INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600
\square

NOTE TO USERS

This reproduction is the best copy available.

CORRELATION STUDIES WITH IMBRED AND CROSSBRED STRAINS OF MIAIZE

by

MERTE P. JENKINS

A Thesis Submitted to the Erasuate Faculty Por the
$\because:$ Legree of
$;$
DOCTOR OF PHILOSOPHY

Major Subject Genetics

Approzed:

Signature was redacted for privacy.
In Charge of Hajor Hork

Signature was redacted for privacy

Bead of 药jor Department

Signature was redacted for privacy.
Dean of Graduate College

UMI Number: DP14472

UMI

UMI Microform DP14472

Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346

Ann Arbor, MI 48106-1346

TABLE OF CONPENTS
Page
I. Introduction 4
II. Review of literature 6
 9
IV. Experimental methods 12
A. Naking the F_{1} crosses 12
B. Yield experiments 15
C. Yield computations 18
D. Collecting the data on the characters studied 20
E. Computation of the coefficients of correlation 24
F. Adjusting for heterogeneity of data 24
V. Coefficients of sinple correlation within inbred lines 27
VI. Coefficients of partial and oi multiple cor- relation mithin inbred Innes 34
WII. Coefficients of simple correlation within F_{1} crosses 40
VIII. Coefficients of partial and of moltiple cor- relation within F_{1} crosses 49
IX. Correlations between characters of the inored parents and those of their F_{1} erosses 53A. Correlations with each inbred parent andWith the mean of the fwo paxents54
B. Correlations between characters of the in-bred parent and the mean value of the secharacters in the crossbred progeny59
T278:
- 5-
Page
C. Coefficients of partial and of multiple correlation between characters of the inbred parent and the mean yield of their crossbred progeny 65
X. Data on the prepotency of inbrea lines used as
the parents of $\bar{F} 1$ crosses 70
A. Data on yields 71
B. Data on per cent of plants standing erect at hervest 80
C. Data on some of the other characters studied 88
XI* Discussion 118
XII. Sumary 127
XIII. Acknowleagments 130
XIV. Literature cited 131
XV. Appendix 133

TNTRODUCITIOA

Many of the experiment stations throughout the country are now conducting selection experiments within inbrec lines of corn. The ultimate use of each of the inbred lines developed probably will be in making some sort of crossbred combination. The final test of every inbred line, therefore, is the ability of its crosses to produce large yielas of sound corn.

暃解 labor and expense are involved in the artificial self-pollination of any very large number of inbred lines. Good lines could be produced more cheaply and much more progress could be made if it were possible to distinguish and discard in the eariler years of selifing those lines which are likely to give mproductive crosses. The studies herein reported were undertaken primarily in an effort to determine, if possible, the characters associated WIth productivity, with the hope that these characters might then be used as indexes for selection.

The problem has been developed along three main lines. Coefficients of correlation have been computed among a number of different characters (1) within inbrea lines, (2) within F_{1} crosses and (3) betmeen the inbred parents and their crossbred progeny. The parent-progeny correla-
tions are of the most value as guides for selection. They also bring out some interesting relations in regard to the prepotency of inbred lines of corn. Detailed data are given on a mmber of characters of the parent lines and or their P_{y} crosses in order to bring out some of the relations beiween parent and progeny. such as uniformity of reaction of disferent parents in their crosses, prepotency, etc.g which are not always shown clearly by coeffictents of correlation.

REVIEG OF LITERATURE

Correlations between various characters within inbred lines of corn and between the characters of parental inbred lines and those of their F_{1} crosses have been reported by several investigators. Relatively fev data have been published, however, which deal directly with the prepotency of inbred lines of com used as parents of different crosses. The data of this sort that have been published have been confined largely to yield. \therefore 隹esselbacin (5) found a general relation between the productivity of inbrea parents and that of their hybrid offspring. Exceptions to this general rule occurred, however.

Richey (8) found that the tendency of certain strains to produce high yielding crosses was very noticeable. For example the mean yield of the seven crosses involving one certain strain exceeced the yield of any single one of the remaining 34 crosses not involving it.
sichey and Mayer (10) have presented data wich indieate that some inbred Ines are much better than others in producing high yielding crossbred combinations.

Hyle and Stoneberg (6) Pound that inbred lines having
${ }^{1}$ Heference is made by number (italic) to "Literature cited", page 13:I.
smaller nombers of kernel rows had a greater length of ear per plant, were more resistant to corn smat, had fewer plants with heritable, deleterious characters, and were more vigorous and productive in general than the lines having larger numbers of kernel rows.
pr'́n Hayes (2) presented a number of coefficients of correlation to show the inheritance of various chargeters through different generations of inbreeding. A number of coefficients of correlation between yield of the inbred lines and various other characters also were given. IV More recently Milsson-Leissner (7) in experiments conducted in Hinnesota, found that some inbred lines were disinctly superior to others as parents of crosses. Be reported the yields of most of the possible combinations among 13 dent inbrecis and mong nine finnt inbreds. Boin smong the dents and among the flints some inbred lines were shown to be, on the average, more satisfactory parents for making F_{1} crosses than others. He reported the coefficients of correlation between certafn characters in the selfed lines and the same characters in F_{1} crosses. The correlaitions were postitive in every case. Comrelstions between the yield of the F_{1} cross and the mean yield of the two parental Ines were 0.1852 ± 0.0580 in a group of 13 dent inbreds, and 0.7434 ± 0.0427 in a group of nine flint inbreds. $\frac{\text { Fultiple correlations were calculated }}{}$
between yields of the F_{1} crosses and five characters in the parental lines. For the dents the multiple correlation coefficient was 0.6687 and for the ilints it was 0.8240 .

101 Jorgenson and Brewbaker (4), in experiments also conducted in Minnesota, presented data on 10 inbred lines from the dent variety Silver King and the F_{1} crosses between them. Both high and low yielders were found among the crosses from each inbred line. on the basis of the average yielc of all of the F_{1} crosses in winch they have been used as parents, some inbrec lines appear distinctly superior to others as parents of crosses. These investigators also give a number of correlations between verious characters in the F_{1} crosses and the mean value of the same characters in the two parental lines. Their coefficients of correlation, like those of Hilsson-Leissner, are all positive. They calculated a multiple correlation with field of the F_{1} cross as the dependent variable and the characters of iength of ear, diameter of ear, mmber of kernel rows per ear, height of plants and yield in grams per hill of the parents as the independent variables. This correlation was 0.6074 . Field of grain of the parents gave the highest simple correlation with yield of the FI cross. The correlation in this case was 0.5000 ± 0.077.

MAPERTAL

A list of all of the inbred lines used either in the crossing experiments, in the correlation studies, or in both is given in the Appendix, Table 1. This table snows the pedigree number of each inbred line, the variety from which it originated and sumarizes the data on its F_{1} crosses. Host of these inbred ines were produced at Ames, Iowa during the progress of these investigations. Five inbred lines (numbers 41, 42, 174, 175 and 176) were obtained from Dr. J. R. Holbert of the Office of Cereal Groos and Diseases, Enited States Department of Agriculture, Bloomington, Illinois. One inbred line (number 112) was obtained from Dr. F. W. Indstrom of the Department of Genetics, Iowa Stste College. Wost of tine inbred Innes insted in the Appendix, Table 1 , were used both in the crossing experiments and in the correlation studies. There were a few exceptions, however, which are indicated in the table.

Some of the F_{1} crosses in these experiments were made in 1925 and the remainder in 1926. The F_{1} crosses made in 1925 were compared for yield in 1926 and those made in 1926 were compared for yield in 1927. The inbred lines developed at Ames had been selfed for three generations at
the time the 1925 crosses were made and for four generations at the time the 1926 crosses were made. Inbred lines number 41 and 176 from Dr. Holbert had been inbred. for five generations, mamer 42 Por seven generations and numbers 174 and 175 for efght generations at the time thoy were used in making F_{1} crosses. Inbred line number 112, supplied by Dr. Lindstrom, had been inbred for two generations.

The inbred lines included in the correlation studies were planted in 1926 in a special experiment for field comparisons. Data for the correlation studies were taiken on the plants in this experiment, or on the ears harvested from them. All of the inbred lines in the correlation studies had been selfed for four generations at the time the data were taten for these studfes.

Table I gives a list of the varieties represented in the experiments together with the number of inbred lines originating from each variety. In all, 140 inbred lines from 18 varieties were represented in the crossing experiments and 142 inbred fines from 14 varieties in the correlation studies.

EXPERTMEMAL METHODS

In the development of the inbred lines extreme care has been exercised to prevent accidental outcrossing of the self-polinnated ears. All of the self-polInations since the experiments were started have been made by the bottle method described by the author (3). Very Low amounts of outcrossing have been obtained. For instance in 1926, (after the Ines had been inbred for 4 generati ns and outcrosses could be distinguished readily by the greater size and Vigor of the planis) careful counts vere made of the plants that apoeared to be outcrosses. Less than 0.4 per cent of such plants were observed.

LAKINE THE FI CROSSES
In comparing the inbrec lines an effort was made to use each inbred line in at least 10 crosses. All of the crosses were made in a special block of rows called the crossing biack. Several different methods were followed. In 1925, aach row in the crossing block was from tine seed of an individual ear. In 1926 seed from three to fifve selfed ears was mixed to represent each Inne.

The 80 inbred Iines (nubers I to 80 in the Appendix, Table I) in tine 1925 crossing block were divided into
three groups. The inist group of lines, nombers I-20, were from varieties of whte corn, the second group, numbers 21-40, were from early varieties of fellow corm and the third group, mmbers $41-80$, were from the later varieties of jellow corn. innes 8, 23 and 44 were weak and undesirable and were not usod. This left 19 lines in each of the first two groups and 39 in the thind group.

Within the first frow, each of the lines numbered 1 to 10 inclusive (exeluding line number 8) was crossec With each of the lines numbered il to 20 inciusive. This gave 90 different combinations. In a similar mamer in the second group, lines 21 to 30 inclusive (excluding line 23) were erossec with lines 31 to 40 inciusive. This, alsc, gave 90 aifferent combinations. In both of these experiments the crosses were made reciprocaily and the seed from reciprocal crosses was mixed for the ments. In the third grow a slightiy different procedure was followed. In this group ten of the 39 lines were selected as sires and an effort was made to cross each sire with each of the remaining 29 lines. This would have given 290 different combinations. However, nine of the combinations were not obtained so that a total of 281 combinations was made. Ho reciprocal crosses were made in this group.

The 1926 crossing block contained 76 inbred lines (inbred lines number 101 to 176 in the Appendix, Table 1).

Eines 101 to 113 inclusive were from varieties of white comn and the remaining lines were from varieties of yellow corn. The 11 best appearing lines of white com mere selected for crossing, the other two being discarded. An effort was made to obtain all possible combinations among the 11 lines selected for crossing. This would have given 55 different combinations, each combination being made reciprocally. Fifty-three of the 55 possible combinations were obtained. For various reasons ten of the lines from the yellow varieties also were discarded, leaving 53 lines. Ten of tinese 53 lines Wero selected as siros and were crossed with each of the other 43 IInes. Reciprocal crosses were not made in this group. Later in the season after the crosses had been made, one of the Innes used as a sire developed undesirable cinaracteristics and all erosses with it were discarded. This left 387 possible combinations (9 sires crossed with each of 43 female parents) of wioch all but four were obtained.

In order to eliminate, as far as possible, individual Dlant variations in the lines being crossed, pollen was composited from 12 to 15 plants of the row used as tho male parent and 3 to 6 ears were pollinated in each row used as a female parent. In the three groups of lines where re-
ciprocal crosses were made and the seed mixed, therefore, from 12 to 20 plants in each of the parental lines were represented in the cross. In the two groups where reciprocal crosses were not made, 12 to 15 plants of the male parent and three to six of the female parent were represented in the cross.

In making the crosses the technic was very similar to that described by coulter (1). A small half-ounce botile was used to hold the pollen instead of a thistle tube. The top of the bottle was fitted with a tro-hole rubber stopper. Two piaces of glass tubing wer inserted through the rubber stopper and arranged as for an ordinary wash bottie. Then by bloring on one tube the pollen was forced out through the other. By tine use of this method, it was easy to make 50 to 60 crosses with one collection of pollen.

YIED EREETEMSS

In 1926 a Jield experiment was conducted in winich most of the inored lines represented in the 1925 and 1926 crossing blocks were compared. AII of the inbred lines inciuded in the ficld experiment had been inbred for 4 generations. Seed of the inbred lines in the 1926 crossing blocir was mixed for the yield experinent from the same ears Irom winch seed was taizen for planting the crossing
block. As mentioned before, the rows of the 1925 crossing block were ear rovs. The seed from these lines used in planting the yield experiment was a mixture of seed from several of the selfed ears obtained from the 1925 rows. It, therefore, had been inbred one year longer than that planted in tine 1925 crossing block.

Three different plots, each consisting of a single row 25 hills long, were planted with each kind of corn. Due to a sinortage of seed, only three kernels per hil? were planted and the plots were not thinned. Every tenth plot was planted to a uniform check.

Two yield comparisons of F_{1} crosses have been conducted in connection with ine experiments herein reported. The 旺rst was in 1926 and the second in 1927. The three groups of Fi crosses, wite, early yeliow and late yellow, whicin mere made in the 1925 crossing block wore planted In the 1926 Jield experiment, and the two groups of F_{1} crosses, white and Jellow, winich were made in the 1926 crossing block wore planted in the 1927 yield experinent. In both of these experiments six plots were plented with each kind of corn. Each plot consisted of a single row 15 hills long. Four kernels per hill were planded and later the plots were thinned to three plants per hill in order to obtain more uniform stands. In the 1926 yiela
experiment every tentin plot was planied to a uniform check. No check plots were planted in the 1927 experiment.

All yields are reported as pounds per row of air dry shelled corn. Determinaiions of the per cent of moisture were made in the 1926 yield experiment with inbred lines of drying the entire yield fromeach plot. In the 1926 gield experiment with crosses the per cent of moisture was determined fromiz shrinkage sample of 15 ears taken from each plet. In the 1927 experinents the entire yield from two of the six replications of each wind of corn wast dried. The average moisture content of the shrinkge samples from the various experiments afier they had become air dry was 5.57 per cent for all of the experiment conducted in 1926, 5.69 for the comparison of white crosses in 1927 and 7.19 per cent for the comparison of yellow crosses in 192\%. The yielas in pounds per row may be converted to bushels per ac:e with 15.0 per cent moisture of muliplying by the following factors:

For all of the 1926 expersments......... 5.191
For the white crosses, 1927............... 5.184
For the yellow crosses, 1927............. 5.102
In bath the 1926 and the 1927 yield experivents the sis plots of each kind of corn were distributed at random
over the field. However, the method of ds stribution differed slightly for the two years. In the 1926 experiments the first roplication was plented in order according to the pedigree mombers of one inbred parent and the second replication was plentec in order according to the other parent. The four packets of seed of each kind of corn for the remaining four repileations then were put together into a chman and thoroughly mixed. They then were taizen out and planted in the order in wich they came from the churn. In 1927, as in 1926; six pacists of seed were made up of each kind of corn, one packet for each replication This year, however, the packets for each replieation were mixed individuelly so that there was random distribution within each replication but the differeat replications were kept separate and distinct.

YHEID COBPETMTIONS

The field data were punched in cards orepared for use with the F 保lerith sorting and tabulating machines. With the use of these cards it was no more effort to colIect the data fron the varicus plots of each kind of corn qith mandom distriontion then it wald have been with a systematic distribution.

Yields were adjusted for variations in soit and for Variations in stamd. Adjustments for soil heterogeneity were maie according to the regression of the individual rows on a fiverrow moving arerage as suggested by Richey
(9). Adjustments for stand werc made according to the regression of yield on stand. The essentially 0 afierent feature of the process used was that these two adjustments were combined into one regression equation which included them both. To accomplish this, the various correlations among stand; the five-row moving average, and the deviation of the field of each plot from the mean gield of all plots of the same kind of corn first mere calculated. From these correlations the mitiple regression equation was determined. This equation was of the form

$$
D=\beta_{D S} \frac{\sigma_{D}}{\sigma S} s+\beta_{D A} \frac{\sigma_{D}}{\sigma_{A}} A
$$

in wich \bar{D} represents the estimated deviation in yield of any plot from the mean yield of all plots of the same kinc of corn, S, deriation in stand of any plot from the mean stand of the experiment and A, moving average value. Actually in making the adjustments only the mean yields of the different kinds of com were adjusted. In this case D represents the correction term to be applied to the mean. S, the mean deviaition in stand of all plots of the same inind of corn anc A, their mean moving average value.

A general standard deviation was calculated frof the punched cards for each experiment. The formula used was the usual formula of $\sigma_{E}=\sqrt{\frac{\sum D^{2}}{H}}$ in wich D is the devistion of each plot from the mean of all plats of the same kind of corn. The stendard deviation of the difference between any two mean yields then was calculated according
to the formula suggesied by Richey (9) as follows: $\frac{2 s \sigma_{E}^{2}\left(1-R^{2}\right)}{(s-1)}(n-1)$ in which s is the number of plots used in computing the moving average, n, the number of replications and R, the matiple correlation of stand and moving average witi gield.

COILEOTING THE DATA ON TEE CEARACTERS STUDIED
A 14 st of all of the characters treated as variables in the comrelation stuaies herein reported is given in Table 2. The symbols usec throughout to designate the respective variables are show at the left of the table. Each character is represented by tho same symbol in the inbred lines and in the F_{1} crosses. Table 2 also shows the unit of measurement and least count used in taring the date on each rariable and the class intervals used in calculating the coerficients of correlation. In most cases the size of the class interval was arranged so as to give 10 classes.

TABLE 2. Characters of the plant ears that are treated as variak port, together with the unit of least count used in taking the able and the class intervals us the coefficfents of correlation

Sym-:		\vdots
bol :	Variable	Units an

A Date $1 / 4$ tasseled I day

B Date $1 / 4$ silked
1 cay
0 Plant height
0.5 foot

D Chlorophyll color
1 grade
E Number of nodes per plant Actual m
F Number of nodes to upper ear Actual nu
G Per cent of nodes below ear
1 per cer
H Per cent of plants smutted
I Number of suckers per 100 plants
J Per cent of plants standing erect at harvest
1 per cer Actual nu

1 per cer
K Per cent of plents with two or more ears
I Number of ears per plant
M Per cent of ears moldy
1 per cer Actual nt

N Ear length
1 per cer

0 Ear diameter
0.1 cm.
0.1 cm.

P Ear shape index (diameter : length)
0.001

Q Shrinkage per cent of the harvested ears
I per cer
R Shelling Per cent 1 per cer
S Mean number of kernel rows per ear Actual m

T Coefficient of variability of number of kernel rows
0.1 per
X Yield
0.2 pound
(3) Hean yield of crosses
irs of the plants and harvested reated as variatles in this resith the unit of measurement and In taking the data on each variass intervals used in caleulating s of correlation.

	:	: Cla	atervals
	: Units and least counts	Inbreds	$: \quad \mathrm{F}_{1}$ crosses
	1 lay	1 day	2/3 day
	1 day	1 day	2/3 day
	0.5 foot	0.5 foot	0.5 foot
	1 grade	0.3 grade	---
	Actual number	0.5 node	0.8 node
	Actual number	0.3 node	0.5 node
	1 per cent	2.2 per cent	2.2 per cent
	1 per cent	5.1 per cent	5.1 per cent
	Actuel number	7.2 suckers	7.2 suckers
	1 per cent	11.0 per cent	21.0 per cent
	I per cent	9.0 per cent	2.5 per cent
	Actual number	0.09 ear	0.09 ear
	1 per cent	8.2 per cent	6.0 per cent
	0.1 cm .	0.9 cm .	1.1 cm .
	0.1 cm .	0.216 cm .	0.15 cm .
	0.001	0.025	0.020
	1 per cent	2.3 per cent	2.3 per cent
	1 per cent	2.1 per cent	1.05 per cent
	Actual number	0.8 row	1.0 row
rows	0.1 per cent	1.6 per cent	---
	0.2 pound	0.7 pound	0.7 pound
	-	0.45	---

The data used in the correlation studies were taken on the various yield plots which have been descrioed in detail previously. It will be remembered that there were three replications of each kind of corn in the yield comparison of inbred lines and six replications in the case of the F_{1} crosses.

Records on each of the characters studied were taken on each replication of the yield experiments with the exception that records on date $\frac{1}{3}$ tasseled, date $\frac{1}{4}$ siliked, plant height, number of nodes per plant and number of nodes to upper ear were taken on only two replications or the F_{I} crosses. The final value for each character used in the correlation tables was the mean or the values determined for the different replications.

The date $\frac{1}{4}$ tasseled and date $\frac{1}{3}$ silked represent the date on which 10 plants in the row (approximately $\frac{1}{4}$ of the plants) were tasseled or silked. A plant was counted as tasseled as soon as anthers appeared.
plant height was determined by measuring several representative plants in the r on. The man of these measurements then was computed.

Data on chlorophyil color vere taken on the inbred lines only. Five arbitrary coler grades were established.

These grades were numbered from 1 to 5 inclusive, number I Deing the darizest coler and muber 5 the Ilghtest. Erch replication of tho inbred innes was given the munder of the grade winch best fintted it. The average of the numbers given the difierent replications was taken to repre sent tine IIne.

堶mber of nodes per plant was determined as the mean number of nodes per plant for the first 10 plants in the row. Humber of nodes to upper ear was determined in a similar manner.

The characters, per cent of nodes below the enr. per cent of plants smutted, number of suckers per 100 plants, per ceni of plants standing erect at harvest, per ceni of plants with two or more ears, muber of ears per plant, and per cent of ears moldy are self-explanatory. With the exception of per cent of nodes below the ear, they were each determined irom the total counts for all replicatiors.

Data on the charscters, esr length, ear diameter, ear shape index, shrinkage per cent of the harvested ears, shelling per cent and muber of kemel rows per ear, were obtained from the samples taken from each plot and dried as previously explained for determination of weight of dry corn. These data were taken on all of the inbred lines In the yiela experiments and only on those F_{1} crosses
grown for yield in 1926.
The coefficient of variability of number of kernel rovs was determined for the inbred lines only.

COMPUTATION OF THE COEFFICIENTS OF CORELATION
All of the coefficients of correlation of the zero order, partial correlations, and multiple correlations included in this report were calculated according to the methods sughested by Wallace and Snedecor (II). The class intervals shom in rable 2 were used in calculating all of the coefficients of correlation except where stated otheruise. Mo adjustments such as Sneppard's correction were made to correct for the fact that the data were coded.

ADJUSTING FOR HETEROCENEITY OF DATA

Some of the most puzzing problems with which the investigator has to deal in correlation studies have to ao mith adjusting for heterogeneity of materiai. In the few correlation studies within inbred lines which have been reported no attempts were made to adjust for heteroseneity of data. It may be that the data reported by these authors have been homogenebus and no adjustments were necessary. It is doubtiul fif this is turue in every case, however. At least one example to the contrary may
be quoted. In a recent publication by inisson-Iezsner (7) the author reports a correlation of +0.9 between digmeter of ears of parents and F_{1} generations where the flints and dents were grouped together. He further makes the statement in explanation of this higin correlation that the frequency distributions of the two kinds of corm do not even overlap in the correlation table (page 449). This Pact in ftself should be suificient evidence to indicate that the two samples do not represent the same general population and, therefore, should not be grouped into the same correlation table.

Inbred Ines from 14 varieties have been included in the present experiments. Some of inese varieties cixfer widely in practically all of the characters studied. In order to group the inbreds from ail of these varieties into the same correlation tables, it was necessary to make adjustment for heterogenelty of material. The method finally adopted mas to express the values for the charaeters of each inbred Iine as deviations from the mean value of all lines of the variety from minch the invred or£sinated. The author is not entirely satisfied that tinis is the best method that could have been used. It may be tinat the method of expressing the value of the characters of an intred Ine in terms of per cent of the mean of ail of the lines from the same variety woald have been a more
precise method. The method used, however, should definitely determine whether a deviation from the mean in a certain direction in one character is or is not associated mith a deviation from the mean in a definite direction in another character.

In the F_{1} crosses the same general metiod was used. The comrelations within F_{I} crosses were confined to those grown in 1926 and adjustments were made in these crosses only. In making these F_{1} crosses the inored lines had been grouped into three more or less uniform groups (white, early yellow and late yellow). In the F_{1} erosses, therefore, the mean of each character for each of the grouns was determined and the characters of each F_{1} cross then were expressed as deviations from the mean of the group in which it was located.

The coefficients of simple correlation among the difFerent characters studied in the inbred lines are shown in Table 3. All of these coefficients of correlation are between characters within the same generation. Goefficients which are three or more times their probable error are considered significant and are printed in bold iace type.

Note: Coefficients of 0.1652 are 3 times their P.E., those of 0.2 P.F., those of 0.3075 are 6 times their P.E., those of 0385 their P. F. Goefficients three or more times their P.E. are
among a number of charscters within inbred lines of corn.

- E., those of 0.2259 are 4 times their P.E., those of 0.2634 are 5 tim E., those of 03855 are 8 times their P.E., and those of 0.4509 are 10 s their P.E. are printed in bold face type.

There are 210 coefficients of correlation recorded in Table 3. Of this numoer 65 may be considered significant, as jucged by the fact that they are three or more tires their probable error. A summery of the positive and negative correlations among the different variables, as indicated by the significant coefficients in Table 3 is given in Table 4.

TABLE 4. Summary of Table 3 ghowing the gignifioant positive and negative coofflcients of corrolation among the different variables.

Whe most interesting cerrelations shown in fables 3 and 4 are those with yield of the inbred line. ShelIng per cent (R) gave the highest positive correlation
 sielling per cent usually has given rether low correlations with jield in studies with openmpolinated variem ties of com, and it gave a low correlation with yield in the F_{1} crosses as will be seen iater. The high oorreIation shown here probably was due to the tendency among poorly
some inbred lines to produce fizlled ears. The other characters which gave signfficant positive correlations with yield were ear length (N), 0.3754; ear dismeter (0), 0.3236; number of ears per plant (L), 0.3124; and plant height (C), 0.2037.

The characters which gave significant negative correlations with Jield were shrinikage per cent of the harvested ears $(Q),-0.2749$; date $\frac{1}{4}$ silked (B), -0.2621 ; chlorophyll color (D), -0.2673 ; and ear shape index (P), -0.3722. The sirst two of the se correlations indicate that late maturity was associated with low fields. The negative correlation with ear shape index indicates that the relatively long, slendes eaxs were associated with the largen jields. In connection with the correlation between yield and chlorophyll color it sinould be remembered
that grade 1 of chloropinyll color was the darizest green and grade 5 the lightest. A negative correlation between these two characters, therefore, indicates that darif grean chlorophyll color was associated with larger yields.

