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CHAPTER 1. INTRODUCTION

In many areas of application, like medical sciences, variables of interest are not directly

observable but only through some error contamination. These cases are often referred as

“measurement error problems”.

Kernel deconvolution density estimation (KDDE) is a measurement error problem which

consists in estimating the density of a population that is observable only with some error

contamination. For sake of clarity, we will use a simple example, suppose that we wish to

get an estimate of the distribution of the number of steps taken by a particular population.

Portable pedometers do the job, but number of steps may be very different from device to

device (even between two devices of the same brand). Thus, the measurement error induced

by the device should be taken into account.

Assume for the moment that the distribution of the measurement error is known among the

pedometers used. Then, assume that we have a sample Y1, . . . , Yn that come from the model

Y = X + ε, (1.1)

where X is the (unobservable) distribution of the number of steps and ε measurement error of

the device.

KDDE is a modification of the kernel density estimator (KDE). Recall that the KDE of the

sample X1, . . . , Xn from the random variable X is given by

f̃X(x) =

n∑
i=1

1

nh
K

(
x−Xj

h

)
, x ∈ R, (1.2)

where K is a symmetric function that integrates to one, called the kernel function, and h is

called the bandwidth parameter. Using the Fourier inversion theorem we see that the estimator
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f̃ in (1.2) is mathematically equivalent to

f̃X(x) =
1

2π

∫ ∞
−∞

exp(−ıxt)φ̂X,n(t)Kft(ht)dt, x ∈ R, (1.3)

where φ̂X,n(t) = n−1
∑

i exp(ıtXi) is the empirical characteristic function of the sample and

Kft(s) =
∫

exp(ısx)K(x)dx is the Fourier transform of the kernel K.

We cannot use (1.3) with the contaminated sample (even less if the error is not negligible).

The KDDE is a modification of (1.3) that depends directly of the contaminated sample:

f̂X(x) =
1

2π

∫ ∞
−∞

exp(−ıxt)φ̂Y,n(t)
Kft(ht)

φε(t)
dt, x ∈ R, (1.4)

where φε(t) = (2π)−1
∫

exp(−ıtx)fε(x)dx is the characteristic function of ε, which has density

fε. Therefore, the KDDE and its properties are mostly studied in the frequency domain.

Several challenges arise with the KDDE. We will list next a few of these.

1. Observe in (1.4) that taking K with Fourier transform that is compactly supported would

ensure that the integral exists and it would be easier to compute it. Moreover, convergence

rates are easier to find if Kft has compact support.

2. The integral in (1.4) is hard to obtain due to the oscillating nature of the integrand. It

is important to have effective and fast numerical procedures to do it.

3. It is unrealistic most of the times to assume that the error distribution (its characteristic

function in particular) is known. In real life it can be approximated by providing an

independent sample of errors based on repeated measures. In our pedometer example,

we can imagine designing an experiment actually counting the differences in steps to

approximate the error distribution. For the latter, every individual could wear several

pedometers at the same time, thus there would be repeated observations for the same

individual.

4. In the case of having repeated measurements, the observations are not independent.

There are several ways to obtain a (contaminated) sample and to obtain observations to

approximate the error.
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5. Equation 1.4 can be generalized to higher dimensions. The literature in that case is not

extensive.

6. A challenging problem in KDE is the bandwidth selection. In order to generalize any of

the existing methods to KDDE, it is necessary to take it first to the frequency domain.

This is not always possible or straightforward.

In this work we approach several of this problems. In particular, in Chapter 2 we conduct a

numerical investigation of bivariate KDDE to investigate item 1 by comparing several kernels

whose Fourier transform has compact support. We pay special attention to a class of kernels

referred as “flat-top kernels” (cf. Politis and Romano (1999)). We also study several aspects

of items 3 and 4 in Chapter 2 and compare two nonparametric ways to approximate the

(characteristic function of the) error distribution.

Chapter 3 describes an R package to compute univariate and bivariate continous Fourier

transforms, which is versatile enough to perform integration using any definition of continu-

ous Fourier transform and its inverse. The implementation for the regularly spaced grid is an

algorithm that uses the so-called Fast Fourier Transform that it is known to reduce drasti-

cally the computation time. We actually use the C++ library called Armadillo to speed up

computations.

We use the R package described in Chapter 3 to create an R package specialized in fast

computation of KDDE under several scenarios including the ones described in items 3 and 4

for univariate and bivariate samples. This R package also allows the user to approximate the

error in a parametric or nonparametric fashion with ease. The bandwidth selection method is

based on cross-validation (cf. Youndjé and Wells (2008)) and it allows the user to visualize the

function that had to be minimized to find the bandwidth.

Finally, in Chapter 4 we propose a bandwidth selection which does not require non-trivial

iterative steps and does not require knowledge of the smoothness level of the target distribution

(cf. Delaigle and Gijbels (2004b) and Fan (1991a)). This bandwidth selection method is

inspired by Politis (2003a) in the context of spectral density estimation and KDE.
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CHAPTER 2. A NUMERICAL INVESTIGATION OF BIVARIATE

KERNEL DECONVOLUTION WITH PANEL DATA

A paper to be submitted

Guillermo Basulto-Elias, Alicia L. Carriquiry, Kris De Brabanter and Daniel J. Nordman

Abstract

We consider estimation of the density of a multivariate response, that is not observed di-

rectly but only through measurements contaminated by additive error. We focus on the realistic

sampling case of bivariate panel data (repeated contaminated bivariate measurements on each

sample unit) with an unknown error distribution. Several factors can affect the performance of

kernel deconvolution density estimators, including the choice of the kernel and the estimation

approach of the unknown error distribution. We show that the choice of the kernel function is

critically important and that the class of flat-top kernels has advantages over more commonly

implemented alternatives. We describe different approaches for density estimation with mul-

tivariate panel responses, and investigate their performance through simulation. We examine

competing kernel functions and describe a flat-top kernel that has not been used in deconvolu-

tion problems. Moreover, we study several nonparametric options for estimating the unknown

error distribution. Finally, we also provide guidelines to the numerical implementation of kernel

deconvolution in higher sampling dimensions.

2.1 Introduction

A challenge in many areas of application (e.g., medical sciences) is that responses of interest

are not observable; instead, responses are measured with error contamination. Such cases are
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frequently referred to as “measurement error problems” and arise frequently in applications.

An example from nutrition epidemiology is the following. Suppose that we wish to estimate the

joint density of the “usual” or long-run average of serum iPTH (intact parathyroid hormone)

and 25(OH)D (25-hydroxy vitamin D), both of which are associated with bone health. While

daily values for these two substances can be measured reliably, they are noisy estimates of their

long-run averages, which are the quantities of interest. Ignoring such measurement error can

lead to biased inference. Kernel deconvolution density estimation provides an alternative way to

remove measurement error in estimating a target density, without the need for stringent para-

metric assumptions. Deconvolution estimation typically involves translation to the frequency

domain to approximate the characteristic function of a target variable through the estimated

characteristic functions of noisy measurements and errors. Although kernel deconvolution has

received much attention for univariate observations, the case of multivariate observations has

received less consideration, especially for the more realistic case where little is known or can be

immediately assumed about the error distribution and where the observations consist of one or

more (correlated) measurements on subjects (i.e., panel data structure). In particular, there

has been limited theoretical development for the bivariate panel data case and even less for the

multivariate case.

In this paper, we focus on a simulation-based study to explore the performance of deconvo-

lution methods, in particular when applied to bivariate panel data. The performance of kernel

deconvolution estimation in the multivariate setting depends critically on a combination of

factors that have not been well studied. These include the choice of kernel, the way in which

panel data are pre-processed, the number of measurements obtained for each sample unit, and

the approach to estimating the unknown error distribution. Through simulation, we study

the impact of these potentially important factors in order to better understand the practical

issues associated with implementation of kernel deconvolution and to inform possible future

theoretical developments in this area.

In addressing bivariate kernel deconvolution, we consider five candidate kernel functions for

which the Fourier transform has bounded support, include the sinc kernel (a popular choice

in the univariate case) and a trapezoidal flat-top (where the latter is novel in deconvolution
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problems). Additionally, we compare different approximations to the (unknown) characteristic

function of the errors with panel data. Such approximations involve choices on how to incor-

porate replicate measurements and combine these with either a direct empirical estimator or

an indirect kernel density-based estimator of the characteristic function of the error. Perhaps

surprisingly, our findings suggest that in contrast to some claims in the univariate setting, the

way in which panel data are processed (i.e., differenced to estimate the error distribution) has

little impact, and that kernels commonly used with univariate measurements do not perform

as well as other kernels (e.g., ”flat top”) studied here for the multivariate case. Further, ker-

nel deconvolution estimators for multivariate responses pose more computational challenges, in

particular for numerical integration. To overcome the computational challenges, we use an algo-

rithm based on a Fast Fourier Transform (FFT) that improves efficiency without compromising

accuracy .

We end this section with a brief review of the literature. An extensive discussion of the

univariate deconvolution problem can be found in Meister (2009). For the multivariate setting,

asymptotic convergence properties when the error distribution is assumed to be known can be

found in Masry (1991, 1993a,b). The selection of a single bandwidth parameter (diagonal band-

width matrix with equal diagonal entries) using cross-validation was proposed by Youndjé and

Wells (2008) while Comte and Lacour (2013) who also focused diagonal bandwidth matrices,

proposed estimating its diagonal elements as the minimum of an empirical approximation to

the asymptotic integrated mean squared error. Johannes (2009) and Comte and Lacour (2011)

considered the situation where the error distribution is unknown, but a sample of pure errors is

available. None of these papers considered multivariate panel data (i.e., repeated multivariate

measurements on each subject, contaminated with error). In the univariate panel data setting,

with unknown error distribution, several approaches have been proposed for estimating the

characteristic function of the error. Delaigle and Meister (2008) suggested using all possible

measurement differences available for each individual with deconvolution applied to the mea-

surement averages per subject. Stirnemann et al. (2012b) and Comte et al. (2014) proposed

taking simple pairwise differences of the replicate measurements to approximate the character-

istic function of the error; only the first noisy measurement on each subject is then used in the
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deconvolution steps that follow. Ridge terms or truncation, as in Neumann and Hössjer (1997),

are typically applied to control the estimated characteristic function of errors for small values.

For the vast majority of the literature discussing deconvolution with univariate panel data,

the most frequently chosen kernel is the sinc kernel because it has been shown to have good

theoretical properties (e.g., its Fourier transform is flat around zero as suggested by Devroye

(1989)) and because its form permits applying the FFT for numerical integration.

This paper is organized as follows. Section 2.2 describes the general density estimation

problem and how it can be approached with kernel methods, with special attention to the

panel data case introduced in Section 2.2.2. In Section 2.3, we outline several potentially

important attributes of the deconvolution method that may impact performance. In particular,

Section 2.3.1 discusses how to approximate the characteristic function of errors from a panel

data structure, and Section 2.3.2 describes candidate kernel functions. Section 2.3.3 provides

numerical integration tools required for bivariate kernel density deconvolution. In Section 2.4

we present the design of a large simulation study and discuss the numerical results. Finally,

conclusions are presented in Section 2.5.

2.2 Problem description

We first outline the estimation method for multivariate kernel density deconvolution in

general. Section 2.2.1 introduces some initial background in the context of a simplified version of

kernel deconvolution density estimation in the multivariate setting. Section 2.2.2 then discusses

the case of multivariate panel data and some related estimation issues that arise in this situation.

For illustration purposes, we focus on the case of bivariate measurements X ∈ Rd, d = 2,

although generalizations to any dimension d of the observation vector are possible.

2.2.1 A simplified estimation framework

Suppose that we are interested in estimating the distribution of a two-dimensional random

variable X that cannot be directly observed. Instead we observe X convoluted with random

noise, say, Y = X + ε, where ε ∈ R2 is the random noise vector. The standard deconvo-

lution estimation problem consists of estimating the density of X using a random sample of
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measurements

Y i = Xi + εi, (2.1)

for i = 1, . . . , n. In (2.1), the collection {Xi}ni=1 is independent and identically distributed (iid)

and so is the variable set {εi}ni=1. Furthermore, for each measurement Y i, the response Xi of

interest is assumed to be independent of the error εi.

We require some notation before introducing the deconvolution formulas. Let φY (·) denote

the characteristic function (CF) of the random sample Y 1, . . . ,Y n, and let φ̂Y ,n(·) denote the

empirical CF. That is, for any t ∈ R2,

φY (t) = E
(
eıt·Y 1

)
and φ̂Y ,n(t) =

1

n

n∑
j=1

eıt·Y j ,

where the dot product · above represents the usual inner product in R2 and ı =
√
−1. For a

real-valued function g : R2 → R, denote its Fourier transform by g∗, where

g∗(t) =

∫
eıt·xg(x)dx. (2.2)

When g is a (multivariate) density function, then g∗ represents its CF.

