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Replication Variance Estimation for
Two-Phase Stratified Sampling

Jae Kwang Kim, Alfredo NAVARRO, and Wayne A. FULLER

In two-phase sampling, the second-phase sample is often a stratified sample based on the information observed in the first-phase sample.
For the total of a population characteristic, either the double-expansion estimator or the reweighted expansion estimator can be used. Given
a consistent first-phase replication variance estimator, we propose a consistent variance estimator that is applicable to both the double-
expansion estimator and the reweighted expansion estimator. The proposed method can be extended to multiphase sampling.

KEY WORDS: Double-expansion estimator; Double sampling; Multiphase sampling; Reweighted expansion estimator.

1. INTRODUCTION

Two-phase sampling, also known as double sampling, can be
a cost-effective technique in large-scale surveys. By selecting
a large sample, observing cheap auxiliary variables, and prop-
erly incorporating the auxiliary variables into the second-phase
sampling design, we can produce estimators with smaller vari-
ances than those based on a single-phase sampling design for
the same cost. In one of the common procedures of two-phase
sampling, the second-phase sample is selected using stratified
sampling, where the strata are created on the basis of the first-
phase observations.

Rao (1973) and Cochran (1977) gave formulas for variance
estimation when the first phase is a simple random sample and
the second phase is a stratified simple random sample. Kott
(1990) derived a formula for variance estimation when the first
phase is a stratified random sample and the second phase is a
restratified simple random sample based on first-phase informa-
tion. Rao and Shao (1992) proposed a jackknife variance esti-
mation method in the context of hot-deck imputation where the
response corresponds to a second phase with Poisson sampling
in imputation cells. Yung and Rao (2000) extended the result of
Rao and Shao to poststratification. Binder (1996) illustrated a
“cookbook’ approach for the two-phase ratio estimator. Binder,
Babyak, Brodeur, Hidiroglou, and Jocelyn (2000) derived for-
mulas for variance estimation for various estimators for two-
phase restratified sampling. Fuller (1998) proposed a replicate
variance estimation method for the two-phase regression esti-
mator.

Among the methods cited, only the methods of Rao and Shao
(1992) and Fuller (1998) are replication methods. One advan-
tage of the replication method for variance estimation is its con-
venience for a multipurpose survey. That is, after we create
the replication weights, we can directly apply the replication
weights to estimate the variance for any variable.

Let the finite population be of size N, indexed from 1 to N,
and let the finite population be partitioned into G groups, which
we call the second-phase strata. The information about which
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group a unit belongs to is not obtained until the first-phase sam-
ple has been observed.

We consider the two-phase estimator in which the first-phase
sample is used to define strata to be used for the second-phase
sample. Let the parameter of interest be the population total
Y= Zf\; 1 yi» where y; is the study variable and N is assumed
known. Suppose that we have a first-phase sample of size n. If
we observe y; on every element of the sample, then an unbiased

estimator of Y is
= wiyi, ey

€A

where w; = [Pr(i € A;)]~! and A; is the set of indices in the
sample. Now, assume that instead of directly observing y; for
i €Ay, we observe

s XiG) @)

for all i € Ay, where x;, takes the value 1 if unit i belongs to the
gth group and 0 otherwise. Assume that Zgzl Xjg = 1.

Let a subsample of total size r be selected from the first-phase
sample and let A, be the set of indices for the second-phase
sample. Let

Xp = (Xi1, ...

=[PrieAs |icAD] . 3)

Let n1g =} ;cq, Xig be the number of first-phase sample el-
ements in group g and let rg = ) ;. A, Xig be the number of
second-phase sample elements in group g. If the second-phase
sample is selected by stratified simple random sampling with
the groups as strata, then w} = rg_lnl ¢ for unit i with x;o = 1.

Given the described two-phase sample, an unbiased estimator
for the total of Y is

Ya="aai. “
i€Ay

where ag,; = wyw?. Kott and Stukel (1997) called the estimator
in (4) the double-expansion estimator (DEE).
Another important estimator for the total of Y is

1eA2 WiXigYi
Z D wiig :

g=1 tieA; l€A2 Wikig

=> arii, (5)

€Ay
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where

a,,_z(

Kott and Stukel (1997) called the estimator in (5) the reweighted
expansion estimator (REE).

Kott and Stukel (1997) examined possible replication meth-
ods for estimating the variance of the DEE and concluded that
the jackknife methods that they considered cannot be used for
this purpose. For the REE, the replication method proposed
by Rao and Shao (1992) produces consistent variance esti-
mates.

