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Replication Variance Estimation for
Two-Phase Stratified Sampling

Jae Kwang KIM, Alfredo NAVARRO, and Wayne A. FULLER

In two-phase sampling, the second-phase sample is often a stratified sample based on the information observed in the first-phase sample.
For the total of a population characteristic, either the double-expansion estimator or the reweighted expansion estimator can be used. Given
a consistent first-phase replication variance estimator, we propose a consistent variance estimator that is applicable to both the double-
expansion estimator and the reweighted expansion estimator. The proposed method can be extended to multiphase sampling.

KEY WORDS: Double-expansion estimator; Double sampling; Multiphase sampling; Reweighted expansion estimator.

1. INTRODUCTION

Two-phase sampling, also known as double sampling, can be
a cost-effective technique in large-scale surveys. By selecting
a large sample, observing cheap auxiliary variables, and prop-
erly incorporating the auxiliary variables into the second-phase
sampling design, we can produce estimators with smaller vari-
ances than those based on a single-phase sampling design for
the same cost. In one of the common procedures of two-phase
sampling, the second-phase sample is selected using stratified
sampling, where the strata are created on the basis of the first-
phase observations.

Rao (1973) and Cochran (1977) gave formulas for variance
estimation when the first phase is a simple random sample and
the second phase is a stratified simple random sample. Kott
(1990) derived a formula for variance estimation when the first
phase is a stratified random sample and the second phase is a
restratified simple random sample based on first-phase informa-
tion. Rao and Shao (1992) proposed a jackknife variance esti-
mation method in the context of hot-deck imputation where the
response corresponds to a second phase with Poisson sampling
in imputation cells. Yung and Rao (2000) extended the result of
Rao and Shao to poststratification. Binder (1996) illustrated a
“cookbook” approach for the two-phase ratio estimator. Binder,
Babyak, Brodeur, Hidiroglou, and Jocelyn (2000) derived for-
mulas for variance estimation for various estimators for two-
phase restratified sampling. Fuller (1998) proposed a replicate
variance estimation method for the two-phase regression esti-
mator.

Among the methods cited, only the methods of Rao and Shao
(1992) and Fuller (1998) are replication methods. One advan-
tage of the replication method for variance estimation is its con-
venience for a multipurpose survey. That is, after we create
the replication weights, we can directly apply the replication
weights to estimate the variance for any variable.

Let the finite population be of size N, indexed from 1 to N,
and let the finite population be partitioned into G groups, which
we call the second-phase strata. The information about which
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group a unit belongs to is not obtained until the first-phase sam-
ple has been observed.

We consider the two-phase estimator in which the first-phase
sample is used to define strata to be used for the second-phase
sample. Let the parameter of interest be the population total
Y = ∑N

i=1 yi, where yi is the study variable and N is assumed
known. Suppose that we have a first-phase sample of size n. If
we observe yi on every element of the sample, then an unbiased
estimator of Y is

Ŷ1 =
∑

i∈A1

wiyi, (1)

where wi = [Pr(i ∈ A1)]−1 and A1 is the set of indices in the
sample. Now, assume that instead of directly observing yi for
i ∈ A1, we observe

xi = (xi1, . . . , xiG) (2)

for all i ∈ A1, where xig takes the value 1 if unit i belongs to the
gth group and 0 otherwise. Assume that

∑G
g=1 xig = 1.

Let a subsample of total size r be selected from the first-phase
sample and let A2 be the set of indices for the second-phase
sample. Let

w∗
i = [

Pr(i ∈ A2 | i ∈ A1)
]−1

. (3)

Let n1g = ∑
i∈A1

xig be the number of first-phase sample el-
ements in group g and let rg = ∑

i∈A2
xig be the number of

second-phase sample elements in group g. If the second-phase
sample is selected by stratified simple random sampling with
the groups as strata, then w∗

i = r−1
g n1g for unit i with xig = 1.