By the independence of Xi and εi in (2.1), the CF φX(·) of the uncontaminated measure-

ments X can be obtained from that of φY (·), the CF of the observed measurements, as

φX(t) =
φY (t)

φε(t)
, t ∈ R2,

whenever the CF of the errors φε(·), is non-zero (i.e., t ∈ R2 with φε(t) 6= 0). Consequently,

by applying the Fourier inversion theorem, we can compute the density of X at x ∈ R2 as

fX (x) =
1

(2π)2

∫
e−ıt·x

φY (t)

φε (t)
dt, (2.3)

which is the distribution of the uncontaminated response X. Because φY is typically un-

known, we may replace it with its empirical version, φ̂Y ,n, but the resulting function in (2.3)

might not be integrable. However, by substituting a smoothed estimator version instead, say

φ̂Y ,n(t)K∗(Bnt), we obtain a valid (kernel) estimator of the density of X as

f̂X,n (x) =
1

(2π)2

∫
e−ıt·xφ̂Y ,n (t)

K∗ (Bnt)

φε (t)
dt, x ∈ R2. (2.4)
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Here K∗ denotes the Fourier transform of a smoothing kernel K and Bn denotes a 2×2 (positive

definite) bandwidth matrix.

Note that (2.4) assumes that the CF of the underlying error terms, φε, is known. Under the

general data model (2.1), it is frequently assumed that either the error distribution is known

or that there exists a sample of pure errors, obtained independently of Y 1, . . . ,Y n, that can

be used to estimate the error CF (see Johannes (2009) and Comte and Lacour (2011)). These

assumptions are often unrealistic in many applications. Therefore, in this paper we will not

make such assumptions when describing the estimation with panel data in Section 2.2.2.

2.2.2 Kernel deconvolution estimation with panel data

We now discuss kernel density deconvolution estimation for bivariate panel data. For such

data, an additive noise model is given by

Y ij = Xi + εij , (2.5)

for i = 1, . . . , n and j = 1, . . . ,m. Here Y ij represents the d = 2 observations for the i-

th individual on the j-th measurement occasion. As in model (2.1), the iid uncontaminated

response variables {Xi}ni=1 are independent of the iid errors {εij : i = 1, . . . , n; j = 1 . . . ,m}.

For simplicity, and without loss of generality, we assume that the number m of observations

is the same for every sample unit (individual). Note that while sample units are assumed to be

independent, the components among the d-dimensional measurements for each unit are typically

not independent, and the replicate measurements obtained on each unit are also correlated.

We wish to estimate the joint density fX of the uncontaminated variables {Xi}ni=1. Under a

panel data structure, the standard deconvolution density estimator (2.4) needs to be modified

to account for the dependence among replicate measurements on each sample unit. That

is, measurements made on the same subject are no longer independent, as was the case in

Section 2.1 (i.e., instead two measurements Y ij and Y i′j′ are independent only if i 6= i′).

As in the univariate panel data setting, there are several ways to account for the panel data

structure when using the estimator (2.4) of the density fX . Comte et al. (2014) use only the first

measurement for each subject {Y i1}ni=1 to estimate the common CF of the measurements, φY .
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However, this approach ignores the other m − 1 measurements available for each subject and

therefore may entail some information loss. Instead, we propose making use of all observations

obtained on each subject to compute an average measurement for individual; we then re-

formulate the deconvolution estimator to be based on the CF of the averages, say φȲ , rather

than on the CF of individual responses φY in (2.4). That is, we first average observations in

(2.5) per individual,

Ȳ i· = Xi + ε̄i·, i = 1, . . . , n. (2.6)

When the response variable is the average of m replicate measurements, the error term ε̄i·

in (2.6) represents an average of m iid error variables with CF given by φε̄(t) = [φε (t/m)]m

in terms of the CF φε of an original (i.e., single) error term in the panel data model (2.5).

Therefore, instead using the kernel density deconvolution estimator (2.4), we use a modified

estimator given by

f̂X,n(x) =
1

(2π)2

∫
e−ıt·xφ̂Ȳ ,n (t)

K∗ (Bnt)

φε̄ (t)
dt (2.7)

=
1

(2π)2

∫
e−ıt·xφ̂Ȳ ,n (t)

K∗ (Bnt)

[φε (t/m)]m
dt,

for x ∈ R2 based on the CF of error averages, [φε (t/m)]m and the empirical CF of subject

averages is {Ȳ i}ni=1, φ̂Ȳ ,n(t) = n−1
∑n

j=1 e
ıt·Ȳ j , t ∈ R2.

However, there are several issues that require examination when implementing an estimator

of the form (2.7) with panel data. These can impact the performance of the kernel deconvolution

estimator f̂X,n, which we numerically investigate in Section 4. Firstly, the error distribution is

typically unknown so that the associated CF φε in (2.7) needs to be estimated. By exploiting

the repeated measurement in the panel data structure, we can construct at least two different

estimators, both of which are based on differences between measurements within subjects. We

elaborate on this issue in Section 2.3. Potential formulations for constructing differences be-

tween measurements in panel data are also outlined in that section. A second issue that arises

is that the deconvolution formula (2.7) requires specification of a multivariate kernel function

and the bandwidth matrix for that kernel. Section 2.3.2 discusses several types of kernels that

may be considered, including “flat-top” kernels that have been successfully used for spectral

density estimation but that have not been applied in deconvolution problems (cf. Politis and
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Romano (1995), Politis (2003b), Politis and Romano (1999)). Finally, the deconvolution esti-

mator includes integrals that are often numerically approximated; in contrast to the univariate

data, the multivariate setting introduces further challenges for the evaluation of a density es-

timator f̂X,n(x) at vector points x ∈ R2. In Section 2.3.3, we describe some numerical recipes

that greatly improve computational efficiency in the multivariate deconvolution setting.

2.3 Challenges in deconvolution estimation with panel data

2.3.1 Estimation of the error distribution

Assume for now that the number m of observations for each individual is even for the

panel data (2.5). In the univariate setting, Comte et al. (2014) proposed constructing pairwise

differences between repeated measurements (within individuals) as

Y i,2l−1 − Y i,2l = εi,2l−1 − εi,2l, (2.8)

for i = 1, . . . , n and l = 1, . . . ,m/2. The reason for formulating differences within individuals

is that the measurement differences correspond to differences in error terms (i.e., common

unobserved variables Xi drop out). Each measurement is used only once to create a difference

in (2.8), and therefore the nm/2 differences across all individuals are iid. Another possibility

is to consider all possible within-individual differences, as in Delaigle and Meister (2008); that

is

Y i,j − Y i,j′ = εi,j − εi,j′ , (2.9)

for i = 1, . . . , n and j < j′. This approach results in a higher number of measurement differences

(i.e., nm(m − 1)/2 differences) which, though identically distributed, are not independent.

Finally, we might also consider an intermediate method, which leads to an intermediate sized

collection of measurement differences, with a weaker dependence structure relative to (2.9). In

this approach, the last m − 1 measurements for each sample unit are deviated from the first

one as follows:

Y i,j − Y i,1 = εi,j − εi,1, (2.10)
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for i = 1, . . . , n and j = 2, 3, . . . ,m. In this case, there are n(m − 1) measurement differences

which are not independent. In contrast to (2.8), the differencing strategies (2.9) and (2.10)

do not require an even number of observations per individual. The simulation experiments in

Section 2.4 compare the performance of deconvolution estimators based on these three types

of measurement differences.

Regardless of the chosen approach, the processed data consist of a collection of differenced

measurements or error differences, say δ1, . . . , δk, where the number of differences k depends

on the differencing approach (2.8)-(2.10). We propose a methodology to estimate the error CF

φε in (2.7) with these differences. By the iid property of individual error terms, observe that,

for t ∈ R2 and j 6= j′, the CF φδ of a within individual measurement difference is given by

φδ(t) = φεi,j−εi,j′ (t) = φεi,j (t)φεi,j′ (−t) = φε(t)φε(−t) = |φε(t)|2 . (2.11)

If we assume that the distribution of the panel data errors is symmetric and its CF is never

zero, then

φε(t) =
√
φδ(t) (2.12)

holds when φε is real-valued (by symmetry) and also positive (by φε(0) = 1 and by the assump-

tion that φε is never zero). Thus, under the multivariate panel data structure, an estimator

for the CF of an error term, φε, is given by

φ̂ε(t) =

√∣∣∣<(φ̂δ(t))∣∣∣, t ∈ R2, (2.13)

where <(.) denotes the real part of a complex number and φ̂δ(t) = k−1
∑k

j=1 exp (ıt · δj),

t ∈ R2, is the empirical CF of the measurement differences {δj}kj=1.

Note that the estimator (2.13) of the (single) error term does not require stringent assump-

tions on the distribution of the errors. To our knowledge, empirical CFs seem to be the main

nonparametric approach for estimating such error CFs in the deconvolution literature (albeit

often in the non-panel data setting where an independent sample of pure errors is assumed to

be available). In the simulations of Section 2.4, we also consider an alternative approach for

estimating the error CF, for comparison to the empirical CF (2.13) of differences. This alter-

native approach uses measurement (or error) differences {δj}kj=1 to formulate a kernel density
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estimator for the distribution of the differences; a Fourier transform of this density then pro-

vides an estimator φ̂δ of the CF φδ. Instead of the empirical CF of differences, this estimator

φ̂δ can then be substituted in (2.13) to approximate the error term CF φε, which generally

produces a smoother version of the empirical CF based on differences. Suppose a kernel density

estimator is used to approximate the density of δ, using a (bivariate) kernel L and bandwidth

matrix Σ. The corresponding CF of the density estimator is then given by

φ̂δ(t) =
1

M

M∑
j=1

exp (ıt · δj)L∗
(

Σ1/2t
)
, t ∈ R2. (2.14)

In particular, if L is the product kernel (see Section 2.3.2) generated by the normal distribution,

we have

φ̂δ(t) =
1

M

M∑
j=1

exp

(
ıt · δj −

1

2
t′Σt

)
, t ∈ R2. (2.15)

We choose a normal kernel above because its Fourier transform (2.15) has an efficient, closed

expression. Another possibility, not considered here, would be to use the CF of a normal

mixture with a data-driven number of components. In Section 2.4, we specify how we select

the bandwidth matrix Σ.

Ultimately, an estimated CF φ̂ε of the error (or an estimator φ̂ε̄) appears in the denominator

of the deconvolution formula (2.7). This means that numerical approximations or estimates of

this CF can potentially lead to instabilities for small values of the CF. Several authors have

proposed ways to avoid computational issues when using an estimated error CF in the denomi-

nator of the deconvolution estimator. For example, Meister (2009) describes two regularization

methods: either use a ridge parameter or truncate the denominator in the deconvolution for-

mula when the value of the estimated CF is very small. In our simulations (see Section 2.4),

we truncate the integrand when the denominator in (2.7) has small values, as in Neumann and

Hössjer (1997). Namely, the term 1/φε̄(t) = 1/[φε(t/m)]m is approximated by

1

φ̂ε̄ (t)
I{|φ̂ε̄(t)|>bn,m}, (2.16)

for φ̂ε̄(t) = [φ̂ε(t/m)]m based on the estimated error CF φ̂ε (i.e., using one of the approaches

described above) and for bn,m = 1/
√
k based on the number k of differences used to determine

φ̂ε (i.e., k is equal to nm(m− 1)/2, n(m− 1) or nm/2).
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2.3.2 Choice of kernel function

In standard kernel density estimation, it is common to construct multivariate kernel func-

tions starting with univariate kernels. The simplest approach is to define a multivariate kernel

as a product of univariate kernels

K(x) = K1(x1)K1(x2), x = (x1, x2) ∈ R2, (2.17)

where K1 is a univariate kernel function. Such multivariate kernels (2.17) are called product

kernels and their corresponding Fourier transform is given by

K∗(t) = K∗1 (t1)K∗1 (t2), t = (t1, t2) ∈ R2. (2.18)

Another alternative, not pursued here, is the family of radial-symmetric kernels (cf. Wand and

Jones (1995)).

Computation of the deconvolution kernel density estimator (2.4) or (2.7) involves integration

over the domain R2 (i.e., for bivariate data). If a bivariate kernel K is chosen in such way that

its Fourier transform K∗ has bounded support, then the integral in (2.7) is restricted to a finite

region. In what follows, we choose univariate kernels K1 = K2 that have Fourier transforms

with support on an finite interval, say [−1, 1]. Then, without loss of generality, the resulting

bivariate product kernel has Fourier transform K∗ supported on [−1, 1]× [−1, 1]. Because this

bounded-support property simplifies integration and is also associated with kernels that have

good properties, this type of kernel function is commonly used in deconvolution applications.

Table 2.1 displays various univariate kernel functions K1 and their respective Fourier transforms

K∗1 for application in (2.18) and then (2.7).

Among univariate kernels K1 with a Fourier transform with bounded support, the most

common is the sinc kernel, whose Fourier transform K∗1 corresponds to a simple indicator

function. The sinc kernel has well-known theoretical advantages (see below), but is not non-

negative. Consequently, density estimates based on the sinc kernel tend to exhibit wiggly

behavior at the tails, with an unattractive appearance; this behavior is illustrated wth numerical

examples in Section 2.4.