In the next section we discuss the asymptotic properties
of the DEE and the REE. In Section 3 we give a replicate
method for estimating the variance of the DEE and the REE.
In Section 4 we extend the replication method to regression
estimators and to multiphase stratified sampling. The variance
estimation procedure was applied to the 2000 Census and Ac-
curacy and Coverage Evaluation survey by Kim, Navarro, and
Fuller (2000).

jcA, Wikig
W,‘xig.

jEAz WiXjg

2. ASYMPTOTIC PROPERTIES

To derive the asymptotic properties of the estimators, we
assume a sequence of samples and finite populations such
as that described by Fuller (1975). Let {£,}%° ney be a se-
quence of populations, each having G, > G,_; groups of
size Xp,, where the groups can cut across the first-phase
strata. Associated with the ith element in the population is
a vector, Xu; = (Xuil, Xni2s - - - » XniG, ), of group indicators of
dimension G,, and the study variable y,;. Let a sample of
size n be selected from the nth population and assume that
the population size N, increases as n increases such that
the limit of N, 'n is a finite fraction, perhaps 0. Let F, =

Ny
{Xn1s Yn1)s Xn2, Yn2)s - - -, (XnN,,v YnNn)} Yng = Zl 1 Xnig¥ni>
and Y, = vaz”l Vni- Then Y, = Zg” | Yng» because a unit be-
longs to one and only one group. Assume that the sequence of

finite populations satisfies

Ny
N,! Zy,%,* T=0(1) ©6)

for some t > 0.

Because a general class of first-phase sampling designs is
permitted, we directly specify the design properties of the es-
timators. Let A,1 be the set of indices for the first-phase sample
selected by the first-phase sampling design from the nth finite
population ¢&,. Let wy,; be the sampling weight of unit ni. Define

()A(ngls ?ngl) = Z Wni(xm'gv xnigyni) @)

€A,

and

)_]ngl =Xn;11 Yngl’ (8)
where the subscript “1” emphasizes that the estimators are
based on the first-phase sample. The estimator Xngl is the es-
timated number of elements in group g, where the population
number is X,,;. The estimator f’ng 1 of the total of y for group g
is not observed in a two-phase sample.
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Assume that

E{(},\(ngl’ ?ngl)/ | Fn } X ng» Yng)/ )

and
Gl‘l
ar{Nn_l Z(Xngla Yngl)/ ’
g=1

where the notation var{-} denotes the variance—covariance ma-
trix when the argument is a vector variable.

Assume that a set of fixed probabilities 7,5, g = 1,2, ..., Gy,
is used to select a second-phase stratified random sample. Thus
ng €lements are selected from the ny,, first-phase elements
in group g without replacement with equal probability, where
Tng 1s the integer closest to mygn1,g. We ignore this rounding
error in the subsequent discussion. Let A, be the set of indices
for the second-phase sample. Define the second-phase sample
estimators

]—",,} =0mn™ Y, (10)

A 1
(Xng2s Yng2) = Z WhniFyg nlng(xm'g» xnigyni)

iEA,,z
and
IR .
Fng2 = {Xnngngz if g > 0 an
0 otherwise,

where the subscript “2” emphasizes that the estimators are
based on the second-phase sample.
The REE in (5) can be written as

Gy
Yor =" Xugi g2, (12)
g=1
and the DEE in (4) can be written as
Gy
V=Y V. (13)
g=1

To formally define an estimator with finite moments, we assume
that 7, > 1 when ny,e > 1.

The following theorem gives some asymptotic properties of
the REE and DEE for a sequence of populations and sam-
ples in which the number of second-phase strata is permitted
to increase. For fixed G,, the variance formulas to appear in
(21) and (23) correspond to (9.7.27) and (9.4.7) of Sérndal,
Swensson, and Wretman (1992).

Theorem 1. Let the sequence of finite populations and sam-
ples be as described earlier. Assume simple random sampling in
each group at the second phase. Assume (6), (9), and (10). Let
Y, be the REE defined in (12) and let ¥, be the DEE defined
in (13). Assume that

Cu G, < N7'Xe < CyGy! - for alln, (14)
G, < CGn)‘ for all n, (15)
Cyr < N;lnwm- <C,y foralln, (16)
and
Crp <mpe <1 forall g and all n, 17
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where Cyr, Cxy, Cg, Cyr, Cwu, and Cy are fixed positive con-
stants, and that 0 < A < .5. Also assume that

var{¥,1 | Fn} < Ky var{Vsgs.n1 | Ful, (18)

for a fixed Kj; and for any y satisfying (6), where IA/SRs,,,l is
the estimator of Y, based on a simple random sample of size .
Then the REE satisfies

E(¥r | F) = Yu +o(n”'/2N,), (19)
and the DEE is unbiased,
E(Yna | F) =Y, (20)

The variance of the REE is
var(Vr | F) = var(V | )

o 11
2 2 s
+E{§ :nlng< _nl )O—nwegl‘ n}
ng

g=1 ng
+o(n™'ND), @n
where
, (n1ng — megwm €nig 1 nipg >1
Unwegl = i€An) (22)
0 if Ning =< 1’
enig = Yni — Yng, and Yy = Xoe 'y, ng is the population mean

of yp;’s in group g.
The variance of the DEE is

var(Yyq | Fn)
= var(¥,1 | F)

1
A ealr]

where
2
O.nwygl
2
( ! v -1 TR
Ning — XnigWniYni — Nype XnjgWnjYnj
— iGAnl jEAnl
if nypg > 1

0 if”lng <1.

