
i+=sizeof(stnu:tMCB TBL);
h +;
}

else
{
iloaO, écbuffer[511],16); /'Store the number of MCBs '/
nawm Q)-, /'Return the number of MCBs present '/

}
}

}

showMCB(char 'buffer)
{

int (=% k^O;
MCB TBL far 'mcbjbl;

162

k - atoi(éthuffer[511]);

ctearjcreen (OxBO);
/' goûxcy(l,l);*/
/• = gttjncbjchain(fintjncb, buffer);*/

putstr("\n\r = = = = = Begin MCB uMe values = = = = = \/i\r"j;
while (i>^0 AA k > = 0)
{

textco{or(15);
textback^und(l);
gotojq/(5,((2*j) +3));clreol0;
mcb M = {struct MCB TBL far *)(&buffer[i+ =sizeof(MCB_TBL)]);

putstrC ");putjiex(mcb_tbl->addr);puijtr(" ");put_chr(mcb_tbl->mcb.iype);
putjtex(mcbjbl'>mcb,0wner);putjtr(' '');putjiexjmcb_tbl->mcb.size);put_str(" ");
putJong((long)(mcb_tbl->mcb ̂ < < 4));putstr(" ");

/* cprintfr\n\r%.4X %c %.4X %.4X (%lu) \n\r',
mcbjbl->addr,
mcbjbl-> mcb-> type,
mcbjbl- >mcb- > owner,
mcbjU- >mcb- >size,
(long)(mcb tbl- >mcb- >size << 4)
)!*/

k—i
if (strstr(strupr(_argvllj), "+ "}) display((MCB far *)(Amcb_tbl- >mcb));
if (mcb tbl->mcb.iype == 'Z')
{

i " -1;
break;

}
j++;
if(j>=10)
{

j=0;
textcolor(14);
textbackground(3);
put strC'Press any key to continue... ");
getchO;

}
}
putstr(''\n \r = = = = = End MCB table values = = = = = \r");

putjtrCPress any key to continue... ');
getcfiQ;
retum(O);

}

mcb_chk(MCB far *mcb)
{

for (;;)
if (mcb->type == 'M')

mcb = MK_FP(FP_SEG(mcb) + mcb- >size + I, 0);
else

return (mcb->type = = "Z');
}

163

MCB far 'IS CRAM(MCB far *mcb)
{

static MCB far • tmpmcb;
static WORD tmpowner;
char far *s;
char bufll28];
unsigned char i=0;

buf[0] = •\0';
mcb = get_cmdjncb(mcb);
tmpmcb = mcb;
tmpowner = mcb->owner;

/• mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0); •/
for 00

switch (mcb-> type)
{

case 'M' : /* Mark : belongs to MCB chain */
{

mcb = MK_FP(FP_SEG(mcb) + mcb->size + I, 0);
if (tmpowner = = mcb-> owner)
tmpmcb " mcb;
break;

}
case 'Z' ; /* Zbikowski ; end of MCB chain */

{
s = prognameJm_psp(FP SEG(impmcb) + 1};
while((s) <64 (i < = 128) f

buf[i++} = *s++;
if (strstr(buf, "CRAM") /= NULL)
{
putjtr("\n \rPrograms can be restored at address ");
putJtex(FP_SEG(tmpmcb) + tmpmcb->size + 1);
putjtr(";');put_hex(FPJ)FF(tmpmcb));putjtr("\n\r");
retum(tmpmcb);
}
else
{

printf("\b\b');
putjtr("\n\r CRAM cannot continue need to be the first");
putjtr("\n\r Program to load in your Autoexec.bat file');
putjtrcinir the file {");
put_str(buf);putjtr(") was found instead\n\r");
retum((MCB far *)NULL);

}
}

default ;
{

put_str("Error in MCB chain when checking for CRAM \r\n");
exU'(-2);

}
}

}

WORD low mem(MCB far *rtKb)
{

if(mcb)
{

mcb » lS_CRAM(mcb);
if(mcb » » NULL)

164

return (0);
else

retum(FP SEG(mcb) + mcb->size + I);
}

putjtrCInvalid MCB ptr
retum(QxOOOO);

}

MCB far 'get cmd mcb(MCB far *mcb)
{

static void far *vect_2e = (void far *) 0;
static MCB far • tmpmcb;
static WORD tmpowner;

if(lvect 2e)
vectje = GETVECT(0x2E);

for (;ô
switch (mcb- >type)
{

case 'M' ; /* Mark ; belongs to MCB chain */
if (mcb-> owner = = 0x0000)

i
mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
break; /* Skip over free blocks between current owner'/

}

if(belongs(vect 2e, FP SEG(mcb), mcb- >size))
{

mcb = MK_FP(FP_SEG(mcb) + mcb-> size + I, 0);
tmpmcb = mcb;
tmpowner = mcb-> owner;

}
else
mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);

if (tmpowner = = tmpmcb-> owner)
tmpmcb - mcb;

break;

case 'Z' : /• Zbikowski ; end of MCB chain */
if(tmpmcb)
retum(impmeb);
else
retum((MCB far *)NULL);

defasult;
{

put_str("ERROR in MCB chain \r\n");
exU(-5);

}
}

}

BOOL belongs(void far *vec, unsigned start, unsigned size)
{

unsigned seg = FP_SEG(vec) + (FP_OFF(vec) > > 4); /* normalize '/
return (seg > = start) && (seg < = (start + size));

}

void watk(MCB far 'mcb)

165

{
printfC\n\rSeg Owner Size\n\r'')!
for 00

switch (mcb->type)
{

case 'AT : /* Mark : belongs to MCB chain •/
display(mcb);
mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
break;

case "Z' ! /• Zbikowski : end of MCB chain */
diq>lay(mcb);
return;
default :

{
putjtr("ERROR in walking MCB chain \r\n'');
exit'(-l);

}
}

}

void display(MCB far 'mcb)
{

static void far *vect_2e = (void far *) 0;
unsigned envjeg=Ô;

printf('%04X %04X %MX (%6lu) %
FP_SEG(mcb), mcb->owner, mcb->size, (long) mcb->size < < 4);

if (IS PSP(mcb))
{

void far *e = env(mcb);

if ((envseg = = FP_SEC(e)))
I»rintf("%04X " envjeg);

else
printfC ");

displayj>rogname(mcb);
}

i f (f vec t_2e)
vtctje = GE1VECT(0x2e); /* do just once */

if (! mcb-> owner)
printfCfree ");

/• OOOa is not really a PSP; belongs to CONFIG.SYS •/
else if (mcb-> owner = = 5)

printfCconfigjys ');
/* INT 2Eh belongs to master COMMAND.COM (or other shell) •/
else if (belongs(vect 2e, FP SEG(mcb), mcb- >size))

printfC^s getmvCCOMSPEC"));
/* presence command line is independent of program name */
if (IS PSP (mcb))

d^>lay_cnuÛiM(mcb);
display_vectoni(mcb);
printf('\n'');

char far *env(MCB far *mcb)
{

166

char far 'e;
unsigned envjncb;
unsigned env_pwner;

/•
if the MCB owner is one more than the MCB segment then

pq> : " MCB owner
envjeg ;• make Jar j)ointer(psp, 2Ch)
e makeJarjx)inter(envjeg, 0)

else
return NULL

V
if(ISJ>SP(mcb))

e = SfK_FP(ENVJ>Kt_PSP(mcb->owner), 0);
else

return (char far *) 0;

/* Check to see if the selected environment belongs to the presem PSP •/

envjncb = MCB_FM_SEG(FP_SEG(e));
envjtwner = ((MCB far *) MK_FP(envjncb, 0))->owner;
return (envj)wner = = mcb-> owner) ? e : (char far *) 0;

char far *prognaMe Jht j>sp(unsigned psp)
{

char far *e;
unsigned len;

/• is there an environment? •/
if(.'(e = em(MK_FP(MCB_FM_SEG(psp), 0))))

return (char far *) 0;

/• program name only available in DOS i + •/
if (osmajor >=3)
{ '

/* skip past environment variables */
doe + = (len = fttrlen(e)) + I;

while (len);

/'
e now points to WORD containing number of strings foUowing the
environment; check for reasonable value; signed because it
could be FFFFh; should normal ̂equal to 1

V
fi"' *)') >' ('((signed far *) e) < 10))

i
tf + = steof(signed);
if (isalpha(*e))

return e; /* could make carwnical with [NT 21h AH=60h */
}

}
return (char far *) 0;

}

void diq>lay_progname(MCB far *mcb)
{

char far *s;

167

if (IS_PSP(mcb))
s = (char far *)progname Jim j)sp((FP SEG(mcb) + 1));

/• if((S'' (char far *)profftameJmj>sp((FP_SEG(mcb) + 1))))*/
printf("%Fs s);

}

void display crttdUru(MCB far *mcb)
{

/•
psp : " MCB owner
cnuUineJen . = psp[80h}
cnuUine ; = psp[81h]
print cmdiine (display width ;= cmdUne ten)

*/
iru ten = *((BYTE far ') MK_FP(mcb->owner, 0x80));
char far 'cmdiine = MK_FP(mcb-> owner, Qk81);
/• Some versions of DOS store other values in the command line area

of the environment block thus need to check for printable or
valid characters.

V
if(*cmdline > = 0x20 <£<£ *cmdline < = <hc7F)
printf('%.*Fs len, cmdiine);

void display vectors(MCB far *mcb)
{

static void far **vec = (void far **) 0;
int i;
int didjine^O;
if (! vec)
{

if (I (vec = calloc(256, si2eof(void far *))))
put_str("insufficient memory \r\n");

for (i=0; i<2S6; i+ +)
vec{ij = GEIVECT(i);

}
for (i=0; i<2S6; i+ +>

if (vec[i] &Sl belongs(vec[iJ, FP SEG(mcb), mcb->sixe))
{

if (.'did one) { did one + +; printf("[");}
printfC%)2X i); ~
vec f i j = 0;

}
if (did one) printfCJ ");

168

CRAMTOOL.C Functions not found in CRAMUni .C and are essential for the

operation of CRAM.

/*
CRAMTOOLC

Some tools used to install CRAM and to manipulate the
Directory structure at the FAT level. Included are tools
to calculate memory checksum and to test various
sections of memory.

V

^include <bios.h>
§incltide <stdio,h>
^include <dos.h>
^include <dir,h>
êinclude <stdlib.h>
êiiKlude <math.h>
^include <conio.h>
itinclude <mem,h>
§include <string.h>
^include <time.h>
^include "cram.h"

extern struct BPB bpb;
extern struct DPT dpt;
extern struct HST hst;
extern struct CRAM HEADER c header;
extern long maxtracks,

maxsides,
maxsectors,
sJdptrack;

extern long DOSsec;
extern DWORD datajec;
extern long resuit;
extern BYTE buffer[];
extern int nsects;
extern BYTE far *convjnem_ptr,
extern Utt drive;
extern char 'drv;
extern struct freejai fjne;
extern DWORD clustjeq;
extern Uu reserved jec;
extern int DEBUG;
/• \ \ \ \ui \ \ \ \ \ \ \ \ \ i \n\\ \ i \n\\ \ . \ \u\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \ \ \ \ \ \ \ \ \ \ \ \v
struct CRAM ver c ver = { 1, 0,1,1};

/ ' \ \ \n\\ \ \ l \ i \ r iu\ i \ \ \u\ i \ \ \ \um\\\ in\\u\ i \ \ \u\ i \ \n\\ i \m\y
itu geifat_info(struct freeJot 'freefat, WORD clustjeq);
long mem_checksum(WORD segjtart, WORD offsjtart, DWORD memjize);
int getjâfirte(mKt freeJot 'fi^fat, WORD clustjeq);
int put Jat(aruct fieeJot fieefat, DWORD datajee);

169

ùu putJ_name(struct freeJat f Jhe, DWORD data sec);
long getJjtame(void);
char pause(mt errjum);
int showJUsk(voîd);
long get_datajec(void);
int ckeckdisk(void);
int foimal_CRAM(long start jec, long end jec);

S B S s a a a B S = a E s = = = s = s s s : = ; s s = = s s = = ; s s s s : = = = : = : = i = i s 3 s s

~ ~

int getfat info(struct free Jat 'freefat, WORD clust req)
{

struct dirjntry djntry;
long i,J,k, m, U^aljector, f j>os;
DWORD fjK ̂ fjnd, fjize=0, fjnark=0;
WORD f entty;
W0RDfâtjntry{2l;
WORD fatsize;
union FATS *f j)tr;
gotoxy(J,J);clreol()!
cprintf{"Cetting FAT Information...");
DOSsec" 1;
fatsize = (bpb.nspf • bpb.nfats);
nsects = 1;
j = i = OL;
for (m=0; m <fatsize; m + +)
{

if ((result • geisector(drive, nsects, ADOSsec, Abpb, Adpt, buffer)) /= 0)
retum(result)i

f_pos = I = OL;
while ((fjMS + sizeof(f_ptr) *1) < = (nsects * bpb.bps))
{

if (m = = (bpb.nspf-1)) /*0 % (bpb.bps ' bpb.nspf)) == 0)'/
{

j = OL;
pause(O);
printf("\n = = = = = = = = = = = = = = = == \nNext Copy of FAT \n

}

switch(dpt.sysid)
{

case D_FATI6;
(~f j)os = ((i *2)% bpb.bps);

fjjtr • (union FATS *) (Abuffer[fj)os]);
f_entry • fj>tr->fat_16.fatl6;
i+ +^+ +;
break;

}
case DJATIZ-
case 0:
{

fjpos » (((i *3)/2)% bpb.bps);
fjnr " (union FATS *) (Abufferlfjmsj);
if(i A 1) f_entty » fj>tr->fat_12Jù.fatl2;
else fjnoy = fj>tr->fatJ2Jo.fatl2;
j+ +^-+"f;

break;
}

)

170

if (f entry = = 0 && f mark == 0)
{'

f_begin =j-l;
fjize = 1;
fend = j-1;
f mark =1;

}
if(f entry = = 0 AA / mark == 1)

{ ~
f_size+ +;
f end = j-1;
f

else
{

if (f size > = dust req AA f mark /= 0)
{'

freefat->fbegjin = f begin;
freefat->fend = fjnd;
freefai->fsize = fjize;
cprintf("\n \r More Than %u Free clusters at %tu = = = %tu { size %lu }

dust req, f begin, f end, f size);
}

f mark = 0;
~ }
goto LOOP;
if ((f entry < OxFFO) &&. (f entry > 0x000))

printfC\n%ld {%.3.3u) '[Sectors %ld - %ld] <",
j-1, fjntry, cluster2sector(f entry),
clusier2sector(fjntry) + 1);

else
printfr\n%ld {%-3.3X} <", j-1, fjntry);

switch (f entty)
{

case 0x000: prirUf("FREE");break;
default ;
{

if(dpLsysid = = D FAT16)
{

if (fjntry = = 0xFFF7) printf("BAD");
else
if (f entry > = OxFFFO && f entry < - 0xFFF6)

p>^ ("RESERVED');
else
if (f entry > - OxFFFS && f entry < = OxFFFF)

prihtf ('EOF');
else

prirUfCOCCUPIED');
}

else
{

if (fjntry » » 0xFF7) printf ("BAD");
else
if (fjntry > = OxFFO && fjntry < = OxFF6) printf ("RESERVED');
else
if (fj"fy > - 0xFF8 &A fjntry < = QxFFF) printf ("EOF");
else
printfCOCCUPIED');

}
break;

171

)
}/* end switch */

printfr> ");
if((j%20) = = 0

{
if (pause(0) = = OxlB) retum(l);

}
LOOP;