As pointed out by Devroye (1989), kernels K1 which perform well in estimation can often

be associated with corresponding Fourier transforms that are flat around zero. The sinc kernel
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Table 2.1 Kernel functions with their Fourier transforms, where x, t ∈ R and K1 is continu-

ously extended at zero in every case.

Name Kernel (K1) Fourier Transform (K∗1 )

Sinc sin(x)
πx I[−1,1](t)

de la Vallée- 1−cos(x)
πx2

(1− |t|) I[−1,1](t)

Poussin

Triweight Ft 48(1−15x−2) cosx
πx4

−
(
1− t2

)3
I[−1,1](t)

144(2−5x−2) sinx
πx5

Tricube Ft 648(−3x4+90x2−560) sin(x)
x9π

+ (1− |t|3)3I[−1,1](t)

162(x6−80x4+1120x2−2240) cos(x)
x10π

+

18(20160−x6)
x10π

Flat-top Ft 2
πx2

[
cos
(
x
2

)
− cos(x)

]
I{|t|≤1/2}+

2(1− | t |)I{1/2≤|t|≤1}

has this feature, but other kernels are often adopted because they produce smoother estimates

of the target density. An alternative to the sinc kernel is the de la Vallée Poussin kernel (VP

kernel), defined in Table 2.1. This kernel is actually a probability density (i.e., is nonnegative),

but its Fourier transform is sharp around zero and the numerical findings in Section 2.4 suggest

that this kernel exhibits poor performance for bivariate deconvolution density estimation.

Between the sinc and VP kernels, there are other kernel functions whose Fourier transforms

are flat around zero to varying degrees. We consider three of them (triweight, tricube, trape-

zoidal flat-top), described in Table 2.1. Figure 2.1 displays all the kernels we have mentioned

and their Fourier transforms. The kernel with Fourier transform proportional to the triweight

kernel was used by Delaigle and Gijbels (2004b,a), and resembles the kernel whose Fourier trans-

form is proportional to the tricube kernel in Table 2.1. The flat-top kernel has been seemingly

unknown in the deconvolution literature but has established properties in density estimation

for time series (cf. Politis (2003b)). Section 2.4 demonstrates that the flat-top kernel produces

density estimates with attractive shape properties while maintaining good (integrated squared

error) performance relative to the other commonly used kernels for deconvolution estimation.
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Figure 2.1 Plots of kernel functions and their Fourier transforms: Sinc, de la Vallée-Poussin

(VP), triweight Fourier transform (triw), tricube Fourier transform (triw) and

Flat-top Fourier transform kernels. The kernel function that oscillates the most is

the sinc kernel.

2.3.3 Numerical Implementation

The deconvolution kernel density estimator f̂X,n in (2.7) requires the computation of an

integral that does not have a closed expression, and the oscillatory nature of the integrand

introduces challenges for numerical approximations. We provide numerical integration recipes

to address this practical issue. General-purpose software and algorithms for evaluating inte-

grals in multiple dimensions do exist (mostly Monte Carlo methods); an example is the package

called CUBA, described in Hahn (2005). However, when applying such methods to compute

the estimator f̂X,n(x) at different values x ∈ R2, the exponential term in the integrand in

(2.7) is evaluated repeatedly for the same x values, which is time-consuming and computa-

tionally wasteful. Therefore, we propose approximating the integrals in (2.4) using faster and

computationally more efficient approaches.
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One simple approximation to the integral (2.7) is based on Riemann sums as

f̂X,n (x) =
1

(2π)2

∫
[−1,1]2

e−ıt·xφ̂Ȳ ,n (t)
K∗ (Bnt)

φε̄ (t)
dt (2.19)

≈ ∆

(2π)2

∑
t∈G

e−ıt·xφ̂Ȳ ,n (t)
K∗ (Bnt)

φε̄ (t)
,

where G denotes a regular grid on [−1, 1]2 of L1 · L2 (Li points in the i-th coordinate) and

∆ denotes the area between grid points. Note that the integration limits are [−1, 1]2 rather

than R2 when we focus on kernel functions with Fourier transforms supported on [−1, 1]2.

(Furthermore, in practice, one would estimate 1/φε̄(·) as described in Section 3.1.)

In application, we also need to evaluate the density estimator f̂X,n(·) over a grid of points

of X so that probability estimates can be obtained by numerically integrating f̂X,n(·). This is

a different matter than the problem of computing f̂X,n(·) at a single point x, see Comte and

Lacour (2010). For that purpose, we carry out density estimation f̂X,n(x) on a regular grid of

points x, say on [c1, d1]× [c2, d2] with L3 · L4 points; here c1, d1, c2, d2 denote the bounds of a

rectangular region for computing density estimators, selected by the user.

We considered two approaches for computing the Riemann sums in (2.19). The first ap-

proach computes all quantities in (2.19) which do not depend on x (requiring evaluation

only on the subgrid G ⊂ [−1, 1]2) and then evaluates exponential terms at x-points on the

[c1, d1]× [c2, d2] to determine the Riemann sums. Another alternative is to use the Fast Fourier

Transform (FFT) to compute the approximating sums in (2.19). We used the FFT method

developed in Inverarity (2002a), which is the generalization to the multivariate case of Bailey

and Swarztrauber (1994).

The FFT forces L1 = L3 and L2 = L4, which is a restriction compared to the plain Riemann

sum method. However, the FFT approach is much faster, as can be seen in Figure 2.2. Figure

2.2 compares the time required to obtain density estimates on a grid (using simulated panel data

described in Section 2.4) based on both the FFT and plain Riemann sum approaches. (For the

sake of simplicity, to produce the Figure 2.2, we considered the same resolution for evaluating

both methods, that is, L1 = L2 = L3 = L4). Note that both approaches have the same

numerical accuracy as each computes the same Riemann approximation (2.19) to the integral.

However, more accurate approximations to this integral require higher resolution grids G ⊂
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Figure 2.2 Speed comparison of integrating procedures. The Fast Fourier Transform (FFT) is

substantially faster than plain Riemann sums for increasingly larger approximation

grids.

[−1, 1]2, creating larger computational demands where the FFT has speed advantages. Hence,

we recommend the use of the FFT based approach in practice to approximate integrals for

bivariate deconvolution estimators. In what follows, we implemented the FFT approximation

to carry out all calculations in the simulation studies to follow.

We have also developed a software package called fourierin, made available in R, for

computing multivariate deconvolution estimators on a grid through the FFT-based numerical

approximations of the required integrations; see Basulto-Elias et al. (2016).

2.4 Simulation study

2.4.1 Design of the simulation study

Next, we examine several aspects which impact the performance of bivariate kernel deconvo-

lution through simulation. We begin by describing distributions for data generation and for the

underlying target density. Fan (1991b) characterizes distributions according to the smoothness

of their CF. In our context, the smoother the error distribution, the harder it becomes to esti-
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mate the target density of the underlying signal variable. Formally, a (possibly multivariate)

random variable X is said to be ordinary smooth (OS) if there exist positive constants β, d0

and d1 such that

d0|t|−β ≤ |φX(t)| ≤ d1|t|−β, as |t| → ∞,

and it is said to be supersmooth (SS) if there exist positive constants β, δ, γ, d0 and d1 such

that

d0|t|−β exp
(
−γ|t|δ

)
≤ |φX(t)| ≤ d1|t|−β exp

(
−γ|t|δ

)
, as |t| → ∞,

where | · | is the Euclidean norm. Unlike OS variables, SS random variables have densities

which are infinitely differentiable. In the univariate case, examples of OS random variables

include those with the gamma distribution and the Laplace distribution while examples of SS

distributions include Gaussian and Cauchy densities. To understand the impact of distribution

smoothness on deconvolution estimators here, note that the empirical characteristic function

(CF) of the contaminated samples appears in the numerator of (2.4), while the CF of the error

appears in the denominator. This same ratio of CFs also arises in asymptotic expansions for

mean squared error of deconvolution density estimators. As a consequence, supersmooth error

terms then lead to slower convergence rates in density estimation, because they introduce an

additional exponential term into such expansions.

For the simulation, we then considered the following design factors related to data-generating

process (item 1 below), number of available replicates (item 2) and estimation implementation

(items 3-5) in order to examine their impact on the deconvolution estimators with panel data.

1. We considered four combinations of OS/SS signal/error distributions along with three

varying levels of noise to signal variance ratios (0.2, 1, 2), as described further below.

2. We assumed either m = 2 or m = 8 replicated measurements for each individual in a

panel data model (2.5) with n = 150 individuals.

3. We compared the five kernel functions described in Table 2.1.

4. We implemented the three procedures described Section 2.3.1 for creating “error differ-

ences” to approximate the CF of the error.
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Table 2.2 Distributions used in the study for signal and noise. Both signal distri-

butions have the same mean and covariance matrix and both error dis-

tributions have the same covariance matrix. The bivariate gamma is de-

fined here through a Gaussian copula with density is given fG(g1, g2) =
fG1

(g1)

φ(Φ−1(FG1
(g1)))

· fG2
(g2)

φ(Φ−1(FG2
(g2)))

× fZ
(
Φ−1 (FG1(g1)) ,Φ−1 (FG2(g2))

)
for g1, g2 > 0

depending on parameters, α1, α2, β1, β2 > 0 and −1 < r < 1. For i = 1, 2, FGi and

fGi denote the distribution and density functions of a gamma variable with shape

αi and rate βi parameters; Φ−1 and φ are the quantile function and the density

of a standard normal distribution; and fZ denotes a bivariate normal density with

correlation r and standard normal marginal distributions.

Type Distribution

OS signal Bivariate gamma with mean (10, 2) and cov.

[
5 −1.75

−1.75 2

]
,

whose marginals are gamma with shape parameters 20 and 2

and rate paremeters 2 and 1, respectively.

SS signal Bivariate normal with mean (10, 2) and cov.

[
5 −1.75

−1.75 2

]
.

OS noise Laplace with mean (0, 0) and correl. matrix

[
1 .5534

.5534 1

]
.

SS noise Normal with mean (0, 0) and correl. matrix

[
1 .5534

.5534 1

]
.
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Figure 2.3 Contour plots considered for the study. Both distributions have the same mean

and covariance matrix. Observe that the coordinates are correlated in both distri-

butions. The bivariate gamma was generated according to Table 2.2.
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5. We implemented two different approximations to the characteristic function based on

error differences: either the empirical CF from differences or the Fourier transform of a

kernel density estimator applied to differences, as described in Section 2.3.1.

Hence, we include four combinations of ordinary smooth (OS) and supersmooth (SS) distribu-

tions across the signal and the noise (item 1), where random errors are generated either from

a bivariate normal distribution (SS error) or a bivariate Laplace distribution with the same

covariance matrix (OS error), and where signal random variable is generated from either a

bivariate normal distribution (SS signal) or from a bivariate gamma distribution (OS signal).

Table 2.2 shows two signal distributions (OS/SS) have the same mean and variance properties,

while Figure 2.3 shows the contour plot of the distribution of the signal. With regard to noise

to signal ratios (item 1), we considered three ratios 0.2, 1, 2 to represent low to high levels of

error. These ratios were component-wise fixed for the marginal distributions; that is, for a

noise to signal ratio of 0.2, the first components of the error and signal have a variance ratio of

0.2, and the same holds for the second component. For the kernel density-based approximation

to the CF of the errors (item 5), we used a normal kernel, as described in Section 2.3.1, with a

diagonal bandwidth matrix obtained with a plug-in method computed using the R package ks

(see Duong et al. (2007)).

In computing the deconvolution estimators, we used a grid of 64×64 points to approximate

the integral in (2.7) via fast Fourier transform (as described in Section 2.3.3) and also for

evaluating the density of the signal variable. There was no significant improvement in precision

for larger grid sizes. Moreover, the region for the density estimation was fixed at [3, 18]×[−2, 9],

which contains at least 99% of the mass of both OS/SS signal distributions considered (see

Figure 2.3). For each simulated panel data set and deconvolution estimator, we evaluated the

corresponding the integrated squared error (ISE) through the approximation∫ [
f̂X,n (x)− fX (x)

]2
dx ≈ ∆

∑
ij

[
f̂X,n (xij)− fX (xij)

]2
,

where ∆ = τ1τ2/642 is the area of every grid rectangle for τ1 = 11 and τ2 = 15, and xij =

(−2 + iτ1, 3 + jτ2), i, j ∈ {0, . . . , 63}, are the grid points. ISEs for all deconvolution estimators
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were computed over 200 simulation runs per data-generating process, and are summized in

figures to follow (e.g., boxplots).