For the proof see Appendix A.

Conditional on the first-phase sample, the DEE for a stratified
second-phase sample is a Horvitz—Thompson-type estimator of
the first-phase sample total of w;y; with weight rg_1 nig, and thus
is conditionally unbiased for )% 1, conditional on A,;. Condi-
tional on the first-phase sample, the REE is a separate ratio es-
timator and is subject to ratio bias. By assumptions (14)-(17),
the ratio bias is negligible in large samples.

The variance formulas (21) and (23) show that the vari-
ances of REE and DEE are no smaller than the variance of ¥ 1.
However, a two-phase sample may be cheaper, because of the
fewer observations on the y variable. The variance formulas
(21) and (23) also give some direction for stratification for
the second-phase sampling. The variance of REE is minimized

Journal of the American Statistical Association, March 2006

when the y;’s are the same within each group, whereas the vari-
ance of DEE is minimized when the weighted observations w;y;
are the same within each group. Thus the REE will be more ef-
ficient than the DEE if the observations are relatively homoge-
neous within each group.

When the first-phase sampling weights are the same, as con-
sidered by Rao (1973) and Cochran (1977), then REE is equal
to DEE and the ratio bias of REE is 0. Among the authors
who have studied two-phase stratified sampling with unequal
first-phase sampling weights, Sédrndal et al. (1992) focused
on DEE-type estimation, whereas Kott and Stukel (1997) and
Binder et al. (2000) focused on variance estimation for the REE.

3. REPLICATION VARIANCE ESTIMATION

We consider a replication method comprising the number of
replicates, the replication factors, and the replication weights.
Let the replicate variance estimator for the first-phase sample
estimator ¥, of (1) be written in the form

(24)

where f/,(llf) is the kth version of I?nl based on the observations
included in the kth replicate, L, is the number of replications,
and cpy, is a factor associated with replicate k determined by
the replication method. The kth replicate for the complete first-
phase sample estimator ¥, be can be written in the form

k k
Y( ) Z qu)ym,

i€An

(25)

where w ) denotes the replicate weight for the ith unit of the
kth rephcatlon. Constructing the replicate variance estimator
in (24) is possible if the sampling design is measurable (see Fay
1989). For example, consider a stratified random sample with
Whi = n,ZlNh for unit i in stratum 4. Then, the full-sample jack-
knife variance estimator is defined by the number of replicates
L,, = n, the replication factor ¢, sy = (1 — N,;lnh)ngl(nh -1
for the kth element in stratum /4, and the replication weights

0 ifs=handk=1i
ngslk) (ny— 17N, ifs=handk#i

Other commonly used replication methods, such as balanced
half samples and the bootstrap, can also be written in the
form (24).

Rao and Shao (1992) proposed an adjusted jackknife method
for variance estimation in the context of hot-deck imputation.
The imputation cell used in imputation corresponds to the
second-phase stratum. The Rao—Shao jackknife replicate for the
REE of (5) is

(k)
Sk *) icAy Wni Xnig¥ni
Yr(”) = E < E Wi .xmg) Z 2 *) ’

g=1 ‘i€, €A Wyi Xnig

(26)

where the w(k)’s are the full-sample replicate weights of (25).

The rephcate variance estimator can be written as

nr—zcnk Y(k) )27

27
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where the ¢, are determined by L, and the design. A complete
set of jackknife replicates has a number of replicates equal to
the number of first-phase primary sampling units. The replicate
weights are applied to the second-phase units. Kott and Stukel
(1997) suggested using the adjusted jackknife method defined
by (26) and (27) to estimate the variance of the REE.

To estimate the variance of the DEE, we propose the replicate
variance estimator

Ly,
0 Sk o N2
Vaa =3 en(¥yq = Vra) (28)
k=1
with replicates
(k)
& (k) -1 D ica,, Wai Xnigni
Pk —Z(Z e ) e
g_l i€An ZieA 12 W W xmg

The replicates (29) are motivated by the fact that DEE can be
written as a special case of REE with weights equal to 1 and
variables equal to w;y;.

We assume that the variance of a linear estimator of a total is
a quadratic function of y and assume that

Nu Ny
nNn_2 Var( Z WhiVni | fn> = Z Z QpijYniynjs (30)

i€An i=1 j=1

where the coefficients €2, satisfy

Ny
D 1@l = 0N .

i=1

(€19}

Under simple random sampling, condition (31) is satisfied be-
cause

N7 Y1 =N n)

o “_{ ifi=j
T =N, - DA =N )

ifi ).