} /* end while •/
DOSsec+ +;

} /• end for loop */
retum(O);

}

int get Jatfiree(smict free Jat 'fireefat, WORD clust req)
{

long i,j,m, f_pos;
DWORD fjxgin, fjnd, fjizcO, fjnarIcO;
WORD fjntry;
WORD fatsize;
union FATS *fj>tr;

gotoxy(I,l);clreolO!
cprintf("ChecJàng for Free Clusters... ");
DOSsec" 1;
fatsize = bpb.nspf;
nsects = 1;
j = i " OL;
far (m=0; m < fatsize; /n + +)
{

if ((result = getsector(drive, nsects, ADOSsec, Abpb, Adpt, buffer)) /= 0)
retum(-result);

fj>os = I = OL;
while ((fj>os + sizeof(fj)tr) +1) <= (nsects • bpb.bps))
{

switch(dpt.sysid)
{

case D_FAT1&
{ ~f - ((* ' 2) % bpb.bps);

fjHT = (union FATS *) (Abuffer[fj>osJ);
fjntry = fj>tr->fatJ&fail6;
i++y++;
break;

}
case D_FAT12:
case (k

{
fjms • (((i *3)/2)% bpb.bps);
fjHr • (union FATS *) (&buffer[fj)os]);
if(i A 1) fjntry " /j>ir- >fatJ2jiLfatlZ-
else fjntry = fj)tr->fat_12Jo.fatl2;
i+ +^+ +;
break;

}
}

if (f entry = = 0 AA f mark == 0)
{'

172

fjegin ^j-1;
fjize = 1;
fjnd =» j-1;
f mark =1;

}
if (f enoy = = 0 AA f mark 1)

fjùe++;
f end = j-1;
f

else
{

if(f size > - clust req <&<& f mark /= 0)
(~

if(f size > freefat- >fsize)
f

freefat->fbegin = f_begin;
freefat->fend = fjnd;
freefat->fsize = f size;

}
if(DEBUG)
cprintf("\n\r More Than %u Free clusters at %lu = = = %lu {size %lu} [Sec %luj"

clust req, f begin, f end, f size, DOSsec);
}

f marie = 0;

} /* end while "/
DOSsec-i- +;

} /* end for loop •/
if (f size > = clusi req && f mark /= 0)

1
if(f size > freefat->fsize)

f
freefat->fbegin = f_begin;
freefat-> fend = fjnd;
freefat->fsize = f size;

}
if(DEBUG)
cprintf("\n\r More Than %u Free clusters at %lu = = = %lu {size %lu} [Sec %luj'',

clust req, f begin, f end, f sue, DOSsec);
}

if (freefat- >fsize < clust req)
retum(-l):

else
retum(freefat- > fsize);

}

int put Jat(struct Ji-ee Jot freefat, DWORD data sec)
{

DWORD i, j,k, in, f J>os;
DWORD f_begjin, fjnd, fjize^O, fjnaricO;
WORD fjntty;
WORD fatsize, cps;
union FATS •/j>tr;

cps = dptsysid » = £> FAT12 ? (bpb.bps • 2/3)+l : (bpb.bps / 2);
for (k=0; k<bpb.nfats; k++)

173

{
80to)y(l,l)!cbml();
cprintfCUpdating FAT ..M", k+l);
DOSxc" ((k*l^b.nspf)+l+(fjive.fbegin/cps));
fatsize = (fjite.frize / cps) + I;
nsects = 1;
} = ((fjte.fl)egin /cps) * cps);
i = OLi
if(DEBUG)
{

cprintf(''\n\rFai Locations ; Dos Sector %lu ; Size %d ; Data Sector at %lu"
DOSsec, fatsize, datajec);

pause(O);
}
for (m=0; mKfatsize+l; m+ +)
{

if ((resuh = getsector(drive, nsects, ADOSsec, Abpb, Adpt, buffer)) != 0)
retum(result);

fjXK - « •» OL;
while ((fj>os + sizeof(fj>tr) +1) <= (nsects * bpb.bps))
{

switch(dpt.sysid)
{

case D_FAT1&
{ ~f_pos = ((i *2)% bpb.bps);

fj>tr = (union FATS *) (&buffer[fj>os]);
fjntry = fj>tr->fat_16.fatl6;
if (f entry = = 0 & & ; > = / fve.fbegin A& J < = fJtee.fend)
{'

ifO = = /Jree.fend)
{

f entry = OxFFFF;
} ~

else fjntry = j +1;
fj>tr->fat 16.fatl6 • fjntry;

}
if(DEBUG)
{

if ((fjntry < OxFFFO) && (f entry > 0x0000))
printf("\n%lu [Sectors %ld - %U J <",

j> /j'toVi cluster2sector(fjntry),
cluster2secu>r(f entry) +~bpb.nfats-l);

else
printf("\n%d {%^.4X} <", j, f entry);

}
break;

}
caseD_FATl2:
case (k

{
fjMS ' (((i *3)/2) % b p b . b p s) ;
fj>tr " (union FATS *) (&bufferlf_pos]);
if(ià I) fjntxy • fj>tr->fatJ2_hi.fail2;
else fjntty = fj)tr- >fatJ2Jo.fatl2;
if (f entty = = 0 i&A y > =~fjne.fbe^ <64 y < = /Jree.fend)
{'

>f(J fJree.fend)
{

fjntry = QxFFF;

174

}
else

fjiuty = j;
if(i A 1) fj>tr->fcu_12ju.fcul2 = fjntry;
else fj>tr->fcu 12 lo.fatl2 = f entry;

}
if(DEBUG)
{
if((f entry < QxFFO) &A (f entry > 0x000))

~ printfC\n%d {%-33u} [Sectors %ld-%ld] <",
j, fjntry, cluster2sector(fjntry),
cluster2sector(fjrury) + bpb.nfcus-l);

else
printf("\n%d {%-3.3X} <", j, f entry);

}
break;

}
}

«++J++;

} /* end wlûle */
if ((result = putsector(drive, nsects, &DOSsec, Abpb, Adpt, buffer)) /= 0)

retum(rest4lt);
DOSsec-¥ +;

} /• end for loop •/
}/' end of outer for loop •/
retum(O);

long mem checksttm(WORD seg start, WORD offs start, DWORD mem size)

long sum =QxOOOOL, cw=Cl k, i m=QxOOOOL, n;
long i, seg, offs;
DWORD far *s_mem;
Idivj cal;

cal = ldiv(memjize, 0x10000);
k = cal.quou
I = cal.rem;
for (seg=seg start; seg<-(k*0xl000); seg+ "(tclOOO)
{

cm =0;

if(k/= 0)
{

n " 0x10000;

}
else

{
n = memjize;
offs = ojjf start;

}
sjnem • MK_FP(seg, offs);
while(cnt < n)
{

if(DEBUG)
(

175

putjtex('sjnem);
put str{"

}
sum += *('j_mcm++)/
m "= *{sjnêm-¥
cru+ =sizeof(s mem);

}
if(DEBUG)
{

gptoxyiU);
printfC%Fp'',s mem);

}
}
cm = 0;
offs = 0;
if(k!= 0)

whUe(cru < i)
{

s mem = MK FP(seg, offs);
if(DEBUG)
{

gotoxy(l,l);
priruf("%Fp",s mem);

}
m " = *(s_mem + +);
Mm += *(s_mem+ +);
pM_hex(*(s_mem));
CW+ =sizeôf(s mem);

}
if(DEBUG)
{

gotoxy(60,i);
prinlf('VoFp'',s_mem);

sum = (sum > > 8); /• Put value in lower 16 bits (upper 2 bytes) */
m " (m << 8); /* Put value in upper 16 bits (2 bytes) •/
retum(sum\m); /• Ored sum with m to get a unique CHECKSUM

int get Jot info(void)
{

struct dirjnay djntry;
long i,j,k,m, U^al jector;
WORD fjntry;
WORD ̂ entry[2J;
WORDfaâàe;
union FATS fats;

DOSsec* 1;
fatsize - (l^.n^f * bpb.nfats);
nsects =• 1;
j a i m ÛL;

/•use as FATS.fat 16.fl6 = ?
or FATS.fat 12 to.fatl2 = ?
or FATS.fai~12~hi.fatl2 = ?

V

for (m=0; m<fatsize; m++)

176

{
if ((result - getsector(drive, meets, ADOSsec, Abpb, Adpt, buffer)) !" 0)

retum(resuU);
while (i < (nsects • bpb.bps))
{
if ((i % (bpb.bps * bpb.nspf)) 0)
{
Î = 0;
pTitttf(''\n •••ti = = = = = = a = oD = M = = \nNext Copy of FAT \n'"'

}
memcpy(Afatjntry[0], Abuffer[i}, 2);
memcpy(Afatjntryll], Abuffer[i+1], 2);
fat_eniry[0] = (fat_enay[0] A OxOFFF);
fatjntiy[l] - (fat_enlry[lj > > 4);
for (k " 0; k < 2;'k+ +)
{

fjntry = fatjntfyfkJ;
if ((fjntry < OxFFO) AA (fjntry > 0x000))
printf(''\n%ld {%-3,3u} [Sectors %ld - %id } <",

j+k, fjntry, cluster2sector(fjntry),
c{uster2sector(fjntry) + 1);

else
printf("\n%ld {%-3,3X} <", j*k, fjntry);
if (fjntry = = QKOOO) printfCFREE");
else
if (fjntry = = 0xFF7) printf ("BAD");
else
if (fjntry > = ObcFFO AA fjntry < = QxFF6) prittif ("RESERVED");
else
if (fjntry > = QxFF8 AA fjntry < = QxFFF) printf ("EOF");
else
printfCOCCUPIED");
printfC> ");

}

/+ + =2;
if((j%20) ==0)

{
if (pause(O) = = QxlB) retum(l);

}
}
}
retum(O);

}

int put J name(struct fneJot f Jrre, DWORD data see)
{

BYTE UPDAU'O;
WORD fjntry;
WORD fiujntty[2]:
struct dir_mtry djntry;
stntct dir erury imp d entry^
{ ~
"CRAM MEM","XMD",OxCl,"CRAM VU", OxOO, (MO, OOO, 0x00
};

long i,},k, logical jector;
WORD start jluster = 0;
struct date Mate;
struct time dtime;

177

SOU)xy(l,l),cbwl();
cpri/ufCUpdating Directory...
stanjluster - f J\ree.fbegin;
get(lâte(Addau);
gettime(Adtime);
tmpJjntry.fjmib = (ARCHIVE\R_0 \ SYSTEM\HIDDEN);
tmp_djtury.fjume[4] = OxFF;
tmp_djnay.f_reserved[0] = /'OxOO*/ OxFF;
tmpdjntry.fjumjUuter = fjree.fbegin;
mp_d_entry.fjize =(long)((fJlree.ftize-¥l) * bpb.bps *bpb.spc);
DOSsec''(bpb.nspf * bpb.nfats) + 1;
nsects = 1;
i = OL;
j = (long)((bpb.nroot dir * 32) /bpb.bps);
if(DEBUG)
{

cprmtf("\n\rData Start at %lu datajec);
cprmtf("Start Cluster at %d\n\r", start cluster);

}
for (k''0;k<j; k+ +)
{

i " OL;
if ((result = getsector(drive, nsects, àDOSsec, Abpb, Adpt, buffer /*Abujfer[(k*bpb.bps)}'/))

retum(-resuli);
whik(i < (bpb.bps))
{

memcpy(Adjntry, Abuffer[i], 32);
if (memcmpl(tmp_d_entiy.f_name, d entry.f name, 8) == 0x00)

update = 80;
if((d entry.fjtame ==NULL

11 d_entry.f_name[0] = = 0x00
11 (djnttyj rtamefo] = = QxE5 AA d_enoy.f_name[I] = = 0x00)
11 (d entry.fjiame[0] = = OxES AA djntty.fjtame[4] = = OxFF)
11 (d_entry.f_name[0] = = 0«E5 AA

(memcmpjAtmp_d_entry.f_reserved[lJ, Ad entry.f reservedll], 4) == OiOO))
11 (memcmp(tmp2jnay.fjume, djntry.fjtame, 8) == 0x00)
) AA (update = = 0 || update = = ^))

{
tmp_d_entry.fjime = (dtime.tijiour < < OxOB)

+ (ddme.ti_min << 0x05)
+ (int)(dti^.ti_sec >> 1);

tmp d entry.f_date = (((ddate.dajear-19S0) << 0x09)
+ (ddate.da_mon << 0x05)
^ddate.dajiay);

tmp_d_entry.fjize = cjteader.fjize;*/
memcpy(Adjntry, Atmp_d_entry, 32);
memcpy(Abuffer[i], Atmp2_entry, 32);
update* +;

}
else if(d entry.f name[0] => = QxES AA d entry.f nameHJ = = (MO)

memset(Adjntry.f_name[0], 'jO', 32);
memcpy(Abuffer[iJ, Ad entry, 32);

}
if(DEBUG)
printfC\n%. *s.%. *s a[%-2.2uj {%-. *s}t{%-6.6u}d{%-6.6u}c{%-6.6u}s{%-6.6lu)

8,d_erwy.fjtame,
3,djntry.f_ext,

178

djnoy.fjuoib,
10,djntty,fjtserved,
djntry.fjime,
d entry.fjlau,
djrtay.fjtartjluster,
d entry.f size J;

i+ =52; "
}

if ((result = putsector(drive, nsects, ADOSsec, Abpb, Adpt, buffer/*Abuffer[k*bpb.bps]*/))
retum(-reàtlt);

if (update /= 0) break;
DOSsec+ +;

}
DOSsec''(bpb.nspf * bpb.nfats} + 1;

if (update > 80) return (-1);
else
retum(O);

}

long get J name(void)
{

BYTE update "0;
WORDfjntry;
WORD fat_entry[2];
struct dir_erttry djntry;
struct dir erttry tmp d entry=
{ '
"CRAM MEM",-XMD-,QxCl," CRAM Vl.l', QKOO, QXOO, 0X00, 0X00
}:

kfig i,j,k, lo^aljector;
DWORD staTt_cluster = O;

tmp djntry.f ataib=(ARCHIVE\R_0\SYSTEM\HIDDEN);
tmp_djntry.f_name[4J = OxFF;
tmp_d_entty.fjeserved[OJ = yOxOO*/ QxFF;
strcpy(djntryfjuime, "filename");
DOSsec''(bpb.nspf ' bpb.nfats) + 1;
nsects •* 1;
i = OL;
J = (long)((bpb.nroot_dir * 32) / bpb.bps);

for (k=0; k<j; k-¥+)
{

if ((residt = getsector(drive, nsects, ADOSsec, Abpb, Adpt, buffer)) /= O)
retum(-result);

DOSsec-¥ +;
i = OL;
while((i < (bpb.bps)) AA d entry.f name[0] 0x00)
i

memcpy(Adjntry, Abuffer[iJ, 32);
if ((memcmp(tmp d entry.f name, d enay.f name, 8) == 0x00))
{

start_cluster = djnay.fjtan_ctuster;
datajec = clusier2sector(start_cluster);
retum(start cluster);

}
if(DEBUG)
if ((d enay.f name = = NULL) \ | (d enay.f namelO] = = (MO))

179

i •* i >> 5;
cprintf('\n\r (%ld) File(s) found on Disk in Drive [%.ls]" i, drv);

}
else

cprinifC\n\r%.'s.%.*s al%-2.2uj {%-. *s}t{%-6.6u}d{%.6.6u}c{%.6.6u}s{%-6.6lu}
8,d_entty.f_name,
3,djnay.f_ext,
djnoy.fjutrib,
lÔ,d_enoy.f_reserved,
djntry.fjime,
djnoy.fjlate,
djntry.fjtartjluster,
d entry.f size);