Given the described two-phase sample, an unbiased estimator
for the total of Y is

Ŷd =
∑

i∈A2

αd,iyi, (4)

where αd,i = wiw∗
i . Kott and Stukel (1997) called the estimator

in (4) the double-expansion estimator (DEE).
Another important estimator for the total of Y is

Ŷr =
G∑

g=1

(∑

i∈A1

wixig

)∑
i∈A2

wixigyi
∑

i∈A2
wixig

,

=
∑

i∈A2

αr,iyi, (5)
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where

αr,i =
G∑

g=1

(∑
j∈A1

wjxjg
∑

j∈A2
wjxjg

)

wixig.

Kott and Stukel (1997) called the estimator in (5) the reweighted
expansion estimator (REE).

Kott and Stukel (1997) examined possible replication meth-
ods for estimating the variance of the DEE and concluded that
the jackknife methods that they considered cannot be used for
this purpose. For the REE, the replication method proposed
by Rao and Shao (1992) produces consistent variance esti-
mates.

In the next section we discuss the asymptotic properties
of the DEE and the REE. In Section 3 we give a replicate
method for estimating the variance of the DEE and the REE.
In Section 4 we extend the replication method to regression
estimators and to multiphase stratified sampling. The variance
estimation procedure was applied to the 2000 Census and Ac-
curacy and Coverage Evaluation survey by Kim, Navarro, and
Fuller (2000).

2. ASYMPTOTIC PROPERTIES

To derive the asymptotic properties of the estimators, we
assume a sequence of samples and finite populations such
as that described by Fuller (1975). Let {ζn}∞n=1 be a se-
quence of populations, each having Gn ≥ Gn−1 groups of
size Xng, where the groups can cut across the first-phase
strata. Associated with the ith element in the population is
a vector, xni = (xni1, xni2, . . . , xniGn), of group indicators of
dimension Gn, and the study variable yni. Let a sample of
size n be selected from the nth population and assume that
the population size Nn increases as n increases such that
the limit of N−1

n n is a finite fraction, perhaps 0. Let Fn =
{(xn1, yn1), (xn2, yn2), . . . , (xnNn, ynNn)}, Yng = ∑Nn

i=1 xnigyni,
and Yn = ∑Nn

i=1 yni. Then Yn = ∑Gn
g=1 Yng, because a unit be-

longs to one and only one group. Assume that the sequence of
finite populations satisfies

N−1
n

Nn∑

i=1

y2+τ
ni = O(1) (6)

for some τ > 0.
Because a general class of first-phase sampling designs is

permitted, we directly specify the design properties of the es-
timators. Let An1 be the set of indices for the first-phase sample
selected by the first-phase sampling design from the nth finite
population ζn. Let wni be the sampling weight of unit ni. Define

(X̂ng1, Ŷng1) =
∑

i∈An1

wni(xnig, xnigyni) (7)

and

ȳng1 = X̂−1
ng1Ŷng1, (8)

where the subscript “1” emphasizes that the estimators are
based on the first-phase sample. The estimator X̂ng1 is the es-
timated number of elements in group g, where the population
number is Xng. The estimator Ŷng1 of the total of y for group g
is not observed in a two-phase sample.

Assume that

E
{
(X̂ng1, Ŷng1)

′ |Fn
} = (Xng,Yng)

′ (9)

and

var

{

N−1
n

Gn∑

g=1

(X̂ng1, Ŷng1)
′
∣
∣
∣ Fn

}

= O(n−1), (10)

where the notation var{·} denotes the variance–covariance ma-
trix when the argument is a vector variable.

Assume that a set of fixed probabilities πng,g = 1,2, . . . ,Gn,

is used to select a second-phase stratified random sample. Thus
rng elements are selected from the n1ng first-phase elements
in group g without replacement with equal probability, where
rng is the integer closest to πngn1ng. We ignore this rounding
error in the subsequent discussion. Let An2 be the set of indices
for the second-phase sample. Define the second-phase sample
estimators

(X̂ng2, Ŷng2) =
∑

i∈An2

wnir
−1
ng n1ng(xnig, xnigyni)

and

ȳng2 =
{

X̂−1
ng2Ŷng2 if rng > 0

0 otherwise,
(11)

where the subscript “2” emphasizes that the estimators are
based on the second-phase sample.