We establish the consistency of V,,r defined in (26) and (27)
and the consistency of V,,; defined in (28) and (29) in the fol-
lowing theorem.

Theorem 2. Let the assumptions of Theorem 1 hold with
the exceptions that (6) holds for T > 2 and that 0 < A < 31
in (15). Assume (30) and (31). Let the first-phase sample be
without replacement and the replication variance estimator for
the complete sample be of the form (24). Assume that for any
complete-sample estimator of a total, p,, for a variable with
fourth moments, the replicates satisfy

2 _ o 2
E{[ea(?® = 21 | Fa) < K L [varn 1 F)]S - (32)
for some constant K,, uniformly in n. Also assume that
¢l = OLy). (33)

Let V(6,) be the first-phase sample replicate estimator of the
variance of 9,, = Zie A,y WniVnis and assume that

&oh 2
EH:&—I} |fn}=o(1) (34)
Var (6, | F)
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for any y with bounded fourth moments. Then, the variance es-
timator defined in (27) with replicates (26) satisfies
‘A/nr = Var(?nr | Fu)

Gn Ny

—1 2 —1a72
= w0 (A= Tug) Y Xuigenig + 0p(n” N,
g=1 i=1

(35)

where ey = yni — l?ng. Also, the variance estimator defined
in (28) with replicates (29) satisfies

Via = var(Yog | F)
Gy Ny

- an;,l (I—- 7Tng) anign,%ig + Op(n_lN,Z,)a
=1 i=1

Wi (2&1 XnigWpi ) ™! Z?l:nl XnigYni-

For the proof see Appendix B.

By condition (32), no one of the squared deviates in the repli-
cation variance estimator dominates the others. Condition (34)
states that the first-phase sample replication variance estima-
tor is consistent. Conditions (32), (33), and (34) can be sat-
isfied by many replication methods, including the jackknife,
balanced half samples, and the bootstrap. Consistency results
for the first-phase sample replication variance estimators have
been discussed by, for example, Krewski and Rao (1981).

For fixed 7, the second term on the right side of equality
(35) is small relative to the first term if all first-phase probabil-
ities are small. If some first-phase probabilities are large, then
an estimator of

(36)

where Nnig = Yni —

Z T (1= T0g) megemg

i=1

can be added to (27). An estimator is
Gn
2 (1
g=1 i€An

where €nig = Yni — ¥ng2 and y,g is defined in (11). For DEE
variance estimation, the corresponding estimator is

Gn
D (1
g=1

~ -1, — ..
where 7uig = yni — wy; (rngl icAnp WniXnigyni)- A replication
version of the estimator (37) with r, replicates is

Z Z Cngz Y gl)

g=li€Apn

- nng)(rng - 1)_1rng Z Wnixnigé%igy 37

- nng)(rng - 1)_lrng Z Wnixnigﬁﬁig» (38)

icA n2

(39)

Fr)?,

where r, = Zg 1 Y'ng> Cngi = (rng 1) Vngﬂng (1 ﬂng)wmxmg
and V87 = ¥, — (ymi — Yng2) for xue = 1. Expression (39) is
algebraically equivalent to (37).

Remark 1. In Theorems 1 and 2, we assume stratified simple
random sampling for the second phase. The proof of Theorem 2
rests on a proof for Poisson sampling. Hence the results also
hold for Poisson sampling at the second phase.
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Remark 2. Theorem 2 is stated and proven for without re-
placement sampling at the first phase. Under mild conditions, it
can be shown that with first-phase replacement sampling,

Ve = var(Yy, | Fn) + op(n_lN,zl)
fort=r,d.

Remark 3. Theorem 2 for Poisson sampling is an extension
of the result of Rao and Shao (1992) for the REE in that we
allow G,, to increase, but at a rate slower than nl/3,

Remark 4. Using an argument similar to that of theorem 3.4
of Krewski and Rao (1981), it can be shown that the replica-
tion method can be applied to estimate the variance of a smooth
function of several DEEs or of several REEs.

4. EXTENSIONS
4.1 Two-Phase Regression Estimator

To simplify the notation, we suppress the subscript z in what
follows. The two-phase regression estimator can be written in
the form

. A
Yireg =T, 1B, = Zaiyi,

iEA2

(40)

where the notation A := B denotes that B is defined to be equal
to A, ’i“c,l is the vector of estimated population totals estimated
with the first-phase sample, f! 5 is a vector of estimated regres-
sion coefficients estimated with the second-phase sample, and
the «; are functions of the sample but not of y. The estimator
’i‘c,l is the vector of realized first-phase sample sizes in the DEE
and is the vector of estimated population sizes of the second-
phase strata calculated from the first-phase sample for the REE.