}
}

DOSsec''(bpb.nspf'bpb.nf<Us) + I;
return (start cluster);

}

char pause(im err num)
f
char ch;

switch (err mm)
{

case (k puKH(Qx07);
cf^imf C"\n \rPress any Key to Continue... ");
ch » getchO;
break;

case 1; putch(0x07);
Cfrituf ("\n \rPress any Key to Continue ...ESC to abort.. ");
ch = getch();
if(ch = = ûxlB) exit(2);
break;

}
return (ch);

}

intshow disk(void)
{

for (DOSsec^l^ DOSsec<bpb.ndsksect; DOSsec* +>
{
if ((result • geisector(drive, nsects, ADOSsec, ibpb, Adpt, buffer)) /= 0)

rttum(resuU);
else printsector(buffer);

}
retum(O);

}

long get data sec(void}
{

long dossec;
char 'idptr;

180

char cjd[2}[5] - {"RABB", 'WGMJ'};

nsects = 1;
gptoxy(S3,l)icprintf(''Checking Sector
for (dossecO; dossec<bpb.ndsksect; dossec^
{
if ((result = getsec0r(drive, nsects, Adossée, Abpb, Adpt, buffer)) /= 0)

retum(-result)!
else

{
gotoxy(73, whereyO);printfCMi" dossec);
if((memcmp(Abuffer[strlen(SIG)+:±xof(bpb)+sizeof(dpt)J, c_id[0], 4) *<* 0)

(memcmp(Abuffer[50SJ, c id[lj, 4) == 0))
{

gotoxy(I, whereyO);
cprintfC'Sector %W String at 1st idptr %-.'s"

" String at 2nd idptr 's
dossec, 4, buffer[strlen(SIG) +sizeof(bpb) +steof(dpt)], 4, AbufferlSOS]);
retum(dossec);

}
}

)
SOtoxy(l,wherey());
cprintf('%c%c Drive %.ls is NOT a CRAM disk 0x07, 0x07, drv);
retum(-l);

}

int format CRAM(long start sec, long end sec)

long dossec;
char *idptr;

nsects = 1;
clearjMn(l,l, 79,2,0x80,0);
gpto^(40,l);
cprintfCStarts [%ld} Ends [%ldj" start jec, endjec);
if(startjec < reservedjec)

retum(-l);

gotoxy(l,l);cimntf("Formatting CRAM Sector...');
memset(buffer, ùcOO^ bpb.bps);

/• goto)y(28, whereyO); cprintfC^ld", dossec);*/
if ((result = ptusector(drive, ttsects, Astart jec, Abpb, Adpt, buffer)) /= 0)

retum(-resuit);
memset(buffer, 'C'Jjpb.bps);
for (dossec'Start sec+1; dossec<end sec; dossec^ +)
{

gpioxy(3<^ WhereyO); cprvuf("%ld", dossec);
if ((resuk • putsector(drive, nsects, Adossec, Abpb, Adpt, buffer)) /= 0)

retum(-result);
}

gocoxy(5,wherey()+2);
cpriruf('%c%c Drive %.ls is Ready as a CRAM disk ", 0x07, 0x07, drv);
retum(O);

}

int checkdisk(void)
{

181

textcolor(7);
textbackfft>und(l);
cprintf('\n \r »ç>/= %d nfats=%d nresjec=%d nrootjlir=%d bps^fod",

bpb.nq)f, bpb.nfats, bpb.nresjec, bpb.nroot~dir, bpb.bps);
reservedjec = ((DWORD)(bpb.ttspf*bpb.nfats) + (DWORD)bpb.nresjec

+ (DWORD)((bpb.nroot cÛr *32)/bpb.bps));
if(DEBUG)
{

cprùrtf('Last Result = %ld' result);
cprinlf('\n\rLargest set of free consecutive Clusters Begins: %lu "

Ettds %lu size %lu \n\rCRAM will be loaded at Cluster %lu "
'sector %lu\n\r Above Reserved Area at %lu',
f Jjiee-fbegin, f Jhe.fend, f Jree.fsize, f Jree.fbegin,
data jec, reserved_sec);

pause(O);
}

cprintf("\n\rDrive Information for Drive #%rf Letter %.2s",drive, drv);
result = getJjumteQ;
cprintf(''\n\rRetum result value = %ld Sector %lu', result, cluster2sector(result));
pause(I);
if (result <= 0)

result = get_datajec();
else

{
fjree.fbegin = result;
f Jtve.fsize = dust req;

}
clrscrQ;
if (result <= 0)
{
result = get Jatfree(&fJree, clustjeq);
data sec = cluster2sector((fJree.fb^));
}

else
data_sec « result;

if(DEBUG)
{

cprintf("Last Result = %ld', result);
cprintf('\n \rLargest set of free consecutive Clusters Begins; %lu "

'Ends %lu size %lu \n\rCRAM will be loaded at Cluster %lu "
"sector %iu \n\r Above Reserved Area at %lu
f Jive.jbegin, f jtee.fend, f Jite.fiize, f Ji-ee.fbe^
data jec, reservedjec);

pause(O);
}

if (result > 0)
if (f Jree.faze > • clust req)
{

fjree.ftbe • clustjeq;
fjivejettd » f Jite.fbegin •¥ f Jw.fsixe;
if(data jec > reservedjec)

result " putJjiame(fJree, data jec);
if (result >= 0)
result = put Jat(fJree, data sec);

}

return (0);

182

CRAM.C The main functions for the operation of CRAM.

/* CRAM.C — Constant Random Access Memory system */

^include <bios.h>
^include <stdio.h>
^include <dos.h>
êinchide <dir.h>
§mclude <stdUb.h>
^include <nuuh.h>
^include <conio.h>
finclude <mem.h>
êinclude <string.h>
^include <tàme.h>
^include <setjmp.h>
^include <aUoc.h>
^include "tsr.h'
^include "cramM"

^define STACKJIZE 9728 /*9632*//*8192*/
êdefine VIDEO_SEC_SIZE 0x20 /'Reserve sectors to save 16K video memory*/
ëdepnt BYTES_PER_TRACK 4609 /• Total bytes for 9 sectors plus 1 for null */
/* =:a: = 5s = = =:a = =c = a = a = 3 = s=:= = = == = = = 3 = =: = = 5= = = = a = = ss = = = = = = = = =

extern unsigned keycode;
extern int hot key; /* keycode for activation */
extern int shift J^; /* shift status bits (alt, ctrL) •/
extern int userJuy jet;
long chksum=0x0000;

ssaaasasasssasasssssasssssssssssBsaasstssasssssBsssaBsasss

unsigned char multiplexjd;

struct dfiee dskfree;
long dskavail,

sysmem;
DWORD maxmem = QxAOOOL;
static DWORD savjtart, savjnd;
int skiptrack;
int spc;
int DEBUG =0;
struct DPT dpt;
struct BPB bpb;
struct HST hst;
int spt;
int cmd;
int drive;
int head;
long track;
int sector;
int nsects;
BYTE bufferlBYTESJER TRACK];
BYTE swap_save_buffl853J;
char IptjMflsdj;
char lpt_codel4] = "AXOT;
static BYTE siptote[512J;

183

long result;
char drv[3]'''Z';
long maxsectors;
long maxsides;
long maxtrac^i
long DOSsec;
unsigned long datajec;
unsigned char far 'convjnem j)tr;
Idivj seg_cal;
Idivj of^_cal;
idivj
unsigned long seg = 0x0000^

offs = 0X0000;
WORD lowmem;
htCB far *mcb;
MCB far 'firstjneb;
unsigned long START SEG,

~ START OFF,
SECJËG;

BYTE startJlag'̂ O;
BYTE resetmem;
WORD secjegljnd "0;
unsigned long i, j;
static unsigned long savetime » OL;
static BYTE timelag => 0K3C;
static time J tl, t2;
static WORD seg_saved=0;
struct CRAMJHEADER c header;

char far 'stack j>tr;
char far *ptr;
char far *sigj)tr;
BYTE far 'diskette;
struct bits_16 mem Jlag; /• Bit fields for flag register */
struct bits_16 save Jlag; /• Bit fields for memory segments to save */
WORD word;
BYTE state "0x07;
unsigned long memtop;
static jmpbuf cramjttv;

struct dau ddate;
struct time dtime;

extern struct SREGS sregs;
extern union REGS regs;
extern SCRUNE far *scr;

extern MCB far *getjncb (void);

DWORD reservedjec;
struct freeJat f Jree;
DWORD clustjeq "SOOUL;
int tsr alreadyjtctive ' 0; /' true if TSR active */
int popup_whiiie_dosjMsy - 0; /* true if hotkey lût white dos busy •/
int int_28Jn_progress " 0; /* tnte if INT 28 in process •/
int unsafe Jlag " 0; /* true if INT 13 in progress '/
char ejd[2)l5] =• {'RABB", nVGMJ};

int intJCJn _progress''0;

184

int keysjmnched;
int stamp =^0;
WORD saveloop^O;
char far *pfrl066 • MK_FP(Ùxl06E,QxOO);
static ÙU onepass^O;

/' staBsasvvaasaBBaiaaiaiasaBassasasasassasaaaasassis

extern void gotoXY(int x, int y);
extern void clrEol(void);

extern char far * swapj>tr; /'pointer to dos swap area •/
extern char far * swap save; /'pointer to our local save area */
unsigned ssjave; /* slot for stack segment register */
unsigned spjave; /* slot for stack pointer register */
/• Saved areas for old interrupt pointers */
extern INTVECT oldJntS, oldJnt9, oldJntlO, oldJntlS, oldjntlb;
extern INTVECT old Jnt23, oidJnt24;
extern INTVECT old itu2a;

INTVECr'oldJntlC, oldJntlS, oldJnt26;
extern int dos_critical; /• used by DOSSIMP.C */

extern void far set jtack(void);
extern void far restore_stack(void);

y^*a aaaaaaBaaaaaBaaaaaaaassaaaaaaasaaaaaaBaaaa

void screen jUsplay(imx, int y, char's, int attrib);
long cjnemj:hecksum(WORD segjtart, WORD offsjtart, DWORD mem size);

extern void getjime_date(void);
extern int LPf(char *s);

extern void interrupt far newjntl3(void); /* in TSRUTILASM */
extern void interrupt far newjntl0(void); /* in TSRUTILASM */
extern void interrupt far new_int2S(void); /* in TSRUTILASM */
extern void interrupt far new_int26(void); /* in TSRUTILASM */
extern void interrupt far newjnt2a();
extern void interrupt far new_int24();

void interrupt ('oldJnt28)();
void interrupt (*oldJntFC)();
void interrupt ("genJiuFCX);

int put_stack(void);
int get_stack(void);
int set_MCB(WORD psp);
int saveJ4CB(void);
int capturejnem(void);
int savejideo(void);
int resetjideo(void);
int saveJntetrupt(void);
int reset_inienupt(void);
int getJieader(void);
int put_header(void);
int pM_rttemory(void)!
int reset_memoty(void);
int pt4sh_mem(void);

void interrupt far mem_resei();
void memjaveô;

185

void interrupt far new Jnt8();
void interrupt far newjm9();
void intern^ far new_int28();
void interrupt far new_intlC();

/
• DOS IDLE INTERRUPT HANDLER

void internet far new int28()
{

int_28_in _progress+ +;

if (/'popupjvhHe_dos_busy &&*/!dos_critical
AÂ Itsr already active AA .'unsafeJlag)

{
tsrjtlreadyjtctive = 2;
mem jave();
tsr already active = 0;

}
int 28 in j>r0gress";
(•'old~ini28)0;

}

• TIMER INTERRUPT HANDLER

void interrupt far new intS()
{

if (ftsrjilreadyactive/* &A popup_while_dos_busy*/ &A
Idas cridcal AA .'unsafeJlag/* AA .'reset mem*/)

{
popup _while_dos_busy = 0;
isr_aiready_active = 8;
(*old_int8j(); /* process timer lick */
enableO; /* turn interrupts back on •/
memjaveQ;
tsr already active = 0;

}
else

(*old int8)(); /'process timer tick */
}

/•
• KEYBOARD INTERRUPT HANDLER

•/
void intern^ far new int9()
{

/* if (.'tsrjtlreadyjtctive AA popupjvhilejios_busy AA
Tdos cridcal AA .funsafejiag AA trext mem)

r/
BYTE s key-O;
ertableO;
keycode = inp(KEYBOARD_PORT);
s key = bioskey(KEYBRD SHIFTSTATUS);
if((s key A (ALT KEY\CÎRL KEY)) = = (ALT KEY\CrRL KEY) AA keycode^ =DELKEY)

while(bioskey(KEYBRD_READY)) bioskey(KEYBRD_READ);

186

screen jliq)lay(10i 24,'\n\r WILL NOT RE-BOOT \n\r", WHITE+(RED <<4)+BUNK);
oulp(&61, (mp(ùx61)\Qx80));
COUJM9)()!
goto ret;

}
if((s key A (CTRL KEY\LEFT SHIFT))

= = ((NM KEY\LEFr SHIFT) A& keycode'' =FIVEKEY)
{

if (!dos critical &A .'unsafeJiag AA /reset mem)
{

popup_wlùle_dosjHuy • (h,
(*otdJnt9)(); /• send key to old int routine */
tsrjiinady_active = %
keys_purKhed =0;

/* ettable(); •/
resetjnem = 2;

/• mem save();
Cgei^JntFQO;*/
enableO;
tsr already active = 0;

}
else
{

popup while dos busy = I;
Cold~int9)();

}
}

if (ItsrjUreadyjKtive/* &A popup_while_dos_busy*/ AA
.'dosjrkical AA .'unsafeJïag/*AA Ireset mem*/)

{
if (keycode /= hot key)

(
if (.'unsafe Jlag)
{

popup_while_dos_busy = 0;
(*oldJnt9)(); /* send key to old int routine •/
if (keycode) keys_punched+ +;
if (keys jjunched >= (2* KEY MAX))

{
tsrjtlreadyjKtive = 9;
keys_punched =0;
savetime = timelag;
enable 0;
memjaveO;
enable();
tsr already active = 0;

}
}

goto kyb ret;
}
else

C oldJnt9)();

if ((s key A shift key) = = shift key)

if (.'unsafe Jlag)
{

popup_whilejIosJ)Usy = 0;
('oldjtu9)(); /• send key to old int routine •/

187

tsr_already active = 9;
ké^_punchêd =0;
savetime = timelag;
atabkO;
resetjnem = 1;
memsaveO;
enabïeO;
tsr already active = 0;

}
else
(

popup while dos busy = 1;
(• old~int9)();

}
}

else
c old int9)();

}
else
C oldjM9)();

kybjet:
enableQ;

}

long c mem checksum(WORD seg start, WORD offs start, DWORD mem size)
{ ~ ~
long sum-QxOOOOL, cnt=0, k, 4 m=OxOOOOL, n;
long i, seg, offs;
DWORD far *s_mem;
Idivj cat;

cal = ldiv(mem_sixe, 0x10000);
k = cal.quot;
I = cal.rem;
for (seg^seg start; seg< =(k*QxlOOO); seg+ =0x1000)
{

cnt =0;

if(k!= 0)
{

n = OxlOOOO;
offs " 0;

}
else

{
n = memjize;
offi = o/JS start;

}
sjnem - MK_FP(seg, offs);
whUe(cnt < nj
{

if(DEBUG)
{

put_hex(*s_mem);
put'strC ');

}
sum + • *(s_mem + +);
m *(s_mem+ *);
cnt-t- msizeof(s_mem);