Date $\frac{1}{4}$ tasseled (A) and date $\frac{1}{4}$ siliked (B) gave significant positive correlations with plant height (C), number of nodes per plant (E), number of nodes to upper ear (F). per cent of plants with two or more ears (K) and shrinkage per cent of the harvested ears (Q). The correlation betweer date $\frac{1}{5}$ tasseled and shrinkage per cent was 0.3679 and that between date $\frac{1}{4}$ silked and shrinkage per cent was 0.4572. This seems to indicate that among these inbred lines date $\frac{1}{3}$ silked was a better index of relative maturity than was date $\frac{1}{4}$ tasseled.

Per cent of plants standing erect at harvest (J) gave three significant negative correlations of which the hizhest was with per cent of ears moldy (M). It would naturally be expected that those lines in vinich a lerge number of the piants were down and many of the ears resting on the ground, would have more moldy ears than the lines with erect plants.

Ear shape indez (P) gave significant positive conelations with per cent of ears moldy (fif), ear diameter (G), shrintage per cent of the harvested ears (Q) and number of

Lemel rows per ear (S) and significant negative correlations with number of ears per plant (I) and ear lengin (ii). The positive correlations with ear dicmeter and number of kernel rows per ear natarally would be expected. Those with percent of ears moldy and shrinkage per cent of the harvested ears indicate that the relatively short, thick ears were more inclined to be mody and tnat they shruak the most.

- 34 -
 GOEFTICENPS OF PAETIAL AND OF MULTIPLE COREELATIOX
 WITHIN IABRED LITESS

Coefincients of partial correlation between yield and other characters of the inbred lines were determined for only part of the characters studied. The charanters were divided into four groups for this purpose. These four groups of characters were as follows:

Group 1. Charscters indicating the relative length of season required to reach maturity. These characters were date one-fourth tasseled (A), date one-fourth silked (B), and shrinikage per cent of the harvested ears (Q).

Group 2. Characters indicating the relative plant Vigor of the different lines. The characters placed in this group mere plant height (C), chlorophyll color (D), number of nodes per plant (E), and number of nodes to uper ear (F).

Group 3. Characters indicating the relative susceptibility to disease of the different lines. These characters included per cent of plants smatted (H), per cent of plants erect at harvest (J), and per cent of ears moldy (in).

Group 4. Characters of the harvested ears. This group inciuded ear length (N), ear diameter (O), and shelling per cent (R).

Partial correlations were computed between each char-
acter of each group and yield of the inbred line, thus eliminating the effect of the variation of the remainfng characters of the group. The coerficients of multiple correlation between all of the characters in each group and the gield of the inbred lines also were computed. These correlations are recorded in Pable 5.

TABLE 5. Coefincients of partial and of multiple correlation between yield and four sroups of the other characters of the inbred lines.

Group: number:	Designation : of coefficient	Coepricients of correlation
1		0.1082 ± 0.0572
	$I_{B X} \cdot A Q$	-. $1836 \pm .0559$
	$I_{Q X} \cdot A B$	-.1814 $\pm .0559$
	$\mathrm{R}_{X \cdot A 3 G}$	$.3311 \pm .0513$
2	${ }^{\text {P CX. DEFF }}$	0.1709 ± 0.0564
	$r_{\text {DX }}$ CES	-. $1667 \pm .0564$
	PEX.CDF	-. $0949 \pm .0575$
	$r_{\text {FX.CDE }}$	$.1020 \pm .0574$
	R X CDEFT	.2961 土 .0528
3	$\mathrm{r}_{\text {EX }}$ - Jta	-0.0769 ± 0.0575
	r JX.EM	$.0516 \pm .0577$
	IMX.JHI	-. $1452 \pm .0566$
	$\mathrm{R}_{\text {X }}$ HJ ${ }^{\text {H }}$	$.1803 \pm .0558$
4	TIIX.CR	0.3143 ± 0.0521
	IOX. FR	.1715 土 . 0561
	$\mathrm{I}_{\mathrm{RX}} \mathrm{H}$ ITO	. $31.38 \pm .0521$
	R_{X} TIOR	$.5248 \pm .0438$
	$\mathrm{R}_{\text {İGBCDEAFKTETOMR }}$	0.6900 ± 0.031

The group of ear characters gave the highe st matiple correlation vith yield of the inbred lines and the group of characters indicating relsitive disease susceptioility the iowest. There was but litite difference between the mutiple complations given by the remaining two groups. The multiple cormelation betweer yield and 12 of the other characters also is recorded in Table 5. It was 0.6900 ± 0.0311.

Of the characters in Grow I, date one-fourth tasselec (A) gave a positive, thougin not significant. correlation with yield an dste one-fourth silked (B) and shrinkage per cent (Q) each gave negative significant correlations with yield when the efiect of the variation Of the remaining characters of the group was eliminated. It is interesting to speculate win date one-fourtin tasseled gave a positive partial correlation,mith yield and date one-fourth silked a negatite pariial comelation. When either one of these des was held consitant and the other Variec, probably the most important effect was to vary the number of days from tasseling to silking. ?

Both of the partial correlations metitioned seem to indicate that an increase in the number of days from

Ithroughout Enis report the term "held constant is used in the sense that the effect of the variation thas been elimtnated. TMis is the meaning conmonly given to this term in partial correlation studies.
fasseling to silving was accompanied by a decrease in挂eld. If date one-fourth tasseled remains constant inm creasing date one-fourth silked increases the days from tasseling to silking and, according to the negative partial correlation between Jield and date one-fourth silked, was accompanied by a decrease in yield. on the other hand, in date one-fourth silked remains constant decreasing the date one-fourth tasseled increases the days from tasseling to siluing which likewise, according to the positive partial correlation between date one-fourth tasseled and Yield, was accompaned by a decrease in yield.
fro of the characters in Group 2 gave positive pariial correlations with yield and two gave negaivive. However, only one of the positive and one of the negative correlations were signifteant. Plant height (c) was positively associatec̃ with field when chlorophyll color (D), number of nodes per plant (E) and number of nodes to upper ear (F) remained constant. When plant height and number of nodes to upper ear were held constant number of nodes per plant no longer appeared to be associated with yield. The same was true of number of nodes to upper ear for constant plant height and number of nodes per plant.

Chlorophyll color gave a negative partial correlation with yield when the other membors of the group 2 wero
held constant. As has been previously explained, this indicates that the darker chlorophyll colors were associated with larger fields.

Only one of the members of Group 3 geve any appreciable correlation with yield when the other members of the group remained constant and it can not be considered significant. This was per cent of ears molay (M) which gave a negative partial correlation of -0.1453 ± 0.0566. The characters of Group 4 all gave significant positive partial correlations with yield. Whe partial correIation between ear Iength and yield for constant diameter and shelling per cent was 0.5143 ± 0.0521 and that between ear diameter and yield for constant length and sheling per cent was 0.1715 ± 0.0561. As previously mentioned the hifh correlatan betmeen sheling per cent and yield probably was due to the poorly Inlled ears that occurred in many inbred innes.

COEFTOTETIS OF STMPJE COREELATIOX WITHTM FI

GROSSES

The coefficients of correlation caloulatea among tine characters within FI_{1} generations are recorded in Table 6. Coefficients throe or more times their probable errors are printed in bold face tyoe. The correIations in this table were computod from the data on the F_{1} crosses grown in 1926. A total of $461 F_{1}$ crosses from the three 1926 yield groups are represented in these comrelations.

TABLE 6. Coefficients of corr characters within F_{1} crosses

Hote: Coefficients of 0,0934 are 3 times their P.E., those of 0.1 those/6 times their P.E., those of 02372 ere 8 times their (of 0.1822 are)
Coefficients three or more times their P.B. are printed in

A larger percentage of the coefifcionts of correlation in Table 6 are significant than for the correlations within inbred lines. This may be dre not to ary materfal differences in the octual size of the coepricients but to the Iarger number of observations wioch resultad in smaller probable errors. of the 171 correlations recoried, 100 mould appear to be signipicant in that they are at least three times their prodable errors. A sumary of the data in Fable 6 is giver in Table 7. This table shows the different variables with whth each character gave either significant positive op significant negative correlations and brings out more clearly the interrelations amont the different variables.

TABLE 7. Summary of Table 6 showing the significant positive and negative coefficients of correlation among the different variables.

The coefficients of correlation os primary interest are those between Jield and the othar characters stadid. It will be noticod from pables 6 and 7 that, in general, yield was positively correlated with the characters indicating length of season required to reach maturity, plont Vigor, and ear size. It was negatively correlated with the characters for disease and with asm shape index (P). The correlation between fiela and shrinkage per cent of the harvested ears was negative though not significant. This was probably due to the fact that the season of 1926 was ideal for the zipening of the later kinds of corn so that practically all of the crosses matured fully.

The highest correlation between yield ma the other characters of the F_{1} crosses was the correlation of 0.4211 With ear length. Ear thameter gave a correlation of 0.2546 with gield and ear shape index a correlation of $\mathbf{- 0 . 2 6 7 6}$. This would seem to indicate that while both of the characters length and diameter which go to moke up size of ear were positively correlated with yiela, increasing the size by increasing the length mas a more effective method of procucing higher yields than increasing the size by inm creasing the diameter.

A number of other interesting relationships are brought out in these two tables. In generef, all of the
characters indicating maturity or plant vigor were positively correlated among themselves. 解ost of them, 21so, were negatively correlatod with per cent of plants standing erect at harvest (J) and ear shape index (P). Evidently the tall, vigorous plants were more likely to go dow before harvest.

Per cent of planis erect at harvest (J) gave significant positive correlations with ear shape index (P) and diameter of ear (0) and a significant negative correlation with ear length. This is rather surprising as it indicates thet the crosses with shorter, thicker ears were more orect at harvest. A possible explanatin of this may be taken from the correlation between ear shape and yield wich has been discussed above. This correlation indicatea that crosses with short, the ck ears were less productive than those with longs slencer ears. This might account for their being more erect at harvest because they were supporting less weight of ear.

In order to determine whether there were any striking differences in the coefficients of correlation in the different yield groups, the correlations betaeen the different characters and yield were computed for each group separately. The coefficients of correlation from each of the three experiments, and for comparison, the correlations for the three groups combined are recorded in Table 8.

TABLE 8. Coefficients of correla the various other characters wi yield groups of FI_{1} crosses grow

Character correlated with Jield	Coefficient 90 white crosses
Date I/4 tasseled	0.1566 ± 0.0694
Date I/4 silked	$.1060 \pm .0703$
Plant height	$.2695 \pm .0659$
Wumber of nodes per plant	. $1624 \pm .0692$
Number of nodes to upper ear	. $1487 \pm .0696$
Per cent of nodes biow ear	.0380 $\ddagger .0710$
Per cent of plants smatted	-. $0926 \pm .0705$
Number of suckers per 100 plants	-.2622 $\pm .0662$
Fer cent of plants standing erect at harvest	-. $1340 \pm .0698$
Per cent of plants with two or more ears	. $0120 \pm .0711$
Number of ears per plant	.1969 ¥ . 0683
Per cent of ears moldy	-.2840 $\ddagger .0654$
Ear length	$.4237 \pm .0583$
Ear diameter	$.4108 \pm .0591$
Ear shape index (Diameter * length)	-. $1972 \pm .0683$
Shrinkage per cent of the harvested eaps	-. $1670 \pm .0691$
Shelling per cent	$.4990 \pm .0534$
Hean number of kemel rows per ear	.0672 $\pm .0708$

lients of correlation between yield and er characters within the different F_{1} crosses grown in 1926.

For the most part the coefincients of correlation between the vamious chamacters and jield which are rem corded in Table 8 are isimiy consistent in tho different yieza groups．They vary somewhat in size in tho dif－ ferent experiments but onjy in a fes cases are they signi－ ficant and positive in one experiment and significant and negative in gnother．The correlation betmeen per cent of plants standins emect at harvest is positive in the early yellow crosses and negative in the later yellou crosses．It，also，is negative in the winte crosses but is not significant．Wo explanation ean oe offered for だ上s ract．

Practically the same situation also is true for the correlation between mean number of iernel rows per ear and yiela．It is positive in the early yellow orosses and negetive in the later crosses．There seems to be a reasoneble explanation for this in that it is entirely concelvable that in both early and laie crosses grown here at Ames，high yiela might be associated with the higher rowed soris of the early corn and the fewer powed sorts of the later corn．

Date onefourth tasseled and date one－fourth silved Save incher correlations with yield in the early crosses than in the later crosses．mis naturally mould be ex－ pected．Number of ears per plant gave higher positive
comrelations with field in the early crosses than in the late. This was due, without doubt, to the fact that there was more variability as regeds this character among the eariy crosses than among the Iate crosses. Most of the late crosses were single-eared. Per cent of ears moldy slso gave higher comelations with fiela in the two groups of carly crosses than in the group of late crosses.

COEPFICIEITS OF PARTIAL AND OF MULTIPIE

CORFELATIO W WTTHIN TEE F_{1} CROSSES

Coefficients of partial and of mutipie correlation Were computed from the data on the F_{1} crosses for the some four groups of variables which mere used for the inored 1 Iines. The only deviation in the present case from the grouping previously used being that chlorophyll color was omitted since no data on chlerophyll color were taken on the F_{1} crosses. The correlations computed for the F_{1} crosses are recorded in Trble 9.

1. It will be remembered that Group 1 IncIuded the char acters date one-fourth tasseled (A), date one-fourth silied (B), and sininkage per cent of the hampested ears (Q). which are indicative of the relative length of season rew quirea to reach maturity; Group 2 included the characters plant height (C), chlorophyłl color (D), number of nodes per plant (E), and muber of nodes to upper ear (F), Which are indicative of the relative plant vigor; Group 3 includea the characters per cent of plants smatted (H), per cent of plants erect at harvest (J), and per cent of ears moldy (M), which are indicative of the relative susceptibility to disease; and Group 4 inciuded the characters ear length (N), ear diameter (0) and shelling per cent (R), all of which are characters of the harvested ears.

TABLE 9. Coefficients of partial and of multiple correlation between yield and four groups of the other characters of the F_{1} crosses.

As was true for the inbrea lines, the group of ear characters (Group 4) gave the highest coefincient of multiple correlation with yiela. The group of characters in dicating plant ∇ igor (Group 2) also gave a high multiple correlation mith gield. The remaining two groups of characters gave significant though much lower correlations with yield. A coefficient of multiple correlation was computed between IO of the characters studied and yield and is recorded in tiable 9. This correlation was 0.7078 ± 0.0159 -

In Group i the partial correlations were low although two of them perhaps were significant. Date one-fourth tasselea (A) gave a low though significant positive paxtial correlation with yield but that or date one-fourth silked (B) was not significant. It will be remembered that in the inbred ines date one-fourth silwed (B) gave a significant negative partial correiation with yiela. The partial correlation between shrinkase per cent of the hervested ears (Q) and yielo for constant date one-fourth tasseled (A) and date one-fourth silized (B) was negative and significant aithough somewhat Iow.

In Group 2, which was composed of characters indicating plant vigor, each variable gave a positive partial correlaticn with yisla when the effect of the variation of the other variables of the group was eliminated. That between plant hoight (C) and yield was the hignest. The
partial correlation between number of nodes to upper ear (F) and yield was toonsmall to be considered signjw ficent,

The characters indicaing relative susceptibility to disease all gave negative partial correlations mith yield. Fwo of them, without doubt, were significant. Thet Detween per cent of plants eroct at harvest (J) anc yield, however, probably was not gignificant:

Fwo of the ear characters in Group \& gave positive partial correlaifons with yield and one gave a negative comrelation though it was not significant. The partial correlations with ear length (N) onc ear diameter (0) were both higher than the partial correlations botween Tield and any of the other dharacters studied in the F_{1} crosses.

CORPBLATTONS BETYUEN THE CRARACTERS OR THE IRBEED
PARENTS ARD THOSE OF THETR F_{I} CROSSES

In studying the relationships betweon inbred parents and Fi crosses it was first decided to attack the problem by the three following methods:

1. Determine the coefficients or cerrelation between the characters of the F_{I} cross and those of each parent separately.
2. Determine the coefficients of correlation between the characters of the F_{1} cross and the mean value of these characters in their two parents.
3. Determine the coefficients of corrolation between the characters of the inbred parent and the moan value of these characters in all of thoir crossbred progeny.

With the Iirst method of computing the coefficients of correlation the F_{1} crosses were paired first with one parent and then with the other. Each cross, therefore, appeared tyice in each correlation bajle. With the second method the F_{2} crosses were paired with the mean values for their two parents and appeared in each correlation table oniz once.

When comprations of the coefincients of correlstion by the first two methods were started it appeared that there should be a definite relatin between the coefficients
calculatec by these two methods. Investigation showed that if there is no correlation between the two inbred parents of the F_{1} crosses then $r_{2}=r_{1} \sqrt{R_{2}}$, were r_{1} is the correlation then each parent as determined by the firset method and r_{2} is the correlation with the mean value of the two paronts as determined by the second motinod.

In the present material there should be no correlation between the two inbred parents of the different crosses. The F_{1} crosses were made in a systematic order that amounted aimost to a cross of each inbred inne with all of the others which in itself would eliminate any possibility of correlation.

The coefficients of correlation between the char. acters of the F_{1} crosses and those of each separate parent could be calculated rith less work than couid the correlations with the mean values of the two parents. For this reason they were celculated first and the correjations bewoon the characters of the F_{1} crosses and the mean walue of the characters in their two parents then were computed from them by maitiplying by $\sqrt{2}$.

CORRELATIONS WITH EACH INBRED PARENT

AND WITH THE TEAN OF THE TWO PARENTS
The coefficients of correlation between the different characters studied in the F_{1} crosses and the same character
in each inbred parent are shown in Table 10. The correlations between the characters of the F_{1} crosses snd the mean value of the same character in the two parents, also, are shown in tin table. As would be expected, these latter cerrelations were not oniy higher but were more significant winen judged in comparison with their probable errors than were the correlations with each parent.

TABLE 10. Coefficients of correlation betwe characters in the F_{7} cross and the same ch the parental inbred innes.

correlation between certain ss and the same character in is.

It will be seen that the correlations were positive and significant in every case. The highest correlation was with per cent of erect plants although higio correlstions also vere obtained for the characters, number of kernel rows per oar number of nodes per plant, number of nodes to upper ear and per cent of nodes below ear. Yield gave the lowest comelation obtained.

Table 11 shows the coefficients of correlation bem tween the gields of the F_{1} crosses and the various cheracters studied in the inbred parents.

TABLE 11. Coefficients of correlation k yieid of the F cross and certain char in the parental inbred Iines.

Coefficients of correlation between the F cross and certain characters Qrental inbred lines.

Ith which yield of ated	Coefficien : parent separately	Of Correlation :With the mean value of : the two parents
	0.1197 ± 0.0231	0.1693 ± 0.0322
	$.0953 \pm .0233$	$.1348 \pm .0326$
	$.1342 \pm .0230$	$.1898 \pm .0320$
	$.1723 \pm .0228$	$.2437 \pm .0312$
	$.1406 \pm .0230$	$.1988 \pm .0319$
	$-.0538 \pm .0234$	$-.0761 \pm .0330$
	$-.0639 \pm .0234$	-. $0904 \pm .0329$
	$.0290 \pm .0235$	$.0410 \pm .0331$
t at karvest	-. $0446 \pm .0234$	-. $0631 \pm .0331$
ore ears	$.0673 \pm .0234$	$.0952 \pm .0329$
	$.0827 \pm .0233$	$.1170 \pm .0327$
	$-.0676 \pm .0234$	$-.0956 \pm .0329$
	$.1127 \pm .0232$	$.1594 \pm .0323$
	$.0894 \pm .0233$	$.1264 \pm .0327$
th)	-.0979 $\pm .0232$	-. $1384 \pm .0326$
ted ears	$.0479 \pm .0234$	$.0677 \pm .0330$
	$.0689 \pm .0234$	$.0974 \pm .0329$
$a r$	-. $0048 \pm .0235$	$-.0068 \pm .0332$
	$.1447 \pm .0230$	$.2046 \pm .0318$

The correlations in Table il are much lower than those in Table 10 as is to be expected. Those characters in the inbrea parents which gave the highest correlation with yield of the F_{1} cross, listed in order according to the size of the caefficients were muber of nodes per plant, yield, number of nodes to upper ear, plant height, date one-fourth tasseled and length of ear. All of tinese characters were, in a way, measures of viger in the inbred plants so that it would sppear that vigerous inbreds should give the most procuctive F_{1} crosses.

COKRETATIONS BETHEEN CHARAGTERS OF THE TABRBD PAFENT AND THE WEAN VAIUE OF THESE CHARACTERS IN THE GROSSBRED PROGEMY Coefficients of correlation between the characters of the inbred parent and the mean yield of thefr cross bred progeny are recorded in Table 12. Correlations beEween the characters of the inbred parent and the mean value of the same character in the crossbrea progeny are recorded in pable 13. The coerficients in the se two tables differ considerably in the manner in which they were computed. in the case of the correlations in Table 12 the mean yield of the crosses, first was determined for each inbred line. These means then were adjusted for heterogeneity in the same mamer as was previously described for the
other dats on the inbred lines. In making this edustment a mean was computed for the Ines from each veriety and the means for the different lines then were expressed as Geviations from the mean of their parent variety. In the case of the correlations in Fable 13 no such adjustments mere made. Instead the İve different yield groups Were kept separate and the coefficients of correlation: जere computed within each rield group.

Ine coefficients of correlation recorded in Table in between the characters studiec in the parental inbred Innes and the mean jfeld of thetr crossbred progeny have been computea separately for the crosses made in 1925, arter three jears of selfing and those made in 1926, after four years of selfing, and for botin groups combined. In several cases the correlations after three and arter four jears of selfing dipferec markediy in size. These difierences probabiy were due to the differences in the growing seasons of 1926 and 1927 when the two groups of crosses were compared for yield. In the season of 1926, when the crosses after three years of selfing were grown, there was a late fall. Pinis gave a decided advantage to the sorts requiring a. longer season. In the season of 1927, however, there was an early irost, inis giving an advantage to the earlier maturing sorts.

TABLE 12. Coefficients of correlatic characters of the inbred parents an their crossbred progeny.
:Coefincie
: F_{1} crosse Character in parent correlated with mean field of cross-after thd

Date $1 / 4$ tasseled	0.2322
Date $1 / 4$ siliked	.1451
Plant height	.1601
Chlorophyll color	.0737
Mumber of nodes per plant	.2901
Number of nodes to upper ear	.2362
Per cent of nodes below ear	-.0403
Per cent of plants smatted	-.1448
Number of suckers per loo plants	.0250
Per cent of plants standing erect at harvest	.0398
Per cent of plants with two or more ears	.2043
Number of ears per plant	.2045
Per cent of ears moldy	-.1333
Ear length	.1620
Ear diameter	.2307
Ear shape index (diameter t length)	.0909
Shrinkge in per cent of the harvested ears	.2365
Shelling per cent	.1907
Hean number of kernel rows per ear	
Coefficient of variability of number of kernel rows	.1276
Yield	.1606

ients of correlation between the trarious he inbred parents and the mean yield of progeny.

	$0.2322 \pm$	0.0758	-0.0357 \pm	0.0878	$0.1510 \pm$	0.0579
	$.1451 \pm$.0785	-. $0755 \pm$. 0874	$.0699 \pm$. 0590
	$.1601 \pm$. 0781	$.3160 \pm$.0791	$.2087 \pm$. 0567
	-. $0737 \pm$. 0797	-. $1090 \pm$. 0869	-. $0846 \pm$. 0589
	.2901 \pm	.0734	$.2780 \pm$. 0811	$.2806 \pm$. 0546
	. $2362 \pm$. 0757	. $2248 \pm$. 0835	. $2236 \pm$. 0563
	-. $0403 \pm$. 0800	. 03214	.0878	$-.0139 \pm$. 0592
	-. $1448 \pm$. 0785	-. $0325 \pm$. 0878	-. $1118 \pm$. 0585
	.0250 \ddagger	. 0801	$.1291 \pm$. 0865	-.0196 \pm	. 0592
	-. 0398 亡	. 0800	$.1056 \pm$. 0869	:0090 \pm	. 0592
	. $2043 \pm$. 0768	$.1163 \pm$.0864	:1668 \pm	.0576
	. $2045 \pm$. 0768	$.0835 \pm$. 0873	$.1594 \pm$.0577
	- . $1333 \pm$. 0787	$.0491+$. 0877	-. $0776 \pm$. 0589
	$.1620 \pm$. 0781	- .2345 \pm	.0831	$.0217 \pm$. 0592
	. $2307 \pm$. 0759	-. $1283 \pm$. 0865	.0976 \pm	. 0587
	-.0909 \pm	. 0795	.0682 \pm	.0875	- $00444 \pm$. 0591
	. $2365 \pm$. 0757	. $0505 \pm$. 0877	. $1648 \pm$. 0576
	$.1907 \pm$.0772	-. $1073 \pm$. 0869	.0841 \pm	. 0588
	. $1276 \pm$. 0789	-. $0.0377 \pm$.0878	$.0717 \pm$. 0589
rows	$.1606 \pm$. 0781	-.0047 \pm	. 0879	. $0963 \pm$. 0587
	. $3159 \pm$. 0722	$.1218 \pm$. 0866	$.2334 \pm$. 0560

-

It 711 be noticed that all of the discrepancies occurred in those characters which indicate large sizea ears and late maturity such as date one-foumth tasseled, date one-fourih silked, ear lenging ear dianetor, per cent of molsture in grain at hamest, shelling per cent and mean number of kernel rows. Host of these characters gave a positive correlatinn witin mean yield of crosses after three years of seifing and no signfficant correlation or a negative correlation arter four years of selfing.

A few of the characters such as plant heigint, number of nodes per plant. number of nodes to upper ear, per cent of plants with two or more oars and yield of the inbrea line gave signifficant correlations with mean yieid of crosses both after three and four years of selfing and for both groups taken together. Yield of the inored lines showed the highest positive correlation with mean yield of crosses after three years of selfing, a significant positive correlation after four yenrs of selfing and the positive second highest, correlation for both groups taker together. The highest positive cerrelation for both groups taken together was. with number of nodes per plant.

The coefincients of correlation between characters in the parental inbred lines and the mean value of the same character in their crossbred progeny are recorded in

Table 13. These are the highest correlations that were obtained, in fact many of them are high enough to be very valuable for prodictive purposes. The fact that the data were not adjusted for varietal differences between the lines may account in part for tiese correlations being so high. Varietal differences, however, cen not account for the high correlations in the group of winte crosses grom in 1926. In this group 17 inbred lines were ropresented in the correlation studies. Three of these Ines were from the parent variety Silver King and remaining 14 जere from the varity Four Gounty White. These two varieties are very closely related, Four County White being in reality practically a selected strain of Silver Fing.

ThBE 15. Ccerficlants of compe in the indred parente and the
 ted for exth of the five dirfe

pwa of comperetion betwer characters ots and the mean velue of the grue
 fisye cifferent yiele groups.