For a control variable ¢; of fixed dimension observed on the
first-phase sample and a stratified second-phase sample, the es-

timated total is
T 1= Z wic;,

€A

and the estimated regression coefficient is

-1
2 * *
Br= <Z Wiw; Cici) Z WiW; €;yi,

i€Ar €Ay

where wf = rg_lnl ¢ for x;g = 1. Then ﬁz is a smooth function
of two DEEs (a DEE for the total of ¢;c; and a DEE for the total
of ¢;y;), and by Remark 4, replicates can be used to construct a
variance estimator for the two-phase regression estimator; that
is, the kth replicate for )A/,,REG is

k k k k
Ve =T BY == aPy;, (41)
€Ay
where
(k) (k)
Tc,l = Zwi ¢,
i€A|

1
k k
> " wiwi Oeiys,

iEAz

Bw (Zwac) “0),, C,>

lEAz

Journal of the American Statistical Association, March 2006

(k)

o, - - k
and W] (ZieA2 wf )W,' lxig) IZieAl w( )w xig  for
Xjg = 1. The resulting replication weights satlsfy
k k
o= wle (42)

iEA2

foreachk=1,2,...,L

iEAl

4.2 Three-Phase Sampling

Replication variance estimation can be extended to three-
phase stratified sampling. Let a three-phase estimator be written
in the form

Y3 = Z’Z ﬂ 3
where 22 is the control total for certain characteristics, denoted
by z;, calculated from the second-phase sample; f5 is the es-
timated regression coefficients estimated with the third-phase

sample; and A3 is the set of indices for the third-phase sample.
We assume that we can write

7, = Z a;z;,

(43)

iEAz
» (44)
2 ko o/ *
B;= (Z o Zizi> Z i iy,
i€A3 i€As3

where «; is the two-phase sampling weight of unit i defined
in (40) and «} is the conditional sampling weight for third-
phase sampling.

If the conditional third-phase sampling weight can be written
as o = (Zi€A3 Ii) ™! ZiGAZ I;s for unit / in the sth third-phase
stratum, where [; is the indicator function for the inclusion of
unit 7 to the sth third-phase stratum, then the kth replicate for the

three-phase estimator can be created as Y po Z(k)/f}(k), where
Z;k) and ﬂ(k) are constructed using a(k) and o; *®) instead of

using o; and «f in (44), where ai( ) is as defined in (41) and
al.*(k) = (Xiea, al.(k)ozfll,-x)’l D ic, otl.(k)afll,'s for unit 7 in the
sth third-phase stratum.

APPENDIX A: PROOF OF THEOREM 1

First, we express the REE as
G

?nr = ?nl + Z)A(ngl ()_’ng2 - }_’ngl)s
g=1

(A.1)

where ypo1 and ypg are defined in (8) and (11). Write y,; =
Z§i1 Xnig(Yng + enig), where Vg = X, Y,,g is the population mean
of y for group g. Then (A.1) becomes

an— nl+Z(

engZ engl ), (A2)

where
(Teng2 s Tengl > XngZ ’ Xngl )

-1 —1
= Z Wnixnig(nng Ani€nig; €nig> Tpg Gni, 1),
iEA,,]
Tng is the second-phase selection probability in group g, and ay; is the
second-phase sample indicator.
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By the unbiasedness assumption (9) and the definition of mpg,
E(fenglv jwengZaf(nglsf(nﬁ | Fn) = (0, O,Xng,Xng)~

By assumptions (18) and (14),

var{(Tong1. Xng1) | Fu} = 0(Gy 'n™IN2). (A3)
Thus, using corollary 5.1.1.2 of Fuller (1996), we have
Tongt Kng1) = (0, Xug) + 0p (G 21 2N,). (A4)
The variance of 'fengz can be decomposed into two parts,
var(Tongs | Fn) = var{E(Tpnga | Fn, A1, 1) | Fn}
+ E{var(Tongs | Fu An1 1) | Fu). (AS)

where r = (ru1, 752, .-+, 'nG,)- Under simple random sampling in
each group at the second phase,

E(Tengz | Fn,Apt, 1) = (A.6)

engl
and
var(Tepgo | Fn, Ani, 1)

g (1= Tng)nng (nipg — 1) 7!

2. 2 —142 .
= X ( Z WiXnig€ig — nlngTengl> if nypg > 1
i€Ap
0 ifnppe < 1.