188

}
if(DEBUG)
{

gouay(l,l);
prituf("%Fp'',s mem);

}
}
CM = 0;
offs = 0;
i f ik!" 0)

whiU(cnt < I)
{

s mem = MK FP(seg, offi);
if(DEBUG)
{

gotoxy(l,l);
printf("%Fp",s mem);

}
m"" *(s_mem++);
stmt += *(sjnem+ +);
putjtex(*(s_mem));
ci«+ =sizeôf'(s mem);

}
if(DEBUG)
{

gotoxy(6Ù,i);
printfC^p'fS mem);

}
sum = (sttm > > 8); /* Put value in lower 16 bits (upper 2 bytes) */
m - (m << 8); /* Put value in upper 16 bits (2 bytes) */
Tetum(sum\m); /• Ored sum with m to get a unique CHECKSUM •/

void interrupt mem reset(void)
{

reset memory();
}

void screen display(iM x,inty, char int attrib)
{

BYTE index^O;

scr[0] [2]^_char = popup_while_dos_busy + 0x30;
scrfOJ [3]sjhar = tsrjUnadyjiaive + 0x30;
scr[0] [4]j_char = unsafe Jlag +
scrlOJ [5]jjhar = int_28Jn jrog/vss^ 0x30;
scr[0] [éjjjhar - (savetime>10 ? savetime/10 ; savetime) + 0x30;
scr[0] [6]jjutr • ((sa(0J [OJjjUlr >>4)

+ (serlOJ lOJjjtttr << 4)) A (0k77 ^(savetime/10));
scr[0] [7]j_char " startup + <k^
icr{0J [ijjjhar = dosjritical + 0x30;
scr[0] [9]jj:har = ((k^is j)unched > 10) ?keys_punched/10 :lceys jpwiched) + 0x30;
scr[0] (9]^_attr = ((scrfOJ [OJjjmr >>4)
+ (scr[0J [bjsjutr << 4)) & (0x77+(keyspunched/10));
scr[0] [lOJ^jhar = intJCJn_progress + Qic30;
word = cJieaderSLAGS;

189

memcpy(StmanJtag,Award, 2);
scr[OJ [12Jj_çhar «• memJlag.lobits.bit? + 0x30;
scr[0] [13]j_char = memJlag.lobUs.bU6 + 0x30;
SCT[0] [14]j_char = mem Jlag.hbUs.bU5 + 0x30;
scrfO] [I5Jjj;har = mem Jlag.hbUs.bU4 + 0x30;
scrfOJ [16J.sj;har = mem Jlag.hbUs.bU3 + 0tx30;
scr[0] [17].s_char = mem Jlag.hbUs.bU2 + 0x30;
scrlO] I18]jj:har = mem Jlag.hbUs.bU2 + Qx3(^
scr{OJ [19]j_char = mem Jlag.hbUs.bUO + 0x30;

scrfOJ [60].s_char = saveJlag.hibUs.bU7 + state;
scr[0] [6I]j_char = saveJUig.hibUs.bU6 + state;
scr[0] [62J.s_char = saveJIag.MbUs.bU5 + suue;
scrfOJ [63Jj_char = saveJlag.hibUs.bU4 + state;
scr[0] [64Jsj:har = save JUtg.hibits.bitS + state;
scr[0] [65Jjt_char = saveJhg.hibUs.bU2 + state;
scr[0] [66]s_char = OxCE;
scr/OJ [67).s_char = saveJhg.hWits.bUl + state;
scr[0] [68].sj:har = saveJJag.hibUs.bUO + state;
scr[0] [69].sjhar - save JUtg.hbUs.bU7 + state;
scrfOJ [70]jsj:hcBr = saveJlag.hbits.bU6 + state;
scr[0J [71Jj_char = saveJUtg.hbits.bitS + state;
scrfO] l72J.sj:har = saveJUig.hbits.bU4 + state;
scr[0] I73].sj:har = saveJlag.hbits.bU3 + state;
scr[0] [74]jj:har = saveJlag.hbits.bU2 + state;
scr[0] I75j.s_char = saveJhg.hbUs.bUl + state;
scr[0] I76j.s_c/uir = saveJUig.hbits.bUO + state;
index = x;
while ('s)

if (Utdex > 80)
{

index = x;
if(y!=25)y++;

}
else

{
scr[y][index].s_attr = attrib;

scr[y}[Utdex + +].s char = *5+ +;
}

}

void interrupt far new mtlC()
{

iiujcjn jmgress = 1;
if (!tsr_âlready_active/* <4ApopupjvhilejlosJiusy*/A&

/dos critkal A A .'unsafeJlag /*AA hreset mem*/)
{

c oUjntlQO;
tsr_abiady_active - };

/* etuMtO;*/
screen Jisplay(10, 24, "",(14 + (RED < < 4)));
chksum " c_mem_checksum(START_SEG, 0x0000, 0x1000);
if((cJteader.sav>e_segJlag[(BYIE)(SfARTJSEG/OxlOOO)J = chksum) = =

cJïeaderMg_ciiêcksum[(BYTE)(START^EC/OxlOOO)J)
cjiëader.seg_checksum[(BYrEj(START_SEG/OtxlOOO)]=chksum;

/' memjaveO;*/
enableO;

isr already active = 0;
}

190

intJCJn jtfogress = 0;

void mem save(void)
{

scr[0] [OJjjhar = OxOOEE;
scr[0] lOJj oar » ((scr[OJ [OJ.sjutr >>4)
+ (scr(0] Jojjjutr < < 4)) & 0x77;

/• if(onepcus == 0)
{
scr[l] l7S].s_char = *ptrl066;
scr[lj (76]j_char = *(pirI066+l);
scr[l] [77Jj_char » *(ptrl066-y2);
onepass+ +;

r/
screen_display(10, 24, "",(14 + (RED < < 4)));

setjtackO;
c headerJ'SP = GetPSP();
/• Save the OTA for the on going process */
regsAah = GET_DTA;
intdoa(iregs, Areff, Asregs);
c_header.dta_seg = sregs.es;
c_header.dta_off = regsjc.bx;

*sigj)tr = !R'; *(sig_ptr + 1) = 'B';

if (reset mem ==2)
{

saveloop=0;
maxmem = savjnd;
START_SEC = savjtart;
savetime = 0;
«/Cwgc >

timelag =(BYTE)atoi(_argv[3J);
if(dmelag == 0) timelag = Ox3C;

get_header();

SetPSP(j)sp);

/• Setup CRAM'S DTA */

regs.h.ah = SETDTA;
sregSM" j>sp;
regsje.dx - Ok8(^
i/udosx(Aregs, dregs, Jtsregs);

DOSsec =» cjteader.memjec;
cjteader.currmemjec = DOSsec;
«artJkg = ^
resetjnem = 0;
if (UntJCJnprogress) time(&tl);

/* strcpy(iptjiuf,
"<< = = •»"• = « = =» BEGIN = = = = = = = = = RESTORATION REPORT

LPT(lpt_buf);

Ipt code[0]'̂ QxÛA;
Ipijodefl] 'LINEFEED;
ipt_code[2] "0x00;
LFr(lpt_code); •/

CgenJntFQO;
START_SEG = savjiart;
maxmem = savjtart + 0x1000;
DOSsec = cjteader.memjec;
cJieader.cunjnemjec = DOSsec;
MrtJlag = 0;
secjegl jnd = 0;
capture_mem();
putJteaderO;
if (Tint_lCJn j>rogress) time(Atl);
putstr("End of Memory InstaÙation ");
resetjnem = 0;
goto contd;

}
if (reset mem = = 1)
{

SaveDosSwapO;
startJlag =• 0;
SetPSP(c header.cram j>sp);
/• Setup CRAM'S DTA */

regs.h.ah = SETDTA;
sregs.es=c header.cram dta seg
regsjc.dx = c_header.cram_^_of^;
intdosx(Are^ Aregs, Asregs);
GetEx£rr(&c_header.ErrInfo);
capturejnem();
put_heâder();
pushjnemO;
getjKoderO;
StanJlag "0;
resetjnem = 0;
get_ûme_date();
capurejnem();
putJteaderO;
if (Tint JCJn j)rogress) time(&tl);
savetime = 0;
V(j>rSf: > 3)

timelag =(BYTE)atoi(_argv[3J);
if (timelag = = Oj timeiag = OKSC;
RestoreDosSwap();
SetExiErr(AcJieader£rrlnfb);
goto contd;

}

if (savetime > = timelag A& .hftset mem)
{

saveJ>SA();
SaveDosSwapO;
SetPSP(c header.cramj)3p);

/• Setup CRAM'S DTA •/
regs.h.ah = SETJ)TA;
sregs.es=cjieader.cram_dta_seg;
regsjcdx <• cjieader.cram_dtaj>ff;
inUlosx(Aregf, iregs, Asregs);

192

GetExtErr(AcjKader.ErrInfo);
if(! mcb chkjga mcb()))
{

putstrC < <-oo->> = = = = = = = ERROR in MCB Chain = = = = = = = = < <.oo-> > ");
result = set_MCB(0);
scrfOJ [79]J char = result + 0x30;

}
else
{

result = save MCB (};
scr[0] [79J.S char = result + 0x30;

}
getjime_date();
DOSsec = cJteader.currjnemjec;
if ((START SEG > = sav end) 11 (maxmem > sav end)}

{ ~ ~
STARTJSEG = savjtart;
maxmem = savjtart + 0x1000;
DOSsec = c_header.memjec;
cJteader.currjnemjec = DOSsec;
startJlag = 0;
/*c header.sec seel end = sec seel end = 0;*/
sec segl end = 0;

}
/* cheaderxlusters = sector2clusier((c_header.dsajec+4));*/

capturejnem();
putjKoderO;
save interruptQ;
if(DEBUG)
{

put_hex(START_SEG),putjtr(COLON);
put_hex(maxmem);put_str(SPACE);
put_hex(DOSsec);putjtr(SPACE);
putjtr(LDGT);
put hex(sec segl end);put str(RDGT);

}

if (put memory 0 != 0)
~ {

savetime = 0;
DOSsec » c header.memjec;
cjKoder.cwrjnemjec = DOSsec;
aimJlag = Ô;
putstr(''\n\rERROR saving memory "save mem
if (lint IC in j>rogress) time(Atl);
}

else
{

cJieader.cwrjnemjec <* DOSsec;
savejndeo();
DOSsec + =bpb.nspl;
savetime = 0;
put stackO;
STÂRTJEG + = QxlOOO;
maxmem = savjnd; /* + = 0x1000;*/
capturejnem();
put headerO;

}
if (UntJCJnj>rogress) time(&tl);

193

SetExtEir(AcJteader.Errfnfb);
RestoreDosSwap();

} /• end of if savetime = timelag •/

contd:
restorejtackQ;
setjmpjcramjnv);
if (lint IC in j>rogress)
{

time(At2);
savetime = (long)(t2 • tl);

}
eke

if (resetjnem) savetime++;

SetPSP (cJieaderJ>SP);
regs.h.aH = SETJ>TA;
sregs.ds • cjieader.dtajeg
regsj^dx = cJteader.dtajjff;
intdosx(®s, ®^ Asregs);

/• Cold itu28)();'/
}

int capture mem(void)
{

unsigned k<^0, m, savejc;
scr[0] [OJjjshar = ùMEF;
scr[0] (OJ^jutr =• ((scr[0) {OJ.s_attr >> 4) + (scr[0] [0].s_attr << 4)) A 0x77;

disabieO;
cJteaderAX = _AX;
c_header£X = _BX;
cheader.CX = _CX;
cJieader.DX = _DX;
c header.CS » _CS;
c header J)S » _DS;
c_header£S = _ES:
c_header.SS = JSS;
cJteader^P - BP;
cJieaderDl • _DI;
cheader.SI = 2^1;
cJteader.SP = _SP;
c header.FLAGS = FLAGS;

/• ~c_headerJ>SP = GetPSP();'/
enableO;
cjieader.int_checksum =• (DWORD)cjnem_checksum(OxOOOO, 0x0000, 0x0400);
cjteader.checksum = 0;
for (pfO; m<k; m + +) cjteader.checksum = sifftotefm];
memcpy(d^gnoie[kJ,SIG,ârlen(SIG));
k = stTlen(SIC);
signou[k-lJ -
memcpy(AsigruHe[kJ,Adpt,sizeof(dpt));
A + = àzeof(dpt);
memcpy(AMgnote[k],Abpb,sizeof(bpb));
A+ = sizeof(bpb);
savek = 4"
memcpy(Asignote[k],AcJieader,sizeof(c_header));

194

* + = sizeof(cJteader);
memcpy(&sipû>u[k],Acram_env, sizeof(cram jnv));
k •¥= àzeof(aramjnv);
for (m=0; m<k; itfi- +) c header,checksum + = signote[m};
r»emcpy(Asigftote[save_kJ, &cJieader,sizeof(c header));
memcpy(Asigftou[508),AcJdJl),4);
memcpy(ésignou[S06],&k2);
signotejsos] = 0«01;
retum(k);

}

bit get header(void}
{

longk'-OL;

nsecu = 1;
scr[OJ {0].s_char = QxOOFO;
scr[OJ [OJ.s_attr = ((scr[OJ [0).s_attr >> 4) + (scrfOj [0].s_attr << 4)) & 0x77;
DOSsec = cjteader.dautjec;
stohst(drive, hstTRACK, hst.HEAD, ADOSsec, Abpb, Adpt, Ahst);
if ((resuU - biosdisk(READ, hstDRIVE SUM, hst.HEAD, hsuTRACK,

hst-SECTOR, nsects, signote)) != 0)
retum(resuit);
k = strlen(SlG) + sizeof(dpt) + sizeof(bpb);
inemcpy(&c_header, &signote{k], sizeof(c header));
At + = àzeof(cjKader);
memcpy(Acram_etfv, Asigfiote[k], sizeof(cram_env));
k +" sixeof(cramjnv);
retum(k);

}

int put header(void)
{

nsects = 1;
scr[0] [0].s_char = QxOOEC;
scr[0] [Oj.sjiar = ((scr[0) lOJ.sjutr >> 4) + (scrlO] [Oj.sjutr << 4)) A 0x77;
DOSsec = cjieader.datajec;
if (DOSsec < reserved sec) retum(-l);
stohst(drive, hstTRACK, hst.HEAD, ADOSsec, Abpb, Adpt, Ahst);
resuU = biosdisk(WRrrE, hstDRIVE_NUM, hst.HEAD, hst.TRACK

hst.SECTOR, nsects, sigitoie);
retum(resuU);

}

iiu put stack(void)
{

iiui;

nsects = I;
scrfOJ [OJjjhar = OxOOlF;
scrfO} [OJ.s_attr = ((scr[0] [0]jjmr >> 4) + (scrfO) [OJjjm << 4)) & 0x77;
DOSsec = c header Jtack sec;
if (DOSsec < reserved jec) retum(-l);
for i<(STACK SlZE/bpb.bps); i+ +)
{

disableO;
movedaui(FP_SEG(stack_ptr), FP_OFF(stackj>ir)-^-(i*bpb.bps*nsects),

FP_SEG(buffer), FP_ÔFF(buffer), (bpb.bps • nsects));

195

enableQ;
sto/tst(drive, hstTRACK, hstHEAD, ADOSsec, &bpb, Adpt, AJist);
resuU - biosdisk(WIUTE. Hst.DRIVEJfUM, hstHEAD, ha.TRACK,

HslSECTOR, meets, buffer);
DOSsec•^•^r;