Finally, we make some comments about bandwidth effects, which we sought to control in or-

der to quantify the impact of the factors mentioned above (e.g., type of kernel) for multivariate

panel data with unknown errors. Bandwidth selection is a challenging problem in kernel de-

convolution with a rich literature for univariate data (see Delaigle and Gijbels (2004b)), but far

less is known for multivariate data. To minimize the compounding effect of bandwidth choice,

we used the diagonal bandwidth matrix for minimizing the integrated squared error (ISE) for

deconvolution kernel density estimators based on known (not estimated) measurement and er-

ror CFs. That is, we employ a diagonal bandwidth matrix for each kernel by choosing the best

approximate bandwidths for these kernels, but we do not assume that the distributions of the

errors or the signal are known in the simulation study.

2.4.2 Simulation results

To present the simulation findings, we mention two reference estimators that we adopted

in order to help frame the performances of bivariate deconvolution estimators. These reference

estimators are obtained from kernel density estimators (without deconvolution) applied to

samples defined by either (2.20) or (2.21) as

X1, . . . ,Xn (Error free) (2.20)

Ȳ 1·, . . . , Ȳ n· (Contaminated) (2.21)

using the normal kernel and a plug-in bandwidth matrix (from the R package decon). The

first estimation reference, which serves as a type of lower bound in estimation error (error-

free in plots), is the usual bivariate kernel density estimation applied to the sample {Xi}ni=1

without measurement error, which is unobservable in practice. However, one wishes for the

ISE of a deconvolution estimator to be close to the ISE of this reference estimator, which can

be generally expected to exhibit better performance than deconvolution counterparts based on

data with true errors in variables. The second reference estimator (contaminated in plots) aims

to provide an upper bound on estimation error and corresponds to the usual bivariate kernel
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density estimator applied to the measurement averages per individual {Ȳ i}ni=1 from (2.6). Note

that this reference estimator ignores measurement errors inherent to the averages (2.21). Hence,

as the purpose of kernel deconvolution is precisely to account for measurement error, one would

like for devoncolution density estimators to have smaller ISEs than this reference.

Figure 2.4 provides a comparison of average ISEs for the different kernel choices in decon-

volution estimation with panel data across the four distributional cases of ordinary smooth/

supersmooth (OS/SS) signal and OS/SS noise (with m = 2 replicates per individual and noise

to signal ratio of one). The figure also considers the type of estimation for the error/noise

characteristic function, based on either the empirical characteristic function (ecf) or the char-

acterstic function of a kernel density estimator (kde) (formed by differences between measure-

ment replicates). As expected, SS error distributions tend to induce larger ISEs on average

compared to OS errors and the smoothness of the underlying signal also impacts performance

of deconvolution estimators. However, the effect of the kernel choice is qualitatively similar

in Figure 2.4, where the sinc kernel has the best performance closely followed by the flat-top

kernel in every scenario. The estimaton approach for the error charactersitic function (i.e., ecf

or kde) typically resulted in only small differences in performance, with a small but consistent

edge for the kde-based method. Note also that deconvolution estimators often substantially

improve upon the contaminated reference in Figure 2.4 (upper horizontal bar) which ignores

measurment error in density estimation, but as expected perform worse than the estimation

reference when no measurment error is present (lower horizontal bar).

A similar pattern emerges in Figure 2.5, which considers the effect of both differing noise

to signal ratios and varying amounts of replication (m = 2, 8). From the figure, the expected

estimation error (ISE) decreases when the number of replicates grows from m = 2 to m = 8, and

errors also increase as the noise to signal ratio increases. However, regardless of these factors,

the results are again qualitatively similar across types of kernel choices, and the flat-top and

sinc kernels emerge as the best performers. In particular, with higher numbers of replicates and

low noise to signal ratios (ideal inference situations with panel data), deconvolution estimators

based on flat-top and sinc kernels achieve error rates similar to the oracle type reference of

kernel estimation based on observations with no measurement error (lower horizontal bar in
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Figure 2.4 Comparison of estimators for different combinations of smoothness when the noise

to signal ratio is equal to 1. Observe that the SS signal and OS noise has the

closest performance to the error free case when sinc and flat-top kernels are used.

On the other hand, the worst performance overall occurs in the OS signal and SS

noise, which is expected. The two background bands represent the three quartiles

of the ISE computed for the kernel density estimator of the error free observations

(lower band) and the kernel density estimator of the contaminated sample ignoring

the noise (upper band). This plot was generated for m = 2 replicate observations

per individual and noise to signal ratio of one.
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approximating the error with SS signal and OS noise. The two background bands

represent the three quartiles of the ISE computed for the kernel density estimator

of the error free observations (lower band) and the kernel density estimator of the

contaminated sample ignoring the noise (upper band).
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Figure 2.5), which also supports these kernel choices. Again, ignoring measurement error

(simply averaging observations over replicates and applying ordinary kernel density estimation

techniques) is seen to create larger estimaton errors compared to deconvolution approaches

(upper horizontal bar in Figure 2.5), as particularly evident for small replication m = 2.

We mentioned in Section 2.3.1 that there are several strategies to obtain differences to ap-

proximate the characteristic function of the error. Specifically, taking all the possible difference

of observations for the same individual (cf. (2.9)), which leads to many correlated observations

of differences of errors; taking differences of paired columns, obtaining fewer but independent

error differences (cf. (2.10)), and everything minus the first repetition for individual, which

is an compromise between number of observations and independence (cf. (2.8)). Figure 2.6

compares performances for deconvolution estimators based on this type of pre-processing used

for creating error differences from replicate measurements in the panel data structure. This

illustration considers the m = 8 replicate case (as the type of differencing is not an issue with

m = 2 replications). Essentially from this figure, the type of pre-processing has surprisingly

little effect, which remains true as the noise ratio increases.

2.4.3 Kernel choices

Among the previous simulation findings, the choice of kernel emerges as the single most in-

fluential factor for the performance of deconvolution estimators to be considered in application.

While the sinc kernel (sinc) has been widely used in the literature for univariate deconvolu-

tion and also exhibited consistently good performance in our simulations, the flat-top kernel

emerged with a performance similar to the sinc kernel in terms of average ISE. In fact, in

many simulation cases, the mean ISEs of deconvolution estimators from both sinc and flat-top

kernels were close to the reference estimator based on error free samples. However, an addi-

tional potential advantage of the flat-top kernel is that this tends to produce density estimators

without the “wiggly” (and sometimes heavily negative) surfaces assoicated with the sinc kernel.

Such artifacts are a well-known and undesirable feature of sinc kernel-based estimates, which

becomes a compounding issue in the multivariate setting.
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Figure 2.6 The estimation performances based on pre-processing mechanism used to com-

pute the differences among m = 8 replicates per individual (for approximating the

characteristic function of noise). The left plot considers a noise to signal ratio of

1 and the right plot involves a ratio of 2. The two background bands represent

the three quartiles of the ISE computed for the kernel density estimator of the

error free observations (lower band) and the kernel density estimator of the con-

taminated sample ignoring the noise (upper band). This plot was generated using

the empirical characteristic function to estimate the error (results were similar the

characterstic function of a kernel density estimator, cf. (2.15), Section 3.1) with

OS signal/SS noise data generation.
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To illustrate, Figure 2.7 presents the deconvolution density estimates based on different

kernel types, produced from a simulated data set of OS noise and OS signal with a noise

to signal ratio of 0.2, two replicates per individual (m = 2) and 150 individuals (n = 150).

From the figure, the sinc kernel yields an estimate with the most pronounced oscillations,

leading to a substantial negative part in the density estimate unlike the other kernel approaches

shown. In contrast, the flat-top kernel provides a density estimate with less wavy and negative

artifacts. While less prominent, some negative portions in the density estimate do still appear

with the flat-top kernel in Figure 2.7, but this aspect is difficult to completely remove. For

comparison and perspective, among the kernels in Figure 2.7, only the de la Vallé-Poussin

kernel (VP) produces a non-negative density estimate. However, from the previous simulations

with deconvolution estimators, the VP kernel also induced the worst performances in terms

of average ISE, sometimes no better than the contaminated reference estimator that ignored

measurment error. In this sense, the flat-top kernel in multivariate deconvolution estimation

may lead to comparable performances in terms of ISE compared to the sinc kernel (being the

best among all the kernel functions considered here), but with more attractive properties in

the shape and appearance of its density estimator.

2.5 Conclusions and promising research avenues

We examined the performance of several different methods for deconvolution density esti-

mation with bivariate panel data (repeated measurements for individual subject to distortion

by measurement error). While deconvolution estimation has received much attention for uni-

variate data, there has been less consideration for multivariate data and, in particular, for

panel data structures which arise in scientific studies. For such data, we examined the im-

pact of several choices available to the practitioner when implementing a density estimator

for the underlying signal variable of interest. These include the type of kernel, the approach

for processing replicate measurements in order to estimate error distributions, and the type of

estimator of the error characteristic function. One general observation is that the performance

of deconvolution density estimators could be improved by using kernel density estimators (and

their characteristic functions) formed from error terms rather than the empirical characteristic
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functions from errors; yet the latter is most commonly proposed in the literature. However,

among possibilities considered, we found that the most important and substantial feature im-

pacting bivariate kernel deconvolution is type of the kernel function. Traditionally, the sinc

kernel has been popular for univariate deconvolution, because its Fourier transform is very

simple and exhibits good properties in terms of integrated squared error; we show that those

features continue to be important for bivariate panel data. However, we also found that flat-top

kernels result in similar performance to the sinc kernel in terms of estimation error, while pro-

ducing bivariate density estimates with more attractive geometries and fewer wavy artifacts.

We have also described numerical integration recipes based on FFTs in order to quickly and

practically implement deconvolution estimators in the multivariate data setting; R software and

illustrations of implementation are available in a Github repository in Basulto-Elias (2016b).

Open research issues remain mostly associated with the development of theory for multi-

variate deconvolution estimation with panel data. Two specific open problems are determining

rates of convergence of the kernel density estimators and defining optimal bandwidth choices.

A related and important issue for investigation concerns data-driven approaches for selecting

bandwidths that are suitable for panel data in the multivariate case.
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CHAPTER 3. “FOURIERIN”: AN R PACKAGE TO COMPUTE

FOURIER INTEGRALS

A paper to be submitted to The R Journal

Guillermo Basulto-Elias, Alicia L. Carriquiry, Kris De Brabanter and Daniel J. Nordman

Abstract

We present our R package “fourierin” (cf. (Basulto-Elias et al., 2016)) intended to numer-

ically compute Fourier-type integrals of functions of one or two variables and finite support

in several points. If the points belong to a regular grid, the algorithm described in Inverarity

(2002a) is implemented making significant improvements in the speed.

3.1 Introduction

Continuous Fourier transforms commonly appear in several areas, such as physics and

statistics. In probability theory, for example, continuous Fourier transforms are related to the

characteristic function of a distribution.

The definition of a continuous Fourier transform may change from one context to another.

It is desirable then to have a function that easily adapts to every definition of continuous Fourier

transform as well as its inverse.

Fourier integrals cannot always be solved in elementary terms and the oscillating nature

of the makes typical numerical integration recipes to fail. Bailey and Swarztrauber (1994)

presents an algorithm that expresses the mid-point integration rule in terms of the discrete

Fourier transform, which allows the use of the Fast Fourier transform. Inverarity (2002a)

extended such characterization to the multivariate case.
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Since R is one of the most popular programming languages among statisticians, it is useful

to have tools to compute Fourier integrals. We have not found an R package that does this

specific type of integrals in general, although it is required by some statistical procedures.

See Wang and Wang (2011a) for an application in kernel deconvolution; Fourier integrals are

implemented for particular univariate cases.

The package “fourierin” has a main function (fourierin) that performs Fourier-type in-

tegrals and it has arguments that easily adapt to several definitions of continuous Fourier

transform and its inverse (cf. Inverarity (2002b)). The heavy computations are done in C++

via “RcppArmadillo” package (cf. Eddelbuettel and Sanderson (2014)).

The rest of the paper has four sections. First, we describe the Fourier integral and the

numerical approximation to be used in “Fourier Integrals and FFT”. Then, in “Speed Compar-

ison” we compare the fast and the slow implementations in one and two dimensions at several

grid sizes. Then we show how the function must be used. Finally, in “Summary”, we present

conclusions and upcoming extensions to the R package.

3.2 Fourier Integrals and FFT

Our package aims to compute Fourier integrals at several points simultaneously. This is,

the computation of the integral[
|s|

(2π)1−r

]n/2 ∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(t) exp {ıs〈w, t〉}dt, (3.1)

at more than one point w ∈ Rn, where f is a n-variate function that takes real or complex

values, for n ∈ {1, 2}, aj < bj for j = 1, . . . , n and s, r ∈ R. Observe that the constants s and

r allow flexibility on the definition of continuous Fourier transforms and its inverse. We are

particularly interested in fast computation of the integral (3.1) evaluated in a regular grid, say,

at w(j1,...,jn) = (wj1 , . . . , wjn) and wjk = ck + jkΓk, with Γk = (dk − ck)/nk for k = 1, . . . , n.