Host of the correlations in Table 13 are signflicant. They are all positive and of sufificient size to indicate that the characters of the inbred lines on the average were very definftely expressed in their F_{1} crosses. This often can not be observed so well in indivicual crosses and was shown only slightly in the correlations between F_{1} crosses and each inbred parent ox between F_{1} crosses and the mean of their two parents. The high correlations in Table 13 bring out effectively the advantages to be gained by using inbred lines in a number of similar crosses when they are to be compared. In fact, it was felt that the indications brought out here were of sufficient importsnt to warrant the inclusion of a number of tables of data from the different gield groups to show more cisarly the individuality or prepotency demonstrated by the different inbred lines. Before these tables are presented, however, there remains to be discussed the coefficients of partial correlation between inbred parents and F_{1} crosses.

COEFFICIENTS OF PARTIAL ADD OF GULITPIB CORRELATIOM BETUEEN CHARaGTBRS OF THE INBRED PARBMT AND THE HEAN YIEID OF THEIR CROSSBRED PROGETY

Coefficients of partial and of maltiple correlation similar to those computed within the inbred lines and within
the F_{1} crosses have been calculated between the four groups of characters of tho inbred parent and the mean Field of their crossbred progeny. Each of the different grops contaned the same characters as were used in the correlations within invred lines, with the exception that in the group of characters indicating plant vigor (Group 2) yield of the inbred parent was substituted for chlorophyIl color. I The partial and multiple correlations computed are recorded in Table 14.

The highest muitiple conelation (0.4207) with mean Yield of the crossbred progens was given by croup 2, the characters of the inbred parent indicating plant vigor. The characters in Group 1 gave to second highest mulifiple correlation. Group 3, which gave the highest multiple carrelation with yield both vithin the inbred lines and within the F_{I} crosses, gave the lowest maitiple correlation in trable 14.

1. It Will be recalled that Group 1 contained the characters indicating the relative Iength of season required to reach maturity, Gromp 2 contained the characters indicating relative plant vigor, Group 3 containted the charo acters indicating the relative suscoptibility to disease, anc Group 4 contained the characters of the harvested ears.

TABLE IL. Coefficients of partial and of maltiple correlation betmeen four groups of characters of the inbred parent and the mean field of their crossbred progeny.

only a few of the coerficients of partial correlation computed for each of the characters in the different groups with the remaining characters in the group held constant can be considered as significant. In Group 1 , the partial correlation betweon date one-fourth tasseled (A) and mean yield of crosses for constant date one-fourth sinked (B) and shrinkage per cent (Q) was witiout doubt significant. That between shrintage per cent of the harvested ears (Q) and mean yield of crozses for constant dste one-fourth tasseied (A) and date one-fourth silked (B) also was large enough to be significant. The positive partial correlation between date one-fourth tasseled and mean field of crosses and tine negative partial correla tion between tate one-fourth silked and mean yield of crosses is in agreement with the same situation in the partial correlations mitinin the inbred lines and probably is indieative of a negative correlation between the number of days from tasseling to silking in the inbred parents and the mean yield of their crosses.

Group 2 gave two significant partial correlations, one was between mumer of nodes per plant (E) and mean yield of crosses and the other was between yield of the inbred line (X) and mean yield of crosses. It is of interest to note that the highest partial correlation obtained with
mean yield of erosses wes this one of 0.3122 ± 0.0549 with Jield of the inbred parent.

Hone of the characters in Group 3 or Group 4 gave significeant partial correlations with mean yiela of crosses. However, the fact that all of those in Group 3 were negative and all of those in Grup 4 were positive probably indicates a generai trend in each case.

DATA OE THF PREPOTEXCY OF IMBRED LIMES

USED AS THE PARENTS OE FI CROSSES

In the correlation studtes that have beon ciscussed up to this point there is one very importent relation that has not been brought out cleariy. This is wint migint bs termed the prepotency of the inbred lines used as the parents of F_{1} crosses. By this is meant the unfromity with which certann inbrea Iines impress upen thear F_{2} progeny characters which they may or may not exiobit themselves. Gorrelation siudies between the F_{1} eross and each inbred parent or between the F_{2} cross and the mean value of its two parents may not bring out this relation at all. The correlations between the characters of the inbred parent and the mean value of these characters in their crossbred progeny recorded in Pabie 13 mosi near? out this relation. Howover, it is a relation wiaich can not simays be expressed by a coefficient of correlation as the character expressed in the crossbrea progeny may De hidden.in the parent due to the influence of a single reaessive factor.

In order to bring out more clearly this idea of the prepotency displajed by the different inbred Ifnes a number of tables have been included which give in detain the
data on the F_{1} crosses and their inbred parents. The data on yleld and per cent of plants erect at harvest aro yield included for all of the five different groups. Data on a number of the other characters studied are included for only one yiela group, namely the later yellow crosses grown in 1926.

DATA ON YIELDS

The results of the yiela test of the vamious F_{I} crosses and inbrea parents are given in Tables 15 to 19 inclusive. In each table the mubers of the parent lines are shown along the top and leit sides of the tables. The Jield of each F_{I} coribination is given at the intersection of the row and colum headed by the numbers of its parents, The mean yields of all of the F_{I} crosses of each inbred Itne together with the yields of the parent inored Iines themselves are recorded along the right and lower edges c_{f} the tables.

Trie fields of the inbred innes have been fnciuded for comparison among themseIves oniy. They should not be compared directly with the yields of the F_{1} cresses as the Field experinent of inbrecs was not comparable as to location with the 1926 yield experiment of crosses and was not comparable as to either season or location with the 1927 yield experiment of crosses. The yield experiment of
inbred Innes was located on more productive soil than the 1926 Jield experiment of crosses so that the yields of the inorea innes are slightly higher in proportion than they should be. The season of 1927 was so much less favorable for corn production than that of 1926 that the acre pields of many of the crosses grown in 1927 were actually less than the Fields of some of the better inbxed lines grom in 1926.

TABLE 15. Yield in pounds per row of the F_{1} orosses between inbred lines from varieties of white corn and of the parent lines as grown in 1926.

TABLE 16. Yield in pounds per row o between inbred innes fron early ved low com and of the parent lines a

Hean ylela of crosses
for each parent isne $12.30 \quad 9.8912 .9322 .2512 .7712 .4012 .49$
$\begin{array}{lllllllll}\text { Yield of parent line }{ }^{(1)} \text {) } & 3.20 & 1.85 & 6.63 & 5.68 & 9.14 & 5.85 & 6.63\end{array}$
P.E. of the difference between the Fields of any two parent ines, P. . . of the difference between the Jielas of any two Fi crosses, P.E. of the difference between means of 9 crosses, ± 0.154 and bat
(1) Yields of the parent ifnes shouid te comprred among themselved
(2) Jean yiela of all crosses in the experiment.

$\begin{array}{llll} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ & \vdots 39 & \vdots & \vdots 0 \end{array}$:Yield of :Mes yield of crosses: parent (1) :for each parent line: line (1)
10.7810 .068 .6110 .02	9.102 .45
$11.88 \quad 13.5412 .0010 .40$	21.50 8.19
11.2913 .3413 .2310 .72	12.41 2.45
13.7414 .3414 .5012 .88	14.05 8.74
14.0013 .5213 .7013 .17	$13.82 \quad 7.92$
20.6010 .6910 .149 .00	9.65 4.33
11.4012 .0913 .7710 .57	22.405 .02
14.6014 .8710 .3110 .16	$12.61 \quad 2.58$
$14.0812 .2812 .60 \quad 9.92$	12.88 5.33
12.4912 .7512 .1010 .65	12.05(2)
$6.65 \quad 7.45 \quad 3.09 \quad 2.83$	

it lines, +0.460 .
rosses, + C. 501.
; and betrieen menns of 10 crosses, ± 0.146.
femselves only, they are not compareble to the yielas of the crosses.

TABLE 27. Yleld in pounds per row of between inbred lines from the later yellow corn and of the parent lines 1926.

Number of parent line	$: 41$	42	: 43	50	$:$ \vdots \square		$\begin{array}{ll} & \vdots \\ & \vdots 4 \\ & \vdots \end{array}$
45	16.38	15.70	16.81	21.42		15.33	12.79 15
46	13.31	13.64	15.62	13.77	14.31	12.78	11.7715
47	13.99	13.37	14.60	13.46	12.66	--	16.1415
48	14.52	17.60	18.45	10.09	20.74	16.05	15.6915
49	16.23	19.35	19.02	13.70	16.19	14.86	17.8017
51	16.61	10.97	18.05	10.94	15.68	13.88	15.7114
52	13.62	15.14	16.47	14.41	15.92	12.86	13.8916
54	14.15	16.10	26.67	14.68	14.35	12.83	16.1115
55	13.81	14.98	15.99	13.80	13.95	12.85	16.3316
56	13.75	13.19	15.53	-- --		11.69	--- 16
57	15.06	17.41	18.01	15.67	--	15.01	17.6815
58	14.71	16.49	17.04	16.63	15.00	15.04	18.0217
59	15.44	18.29	19.93	16.30	---	14.60	17.29 19
60	15.21	16.52	16.43	14.61	17.50	12.07	18.40 17
61	14.80	12.96	16.73	14.57	14.27	. 13.24	16.7515
62	13.26	15.85	14.30	14.09	13.23	12.39	16.5815
66	15.99	17.16	18.30	17.97	19.57	15:07	18.5318
67	11.83	13.65	15.28	12.44	15:22	11.51	17.82 15
68	11.97	13.11	17.23	16.20	16.48	9:53	18.5620
69	13.96	16.18	18.29	16.54	18.71	16.04	16.3317
70	13.64	15.49	18.03	16.02	16.59	14.83	15.9817
72	12.35	15.47	15.71	15.98	17.28	12.64	16.7318
73	12.18	18.47	15.43	15.00	-- --	13.77	16.23 18
74	14.15	16.12	16.90	17.46	17.45	13.61	15.92 I6
76	14.39	15.34	16.89	15.71	15.38	13.57	15.6816
77	17.14	20.44	16.50	18.03	17.54	15.11	17.831.
78	13.60	13.36	15.81	15.88	16.39	14.25	17.3217
79	12:92	12.95	15.81	27.05	18.62	15.99	17.4918
80	14.70	16.46	17.67	14.73	17.48	14.11	16.9316
Mean yield of crosses							
for each parent line	14.26	15.58	16.81	15.26	26.36	13.77	16.5116
Yleld of parent line(1)	- --	- --	7.62	1.83	6.84	8.44	9.62 ग

P.E. of the difference between the yields of any two parent ines,
P.E. of the difference between the yields of any two F_{7} crosses, t
fi F. of the difference between means of 10 crosses, $t 0.182$; and be
(I)Yield of the parent lines should be compared among themselves on
(2) Mean yield of all crosses in the experiment.

Is per row of the F_{7} crosses om the later varieties of parent lines as grown in

$\begin{array}{r} : \\ \vdots \\ \vdots \end{array}$	64		71	$\begin{aligned} & : \\ & : 75 \\ & : 7 \end{aligned}$		yield of each parent	crosses line	$\begin{aligned} & \text { :Yield of } \\ & \text { : parent } \\ & \text { line } 1 \text {) } \end{aligned}$
5.33	12.79	15.87	18.59	19.39		16.93		8.50
2.78	11.77	15.16	11.60	19.28		14.12		7.56
--	16.14	15.63	15.79	16.78		14.71		5.27
3.05	15.69	15.73	15.05	15.91		15.98		9.39
4.86	17.80	17.74	17.08	17.38		16.94		8.93
3.88	15.71	14.82	16.97	16.89		15:05		7.40
R. 86	13.89	16.49	14.82	15.10		14.87		6.87
2.83	16.11	15.97	15.98	17.43		15.43		7.64
2.85	16.33	16.99	16.80	16.68		15.22		5.85
1.69	-- --	16.09	15.14	15.23		14.37		6.65
5.01	17.68	15.70	16.38	17.59		16.61		8.27
5.04	18.02	17.04	17.91	15.00		16.29		7.22
1.60	17.29	19.03	19.15	--		17.50		6.97
2. 07	18.20	17.37	17.61	18.12		16.38		9.84
5.24	16.75	15.20	14.80	15.05		14.85		5.14
2.39	16.58	15.17	15.72	14.81		14.73		3.92
5:07	18.53	18.48	17.19	19.82		17.81		7.36
1.51	17.82	15.50	13.71	14.13		14.12		11.67
9.53	18.56	20.34	15.38	15.33		15.41		4.44
6.04	16.33	17.90	14.51	15,65		16.41		10.26
4.83	15.98	17.14	15.83	11.72		15.53		8.42
2.64	16.73	18.76	14.54	16.07		15.55		7.77
3.77	16.23	18.15	11.55	13.54		14.92		6.71
3.61	15.92	16.14	12.61	13.72		15.41		6.09
3.57	15.68	16.79	18.65	16.39		15.88		6.34
5.11	17.83	19.58	13.56	18.34		17.41		9.07
4.25	17.32	17:98	15.40	17.12		15.71		6.66
5.99	17.49	18.99	14.96	15.06		15.98		- --
¢. 11	16.93	16.10	16.93	15.71		16.08		8.60
3.77	16.51	16.96	35.70	16.19	(2)	15.73		
8.44	9.62	7.08	8.62	8.66				

arent lines, ± 0.460.
7 crosses, \pm ס.627.
0.182 ; and between means of 29 crosses, ± 0.107.
themselves only, they are not compsrable to the yields of the crosses.
.

TABLE 18. Yield in pounds per row of the F_{1} crosses between inbred innes from varieties of white corn as grown in 1927 and of the parent Ines as grown in 1926.

$\begin{gathered} \text { Number! } \\ \text { of } \\ \text { inbred: } \\ \text { Inne: } \\ \hline \end{gathered}$		$\begin{array}{r} \vdots \\ 102 \\ \\ \hline \end{array}$	103	104	105	106	107	109	110	111	112	:Mean yl :Of cros :for eac sparent		PYeld : of parent :ine 1
101	--	11.33	11.45	10.60	10.64	10.78	11.33	11.03	11.17	10.97	11.50	11.08		7.27
102	11.33	-	11.64	12.39	9.54	11.62	12.89	9.25	12.30	13.06	14.54	11.86		5.32
103	11.45	11.64	-	10.36	11.33	11.67	11.13	111.76	11.40	10.08	11.18	11.20		7.64
104	10.60	12.39	10.36	-0.-	10.69	10.86	11.87	10.98	11.64	11.31	----	10.08		7.40
105	10.64	0.54	11.33	10.69	-- --	10.50	12.45	10,89	11.91.	-m --	13.16	11.23		5.11
106	10.78	11.62	11.67	10.86	10.50	--	13.65	11.35	12.18	10.46	11.88	11.51		6.65
107	11.33	12.89	11.13	11. 87	12.45	13.65	--	12.06	12.85	12.21	12,40	12.29		6.30
109	11.03	9.25	11.76	10.99	10.89	11.35	12.06	-- - -	12.31	10.87	12.69	11.32		6.18
110	11.17	12.30	11.40	11.64	11.91	12.18	12.87	12.31	-**	12.50	12.57	12.09		6.31
111	10.97	13.06	10.08	11.31	**	10.46	12.21	10.87	12.50	----	11.22	11.42		4.26
112	21.50	14.54	11.18	- - - -	13.16	11.88	12.40	12.69	12.57	11.22	- - -	12.35		- --
Mean yield of all crosses in the experimen												11.60		

[^0]
NOTE TO USERS

Oversize maps and charts are microfilmed in sections in the following manner:

LEFT TO RIGHT, TOP TO BOTTOM, WITH SMALL OVERLAPS

This reproduction is the best copy available.

UMİ

TABLE 19. Field in pounds per r between inbred lines from vari as grown in 1927 and of parent 1926.

114
116
117
118
119
120
123
124
125
126
128
129
130
132
133
135
136
139
141
142
144
146
147
149
151
154
155
156
158
159
161
162
164
165
166
167
169
170
172
173
174
175
$9.1111 .85 \quad 9.27 \quad 10.97 \quad 9.99 \quad 8.7610 .57$
$10.21 \quad 10.0410 .34,10.54 \quad 8.82 \quad 10.1010 .64$
$8.7611 .2610 .3410 .7911 .5413 .38 \quad 9.93$
$8.5412 .8710 .70 \quad 9.5911 .16 \quad 9.4410 .18$
$\begin{array}{llllllll}9.94 & 11.67 & 11.21 & 9.28 & 10.70 & 10.52 & 10.90\end{array}$
$\begin{array}{lllllllll}10.17 & 13.06 & 9.96 & 11.08 & 11.13 & 11.00 & 11.59\end{array}$ $9.51 \quad 10.30 \quad 10.18 \quad 10.66 \quad 11.09 \quad 9.1410 .12$ 10.99 12.75 $13.4310 .83 \quad 12.46 \quad 12.69 \quad 12.85$ $11: 73--11: 0710.8911 .18 \quad 9.7811 .77$ $\begin{array}{lllllllll}11.68 & 13.37 & 13.18 & 9.50 & 12.47 & 10.62 & 13.21\end{array}$ $11.7411 .86 \quad 11.62 \quad 11.31 \quad 12: 56 \quad 12.2712 .27$ $10.16 \quad 11: 9410.79 \quad 11.68 \quad 11: 52 \quad 11.49 \quad 10.44$ $10.3211 .3110 .3710 .1410 .95 \quad 10.8311 .08$ 9.8312 .4410 .6110 .8511 .3911 .1011 .20 $\begin{array}{lllllll}9.00 & 11.23 & 8.82 & 8.57 & 8.96 & 10.26 & 9.72\end{array}$ 13.21 .12 .5712 .3412 .0612 .4014 .0412 .99 $12.43 \quad 10.4111 .5411 .1613 .2011 .4112 .14$ $\begin{array}{lllllllllll}12.18 & 9.81 & 11.55 & 11.76 & 11.43 & 12.25 & 12.10\end{array}$ $11.80 \quad 11.99 \quad 12.79 \quad 9.31 \quad 11.45 \quad 10.5411 .55$ $\begin{array}{llllll}11.83 & 11.64 & 11.38 & 12.43 & 11.89 & 11.53 \\ 12.07 & 10.32 & 10.51 & 11.32 & 11.20 & 11.53 \\ 11.26\end{array}$ $11.5413 .8713 .26 \quad 12.4911 .84 \quad 10.3413 .72$ $9.85 \quad 10.38 \quad 8.13 \quad 10.16 \quad 10.82 \quad 7.9010 .72$ $\begin{array}{lllllll}10.68 & 12.02 & 9.77 & 9.02 & 9.09 & 10.87 & 10.56\end{array}$ … -- $-\quad 9.72 \quad 10.90 \quad 10.60 \quad 9.02 \quad 11.18$ $10.36 \quad 13.0511 .0611 .8111 .31 \quad 10.8311 .23$ $12.6712 .78 \quad 9.55 \quad 10.58 \quad 11.59 \quad 11.45 \quad 10.44$ $0.76 \quad 10.12 \quad 8.98 \quad 10.83 \quad 10.44 \quad 12.29 \quad 11.05$ $9.7311 .9710 .95 \quad 12.00 \quad 9.12 \quad 8.7410 .71$ $\begin{array}{lllllll}9.44 & 9.37 & 8.96 & 8.27 & 8.93 & 8.62 & 6.57\end{array}$ $10.09 \quad 12.81 \quad 11.16 \quad 10.83 \quad 12.23 \quad 3.86 \quad 11.24$ $\begin{array}{lllllll}10.76 & 9.74 & 8.49 & 10.10 & 9.26 & 10.50 & 8.50\end{array}$ $\begin{array}{llllllll} & 9.17 & 13.19 & 9.13 & 11.26 & 10.83 & 9.54 & 10.84\end{array}$ $\begin{array}{rrrrrr}9.25 & 11.69 & 9.53 & 9.68 & 9.62 & 9.36 \\ 10.68 & 10.26 & 11.55 & 10.63 & 10.69 & 9.50 \\ 10.82\end{array}$ $\begin{array}{lllllll}10.22 & 12.48 & 10.41 & 9.82 & 10.62 & 9.49 & 9.80 \\ 10.88 & 12.70 & 10.94 & 9.64 & 10.65 & 11.16 & 11.21\end{array}$ $\begin{array}{rrrrrrr}8.97 & 9.22 & 9.42 & 9.54 & 7.31 & 10.01 & 10.46 \\ 9.93 & 8.90 & 10.20 & 11.06 & 10.05 & 10.95 & 10.87\end{array}$ $9: 00 \quad 8.63,9.53 \quad 9.66 \quad 8.96 \quad 8.65 \quad 10.78$ $9: 80 \quad 11.6411 .67 \quad 11: 33 \quad 11.45 \quad 10: 10 \quad 10.63$ $9.54-2-9.70 \quad 10.28 \quad 11.06 \quad 8.88 \quad 10.36$
runds per row of ; from varieties o I of parent lines
pounds per re nes from varie and of parent

\vdots	\vdots
\vdots	157

8.7610 .57
10.1010 .64
$11.38 \quad 9.93$
9.4410 .18
10.5210 .90
$511: 0011.59$
9.1410 .12
512.6912 .85
9.7811 .77
$710: 62 \quad 13.21$
612.2712 .27
$211.49 \quad 10.44$
$510: 8311.08$
9 11:10 11:20
$6 \quad 10.26 \quad 9.72$
o 14.0412 .89
011.4112 .14
312.2512 .10

5 10.54 11.55
9 11:63 11.72
011.53111 .26
410.34 ± 13.72
2 7.90 10.72
Q 10.8710 .56
o 9.0211 .18
1110.8311 .23

19 11. $46 \quad 10.44$
14 12:29 11.05
28.7410 .71
$13 \quad 8.62 \quad 6: 57$
:3 9.86 11.24
?6 10.50 8:50
$33 \cdot 9: 5410.84$
$32 \quad 9.36 \quad 9.52$
$\begin{array}{lll}59 & 9.50 & 10.88\end{array}$
$52 \quad 9.49 \quad 9.80$
5511.1611 .21
3110.0110 .46
$0510.95 \quad 10.87$
96 $8.65 \quad 10.78$
$45 \quad 10.10 \quad 10.63$
n月 8:88 10:36
unds per row of the F_{I} crosses from varieties of yellow corn of parent lines as grown in

$.7610 .5710 .07 \quad 9.99$
$.10 \quad 10.64 \quad 8.67 \quad 9.22$
$\begin{array}{llll}.38 & 9.93 & 9.48 & 10.19\end{array}$
$.44 \quad 10.1810 .70 \quad 9.55$
$.52 \quad 10.90 \quad 11.13 \quad 20.69$
.0011 .5910 .2411 .53
.14 10:12 10:97 11:22
.6912 .8512 .6812 .02
$1.78 \quad 11.7711 .01 \quad 9.79$
$1.62 \quad 13.21 \quad 11.38 \quad 11.26$
$\because 27 \quad 12.27 \quad 11.1310 .69$
$.49 \quad 10.44 \quad 10.92 \quad 11.48$
1.8311 .0811 .5711 .63
.1011 .2010 .7112 .05
$1.26 \quad 9.72 \quad 11.7310 .36$
$!.0412 .8910 .9911 .29$
.41 12.14 $12.92 \quad 9.67$
$3.25 \quad 12.10 \quad 10.2911 .18$
$1.54311 .55 \quad 12.07 \quad 9.02$
1.63 11.72 12.2111 .06
1.5311.26 10:98 9.66
). 34 13:72 $10.86 \quad 12.50$
$7.9010 .72 \quad 10.30 \quad 9.88$
0.8710 .5611 .0110 .46
$3.02 \quad 11.18 \quad 9.65 \quad 10.05$
$3.83 \quad 11.2312 .5410 .34$
$1.46 \quad 10.44 \quad 3.1: 25 \quad 10.38$
$2: 2911.0510 .00 \quad 10.91$
$8.74 \quad 10.71 \quad 10.16 \quad 10.10$
$8.52 \quad 6.57 \quad 8.58 \quad 9.11$
9.86 11.24 9.8911 .66
$\begin{array}{llll}0.50 & 8.50 & 8.93 & 10.39\end{array}$
$9.54 \quad 10.84 \quad 9.30 \quad 9.48$
$\begin{array}{llll}9.36 & 9.52 & 9.24 & 9.83\end{array}$
$9.50 \quad 10.88 \quad 8.90 \quad 9.61$

| 7.49 | 9.80 | 9.24 | 10.4 |
| :--- | :--- | :--- | :--- | :--- |

$1.1611 .21 \quad 9.5011 .57$ $0.01 \quad 10.46 \quad 7.12 \quad 9.05$ $0.95 \quad 10.87 \quad 11.15 \quad 9.35$
$8.65 \quad 10.78 \quad 8.81 \quad 7.58$
$0.10 \quad 10.6310 .6110 .03$
$8.88 \quad 10.36 \quad 8.96 \quad 10: 36$

10.06	4.91
9.84	5.24
10.41	7.34
10.31	5.66
10.68	9.41
11.08	5.71
10.35	9.83
12.30	9.38
10.90	12.17
11.85	15.76
11.61	8.48
11.16	8.87
10.91	2.02
11.13	12.04
9.85	6.89
12.43	9.52
11.65	7.99
11.39	11.21
11.17	8.72
11.76	6.82
10.98	9.43
12.27	4.72
9.79	4.83
10.39	9.53
10.16	7.92
11.39	8.42
11.19	7.69
10.49	6.88
10.39	6.28
8.65	5.13
11.09	8.51
9.63	8.38
10.30	3.71
9.75	6.21
10.30	10.74
10.28	2.14
10.92	9.48
9.01	4.83
10.27	5.20
9.07	2.80
10.81	-.9 .0
9.89	

Number of parent line : $121: 140: 143: 150: 153: 157: 160: 168: 171: 1$

114
316
117
118
119
120
123
124
125
126
128
129
130
132
133
135
136
139
141
142
144
146
147
149
151
154
255
156
158
159
161
162
164
165
166
167
169
170
172
173
174
175
176
Mean yield of crosses
for each parent line
Yield of parent Inne $($)

				9.99	8.76			
		10						
0.								
		1:62			12.	.		
		10.79						
,								
	12	10:61	10.8	11.39	11.10			
. 13	10							
. 18								
17.83	11.	11.38	12.4	11			12.21	11.06
,	10.32		-	11.20				
							. 8	
	10.38		10	10.82			0	
0.	12.		9.0		10		11.	
			,	60		,	9	
.	13	11.0	11				12.	
2.67	12.7		,					
					12.29			
	11.9	10	1				0	
	9.37	8.96						
	12.	11.16						
10.76			10.10		10.			
	13.		11.2	10.		10.		
,	11:69	9.53	9.68					
	10		10.6					
.	12.4	10.41		10.6				
0.88	12.70	10.94	9.6	10.65	11.16	11.21		
	9.22	9.42				0.46		
		10.20	11.06				11.15	
9.00	8.63	53	9.6	8.96	8.65	10.78	8.81	
	11.64	11.67	11.33	11.45	10.10	10.63	10.61	
			10.			10.36		
. 51	.	9.96	9.97	9.86	9.49	. 9.87		

$10.3811 .46 \quad 10.56 \quad 10.57 \quad 10.79 \quad 10.4310 .92 \quad 10.4110 .40$ $\begin{array}{llllllllllll}8.48 & 9.38 & 11.58 & 8.98 & 5.28 & 6.51 & 9.15 & 5.56 & 5.21\end{array}$
P.E. of the difference between the yields of any two perent lines, 40.460 . P.E. of the difference between the y 保 P.F. of the difference between means of 9 crosses, ± 0.190; and between means (1) Fields of the parent lines should be compared among themselves only, they (2) Mean yield of all crosses in the experiment.