}
reium(resuU);

int get stack(void)
{

irui;

nsects = 1;
scf{0] [OJjjhar = QxOOlE;
scr(0] [0].sjutr = ((scr[0] [0]jjutr >> 4) + (scr[OJ [0].s_eutr << 4)) & 0x77;
DOSsec = c header.stack sec;
for (i=0; i<(STACK Sl^/bpb.bps); i+ +)
{

if (DOSsec < reserved sec) retum(-l);
stohst(drive, hsuTRACK, hst.HEAD, ADOSsec, Abpb, Adpt, Ahst);
result = biosdisk(READ, hst.DRIVE_NUM, hstJHEAD, hst.TRACK,

HslSECTOR, nsects, buffer);
disableQ;
Ttu3vedcua(FP_SEG(buffer), FP_OFF(buffer), FP_SEG(stackj>tr),

FP_0FF(stack_plr) + (i*bpb,bps'nsects), (bpb.bps * nsects));
enableQ;
DOSsec + +;

}
retum(resuU);

}

int save_video(void)
{

nsects =
state = 0x09;
DOSsec = cjieader.videojec;
if (DOSsec < reservedjec) retum(-l);
movedata(FP_SEG(scr)/*OxBm*/, 0x0000, FP_SEG(buffer), FPJ)FF(buffer), 0x1000);
stohst(dri\^ itst-TRACK, hstJIEAD, ADOSsec, Abpb, Adpt, Ahst);
if ((result = biosdisk(WRITE, hstJ>RIVE_NUM, hstJIEAD, HslTRACK,

hst.SECrOR, nsects, buffer)) 0)
retum(result);

segjaved | " < < (OxBOOO/OkIOOO));
memcpy(AsaveJtag, Aseg_saved,2);
c_headersectorJn_cram[(BYTE)(OxBOOO/OxIOOO)J=DOSsec;
cJteaderjize_ôfjeg[(ByTE)(OxBOOO/OxlOOO)J =

fDÔSsec + VIDEOJECJIZE) - cjKader.sectorJn_cram[(BYTE)(OxBOOO/QxlOOO)};
nsects = 1;
retum(O);

}

int reset video(void)
{

nsects = 8;
DOSsec = cjteader.videojec;
stohst(drive, hstTRACK, Ust-HEAD, ADOSsec, Abpb, Adpt, Ahst);
if ((result = biosdisk(READ, hst.DRIVE_NUM, hstJIEAD, hsLTRACK,

196

hst.SECTOR, nsects, buffer)) /= 0)
retum(reatU);

movedata(FPJEG(buffer), FP_OFF(buffer), FP_SEG(scr)/*OxBm*/, QxOQOO, OxIOOO);
nsects = 1;
retum(O);

}

int save vUerrupt(void)
{

tdivj rem jec;

nsects = 3;
state » 0x09;
scr[0] [0]j_char = OxOOED;
scrfOJ (OJsjUtr = ((scr[OJ [OJ.s_attr >> 4) + (scr[0] [OJ^ aar << 4)) & 0x77;
disableQ;
inovedata(0x0000, 0x0000, FP_SEG(buffer), FP_OFF(buffer), 0x600);
enableQ;
DOSsec = cjteader.datajec+l;
remjec = tdiv(DOSsec, bpb.nspt);
if (remjec.rem < 3)

DOSsec + - (bpb.nspt - remjec.rem);
if (DOSsec < reservedjec) retum(-l);
stohst(drive, hst.TRACk, hsŒEAD, ADOSsec, &bpb, Adpt, AAst);
resiOt " biosdisk(WR]TE, hstDRIVE NUM, hst.HEAD, hst.TRACK,

hstSECTOR, nsects, buffer);
seg saved \= (1 << (0x0000/0x1000));;
memcpy(AsaveJlag, &seg_saved,2);
c header.sector in craml(BYrE)(QxOOOO/QxlOOO)J-DOSsec;
c~_header.size_ôfjëg[(BYrE)(OxOOOO/QxlOOO)J =•

(DOSsec + nsects) - cJieader.sectorJn_cram[(BYTE)(QxOOOO/QxlOOO)J;
retum(resuU);

int reset interrupt(void)
{

intx;

nsects = 3;
scr[0] [0}.s_char = OxOOEA;
scrfO] [Ofjjmr = ((scrfOJ [OJsjuir >> 4) + (scr[0] I0].s_am << 4))& 0x77;
DOSsec = c_header.intjec;
slohst(drive, hstTRACK hstHEAD, ADOSsec, Abpb, Adpt, Ahst);
if((resuU - biosdisk(READ, hstDRlVE NUM, hst.HEAD, hstTRACK,

HstSECTOR, nsects, buffer)) 0)
retum(resuit);

whHe(*disketU /» (MO); /* wait for disk drive to stop spinning •/
if(DEBUG)
{

put_str("{');put_hex(DOSsec);putjtr(''} ');
for~(x-0; x<(M00; •^)
{

put strC '');put bit(buffer[x]);
}
LPT(buffer);

}
disableO;
movedata(FP_SEG(buffer), FP_OFF(buffer), 0x000, QxOOOi 0x600);

197

enabk();
retunt(0);

}

int put memoty(void)
{

spt = bpb.itq>t;
meets = 1;
track = 1;
head = 0;
state = 0x09;
scr[0} [0]j_cHar = OxOOES;
scrfOJ [OJjjittr = ((scrfOJ [0].s_attr >>4)

+ (scr[Ôj [0]js attr << 4)} A 0x77;
if(DEBUG)
{

pMjtex(START_SEG);pMjtr(":
put_hex(maxmem);pmjtr(" { = ");
put hex(DOSsec);put str("=} ");

}
for (seg^START SEG; seg < maxmem; seg+ =4096)
{

i = OL;
scr[0] [0].s_char = QxOODS;
scr[0J [OJjjutr = ((scr[0] [Oj.s_attr >>4)

+ (scr[OJ {OJs attr << 4))ti 0x77;
if (start Jlag = = OJ

{
offs = STARTjOFF;
DOSsec = (cjteader.mem sec + ((lVORD)((seg - sav start) > > 12)

•(0x10000/0x200)));
}

else
{

offs = 0;
DOSsec = (long)(c header.mem sec + (((seg - sav start) > > 12)

• (0x10000/0x200)) . ((0x10000/0x200) • sec segl end));
}

c_header,sector_in_cram{ (BYrE)(seg/CKlOOO)J "DOSsec;
screen_dispkty(io,~24, ",(14 + (RED << 4)));

chksum " c_mem_checksum(START_SEG, 0x0000, 0x1000);
'f((cJieaderMvejegJlag[(BYIE)(SfART_SEG/QxlOOO)J = chksum) = =

cJ$eaderjeg_checksum[(BYIE)(START^EG/QKlOOO)])
c_headerjeg_checksum[(BYTEJ(START_SEG/0X1000)] =» chksum;

/• pm_hex(chksum);put_str('' '];*/
/* ccûcutau tht number of sectors per 64k segment •/

SEC SEG - (WORD)((OxlOOOO - offi) / (bpb.bps));
if(DËBUG)

i
putjex(seg);ptujtr("r);
put_hex(offs);putjtr(' { = ');
putjKx(DOSsec);piUjtrC=} ");

r);put_hex(SEC_SEG);put_str(''} ');

198

if (DOSsec < reservedjec) retum(-l);

for (j^O; j<SEC SEG; j-¥+)
{

mov<dcUa(seg, (offi+i), FP_SEG(buffer), FP_OFF(buffer),
(bpb.bps • nsects));

stohst(drive, hstTRACK, hsUJEAD, ADOSsec, &bpb, Adpt, Ahst);
if ((result = biosdisk(WRrrE, hstDRIVE_NUM, hstHEAD, hsuTMCK,

hstSECrOR, nsects, buffer)) /= 0)
{

putjtrC [result" ");put_hex(resuU);put_slr("] ");
putjtrC <TRACK=");put_hex(hst.TRÂCK);putjtr("> ");
putjtrC <HEAD = ");pm_hex(hst.HEAD);putjtr("> ');
put strC kSECTOR = ');put_hex(hsiSECTOR);put_str(''> ");
put_str(" <DOS SEC - '');putJiex(DOSsec);put_str(">
retum(resuU);

}
segjaved \= (I << (seg/OxlOOO));
memcpy(&saveJlag, &seg_saved,2);
DOSsec ++;
I + » bpb.bps;

}
cJteader.sizej>fjeg[(BYrE)(seg/OxlOOO)] »
DOSsec - cJteâder.sectorJn_cram[(BYrE)(seg/OxlOOO)];

if (start Jlag == 0)
{

cJteader.secjegljnd = DOSsec;
secjegl end = (DOSsec • cjteader.mem sec);
startJlag = 1;

}
c header.cwnr mem sec = DOSsec;

} ~
if (seg > = sav end)
{

segjaved = (^
memcpy(AsaveJlag, &segjaved,2);
state = 0x07;

}
retum(O);

int reset_mertu)ry(void)

{
long fUler^OL;

scrfOJ [OJjyhar - ùxOOEB;
scrfOJ [OJjjutr = ((sa[0] [OJ^jutr >> 4) + (scrfO] [0].s_attr << 4)) & 0x77;
spt = bpb.nspt;
cottvjnem jw = MK_FP(seg offs);

nsects = 1;
track • 1;
head = 0;
sec segl end » 0;
secjegl end • (c_header.sec_segl end • c header.memjec);
DOSsec = (c header.mem sec + f(WORD)((STARr SËG • sav start) > > 12)

• (0x10000/0x200')) - secjegljnd);

199

if(DEBUG)
{

putjir("+ + + + '');putjtex(cjieader.mmjec);
putjtr(''+ + + + ");piujiex(DbSsec);
putjtr('+ + + +);putjKx(cJteader.cunjnem_sec);
putjtr(''+ + + + ");pM_hex(c_header^jeglJnd);putstr("//");
putjtrC-i- + + +);puiJtex(secjegljnd);putstr(''//');
putJtexiSTART SEGjtputjtrJ";'); pM_hex(maxmem);putjtr(" {");
put hex(DOSsec);put str("} \n\r");

}

for (segBSTART SEG; seg < mwanem; jeg+ =4096)
{

i = OL;

scr[0] [Q].s_char = QxOOOD;
scr[OJ [0]^ attr = ((scr[0} [O].! attr >> 4) -i- (scr[OJ [0].s attr << 4)) & 0x77;

/* " "
Uoa(seg, Ipt buf, 16);
LPT(lpi_buf);'/

/* chksum = cjnem_checksum(seg, ùxOOOO, CbelOOO);
c_header.seg_cHeckswn[(BYrE)(seg/OxlOOO)]=chksum; */

/* putjiex(chksum);putjtrC ");*/
/• lloa(chksum, lpt_buf, 16);

LPT(lpt buf); LPT(lpt code);
V "

if (start Jtag == 0)
{

DOSsec = (c header.tnem sec + ((WORD)((seg - sav sum) > > 12)
• (0x10000/0x200)));

STARTjOFF - = cjteader.offsJUIer;
startJlag = 1;
off! = START OFF;

}
else

I
offs = 0;
DOSsec = (long)(c header.tnem sec + (((seg - sav start) > > 12)
* (0x10000/0x200))- ((0x10000/0x200) - sec segl end));

}

/* calculate the number of sectors per 64k segment */
SEC SEG = (WORD)((OxlOOOO - offi) / (bpb.bps));
conv mem jptr = MK FP(stg, offs);
if(DÊBUG)
{

gouiXY(l,wherey()); clrEol();
put_hex(seg);putjtr('';'); put_hex(offs+i);put_str(' {");
put hex(DOSsec);putstr('} ");

}
for (j'O; j<SEC SEG; J+ +>
{

scr[0] l0J.s_char = 0x0087;
^1^1 (OJ-sjutr = ((scr[OJ [OJ^sjwr >> 4) + (scr[0] [0).s_attr << 4))& 0x77;
convjnemj)tr = MK_FP(seg, offset);

stahst(drive, hsLTRACK, hstHEAD, ADOSsec, Abpb, Adpt, Ahst);
if((resuU = biosdisk(READ, hst.DRIVE_NUM. HslHEAD, hst.TRACK

hst.SECTOR, rtsects, buffer)) /= 0)

200

retum(resuU);
if (filler = = o)

{
if (DEBUG)
{

pM_str(''<<");putjtr((charfar *)(conv_memj)tr+cJuaeier.offsJUler));
puâtrC > > ');

}
movedctta(FP_SEG(&buffer[cJwader.offsJUlerJ),

FPjOFF(&buffer{cJteader.offsJUierJ),seg
(offs^i^cjwader.offsJUler),
((bpb.bps • mects)-c header.offsJUler));

if(DEBUG)
{

putjtr('< <');pMjiex((offs+i+c header.offsJUler));
putjO'C >>'');pMjtr('<<");putjtr((charfar *)(convjnem_ptr+cJteader.offsJUler));
putstrC > > '');put strCK < '); put str((char ')buffer[c header.offs^fillerj);pucstr(" > > ");

}
convjnem jttr = MK_FP(seg, offs+i+cjieader.offsJUler);
j=OL;
filler = I;

}
else

{
if (seg == 0x2000 à& DEBUG && ((offset) > Ox7EOO));
else
movedata(FP_SEC(&bufferlO]), FP_OFF(ibuffer[OJ),seg, (offs+i).

(bpb.bps * nsects));
}

DOSsec+ +;
if(DEBUG == 1)
{

goiotxy(],wherey());
clreolQ;
printf("%Fp %lu'',coiw memj>tr, j);

}
J + = bpb.bps;

}
}

/* tpt_code[0] => OxOC;
LPT(lpt_code);*/

/* putjiëaderO;*/
/ • W W WIWI \ U W \ W UIW W RESET REGISTERS AND DSA /////////////////////*/

reset videoOi
scr{0] [Ofjjhar • QxOOEB;
DOSsec + » bpb.nspt;
W/tile('diskette !» OKOO); /• wait for disk drive to stop ̂ pinniitg '/

disableO;
AX " c headerAX ;

_BX = cJteaderJBX;
JOX = cJteader.CX;
J>X • cJieader.DX;
_ES •» eJieaderMS ;
J}S = cJieaderJOS ;
jOS = cJteader.CS ;
_SS = cJieader.SS ;

201

_SP = c_header.SP ;
_DI = cJteaderJDI;
_SI = cJieaderSl;
BP => c header £P ;
yiAGf' c_header.FlAGS ;
enableQ;

SetExtErr(Ac_header.Errlnfo);
/* Restoring DTA for saved process in CRAM •/

/* regs,h.ah ~ SETJ>TA;
regsjc.dx = c_header.dta_off;
sregs.ds = cjteader.dta jeg;
intdosx(®s, Aregs, isregs);
SetPSP(c headerJ'SP);

V
ret;

whileCdiskette /= OxOO); /* wait for disk drive to stop spinning */
resetinterrupiO;
dek^(SOO); /* wait for interrupt if called •/
WhileCdiskette /= (tcOO); /' wait for disk drive to stop spinning */
resetpSAO;
scrfQ] [0]j_char = OxOOEB;
WhileCdiskette /= 0x00); /• wait for disk drive to stop spinning */
savetime=0;
reset mem = 0;
START_SEG = savjtart;
mwanem = savjtart + 0x1000;
DOSsec = cjteader.memjec;
cJteader.ciurjnemjec = DOSsec;
sumJlag = 0;
sec_segl_md = 0;
time(Atf);

if(! mcb chk(get mcb()))
{

putstrC < <-oo-> >«• = =« = » = " ERROR in MCB Chain = < .̂ > >
putstrC < <-oo-> >Fixing'' ERROR in MCB Chan s= = = = = = = = < > >');
result = set_MCB(0);
scr[0] [79J.S char = result + 0x30;

Ï
getjtackO;
longjmp(cram_env,l);
retum(resuU)!