We approximate the integral in (3.1) with a sum using the mid-point rule:

n∏
j=1

(bj − aj) ·
[
|s|

(2π)1−r

]n/2 m1−1∑
i1=0

m2−1∑
i2=0

· · ·
mn−1∑
in=0

f(t) exp {ıs〈w, t(i1,...,in)〉}, (3.2)
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where t(i1,...,in) = (ti1 , . . . , tin) and tik = ak + ik∆k + ∆k/2, with ∆k = (bk − ak)/nk for

k = 1, . . . , n.

The sum (3.2) can be written in terms of discrete Fourier transforms and inverses of discrete

Fourier transforms, details of this derivation can be found in Inverarity (2002a). We are using

the notation in that paper. It is well known that using the FFT can improve the complexity

of computing a discrete Fourier transform from O(m2) to O(m logm) in the univariate case,

where m is the size of the vector. The complexity of computing the multivariate discrete Fourier

transform of an n-dimensional array using the FFT is O(M logM), where M = m1 · · ·mn and

mj is the size of the j-th dimension, j = 1, . . . , n.

3.3 Speed Comparison

Here we compare the differences in execution times for univariate and bivariate cases. Figure

3.1 is a univariate example of the integral in (3.1) evaluated on a regular grid and Figure 3.2 is

a bivariate example. Note that the time units are different, since computing the bivariate case

takes longer.
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Figure 3.1 Example of a univariate Fourier integral over grids of several (power of two) sizes.

Specifically, the standard normal density is being recovered using the Fourier in-

version formula. Time is in milliseconds. The Fourier integral has been applied five

times for every resolution and each dot represents the mean for the corresponding

grid size and method.
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Figure 3.2 Example of a bivariate Fourier integral over grids of several (power of two) sizes.

Both axis have the same resolution. Specifically, the characteristic function of a

bivariate normal distribution is being computed. Time is in seconds (unlike 3.1).

The Fourier integral has been applied five times for every resolution and each dot

represents the mean for the corresponding grid size and method.

3.4 Examples

In this section we will present examples of usage of the “fourierin” package. First, we will

start with a univariate example which further illustrates two cases in which the FFT is not used

(and it is slower as a consequence). The second example is two dimensional and we compare

the real and the imaginary parts of an approximation using Fourier integrals to the true values.

The next code shows how the package can be used for univariate cases. The example we

consider is to recover a normal density, f from its characteristic function, φ, where,

f(x) =
1√
2π

exp

[
−1

2
(x− 3)2

]
and φ(t) = exp

(
3tı− 1

2
t2
)
, (3.3)

for all t, x ∈ R.

## ------------------------------------------------------------------

## 1D example with complex-valued function

## ------------------------------------------------------------------

library(fourierin)
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# Parameters

mu <- 3

lower <- -4 + mu

upper <- 4 + mu

resolution <- 64

# Compute integral

out <- fourierin(f = function(t) exp(1i*mu*t - t^2/2),

a = -5, b = 5, c = lower, d = upper,

r = -1, s = -1, resol = resolution,

use_fft = FALSE)

# Extract grid and values

grid <- out$w

values <- Re(out$values)

true <- dnorm(grid, mu)

# Plot parameters

colors <- c("cyan", "magenta")

legends <- c("approximated", "true")

line_type <- 2:3

line_width <- 1.5

# Generate and plot

plot(range(grid), range(values, true), type = "n",

xlab = "x", ylab = "values")

lines(grid, values, col = colors[1], lty = line_type[1], lwd = line_width)

lines(grid, true, col = colors[2], lty = line_type[2], lwd = line_width)

legend("topleft", legend = legends, col = colors,

lty = line_type, lwd = line_width)

# Evaluate in a non-regular

# grid
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new_grid <- c(0, 3, 4)

fourierin(f = function(t) exp(1i*mu*t - t^2/2),

a = -5, b = 5, r = -1, s = -1, resol = resolution,

w = new_grid)

## fourierin(f = function(t) exp(1i*mu*t - t^2/2),

## a = -5, b = 5, r = -1, s = -1, resol = resolution,

## w = new_grid)

## [,1]

## [1,] 0.004432043-0i

## [2,] 0.398942058+0i

## [3,] 0.241970623+0i

Note that the first call of the fourierin function has the argument use fft = FALSE. This

could be set to be equal to TRUE to use the algorithm described in Inverarity (2002a) for regular

grids, which uses the FFT and is substantially faster (see Figure 3.1).

On the other hand, at the bottom of the code we show how fourierin works when a

(non-regular) grid is provided. Observe that if this is the case, only the Fourier integral values

are returned; unlike the case where a regular grid is used, in which a list is returned with the

Fourier integral values and an integration grid is returned. The function f must be able to be

evaluated at vectors.

Figure 3.3 is the plot generated in the latter code. A low resolution has been set in order to

observe differences between the true density and its recovered version using Fourier integrals.

Finally, we use a bivariate normal density, f , to find its characteristic function φ. This

illustrates how fourierin function works for bivariate functions. In particular,

f(x) =
1√

2π|Σ|
exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
and φ(t) = exp

(
ıx′µ− 1

2
t′Σt

)
, (3.4)

for all t,x ∈ R2, with µ =

−1

1

 and Σ =

 3 −1

−1 3

.

## ------------------------------------------------------------------
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Figure 3.3 Example of fourierin function for univariate function at resolution 64: Recover-

ing a normal density from its characteristic function. See Equation 3.3.

## 2D example with real-valued function

## ------------------------------------------------------------------

library(fourierin)

## Parameters of bivariate normal distribution

mu <- c(-1, 1)

sig <- matrix(c(3, -1, -1, 2), 2, 2)

resolution <- 128

## Multivariate normal density. x is n x d

f <- function(x) {

# Auxiliar values

d <- ncol(x)

z <- sweep(x, 2, mu, "-")

#Get numerator and denominator

#of normal density
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num <- exp(-0.5*rowSums(z * (z %*% solve(sig))))

denom <- sqrt((2*pi)^d*det(sig))

return(num/denom)

}

## Characteristic function. s is n x d

phi <- function(s) {

complex(modulus = exp(-0.5*rowSums(s*(s %*% sig))),

argument = s %*% mu)

}

## Compute values

# Approximate cf using Fourier

# integrals

eval <- fourierin(f, a = c(-8, -6), b = c(6, 8),

c = c(-4, -4), d = c(4, 4),

r = 1, s = 1, resol = c(resolution, resolution))

t1 <- eval$w1

t2 <- eval$w2

t <- as.matrix(expand.grid(t1 = t1, t2 = t2))

approx <- eval$values

true <- matrix(phi(t), resolution, resolution) # Compute true

# values

## Generate plots

# Plot parameters

colors <- c("cyan", "magenta")

legends <- c("approximated", "true")
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line_type <- 2:3

line_width <- 1.5

# Generate and plots

# Real part section

i <- resolution/2 + 1

plot(t2, Re(approx[i, ]), type = "l", col = colors[1],

lty = line_type[1], lwd = line_width,

ylab = "",

xlab = expression(t[2]),

main = expression(paste("Real part section at ",

t[1], "= 0")))

lines(t2, Re(true[i, ]), col = colors[2],

lty = line_type[2], lwd = line_width)

legend("topleft", legend = legends,

col = colors, lwd = line_width)

# Another section, now of the

# imaginary part

plot(t1, Im(approx[i, ]), type = "l", col = colors[1],

lty = line_type[1], lwd = line_width,

ylab = "",

xlab = expression(t[1]),

main = expression(paste("Real part section at ",

t[2], "= 0")))

lines(t1, Im(true[i, ]), col = colors[2],

lty = line_type[2], lwd = line_width)

legend("topleft", legend = legends,

col = colors, lwd = line_width)
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In the latter code, we can observe that the output is a list containing three elements: two

vectors with the corresponding evaluation grid values on every direction and a complex matrix

containing the Fourier integral values. If we do not want to evaluate the Fourier integrals on

a regular grid and we desire to evaluate on, say l points, then we must pass a l × 2 matrix in

the argument w and the function will return a vector of size l rather than a list. The function

f must be able to receive a two-column matrix with m rows, where m is the number of points

where the Fourier integral will be evaluated.

Figure 3.4 has the two plots generated with the previous code. Recall that the output was

a complex matrix, thus we are showing only the a section of the real values (at t1 = 0) and a

section of the imaginary values (at t2 = 0).
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Figure 3.4 Example of fourierin function for univariate function at resolution 128 × 128:

Obtaining the characteristic function of a bivariate normal distribution from its

density. See Equation 3.4. The left plot is the section of the real part of the

characteristic function at t1 = 0; the right plot is the section of the characteristic

function at t2 = 0.

3.5 Summary

We have presented univariate and bivariate examples, which are the ones implemented in

version 0.0.2. We will extend this numerical procedure up to dimension 5, since this procedure

is reliable up to that dimension.
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CHAPTER 4. KERNEL DECONVOLUTION DENSITY ESTIMATION

WITH R PACKAGE KERDEC

A paper to be submitted to the Journal of Statistical Software

Guillermo Basulto-Elias, Alicia L. Carriquiry, Kris De Brabanter and Daniel J. Nordman

Abstract

Kernel deconvolution density estimation is a nonparametric method to estimate a density

of observations contaminated with some error. The R package kerdec covers several kernel

deconvolution sampling scenarios for univariate and bivariate samples. In particular, (i) when

the error distribution is known, (ii) when an independent sample of errors is available and

(iii) when repeated observations are available. RcppArmadillo has been used speed-up heavy

computations.

4.1 Introduction

Data with measurement error are common in nature. Ignoring such error produces erroneous

inferences. Kernel density estimation, which is perhaps the most common and best studied

density estimator cannot be applied directly, since the error must be taken into account.

Several challenges come along with the use of kernel deconvolution density estimator (KDDE),

for example bandwidth selection gets a lot more difficult, kernels whose Fourier transform have

compact support are better for theoretical and practical reasons.

An extra complication could come from the error distribution, since in real life it is rarely

known. There are two alternatives to approximate it. The first is to have, besides the contam-

inated sample, a sample or errors. The second option arises when more than one contaminated
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sample per individual is available, thus, by taking differences of contaminated samples per in-

dividuals. Differences of errors are obtained and they can ultimately be used to approximate

the error distribution.

There are two R packages for deconvolution: decon (Wang and Wang, 2011b) and deamer

(Stirnemann et al., 2012a). The decon package performs KDDE with known error allowing the

user to pick among several bandwidth selection methods summarized in Delaigle and Gijbels

(2004b). The deamer package allows different sampling scenarios when the error distribution

is unknown with a fix kernel function. The bandwidth selection used there is detailed in Comte

and Lacour (2011).

The R package that we describe in this work (kerdec) performs KDDE under several sam-

pling scenarios and kernel functions for univariate and bivariate data. The bandwidth selection

procedure is described in Youndjé and Wells (2008). The heavy computations were are done

in C++ via RcppArmadillo for a better time performance. It also uses the C++ functions

included in the R fourierin package (Basulto-Elias, 2016a).

The major differences of kerdec from decon and deamer is that the kerdec also works for

bivariate samples, several sampling scenarios and kernel functions, but it is exclusive for KDDE.

It also offers parametric and nonparametric approximations to the error distribution.

In Section 4.2, we define the kernel deconvolution formula and possible generalizations and

challenges in a more technical fashion. In Section 4.3 we provide details on the possible sampling

scenarios. We describe the kernel functions included in the kerdec package in Section 4.4 while

we show how the bandwidth can be selected and calculated in Section 4.5. In Section 4.6

we show how to use our package with bivariate data. We display specific code examples in

Section 4.7. Some functions of kerdec can be use in contexts other than kernel deconvolution

and they are described in Section 4.8. Finally, the possible features and generalizations that

our package will include are described in Section 4.9.

4.2 Kernel Deconvolution Density Estimation

The aim of kernel deconvolution density estimation (KDDE) is to provide a nonparametric

density estimator for a distribution whose samples has been contaminated with additive error.



43

KDDE is a generalization of the usual kernel density estimator where the Fourier inversion

theorem is used. The use of this theorem and the fact that the sample is not directly observable

impede straightforward generalization. In this section we provide a formula for the estimator

and describe some of the challenges produced by this estimator. In Sections 4.3, 4.4 and 4.5

we describe these problems in more detail and show how kerdec may be applied.

Let Y 1, . . . ,Y n be a sample of independent and identically distributed (iid) d-sized vectors

from the model

Y = X + ε, (4.1)

where X and ε are independent. Assume for that ε is a symmetric random vector with mean

zero and known variance Σ. The kernel deconvolution density estimation formula is

f̂X(x) =
1

(2π)d

∫
exp (−ıx · t) φ̂Y ,n(t)

Kft(ht)

φε(t)
dt, x ∈ Rd, (4.2)

where x · t =
∑d

i=1 xiti is the usual inner product in Rd, Kft(t) =
∫

exp (ıu · t)K(u)du is the

Fourier transform of a kernel K, φε(t) =
∫

exp (ıx · t) fε(x)dx is the characteristic function of

ε and φ̂Y ,n(t) =
∑n

i=1 exp (ıY i · t) is the empirical characteristic function of the contaminated

sample.