Thus,

var(Tongs | s Anto 1) < 270 (1= 7ng) Y Wiinigemie
ieA,,l
=0,n"'G;IN2), (A7)

by (14) and (16). Thus, inserting (A.6) and (A.7) into (A.5), we have

var{(Tonga. Xng2) | Fu} = O(Gy 'n™IN?). (A.8)
By (14), X_g1 = O(GnNn_l), and by a Taylor expansion,
Xnglxnngeng2 = TengZ +0p (n~ Nn) (A9)
Because the estimator is defined to have moments,
i\/nr - )A/nl
G}l
Ani —1
= Z Wni<n_ - 1>xnigenig +O0p(Gpn™ "Nyp), (A.10)
g=licAy "8
and O(Gun~'N,) = o(n~1/2N,) by (15).
Define
Gy s
Ynr=Yu + Z Z Wm'(ﬂi - l)xnigenig~
g=licAy ng
By simple random sampling in each group at the second phase,
EXr | Fr, Ap1, 1) =Yy (A.11)
and
Var(f/nr | Fn, At ¥)
- Znng (1 T[ng) Z memgemg
ZEA nl
Gy 2
- Z ”ngl(l - 7Tng)(”lng - 1)_1 Z Wnixnigenig> (A.12)

g=1 i€An
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for nyue > 1 and var(Yur | Fn, Ap1, 1) = 0 for nlng < 1. The second
term on the right side of equality (A.12) is OP(Z 2 "lngNzG_

n~1) = 0,(n"1N2), by (14) and (15). Hence we have result Q).
The unbiasedness of the DEE follows directly from

E(¥pq | Fn) = E{E@ g | Fu Ap1 1) | Fa)
=E@ | F).

Result (20) follows because f/n] is unbiased for Y, by (6).
To derive the variance of the DEE, we write

?n = Anl + Z Z memg<_ 1>Ym"

g=1li€A,

and, using the unbiasedness assumption, we have
var{¥y,q | Fn}
=var{Yp1 | Fu}

+E{ZVar<an1xmg )’nz|~7:m nl> T )‘fn}
g=1

lEAn]

By simple random sampling at phase two,

1 1 2
Var(YngZ | FnsAnl) —nlng< - )Unwygl’

'ng  Ning
where
2
~2 -1 —1
Onwygl = (nlng -1 Z (Xnigwniyni T Mng Z xnjg""nj)’nj) .

€Ay jeAnl

APPENDIX B: PROOF OF THEOREM 2
Either the REE or the DEE can be written as

Gy —1
> —1
Ynip = Z[ Z Wnﬂnig‘]ni( Z Tng WniQnﬂnig)
g=1"ieA,; €A
—1
X Z Thg Wnixnig)’ni]
i€Ap
Gy
A oa—ln
=) Snglng fing. (B.1)
g=1

where

~ ~ ~ -1 —1
(Xng, Zng, Ung) = Z Wnixnig(qms Tng Ani4ni> Tpg AniYni)
€A1

and g,; = 1 for the REE and ¢,,; = 7]Nn for the DEE. Similarly,

we can write the replicates

Gl‘l
k ~(k) (a(k)y—1 ~(k
70 = am () i (B.2)
g=1
where
k) (k) ~(k k — _
( gzg)y 1(1g)a izg) Z W,(u')xnig(qm,ﬂnglani‘111i77fng1aniYni)-

€A1
By the argument used for (A.3) and (A.8),
Var{(&ng; zng, ﬁng) | ]:n} = O(GrTln_lNI%)'
Thus, by assumption (32),

1200()  ~ 20 o Ak«
cn//< (&ng the — ng»ZElg) anﬂglg)_”ng)

=0p(Ly %Gy Pn 12N, (B3)
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By a Taylor expansion, using (B.3),

—1 1/2rA(k k 1A(k A
an/[()(()) () 1~ ]

Xng Ung — xnang Ung
_ /27514 (k) 24 A(k) 4
n an [an Rng (img — fing) — Zng Angling (ng — Zng)

Aeln ~(k ~ 2
+ anlung(xigg) _xng)] +N, C I/ Rng,k’ (B.4)
where

Rk = 68— )G9 — 1)

D~

~ Zng Ung (xﬁ,lz,) fing) (3'(1? ~ Zng)

— Zg g () — fing) (259 — 2ng)
2 g G = 20g)?.
and (Xyg, Zng, lng) is on the line segment joining (Xug, Zng, ling) and
GR, &R %)), By (33), (B.3), and (15),
(ing> Zngs Ung) = (ing, Zng> Ung) X [1 4+ op(1)].
For example, by (14) and (32),
1/2~71( (k) )( ~(k) A )

Cok Zng \Xng — Xng)\Ung — Ung

= c;kl/zzngl [an (ngg) _ &ng) (ﬁyfg) _ ﬁng)]

= 0p (L ?n ' Ny)
and
Clziang,k = Op(Ln Y 2n“Nn). (B.5)