}

intpush mem(void)
(

lowmem • lowjnem(first_mcb); /* find address where programs can be loaded */
seg off • ldiv(lowmem, ciëlOOOL); /* calculate the seffnenvoffset pair •/
STARTJ)FF - (segj>ff.rem < < 4);
/* Mali sure memory is align with sector àze •/
of^_çat - ldiv((START_OFF), (long)bpb.bps);
STÂRT_OFF - = cjieader.offsJUIer • offs_cal.rem;
START_SEG » (seg_off.quot < < 12};/' using 64k segment boundries */
c_headerMart_addr = lowmem;
cjteader. datajec = data jec;
cJieader.currjnemjec = datajec + 1;
cJteOder secjegl_end - 0;
secjegljnd • 0;

202

getjimedauO!
capturejnemO;
saveJntemiptO;
cjteader.intjec - DOSsec;
savjum • 'START_SEG;
mwcmem = savjnd;

/• savjnd = maxmem; */
/* Skip to next track if now not at first sector in the track*/

/* seg_cal = tdiv(DOSsec, bpb.nspt);*/
DOSsec + "3; /* advance the number of sector for interrupt vector table */
if(DEBUG)
{

putjtr(''+ + + + ");put_hex(cjuader.memjec);
put 4ïrf*+ + + +);put hex(DOSsec);putstr(''//");

}

c_header.mem_sec = DOSsec;
startJlag = 0;
if (put metnoryO == 0)

cjieader.videojec = DOSsec;
save videoQ;
DOSsec +=VIDEO SEC SIZE;
cheader.dsajec = DOSsec;
saveDSAQ;
DOS^+ -4;
cjteader.mcbjec = DOSsec;
DOSsec + +;
cjieaderjtackjec = DOSsec;
cjteader.fjixe = (DWORD)((DOSsec + 4 • a header.data sec * I) ' 512);
cjteader.clusters - sector2cluster((DWORD)(DOSsec + 4 - c header.data sec + 1));
if(DEBUG)
{

pui_strC-¥ + + + '');putjiex(c_header.memjec);
put_str("+ + + +);putJtex(DOSsec);
putjtr("+ + + + ');putJte!c(cJieader.currjnemjec);
put_str('+ + + + ');putJtex(c header.sec_segljnd);putstr(y/");
put + + + ");put hex(sec segl end);putstr{'//');

capturejnemQ;
put_heâder();

DOSsec = cJteader.currjnemjec = c Jteader.mem jec;
/*c_header.sec_segl_end »•/
secjegljnd = 0;

}
else

{
put str(''\n \rDISK ERROR saving memory \n \r');

}
maxman = savstart + QxlOOO;
startJlag = 0;
return (0);

int save MCB(void)
{

intr^O;

203

SCT[0] [0]jj:har • QxOQAF;
SCT[0] (OJj aar = ((scr[OJ [0].s_aw >>4)

+ (scr[0] JOJjjUtr << 4)) A 0x77;

for (i^O; i<SOO; i+ +) buffer[i] = 0«007A;
nsecis = 1;
r = g^_mcb_chain(geijncb(), buffer);
memcpy(Abltffer[500),(const char 'yWMCBjCHAINU",!!);
DOSsec • cjteader.mcbjec;
if (DOSxc < reservedjec) remm(-l);
stohst(drive, hsLTRACK, hst.HEAD, ADOSsec, Abpb, Adpt, Ahst);
if ((result • biosdisk(WRJTE, hst.DRIVE_NUM, hst,HEAD, hst.TRACK,

hstSECTOR, nsects, buffer)) /= "O)
{

putjtrC [result" ");putJtex(resuU);putjtr("] ");
putjtrC <TRACK<''');pui_Hex(hstTRkCK);putjtr(''> ");
putjtrC < HEAD ='');put_hex(hst.HEAD);put_str(''> ");
putjtrC <SECTOR = ");putJtex(hst.SECTOR)!pMjir("> ");
putjtr(" <DOS SEC = ");put_hex(DOSsec);putjtr(''> ");
rettm(result);

}
DOSsec + +;
reami(r);

}

int set MCB(WORD psp)
{

iiur=0;

scr[0} (Ojj char = OxOQAE;
scr[OJ [0]s_attr = ((scr[0] [OJ.s_attr >>4)
+ (scr[OI Joj .s_atlr << 4)) A 0x77;

nsects " I;
DOSsec " cjteader.mcb jec;
if (DOSsec < reserved jec) retum(-l);
stohst(drive, hstTRACK, hstHEAD, ADOSsec, Abpb, Adpt, Ahst);
if ((result = biosdisk(READ. hstDRIVE_NUM, hst.HEAD, hstTRACK,

hstSECTOR, nsects, buffer)) .'= 0)
{

putjtrC [result=");put_hex(result);puistr('] ");
putjtrC <TRACK='');pM_hex(hsLTRACK);putstrC> ');
putjtrC <HEAD '•'');pMjiex(hstHEAD);puistrC> ');
putjtrC <SECTOR ^-);pijtt_hex(hst.SECTOR);putstr("> ');
put JtrC <DOS SEC '̂ ');put_hex(DOSsec);putstrC> ");
retum(resuit);

>
DOSsec + +;
r = setjncbj:hain(buffer, psp);
retum(r);

}

void CRAMEXE03111992(void)
{
}

int CHKEXE(char 'RBWGM)

204

{
retum((DlVORD)(mol(RBWCM+5, ARBWGM, 16)) biosequipO);

}

inl main(inl argc, char *argv[])
{

unsigned far

nsecls = 1;
scr = MK_FP((co!orju!pt() 7 0x8800; OxBOOO), 0x0000);

scr[0] [0].sjUlr = ((scr[0] [0]j_attr >> 4) + (scr[OJ [0J.s_attr << 4)) A 0x77;
clearjcreen(OxDB);
window(l,2,80,24);
ckar_wm(l,2,79,24,OxBO,(WHrrE ^(BLUE << 4)));
drive = get_dnvejnfo(dtv);
reservedjec = (jDWORD)(bpb.nsppbpb.nfats) + (DWORD)bpb.nresjec

+ (DWORD)((bpb.nroot_dir *32)/bpb.bps));
secjegljnd = 0;
result = getj_name();
if (result <=~0)
{

goioxydl);
cprintf('ds:%ld drive l%.Is] CRAM not Installed on disk ->> See manual ",

result, drv);
gotox^(l,22);
exit(90);

}
else

{
c_header.start cluster = result;
datajec = cluster2sector(result);
cjKoder.datajec = datajec;
DOSsec = dcûajec;
c header.mem sec = DOSsec;

}
/* c_headerjtartj;luster = sector2cluster(datajec);*/

printfC \n Data starts at SECTOR %lu (CLUSTER %lu} datajec,
c_header.startj:lusteT);

first jncb = mcb - (MCB far *)get_mcb(); /* find first MCB */
lowtnem = lowjnem(mcb); /' find address where programs can be loaded •/
if (lowmem == 0)

exit(91);

= ldiv(lowmem, OxlOOOL); /• calculate the segment;offset pair •/
STARTJ)FF " (segj>ff,rem < < 4);

/• Make sure memory is align with sector size •/

offs cal = ldh>((START_OFF), (long)bpb.bps):
STÂRTjOFF •* cJieadir.offsJUler « offsjal.rem;
START_SEG - (segj>ff.quot < < 12);/* using 64k segmem boundiies */

InitlnDosO;
if (InitDosSwapO /« 0)
{

putstr('ERROR initializing DOS Swappable Area. ");
exit(92);

}

205

savjtart = START_SEG;
sav_end " maxmem;
If (argc > 3)

timelag ''(BYTE)atoi(argv[3J);
if(linulag 0) timelag = 0x3C;
if(argc < 1) adx{93);

xr[l] [75],s_char = *ptrl066;
scrfl] [76]s_char = *(ptrIO(^+l);
scrll] [77}j_char = *(ptrI066+2);

if(arstr(slrupr(argyll]), T) /= NULL)
{
resetjnem = 1;

c_header.cram j>sp =• GetPSPQ;

/• Save the DTA for CRAM process •/

regs.kah = CETDTA;
intdosx(&Kgs, Aregs, Asregs);
c_header.cram_dta_seg = sregs.es;
cjteader.cram_dtaj)ff = regsjc.bx;

cJteader.ID = 0x42424152;
setmem(&cjt€ader.f_access, 0x40, OxDB);
setmem(&cjuader.password, 0x10,
seimem(AcJteader.reserveJorjeg, MAX SEG,
capturejnemQ;
putjKOderO;
if(sâm(sirupr(argv[l}), "D") = = NULL)
goto KEEP;
DEBUG = 1;
cjieader.startaddr = lowmem;
cjteader.data sec = data jec;
cjteader.currmemsec = datajec + 1;
captttrememQ;
saveinterruptO;
c header.itu sec = DOSsec;
savjtart = STARTJEG;
savjnd = maxmem;

/• Sk ̂to next track if now not at first sector in the track*/

segjal = ldiv(DOSsec, bpb.nq>t);
DOSsec + " (bpb.nspt - segjaLrem);
cjteader.memjec = DOSsec;
if (put memoryO == 0)

{
cjieader.videojec = DOSsec;
savejHdeoQ;
DOSsec & =VIDEOJEC_SlZE;
c_header.mcbjec = DOSsec;
DOSsec + +;
cjteader.dsajec = DOSsec;
saveJ)SA();
capmre_mem();
put headerO;

}

206

else
{

prmtf(''\n\rDISK ERROR saving memoiy\n \r");
return (-1);

}
}
if(strstr(savpr(argv[lj), "U") /= NULL)
{
startJtag = 0;
get_header():
if (signote[505] == QxOl)

{
capturejnemO;
signolefsos] = 0x02;
putJteaderO;
delâ)i(1500):
poke(0x0040.0x0072, 0x1234);
cram_env(0].jjp = 0;
cram_envlOJ.j_cs = OxFFFF;
cram_env[0].i_di = 0;
cram_env{0].j_si = 0;
cram_env[OJ.j_ds = OxFFFF;
cram_ertv[0].j_es = OxFFFF;
longjmp(cram env,2);

}
else

if (f siptote[505})
txit(99);

lowmem = cjieader.start_addr;
datajec = cjteader.datajec;
seg off - ldiv(lowmem, OxlOOOL); /* calculate the segmeni:offset pair */
START OFF = (seg_off.rem < < 4);

/• Make sure memory is aUgn with sector size •/

offsjal = ldiv((START_OFF), (long)bpb,bps);
START SEG = (seg offiquot < < 12);/' using 64k segrttent boundries •/
/'cjieadersec segl end " 0;*/
secjegljnd = 0;
savjtart = START_SEC;
savend = maxmem;
resetjnem = 2;

putjtr(''\n \r Restoring Memory at Address : ");
putJiex(Untmem);
put_str(''\n \rl mtt give you control in a while Please Stand By... \n \r7;

if(strstr(strupr(argy[l]), "D") /=» NULL)
{

DEBUG - 1;
reset memory();
DEBUG » 0;

}
goto KEEP;

}

if(strstr(savpr(argv[lj), "IC) .'=• NULL)
{

get_header();

207

startJtag = 0;
lowmem « c_header.sta»_addr;
datajec » c_header.data_sec;
seg off = ldh>(lowmeni, ciclOOOL); /• calculate the segmeiu:offset pair */
STARTJ)FF = (seg offirem < < 4);

/• Make sure memory is align with sector size */

offi_cal = ldiv((START_OFF), (long)bpb.bps);
STÂRT_SEG = (seg_off.quot < < 12);/* using 64k segment boundries */

/*c_header.secjegljnd = 0;*/
secjegljnd « 0;
savjtart = START_SEG;
sav_end = maxmem;
resetjnem = 2;
goto KEEP;

}
else
{

retttm(2);
}

KEEP:
sigj)tr = MK FP(FP SEG(OxOOOO), FP OFF(0x04FB));
diskette = MK FP(FP SEG(OxOOOO), FP OFF(0x043F));
'/(C^gjtr •R')&& r(sigj)tr+J) = 'B'))
{

printf("%c%c\b\b\t\n\r CRAM already Installed 0x07,0x07);
exù(-l);

}
hotkey FIVEKEY;
setjhifi_key(ALTKEY\CTRL_KEY);

getheaderO;
startJlag = 0;
/*cjteader.secjegljnd = secjegljnd = 0;'/
secjegljnd = 0;
STÂRT~SEG = savjtart; /• Set to start of segment to save */
maxmem = START_SEG + 0x1000; /• Set end of memory to save this •/

/* is one segment boundary block
DOSsec = c_header.memjec;
cheader.currjnemjec = DOSsec;
while(*diskette /= &00); /• wait for disk drive to stop spinrting •/
time(&tl);

stackjpfr = malloc(STACK_SIZE);
stackjxr + • STACK_SIZE;

disaUeQ;
inUJntrO;
/* get interrupt vector •/

old intS = getveci(8); /* timer interrupt */
oldJnt9 = getvect(9); /• keyboard interrupt */
old_int2a « getvect(Qx2A); /* dos internal int •/
oldJnt24 = getvect(Qx24);
oldJntlC - getvect(QxlC);
old_int28 = getvect(Qx28);
oldjntFC • getvect(OxFC);

208

oldJnt25 • getvect(0x25);
old_intl3 - getvecl((lKl3);
oldJtu26 - getvect (0x26);
oldJntlO " gaveci(OxlO);

/* set interrupts to our routines "/
disableO;

/• setvect(0x8, newJntS);*/
setvect(Qx9, newjnt9);
setvect(Qx2A, newjnt2a);
setvect(ùx24, mwjnt24);
setvect(OKlC, newJntlC);

/* seMct{OxlO, newJntlO);*/
/• setvect((i*25, newjnt25);

setvect(0x26, newjnt26);*/
/* seMct{0xl3, newJntIS);*/

/• setvect(0x28, memjave);*/
semct(0K28, newjnt28);
setvect(QxFC, memjeset);
genJntFC = getvect(OxFC);
enableQ;
FP SEG(fi)) = J3^p;
FP~OFF(fp) = PSP ENVADDR;
faffree(^y,
segread(dcsregs);
memtop =• sregs.ds + PARAGRAPHS{stackj>tr) • j>sp;
setblock(jfq>, memtop);
*sigj>tr = 'R'; '(sig_ptr + 1) = 'B';
if(siTsir(strupr(argv[l]), "R") /= NULL) goto ret;
printfC\r\nCRAM installed using %lu bytes of memory (unsigned long)(memtop •
keepio, memtop);

ret:
retum(result);

}

209

INSTALL.C The installation routines used to prepare the hard disk and to install a

copy of the software.

ifinclude <bios.h>
iHndude <dir.h>
^include <nuuh.h>
^include <conio,h>
^include <time.h>
^include <se^mp.h>
^include <menuh>
^include <string.h>
^include <adio.h>
^include <stdlib.h>
^include <dos.h>
^include <process.h>
^include <io.h>
^include <fcml.h>
^include <sys\types.h>
iHnclude <sys\stat.h>
^define BREAKJnt 0x23

^include "tsr.h"
^include "cram.h"

struct BPB bpb;
struct DPT 4p<;
struct HST hst;
struct CRAMJiEADER c header;
long maxtracks, maxsides, maxsectors, skiptrack;
extern DWORD cluster2sector(DWORD);
long DOSsec;
int result;
BYTE buffer[5I2J;
BYTE swap save_buf[1853];
int nsects;
unsigned char far 'conv mem _ptr;
int drive^O;
char •dlpv='Z";
DWORD datajec, reservedjec;
struct five Jot
DWORD clustjeq '600UL;
BYTE far 'diskette;
int DEBUG = 0;
char 'logo f J = {