The main functions in kerdec are kerdec dens and kerdec dens2D. The former for univari-

ate KDDE and the latter for the bivariate case. We will unfold the parameters required in the

upcoming sections.

Observe that in formula 4.2 it was assumed that the characteristic function of the error,

φε(·) is known. In many real-life cases, it is not possible to have perfect knowledge of the error

distribution, thus an approximation to its characteristic function must be used. Moreover it

is not clear what the contaminated sample should be in order to use formula 4.2 in case of

repeated measurements, since ideally they should be iid. In Section 4.3 we describe how the

kerdec package handles those situations.

Furthermore, it is convenient to select the Fourier transform of the kernel function K in

formula 4.2 having compact support, since this ensures integrability. In Section 4.4 we describe

the kernel functions included in kerdec.
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On the other hand, the integral in deconvolution formula (4.2) needs to be computed numer-

ically, but the integrand is a product of oscillating functions. An effective and fast procedure to

do this is using the so-called fast Fourier transform (FFT). kerdec uses the R package fourierin,

which computes continuous Fourier integrals using FFT’s.

Finally, the integral in deconvolution formula (4.2) cannot be computed with ease, because

it cannot be reduced to a simple elementary function.

4.3 Sampling Setting

Formula 4.2 can be applied to contaminated samples when the error distribution is com-

pletely known. When the error distribution is not known, extra information is required to

approximate its characteristic function.

The simplest sampling scenario for a contaminated sample and full knowledge of the error

distribution is detailed in Section 4.3.1. The case when the error distribution is unknown but

an extra sample of errors is available is detailed in Section 4.3.2. Finally, if the data contain

repeated measurements, also referred as panel data, differences can be used to approximate the

error distribution. This is explained in Section 4.3.3. In the two latter cases, the error distri-

bution can be approximated assuming that the errors follow a normal or Laplace distribution.

A nonparametric approximation is also provided in kerdec.

It is also important to mention that when the data contain repeated measurements, the first

repetition can be taken as the contaminated sample but also it would be possible to take the

average of the repeated measurements. Moreover, the error distribution may be approximated

by taking differences of observations of the same individual; although, there is not a unique

way to take these differences. In Section 4.3.3 we describe the possibilities and applications of

the kerdec package.

For sake of simplicity all the examples considered here are univariate (d = 1). In Section

4.6 some bivariate examples will be provided.
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4.3.1 Contaminated Sample and Known Error Distribution

Function kerdec dens() computes the KDDE. The simplest scenario in KDDE occurs when

the error distribution is known. The normal and Laplace distributions are allowed in this case.

Therefore, besides passing the contaminated sample in the parameter smp, it is necessary to

specify the error distribution in the parameter error dist and the scale parameter of such

distribution in error scale par. The simplest call of this scenario would be:

kerdec_dens(smp = my_sample, error_dist = "laplace", error_scale_par = 0.6,

lower = 0.5, upper = 10)

The parameters lower and upper are the extremes where the density is going to be estimated.

Figure 4.1 is an example of this case. Code to generate this plot and details about the

example are shown in Section 4.7.
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Figure 4.1 Gamma sample contaminated with Laplacian errors. The error distribution is

assumed to be known. This plot shows when the correct distribution, Laplace,

was given (long dashed red line) and the incorrect distribution (normal) was given

(dashed green line).
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4.3.2 Contaminated Sample Plus Sample or Errors

In Section 4.3.1 the error distribution was known, thus, the parameters smp, error dist

and error scale par were passed to kerdec dens(). In real life it is hard to know beforehand

the scale parameter, but it can be estimated if a sample of errors, preferably independent

from the contaminated sample, is available. The function kerdec dens() handles this case

by providing the sample of errors as the parameter error smp rather than passing the scale

parameter directly (error scale par)). In this case, the maximum likelihood estimate (MLE)

of the scale parameter of the error is computed. An example of a call for this scenario is:

kerdec_dens(smp = my_sample, error_dist = "normal",

error_smp = my_error_sample, lower = 0.5, upper = 10)

Moreover, observe in Formula 4.2 that the error is used via its characteristic function. The

function kerdec dens() can also approximate this characteristic function nonparametrically

by using the real part of the empirical characteristic function of the sample of errors (it makes

sense to use the real part if we assume that the error distribution is symmetric). Figure 4.2

was generated under this scheme and the code is shown in Section 4.7. The code below is a

call of KDDE when the empirical characteristic function is used.

kerdec_dens(smp = my_sample, error_dist = "none",

error_smp = my_error_sample, lower = 0.5, upper = 10)

4.3.3 Panel Data

Repeated observations scheme, also referred as panel data, occurs with high frequency in

sciences. For example, suppose that we are interested in the distribution of the weight in

certain population and a the weight of 200 hundred was obtained each in three different scales.
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Figure 4.2 Contaminated sample plus a sample of independent errors. The characteristic func-

tion of the error has been approximated with the empirical characteristic function.

The error distribution was approximated with the empirical characteristic function.

The code that generated this plot can be found in Section 4.7.

Therefore our model would be

Yij = Xi + εij i = 1, . . . , n, j = 1, . . . , l, (4.3)

where X1, . . . , Xn the corresponding weights of the n individuals, and εij the measurement

errors induced by the scales. Assume that X1, . . . , Xn are independent and εij are independent.

The values in the example are n = 200 and j = 3.

In this sampling scheme, it is still possible to use KDDE, but it is not clear what the

sample is in order to apply Formula 4.2. Meister (2009) discusses pros and cons of using

only the first column, that is, to use Y1,1, . . . , Yn,1 as the sample or to use the averaged ob-

servations instead, that is, Ȳ1, . . . , Ȳn, where Ȳi = n−1
∑

j Yij . The parameter panel proc of

kerdec dens() can process both by setting it to ‘keep first’ or ‘take aver’, respectively.

panel = ‘keep first’ is the default value.

On the other hand, the error distribution can be approximated by taking differences of the

contaminated observations, since Yi,j1 − Yi,j2 = εi,j1 − εi,j2 . If there are only two repetitions,

the sample of differences would be Yi,2 − Yi,1, but if there are more than two repetitions,

there are more possible differences. In particular, (i) we can consider all pairwise differences

Yi,j1 − Yi,j2 for j1 > j2, which leads to a sample of correlated differences of errors; (ii) we can
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take differences by pairs of columns, Yi,2−Yi,1, Yi,4−Yi,3, ..., Yi,2bl/2c−Yi,2bl/2c−1, which would

lead to fewer samples of differences of errors, but independent, and (iii) a compromise between

them by subtracting the first repetition from the rest, Yi,l − Yi,1, Yi,l−1 − Yi,1, . . . , Yi,2 − Yi,1.

The parameter ‘error proc’ in kerdec dens() can be set to ‘all’, ‘indep pairs’ and

‘vs first’ to obtain the corresponding case. The default option is error proc = ‘all’.

We emphasize the fact that with repeated measurements it is not necessary to specify the

scale parameter of the error distribution or the error distribution. Thus, error dist can be

set to ‘laplace’, ‘normal’ or ‘none’. The latter is the default choice. Again, if a parametric

approach is taken, the MLE of the scale parameter is computed.

An example of KDDE for panel data is given below. We have changed the default options.

kerdec_dens(smp = my_panel_matrix, error_dist = "laplace",

panel_proc = "take_aver", error_proc = "indep_pairs",

lower = 0.5, upper = 10)
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Figure 4.3 KDDE on panel data. Code is shown in Section 4.7
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4.4 Kernel Functions

We mentioned in Section 4.2 that it is convenient to restrict the kernel functions to those

that have a Fourier transform with bounded support. The most popular kernels in usual

kernel density estimation, e.g., Gaussian, Epanechnikov, triweight and tricube, do not meet

this criteria. On the other hand, the so-called sinc kernel is the most popular choice due to

the simplicity of its Fourier transform. Recall that the Fourier transform of a kernel is what is

used in Formula 4.2 and not the kernel itself. Delaigle and Gijbels (2004b) suggest the use of

a second order kernel for which the Fourier transform is proportional to the triweight kernel.

The type of kernel can change the form of the estimator. For instance, the sinc kernel has

good theoretical properties, but the estimators that it produces are usually very wiggly. kerdec

allows the user to select among five kernels with compactly bounded Fourier transforms by

specifying the parameter kernel of function kerdec dens(). The choices are:

• "sinc" The sinc kernel. Its Fourier transform is Kft(t) = I[−1,1](t) , where IA(·) is the

indicator function in the set A.

• "triangular" Its Fourier transform is a triangle, Kft(t) = (1− |t|)I[−1,1](t).

• "triw" Its Fourier transform is proportional to the triweight kernel, Kft(t) = (1 −

|t|2)3I[−1,1](t).

• "tric" Its Fourier transform is proportional to the tricube kernel, Kft(t) = (1 − |t|3)3

I[−1,1](t).

• "flat" Its Fourier transform is a trapeze,

Kft(t) =



1 |t| < 1/2,

2(1− |t|) 1/2 ≤ |t| < 1,

0 otherwise

.

I[−1/2, 1/2](t) + (1− |t|3)3I[−1,1](t).

Figure 4.4 displays the kernel functions and their Fourier transforms that have been imple-

mented in kerdec.
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A simple example of usage is the following. The default value is kernel = "flat"

kerdec_dens(smp = my_sample, error_dist = "none", kernel = "sinc",

error_smp = my_error_sample, lower = 0.5, upper = 10)
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Figure 4.4 Kernel functions (left) and their Fourier transforms (right) included in package

kerdec.

Finally, we specify that for the bivariate case, kerdec provides only so-called product ker-

nels, which are generated by the product of univariate kernels. Figure 4.5 shows the Fourier

transform of the flat-top kernel.

4.5 Bandwidth Selection

Bandwidth selection is a crucial part of KDDE. Although in univariate KDDE there are

several options of bandwidth selection (cf. Delaigle and Gijbels (2004b)), in the multivariate

case there are only two that we are aware of. The first is a cross-validation approach in Youndjé

and Wells (2008), and the second is an empirical approximation to the mean integrated squared

error in Comte and Lacour (2013). We have implemented the cross-validation based bandwidth

selector.

It is known that cross-validation might have more than one local minimum (cf. Delaigle

and Gijbels (2004b)). If the user wants to see the actual cross-validation function, it can be
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Figure 4.5 Fourier transform of product kernel generated by the kernel whose Fourier trans-

form is a trapeze.

displayed with the function select bw(). This function receives basically the same arguments

as kerdec dens(), except for the limits where the density would be estimated. The user can

set the value where the optimization function will start to look of a minimum, the parameter

is h0 in kerdec dens().

The next code shows how select bw() can be used to compute the cross-validation band-

width. In Section 4.7 we include the piece of code (clearly indicated in the comments) that

generated Figure 4.6.

select_bw(smp = my_sample, error_smp = my_error_sample,

error_dist = "normal", bw_interval = c(0.1, 0.4))

On the other hand, the user has the option of directly specifying the bandwidth in kerdec dens()

by setting the parameter h to some value. If h is provided, then the cross-validation bandwidth

will not be computed.
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Figure 4.6 Cross-validation function for KDDE. Code and details can be found in Section 4.7.

4.6 Bivariate Case

R package kerdec can perform KDDE for bivariate sampling, error distribution options

and kernels choices by calling the functions kerdec dens2D() and select bw2D() instead of

kerdec dens() and select bw(), respectively. The difference in the arguments is that instead

of passing smp parameter (as in univariate KDDE), smp1 and smp2 must be passed with the first

and second coordinates of the observations, respectively. The same is required with parameters

error smp1, error smp2, error scale par1 and error scale par2.

A sample code of bivariate KDDE is shown below.

den <- kerdec_dens2D(smp1 = first_coord_of_my_sample,

smp2 = second_coord_of_my_sample,

error_smp1 = first_coord_of_my_error_sample,

error_smp2 = second_coord_of_my_error_sample,

lower = c(-1, -2)), upper = c(3, 4))
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In Section 4.7 we provide a complete example corresponding to the plot displayed in Figure 4.7.

4.7 Examples

In this section we describe several applications of univariate KDDE and bivariate KDDE.

The code has enough comments to help the user understand every step.

We first show examples of univariate KDDE under the three sampling schemes described in

Section 4.3. For sake of comparison, we have generated samples from the same distributions.

The target density is a gamma distribution with shape and rate parameters equal to 5 and

5, respectively. The sample size has been set to 130. In case of additional error, the sample

size of those errors is 140 and for the panel data structure, the number of repetitions is 5.