. 99	8.76	10.57	10.07	9.99	10.06	4.91
1.82	10.10	10.64	8.67	9.22	9.84	5.24
1.54	11.38	9.93	9.48	10.19	10.81	7.34
. 16	9.44	10.18	10.70	9.65	10.31	5.66
1.70	$10: 52$	10.90	11.15	10.69	10:68	9.41
.13	11:00	11.59	10.24	11.55	11.08	5.71
. 0.09	9.14	10.12	10.97	11.22	10.35	9.85
?. 46	12:69	12.85	12.68	12.02	12.30	9.38
. 18	9.78	11.77	11.01	9.79	10.90	12.17
?. 47	10.62	13.21	11.38	11.26	11.85	15.76
?.56	12.27	12.24	13.13	10.69	11.61	8.48
-5 5	11.49	10.44	20.92	11.48	11.16	8.87
0.95	10.83	11.08	11.57	11.63	10.91	2.02
:39	11.10	11.20	10.71	12.05	11.13	12.04
3.96	10.26	9.72	11.73	10.36	9.85	6.89
3. 40	14.04	12.99	10.99	11.29	12.43	9.52
5.20	11.41	12.14	12.92	9.67	11.65	7.99
1.43	12.25	12. 10	10.29	11.18	11.39	11.21
1.45	10.54	11.55	12.07	9.02	11.17	8.72
1.99	11.63	11.72	12.21	11.06	11.76	6.82
. 20	11.53	11.26	10.98	9.66	10.98	9.43
1.84	10.34	13:72	10.86	12.50	12.27	4.72
. 82	7.90	10:72	10:30	9.88	9.79	4.83
9.09	10.87	10.56	11.01	10:46	10.39	9.53
. 60	9.02	11.18	9.65	10.05	10.16	7.92
1.31	10.83	11.23	12.54	10.34	11.39	8.42
1.59	11.46	10.44	11.25	10.38	11.19	7.69
b. 44	12.29	11.05	10.00	10.91	10.49	6.88
9.12	8.74	10:71	10.16	10.10	10.39	6:28
3.93	8.62	6.57	8.58	9.11	8.65	5.13
2.23	9.86	11.24	9.89	11.66	11.09	8.51
. 26	10.50	8.50	8.93	10.39	9.63	8.38
. 83	- 8.54	10.84	9.30	9.48	10.30	3.72
9.62	9.36	9.52	9.24	9.83	9.75	6.21
0.69	9.50	10.88	8.90	9.61	10.30	10.74
. 62	9.49	9.80	9.24	10.47	10.28	2.14
0.65	11.16	11.21	9.50	11.57	10.92	9.48
7.31	10.01	10.46	7.12	9.05	9.01	4.83
0.05	10:95	10.87	11.15	9.35	10.27	5.20
8.96	8.55	10.78	8.81	7.58	9.07	2.80
1.45	10.10	10.63	10.61	10.03	10.81	-- --
1.06	8.88	10.36	8.96	10.36	9.89	-- --
9.86	9.49	9.87	9.81	10.51	9.88	- - -
0.79	10.43	10.92	10.41	10.40	10.65	

$10.65^{(2)}$
two parent lines, +0.460 .
t bo FI crosses, +0.617 .
s, ± 0.190; and between means of 43 crosses, +0.086 .
damong themselves only, they are not comparable to the yields of the crosses.

The correlations between the gields of tine inbred parents and the mean yields of their F_{I} crosses for each of the five yieza groups alreaūy has been given in Table 13. These coefricients between the parent Iines and Fi crosses in each tabie were as follows: for faole 15, 0.6728 ± 0.0897; Yor Table 26, 0.6400 ± 0.0925 for fable 17, 0.2534 $\pm 0.1053 ;$ for TabIe 18, 0.4149 $40.1686 ;$ and for Tajle 19, 0.4519 $\ddagger 0.0745$. The correlations for Tables 15.16 and 19 are significant. Those for Tables 17 and 18 are not significant. Winile these correlations indicate a relationship betwean yields of the parents and yields of crosses they do not bring out sufficiently the unformity in the performance of the crosses of dieferent parent lines.

Each of these tables contains excelient demonstrations of the differences in the ability of dieferent inbred lines to produce high vielding crosses. In Table 15 inbred lines nuber il to 20 were all included in comparable crosses. Inbred line 14 had the highest mean yield of crosses. It will be noticed that all of the yields of 16 pounds or over had number 14 as one parent. Comparing Iine 1 셔 as a parent with line 13 it will be seen that in every comparable cross of these two lines number is had the higher yielding cross. The same comoarison is true With Iines 11., 16 and 77.

In Table 16 inbred line 25 gave the hignest mean yield of crosses. Gomparing the individual crosses with comparable crosses of lines 21, 22,24 and 27 it will be seen that in overy case inbred 25 had the higher yielding cross.

In Table 17 inbred Ine 66 had the highest mean yield of crosses. Gomparing the crosses of this inbred IIne with comparable crosses of Iines $46, \frac{47,52,54,55, ~}{77}$, 56, 61, 62, 67, 70, 74, 78 and 80, it wili be seen that in every case inbred line 66 had the higher yiolding cross.

Now if we assume that lines $42,42,43,50,53,63$, 64, 65, 71 and 75 were the lines being tested and the inbred Iines Iisted dow the left side of Table 17 were the testers we find that most of these lines were used in 28 or 29 comparable crosses. Nomber 65 had the highest mean yield of crosses. Comparing line 65 with line 63 there Were 28 comparable crosses and in 27 cases line 65 had tho higher fielding cross. Lines 43 and 63 also were used in 28 comparable crosses and in 27 of the 28 comparisons Ifne S5 had the higher yielding cross.

In Table 18 inbred lines 112 and 107 gave the highest mean field of crosses. Gomparing the individual crosses in these two Innes with the crosses of the other lines we find that the crosses of line 112 outyielded the comparable
crosses of lines 103 and 111 in every case, those or line 104 in eight out of nine cases and those of lines 101 and 109 in seven out of eight cases. The crosses of line 107 outyielded all comparable crosses of line 104 and outyielded the comparable crosses of lines 101, 103 and 106 in eight out of nine cases.

In Table 19 Innes 124,135 and 146 gave the highest men yield of crosses. The crosses of line 135 outyielded every comparable cross of 20 of the remaining 42 lines. Those of lines 124 and 146 outyielded every comparable cross of 17 of the remaining 42 lines. In two more eases the croases of line 124 outylelded all but ona cross of another line and this one remaining cross was a tie.

DATA OF PER GEMT OF PIANIS STAMDIMG ERECT
AT FARVEST
The data on tie per cent of plants that wers standing erect at harvest are given for the F_{1} crosses and their inbred parents in Trables 20 to 24 inclusive. The per cent of erect plants w\&s determined for each kind of corn from the total number of plants and the total number of erect plants in all six replications.

In the fellewing five tables as in the previous tables of yields, comparisons should be made within the F_{I} crosses and within the inbred Iines only. The data on the inbred Ines are not directly comparable to those on the F_{1} crosses.

TABLE 20, Per cent of plants exeot at harvest in the Fl crosses between inbred lines from varieties of white corn and in the parent lines as grown in 1926.

Number of parent Ine	$\begin{array}{ll} \hline \vdots \\ \vdots & 11 \\ \vdots \\ \vdots & \vdots \\ \hline \end{array}$	12	13	$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	15	$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & : \\ & : \\ & : \\ & : \\ & \hline \end{aligned}$	18	19	20	Mean of crosses :for each :parent : inne	:Per cent : erect in : parent inne
1	56.9	57.6	88.8	99.0	31.5	95.7	93.2	69.7	97.3	76.0	76.6	--
2	17:5	42.2	38.5	72:2	8.7	67.0	58.0	11.7	43.7	42.8	39.2	30:3
3	86.1	64:0	81.8	91.2	39.0	98.8	89.7	76.9	97.0	51.0	77.6	53.2
4	34.4	66:9	79.7	93:1	19.9	73.6	90.3	40.7	66.2	42.4	60:7	11.4
5	47.7	31.0	26.7	60.8	3.9	45.7	56.0	16.9	22:7	30.2	34.2	2.6
6	77.8	90.6	96.5	89.7	63.2	97.7	90.4	50.0	89:8	80.0	82.6	48.3
7	82.9	87:0	92.7	91.6	26.4	90:0	97.3	26.4	86.6	74.8	75.6	98.3
9	43.0	27.6	32.6	64.5	28.6	39.7	58.0	9.3	22.8	25.9	35.2	8.5
10	53.3	72\%	86.8	100.0	33.0	67.1	89.0	39.3	71.1	47.0	65.9	45.8
Mean of crosses for each parent line	55.5	59.9	69.4	84.7	28.2	73.9	80.2	37.9	B6. 4	52.2	$60.8{ }^{(1)}$	
Per oent erect in perent line	17.4	4.2	--	78.9	0.8	32.5	98.4	10.6	48.7	38.3		

(1) Mean per cent erect for all oroses in the experiment.

TABLE 21. Per cent of plants ereat at harvest in the FI_{2} croses between inbred lines from early varieties of yellow corn and in the parent lines as grown in 1926.

(1) Mean per cent erect for all orosses in the experiment.

ThBLe 22. Per cent of plants erect at: crosses between inbred Itnes from the of yeilow corn and in the parent ines

Number of perent line				! \vdots \vdots 50 \vdots i		$\begin{array}{r} \\ \\ 63 \\ \\ \end{array}$	64
45	89.6	63.4	32.9	77.9	-	58.0	50.0
46	98.6	92.3	82.5	92.0	70.5	96.7	95.2
97	28.9	13.8	42.5	30.9	42.2	-*-	19.6
48	777.3	50.0	71.8	70.4	100.0	77.4	60.8
49	99.6	87.5	75.2	100.0	100.0	82.7	80.8
52	67.9	53.5	74.6	81.6	97.7	72.6	56.8
52	90.2	57.4	49.0	50.4	31.5	53.1	44.9
54	58.7	45.3	15.5	66.5	44.4	61.3	36.6
55	77.0	66.4	39.2	61.6	7A.5	62.5	5.4
56	78.4	58.3	36.0	-*-	-	60.9	--
57	92.0	83.8	94.5	96.6	-*-	96.8	80.5
58	75.5	82.5	23.3	54.0	68.6	55.6	50.0
59	83.7	77.7	74.8	97.7	-*-	90.6	63.8
60	76.6	41.1	30.3	68.8	48.9	21.1	43.7
61	66.1	44.3	36.8	41.7	51.3	66.2	49.4
62	94.0	95.3	86.1	98.0	99.2	36.t	90.8
66	64.8	56.2	65.0	56.3	93.6	75.9	75.6
67	95.5	85.3	61.4	83.8	100.0	96.2	72.1
68	93.5	78.0	67.3	97.2	38.1	93.2	86.2
69	84.3	55.4	54.2	56.2	84.0	53.5	52.6
70	94.0	89.2	46.5	89.3	83.0	87.9	84. 8
72	92.1	89.5	62.7	73.5	96.4	67.3	65.0
73	99.1	73.8	84.2	100.0		94.4	85.2
74	76.2	86.7	52.0	80.9	97.7	70.9	$3{ }^{3} .4$
76	53.9	49.0	25.3	70.5	79.2	53.5	56.2
77	95.0	81.4	62. 4	82.8	92.8	78.3	69.5
78	95.4	85.4	84.9	97.6	98.5	97.0	74.1
79	90.3	84.0	64.8	95.5	72.2	90.0	51.8
80	84.4	82.0	58.9	85.4	85.7	80.2	54.5
Rean of crosses for each parent line	81.4	68.3	58.1	78.8	81. 4	74.6	50.8
Per cent erect in perent Ine	---	-- -	27.4	78.7	98.8	61.8	37.7

(1) Hean per cent erect for all crosses in the experiment.
lants erect at hervest in the Fi
Ines from the later vsrieties
the parent Innes as srom in 1926.

\%		$64:$	$\begin{array}{r} \\ \vdots \\ 65 \\ \\ \\ \end{array}$			$\begin{aligned} & \text { Pesm of } \\ & \text { icrosses } \\ & \text { tfor each: } \\ & \text { : parent : } \\ & \text { ? Inre } \\ & \hline \end{aligned}$	```Per cent```
-- -	58.0	50.0	6.3	6. ${ }^{\text {a }}$. 6	72.2	57.2	49.1
170.5	96.7	95.1	85.2	68.9	96.4	87.5	92.1
12.2	-	19.6	45.3	45.8	72.6	43.5	9.9
00.0	77.4	60.3	69.2	76.5	72.2	72.6	63.2
00.0	82.7	80.8	68.3	83.8	97.8	38.6	55.0
97.7	72.6	55.8	45.9	64.7	80.5	69.6	63.2
81.5	53.1	44.9	34.7	35.5	69.5	55.6	15.2
44.4	61.3	36.5	28.3	56.7	69.9	48.4	8.5
\% 4.5	62.5	5.4	25.7	50.5	79.2	54.2	22.5
-- -	60.9	-- -	30.1	67.8	73.8	52.2	33.9
-- -	26.9	80.5	93.0	94.7	98.5	92.3	93.6
68.6	55.6	30.0	34.6	33.8	69.0	48.6	14.4
-- -	90.6	63.8	64.6	65.5	---	77. 3	90.2
48.9	21. 1	88.7	10.2	43.2	73.7	45.6	52.3
53.2	66.2	49.3	16.0	42.4	67.6	48.2	0.0
99.2	96. 4	90.9	77.4	97.3	97.2	93.2	91.3
93.8	75.8	75.6	40.3	78.0	73.5	67.9	1.6
100.0	96.2	72. 1.	73.8	73.4	85. 4	82.7	80.9
188.2	93.2	86.2	84.8	98.6	77.0	87.4	200.0
84.0	51.5	52.6	15.7	56.2	$65{ }^{*} 4$	57.5	14.2
183.0	87.9	84.8	53.4	93.7	86.2	80.8	78.2
96.4	67.3	65.	54.0	62. 8	85.7	75.0	65.7
	94.4	83.8	56.5	89.8	95.0	85.4	100.0
91.7	70.9	38.4	35.4	62.9	89.5	68.4	36.2
79.2	53.5	56.2	8.0	40.6	65.2	50.1	8.3
92.8	78.5	69.5	72.3	76.0	92.8	80.3	88.4
98.5	97.0	74.1	67.8	81.0	96.8	87.8	99.1
772	90.0	51.8	\$1. 6	81.3	82.6	76.4	
85.7	80.2	54.5	44.6	78.6	86.0	74.0	4.3
81.4	74.6	59.8	48.0	67.7	81.2	69.70	
94.8	61.8	37.7	2.5	60.5	85.3		

periment.

TABLT 23. Per cent of plants ereot at har-
vest in the Fl orossee between inbred lines from varieties of white corn as grown in 1927 and in the parent lines as grown in 1926.

TABLE 24. Per cent of piants erect at between inbrec lines from varieties a 1927 and in the parent lines as grom

s erect at havrest in the F_{1} crosses rarieties of yellow corn as grown in is as grown in 1926.

Table 24 continued

Number of inbred line	$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{array}{r} \vdots \\ \vdots 140 \\ \hline \end{array}$	$\begin{array}{r} \vdots \\ 1 \text { 1솔 } \end{array}$	$\begin{array}{r} : \\ 150 \\ \hline \end{array}$	$\begin{array}{r} \vdots \\ 153: \\ \hline \end{array}$	$\begin{array}{r} \vdots \\ 157: \\ \hline \end{array}$	$\begin{array}{cc} \vdots & \vdots \\ \vdots & 160 \end{array}$	168
172	32:1	86.5	58.7	61.3	60:5	61.2	72.9	54.
173	68.0	48.7	58.8	46.0	71.6	30.2	75.1	76.
174	82.8	37.6	86.7	66.0	77.2	72.1	68.8	82
175	85.4	-- -	68.0	72.3	83.6	36.2	68.4	51
176	79.3	51.57	71.5	54.0	87.9	5ڭ.7	91.5	76.
Mean of crosses for each parent line	80.2	62.47	75.1	68.6	82.7	59.0	75.7	77.
Per cent erect in parent line	17.5	83.18	80.5	23.2	77.8	82.7	57.9	93

(I)

11.272 .9	54:2 42.5	64.4	37.0
10.275 .1	76.326 .8	55.7	39.8
12.168 .8	82.143 .9	68.6	100.0
16.268 .4	51.957 .3	65.4	87.1
14.791 .5	$76.3 \quad 35.0$	66.9	44.1
59.075 .7	77.051 .1	$70.2^{(1)}$	

$82.757 .9 \quad 93.9 \quad 52.8$
eriment.

The correlations between per cent of plants standing erect at harvest in the parent lines and the mean per cent of plants standing erect at harvest in their crossbred progeny have been given already in Table 13. They were as follows: Table 20, 0.7693 ± 0.0669; Table 21, $0.7904 \pm 0.0581 ;$ Table 22, $0.8769 \pm 0.0260 ;$ Table 23, $0.5916 \pm 0.1324 ;$ and Table 24, 0.4078 ± 0.0781. These correlations are all significant and some of them are very high.

From the data in Tables 20 to 24 inclusive it will be seen tinat the various inbrea innes have reacted in the same general manner as regards per cent of erect plants that they did in regard to yield. All of the crosses from some inbred lines gave a high percentage of erect plents while all of the crosses from other lines gave a low percentage of erect plants. Good comparisons of these two extremes may be found in each table. Examples of lines in comparable crosses, one of which gave high percentages of erect plants and the other low percentages of erect plants are as follows: Taile 20 , lines 6 and 5 and also lines 15 and 14; Table 21, lines 25 and 21 and also innes 35 and 40 ; Table 22, lines 46 and 47; 57 and 58 , 62 and 60 , and 53 and 65; Table 23, lines 105 and 111; Table 24, lines

116 and 120; 128 and 136,159 and 151, 164 and 162 , and 153 and 171. Lines number 153 and 171 were used in 43 comparable crosses. The mean per cent of erect plants for line 153 was 82.7 and for line 171 was 51.I. The difference was 31.6. Comparing each of the comparable pairs of crosses of these two Innes we find that in all of the 43 comparisons line 153 had the higher percentage of erect plants.

There may be some objection to comparing these two Iines on the grounds that one was a dent corn and the cther a flint (see Appendins Table 1). Lines 153 anc 157, howevers were both from dent varieties. They, also, were used in 43 comparable pairs of crosses and in 42 of the comparisons line 153 had the higher percentage of erect plants. The difference between the means of all crosses for these two lines was 23.7.

DATA ON SORE OF THE OTHER GEARACTERS STUDIED
Tables similar to those shoming yield and per cent of erect planis have been made for all of the other characters for winch coefficiens of correiation were given in Table 13. However, ft has not been considered adTHseble to incluce all of these tables on each experiment in the present report. Instead, a fairly complete set of the tables have been included for the crosses between the
inbred lines from the later varieties of yellow corn that were grown in 1926. As previously stated these Iines had been inined for three generations at the time the crosses were made. In cases where there were comparable data on crosses mace after three and after four generations of inbreeding thore appeared to be no significant difference in reaction. This was sufficiently well brought out in the tables on yleld and per cent op erect plants which already have been discussed. It was felt, therefore, that the different tables froflione experiment would show fairly completely the differences thst may be expected in the performance of different inbred lines. The methods of taking records reported in the following tables already have been explained in detail and, therefore, will not be discussed here. In most cases it is surinciently clear as to what is meant by each of the characters mentioned.

Table 25 shovs the data on date one-fourth tasseled and Table 26 the data on date one-fourth siliked. In botin of these tables the dates are recorded as dates in July, August 1, 2, 3, etc. being recorded as Jwiy 32, 33, 34, etc. The dates recorded in the taoles are the means of the dates for the different replications.

TABLE 25. Date in July on wieh tasseled in the $F 1$ crosses bett the later varieties of jellow lines as grown in 1926.

Number of parent line:	$4 I$	42	$: 43$	$:$ $: 50$: 53	: 63	: 64
45	24.5	22:0	23.5	25.0	--	23.0	23.0
46	24.5	22.0	23.5	26.5	24.5	23.5	22.5
47	24.0	22.0	24.5	24.5	23.0	--	22.5
48	25.0	23.0	23.5	24.0	23.0	23.5	23.0
49	25.5	22.0	23.0	27.0	25.0	23.5	21.5
51	24.5	22.0	24.5	25.5	23.5	23.0	23.5
52	26.0	23.0	25.5	27.0	25.5	24.0	25.5
54	24.5	22.0	24.0	22.0	23.0	23.0	25.0
55	22.5	21.5	24.0	24,5	23.0	23.0	23.0
56	24.0	22.0	24.0	--	-	23.0	
57	25.0	23.0	25.0	23.0	-	23.0	25.5
58	25.0	23.5	25.0	27.0	23,5	23.0	24.5
59	25.0	23.0	25.0	24.0	--	22.0	24.5
60	25.0	23.0	29.0	26.5	27.0	23.0	27.0
61	26.0	25.5	27.5	25.5	27.5	25.5	26.0
62	23.0	20.5	27.0	23.0	22.0	22.0	22.0
66	24.5	22.5	28.5	27.0	24.5	23.0	25.5
67	28.0	22.0	30.0	25.5	25.0	25.0	23.5
68	23.0	21.5	26.5	22.5	23.0	23.0	23.0
69	25.5	25.5	29:0	29.5	27:0	25.0	26.0
70	23.0	20.5	26.0	24.0	23.0	21.5	22.0
72	24.0	21.0	25.5	23.0	24.0	24.5	23.0
73	30.5	24.0	25.5	27.5	--	23.5	27.5
74	28.5	23.5	29.0	29.0	26.5	26.0	24.5
76	28.0	22.0	28.5	29.0	24.0	23.0	24.0
77	29.0	24.5	31.0	29.5	26.5	26.5	26.0
78	27.0	24.0	27.0	27.5	24.0	22.0	23.0
79	26.5	23.5	27.0	25.5	27.0	23.5	24.5
80	23.0	20.5	25.0	23.0	23.5	22.5	21.5
Mean of crosses for each parent line	25.3	22.6	26.1	25.6	24.5	$22^{2} \cdot 5$	24.0
Date $1 / 4$ tasseled for parent line	--	--	33.3	35.0	33.0	29.7	31.7

(1) Bean date $1 / 4$ tasseled for all crosses in the experiment.
uly on which $1 / 4$ of the plants were crosses between inbred lines from is of Jellow com and for the perent 1926.

$: 63$	$: 64$	$: 65$	$: 71$	$: 75$:Men of crosses for : each parent line	:Date $1 / 4$:tasseled for :parent line
23.0	23.0	23.5	26.5	22.0	23.7	32.7
23.5	22.5	23.0	28.0	23.5	24.2	34.5
--	22.5	23.0	24.5	23.5	23.5	28.7
23.5	23.0	23.0	28.5	23.0	24.0	35.3
23.5	21.5	23.0	27.0	24.5	24.2	31.0
23.0	23.5	24.5	29.0	26.0	24.6	31.0
24.0	25.5	26.0	25.5	25.0	25.3	36.7
23.0	25.0	23.0	25.0	23.5	23.5	30.7
23.0	23.0	24.0	24.0	23.5	23.3	32.0
23.0	--	24.0	24.0	24.0	23.6	30.0
23.0	25.5	23.0	26.5	27.0	24.6	31.3
23.0	24.5	25.0	24.5	25.0	24.6	30.0
22.0	24.5	24.5	25.5	\cdots	24.2	28.3
23.0	27.0	29.0	26.5	26.0	26.2	29.0
25.5	26.0	27.5	28.5	25.0	26.6	32.7
22.0	22.0	25.0	23.5	23.5	23.2	29.0
23.0	25.5	26.5	26.0	27.0	25.5	35.0
25.0	23.5	26.0	26.0	24.5	25:6	30.0
23.0	23.0	23.5	22.5	24:0	23.2	28.7
25.0	26.0	27.5	28.0	27.0	27.0	34.7
21.5	22.0	23.0	23.5	24.5	23.1	31.0
24.5	23.0	24.0	24.0	25.0	23.8	29.3
23.5	27.5	29.0	31.0	30.0	27.6	36.3
26.0	24.5	30.5	30.5	29.0	27.7	35.0
23.0	24.0	26.0	26.0	26.5	25.7	34.7
26.5	26.0	29.5	26.5	26.5	27.6	36.3
22.0	23.0	25.0	25.5	25.5	25.0	36.0
23.5	24.5	27.0	28.0	29.0	26.2	
22.5	21.5	24.5	23.5	23.5	23.0	26.7
$22^{2} \cdot 5$	*4.0	25.3	26.1	25.3	$24.8{ }^{(1)}$	
29.7	31.7	33.7	36.3	36.0		

experiment.

TABLE 26. Date in July on which silked in the F_{1} crosses betwed the later varieties of Jellow lines as grown in 1926.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Number of parent line \& $$
: 41
$$ \& : 42 \& : 43 \& $$
: 50
$$ \& :

53 \& !