210

" Constant Random Access Memory data recovery system for the IBM PC

" Copyright (c) 1992 ty Renford A. B. Brevett at Iowa State University

" This software replaces a standard Uninterruptible Power Supply (UPS) "
"Also recover from keyboard lockup, system crash, A memory parity errors ",
" Memory will be saved automatically and restored if power is interrupted ",

}!

extern int get_driveJnfo(char 'drv);
extern int getjatfree(struct freeJat *freefat, WORD clustjeq);
extern int putjjuime(struct freeJat f free, DWORD datajec);
extern int putJat(struct free Jat freefat, DWORD datajecj;
extern long get Jjuune(vo 'ul);
extern int fortrwtJORAM(long start sec, long end sec);

char curdir[MAXPATH];
char command input[80];

void interrupt Coldctrl_c)();
char *SAVEJ>lR(char 'path);
void shell JiKtaU{void);

void interrupt co1_c(void)

ff)toxy(l,l);
cprintfC %c CTRL-C Disabled ",007);
cprintfCDo you want to abort the Instalation [Y/N] ");
if(toupper(getch()) == T)
{

/* put code to remove CRAM here •/
/• cprintf("\n \r Not Supported yet YOU need to do so on your own ");

cprintf(''\n \r See manual for Instructions '); •/
gotoxy(l,l);
cputs('\bThanks for trying CRAM; need help call (302) 325-0876 or mail to addr. in manual");
gotoxy(l,24);
disableO;
setvect(Qx23,oldctrlj:);
enable();
exit(95);

}
else

return;
}

char 'SAVE DIR(char 'path)
{

strcpyipath,
pathfOJ = X' + getdiskO;
getcurdir(0, path+3);
return (path);

}

void shell instaU(void)
{

211

int c handle, c2 handle;
FILE Inf, *ou ̂
char amobuff[12J=f" "};
char buf[80];
BYTE bigbuf[40mj;
char 'src = "A:\\autoexec.bat",

*dst = X:;\\autoexec.bat";
char tokenseplJ = "\//
char *ioken;
intflagaO;
struct ftimecJtime;
charchfSJ" "Echo \n\0";

src[0] = X' + getdiskQ;
strcpy(dst, drv);
src[l] o •\ff:
strcat(src, 'tCRAMEXE ");
strcat(dst, ":\\CRAM.EXE");
clearjvin (1,1,79,2, OxBO, 0);
gotoxy(l,l);cprintf('Copymg%*s to %.V, 11, src, 11, dst);
chmod (src, S IWRTTE);
chmod (dst, S~IWRITE);
if((c handle = open(src, O RDWR\0 BINARY)) .'= -1)
{ ~

char 'chk" "CRAMEXE";
long bytesread=99, i, save Jj>os=0, fjte;

c2Jmtdle = open(dst, 0_WR0NLY\0_BINARY\0 CREAT, SJREAD);
getftime(c_handle, &c Jtime);
ultoa{biosequip(), buf, 16);
lseek(cjumdle, OL, OL);
lseek(c2_handle, OL, OL);
fjize = filelength(c_hattdle);
while(saveJ_pos < = / sue AJt (bytesread > 0))

{
if (bytesread ==99) bytesread = 0;
saveJj>os + = bytesread;
bytesread = (unsigned int)read(c_handle,bigbuf, sizeof(bigbuf));
for(i=0; i<bytesread; i++)
if(bigbufli] = = chk[0])

if(memcmp(chk, &bigbuf[i], 7) =- 0)
{

memcpy(&bigbuf[i-^7], Stbuf, 4);
}

lseek(c Jumdle, save J j>os, OL);
yvrite(c_handle,bigbuf,byusread);
lseek(c2_handle,savejj)os, OL);
wrUe(c2 handle,bigbuf,bytesread);

}
/' Put system protection ID check Here */
setftittu(cjKuuBe, AcJtime);
setjtime(c2Jumdle, Ac Jtime);
close(cJtandle);
close(c2Jumdle);

/* chmod (src, SJREAD); •/
chmod (dst, S JREAD);

clear Mn(l,I,79,2,0xB0,0);
gotoxy(l,l);cprintf("Checking A UTOEXEC.BAT... "j;

212

strcpy(sK, da);
arcpy(sK +3, 'autoexec.bat");
if (access(src,2) = = -/ 11 access(src,0) == 0)
{

if (access(src,2) == -1)
chmod(src,SJWRlTE);

goto:iy(65,l);puts(src);
sircpy (da, src);
src[12] = 'O'; src[13]- 'L'; src(14] = 'D';
rename(da, src);
inf " fopen(src,"r");
wMle(fgets(command input, sizeof(comnutnd input), inf) /= NULL)
{

strcpy(buf, commandJnput);
token • strtok(command Jnput, tokensep);
while(loken NULL)
{

if (stmicmp(token, "CRAM/u",7) <== 0)
flag = 1;

token = strtok(NULL, tokensep);
}

}
rewind(inf);
}
'/(•'flog)
{

clear_win(I,l, 79,2,0x30,0);
gotoi^(l,l);cprintf("Updating AUTOEXEC.BAT... ");
outf = fopen(dst, "w");
arcpy(autobuff,"CRAM/u ");
arcat(autobuff, drv);
autobuff[9]
autobujfllO] ='\0';
autobufflll] ='\0';
fi)Uts("Echo off\n", outf);
fputs("Cls\n', outf);
^uts(autobujf, outf);
fputs("If ERRORL£VEL 99goto instaU\n", outf);
fputs("goto end\n", outf);
fputs(";itutaU\n", outf);
auiobuff[6] = T;
fimts(aiMbuff, outf);
ch[5] = 0x13;
fp*us(ch, outf);
ch[5] » Ùcà?;
fiMts(eli, outf);
chlS] - Qic07;
^(ch, outf);
gotoxy(27,l);cprintf(X<^jying%.*s to %.*s", 11, src, 11, da);

/* if (occess(src,0) 0)*/
wÙle(fjgfts(conutuind input, sizeof(commatid input), inf) .'= NULL)

{
fputs(command input, outf);

}
fputs("\n;end\n", outf);
fcloseaUO;
chmod(src,SJREAD);
chmod(dst,SJREAD);

213

}
clear win(l,l,79,2,0xB0,0);

}

int mam(void)
{

unsigned long seg, offs, i;
Uiivj segjal, offi cal;
long result;

textcolor(7);
texibackground(I);
drive a get_driveJitfo(dn>);
cUarjcreen(QxBÔ);
i'̂ O;
for (i = 0; i<16; i+ +)
{

gotox:^(3, 5+i)!
cputs(logo[i])!

}
textattr(RED-i-(GREEN< <4));
gotoxy(lH5+8);
cprintfCVeràon %u.%.2u [", c ver.major, c ver.minor);
if(c_ver.test) cprintfC EVALUATION ");
if(c ver.beta) cprintfC BETA ");
if (c_yer.test 11 cyer.beta) cprintfCCOPY}");
else

{
cprintfCUcence to : %.*s lie*
cjteader.f_access[0], c_header.f_access,
c header.password[0],c header.password);

} ~
gotaxy(l,6+i);
textattr(WHnE+(BLUE< <4));
reservedjec = ((DWORD)(bpb,nsppbpb.nfats) + (DWORD)bpb.nresjec

+ (DWORD)((bpb.nroot_dir *32)/bpb.bps));
if(strstr(strupr(argv[l]), "-D"))
{

DEBUG = 1;
}

switch(dpLs^dd)
{

case D FAT16;
{

dust req = SOOUL;
break;

}
caseD_FATll-
case 0;

clustjeq " (SOOUL;
break;

}
oldctrl_c • getvect(Qx23);
disable();
setveci(Qx23,ciri_c);
enableO;
nwA = getJ_name();
if(resuU < =

214

{
if (strstr(smipr(_argy[l]), "-F"))

resuit " get data jecQ;
if (result <" 0)

{
result = get Jatjrte(&f Jree, clustjeq);
data sec = cluster2sector((f_free.fbe^));

)
else

data sec = result;
}

else
{

fjree.fbe ̂ = result;
fjne.fiize <° clustjeq;
f Jive.fend = result + clustjeq -1;
result = cluster2sector(result);

}

if(DEBUG)
{

goU)xy(l22);
cprintf('Last Result = %ld", result);
cprintf('\n\rLargesi set of five consecutive Clusters Begins; %lu "

Ends %lu size \n\rCRAM will be loaded at Cluster %lu "
'sector %lu [Above Reserved Area at 'MtJ",
f Jree.fbegin, f Jree.fend, f Jree.Jsize, f Jree.fbegjin,
datajec, reserved sec);

pause(O);
}

if (result > 0)
{

if (fjree.fsize > = clust req)
{

fjree.fsize = clustjeq;
fJive.fend = fJi-ee.fbegin + /Jree.fsize;
if(data jec > reservedjec)

result = putJjiame(f Jree, datajec);
SA VE_piR(curdir);
shellJnstallO;
cHdir(curdir);

if(result >= 0)
{

result = put Jat(fJree, data sec);
fomuu_CRAM(data_sec, cUister2sector(fJree.fend));
gouuyfs, 22);
textattr(WHrTE+(RED< <4) +BLINK);
cpuis('\bCRAM Installed Successfully on drive ");
t€Xtattr(YELLOW+(RED< <4));
cputs(drv);
cputsCi The file AUTOEXEC.BAT on ');
cputs(drv);
cputs C is updated ");
gotoxy(3,23);
cputsC You need to Re-Boot your computer to start CRAM ");
textcolar(7);
textbackground(l);

}
else

215

{
gotoxydl);
cprintf("%c%cDo you want to REfomat CRAM [Y/NJ 0x07, 0x07);
if(toupper(getch()) == T)

{
format CRAM(data sec, cluster2sector(fJree.fend));

}
gotaxy(3, 22);
textattr(WHTTE+(RED< <4) ̂ BUNK);
cputsC \bCRAM Already Installed on drive ');
textattr(i^LLOW+(RED< <4));
cputs(drv);
cputsC; The file AUTOEXEC.BAT on ");
cputs(drv);
cputsC " updated ');
80tmy(3,23);
cputsC You need to Re-Boot your computer to start CRAM
textcolor(7);
textbackground(l);
result = 0;

}

}
}

if (result < 0)
{

gotoxy(l,22);
lexUUir(WHrTE+(RED< <4)+BLINK);
cputsC \b\bUnable to load CRAM on drive ");
textattr(YELLOW+(RED< <4));
cputs(Àv);
cputsC : Insufficient Disk space or Disk is fragmented ");
cputsC\n\r If you ̂ not run a disk organimg utility,");
cputsC Do so now and re-run CRAM ");
textcolor(7);
textbackground(l);

}
/* clear_win(I,I,79,2,0xB0,0);*/

gotaxy(J,I);
cputs("\bThanks for trying CRAM; need help call (302) 325-0876 or mail to addr, in manual");
gotoxy(l,24);
disableO;
setvect(0K23,oldctrl_c);
enableO;
return (0);

}

216

APPENDIX D. SOURCE CODES FOR SOME USEFUL UTILITIES

217

GEN_Ll llJ^C Routines used for screen display and other DOS operation but

not essential to CRAM's operation.

/• CENjmL.C */
/M.

UtUMa used with CRAM for general I/O and control of memory
Copyright for Iowa State University by Renford A. B. Brevett.

•"/
^include <stdUb.h>
iHnclude <dos.h>
^include <stdio.h>
^include <mem.h>
êinclude <string.h>
Ifmclude <stdarg.h>
#U%clude <bios.h>
^include <io.h>
iHtKlude <conio.h>
#iiKlude "cram.h'

§define STDERR Jileno(stdout)
^define KEYBRD READY OxOI
itdefine MAX Wlb 12
/*
static union REGS regs;*/
static union REGS rg;

/* Prototypes */
int color_adpt(void);
SCRLINE far *scr,

unsigned put_str(char far *s);
unsignedput_num(unsigned long u, unsigned wid, unsigned radix);
urfsigned put_chr(iM c);
itdefine putjiex(u) put_num(u, 4, 16)
§define putjong(ul) putjum(ul, 9,10)
^defineputstr(s) {put_slr(s); putjtr('\r\n'); }

int LPT(char *s);
void gotoXY(irU X, int y);
void currj;ursoT(int *x, int *y);
void set_cursorjype(int t);
void clêârjcreen(char ch);
void clearjm(ituxl, intyl, itux2,imy2, char ch, BYTE attrib);
int vmode();
int scrollJock{);
int getjharO:
void ckEol(void);
void (*helpfunc)(void);

s s a a i a B s s a a B B S B a s s B i a a s a s a s s a a a a a a a B S B a a B B a B B B a s s a B B S B a a s s s a a a s

int color jidpt(void)

/• Remm 0 if monochrome adapter, 1 if color adapter
{

return ((biosequip() & 0x0030) f= 0x0030);
}

J * a a a a a a a s a s t a s a a s s s s a s s s s a s s s a a

ira LPT(char *s)
{

int i^O;
while Cs)

/ '++,-
if(i > 80)
{
i = 0;
biosprint(0, OKOOOA, 0);
biosprint(0, OxOOOD, 0);

}
biosprim(0, V, 0);
Î++/

}
return (0);

}

/* TSR STDERR output routines, no malloc */

/• returns length of far string */

#ifdef JASCVER
i^define fstrlm(s) Jstrlen(s) //MSC6.0
*else

size t fstrlen(const char far *s) // MSC 5.1
{ '

sizej len = 0;
whÛe Cs+ +) len + +;
return len;

}
*endif

size t strlen(const char *s) // TURBO C
{ ~

size J len = Cjr

return len;

unsigfted doswriu(int hartdle, char far % unsigned len)
{

unsigned bytes;
bytes = jvtite(hantUe,(void *)s, len);
return ijïes;

}

unsiffted put str(char far's)
{

return doswrite(STDERR, s, fstrlen(s));

219

}

unàgned put chr(iiu c)
{

return doswriu(STDERR, (void far &c, l);
}

unàgned put num(unsigned long u, unsigned wid, unsigned radix)
{

charbuf[MAX_WID+l], 'p;
int 4 di ̂
if (wid > MAX_W1D)

return (Ô);
for (i^wid-l, p^Ahuffwid-l]; i > = 0; p-, u /= radix)
{

digit ' u % radix;
'p ' digU + ((digit < 10) ? V ;'A'-10);

}
buf[wid] = 0;
return (doswrite(STDERR, (void far *) buf, wid));

}

/* Substitute for printf function */

int CdecI TSRprintf (const char *fmt,...)
{

static char buff 128];
int Un;
vajist marker;
vajtart(marker, fmt);
len = v^)rintf(buf fint, marker);
va_end(marker);
return doswrite(STDERR, (void far *) buf, ten);

}

unsigned get str(char far 's, unsigned len)
{

unsigned rcount;

/• give TSRs a chance by calling INT 28h */
while (.' bioskey(KEYBRD_READY))

genituerrupt(0x28);

if (((rcount » jtad(STDERR, (void *)s, len)) .'= 0) 11 (rcount < 3))
return 4

s{rcount-2J - '\0':
remm rcount-2;

/* ibmpc.c •/

/•
• Low-level functions addressing BIOS A PC Hardware
V

/* position the cursor •/

220

void gotoXY(int x, int y)
{

rgj(.ax - 0x0200;
rgjc.bx • 0;
rgxdx " ((y << 8) & OxjfOO) + x;
int86(0xl0, Arg, Arg);