Also, by a Taylor expansion of y,¢> of (11) and applying (14), we have

A _ 1/2
Znding = 1+ 0p(n™1/2G,?) (B.6)
and
_ o — 1/2
Fng2 — Vg = 0p (0~ 112G/, (B.7)

where
-1 N, n

Ny
Yng = (anigqm) anigym-
i=1 i=1
Thus, inserting (B.5)—(B.7) into (B.4), we have
1/2(Y(k) _ ?n,tp)

n,tp
1/2
= Cnk Z Z x’”g - Wnl)[)’m + (ﬂng ani — 1)dnigl
g=li€An
—1,-1/2
+0p(Gun ' 11PNy, (B.8)
where 8yjg = ypi —q,,,-f’ng. The remainder term is O, (GnnflL,Zl/an)

because of the existence of moments (see Fuller 1996, p. 304, ex. 21).
By assumption (32) and by (10), the main term of (B.8) is

0p(n= 121, ' N,,). Tt follows from (B.8) that
o o) 5 \2
chk(yr(l‘t)p — Yup)
k=1

—Zan Z 2 xnig (w

g=1i€A,

Wm)b’m + (nng Ani — l)anig]

+ 0p(Gan32N2).

By (15), a term that is Op(Gun=3/2N2) is 0p(n~'N?).
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Assume for now that the second-phase sampling is Bernoulli within
each group (sometimes called “stratified Bernoulli sampling”) with
rates mpg, g = 1,2,...,Gp. Let apj, i =1,2,..., Ny, be random vari-
ables with a,,; = 1 if unit i is selected for the second-phase sample and
ap; = 0 if unit 7 is not selected. Conceptually, the second-phase sample
indicator a,; can be extended to the entire population. The extended
definition of a,; has been discussed by Fay (1991) and used by Rao
and Shao (1992) and Shao and Steel (1999).

Fix a, = (au1, anp. - . ., ann,) and consider variance estimation for
the population total of [y,; + (n,,_gl ani —
where the estimator of the total is

1)8pig] based on the sample,

Gy
v -1
Ynp = } E WniXnig[yni + (ﬂng Ani —

g=1i€Ap

= Z Wni&ni-

i€An

1)8nig]
(B.9)

By assumption, the full-sample variance estimator is consistent for any
variable with fourth moments. Thus, because y,; + (TL’},ZS,I anj — 1)dpig
satisfies (6) with T > 2, by assumption (34), the replicate estimator of
the variance of Yy, s satisfies

‘A/{f/n,tp | an, Fn}

G/'l
= var Z Z Wnixnig[yni + (n,,_glam- - 1)Sm'g] } apn, ]'—n}

g=1lieA
+op(n"IN?). (B.10)
The variance of 17,,’ 1p can be expressed as
var(V,ip | Fn) = var[E{Ynip | an, Fu} | Fa]
+ E[var{Yy,ip | an, Fu} | Fn].  (B.11)

We next show that \A/{f/,,’,p | a,, Fr} of (B.10) is a consistent estimator
of the last term of (B.11). For this, it suffices to demonstrate that

var{nN;2 var(Yu,ip | an. Fn) | Fu} = o(1). (B.12)

.. G _ ~
Writing uy,; = Zgil xnig(nnglam —Déuigand U,y = ZieA,,l Whi X

Uni,
Va-r(yn,tp |ay, Fn) = Var(?nl lan, Fn) +Va-r(f]n1 | ay, Fn)

+ ZCov(f’nl, ifnl | a,, Fpn).

Using (30),
Var{nN;2 var(ﬁnl | an, Fn) | fn}
Ny Ny N, Ny

= Z Z Z Z QnijQLpgm €OV (Unittnj, UniUnm | Fn)s

i=1 j=1 k=1 m=1

(B.13)

where the covariances are with respect to the distribution of the ay;’s.
Because the ay;’s are independent and E(uy; | F5) = 0, among the
N,i' terms in the summation of (B.13), only those terms with (i, ) =
(k, m) or (i, j) = (m, k) are nonzero. Thus the summation in (B.13) re-
duces to

N)l N)l
2
DD (i + Qi) Var(upittn; | Fr)
i=1j=1
Nn n

< 2K (rr;a}x i) (Z 3 |s2mj|> (B.14)

i=1j=1
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where K1 = max; jvar(uuiuy; | Fn). Because zrng is bounded and
' 1) and

by (6) with 7 > 2, K,;;,; = O(1). By (31), max; j |2pij| = OWN,

var{nN; 2 var(Up | an, Fn) | Fn} = OWN; D). (B.15)
By (30),
Var{nN,f2 cov(¥u1, Uy 1 an, F) | Ful
N, N, N, N,
=D 3 3D i Qum¥njynm €OV (i, g | ). (B.16)
i=1j=1 k=1m=1

Because the ay;’s are independent and E(uy; | F,,) = 0, the term
in (B.16) reduces to