\vdots 63 \& $$
: 64
$$

\hline 45 \& 23.5 \& 24.5 \& 24.5 \& 26.0 \& -- - \& 23.5 \& 24.0

\hline 46 \& 25.0 \& 23.5 \& 24.5 \& 27.0 \& 26.0 \& 23.5 \& 22.5

\hline 47 \& 26.0 \& 24.5 \& 25.5 \& 26.5 \& 26.0 \& -- - \& 24.5

\hline 48 \& 23.0 \& 25.0 \& 24.0 \& 25.0 \& 24.0 \& 25.0 \& 23.5

\hline 49 \& 25.0 \& 23.5 \& 23.0 \& 26.0 \& 25.5 \& 24.0 \& 22.5

\hline 51 \& 25.0 \& 24.0 \& 25.5 \& 28.0 \& 24.5 \& 24.5 \& 26.0

\hline 52 \& 26.0 \& 26.5 \& 28.0 \& 28.0 \& 27.0 \& 26.0 \& 27.0

\hline 54 \& 25.0 \& 23.5 \& 25.5 \& 22.5 \& 24.0 \& 24.0 \& 26.0

\hline 55 \& 23.0 \& 25.0 \& 24.5 \& 26.5 \& 24.5 \& 24.0 \& 26.0

\hline 56 \& 24.5 \& 23.0 \& 24.5 \& -- - \& -- \& 23.5 \& -- -

\hline 57 \& 25.0 \& 24.0 \& 25.5 \& 23.0 \& - \& 23.5 \& 26.5

\hline 58 \& 24.0 \& 26.0 \& 27.0 \& 26.5 \& 25.0 \& 24.5 \& 27.5

\hline 59 \& 26.0 \& 25.0 \& 28.0 \& 25.5 \& -- \& 24.5 \& 26.0

\hline 60 \& 26.0 \& 26.0 \& 30.5 \& 29.0 \& 29.0 \& 24.0 \& 30.5

\hline 61 \& 27.0 \& 29.0 \& 28.0 \& 27.0 \& 28.0 \& 25.5 \& 29.5

\hline 62 \& 23.5 \& 22.5 \& 28.0 \& 23.5 \& 23.5 \& 23.5 \& 24.5

\hline 66 \& 27.0 \& 25.0 \& 30.5 \& 28.0 \& 26.0 \& 24.5 \& 27.5

\hline 67 \& 29.0 \& 24.5 \& 30.5 \& 27.0 \& 27.0 \& 27.5 \& 29.0

\hline 68 \& 26.0 \& 24.5 \& 30.0 \& 24.0 \& 26.0 \& 25.0 \& 26.0

\hline 69 \& 28.0 \& 26.0 \& 31.0 \& 29.0 \& 28.5 \& 26.0 \& 27.5

\hline 70 \& 23.5 \& 23.5 \& 26.0 \& 27.0 \& 24.0 \& 23.0 \& 24.5

\hline 72 \& 27.5 \& 26.5 \& 29.5 \& 27.0 \& 27.5 \& 29.0 \& 29.0

\hline 73 \& 30.5 \& 28.0 \& 30.5 \& 29.0 \& -- \& 27.0 \& 31.0

\hline 74 \& 30.0 \& 27.0 \& 33.0 \& 30.0 \& 29.5 \& 28.0 \& 28.5

\hline 76 \& 29.5 \& 25.5 \& 30:0 \& 30.0 \& 27:0 \& 25:0 \& 28.0

\hline 77 \& 30:0 \& 26.0 \& 33.0 \& 29.0 \& 28.0 \& 27.5 \& 28.0

\hline 78 \& 27.0 \& 24.0 \& 29.0 \& 27.5 \& 25.0 \& 23.5 \& 23.5

\hline 79 \& 29.0 \& 28.5 \& 31.0 \& 28.5 \& 30.0 \& 27.0 \& 29.0

\hline 80 \& 24.5 \& 23.0 \& 28.0 \& 25.0 \& 26.0 \& 24.5 \& 23.5

\hline Mean of crosses for each parent line \& 26.2 \& 25.1 \& 27.9 \& 26.8 \& 26.3 \& 25.0 \& 26.5

\hline Date $1 / 4$ silked for parent line \& -- - \& -- - \& 36.3 \& 33.0 \& 35.0 \& 30.3 \& 32.3

\hline
\end{tabular}

(1) mean date $1 / 4$ silked for all crosses in the experiment.

July on which $1 / 4$ of the plants were crosses betweer inbred lines from Les of vellow corn and for the parent a 1926.

$: 63$	$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots 64 \\ & \hline \end{aligned}$	$: 65$	$: 71$! \vdots \vdots	: Mean of crosses for : each parent line	:Date 1/4 :silked for :parent line
23.5	24:0	24.5	28.0	23.5	24.7	32.3
23.5	22.5	25.0	30.0	24.5	25.2	34.3
-	24.5	25.5	26.5	25.5	25.6	30.3
25.0	23.5	23.0	29.0	25.0	24.6	35.3
24.0	22.5	24.0	27.5	25.0	24:6	34.7
24.5	26.0	27.5	30.0	28.0	26.3	34.3
26.0	27.0	28.5	27.0	26.0	27.0	38.3
24.0	25.0	26.0	25.5	26.0	24, ${ }^{\text {a }}$	31.0
24.0	26.0	27:0	25.0	25.0	25.0	31.3
23.5	-- -	25.0	27.0	25:0	24.6	29.3
23.5	26.5	24.0	25.5	27.0	24.9	31.7
24.5	27.5	28.0	27.0	27.5	26.3	30.3
24.5	26.0	27.0	27.0	-- -	26.1	30.0
24.0	30.5	32.0	28.5	29.0	28.4	32.0
25.5	29.5	30.5	28.0	27.0	28.0	36.3
23.5	24.5	27.5	26.5	26.0	24.9	30.7
24.5	27.5	28.5	28.0	29.5	27.4	38.3
27.5	29.0	29.5	31.0	27.0	28.2	33.0
25.0	26.0	29.0	28.0	29.0	26.8	34.3
26.0	27.5	30.0	29.0	29.0	28.4	35.7
23.0	24.5	26.0	26.0	29.0	25.2	34.3
29.0	29.0	28.0	30.0	30.5	28.4	35.0
27.0	31.0	30.5	33.5	33.0	30.3	43.0
28.0	28.5	34.0	34.5	33.0	30.8	38.3
25.0	28.0	30.5	30.5	30.5	28.8	39.0
27.5	28.0	31.0	27.5	29.0	28.9	38.3
23.5	23.5	26.5	26.5	28.0	26.0	36.7
27.0	29.0	30.5	33.0	33.0	30.0	-- -7
24.5	23.5	27.5	26.0	27.0	25.5	30.7
25.0	26.5	27.8	28.3	27.8	$26.8{ }^{(1)}$	
30.3	32.3	38.0	40.0	39.0		

[^1]The coefficient of correlation between date $\frac{\pi}{4}$ tasselm ed in the inbred parents and the mean date $\frac{1}{4}$ tasseled for their crossbred progeny for the Ines recorded in Table 25 yas 0.6513 ± 0.0647. Pnis mas the lowest correlation obtained for the three yield groups grown in 1926 but it was higher than those for the two groups grown in 1927.

The correlation for date $\frac{1}{x}$ silked from the dats in Table 26 was 0.5925 ± 0.0731. This was the second highest correlation obtained between date $\frac{1}{4}$ silked in the parent and average date $\frac{2}{4}$ silikec in the F_{1} crosses. The group of white crosses grown in 1926 gave a correlation of $0.8028 \pm$ 0.0582.

With the exception of the white crosses grown in 1927 ail of the yiela groups gave a slightly higher coefficient of correlation between parent and crossbred progeny for date $\frac{1}{4}$ tasseled than for date $\frac{1}{4}$ silked (See Tabie 13). Date $\frac{7}{x}$ silked is influenced more by sdverse weather conditions than is date $\frac{1}{4}$ tasseled and this may explain the lower coefficients of correlation.

The data in Tables 25 and 26 give a very good illustration of the degree to which dipferent inbred lines may influence in their F_{1} crosses the characters of date $\frac{1}{4}$ tasseled and date $\frac{1}{4}$ sikired. In Table 25, for instance, it will be seen that the crosses of inbred line number 42 averaged 3.5 days earlier in tasseling than those of line 43 . Winile this
-93-
may appear to be a rather small difference, an examination of the data on the indivicual crosses shows that it was a very constant difference. There vere 29 comparable pairs of crosses and in every case the cross of line 42 was slightIy earlier than that of line 43.

The data in Table 26 on date $\frac{1}{4}$ stiked appear to be slightly more variable than those in date $\frac{7}{4}$ tasseled. In comparing the same two lines for date $\frac{I}{a}$ silked it will be seen that in the 29 comparisons line 43 was the later in silking in 24 cases, line 42 was the later in 4 cases and in one case they siliked on the same date.

Data on the number of days between tasseling and silkIng are recorded in Table 27. These data were not computed for any of the other field groups and no correlations for this character were given in Table 13. The coefficient of correlation between inbred parents and the mean value for their crossbred progeny for the data in Table 27 was 0.6597 ± 0.0635

Here again it will be seen that difierent inbred lines appear to have transmitted very definite tendencies to their P_{1} crosses. The average muber of days from tasseling to silking for inbred line number 41 was 0.8 and for inbred line number 42 was 2.5. In 26 cases of the 29 comparabie crosses in which these two inbred lines were used, Ine 42
recuired more days from tasseling to silking than did line 41, two comparisons were a tie and in only one case was the yalue for the line 41 cross greater than that for the Iine 42 cross.

It is interesting to note that 5 of the inbred parents and 10 of the Fi crosses recorded in Table 27 silved before they tasseled. This is indicated in the table by a negative number of days from tasseling to silking. The usual occurrence in corn is for the silks to appear about two or three days after the tassel has started to shed poijen. It is possible that in carrying on the inbrea lines by selim pollination there has been an unconscious selection of the earlier siluing planis, since the plants that silk and tassel at about the same time are the most desirable for selfing.

(I) Mean mumber of days from tasseling to silking for all crosses
seling to silking in the $F i$ crosses rom the later varieties of yellow lines as grown in 1926.

64	65	$: 71$	$\begin{aligned} & 1 \\ & : \\ & : 75 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { :Mean of crosses } \\ & \text { : for each } \\ & \text { : parent line } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { :Value for } \\ & : \quad \text { Ine } \\ & \hline \end{aligned}$
1.0	1.0	1.5	1.5	1.0	-0.4
. 0	2.0	2.0	1.0	1.0	-. 2
2.0	2.5	2.0	2.0	2.1	1.6
. 5	.0	. 5	2.0	. 7	2.0
1.0	1.0	. 5	. 5	. 4	3.7
2.5	3.0	1.0	2.0	1.7	3.3
1.5	2.5	1.5	1.0	1.7	1.6
1.0	3.0	.5	2.5	1.3	. 3
3.0	3.0	1.0	2.5	1.8	$-.7$
-	$1: 0$	3.0	1.0	1.1	-. 7
1.0	1:0	-1.0	. 0	. 3	. 4
3.0	3.0	2.5	2.5	1.7	.3
1.5	2.5	1.5	-	1.9	2.0
3.5	3.0	2.0	3.0	2.2	3.0
3.5	3.0	- . 5	1.0	1.4	3.6
2.5	2.5	3.0	2.5	1.8	1.7
2.0	2.0	2.0	2.5	2.0	3.3
5.5	3.5	5.0	2.5	2.6	3.0
3.0	5.5	5.5	5.0	3.5	5.6
1.5	2.5	1.0	2.0	1.4	1.0
2.5	3.0	2.5	4.5	2.2	3.3
6.0	4.0	6.0	5.5	4. 6	5.7
3.5	1.5	2.5	3.0	2.7	6.7
4.0	3.5	4.0	4.0	3.0	3.3
4.0	\&. 5	4.5	4.0	3.0	4.3
2.0	1.5	1.0	2.5	3.4	2.0
. 5	1.5	1.5	2.5	1.0	. 7
4.5	3.5	5.0	4.0	3.8	
2.0	3.0	2.5	3.5	2.4	4.0
2.4	2.5	2.2	2.5	$2.0^{(1)}$	
. 6	4.3	3.7	3.0		

trosses in the experiment.

The data on plant height are given in Table 28. The coefficient of correlation between parent and mean of the crosses was 0.5329 ± 0.0806 for the lines recorded in this table. Ail but one of the other yield groups gave higher correlations than this group.

Of the inbrec. Iines shown in Table 28 Ine 41 was outstanding for the fact that all of its F_{1} crosses were short. It is possible that this line was homozyous for some dominant genes producing short plants. Leaving line 41 out of consideration, tine remaining lines differed but little in the mean height of their $F_{工}$ crosses although what differences there were appear to be significant. As an exsmple, lines 63 and 64 may be compared. The mean height of crosses for line 64 was 0.91 foot greater than that of line 63. These two lines were used in 27 comparable crosses and in 25 of the comparisons the cross of line 64 was the taller of the two crosses.

TABIE 28. Plant height in the F_{7} cross the later varieties of jellow corn an as grown in 1926.

Number of parent line	$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots \\ & \\ & 41 \end{aligned}$	$\begin{array}{r} \vdots \\ 42 \\ 4 \end{array}$		$\begin{array}{ll} \square & \vdots \\ \vdots & 50 \end{array}$		$\begin{gathered} \vdots \\ \vdots \\ \vdots \\ \hline \end{gathered}$	64	65
45	7.25	8.00	8.25	8.00	----	7.50	8.00	8.50
46	7.25	9.00	8.25	8.25	8.50	8.00	8.75	9.00
47	7.00	8.00	8.25	7.75	8.00		8.00	9.00
48	6.00	7.50	8.00	8.00	7.50	6.75	7.75	8.50
49	7.50	8.00	8.25	8.00	8.00	7.75	8.25	8.50
51	7.75	8.25	8.50	8.25	8.00	8.00	9.00	9.00
52	7.00	8.50	8.50	7.75	8.25	7.75	8.50	9.50
54	6.25	8.00	8.00	7.25	7.00	7.00	8.00	8.50
55	6.25	8.00	7.75	7.00	7.75	7.00	8.00	8.50
56	6.50	7.25	7.50			7.00		8.00
57	6.50	8.00	7.50	7.50	----	7.75	7.75	7.50
58	7.00	8.50	7.75	8.00	8.00	7.50	8.50	9.00
59	7.00	7.75	8.00	7.75		7.00	7.75	9.00
60	7.00	8.25	8.25	7.50	8.00	7.00	8.75	8.50
61	7.25	8.00	8.00	7.25	8.25	7.00	8.25	8.00
62	6.75	7.75	7.75	7.50	7.75	7.00	7.50	7.75
66	7.50	8.25	8.75	8.25	8.00	7.25	8.25	8.50
67	6.25	8.25	7.50	8.00	8.00	8.75	8.50	8.50
68	5.75	8.00	7.75	8.25	7.75	7.25	8.25	8.50
69	6.50	8.00	7.75	8.25	8.00	7.75	8.25	8.50
70	6.25	8.25	8.00	8.25	8.00	7.00	8.25	8.25
72	6.50	8.75	8.75	8.50	8.00	7.50	9.00	9.00
73	7.50	8.50	8.00	8.25	- --	7.75	9.25	9.25
74	7.00	8.25	8.00	8.75	8.50	7.50	8.50	8.75
76	7.00	8.00	7.50	8.25	8.25	7.25	8.25	8.25
77	7.50	8.00	8.50	8.75	8.75	7.50	9.50	9.75
78	6.50	8.25	7.75	8.25	8.00	7.50	8.50	9.25
79	7.75	8.50	8.00	8.75	0.50	8.00	9.00	9.25
80	6.75	8.25	7.75	8.00	8.00	7.75	8.00	8.25
Hean of crosses for each parent line	6.86	8.17	8.02	8.01	8.07	7.46	8.37	8.65
Height of perent								
Iine	- --	- -- 7	7.00	7.00	7.00	5.33	7.83	7. 7.6

(1) Mean plant height for 211 crosses in the experiment.
the F_{1} crosses between inbred lines from 110w corn and for the parent lines

[^2]The data on per cent of ears moldy are recorded in Table 29. The group of inored Ines in this table gave one of the Iowest parent-progeny correlations for this character. It was only 0.2516 ± 0.1054 and can not be considered significant.

Eowever, an examination of these data shows that the different inbrec lines exinbited wide differences and very cefinite tendencies in resard to the per cent of moldy ears in the harvested crop. Some Innes had a high per cent of mold in nearly all of their ercsses while other had a low per cent. A very gooi comparison may be made between the arosses of Iine 53 and those of aither Ine 43 or 75. In either case there were 24 comparehle crosses. In each oi the comparisons with line 75, the cross with line 53 had a lower percentage of molay ears than that with 75 and in 23 of the 24 comparisons with line 43 the cross with Ine 53 had the lower percentage of moldy ears.

The data in this table afford good inlustrations of how certain inbred lines may unfformiy transmit to their offspring characters they ao not express themselves. Lice muber 58 was an outstanding example. This invred line had the highest per cent of moldy ears (73.4) and yet only one other line in comparable crosses, line 59, had a lower mean per cent of moldy ears for all of its crosses. With the

- 99 -
possible exception of the cross with Ine 43 , all of the crosses of line 58 were uniformly low in per cent of ears molay.

TABLE 29. Per cent of ears moldy in th lines from the later varieties of yel lines es grown in 292%.

(1) hean per cent of ears moldy for $a l l$ crossee in the experiment $^{\text {m }}$
of ears moldy in the F crosses between inbred ter verieties of yellow corn and in the parent 1926.

O:	53	i i i i	64	65	71	75 :	: Mean of crosses for each parent line	$\begin{aligned} & \text { :Fer cent } \\ & \text { r:moldy ears } \\ & \text { :in psrent } \\ & \text { : line } \end{aligned}$
8.0	---	15.1	0.0	32.3	12.3	5.9	13.4	26.4
5.9	3.2	14.0	8.3	6.8	4.7	15.9	9.0	5.5
2. 0	6.7		8.6	7.2	4.0	23.8	9.0	24.3
2. 5	4.5	25.6	27.9	9.2	22.9	36.0	16.7	40.5
5.3	7.8	15.5	9.1	8.3	6.2	27.8	9.1	22.8
8.3	3.0	12.4	23.0	17.9	13.1	12.0	30.5	36.8
7.1	8.9	18.1	7.9	10.5	9.9	21.1	12.0	21.3
7.5	3.9	13.1	10.3	12.1	8.4	14.5	11.2	22.6
7.5	19.4	24.1	6.8	19.8	22.3	21.3	17=4	30.4
		9.0		9.9	4.2	6.7	8.6	26.4
8.5	---	12.5	9.4	18.6	3.7	12.4	9.3	7.3
2.8	7.0	6.4	4.2	5.8	*.2	11.2	7.1	73.4
7.0		11.5	9.8	6.6	4.5	---	7.0	31.9
2.8	5.7	29.0	3.0	10.4	7.6	30.5	5.2	30.1
5.0	9.0	10.0	7.6	7.0	6.3	16.0	8.1	26.9
5.3	2.4	12.3	3.3	7.4	7.1	4.5	7.1	26.4
8.4	5.4	12.2	17.9	13.8	14.7	38.4	15.5	26.7
6.4	7.7	15.2	5.8	14.1	11.3	22.6	13.3	22.7
4.6	4.8	6.8	2.7	4.3	6.1	9.8	7.6	13.1
14.5	13.1	24.1	11.8	17.8	14.3	26.7	16.6	38.5
23.3	2.7	20.8	18.6	23.8	11.1	29.5	17.6	23.9
9.8	3.8	16.0	9.1	8.0	8.6	18.7	11.5	17.5
9.6	---	5.9	A. 0	3.5	4.2	12.4	7.6	19.1
4.6	8.2	14.2	11.4	8.5	9.7	35.4	13.8	34.8
7.4	5.0	16.7	8.2	7.8	3.5	14.4	11.0	14.6
25.5	8.6	22.9	9.8	12.6	10.9	25.7	17.7	26.2
6.7	7.4	5.7	11.2	8.3	8.7	21.8	8.7	3.1
4.7	. 0	6.7	10.1	5.5	7.9	23.4	9.2	
8.6	5.6	14.9	16.2	10.2	8.7	20.4	11. 4	25.6
8.2	6.3	14.3	9.2	11.3	8.3	18.2	11.3(1)	
9.0	7.7	25.6	23.2	18.4	14.4	64.5		

[^3]The data on mean ear length are recorded in Table 30. The data in this table geve the highest correlation of those between ear Iengith of the inbrec lines and mean ear Iengith of all of the crosses of which they were parents. The correlation in tins case mas 0.7962 ± 0.0412. In the group of white crosses grown in 1026 the correlation was not significant.

The mean length of ear for the crosses from difierent Iines varied from 77.9 cm . for Ine 62 to 22.8 cm . for Ine 45. As in the characters previously discussed, the difierent inbred lines appear to have contributed very definfte tendencies to their Pr crosses as regards ear length. Fine F_{1} crosses of line 65 areraged 4.0 cm . longer than those of line 71. There were 29 comparable crosses and in 28 cases 65 the cross involving linenthe the longer ears.

TABLE 30. Mean ear length in centimeters for t between inbred lines from the later varieties comn and for the parent lines as gromn in 192

Humber of parent line	$\begin{array}{ll} \hline \vdots & \vdots \\ \vdots & \\ \hline \end{array}$	$42 \quad \begin{array}{r}\text { : } \\ 42\end{array}$	43	50 :	53	63	64 $\quad \begin{array}{r}\text { : } \\ \end{array}$	65
45	23.9	21.8	22:9	23.9	---*	21.0	28.7	24
46	20.8	19.4	22.7	21.2	18.6	18.2	24.3	21
47	20.5	16.8	21.0	19.5	17.3		22.4	22
48	20.0	22.0	22.9	20.0	18.1	17.9	22.4	23
49	20.9	19.4	20.9	20.7	19.5	17.8	21.8	23
51	20.4	18.4	20.9	20.0	18.9	18.2	22.3	21
52	18.6	19.6	21.1	20.3	20.2	17.7	20.9	22
54	19.7	19.5	21.1	20.5	18.0	16.5	20.1	23
55	18.7	17.5 .	19.5	18.7	18.2	16.1	19.7	21
56	19.1	18.1	21.7	----	----	16.3	----	23
57	18.3	18.5	20.0	19.2	----	18.8	21.9	13
58	19.7	18.5	19.7	19.2	18.1	16.8	21.5	23
59	19.1	20.3	22.8	19.3	----	17.6	21.7	23
60	19.4	17.5	19.3	18.7	17.8	17.2	21.0	21
61	23.2	20.1	22.2	23.1	20.5	18.9	23.5	23
62	17.3	17.9	17.7	18.9	16.8	15.0	20.2	20
66	19.2	20.0	21.1	18.6	18.1	15.7	20.6	22
67	21.2	20.6	21.3	21.5	19.3	19.7	25.4	19
68	19.4	19.2	22.9	21:0	19.5	18.3	24.5	25
69	19.5	18.8	20.1	20.6	18.5	17.7	21.6	21
70	18.6	18.3	22.1	19.1	18.7	16.9	21.8	22
72	18.6	17.4	19.2	19.3	17.4	16.8	22.0	2
73	17.6	19.1	20.0	19.3	----	15.9	20.9	20
74	20.4	20.2	21.8	21.2	20.9	19.6	19.3	23
75	16.6	18.2	20.5	19.4	17.7	14.9	20.6	21
77	19.2	19.4	20.4	20.6	18.4	17.0	21.7	23
78	20.1	18.2	27.1	21.9	19.2	18.5	23.9	24
79	18.0	18.8	20.3	20.7	21.6	19.4	23.3	24
80	19.3	19.9	20.9	19.2	19.8	17.7	21.3	21
gean of crosses for each parent line	29.6	19.1	21.0	20.2	18.8	17.6	22.1	22
Ear langth of parent line	---	---	16.5	17.3	11.8	12.7	20.2	18

(1) Kean ear length in centimeters for all crosses in the experiment.
ingth in centimeters for the F crosses I from the later varieties of yellow pent lines as grown in 2926.

50	53	63	$64:$	65	71 :	75	:Mean of crosses for : each parent line	$\begin{aligned} & \text { :Ear length } \\ & : \text { of parent } \\ & : \quad \text { inne } \\ & \hline \end{aligned}$
33.9	----	21.0	28.7	24.1	21.8	17.5	22.8	21.2
31.2	18.6	18.2	24.3	21.8	19.2	20.8	20.7	15.1
19.5	17.3		22.4	22.9	18.8	20.7	20.0	13.2
30.0	18.1	17.9	22.4	23.8	19.1	19.6	20.6	15.9
20.7	19.5	17.8	21.8	23.2	18.3	20.5	20.3	13.0
20.0	18.9	18.2	22.3	21.3	18.4	19.6	19.8	14.5
20.3	20.2	17.7	20.9	22.8	17.4	18.8	19.7	13.9
20.5	18.0	16.5	20.1	23.1	18.6	12.9	19.7	15.0
18.7	18.2	16.1	19.7	21.8	18.0	12.4	28.8	12.7
		16.3		23.4	19.4	18.6	19.5	14.4
19.2	----	18.8	21.9	17.1	19.3	18.5	19.1	12.4
19.2	18.1	16.8	21.5	23.4	18.5	17.7	19.3	12.5
19.3		17.0 ¢	21.7	23.9	19.7	---	20.6	15.2
18.7	17.8	17:2	21.0	-21.6	17.9	19.0	18.9	14.0
23.1	20.5	18.9	23.5	23:0	19.0	20.3	21.4	14.0
18.9	16.8	15:0	20.2	20.2	17.5	17.7	17.9	12.7
19.6	18.1	15.7	20.6	22.6	16.8	16.5	19.0	22.4
32.5	19.3	19.7	25.4	19.9	19.9	19.9	21.4	15.1
21:0	19.5	18.3	24.5	25.5	19.8	19.9	21.0	14.9
20.6	18.5	17.7	21.6	21.1	18.3	19.0	19.5	16.6
19.1	18.7	16.9	21.8	22.2	18.6	17.2	19.4	14.4
19.3	17.4	16.8	22.0	22.6	17.5	16.9	18.8	13.8
19.3	----	15.9	20.9	20.4	16.3	18.5	18.7	11.6
21.2	20.9	19.6	19.3	23.4	16.8	18.0	20.2	13.5
19.4	17.7	14.9	20.6	21.6	18.5	19.3	18.7	14.1
20.6	18.4	17.0	21.7	23.5	19.4	20.0	20.0	14.8
21.9	19.2	18.5	23.9	24.3	19.9	21.2	20.9	14.5
20.7	21.6	19.4	23.3	24.6	18.4	19.1	20.4	
19.2	19.8	17.7	21.3	21.5	18.3	16.6	19.6	14.9
20.2	18.8	17.6	22.1	22.6	18.6	19.0	19.8 (1)	
17.3	11.8	12.7	20.2	18.5	12.9	14.0		

rosses in the experiment.

- 103 -

Table 31 contains tie data on diameter of ear. All of the sorrelations between diameter of ear of the parents and the mean diameter of ear of their crossbred progeny Were hisher than for length of ear. The correlation for diameter of ear fon the white crosses grom in 1926 was 0.9631 ± 0.0052. This is an extremely high correlation and is the highest one obtained for any character. The corm relation for Table 31 mas 0.7062 ± 0.0564.

The extreme range of variation for the crosses in this experiment was only 1.21 cm . (from 4.08 to 5.29). The range for the mean ean diameter for all crosses for the different Inbred Iines was from 4.45 cm . for line 67 to 5.04 for Iine 77. In spite of this smali variation, however, the differences betmeen different Innes were, in many cases; remarkably constant. For example, the crosses of Inne 64 averaged 0.28 cm . smaller dianeter than those of line 7l. There mexe 28 comparable crosses and in 26 cases line 71 had ears $\begin{aligned} & \text { ith } \\ & \text { the greater diameter. }\end{aligned}$
 between indred linea nron the jeter vinteties snd for the parent 11 mes as gromn in 1926.