## --------------------------------------------------------------------

## ----- Generate random samples --------------------------------------

## --------------------------------------------------------------------

library(kerdec) # Load package

set.seed(666) # Set seed

## Settings and samples for all the cases

n <- 130 # Sample size

l <- 5 # Number of columns

m <- n + 10 # Error sample size

shape <- 5 # X distr. shape par.

rate <- 5 # X distr. rate par.

sd_error <- 0.30 # std. error of error distr.

X <- rgamma(n, shape, rate) # Uncontaminated sample

eps_panel <- matrix(rlaplace(n*l, sd = sd_error),

n, l) # Panel of errors
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eps <- rlaplace(m, sd = sd_error) # Pure errors

Y <- X + eps_panel[, 1] # Contaminated sample

Y_panel <- sweep(x = eps_panel, MARGIN = 1,

STATS = X, FUN = "+") # Contaminated in panel

## -------------------------------------------------------------------

## Normal error. Known sigma.

## -------------------------------------------------------------------

normal <- kerdec_dens(smp = Y, error_scale_par = sd_error,

error_dist = "normal",

lower = min(Y) - 2*sd(Y),

upper = max(Y) + 2*sd(Y))

laplace <- kerdec_dens(smp = Y, error_scale_par = sd_error,

error_dist = "laplace",

lower = min(Y) - 2*sd(Y),

upper = max(Y) + 2*sd(Y))

with(normal, {

true <- dgamma(x_eval, shape, rate)

plot(range(x_eval), range(c(f_vals, true)), type = "n",

xlab = "x", ylab = "")

lines(x_eval, f_vals, col = 3, lty = 3, lwd = 1.5)

lines(x_eval, true, col = 4, lty = 4, lwd = 1.5)

})

with(laplace, {

lines(x_eval, f_vals, col = 2, lty = 2, lwd = 1.5)

})

legend("topright", legend = c("Laplace approx.", "normal approx.",
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"true"),

lwd = 1.5, col = 2:4,

lty = 2:4)

## -------------------------------------------------------------------

## Contaminated sample plus extra sample

## -------------------------------------------------------------------

dens <- kerdec_dens(smp = Y, error_smp = eps,

error_dist = "none",

lower = min(Y) - 2*sd(Y),

upper = max(Y) + 2*sd(Y))

with(dens, {

true <- dgamma(x_eval, shape, rate)

plot(range(x_eval), range(c(f_vals, true)), type = "n",

xlab = "x", ylab = "")

lines(x_eval, f_vals, col = 3, lty = 3, lwd = 1.5)

lines(x_eval, true, col = 4, lty = 4, lwd = 1.5)

})

legend("topright", legend = c("approx.", "true"),

lwd = 1.5, col = 3:4,

lty = 3:4)

## -------------------------------------------------------------------

## Panel data

## -------------------------------------------------------------------

dens <- kerdec_dens(smp = Y_panel, error_smp = eps_panel,
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error_dist = "laplace",

lower = min(Y) - 2*sd(Y),

upper = max(Y) + 2*sd(Y))

with(dens, {

true <- dgamma(x_eval, shape, rate)

plot(range(x_eval), range(c(f_vals, true)), type = "n",

xlab = "x", ylab = "")

lines(x_eval, f_vals, col = 3, lty = 3, lwd = 1.5)

lines(x_eval, true, col = 4, lty = 4, lwd = 1.5)

})

legend("topright", legend = c("approx.", "true"),

lwd = 1.5, col = 3:4,

lty = 3:4)

In Section 4.5 we mentioned that the function select bw() can find the bandwidth outside

of the function kerdec dens() at the same time it plots the cross-validation function to be

minimized. Figure 4.6 corresponds to the code below.

## -------------------------------------------------------------------

## Contaminated sample plus extra sample. Bandwidth selection

## -------------------------------------------------------------------

library(kerdec) # Load package

set.seed(666)

## Settings and samples for all the cases

n <- 150 # Sample size
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m <- n + 10 # Error sample size

shape <- 5 # X distr. shape par.

rate <- 5 # X distr. rate par.

sd_error <- 0.3 # std. error of error distr.

X <- rgamma(n, shape, rate) # Uncontaminated sample

eps <- rlaplace(m, sd = sd_error) # Error sample

Y <- X + rlaplace(n, sd = sd_error) # Contaminated sample

select_bw(smp = Y, error_smp = eps,

error_dist = "normal", bw_interval = c(0.1, 0.4))

Finally, the code below illustrates the use of the bivariate KDDE in kerdec. The target dis-

tribution is a product of gamma densities and the error follows a bivariate Laplace distribution.

Observe that the bandwidth has been directly provided.

## -------------------------------------------------------------------

## Bivariate case

## -------------------------------------------------------------------

library(kerdec) # Load package

set.seed(666)

## Settings and samples for all the cases

n <- 130 # Sample size

l <- 5 # Number of columns

m <- n + 10 # Error sample size

shape <- 5 # X distr. shape par.
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rate <- 5 # X distr. rate par.

sd_error1 <- 0.2 # std. error of error distr.

sd_error2 <- 0.3 # std. error of error distr.

## Generate biv. samples.

X1 <- rgamma(n, shape, rate) # Uncontaminated sample

X2 <- rgamma(n, shape, rate) # Uncontaminated sample

eps1 <- rlaplace(m, sd = sd_error1) # Pure errors

eps2 <- rlaplace(m, sd = sd_error2) # Pure errors

Y1 <- X1 + rlaplace(n, sd = sd_error1) # Contaminated sample

Y2 <- X2 + rlaplace(n, sd = sd_error2) # Contaminated sample

bw <- (0.12)^2

den <- kerdec_dens2D(smp1 = Y1, smp2 = Y2,

kernel = "vp",

error_smp1 = eps1,

error_smp2 = eps2,

error_dist = "none",

lower = c(min(Y1) - 4*sd(Y1), min(Y2) - 4*sd(Y2)),

upper = c(max(Y1) + 4*sd(Y1), max(Y2) + 4*sd(Y2)),

h = bw, resolution = 256)

persp(z = Re(den$vals), theta = 30)

4.8 Other Features

There are some functions included in kerdec that are required by KDDE, but also could be

useful out of this context. We briefly present multivariate empirical characteristic functions in

Section 4.8.1 and in Section 4.8.2 we present our Laplace distribution functions.
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4.8.1 Empirical Characteristic Function

The empirical characteristic function (ECF) it is easy to program in R. It is opportune to

have it already implemented. We have implemented in kerdec a few useful functions that were

programmed in C++ and called via RcppArmadillo.

The functions available are ecf(), ecf real(), ecf imag() and ecf mod() to compute

the ECF, its real and imaginary parts and its module, respectively. The importance of hav-

ing four different functions is that it avoids unnecessary computations. For instance, calling

ecf real() rather than Re(ecf()) takes about half the time, and calling ecf mod() rather

than Mod(ecf()) avoids the creation of a complex matrix or vector and it is slightly faster.

The code below provides a simple example of usage of these functions in both, univariate and

multivariate cases.

## -------------------------------------------------------------------

## Empirical Characteristic Function

## -------------------------------------------------------------------

## Univariate --------------------------------------------------------

library(kerdec) # Load package

set.seed(666) # Set seed

## Parameters of Poisson distribution, sample size and grid size

lambda <- 10

n <- 150 # Sample size

m <- 200 # Grid size

t <- seq(-2, 2, length.out = m) # Evaluation grid

smp <- rpois(n, lambda) # Random sample
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## Compute empirical characteristic values and characteristic function

## values

real <- ecf_real(t, smp)

real[1:5]

> real[1:5]

[1] -0.01652991 -0.01911710 -0.02250165 -0.02628080 -0.02998878

## Multivariate ------------------------------------------------------

## Parameters of bivariate normal distribution

mu <- c(-1, 0, 1)

sig <- diag(1:3)

## Random sample of dimension 3.

rndm <- function(n) {

cbind(rnorm(n, mu[1], sig[1, 1]),

rnorm(n, mu[2], sig[2, 2]),

rnorm(n, mu[3], sig[3, 3]))

}

## Create evaluation grid.

grid_1d <- seq(-3, 3, length.out = 10)

grid <- as.matrix(expand.grid(t1 = grid_1d,

t2 = grid_1d,

t3 = grid_1d))
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n <- 50

ecf(t = grid, smp = rndm(n))[1:5]

> ecf(t = grid, smp = rndm(n))[1:5]

[1] -0.05367969-0.08665816i -0.13508830-0.07451102i -0.15411251+0.04830170i

[4] -0.15340938+0.13791242i -0.05158918+0.26974275i

4.8.2 Laplace Distribution

The Laplace distribution is frequently used to model error. The kerdec package provides the

functions rlaplace(), plaplace(), and dlaplace() for generating random samples, comput-

ing the cumulative distribution function and the probability density function. These functions

work the same way as R base distribution functions.

There are several parametrizations of the Laplace distribution. We have selected the one

parametrized by its mean and standard deviation, that is, the one whose probability density

function is given by

f(x) =

√
2

σ
exp

(
−
√

2
x− µ
σ

)
, x ∈ R. (4.4)

We conclude with a brief example of use of these functions.

## -------------------------------------------------------------------

## Laplace Distribution

## -------------------------------------------------------------------

set.seed(666)

sigma <- 3

n <- 10
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dlaplace(x = c(0, 10), mean = 0, sd = sigma)

> dlaplace(x = c(0, 10), mean = 0, sd = sigma)

[1] 0.235702260 0.002113878

plaplace(x = c(0, 10), mean = 0, sd = sigma)

> plaplace(x = c(0, 10), mean = 0, sd = sigma)

[1] 0.5000000 0.9955158

rlaplace(n = n, mean = 0, sd = sigma)

> rlaplace(n = n, mean = 0, sd = sigma)

[1] -5.07708752 3.48028205 0.23964812 -1.28030426 -0.44145466 0.79536979

[7] 5.06361085 3.00571128 3.81773484 0.02808505

4.9 Conclusions and Future Developments

We have presented here the more important functions of kerdec package for KDDE. The

functions are intended to be simple to use and they have been improved in their speed by doing

all the time consuming operations in C++. Future versions of the package will include more

bandwidth selection methods and perhaps it will also contain functions for local regression with

measurement error.
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Figure 4.7 Bandwidth for example in Section 4.3.2
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CHAPTER 5. ADAPTIVE BANDWIDTH FOR KERNEL

DECONVOLUTION DENSITY ESTIMATORS

A paper in preparation

Guillermo Basulto-Elias, Alicia L. Carriquiry, Kris De Brabanter and Daniel J. Nordman

Abstract

Kernel deconvolution density estimation is a nonparametric estimator of a density based

on observations that are subject to random noise. We provide a bandwidth that adapts to the

smoothness of the target density

5.1 Introduction

Kernel deconvolution density estimation (KDDE) is a nonparametric density estimator for

samples subjected to measurement error. It is the natural generalization of the usual kernel

density estimation (KDE) to this setting.

In KDDE, samples of the target distribution are only available with measurement error.

The basic idea of KDDE is to use the Fourier inversion theorem, thus, the theory is developed

almost exclusively in the frequency domain.

In nonparametric problems, the selection of the tuning or bandwidth parameter is one of

the toughest steps. KDDE is not the exception; moreover, well-studied bandwidth selection

methods must be done in the frequency domain in order to be adapted to KDDE, if this is

even possible.

Besides the contaminated sample, some knowledge on the error distribution is required,

otherwise the problem is ill-posed. To study properties of the KDDE, it is common to assume
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that the error distribution is known. It is possible, however, to approximate the error distribu-

tion if there are repeated measurements (Comte et al. (2014)) or if an extra sample of errors is

available (cf. Johannes (2009)).

A comparison between several bandwidth selection methods in KDDE can be found in De-

laigle and Gijbels (2004b,a). Bootstrap, cross-validation and normal reference are among these

methods. Another approach is considered by Comte and Lacour (2011), where an empirical

version of the asymptotic mean squared error (MISE) is minimized.

The bootstrap method and the plug-in bandwidth selection methods presented in Delaigle

and Gijbels (2004b) require a pilot bandwidth. To provide it, the roughness of the second

derivative (that it, the integral of its square) is approximated by an iterative method that

starts with a normal reference rule, as described in Delaigle and Gijbels (2002).

In KDDE, the rate at which the tails of the characteristic function (ECF) of the error decay

affects the overall convergence rates (of the MISE, for instance). Thus, it is required to study

the estimators separately according to this. Fan (1991b) provides a pilot bandwidth that leads

to optimal convergence rates, however, it requires knowledge of the smoothness of the target

density or the rate at which the CF of the error goes to zero.

On the other hand, Politis (2003b) describes a pilot bandwidth in the context of the spectral

density in time series and KDE that automatically captures the optimal convergence rates with

no knowledge of the target density. This pilot bandwidth is obtained by studying the estimators

in the frequency domain. Moreover, it is not obtained by an iterative process, but by “cutting”

the support of the empirical characteristic function (ECF).

In this paper, we generalize the the pilot bandwidth proposed in Politis (2003b) to KDDE

using flat-top kernels, which have been proven to reduce bias (cf. Politis and Romano (1999)).