}

/• return the cursor position •/

void curr cursor(int *x, int 'y)
{

rgje.ax = <bc0300;
rgJC.bx = 0;
iruS6(16, Arg, Arg);
*x = rg.Kdl;
*y = rg.h.dit;

}

/* set cursor type */

void set cursor type(int i)
{

rgjcax = 0x0100;
rgjc.bx " 0;
rgjc,cx = t;
itu86(16, Arg, Arg);

}
/•page*/
char attrib = 7;

clear the screen */

void clear screen(char ch)
{

scr = MK_FP((color_adpt() ? QxBSOO: QxBOOO), 0x0000);
gf>toXY(0, 0);
rg.haJ =• ch;
rg.h.ah = 9;
rgjcbx = (scr[wherex()]lwherey()].s_attr);
rgjc.cx = 2000;
ùtt86(ûxI0, Arg, Arg);

}

void clear win(iiuxl, imyl, intx2,inty2, charsA BYTE attrib)
{

scr - MKJP((color_adpt() ? 0x8800: OxBOOO), 0x0000);
gotoXY(xi-l, yl-1);
rg.h.al • ch;
rg.h.ah • % -
rgx,bs - attrib ? attribAOxT? ; (scrlwherex()J{wherey()J.s attr);
rgxcx = ((y2.yl)+2)* ((x2-xl) ? 80: 80); /•2000;*/
int86(0«10, Arg, Arg);

}

/• return the video mode •/

int vmode()
{

221

rgAah - 15;
int86(16, Arg, Arg);
return rg.h.aJ;

}

/« test for scroll lock */

int scroll lockQ
{

rgx.ax = 0x0200;
int86(Qxl6, Arg, Arg);
return rg.hal A 0x10;

}

void Chelpfimc)(void);
int helpkey = 0;
ittt helping = 0;

/* gft a keyboard character •/

int get char{)
{

intc;

while (1) {
rg.h.ah = 1;
int86(Qxl6, Arg, Arg);
if (rgjc.flags A 0x40) {

iiu86(0x28, Arg, Arg);
continue;

}
rg.Kah = 0;
int86(0xl6, Arg, Arg);
if (rg.Kal == 0)

c = rg.h.ah \ 128;
else

c = rg.h.al;
if (c = = helpkey AA helpfunc) {

if (.'helping) {
helping = i;
(•helpfunc)();
hewing = 0;
continue;

}
}
break;

}
return c;

r
void gotoXY(int x, int y)

{
union REGS r;

r.h,ah = 2;
r.h.di = x;
r.h.dh a y;
r.h.bh = 0;

222

btt86(0xl0, Ar, AT);
}

V
void ctrEol(void)
{

union REGS r;

scr = MKJP((color_adptO ? QxBSOO; OxBOOO), 0x0000);
r.h.ah = 4
r.hal = 0;
r.h.cH = wherv/();
r/ucl " wherexQ;
r./udt " 79;
r.h.dh = whereyO;
r.h.bh = (scr[wherex()J[wherey()}.s_attr);
int86(0xl(̂ &r, &r);

}

223

CRAMINFO.C Routines used to access information in CRAM. These routines

can be used with any other software to gain access to

information stored in CRAM.

^include <mem.H>
^include <string.h>

<stdio.h>
^include <stdlib.h>
^include <dos.h>
^include <setjmp.h>
^include <time.h>

include <aUoc.h>
itmclude "tsr.h"
^include "cram.h"

struct date ddate;
struct time dtime;

it define SIG 'Vopyright(c) 1991 Renford A. B. Brevett at Iowa State University "
LINEFEED 0x13

itdefine SPACE 0x20
itdepne PSP ENV ADDR Ox2C /* environment address from PSP */
^define STACK SIZE 8192
define BYTES'PER TRACK 4609 / Total bytes per track plus 1 for nutt byte'/
^define PARAGRAPHS(x) ((FP OFF(x) + 15) >> 4)

/'
extern unsigned pM_str(char far's);
extern unsigned put_num(unsigned long u, unsighted wid, unsigned radix);
^define puijiex(u) put_num(u, 4, 16)
^define put_bit(u) put_num(u, 2, 16)
^define putJong(ul) pût_num(ul, 9,10)
^definepuistr(s) {put sff(s);put str("\r\n');}

•/
unsigned char multiplex id;

struct dfree
long

DWORD
static DWORD
int
irU
int
struct DPT
struct BPB
struct HST
int
int
int
int
long
int

dsf^ee;
dskavail,

sysmem;
maxmem = OxAOOOL;

savjtart, savjnd;
skiptrack;
q>c;
DEBUG = 0;

dpt;
bpb;
hst;

apt;
cmd;
drive;
head;
track;
sector.

Uu
BYTE
BYTE
static BYTE
ini
char
long
long
long
long
unsigned long
unsigned char far
Idivj
Idivj
Idivj
unsigned long

WORD
MCB far
MCB far
unsigned long

static BYTE
BYTE
WORD
unsigned long
unsigned long
static BYTE
static unsigned long
static time t

nsects;
buffer[BYTES_PERTRACK];
swapjaveJ}uf[1852];
signôie[SÏ2];
result;
dn>[3] = "Z";
maxsectors;
maxsides;
maxtracks;
DOSsec;

data jec;
*com>_mem jwr;

segjal;
offsjal;
segjff;

seg = 0x0000,
offs = 0x0000;

towmem;
*mcb;
'first mcb;

START SÊG,
~ START OFF,

SEC SËG,
REMJEC;

startJlag^O;
resetjnem;
secjegljnd =0;

U;
savetime = OL;
timelag - Qx3C;
secloop;

tl, 12;

struct CRAMJiEADER c header;
char far 'stack j)tr;
char far *ptr;
char far *sigj)tr;
char far *sig-
unsigned far *Jp;
unsigned memtop;
jmp_buf cramjnv;
struct ExtErr 'Errlitfo;
WORD headerjize;
char cjd[2][4j;
DWORD reservedjec;
struct free Jot f Jtte;
DWORD chistjeq 'SOOVL;
extern struct SREGS sregs;
extern union REGS regs;
extern SCRLINE far *scr,
extern MCB far *^jncb (void);
char far 'diskette;

l a s a B a B B S s s a s s s a a a s s a a s i

a s a a a a a a a

int get header(void)
{
longk^OL;

225

nsecu " l;
scrlOJ [OJ^jhar = QxOOFO;
scr[0] [OJsjUtr = ((scr[OJ [0].s jutr >> 4) (scr[0] [OJ.s atir << 4)) & 0x77;
DOSsec = datajec;
if ((result • getiecu>r(drive, nsecis, ADOSsec, &bpb, &dpt,

àgnou)) /= 0)
reium(resuU);
tnemcpy(Asig Asignote[kJ, /*sizeof(àg)*/strlen(SlG));
k +" salen(SIG);
memcpy(&(ipt, Asignote[k), sizeof(dpt));
A + = sizeof(dpt);
memcpy(Abpb, Sisignote[k], sizeof(bpb));
* + = sizeof(bpb);
memcpy(Ac_header, isignotefk], sizeof(c_header));
k + = sizeof(cJteader);
ntemcpy(AcTam_env, AsignotefkJ, sizeof(cram_env));
k + = sizeof(cramjnv);
memcpy(Aheaderjize, Asignote[506], sizeof(fteader_sae));
memcpy(&cjd[lj,Asignote[S08], 4);
memcpy(&cjd[0] ,AcjKader.lD, 4);

remm(k);
}

int reset video(void)
{

nsects = 8;
DOSsec = cjteader.videojec;
stohst(drive, hst.TRACK, hstHEAD, ADOSsec, Abpb, Adpt, Ahst);
if ((result = biosdisk(READ, hst.DRIVE_NUM, hstHEAD, hs(.TRACK

hstSECTOP, nsects, buffer)) /= 0)
retum(result);

movedata(FP_SEC(buffer), FP_OFF(buffer), QxBSOO, 0x0000, 0x1000);
nsects = 1;
return(O);

}
void print regs(wid)
{

printf("\n \r\n \r Registers saved for the ongoing process in CRAM \n \r"^;
printf("\r\/» CS = %.4X DS = %.4X ES = %.4X SS = %.4X"

" X r X n A X = . % , 4 X B X = % . 4 X C X = % . 4 X D X = % . 4 X '
"\r\rt BP " %.4X DI = %.4X SI = %.4X SP =
"\r\/i IP =» %.4X PSP = %.4X FLAGS = %.4X\r\n'
''\r\n CRAM PSP =
c_header.es,
c_headerJ)S,
cJteader£S,
c_header.SS,
cJteaderjVC,
cJteaderSX,
cJieader.CX,
cheaderDX,
cheaderJBP,
cJteaderJ)!,
cJteader.Sl,
cJteaderSP,
cJteaderJP,
c_header.PSP,
cjKader.FLA GS,

226

c header.cram_psp);
}

int priiuHeader(void)
{

char cJD[5] = {V, V, !*', k: •\0'};
unsigned day, month, year,hour,min,sec;
char amjpm[3] = {'a','m','\0'};
if (((cjteader.time & OxFSOO) > > OxOB) > = 12)

am_pm[OJ » 'p';
else
amj)m[0] • 'a';

memcpy(AcJD, AcJteaderJD, 4);

printfC'\r\n CRAM ID. %.*s %.»s"
"\r\« DATE & TIME OF LAST SA VE: %.2u-%.2u-%u %.2u;%.2u;%.2u%s"
"\r\rt ACCESS INFORMATION %-. V')

4.c_id[0],
4,cjd[l],
(cjieader.date A QxlEO) > > 0x05,
(cJteader.dau) & OxlF,
7*80 + ((cjteader.date & QxFEOO) > > 0x09),
(((cjteader.time A OxFSOO) >> OxOB) >12)

? ((cjteader.time A OxFSOO) > > OxOB) -12
: ((cjteader.time A OxFSOO) > > OxOB),

(cjteader.time A Ox7EO) > > 0x05,
(cjieader.time A QxIF) • 2,
am j>m,
16, (c header./ accessfO] = = QxOO ? "NOT assigned" ; c header.f access)

printf("\r\n CRAM CHECKSUM %.4X"
"\r\/» TOTAL CLUSTERS OCCUPIED BY CRAM
"\r\n CLUSTER WHERE CRAM STARTS

cjteader.checksum,
cjieader.clusters,
cjteader.start cluster);

printf(''\r\n ALL PASSWORDS %-.
"\r\n EXTENDED ERROR INFO %.4X:%.4X:%.4X (ax;bx:cx)"
"\r\n SEGMENT AT START OF CRAM %.4X"
"\r\n CRAM FILE SIZE %lu BYTES"
"\r\n CHECKSUM FOR INTERRUPT VECTOR %.4X"
"\r\n SIZE OF MEMORY FILLER %u BYTES"
"\r\n SECTOR AT END OF FIRST SEGMENT IN CRAM %u",

4, (cJieader.password[OJ » » OMO ? "NONE" ; c header.password),
cJiutder£rrInfo.enax,
cJieader£rrInpo.enta,
cJieaderJEnInJb.errcx,
cJieaderjtartjuidr,
c header.f me,
c_header.iM_checkswn,
cJteader.offiJUler,
c header.sec segl end

) ; '
prinif("\r\n SECTOR AT START OF VIDEO MEMORY %u"

"\r\n SECTOR AT START OF DSA MEMORY %u"
"\r\n SECTOR A T START OF MCB MEMORY %u "

Vctu"
%tu",

227

-\r\/i SECTOR AT START OF STACK MEMORY %u'
'\r\n SECTOR AT START OF INTERRUPT VECTOR MEMORY %u"

SECTOR AT START OF CRAM MEMORY %u"
'\r\n SECTOR OF LAST CRAM MEMORY SAVED %u'
'\r\n SECTOR AT START OF CRAM HEADER %u"
"\r\n SIZE OF DOS SDA %d"
'•\r\n DISK TRANSFER (DTA) ADDRESS I CRAM J 1%.4X:%.4X}"
"\r\n DISK TRANSFER (DTA) ADDRESS [process] [%.4X;%.4X]",

cjteader.videojec,
cjieader.dsajec,
cjteader.mcbjec,
cjteader.stack_sec,
cheader.intjec,
cjteader.memjec,
c_header. currjnemjec,
cjteader.datajec,
cjteader.dsajize,
cjteader,cram jltajeg,
cJteader.cramjUaoff,
cjteader.dtajeg,
cjteader.dtayff
);

pause(O);
printfC\r\nCRAM SEGMENTS REGISTERS INFORMATION \r\n\r\n"

"SEGMENT FLAG CHECKSUM SECTOR SIZE RESERVE-);
for (i=0; i<MAX SEG; i++)
{

WORDj;

y = I ' OxlOÙO;
prmtf(''\it\r %.4X %c %.4X

J,
c_header.save_segjlag{i] + CbcFA,
c_header.seg_checksum[i],
cJieader.sectorJn_cram[iJ,
c_header.sùej)fjeg[i],
c header.reserv^Jor seg[i]
)~

}
cprintfC\n\rSIZE OF HEADER ; /%«/

remm(O);
}

void prinûmp(void)
{

printf(''\r\n\r\nLast JMPinformation \r\n'');

printf(
"\r\/« CS - %.4X DS - %.4X ES = %.4X SS - %.4X'
'\r\n BP - %.4X Dl - %.4X SI - %.4X SP - %.4X"
'\r\rt IP " %.4X FLAGS = %.4X',

cramenvfOJ.jcs,
cram_em[0].j_ds,
cram_env{OJ.j_es,
cramjnvfOf.jjs,
cram_env[OJ.j_bp,
cram_env[0].j_di,
cram_env[0}.jji,
cramjnv[OJ.j_sp,

%.4X %.4X %c",

headerjize);

228

aamjnvlOJ.JJp,
CTam_env[0).jJkig

)!
/* typedef Struct {

unsigned jjp, jjs,
unsigned jjiag, j_cs;
unsigned jJp, j_bp;
unsigned j jli, jjs;
unsigned j si, j_ds;

} jmp_buf[lj;
V

}

int main(int argc, char 'argv(J)
{

unsigned long seg, offs=OL;
Idivj seg_cal, offsjal;
DW^RD cksum;

if(argc > 1)
if(strstr(strupr(argv[l}),"M") != NULL)
{

clrscrQ;
i = 5;
ckstm = mem_çhecksum(OxOOOO,QxOOOO, 0x400);
gotoxy(l,i ̂+),'
printf ("Interrupt Memory Checksum ; %.8X",cksum);
ckstm = OxBB;
cksum = mem_checksum(QxOOOO,0x0000, OxAOOOO);
gotoxj)(l,i ̂+);
printf ("Total Memory Checksum(640K) : %.8X",cksum);
cksum = CKBB;
cksum = mem_checksum(OxOOQO,0x0000, 0x100000);
g0t03y(l,i+ +);
printf (Total Memory Checksum(l Meg.): %.8X");
cksum = OxBB;
cksum = mem_checksum(OxOOOO,0x0000, 0x10);
gotoxy(l,i+ +);
printf (Test Memory Checksum : %.8X",cksum);
p<U4se(0);

}
drive = get_driveJnfo(drv);
printf("\n\r Drivelnformation for Drive #%d leaer %.2s", drive, drv);
result = getj_natne();
if (result > 0~)
datajec - cluster2sector(result);

else
datajec - get_datajec();

get_header();
/• getfatJnfo(&fJtee, clustjeq);*/

if(data sec <" 0) _exit(2);
else
{

printBPB(bpb);
pause(l);
printDPT(dpl);
pause(l);
printlmpO;

229

printjegsO;
pause(l);
printHeaderO;
pause(l);

}

return (0);
}