Mumber of parent line	$\begin{aligned} & \hline \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{array}{r} \\ 42 \\ 4 \end{array}$	\square	$50:$	53	63	64	: 6
45	4.95	4.75	5.64	4.87	-m-	5.03	4.67	4.
46	A.75	8. 51	4.77	4.78	488	4.73	4.74	4
47	4.53	4.55	4.68	4.67	4.47	---		4
48	4.53	4.87	4.59	4.60	4.50	4.55	4.39	4.
49	4.69	4.78	4.81	4.53	4.76	4.79	4.62	4
51	4.91	4.82	4.99	4.76	4.87	4.88	4.80	4
52	4.52	4.77	4.64	4.51	4.61	*.63	4.43	4
54	4.52	4.64	4.84	4.59	4.53	4. 52	4.51	4.
55	4.73	4.62	4.92	4.79	5.00	5.04	4.50	4.
56	\&.62	4.58	4.74	--	----	4.80	---	4
57	4.85	4.95	4.87	4.79	----	4.86	8.76	5
58	4.93	4.6 .4	4.63	4.82	4.73	4.75	A.62	4
59	4.93	4.95	4.81	4.73	-	4.72	4.51	4
60	4.58	A.80	4.66	4.66	4.83	4.73	4.56	4
61	4.75	4.43	4.52	4.54	4.53	4.65	4.35	4.
62	4.75	4.82	4.78	4.80	5.03	4.89	4.78	4
66	4.59	4.80	4.72	4.82	4.78	4. 54	4.64	4
67	4.43	4.51	4.46	4.49	4.42	4.87	4.26	4
68	4.42	4.51	4.66	4.51	4.58	4.77	4.60	4
68	4.94	5.02	4.92	5.01	5.00	5.16	¢.84	4
70	4.88	A.88	4.95	4.66	4.92.	5.06	3.55	4.
75	4.70	4.96	5.03	4.95	5.35	5.15	5.20	4
73	4.70	4.76	4.98	4.98	--**	5.08	5.02	4.
$7{ }^{7}$	4.71	4.87	4.72	4.75	4.67	4.71	4.22	4
76	4.70	4.84	4.77	4.97	4.79	4.77	4.52	4.
77	5.03	5.18	4.31	5.20	4.91	4.98	B.81	4
78	4.49	4.40	4.59	4.53	*,39	4.74	4.37	4
79	4.59	4.79	4.37	4.90	4.80	4.77	4.58	c.
80	4.61	4.76	4.69	4.62	4.56	4.72	4.59	4
詵边 of erosses for each parent ifne	4.73	4.76	4.74	4.74	6.74	4.81	4.61	4.
Ear alameter of parent 15ne	----	----	3.90	4.15	3.99	5.57	4.18	3

(1) rinan ear diameter in centimeters for all crosses in the experinen $^{\text {and }}$

$\begin{array}{r}: \\ \vdots \\ \hline\end{array}$	$\begin{aligned} & \square \\ & \$ \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{ll} 5 & \vdots \\ \vdots 63 \\ & \\ \hline \end{array}$	64	65		75	E esch parent inne	$\begin{aligned} & \text { dinmeter } \\ & \text { parent } \\ & \text { ime } \end{aligned}$
187	---	5.03	4.67	4.51	4.90	4.08	4.71	3.76
. 78	8.84	4.73	4.74	4.57	4.58	5.04	4.74	4.08
. 67	4.47	---m	4.49	4.57	4.90	4.92	4.69	3.91
. 60	4.50	455	4.38	4.46	4.61	4.59	4.57	3.51
. 53	4.76	4.79	4.62	4.59	4.92	4.92	4.74	3.86
176	4.87	4.88	4.90	4.77	5.11	5.04	4.90	\&.30
. 51	4.61	4.63	4.43	4.62	4.76	4.76	4.62	3.71
. 59	4.53	4.62	4.51	4.61	4.71	8.74	4.55	3.31
.77	5.00	5.04	4.60	4.84	5.06	5.18	4.80	4.27
		4.80	-	A.62	4.37	4.06	4.75	3.86
. 79	---	4.86	4.76	5.00	5.25	4.39	4.93	4.39
-82	4.73	4.75	4.62	$\leqslant .73$	4.89	4.68	4.74	4.09
. 73	-	4.72	4.51	4.67	4.95		4.77	4.15
. 65	4.83	4.73	4.56	4.71	4.61	4.67	4.68	4.17
. 54	4.53	4.63	4.35	4.31	4.76	4.71	5.55	3.77
1.80	5.05	4.89	4.76	4.74	5.20	488	4.96	3.38
. 82	4.78	4.54	4.64	5.68	4.83	4.76	4.72	4.16
1.49	4.48	소․ 87	4.26	4.49	4.46	4.53	4.45	3.72
. 51	4.58	4.77	4.60	¢.60	4.81	4.69	4.51	3.61
1.03	5.00	5.16	B.8. 8	4.90	5.11	4.94	4.98	4.55
. 66	4.81	5.06	4.55	4.60	4.95	8.61	4.80	4.13
1.95	5.16	5.15	5.20	4.96	5.07	5.06	5.02	4.65
1.98	-	5.08	5.02	4.88	5.16	4.98	4.94	4.25
1.75	4.67	4.73	\$.22	4.56	4.68	4.91	4.68	3.70
1.97	4.79	4.77	4.52	4.54	5.00	4.83	4.77	4.00
. 20	4.91	*. 98	4.81	4.90	5.15	5.38	5.04	4.54
. 53	4.35	4.74	4.37	4.57	4.77	4.74	4.56	3.75
.90	4.80	4.77	4.58	4.63	+ ${ }^{\text {c }} 9.91$	4.73	4.71	
. 61	\&. 56	4.72	4.59	4.53	4.85	4.73	4.66	4.15
L.74	4.74	4.81	4.61.	4.66	4.89	4.82	4.7517)	
. 15	3.99	E.57	4.18	3.68	3.92	4.00		

crasses in the experiment.

The data on ear shape index are contained in table 32. Only two of the three correlations between parent and mean of crossbred progeny for this character vere significant. The one for fable 32 was 0.8461 ± 0.0320 and was the highest one obtained.

Ear shape index was obtainea by dividing the mean ear diameter by the mean ear length. The higin index indicates an ear whose diameter mas large as compared with its lengin while a small index indicates a relatively long slender ear. The mean ear shape indexes for the vapious inbred tines shown in Table 32 rangea in size from 0.275 for Iine 63 to 0.208 for line 65. An examination of Tables 30 and 31 shows that the greater part of tinis difierence in ear shape index between these two lines was due to the difierence in ear Iength. The mean ear length for the crosses of line 65 was 5 cm . greater than that for the crosses of line 63 winie the mean ear diameter of the crosses of line 63 was only 0.15 cm . greater tinan that of the crosses of Iine 65 .

TABLE 32. Ear shape index (diameter * length) between inbred lines from the later varietse and for the parent lines as grown in 1926.

number of parent inne.	$\begin{array}{ll} \hline \vdots & \vdots \\ \vdots & \vdots 1 \\ \vdots & \\ \hline \end{array}$			50	$5 \pi \quad:$	63	
45	0.207	0.218	0.203	0.204	----	0.240	0.163
45	. 228	. 232	. 210	. 226	0.260	. 261	. 195
47	. 240	. 270	. 222	. 239	. 258	---	. 202
48	. 227	. 221	. 200	. 230	. 248	. 25 조	. 196
49	. 225	. 246	. 230	. 219	. 244	. 269	. 212
51	. 241	. 261	. 239	. 237	. 258	. 269	. 220
52	. 243	. 244	- 220	-223	. 228	.261	. 212
54	. 229	. 238	. 230	. 22 슨	. 252	. 280	. 224
55	. 253	. 276	. 252	. 256	. 274	. 322	. 234
56	. 242	.253	-219	---	-	. 285	--*
57	. 265	.267	. 244	. 249	---	. 259	. 217
58	. 250	. 251	. 234	. 252	. 262	. 282	. 215
59	. 258	. 243	.211	. 244	---	. 269	. 207
60	. 236	. 275	. 241	. 249	.272	. 275	.217
61	. 205	. 220	.204	. 197	. 221	. 245	. 385
62	. 275	. 269	.270	. 253	. 300	. 326	. 257
66	. 259	. 240	. 224	. 246	. 263	. 289	. 225
67	. 208	. 219.	.210	. 209	. 230	. 227	. 168
68	. 227	. 235	. 204	. 215	.235	-260	. 188
69	. 253	. 267	. 245	. 243	. 270	. 291	. 225
70	. 262	. 256	. 223	. 243	. 263	. 299	. 209
72	. 253	. 285	. 262	. 256	. 296	. 308	. 236
73	. 258	. 249	. 247	. 258	---	. 320	. 240
74	. 231	. 241	.217	. 224	. 223	. 240	. 218
76	. 283	. 266	.233	. 255	. 271	. 321	. 219
77	. 262	.267	. 241	. 252	. 267	. 293	. 221
78	. 222	. 242	. 218	. 207	. 228	. 256	. 183
79	. 254	. 255	. 215	. 236	. 222	. 246	. 197
80	. 239	. 239	. 224	. 240	. 230	. 266	. 215
rean of crosses for each parent line	.242	. 250	. 227	. 235	. 253	. 275	. 210
zas shape index of parent lins	- 24	-	. 237	. 240	. 338	. 360	. 207

(I) fiean ear shape index for ail crosses in the experiment.

$$
-\infty
$$

the experiment.

The data on the shrinkage per cent of the ears harvested from the different crosses are given in Pable 33. The correlation between inbred parent and mean of the crossbred progeny for the data in this table was $0.6160 \pm$ 0.0699.

After shrinking until air dry there remained as an average of all of the crosses in the experinent reported about 5.6 per cent moisture in the grain.

Dre to the favorable weather conditions in the fall of 1926, practically all of the crosses matured. As a result the mean shrinkage per cent for the crosses of the different nored lines showed a total range of oniy 8.4 per cent (from 21.0 to 29.4). In spite of the comparatively small differences, howerer, those which did exist were significant in many cases. For example, lines 71 and 75 snomed a difference of 6.9 in the mean shrinkage per cent for all of the crosses of which they were parents. Tnese two Ines were used in 28 comparable crosses and in 27 cases tine cross With line 71 es a parent had the higher shrinkage per cent.

A comparison of Table 33 with Tables 25 and 26 shows that in general those inbred lines that had a high mean sirinkage per cent were later in silking and tasseling. There were a few outstanding exceptions, however. For example, line 71, which had the highest mean shrinikage per cent and Ine 75, which had a fairly low mean shrinkage per cent

- 108 -
differed only 0.8 day in their mean date tasseled and 0.5 day in their mean date silked.

TABE 33. Shrinkage per cent of the he between inbred lines from the later for the parent innes as grown in 19:

Humber or parent line:	41	$: 42$	$: 43$: 50	53	: 63	$: 64$
45	21.8	21.2	24.1	19.2	-	22.7	23.6
46	20.3	19.5	25.2	18.9	24.7	20.6	35.8
47	23.5	22.6	24. 4	22.6	27.8		25.6
48	25.3	23.4	22.8	28.3	26.5	20.0	24.9
48	21.2	21.1	18. 2	23.9	23.2	20.9	26.0
51	21.9	23.3	21.1	22.5	19.6	18.9	26.1
52	26.8	25.9	20.5	23.7	23.9	22.6	25.5
54	22.4	22.6	24.6	20.0	28.3	22.5	26.3
55	24.9	22.1	24.6	24.4	24.5	19.5	28.7
56	38.0	22.5	34.7	-- -	-. -	21.9	-
57	24.6	22.7	26.9	23.2	-	22.4	28.3
58	25.2	21.6	25.6	20.7	21.1	17.3	24.3
59	27.0	21.4	20.4	22.2	-	24.5	27.3
60	27.6	19.6	26.9	21.1	25.6	26.1	24.0
61	21.7	21.6	21.9	21.9	21.0	22.7	24.6
62	24.7	22.9	22.3	20.6	24.5	20.2	24.4
66	23.0	19.3	25.0	22.5	22.6	24.2	26.0
67	22.9	33.5	25.1	21.7	26.8	22.7	25.4
68	27.9	25.2	24.0	23.9	25.4	27.6	25.7
69	23.9	20.2	21.9	21.3	23.8	23.5	27.9
70	23.7	23.1	24.1	21.6	27. 4	22.7	30.0
72	26.7	25.3	25.7	25.8	28.9	24.8	27.7
73	20.4	18.0	22.3	23.2	--	21.6	25.1
74	27.7	21.1	22.9	22. 4	19.3	20.7	25.7
76	23.2	21.9	24. 1	27.4	25.1	24.9	27.2
77	19.6	17.8	24.5	20.0	21.0	21.4	22.9
78	26.7	25.	27.0	22.8	24.7	23.9	25.2
79	E3.7	E4.9	24.5	23.6	26. 4	23.0	28.9
80	26.6	24.1	23.9	24.8	23.2	23.4	25.1
Mean of crosses for each perent line	23.9	22.6	23.4	22.4	24.4	22.4	26.4
Shrinvage per cent for parent line	-- -	-- -	25.2	18.2	18.6	18.5	17.9

(1)

Wean per cent of shrintage for all crosses in the experiner

```
ent of the harvested ears for the \(F_{7}\) crosses
``` om the later varieties of yellow corn and
- grown in 1926.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
: 53
\] & : 6 & \[
65
\] & : 71 & : 7 & \begin{tabular}{l}
: Fean of crosses for \\
: each parent line
\end{tabular} & \begin{tabular}{l}
: Bnrinkrge \\
:percent for \\
:parent line
\end{tabular} \\
\hline 22.7 & 23.6 & 25.6 & 27.9 & 21.9 & 23.3 & 16.1 \\
\hline 20.6 & 35.9 & 19.4 & 25.4 & 20.8 & 22.9 & 15.1 \\
\hline -- - & 25.6 & 21.5 & 29.2 & 18.8 & 25.0 & 16.9 \\
\hline 20.0 & 24.9 & 22.5 & 30.2 & 21.0 & 24.5 & 18.8 \\
\hline 20.9 & 26.0 & 26.2 & 27.6 & 21.5 & 23.0 & 26.0 \\
\hline 18.9 & 26.1 & 24.0 & 27.6 & 20.2 & 22.5 & 19.7 \\
\hline 22.6 & 25.5 & 26.2 & 32.0 & 23.1 & 25.0 & 24.1 \\
\hline 22.5 & 26.3 & 25.2 & 27.4 & 20.0 & 23.9 & 15.5 \\
\hline 19.5 & 28.7 & 30.2 & 29.0 & 22. 2 & 25.0 & 18.3 \\
\hline 21.8 & -- - & 22.3 & 22.7 & 23.0 & 21.0 & 16.0 \\
\hline 22. & 28.3 & 17.0 & 29.7 & 24.0 & 24.3 & 24.7 \\
\hline 17.8 & 2S.8 & 20.2 & 23.3 & 20.4 & 22.1 & 16.3 \\
\hline 24.5 & 27.3 & 26.1 & 32.2 & -- & 25.1 & 24.6 \\
\hline 26.1 & 24.0 & 28.3 & 28.7 & 21.0 & 24.9 & 19.6 \\
\hline 22.7 & 24.6 & 22.9 & 28.5 & 19.3 & 22.6 & 16.4 \\
\hline 20.2 & 24.4 & 23.9 & 31.3 & 25. \({ }^{\text {A }}\) & 24.0 & 24.5 \\
\hline 24.2 & 26.0 & 23.9 & 31.6 & 23.3 & 24.2 & 33.6 \\
\hline 22.7 & 25.4 & 26.6 & 28.9 & 23.2 & 25.7 & 18.5 \\
\hline 27.6 & 25.7 & 24.5 & 30.2 & 24.8 & 25.9 & 28.8 \\
\hline 23.5 & 27.9 & 24.1 & 25.3 & 21.2 & 23.3 & 19.7 \\
\hline 22.7 & 30.0 & 28.5 & 30.3 & 23.8 & 25.5 & 24.0 \\
\hline 24.8 & 27.7 & 30.2 & 31.3 & 25.8 & 27.2 & 29.4 \\
\hline 21.6 & 25.1 & 19.3 & 30.6 & 25.6 & 23.0 & 22.9 \\
\hline 20.7 & 25.7 & 30.3 & 38.0 & 27.0 & 25.6 & 26.8 \\
\hline 24.9 & 27.2 & 24.2 & 24.4 & 22.1 & 23.8 & 23.7 \\
\hline 21. \({ }^{\text {2 }}\) & 22.9 & 22.5 & 37.6 & 20.6 & 22.8 & 17.9 \\
\hline 23.9 & 25.2 & 23.8 & 29.2 & 21.3 & 25.0 & 22.6 \\
\hline 23.0 & 29.9 & 23.3 & 32.1 & 24.4 & 25.5 & -- \\
\hline 23. 4 & 25.1 & 28.8 & 28.8 & 22.9 & 25.2 & 21.8 \\
\hline 22. 5 & 26.4 & 24.6 & 29.4 & 22.5 & \multicolumn{2}{|l|}{\(24.2(1)\)} \\
\hline 18.5 & 17.9 & 28.5 & 35.4 & 19.0 & & \\
\hline
\end{tabular}

\footnotetext{
the experiment.
}

The data on shelling per cent are recorded in Table 34. From the cata in this tabie a correlation of \(0.6860 \pm\) 0.0596 was computed between parent and mean of crossbred progeny. Two of the remaining yield groups gave higher and two gave lower correlations than this.

Here again the differences between the mean values for all crosses for the different lines were small though there is no doubt that most of them were significant. They ranged from 84.0 for line 51 to 88.2 for line 70 . A good example of the consistency of the differences between the crosses from different inbred Iines may be had by comparing the crosses of lines 64 and 75 . The mean sheiling per cent of the cosses of line 64 was 84.6 and for those of line 75 was 88.1. There were 27 comparable crosses and in every case line 75 had the ingher shelling per cent.

TABLE 34. Shelling percentage of the F inbred lines from the iater varietie and parent lines as grown in 1926.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Number of parent line & : 41 & : 42 & 43 & \(:\)
\(: 50\) & \(: 53\) & 63 & \[
: 64
\] \\
\hline 45 & 87.8 & 87.3 & 87.1 & 86.2 & - & 87.6 & 85.1 \\
\hline 46 & 85.4 & 84.8 & 84.9 & 83.9 & 85.2 & 86.1 & 83.6 \\
\hline 47 & 84.6 & 84.2 & 85.5 & 84.0 & 86.2 & & 83.0 \\
\hline 48 & 88.2 & 87.1 & 86.1 & 84.8 & 86.1 & 87.2 & 83.8 \\
\hline 49 & 87.0 & 87.7 & 87.1 & 84.3 & 84.0 & 86.2 & 84.9 \\
\hline 51 & 85.3 & 82.8 & 85.6 & 80.0 & 83.9 & 84.2 & 82.5 \\
\hline 52 & 84.7 & 83.9 & 86.1 & 82.8 & 84.9 & 84.5 & 83.3 \\
\hline 54 & 88.1 & 88.2 & 87.9 & 86.7 & 86.4 & 87.3 & 85.1 \\
\hline 55 & 87.3 & 86.8 & 87.9 & 86.1 & 86.5 & 86.4 & 86.6 \\
\hline 56 & 85.2 & 85.8 & 86.8 & & & 86.0 & -- - \\
\hline 57 & 85.8 & 86.1 & 86.9 & 83.3 & -- - & 85.8 & 83.1 \\
\hline 58 & 87.9 & 86.6 & 86.5 & 84.4 & 86.5 & 87.2 & \(8{ }^{8}\) \\
\hline 59 & 86.7 & 85.6 & 86.8 & 83.6 & -- - & 86.2 & 84.5 \\
\hline 60 & 85.0 & 85.5 & 86.2 & 83.4 & 85.5 & 86.1 & 85.5 \\
\hline 61 & 84.7 & 84.8 & 85.7 & 82.4 & 84.3 & 84.9 & 82.9 \\
\hline 62 & 86.3 & 85.0 & 87.3 & 83.8 & 85.7 & 85.1 & 84.6 \\
\hline 66 & 87.2 & 88.1 & 86.3 & 86.1 & 86.6 & 86.5 & 86.7 \\
\hline 67 & 85.3 & 85.7 & 86.8 & 84.5 & 85.9 & 84.9 & 84.9 \\
\hline 68 & 84.8 & 85.0 & 84.2 & 84.7 & 84.7 & 87.0 & 84.8 \\
\hline 69 & 86.1 & 86.7 & 87.6 & 86.3 & 85.6 & 87.4 & 85.6 \\
\hline 70 & 88.7 & 87.5 & 88.2 & 36.9 & 87.4 & 88.8 & 86.4 \\
\hline 72 & 85.8 & 84.2 & 87.0 & 84.7 & 84.9 & 85.3 & 83.7 \\
\hline 73 & 84.3 & 85.6 & 85.5 & 83.6 & & 86.0 & 83.1 \\
\hline 74 & 84.5 & 84.2 & 83.6 & 84.8 & 84.9 & 84.9 & 82.6 \\
\hline 76 & 85.3 & 87.1 & 87.7 & 85.4 & 85.1 & 86.1 & 85.0 \\
\hline 77 & 87.0 & 87.1 & 86.2 & 87.6 & 85.6 & 86.9 & 86.3 \\
\hline 78 & 85.8 & 85.7 & 85.9 & 83.3 & 81.7 & 89.4 & 85.0 \\
\hline 79 & 87.0 & 86.5 & 84.5 & 84.7 & 87.2 & 88.4 & 86.3 \\
\hline 80 & 87.1 & 87.8 & 87.3 & 85.2 & 85.4 & 89.1 & 85.2 \\
\hline Mean of crosses for each parent line & 86.2 & 86.0 & 86.4 & 84.6 & 85.5 & 86.5 & 84.6 \\
\hline Shelling per cent for parent line & - & - & 81.2 & 76.2 & 77.0 & 83.5 & 80.7 \\
\hline
\end{tabular}

T] Mean shelling percentage for all crosses in the experiment.
yercentage of the \(\mathrm{F}_{2}\) crosses between
the later varieties of vellow corn
is grown in 1926.

\begin{tabular}{|c|c|c|c|c|c|}
\hline & 87.6 & 85.1 & 86.1 & 88.5 & 88 \\
\hline 85.2 & 86.1 & 83.6 & 83.5 & 85.6 & 88.8 \\
\hline 86.2 & & 83.0 & 83.9 & 86.4 & 86.7 \\
\hline 86.1 & 87.2 & 83.8 & 84.9 & 86.2 & 89.0 \\
\hline 84.0 & 86.2 & 84.9 & 85.3 & 86.4 & 88.3 \\
\hline 3.9 & 84.2 & 82.5 & 83.2 & 85.9 & 86.4 \\
\hline 4.9 & 84.5 & 83.3 & 84.3 & 87.2 & 88.5 \\
\hline 86.4 & 87.3 & 85.1 & 87.9 & 88.7 & 89.6 \\
\hline 86.5 & 86.4 & 86.6 & 85.9 & 89.4 & 90.1 \\
\hline & 86.0 & & 85.6 & 86.4 & 87.7 \\
\hline & 85.8 & 83.1 & 88.5 & 85.7 & 88.6 \\
\hline 86.3 & 87.2 & 84.0 & 85.5 & 88.7 & 88.5 \\
\hline & 86.2 & 84.5 & 84.0 & 86.6 & \\
\hline 85.5 & 86.1 & 85.5 & 84.8 & 88.2 & 87.6 \\
\hline 4.3 & 84.9 & 82.9 & 83.5 & 85.7 & 86.6 \\
\hline 85.7 & 85.1 & 84.6 & 85.3 & 86.7 & 87.6 \\
\hline 86.6 & 86.5 & 86.7 & 87.3 & 87.5 & 88.3 \\
\hline 85.9 & 84.9 & 84.9 & 84.5 & 86.3 & 87.5 \\
\hline 84.7 & 87.0 & 84.8 & 85.7 & 86.5 & 86.7 \\
\hline 85.6 & 87.4 & 85.6 & 86.8 & 88.2 & 83.6 \\
\hline 87.4 & 88.8 & 86.4 & 87.9 & 90.0 & 90.0 \\
\hline 84.9 & 85.3 & 83.7 & 86.0 & 88.2 & 87.8 \\
\hline & 86.0 & 83.1 & 86. 4 & 85.2 & 86.4 \\
\hline 84.9 & 84.9 & 82.6 & 83.7 & 86.7 & 86.6 \\
\hline 5.1 & 86.1 & 85:0 & 86.6 & 88.0 & 88.6 \\
\hline 85.6 & 86.9 & 86.3 & 86.3 & 86.1 & 89.0 \\
\hline 81.7 & 89.4 & 85.0 & 85.1 & 86.4 & 87.7 \\
\hline 87.2 & 88.4 & 86.3 & 86.8 & 86.8 & 88.8 \\
\hline 85.4 & 89.1 & 85.2 & 86.2 & 87.7 & 88.7 \\
\hline 85.5 & 86.5 & 84.6 & 85.6 & 87.1 & 88.1 \\
\hline 77.0 & 83.5 & & 75 & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
87.1 & 85.1 \\
85.2 & 82.1 \\
84.9 & 84.6 \\
86.3 & 84.1 \\
86.2 & 83.1 \\
84.0 & 83.2 \\
85.0 & 82.0 \\
87.6 & 85.9 \\
87.3 & 89.1 \\
86.2 & 80.0 \\
86.0 & 81.3 \\
86.6 & 84.0 \\
85.5 & 83.0 \\
85.8 & 86.2 \\
84.6 & 79.8 \\
85.8 & 81.6 \\
87.1 & 88.3 \\
85.6 & 84.2 \\
85.4 & 83.3 \\
87.0 & 88.8 \\
88.2 & 86.1 \\
85.8 & 82.2 \\
85.1 & 80.6 \\
84.8 & 84.0 \\
86.5 & 86.6 \\
86.8 & 81.2 \\
85.6 & -1.2 \\
86.7 & 85.6 \\
87.0 & \\
\(86.1(1)\) & \\
&
\end{tabular}

\footnotetext{
in the experiment.
}

The data on mean number of kernel rows per ear are recorded in Table 35. This character gave the most uniformy high correlation between parent and mean of crossbrod progeny of any of the characters studied in the 3 yield groups for which lt was computed. These correlations were \(0.8517 \pm 0.0450,0.9158 \pm 0.0250\) and \(0.5785 \pm 0.0257\). The last named correlation was computed from the data in Table 35.

The average number of rows per ear for the \(F_{1}\) crosses in this experiment ranged from 12.1 to 21.7. The values for the means of all crosses for the different inbred lines ranged from 14.0 to 18.8. Examination of the data in Table 35 shows that the different inbred lines exinibited very definite effects in their \(F_{1}\) crosses. Line 64 produced a cross with a relatively bow number of rows per ear while 63 produced a cross with a relatively high number of rows per ear. These two inbred lines were used in 27 comparable crosses and in every case the cross involving line 63 had a nigher number of rows per ear than that involving line 64.