5.2 Background

Measurement error problems occur often in sciences. Suppose that we want a nonparametric

density estimator, the usual kernel density estimator (KDE) would not be appropriate since it

would not take the measurement error into account, specially when such error is large. The

kernel deconvolution density estimator (KDDE) provides a solution to the latter problem.
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Consider a sample from the model

Y = X + ε, (5.1)

where X and ε are independent and ε has mean equal to zero, say Y1, . . . , Yn. The KDDE of

X is defined as

f̂X(x) =
1

2π

∫ ∞
−∞

exp(−ıtx)φ̂Y,n(t)
Kft(ht)

φε(t)
dt, (5.2)

where h is the bandwidth parameter; φ̂Y,n(t) = n−1
∑n

i=1 exp (ıtYi) is the empirical character-

istic function (ECF) of the contaminated sample;

Kft(s) =

∫ ∞
−∞

exp(ısx)K(x)dx s ∈ R

is the Fourier transform (FT) of the kernel function K (the function K is symmetric and

integrates to one), and

φε(t) =

∫ ∞
−∞

exp(ısx)fε(x)dx, t ∈ R,

where fε(·) is the probability density function (PDF) of the error, which we will assume is

known.

Note in Equation 5.2 that the kernel itself is not used directly, but rather, its FT. If Kft(·)

had compact support, the integral in Equation 5.2 would be easier to compute and we would

be certain it is finite. Moreover, the properties of the KDDE are easier to study.

The magnitude of the pointwise bias of the KDDE depends on both, the order of the kernel

K and the smoothness of the target density fX(·). We say that K is of order q if there exists

|α| <∞ such that ∫ ∞
−∞

xkK(x)dx =


0, k = 1, . . . q − 1,

α k = q.

(5.3)

The biases of the KDEs and the KDDEs are exactly the same (cf. Meister (2009)). In the

context of KDEs, Politis and Romano (1999) define a family of kernels whose Fourier transform

is flat around the origin and demonstrate that such kernels produce KDEs with bias depending
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only on the smoothness of the target density. This family of kernels is defined via its CF,

specifically,

Kft(t) =



1, |t| < λ,

gλ(t), λ ≤ |t| < 1,

0, |t| ≥ 1,

(5.4)

where 0 < λ ≤ 1 and gc(·) is a continuous real valued function such that for all t ∈ R,

gλ(t) = gλ(−t), |gλ(t)| ≤ 1, gλ(λ) = 1, gλ(1) = 0. We will refer to any of these kernels

as flat-top kernels. The case λ = 1 is the most popular kernel in KDDE. Note that in this

case no function gλ(·) is required. Another example of a kernel that meets these conditions is

trapezoidal shaped:

Kft(t) =



1, |t| < 1/2,

2(1− |t|), 1/2 ≤ |t| < 1,

0, |t| ≥ 1.

In order to study the convergence of KDEs, Meister (2009) considers a sub-class of densities

in L2(R) that ensures that the first bβc derivatives of the density exist and are bounded.

Definition 5.2.1. We say that a density satisfies a Sobolev’s condition if it belongs to the set

Fβ,C = {f density :

∫
|fft(t)|2|t|2βdt ≤ C}. (5.5)

where 0 < C <∞. β is called the smoothness degree.

On the other hand, observe that the CF of the error appears in the denominator of Equa-

tion 5.2. We may infer that its behavior affects the convergence rates. Indeed, we will discuss

compare such convergence rates. Before that, let us define two main classes of tail behavior of

CF of the error.

Definition 5.2.2. A density function f is said to be ordinary smooth (OS) if there exist α > 0

and 0 < C1 < C2 such that

C1(1 + |t|)−α ≤ |fft(t)| ≤ C2(1 + |t|)−α, for all t ∈ R. (5.6)
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Definition 5.2.3. A density function f is said to be supersmooth (SS) if there exist γ > 0,

d2 > d1 > 0 and 0 < C1 < C2 such that

C1 exp(−d1|t|) ≤ |fft(t)| ≤ C2 exp(−d2|t|), for all t ∈ R. (5.7)

Laplace and gamma distributions are examples of OS distributions, while Gaussian and

Cauchy distributions are examples of SS distributions. Gaussian and Laplace distributions are

common for modeling measurement errors. There are other special measurement errors that

may not be SS or OS; the uniform distribution is an example of this. See Meister and Neumann

(2010) for KDDE where the error follows a uniform distribution.

Observe that all the flat-top kernels given by 5.4 satisfy that K ∈ L2(R); K(ft)(·) has

support on [−1, 1]; |Kft(t)| ≤ 1 for all t ∈ R, and

sup
t6=0
|t|−β|Kft(t)− 1| <∞,

for all β > 1. Therefore, according to Meister (2009),

sup
f∈Fβ,C

MISE
(
f̂ , f

)
= O

(
1

nh
max
|t|≤1/h

|φε(t)|−2

)
+O(h2β), (5.8)

where

MISE
(
f̂ , f

)
= E

∫ [
f̂(x)− f(x)

]2
dx

is the mean integrated squared error (MISE).

The first term of Equation 5.8 comes from the variance and the second term from the squared

bias. We may identify that the bias term is the same order as in KDE, while the variance differs

in the term max|t|≤1/h |φε(t)|−2 (in KDE the order of the variance is O(n−1h−1).

Now, in order to reduce the order of convergence of the MISE, the order of the bandwidth

ought to be such that the variance and bias terms are the same. It is possible to see (cf.

Meister (2009) ) that if f ∈ Fβ,C , then h � n1/(2β+2α+1) for the OS case (5.6) and h =

c−1/γ (log n)−1/γ for some c ∈ (0, (2d1)−1). The overall bounds are O(n−2β/(2β+2γ+1)) for OS

error and O
(
(log n)−2β/γ

)
for SS error, that is, the order of convergence is much slower for SS

error.
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5.3 Adaptive Bandwidth Using Flat-Top Kernels

Fan (1991b) introduced pilot bandwidth for KDDE in both cases, OS and SS error. It

is necessary, however, to know beforehand the number of derivatives in the OS error case.

Delaigle and Gijbels (2002) proposed a pilot bandwidth for KDDE which is based on an iterative

procedure, which requires minimization of an asymptotic MISE at every iteration. On the other

hand, Politis (2003b) suggests another pilot bandwidth

Politis (2003b) proposed a pilot bandwidth in the context KDEs. Such bandwidth is very

simple and fast to find by truncating the ECF of the sample. We discuss in this section how

this idea also works for KDDEs.

We start by defining the pilot bandwidth defined by Politis (2003b) for KDDEs. This is,

ĥ = (2t̂)−1, where t̂ = min

{
t > 0 : |φ̂Y,n(t)| = κ

√
log n

n

}
, (5.9)

where κ is a positive constant. Politis (2003b) suggests practical ways to pick κ. Observe that

here we are defining the bandwidth for the ECF of the contaminated sample.

Proposition 5.3.1. Let φY (·) be the CF of Y in (5.1).

(i) Suppose that

|φY (t)| = a|t|−b + o(|t|−b), as |t| → ∞,

for some a > 0 and b > 1 then ĥ ∼P An1/2b(log n)1/2b, for some constant A. Un ∼P Vn

means Un/Vn → 1 in probability.

(ii) Suppose that

|φY (t)| = a|t|be−d|t|e + o(|t|be−d|t|e), as |t| → ∞,

for some constant b, positive constants a and d and e ≥ 1, then ĥ ∼P A (log n)−1/e , for

A = (1/2d)−1/e.

Although the statement of Proposition 5.3.1 is slightly different from Theorem 2.2 from

Politis (2003b), the proof is essentially the same.
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5.4 Discussion

In Section 5.3 we proposed an adaptive bandwidth using flat-top kernels inspired by Politis

(2003b). In such paper, the adaptive bandwidth is further used to find a local bandwidth

selection method for KDE’s with second order kernels, although it is specified that the same

idea would be applied to global density estimation. In this section we do the analogous global

bandwidth selection for second order kernels KDDE’s using flat-top pilots (5.4).

The asymptotic mean integrated squared error (AMISE) is the following

AMISE(h) =
1

2πh

∫
|Kft(t)|2|φε(t/h)|−2dt+

h4

4
µ2

2(K)R(f ′′X), (5.10)

where K is a second order kernel (5.3), µ2(K) =
(∫
x2K(x)dx

)2
and R(ψ) =

∫
ψ2(x)d(x). We

abuse the notation by making the AMISE depend only on the bandwidth parameter, when the

more formal and cumbersome notation would be AMISE
[
f̂X , fX

]
.

Now, in Equation 5.8, we can approximate R(f ′′X) using the pilot bandwidth ĥ in Equa-

tion 5.9 in the following manner.

R̂(f ′′X) =
1

2π

∫ ∞
−∞

[
f̂ ′′X(x)

]2
dx =

∫ ∞
−∞

t2|φ̂Y,n(t)|2
|Kft

flat(ĥt)|
2

|φε(t)|2
dt (5.11)

where Kflat is a flat-top kernel, we used Parseval’s identity and

f̂ ′′X(x) =
1

2π

∫ ∞
−∞

exp(−ıtx)t2φ̂Y,n(t)
Kft
flat(ĥt)

φε(t)
dt. (5.12)

Meister (2009) proves that the optimal bandwidth is n−2β/(2β+2α+1), which is quite different

from n−1/(2β+2α+1). In the SS, however, the optimal bandwidth is the same order as before,

thus ĥ has the same asymptotic behavior. Therefore, we can expect this procedure to work

fine in the case where the error is OS.

Finally, R̂(f ′′X) can approximate R(f ′′X) in Equation 5.10 and thus it is possible to provide

a bandwidth parameter by minimizing this approximation to the AMISE.
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CHAPTER 6. CONCLUSIONS

We introduced the interesting topic of kernel deconvolution density estimation and some of

its challenges in Chapter 1. In Chapter 2 we explored some methodological aspects of KDDE.

Then in Chapter 3 and Chapter 4 we described our statistical software for KDDE in R, which

is both fast and flexible. In Chapter 5, we proposed a simple bandwidth selection procedure

that has good theoretical properties.

There are many directions in which this work could be extended. To start with, local

constant regression is a nonparametric regression method generalized from kernel density esti-

mation. There is a measurement error version of this procedure that could be implemented in

our software, as well as other already existent methods.

It would be desirable to extend the R-package to perform Fourier-type integrals for higher

dimensions. The current version is univariate and bivariate, which are the dimensions that the

C++ used to build our software currently handles. This could be done by using another C++

library integrates well with R and performs fast Fourier transforms in higher dimensions; we

currently use the C++ Armadillo library for univariate and bivariate cases.

Flat-top kernels showed promising properties in Chapter 2 and Chapter 5. More com-

prehensive theoretical and practical studies of this family of kernels could improve the kernel

deconvolution density estimation with better bandwidth selection procedures.
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Youndjé, . and Wells, M. T. (2008). Optimal bandwidth selection for multivariate kernel

deconvolution density estimation. Test, 17:138–162.


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	1. INTRODUCTION
	2. A NUMERICAL INVESTIGATION OF BIVARIATE KERNEL DECONVOLUTION WITH PANEL DATA
	Abstract
	2.1 Introduction
	2.2 Problem description
	2.2.1 A simplified estimation framework
	2.2.2 Kernel deconvolution estimation with panel data

	2.3 Challenges in deconvolution estimation with panel data
	2.3.1 Estimation of the error distribution 
	2.3.2 Choice of kernel function
	2.3.3 Numerical Implementation

	2.4 Simulation study
	2.4.1 Design of the simulation study
	2.4.2 Simulation results
	2.4.3 Kernel choices

	2.5 Conclusions and promising research avenues

	3. ``FOURIERIN'': AN R PACKAGE TO COMPUTE FOURIER INTEGRALS
	Abstract
	3.1 Introduction
	3.2 Fourier Integrals and FFT
	3.3 Speed Comparison
	3.4 Examples
	3.5 Summary

	4. KERNEL DECONVOLUTION DENSITY ESTIMATION WITH R PACKAGE KERDEC
	Abstract
	4.1 Introduction
	4.2 Kernel Deconvolution Density Estimation
	4.3 Sampling Setting
	4.3.1 Contaminated Sample and Known Error Distribution
	4.3.2 Contaminated Sample Plus Sample or Errors
	4.3.3 Panel Data

	4.4 Kernel Functions
	4.5 Bandwidth Selection
	4.6 Bivariate Case
	4.7 Examples
	4.8 Other Features
	4.8.1 Empirical Characteristic Function
	4.8.2 Laplace Distribution

	4.9 Conclusions and Future Developments

	5. ADAPTIVE BANDWIDTH FOR KERNEL DECONVOLUTION DENSITY ESTIMATORS
	Abstract
	5.1 Introduction
	5.2 Background
	5.3 Adaptive Bandwidth Using Flat-Top Kernels
	5.4 Discussion

	6. CONCLUSIONS
	BIBLIOGRAPHY