Nu Nn N

Z Z Z Qm'jQnil71ynjyrun var(up; | Fn)

i=1j=1m=1 N N 2

=Knp Z <Z Qnij)’nj) )
i=1 \j=1

where Ky, = max; var(uy; | 7). By (6), there exists Ky such that

i < KyNp/ T forall i=1,2, ..., N,. Thus, by (31) we have

var{nNy 2 cov(T1, Ut Lan, Fo) | Fu} = O(N 7/ OHD) = 0(1).
(B.17)
Because Var(f/n] | ay, Fn) does not depend on ay, var{var(f/nl |

an, Fn) | Fn} =0, and result (B.12) follows from (B.15) and (B.17).
Now,

Gn N)l

E{Yup = YN a0 Fa} = DY nig (g
g=1i=1

ani — 1)(Sm’gv

and the first term on the right side of the equality of (B.11) is
N

er (1= 7ng) D Xnighpig-  (B.18)

i=1
Therefore, combining (B.10), (B.11), and (B.18), we have

var[E{Yy i | an, Fn} | Fn] =

‘A/{Yn,tp | an, Fn}
=var(¥Yy,;p | Fn)

Gn Ny

=D T (1= Tug)Xnighng + 0p (™ N,
g=1i=1

(B.19)

Because pjg = €nig = Yni — Yng for REE, (35) follows for any type of
Poisson sampling including stratified Bernoulli at the second pha%e

By the definition of g,; of (B.1), 8nig = Mnig = Yni —W; —1N, Y,,g
for DEE. Substituting 8, for the DEE into the last expression
of (B.10) and using

Z Whi Z(”ng l)xnignnig
i€An) g=1
Gl‘l

Z Whni Z(nng Aanj — l)xmgyms

€A1
we have
G”

—1

Z Z Wnixnig[ym + (ﬂng Qani — 1)5nig]
g=1icAy

Gy
1 S
= Z Z WniXnigTTpg AniYni = Ynd;

g=lieA
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and (36) follows for any type of Poisson sampling at the second phase.

So far we have assumed that the second-phase sampling is Poisson.
In Theorems 1 and 2, in contrast, it is stratified simple random sam-
pling. Using the arguments of Hajek (1960), we can show that there
exists a sequence of simple random sample stratum means that dif-

fer from the Bernoulli stratum means by a term that is an order in
probability of n Let Vng be the difference between the Bernoulli

stratum mean of (Sm ¢ and the simple random sample mean. That is, let-
ting a,; and aZi denote the Bernoulli sample indicator and the simple
random sampling indicator of unit i,

ZiEAnI Wnixnigaii‘snig

oy ¥
DicA, WniXnigly,;

Dng = ZieA”l WniXnigQniSnig
ng = -
ZiEAnl WniXnigQni

Then, by the argument of Hdjek (1960),

. 32
var(Png | Fn) = O(n lng/ )- (B.20)
Thus, by (32) and (14),
A2k -1/2 — 3/4
12 (g — ng) = Op(Ln Pn3/4Gy/%) (B.21)
for
k k
);(k) _ YicAn szi)xnig“nifsnig DicA, Wf,i)xnigaZiSnig
ng = _

k) %
D icAn Wi Fnigln;

o tobe Zng and ilyg of (B.1), with ay,; replaced by a’;.

> w0 x o an:
leAnl ni ~nmgtni

Define Zj;, and i

Also define 25,?* and ﬁ},’?* using a; in expression (B.2), and define
and Y,g ,)p using “m‘ in expresswns (B.1) and (B.2). Then
Gy
Ty = ay = D g g
g=1
and
G
Ynp =Y, p = Z/%ng)’ng (B.22)
g=1
Thus,
e (145 = Top)
G,
= 1/2(Yr(zkr); — ¥ ») +C,l,1/<2 (% Sz]fg)Vrg? — ZngVng)-

g=1
By a Taylor expansion, using (B.3) and (B.21),
Ny lcrll]/cz( 5!? y,féf) fing Vng)
= Png Ny cof” (85— ng))
Ny g, (7 = fng) + Op(Li Y26y
_OP( —1/2 73/4G_1/4)

Therefore,

1/2 5 (k >
Cn]/c (Yr(l,t)p - Yn,tp)

172 ok —1/2, ~3/453/4
= /(Y,E,)I;"—Y;",p)+0p( / 3/4G/N)

and, by (15) with A < 371, a term that is Op(L;1/2n73/4G,31/4Nn) is

op (L, 1/ 2n_l/ an). It follows that the replication variance estimator
satisfies
Ly

k)* —152
chk ntp Ynlp =chk r(zt)p Y;lktp) +0P(n N).
k=1

(B.23)
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Also, by (B.22) and using (14), (B.20), and (15) with A < 3_1,

Vo = ¥ 1 = 0p (™1 2Ny). (B.24)
Therefore, by (B.19), (B.23), and (B.24), the consistency of the vari-
ance estimators under second-phase stratified simple random sampling

is established.
[Received July 2004. Revised June 2005.]
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