TABIE 35. Mean number of kernel rows per ear between inbred lines from the later varieti and for the parent lines as grown in 1926.

(2)

Mean number of kernel rows per ear for all crosses in the expert

P kernel rows per ear for the \(F_{1}\) crosses kom the later varieties of yellow com es as grown in 1926.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline : & \[
53
\] & \[
53
\] & 64 & 55 & 71 & & : Mean of crosses each parent lin & \begin{tabular}{l}
:Hean ker \\
:nel rows \\
: of par- \\
:ent line
\end{tabular} \\
\hline 8 & ---- & 15.6 & 12.1 & 13.2 & 24.5 & 14.3 & 14.0 & 10.6 \\
\hline 5 & 15.8 & 16.8 & 14.4 & 15.3 & 16.9 & 16.2 & 16.0 & 16.0 \\
\hline 4 & 16.5 & -- - & 13.9 & 15.9 & 16.9 & 16.0 & 15.9 & 13.9 \\
\hline 6 & 15.4 & 16.7 & 13.0 & 14.0 & 15.9 & 14.0 & 14.9 & 12.4 \\
\hline 5 & 15.2 & 16.7 & 13.7 & 14.8 & 16.2 & 15.2 & 15.2 & 14.7 \\
\hline 8 & 14.0 & 16.0 & 13.3 & 14.3 & 15.7 & 15.2 & 14.9 & 13.8 \\
\hline 8 & 16.1 & 17.8 & 14.3 & 15.9 & 17.5 & 16.9 & 16.4 & 14.3 \\
\hline 4 & 14.7 & 16.1 & 13.4 & 14.3 & 15.3 & 14.9 & 15.1 & 12.9 \\
\hline 2 & 16.4 & 18.9 & 14.5 & 16.7 & 17.6 & 17.8 & 16.9 & 17.5 \\
\hline - & -- - & 17.5 & -- - & 15.0 & 17.8 & 16.6 & 16.5 & 15.5 \\
\hline 7 & -- & 17.0 & 14.5 & 19.0 & 17.5 & 16.5 & 16.8 & 16.4 \\
\hline 9 & 16.1 & 18.6 & 15.0 & 16.8 & 17.6 & 17.5 & 17.2 & 16.4 \\
\hline 5 & -- - & 18.4 & 14.7 & 16.0 & 18.0 & -- - & 17.4 & 16.0 \\
\hline 7 & 15.9 & 20.1 & 15.5 & 16.4 & 18.6 & 16.3 & 17.4 & 17.4 \\
\hline 1 & 13.8 & 16.9 & 13.6 & 14.6 & 16.8 & 35.5 & 15.4 & 12.7 \\
\hline 0 & 17.1 & 19.4 & 15.1 & 17.0 & 18.2 & 16.7 & 17.2 & 16.8 \\
\hline 8 & 15.6 & 17.7 & 14.1 & 15.2 & 17.1 & 15.9 & 16.1 & 16.7 \\
\hline 3 & 14.7 & 16.8 & 13.4 & 15.2 & 16.1 & 15.0 & 15.6 & 13.7 \\
\hline 9 & 14.9 & 17.3 & 14.1 & 15.9 & 16.3 & 15.1 & 15.6 & 14.2 \\
\hline 6 & 15.4 & 18.4 & 14.7 & 15.1 & 16.8 & 16.5 & 16.5 & 15.5 \\
\hline 19 & 18.9 & 21.7 & 15.3 & 17.5 & 18.7 & 18.8 & 18.8 & 20.4 \\
\hline 9 & 17.3 & 19.2 & 15.7 & 17.3 & 19.4 & 17.7 & 17.8 & 21.0 \\
\hline . 8 & - & 20.8 & 15.8 & 18.4 & 19.5 & 18.2 & 18.4 & 19.3 \\
\hline . 9 & 15.5 & 18.2 & 14.9 & 16.0 & 17.5 & 16.4 & 16.5 & 14.2 \\
\hline .7 & 17.3 & 20.8 & 15.0 & 17.1 & 18.2 & 18.2 & 18.1 & 17.6 \\
\hline . 9 & 16.5 & 18.9 & 16.0 & 16.5 & 18.0 & 18.3 & 17.5 & 18.3 \\
\hline . 7 & 14.1 & 16.3 & 13.6 & 15.1 & 16.4 & 15.2 & 15.2 & 12.9 \\
\hline . 9 & 17.2 & 18.1 & 15.3 & 16.9 & 18.5 & 18.1 & 17.3 & \\
\hline .9 & 15.4 & 18.1 & 14.3 & 14.7 & 16.7 & 15.4 & 15.6 & 16.4 \\
\hline .2 & 15.9 & 18.0 & 14.4 & 15.9 & 17.2 & 16.4 & 16.4 \({ }^{(1)}\) & \\
\hline .1 & 13.0 & 19.0 & 12.1 & 14.6 & 15.9 & 15.2 & & \\
\hline
\end{tabular}

\footnotetext{
crosses in the experiment.
}

One striking comparison between the crosses of two inbred lines not shown in the tables previously discussed, is to be found in the crosses of lines 168 and 171. These crosses were grow in the yield experiment of yellow corn in 1927. The data on the date \(\frac{1}{4}\) tasseled, date \(\frac{1}{4}\) silked, shrinkage per cent, shelling per cent snd yield of the crosses of these two lines are shown in Table 36. They differed only 0.3 day in the mean of all crosses for the date thasseled and 1.8 days for date \(\frac{7}{x}\) silked and yet the value for mean shrinkage per cent for line 171 was 9.5 higher than that for line 168. The mean yield and the mear shelling per cent of the crosses of thesetro lines were almost exactly the same. It will be noted that the data on the inbrec lines themsevles showed practically the same situation. There was not quite the difference in shrinkage per cent, however, and line 171 had a slighily lower shelIing per cent than did Iine 168.

The most striking comparison between two comparabie crosses was to be had with the crosses with line 130. The cross \(171 \times 130\) tasseled 6.5 days earlier and silked 5 days earlier than the cross 168 z 130 and yet the shrinkage per cent of \(171 \times 130\) was nearly double that of \(168 \times 130\) (26.4 as compared with 14.0). The yield and shelling per cent Of the two crosses was almost exactly the same.

Some of the differences between the crosses of these
- 215 -
two lines may be accounted for by the fact that one was a dent com and the other a finint. Line 168 was derived from Walaen Yeilow Dent, a iate, rather rough, Jellow dent, While line ITl csme from Argentine flint. The crosses of Ine 171 bad the most moisture at harvest and it may be thought that since they had a flint corn for one parent they probably had a large sappy cob. The fact that the crosses of both lines had the same shelling per cent, however, would discredit this supposition.

TABLE 36. Records on the date \(1 / 4\) tasseled, ds shrinkage per cent of the harvested ears, she and Jield for the \(\mathrm{F}_{1}\) crosses of two of the ir varieties of yellow corn as grown in 1927.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Number of parent line} & \multicolumn{2}{|l|}{Date \(1 / 4\) tasseled} & \multicolumn{2}{|l|}{Date \(1 / 4\) silke} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { Shri } \\
& : \text { per } \\
& : 168 \\
& \hline
\end{aligned}
\]} \\
\hline & 168 & 171 & 168 & 171 & \\
\hline 114 & 27.0 & 25.5 & 31.5 & 33.5 & 17.8 \\
\hline 116 & 25.0 & 27.0 & 28.0 & 32.0 & 11.2 \\
\hline 117 & 31.5 & 35.5 & 36.0 & 39.5 & 10.4 \\
\hline 118 & 31.0 & 38.0 & 35.5 & 41.5 & 10.7 \\
\hline 119 & 31.5 & 33.5 & 35.5 & 38.5 & 11.9 \\
\hline 120 & 31.0 & 36.5 & 35.0 & 42.5 & 10.2 \\
\hline 123 & 31.0 & 31.5 & 37.0 & 37.5 & 13.0 \\
\hline 124 & 31.5 & 31.0 & 34.0 & 34.5 & 12.9 \\
\hline 125 & 35.5 & 33.0 & 39.5 & 37.0 & 13.9 \\
\hline 126 & 32.0 & 37.0 & 36.5 & 41.0 & 12.1 \\
\hline 128 & 34.5 & 32.5 & 37.0 & 38.0 & 10.3 \\
\hline 129 & 35.5 & 33.0 & 38.0 & 38.5 & 17.0 \\
\hline 130 & 38.5 & 32.0 & 43.0 & 38.0 & 14.0 \\
\hline 132 & 32.5 & 34.0 & 36.5 & 42:0 & 11.5 \\
\hline 133 & 37.0 & 35.0 & 39.5 & 42.5 & 12:0 \\
\hline 135 & 34.0 & 31.5 & 39.5 & 37.5 & 10.4 \\
\hline 136 & 31.0 & 36.0 & 35.0 & 42.0 & 11.8 \\
\hline 139 & 33.0 & 33.0 & 35.5 & 38.5 & 24.8 \\
\hline 141 & 33.5 & 35.5 & 37.5 & 40.0 & 12.8 \\
\hline 142 & 29.0 & 32.0 & 32.5 & 39.0 & 12.6 \\
\hline 144 & 37.5 & 38.0 & 40.5 & 42.0 & 15.1 \\
\hline 146 & 37.0 & 37.5 & 39.5 & 42.5 & 15.6 \\
\hline 147 & 30.0 & 37.5 & 35.0 & 42.0 & 13.6 \\
\hline 149 & 33.5 & 30.0 & 38.0 & 38.0 & 13.1 \\
\hline 151 & 32.5 & 34.0 & 36.5 & 39.0 & 14.3 \\
\hline 154 & 51.0 & 31.0 & 35.5 & 37.5 & 12.4 \\
\hline 155 & 35.5 & 34.0 & 38.0 & 40.0 & 14.6 \\
\hline 156 & 32.0 & 29.0 & 36.5 & 36.0 & 12.1 \\
\hline 158 & 34.0 & 34.0 & 38.0 & 39.5 & 15.7 \\
\hline 159 & 31.0 & 32.0 & 38.0 & 39.5 & 14.8 \\
\hline 161 & 31.0 & 28.0 & 34.5 & 36.0 & 16.9 \\
\hline 162 & 34.0 & 36.0 & 39.5 & 42.0 & 11.9 \\
\hline 164 & 27.0 & 29.0 & 34.0 & 34.5 & 11.0 \\
\hline 165 & 31.0 & 32.5 & 37.0 & 38.5 & 14.7 \\
\hline 166 & 38.0 & 34.0 & 43.5 & 41.0 & 17.9 \\
\hline 167 & 39.0 & 35.5 & 42.0 & 40.0 & 13.8 \\
\hline 169 & 32.0 & 30.0 & 37.0 & 35.5 & 18.2 \\
\hline 170 & 32.0 & 33.0 & 36.5 & 40.5 & 14.5 \\
\hline
\end{tabular}
on the date \(1 / 4\) tasseled, date \(1 / 4\) silked, at of the harvested ears, shelling per cent \(\stackrel{F l}{ }\) crosses of two of the inbred lines from low corn as grown in 1927.

Table 36 continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Number of parent line} & \multicolumn{2}{|l|}{Date \(1 / 4\) tasseled} & \multicolumn{3}{|l|}{Date 1/4 silked} \\
\hline & 168 & : 171 & 158 & : 171 & : 1 \\
\hline 172 & 31.5 & 35.0 & 34.5 & 40.0 & I \\
\hline 173 & 36.5 & 30.0 & 42.5 & 38.5 & 1 \\
\hline 174 & 33.0 & 33.5 & 37.5 & 38.0 &] \\
\hline 175 & 37.5 & 36.0 & 43.0 & 40.0 & I \\
\hline 176 & 31.0 & 32.5 & 34.5 & 36.5 & 1 \\
\hline Mean of crosses for each parent line & 32.9 & 33.2 & 37.1 & 38.9 & 1 \\
\hline Data for parent line & 44.0 & 46.0 & 49.5 & 51.0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Date I/4 silke} & \multicolumn{4}{|l|}{Shrinkage: Shelling per cent : Per cent} & \multicolumn{3}{|c|}{Yield} \\
\hline 168 & 371 & :168 & 171 & 168 & 171 & 168 & - & 171 \\
\hline 34.5 & 40.0 & 15.9 & 21.1 & 84.2 & 85.1 & 11.15 & & 9.35 \\
\hline 42.5 & 38.5 & 16.9 & 21.5 & 80.5 & 80.2 & 8.81 & & 7.58 \\
\hline 37.5 & 38.0 & 13.5 & 21.8 & 83.0 & 81.2 & 10.61 & & 10.03 \\
\hline 43.0 & 40.0 & 19.3 & 22.0 & 81.8 & 83.1 & 8.96 & & 10.36 \\
\hline 34.5 & 36.5 & 12.0 & 18.6 & 83.6 & 83.8 & 9.81 & & 10.51 \\
\hline 37.1 & 38.9 & 13.6 & 23.1 & 83.4 & 83.5 & 10.41 & & 10:40 \\
\hline 49.5 & 51.0 & 15.8 & 20.1 & 81.8 & 77.4 & 5.56 & & 5.21 \\
\hline
\end{tabular}

The principal benefit of practical value to be derived from correlation studies such as those that have been discussed is the determination of the relative value of the different characters studied as indexes of selection for increasing yields. A number of significant correlations were obtained between yield and other characters within the inbred lines, within the \(F_{1}\) crosses and betreen yield of the \(F_{1}\) cross and oharacters of the inbred parent. While these correlations indicate very definite tendencies, they are all too small to be of much value for selection purposes.

A summary of the characters which gave significant correlations with yield in the different groups of material studied is given in Table 37. The positive correlations in practically every case were with characters indicative of general plant vigor. The most important negative correlation was mith ear shape index (P).

TABIE 37. Sumary of the significant positive and ne gative coesficients of correjation between yield and the other characters studied.

The positive correlations between yields of tie \(F_{1}\) crosses and so many of the characters of the parent which ere indicative of vigor in the inbred line is very interesting. Fiost inbred lines that have been selfed for a number of generations are lacking in vigor and productiveness and would make the commercial production of \(F_{I}\) seed an expensive process. It is encouraging to note that the most productive \(F_{1}\) crosses may be expected from the most productive inbred parents. Iarge yields from the inbred parents will, of course, make for the most economical production of crossed seed.

The relative importance in relation to yield of the four groups of characters for which multiple and partial correlations were computed is summarized in Table 38. In this table the four groups of characters are ranked according to the size of multiple correlation between the characters in the group and yield.

TABLE 38. Rank of the coofficients of multiple correlation between four groups of charaoters and yiold.

\begin{tabular}{llccc}
1 & Maturity & 2 & 4 & 2 \\
2 & Plant vigor & 3 & 2 & 1 \\
3 & Disease & 4 & 3 & 4 \\
4 & Ear size & 1 & 1 & 3
\end{tabular}

The characters indicating relative size of the harvested ears were most closely correlated with Jield within the inored lines and within the \(F_{1}\) crosses. Characters of the inbred parents indicating relative plant vigor were most closely correlated with the mean yield of their crossbred progeny.

All of the correlations between the same characters in the parent and in the progeny were positive so that it is evident that characters which are desired in the \(F_{I}\) crosses shoula be selected ior in the inbred iincs. This was very strongiy brougit out in the correlations recorded in Table 13, between characters of the inbred parents and the mean value of the same character in their crossbred progeny. It was Iurther emphasized in the tables giving the detailed data on the parent Iines and their \(F_{1}\) crosses.

The high correlations obtained between characters of the inbred parents and the mean values of these characters in their crossbrea progeny would seem to indicate that on the average the characters of the parent are very deininiteIy expressed in the crossbred progeny. There are exceptions to this rule in many individual \(F_{1}\) crosses where the two parent lines may happen to "nicix" well, but in general it would appear that those inored lines should be selected
as parents whose characters conform most closely to those desired in the cross.

There may be two more or less distinct objects in comparing inbred lines in different crossbred combinations, (1) to locate high yielding individuai \(F_{I}\) crosses, and (2) to locate inbrea lines wich will give relatively high yielas in every combination. The ultimate use in commercial corn production of the inbred lines tested will aetermine the object of any particular comparison. If the inbred lines tested are to be used in \(F_{1}\) crosses for the commercial production of corn then the chance high yielding combination may be what is desired. However, if the inbred lines are to be used in double crosses, mitiple crosses, or in the builaing up of synthetic varieties it would seem that those lines which give relatively high yielãs in practically all combinations would be of more value.

Inbred lines which give good rields in practically any combination in which they are used must carry a fairly large mamber of dominani field factors. It may be possizle that they simply carry a few uncomon yield factors which supplement those brought in by the general run of inbred Innes. However, the iatter does not seem to be the more reasonable supposition. On the other hand, two inbred parents that happen to "nick" well may neither one contain
many yield factors. It only would be necessary to assume that the Pew dominant yield Pactors they do contain should be entirely different so that they supplement each other.

It has elways seemed to the author that the inored lines which would give fairly large yields in every combination would be the most desirable even though none of the comoinations yielded as mucin as the chance combinations of so:ne other inbrea ine whose crosses on the whole averaged Iowo It was with this idea in mind that the crossing experiments were planned so that inbred lines woald be arranged in groups and each group tested in similar crosses.

From the data wisch have been presented on yield, it is evident that inbred lines diffor greatly in their ability to produce high yielaing \(F_{1}\) crosses. Some inbred Iines as Iines maber 14, 25, 66, 112 and 135 gave high yielaing crosses in practically all combinations. Other lines as lines number \(10,31,68,10 \approx\) and 141 varied greatly and gave some very high yielaing crosses and some very poor crosses. Still other Iines such as numbers 3. 21, 67, 104 and 159 were poor in practically all crosses.

What has been said of yield also may be said of all of the other characters stacied. In previous tables examples have been pointed out of inbred lines wich show strikingly different effects in their \(F_{1}\) crosses. Most of the inbred

Iines studied show a surprisingly definite and consistent reaction in their different mosses. This is all the more striking when it is considered that those lines used in making the crosses tested in 1926 had been inbred for only three generations and were still gute variable as regavas plant and ear characters. The-uniformity displayed in their reaction in aifferent \(\mathrm{F}_{1}\) crosses, however, shows that a rery definite comparison of the relative desirability of different inbrea lines may be had after thee generations of inbreeains.

The uniformis good performance of the crosses of some of the inbred Iines is very encouraging and gives a good indication of what may be expected from this method of com breeding. The prepotency shown by the different lines in their \(F_{1}\) crosses is quite remarizable and sus̃ests that even after only three or four generations of inbreeding they must be homozfgous for many of the factors thet go to make up yield and other desirable characters. The data presented in the foregoing tables indicate that the production of good crosses is not entirely due to chance combinations, but that tinere is a very deifinite sinilarity in the behavior of difierent crosses of a single line. On the basis of the yieid comparisons reported in faioles 15 to 19 inclusive it
- 126 -
would be possible to preaict with practical certainty that future orosses of some of the lines testea woula jield more than comparable crosses of otiner lines tested.

Data on 42 inbred lines from 14 varieties and on 461 \(F_{1}\) crosses were studied as to possiole relations between Jield and some of the characters of the plants or harvested ears. Data on \(897 \mathrm{~F}_{1}\) crosses and on 130 of their 140 inbred parents were studied as to possibie relations between characters of the parent and the same character in the cross and between characters of the parent and yield of the cross.
I. Fithin the inbred lines yield was correlated positively with plant height, nomber of ears per plant, ear length, ear diameter and shelling percent and negatively with date \(1 / 4\) silked, chlorophyll color, ear shape index and shrinkage per cent of the harvested ears.
2. Fithin the \(F_{1}\) crosses field was correlated positively with date \(1 / 4\) tasseled, date \(1 / 4\) silked, plant height, number of nodes per plant, maber of nodes to upper ear, number of ears per plant, ear length, and ear diameter and negatively with per cent of plants smutted, per cent of ears moldy and ear shape index.
3. Yield of the \(F_{1}\) cross was correlated positively with the following characters in each parent and with the mean value of the same characters in the two parents; date
\(1 / 4\) tasselea, date \(1 / 4\) silked, plant height, number of nodes per plant, nomber of nodes to upper ear, nomber of ears per plant, ear length, ear diameters and yield. It was correlated negatively with ear shape index.
4. The mean yield of the crossbred progeny was correlated positively with plant height, number of nodes per plant, number of nodes to upper ear and yield in the parent inbred line.
5. Positive correlations between characters in the inbred parents and the same characters in the crossbred progeny were obtained for 19 different characters. The correlations between characters of the inbred parent and the mean value of these characters in their crossbred progeny were sufficiently high in many cases to be of value for predictive purposes.
6. Different inbred lines were found to show marked individuality or prepotency in their crossbred progeny for practically all of the characters studied.
7. This prepotency or uniformity of reaction in \(F_{1}\) crosses of some of the inbrea lines is not brought out well in many cases in parent-progeny correlations as some lines show prepotency for characters they do not themselves express.
- 129 -
8. The data indicate that the production of high yielding \(F_{1}\) crosses is not due entirely to the chance combination of different parents but that there is a very definite similarity in the behavior of different crosses having a common parent.
9. The extremeiy productive crosses of some of the inbred lines included in these experiments is very promising and gives some indication of what may be expected from these methods of corn breeding.

\section*{AOKFORLEDGEDMS}

The author wishes to achnowledge his indebteaness to Dr. T. Wr Iindstrom and Fre F. D. Richey for their Eindly criticism and many helpfol suggestions during the progress of these investigations, to Proressors Ge A. F. Brandt for many suggestions in regard to the mathematical phases of the problem and to 1 . A. A. Bryan for very valuable assistance during the development of the inbred Iines and the making of the \(F_{1}\) crosses.

\section*{IITERATURE CITED}
1. Courter, Herle C.
1919. A corr-pollinator. Bot. Gez. 68:65-64.
2. Fiayes, He K.
1926. Present ãy problems of corn breeaing. Jour. Amer. Soce Agrom. 18:344-363.

1925. A new method of sely-pailinating corn. jow. Hered. 14:41-44.
4. Jorgenson, Ievis and Brewbaker, E. B.
1927. A comparison of selfed lines of corn and first generation crosses between them. Jour. Aner. Soc. Agron. 19:819-830.
5. Kiesselbach, T. A.
1922. Corn investigations. Febr. Agr. Exp. Sta. Res. Bul. 20, 151 p .
6. Kyle, C. \(H\). and Stoneberg, \(H\). \(F\).
1925. Associations between nomber of kernel rows, productiveness, and deletericus recessives in corn. Jour. Agr. Res. 5 :83-99.
7. Milsson-ieissner, Gannar.
1927. Relation of selfed strains of corn to FI crosses between them. Jour. Amer. Soc. Agron. 19:440-454.
8. Richey. F. D.
1924. Pifects of selection on the yiela of a cross betreen varieties of corn. U. S. Dept. Agn. Fept. 3ul. 1209, 19 p.
9. Richey, F. D.
1926. The moving average as a basis for measuring correlated variation in agronomic experiments. Jour. Agr = Res. 32:1151-1175.
10. Richey, F. D. and Mayer, I. S. 1925. The productiveness of successive generations of self-fertilized lines or corn and of crosses between them. J. S. Dept. Agr. Dept. Bui. 1354. 18 p.
11. Failace, He A. and Snedecor, George Fi:
1925. Correlation and machine calculation. Iowa

State Col. Dept. of Math. BuI. (not numbered), 47 p .

TABLE I. The crossing block row numbers, the mean values of the different charad bred lines used in the crossing experif the present paper.
\begin{tabular}{|c|c|c|c|}
\hline : & & & : \\
\hline : & & & : \\
\hline : & & & : \\
\hline : & & & : \\
\hline : & & & : \\
\hline : & & & : \\
\hline : & & & : \\
\hline : & & & : \\
\hline ; & & & : \\
\hline Grossing: & & & : \\
\hline block: & & & : \\
\hline row : & Pedigree number & Parent variety & : \\
\hline number : & & & : \\
\hline : & & & \(:\) \\
\hline
\end{tabular}
\begin{tabular}{lr}
\(1(2)\) & \(5-3-1-1\) \\
2 & \(13-1-4-2\) \\
3 & \(20-5-1-2\) \\
4 & \(27-1-2-4\) \\
5 & \(36-1-4-2\) \\
6 & \(63-4-3-5\) \\
7 & \(82-1-1-5\) \\
9 & \(111-4-5-5\) \\
10 & \(122-2-3-4\) \\
11 & \(10-4-2-1\) \\
12 & \(16-1-4-1\) \\
\(13(2)\) & \(24-3-1-6\) \\
14 & \(31-5-5-2\) \\
15 & \(40-1-2-1\) \\
16 & \(74-5-5-4\) \\
17 & \(87-3-2-1\) \\
18 & \(107-4-4-1\) \\
19 & \(115-3-2-5\) \\
\(20(2)\) & \(497-3-4-1\)
\end{tabular}
\begin{tabular}{ccc}
Four & County & Minite \\
\(n\) & \(\eta\) & \(n\) \\
\(n\) & \(n\) & \(n\)
\end{tabular}

STilver King
Four County \(\operatorname{Win}_{n} \mathrm{~m}_{n} t \mathrm{te}\)
\begin{tabular}{lll}
\("\) & \("\) & \("\) \\
\("\) & \(n\) & \(n\) \\
\(n\) & \(n\) & \("\) \\
\("\) & \("\) & \("\) \\
\(n\) & 7 & \("\) \\
\("\) & \("\) & \(n\) \\
\(n\) & \(n\) & \(n\)
\end{tabular}

Silver King
Western Flint
Mean for all of the crosses in this group
21
22
129-4-2-4
22
147-3-4-1
C. T: \({ }_{n}=133\)

\section*{PPENDIX}
rs, pedigree numbers, perent verieties and
racters in the crossbred progeny of the in-
piments and correlation studies reported in

\begin{tabular}{rrrrrrrrrr}
1.1 & 1.019 & 11.2 & 16.2 & 4.58 & 0.282 & 26.4 & 84.6 & 16.0 & 12.07 \\
1.3 & .989 & 21.2 & 18.9 & 4.54 & .242 & 25.0 & 85.5 & 14.8 & 13.44 \\
1.8 & 1.009 & 18.7 & 16.5 & 4.38 & .267 & 22.2 & 85.3 & 14.2 & 11.19 \\
1.7 & 1.000 & 18.8 & 18.0 & 4.55 & .254 & 24.5 & 86.2 & 14.4 & 13.02 \\
1.4 & .980 & 17.8 & 15.9 & 4.64 & .293 & 24.2 & 87.7 & 14.2 & 12.53 \\
1.0 & 1.007 & 14.8 & 17.3 & 4.60 & .267 & 23.2 & 85.0 & 14.5 & 12.78 \\
1.8 & 1.030 & 13.2 & 17.6 & 4.66 & .265 & 20.5 & 85.9 & 15.2 & 13.24 \\
3.0 & 1.028 & 12.2 & 17.7 & 4.44 & .252 & 21.5 & 87.4 & 14.1 & 13.80 \\
1.2 & 1.010 & 17.4 & 16.3 & 4.61 & .285 & 23.9 & 86.1 & 14.4 & 11.84 \\
1.3 & .994 & 14.5 & 16.3 & 4.46 & .274 & 23.4 & 86.0 & 14.8 & 11.25 \\
1.6 & 1.041 & 10.3 & 16.7 & 4.62 & .281 & 20.2 & 86.7 & 14.2 & 12.88 \\
.6 &. .972 & 8.7 & 17.6 & 4.49 & .257 & 23.3 & 84.3 & 14.9 & 11.96 \\
.3 & 1.022 & 9.2 & 17.0 & 4.73 & .279 & 22.7 & 88.3 & 15.6 & 14.63 \\
2.0 & 1.033 & 18.0 & 17.4 & 4.62 & .267 & 21.3 & 86.6 & 14.9 & 13.52 \\
.5 & 1.974 & 14.4 & 15.9 & 4.52 & .285 & 20.6 & 86.0 & 14.3 & 12.03 \\
1.2 & 1.000 & 6.4 & 16.4 & 4.72 & .288 & 24.2 & 87.1 & 16.2 & 12.69 \\
2.5 & 1.013 & 36.4 & 17.2 & 4.53 & .266 & 25.2 & 86.5 & 14.5 & 12.12 \\
1.7 & 1.015 & 27.1 & 17.8 & 4.39 & .248 & 24.1 & 85.3 & 13.6 & 12.09 \\
4.2 & 1.016 & 16.5 & 19.5 & 4.48 & .231 & 29.9 & 83.9 & 13.4 & 13.40 \\
1.6 & 1.008 & 16.1 & 17.2 & 4.55 & .267 & 23.5 & 86.1 & 14.6 & 12.66 \\
2.7 & 0.928 & 27.9 & 15.9 & 4.24 & .270 & 24.2 & 83.8 & 14.1 & 9.10 \\
3.9 & 1.036 & 14.8 & 16.6 & 4.36 & .264 & 24.0 & 85.8 & 14.4 & 11.50
\end{tabular}

Table 1 continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & quəo xed surtrous & & \\
\hline 1.6 & 1.052 & 10.7 & 17.0 & 4.16 & 0.279 & 27.4 & 84.9 & 16.8 & 12.41 \\
\hline 2.3 & 1.053 & 8.6 & 18.6 & 4.61 & . 250 & 27.3 & 85.3 & 15.6 & 14.05 \\
\hline 3.0 & 1.081 & 5.3 & 18.2 & 4.55 & . 251 & 23.8 & 85.0 & 15.5 & 13.82 \\
\hline 3.1 & 1.051 & 12.1 & 15.0 & 4.27 & . 288 & 24.0 & 84.0 & 14.9 & 9.65 \\
\hline 20.5 & 1.084 & 7.6 & 17.4 & 4.45 & . 258 & 23.3 & 86.6 & 15.0 & 12.40 \\
\hline 6.1 & 1.143 & 6.0 & 17.1 & 4.30 & . 254 & 29.3 & 84.4 & 14.3 & 12.61 \\
\hline 9.9 & 1.130 & 7.4 & 16.5 & 4.38 & . 267 & 24.5 & 85.3 & 13.9 & 12.88 \\
\hline 2.2 & 1.005 & 15.1 & 16.3 & 4.53 & . 278 & 23.6 & 85.3 & 14.2 & 12.30 \\
\hline 2.3 & 1.012 & 9.9 & 15.0 & 4.46 & . 302 & 23.7 & 83.7 & 15.5 & 9.89 \\
\hline . 7 & 1.010 & 12.2 & 16.0 & 5.01 & . 315 & 28.1 & 85.3 & 17.7 & 12.92 \\
\hline 2.2 & 1.025 & 16.3 & 16.9 & 4.57 & . 273 & 25.5 & 84.8 & 15.3 & 12.25 \\
\hline 2.3 & 1.032 & 6.2 & 19.2 & 4.33 & . 226 & 25.0 & 86.0 & 14.1 & 12.77 \\
\hline 2.6 & 1.032 & 17.9 & 17.8 & 4.32 & . 243 & 24.0 & 85.7 & 15.0 & 12.40 \\
\hline 3.0 & 1.044 & 6.8 & 16.8 & 4.54 & . 269 & 22.9 & 85.5 & 15.7 & 12.49 \\
\hline 1.9 & 1.022 & 11.0 & 16.1 & 4.50 & . 281 & 24.1 & 86.5 & 16.2 & 12.75 \\
\hline 18.9 & 1.308 & 7.8 & 18.0 & 3.99 & . 223 & 28.2 & 83.2 & 13.2 & 12.10 \\
\hline 11.7 & I. 226 & 8.3 & 17.4 & 4.11 & . 235 & 28.1 & 84.0 & 12.5 & 10.65 \\
\hline 4.8 & 1.002 & 11.2 & 16.9 & 4.37 & . 265 & 25.3 & 85.0 & 13.4 & 12.05 \\
\hline . 9 & 1.044 & 9.0 & 19.6 & 4.71 & . 242 & 23.9 & 86.2 & 16.9 & 14.26 \\
\hline .4 & 1.055 & 9.5 & 19.1 & 4.76 & . 250 & 22.6 & 86.0 & 16.3 & 15.58 \\
\hline 1.2 & 2.044 & 18.1 & 21.0 & 4.74 & . 227 & 23.4 & 86.4 & 16.5 & 16.81 \\
\hline . 7 & 1.036 & 23.4 & 22.8 & 4.71 & . 209 & 23.1 & 87.1 & 14.0 & 16.92 \\
\hline 3.2 & 1.069 & 9.0 & 20.7 & 4.74 & . 231 & 22.9 & 85.2 & 16.0 & 14.12 \\
\hline . 1 & 1.018 & 9.0 & 20.0 & 4.69 & . 236 & 24.0 & 84.9 & 15.9 & 14.71 \\
\hline 9.0 & 1.229 & 16.7 & 20.6 & 4.57 & . 224 & 24.5 & 86.3 & 14.9 & 15.98 \\
\hline . 8 & 1.031 & 9.1 & 20.3 & 4.74 & . 235 & 23.0 & 86.2 & 15.2 & 16.94 \\
\hline . 7 & 1.051 & 8.2 & 20.2 & 4.74 & . 235 & 22.4 & 84.6 & 16.2 & 15.26 \\
\hline 1.1 & 1.046 & 10.5 & 19.8 & 4.90 & . 248 & 22.5 & 84.0 & 14.9 & 15.05 \\
\hline 3.3 & 1.060 & 12.0 & 19.7 & 4.62 & . 236 & 25.0 & 85.0 & 16.4 & 14.87 \\
\hline
\end{tabular}

Table 1 continued

Means for all of the crosses in this group

\section*{crossbri progeny from each inbred line}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \\
\hline & 1.7 & 1.157 & 6.3 & 18.8 & 4.74 & 0.253 & 24.4 & 85.5 & 15.9 & 18.36 \\
\hline & ． 3 & 1.094 & 11.2 & 19.7 & 4.63 & ． 237 & 23.9 & 87.6 & 15.1 & 15.43 \\
\hline & ． 4 & 1.035 & 17.4 & 18.8 & 4.90 & ． 263 & 25.0 & 87.3 & 16.9 & 15.22 \\
\hline ？ & ． 2 & 1.042 & 8.6 & 19.5 & 4.75 & ． 247 & 21．0 & 86.2 & 16.5 & 14.37 \\
\hline & 1.2 & 1.063 & 9.3 & 19.1 & 4.93 & ． 260 & 24．3 & 86.0 & 16.8 & 16.61 \\
\hline & 1.3 & 1.035 & 7.1 & 19.3 & 4.74 & ． 248 & 22.1 & 86.6 & 17.2 & 16.29 \\
\hline 3 & ． 3 & \(\underline{1.009}\) & 7.0 & 20.6 & 4.77 & ． 234 & 25.1 & 85.5 & 17.4 & 17.50 \\
\hline ； & 2.2 & 1.049 & 9.2 & 18.8 & 4.68 & ． 249 & 24.9 & 85.8 & 17.4 & 16.38 \\
\hline 3 & 2.2 & 1.064 & 8.1 & 21.4 & 4.55 & ． 215 & 22.6 & 84.6 & 15.4 & 14.85 \\
\hline 3 & ． 3 & 1.006 & 7.1 & 17.9 & 4.86 & ． 274 & 24.0 & 85.8 & 17.2 & 14.73 \\
\hline ； & .7 & 1.058 & 14.3 & 17.6 & 4.81 & ． 275 & 22.4 & 86.5 & 18.0 & 13.77 \\
\hline 3 & 2.9 & 1.083 & 9.2 & 22.1 & 4.61 & ． 210 & 26.4 & 84.6 & 14.4 & 16.51 \\
\hline ） & 1.1 & 1.012 & 11.3 & 22.6 & 4.66 & ． 208 & 24.6 & 85.6 & 15.9 & 16.96 \\
\hline ？ & 2.6 & 1.142 & 15.6 & 19.0 & 4.72 & ． 251 & 24.2 & 87.1 & 16.1 & 17.81 \\
\hline 7 & 1.6 & 1.189 & 13.2 & 21.4 & 4．45 & ． 210 & 25.7 & 85.6 & 15.6 & 14.12 \\
\hline d & ． 4 & 1.049 & 7.6 & 21.0 & 4.61 & ． 222 & 25.9 & 85.4 & 15.6 & 15.41 \\
\hline 5 & ． 5 & 1.086 & 16.6 & 19.5 & 4.98 & ． 256 & 23.3 & 87.0 & 16.5 & 16.41 \\
\hline 2 & ． 4 & 1.064 & 17.6 & 19.4 & 4.80 & ． 251 & 25.5 & 88.2 & 18.8 & 15.53 \\
\hline 7 & 2.8 & 1.066 & 8.3 & 18.6 & 4.88 & ． 264 & 29.4 & 87.1 & 17.2 & 15.70 \\
\hline 0 & ． 2 & 1.026 & 11.5 & 18.8 & 5.02 & ． 270 & 27.2 & 85.8 & 17.8 & 15.55 \\
\hline 1 & ． 6 & 1.009 & 7.6 & 18.7 & 4.94 & ． 267 & 23.0 & 85.1 & 18.4 & 14.92 \\
\hline 4 & ． 9 & 1.079 & 13.8 & 20.2 & 4.68 & ． 234 & 25.6 & 84.8 & 16.5 & 15.41 \\
\hline E & 2.1 & 1.084 & 18.2 & 18.0 & 4.82 & ． 254 & 22.5 & 88.1 & 16.4 & 16.19 \\
\hline 1 & ． 1 & 1.015 & 11.0 & 18.7 & 4.77 & ． 258 & 23.8 & 86.5 & 18.1 & 15.88 \\
\hline 3 & ． 8 & 1.056 & 17.7 & 20.0 & 5.04 & ． 254 & 22.8 & 86.8 & 17.5 & 17.41 \\
\hline B & ． 9 & 1.023 & 8.7 & 20.9 & 4.56 & ． 220 & 25.0 & 8 S． 6 & 15.2 & 15.71 \\
\hline 4 & 4.7 & 1.161 & 9.2 & 20.4 & 4.71 & ． 233 & 25.5 & 86.7 & 17.3 & 15.98 \\
\hline 0 & 1.1 & I． 032 & 11.4 & 18.6 & 4.66 & ． 238 & 25.2 & 87.0 & 15.6 & 16.08 \\
\hline 7 & 1.4 & 1.063 & 11.3 & 19.9 & 4.75 & ． 242 & 24.2 & 86.1 & 16.4 & 15.73 \\
\hline
\end{tabular}

Table 1 continued
\begin{tabular}{|c|c|c|c|}
\hline : & & & : \\
\hline : & & & : \\
\hline : & & & : \\
\hline : & & & \(\infty\) \\
\hline : & & & \(\stackrel{0}{0}\) \\
\hline : & & & 20 \\
\hline : & & & \% \\
\hline : & & & \(\bigcirc\) \\
\hline : & & . . & \%0: \\
\hline Crossing: & & & \(\bigcirc\) \\
\hline block: & & & fas \\
\hline row & Pedigree number & Parent variety & \% \\
\hline number : & & & \\
\hline : & & & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 101 & 3-3-3-3- & omp. & Four County & White \\
\hline 102 & 11-4-1-3- & & , & \\
\hline 103 & 16-4-3-3- & " & " \(\quad=\) & " \\
\hline 104 & 29-3-5-4. & \# & \(\pi\) & " \\
\hline 105 & 46-5-4-2- & \(\square\) & " \({ }^{\prime \prime}\) & " \\
\hline 106 & 56-3-3-4- & \(\square\) & \(\because\) & \% \\
\hline 107 & 63-4-1-6- & \({ }^{\square}\) & " \(\quad\) " & \(\pi\) \\
\hline \(108^{(1)}\) & 67-4-2-1. & " & \(\pi\) & \(\square\) \\
\hline 109 & 80-1-3-6- & II & " & \(\square\) \\
\hline 110 & 101-4-5-5 & \(\pi\) & \(\square{ }^{\text {a }}\) & " \\
\hline 111 & 128-1-3-2- & \% & Silver King & \\
\hline 112(2) & Indstrom & & & \\
\hline & 7117- & \({ }^{7}\) & White Flint & \\
\hline 1131 & 50-5-3-6- & \% & Four County & \\
\hline
\end{tabular}

Heans for all of the crosses in this group
\begin{tabular}{|c|c|c|c|}
\hline 114 & 134-3-2-4- & * & C. I. 133 \\
\hline 11511 & 135-4-5-6- & n & n \\
\hline 116 & 153-5-2-2- & n & \(\square 11\) \\
\hline 117 & 155-2-2-2- & " & Iodent \\
\hline 118 & 157-3-1-3- & \# & " \\
\hline 119 & 161-1-3-3- & 1 & 1 \\
\hline 120 & 169-4-4-1- & \% & \# \\
\hline 121 & 170-2-3-2- & \(\pi\) & 8 \\
\hline 122 (1) & 183-4-5-2 & \% & 0 \\
\hline 123 & 188-1-4-1- & \(n\) & 4 \\
\hline 124 & 197-1-2-6 & \(H\) & \% \\
\hline 125 & 207-2-5-2 & 7 & \% \\
\hline 126 & 215-2-5-1 \(=\) & \# & \(\pi\). \\
\hline 127(1) & 219-3-1-5 & 4 & n \\
\hline 128 & 224-2-2-1. & n & \% \\
\hline
\end{tabular}

Table 1 continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Le ty} & \multicolumn{10}{|r|}{Mean vaiues of the different characters in the cros} \\
\hline & & \[
\begin{gathered}
\text { Date } 1 / 4 \text { tasseled } \\
(3)
\end{gathered}
\] & & & & \[
:
\] & & & & \\
\hline \multicolumn{11}{|r|}{34.238 .1 8．2－－－－－－ 75.0} \\
\hline & 9 & 36.5 & 40.7 & 8.3 & －－ & －－ & －－ & & & 66.3 \\
\hline & － & －－ & －－ & －－ & －－ & －－ & －－ & －－ & & －－ \\
\hline & 9 & 34.6 & 39.2 & 8.0 & －－ & －－ & －－ & －－ & － & 77.6 \\
\hline & 9 & 34.9 & 39.4 & 7.8 & －－ & －－ & －－ & －－ & －－ & 72.1 \\
\hline & － & －－ & －－ & －－ & －－ & －－ & －－ & －－ & －－ & －－ \\
\hline & 9 & 32.0 & 37.1 & 7.8 & －－ & －－ & －－ & －－ & －－ & 63.3 \\
\hline & 8 & 33.6 & 38.4 & 8.0 & －－ & －－ & －－ & －－ & －－ & 45.3 \\
\hline & － & － & －－ & －－ & －－ & －－ & －－ & －－ & & －－ \\
\hline & 9 & 32.4 & 37．6 & 8.0 & －－ & －－ & －－ & －－ & －－ & 50.2 \\
\hline & 41 & 34．2 & 39．4 & 8.4 & －－ & －－ & －－ & －－ & －－ & 62.4 \\
\hline & 9 & 32.4 & 37.7 & 7.8 & －－ & －－ & －－ & －－ & & 61.5 \\
\hline & 9 & 31.0 & 35.8 & 7.9 & － & － & －－ & －－ & －－ & 49.0 \\
\hline \multirow[t]{2}{*}{Yel．Dent} & 43 & 33.8 & 38.4 & 8.4 & －－ & －－ & －－ & －－ & & 75.1 \\
\hline & 9 & 33.8 & 38.7 & 7.9 & － & －－ & －－ & －－ & － & 61.4 \\
\hline \(\begin{array}{ll}n \\ n & \square \\ n\end{array}\) & － & －37 & －30．1 & － & －－ & － & －－ & －－ & －－ & －－ \\
\hline & 9 & 33.7 & 38.1 & 8.2 & －－ & －－ & －－ & －－ & － & 71.4 \\
\hline & 9 & 34.6 & 39.3 & 8.0 & －－ & －－ & －－ & －－ & & 82.1 \\
\hline \multirow[t]{3}{*}{\[
\left[\begin{array}{cc}
1 \\
13 & \text { Yel. Dent } \\
n & \pi \\
n & \pi
\end{array}\right.
\]} & － & －－ & － & －－ & －－ & －－ & －－ & －－ & －－ & －－ \\
\hline & 9 & 32.8 & 38.6 & 8.4 & －－ & －－ & －－ & －－ & －－ & 76.0 \\
\hline & 43 & 33.6 & 38.9 & 7.6 & －－ & －－ & －－ & & & 68.6 \\
\hline & 7 & 34.8 & 38.2 & 7.8 & －－ & －－ & －－ & －－ & & 41.4 \\
\hline & －－ & －－ & － & －－ & －－ & －－ & －－ & －－ & & －－ \\
\hline & 43 & 32.0 & 36.1 & 7.5 & －－ & －－ & －－ & －－ & － & 82.7 \\
\hline & 9 & 32．7 & 37.1 & 7.6 & －－ & －－ & －－ & －－ & － & 64.8 \\
\hline \multirow[t]{2}{*}{＂\({ }^{\text {ajd }}\) Yel．Dent} & \(\bigcirc\) & 33.4 & 37.7 & 8.2 & －－ & －－ & －－ & －－ & －－ & 78.5 \\
\hline & \(\stackrel{9}{9}\) & 31.6 & 36.1 & 8.0 & －－ & －－ & －－ & －－ & －－ & 78.6 \\
\hline \[
\begin{array}{lll}
n & n & n \\
n & n & n
\end{array}
\] & 43 & 33.0 & 38.8 & 8.1 & －－ & －－ & －－ & －－ & －－ & 59.0 \\
\hline \(\cdots{ }^{\square} n^{n}\) & 9 & 34.3 & 38.6 & 8.0 & －－ & －－ & －－ & －－ & & 71.1 \\
\hline \multirow[t]{2}{*}{（eid YeI．Dent} & 9 & 30.7 & 37.8 & 7.2 & －－ & －－ & －－ & －－ & & 87.5 \\
\hline & 43 & 32：0 & 36.0 & 8.1 & －－ & －－ & －－ & －－ & & 75.7 \\
\hline \multirow[t]{5}{*}{（1）\(\quad\)－} & 8 & 30.6 & 36.2 & 7.7 & － & － & － & －－ & －－ & 87.6 \\
\hline & 9 & 35.0 & 39.7 & 8.2 & －－ & －－ & －－ & －－ & & 43.5 \\
\hline & 8 & 27．5 & －32．9 & 7.3 & －－ & －－ & －－ & －－ & －－ & －86． 1 \\
\hline & 9 & 33.4 & 38.6 & 7.8 & －－ & － & & －－ & & 75.4 \\
\hline & 9 & 33.8 & 38.6 & 8.2 & － & －－ & －－ & －－ & －－ & 69.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
:
\] & & & & & & & & & & \\
\hline － & －－ & －－ & －－ & －－ & 75.0 & －－ & \(\cdots\) & 3.1 & － & －－ & \\
\hline － & －－ & －－ & －－ & －－ & 66.3 & －－ & －－ & 6.3 & －－ & －－ & －－ \\
\hline － & －－ & －－ & －－ & －－ & －－ & －－ & －－ & － & －－ & & － \\
\hline － & －－ & －－ & －－ & －－ & 77.6 & －－ & －－ & 3.9 & －－ & － & － \\
\hline － & －－ & －－ & －－ & －－ & 72.1 & －－ & －－ & 3.8 & －－ & － & －－ \\
\hline － & －－ & －－ & －－ & －－ & －－ & －－ & －－ & －－ & & & \\
\hline － & －－ & －－ & －－ & －－ & 63.3 & －－ & －－ & 4.7 & －－ & －－ & － \\
\hline － & － & －－ & －－ & －－ & 45.3 & －－ & － & 1.3 & －－ & － & － \\
\hline & －－ & －－ & －－ & －－ & － & －－ & － & －－ & －－ & & \\
\hline － & －－ & －－ & －－ & －－ & 50.2 & －－ & \(\cdots\) & 2.7 & － & －－ & － \\
\hline － & －－ & －－ & －－ & －－ & 62.4 & －－ & －－ & 4.2 & －－ & － & \\
\hline － & －－ & －－ & －－ & －－ & 61.5 & －－ & － & 9.5 & －－ & － & \\
\hline － & － & －－ & －－ & －－ & 49.0 & －－ & －－ & 3.5 & －－ & － & －－ \\
\hline － & －－ & －－ & －－ & －－ & 75.1 & －－ & －－ & 5.5 & －－ & － & \\
\hline － & －－ & －－ & －－ & －－ & 61.4 & －－ & － & 1.4 & －－ & －－ & － \\
\hline － & －－ & －－ & －－ & － & －－ & －－ & － & －＊ & & & － \\
\hline － & －－ & －－ & － & －－ & 71.4 & －－ & －－ & 3.7 & －－ & － & －－ \\
\hline － & －－ & ．－－ & －－ & －－ & 82.1 & －－ & －－ & 3.2 & －－ & －－ & － \\
\hline － & － & － & －－ & －－ & －－ & － & － & － & & & － \\
\hline － & －－ & －－ & －－ & －－ & 76.0 & －－ & －－ & 2.9 & －－ & － & － \\
\hline － & －－ & －－ & －－ & －－ & 68.6 & －－ & －－ & 3.1 & －－ & －－ & \\
\hline － & －－ & －－ & －－ & －－ & 41.4 & －－ & －－ & 1.8 & － & －－ & － \\
\hline － & －－ & －－ & －－ & －－ & － & －－ & \(\cdots\) & － & －－ & － & － \\
\hline － & －－ & & & －－ & 82.7 & －－ & －－ & 2.5 & － & － & \\
\hline － & －－ & －－ & －－ & －－ & 64.8 & －－ & －－ & 3.0 & － & －－ & \\
\hline － & －－ & －－ & －－ & －－ & 78.5 & －－ & －－ & 6.8 & －－ & － & － \\
\hline － & & －－ & & & 78.6 & & －－ & 3.3 & － & － & － \\
\hline － & & － & －－ & －－ & 59.0 & －－ & －－ & 4.2 & －－ & － & \\
\hline － & & －－ & & －－ & 71.1 & －－ & －－ & 5.0 & － & －－ & － \\
\hline － & & & & & 87.5 & & － & 9.8 & －－ & －－ & － \\
\hline － & & & & & 75.7 & －－ & －－ & 5.5 & －－ & － & \\
\hline － & & －－ & －－ & －－ & 87.6 & － & －－ & 6.0 & －－ & － & \(\cdots\) \\
\hline & & －－ & －－ & －－ & 43.5 & －－ & －－ & 3.9 & － & － & － \\
\hline － & & & －－ & －－ & －－ & －－ & & － & & & \\
\hline － & & －－ & －－ & － & 86.1 & －＊ & －＊ & 4.3 & －－ & －－ & \\
\hline － & & & & － & 75.4 & －－ & －－ & 5.2 & －－ & －－ & －－ \\
\hline － & & －－ & －－ & －－ & 69.2 & － & －－ & 3.2 & － & － & \\
\hline
\end{tabular}

Table I continued
\begin{tabular}{|c|c|c|c|}
\hline : & & : & \\
\hline : & & : & : \\
\hline : & & : & : \\
\hline : & & : & : \\
\hline : & & : & :© : \\
\hline : & & : & : \\
\hline : & & : & - \\
\hline : & & : & :0): \\
\hline : & & : & 4 ms \\
\hline Crossing: & & : & \(\bigcirc 0_{80}\) \\
\hline block & & : & : 5 \\
\hline row & Pedigree number & : Parent Variety & \% \\
\hline number & & : & : \\
\hline & & : & \({ }_{6}{ }^{\infty}\) : \\
\hline 167 & 461-2-1-4-Comp. & Walden Dent & 9 \\
\hline 168 & 465-3-1-4- \({ }^{\text {- }}\) & & 43 \\
\hline 169 & 467-1-4-4- \(\quad\) - & " \(\quad\) & 9 \\
\hline 170 & 477-4-2-2- & Argentine Flint & 9 \\
\hline 171 & 483-5-4-4- & \% \({ }^{\prime}\) & 43 \\
\hline 172 & 487-5-1-2- & " \({ }^{\text {\% }}\) & 9 \\
\hline 173 & 493-3-1-1- \({ }^{\text {a }}\) & \(\pi\) & 9 \\
\hline 174 \({ }^{(2)}\) & Holbertis \(A-1-1-\) & & \\
\hline 175(2) & 2-R-1-2-3-7-1
Holbert's E-I-1- & Funk Bros. 176A & 8 \\
\hline & R-10-1-12-14 & 3 \# & 8 \\
\hline \[
176(2)
\] & \[
\begin{aligned}
& \text { Holbert's G-8-8 } \\
& \text { I-B-2-2 }
\end{aligned}
\] & Grifin's strain of Reid Yel. Dent & 9 \\
\hline Mean for & 211 of the crosse & \(s\) in this group & -- \\
\hline
\end{tabular}
(1) Osed in the correlation studies within inbred lines but not in the
(2) Used in the crossing experiments but not in the correlation studie
(3)The dates for \(1 / 4\) tasseled and \(1 / 4\) silked are recorded as dates in

but not in the crossing experiments. relation studies.
Qed as dates in July, August \(1,2,3\), etc. being recorded as JuIy 32, 33, 34, etc.
```


[^0]:    P. E. of the difference between the yields of any two parent ines, $\pm 0.460$.
    P.E. of the difference between the yields of any two Fr crosses, $\pm 0.563$.
    P. E. of the difference between means of 9 crosses, $\pm 0.173$; and between means of 10 crosses +0.164 .
    (1) Yields of the parent lines should be compared among themselves only, they are not comparable to the yiel.ds of the crosses.

[^1]:    griment.

[^2]:    iment.

[^3]:    es in the experiment.