The REE in (5) can be written as

Ŷnr =
Gn∑

g=1

X̂ng1ȳng2, (12)

and the DEE in (4) can be written as

Ŷnd =
Gn∑

g=1

Ŷng2. (13)

To formally define an estimator with finite moments, we assume
that rng ≥ 1 when n1ng ≥ 1.

The following theorem gives some asymptotic properties of
the REE and DEE for a sequence of populations and sam-
ples in which the number of second-phase strata is permitted
to increase. For fixed Gn, the variance formulas to appear in
(21) and (23) correspond to (9.7.27) and (9.4.7) of Särndal,
Swensson, and Wretman (1992).

Theorem 1. Let the sequence of finite populations and sam-
ples be as described earlier. Assume simple random sampling in
each group at the second phase. Assume (6), (9), and (10). Let
Ŷnr be the REE defined in (12) and let Ŷnd be the DEE defined
in (13). Assume that

CxLG−1
n < N−1

n Xng < CxUG−1
n for all n, (14)

Gn < CGnλ for all n, (15)

CwL ≤ N−1
n nwni ≤ CwU for all n, (16)

and

Cπ < πng ≤ 1 for all g and all n, (17)
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where CxL,CxU,CG,CwL,CwU, and Cπ are fixed positive con-
stants, and that 0 ≤ λ < .5. Also assume that

var{Ŷn1 |Fn} < KM var{ŶSRS,n1 |Fn}, (18)

for a fixed KM and for any y satisfying (6), where ŶSRS,n1 is
the estimator of Yn based on a simple random sample of size n.
Then the REE satisfies

E(Ŷnr | Fn) = Yn + o
(
n−1/2Nn

)
, (19)

and the DEE is unbiased,

E(Ŷnd |Fn) = Yn. (20)

The variance of the REE is

var(Ŷnr |Fn) = var(Ŷn1 |Fn)

+ E

{ Gn∑

g=1

n2
1ng

(
1

rng
− 1

n1ng

)

σ 2
nweg1

∣
∣
∣Fn

}

+ o(n−1N2
n), (21)

where

σ 2
nweg1 =






(n1ng − 1)−1
∑

i∈An1

xnigw2
nie

2
nig if n1ng > 1

0 if n1ng ≤ 1,

(22)

enig = yni − Ȳng, and Ȳng = X−1
ng Yng is the population mean

of yni’s in group g.
The variance of the DEE is

var(Ŷnd |Fn)

= var(Ŷn1 |Fn)

+ E

{ Gn∑

g=1

n2
1ng

(
1

rng
− 1

n1ng

)

σ 2
nwyg1

∣
∣
∣ Fn

}

, (23)

where

σ 2
nwyg1

=






(n1ng − 1)−1
∑

i∈An1

(

xnigwniyni − n−1
1ng

∑

j∈An1

xnjgwnjynj

)2

if n1ng > 1

0 if n1ng ≤ 1.

For the proof see Appendix A.
Conditional on the first-phase sample, the DEE for a stratified

second-phase sample is a Horvitz–Thompson-type estimator of
the first-phase sample total of wiyi with weight r−1

g n1g, and thus
is conditionally unbiased for Ŷ1, conditional on An1. Condi-
tional on the first-phase sample, the REE is a separate ratio es-
timator and is subject to ratio bias. By assumptions (14)–(17),
the ratio bias is negligible in large samples.

The variance formulas (21) and (23) show that the vari-
ances of REE and DEE are no smaller than the variance of Ŷ1.
However, a two-phase sample may be cheaper, because of the
fewer observations on the y variable. The variance formulas
(21) and (23) also give some direction for stratification for
the second-phase sampling. The variance of REE is minimized

when the yi’s are the same within each group, whereas the vari-
ance of DEE is minimized when the weighted observations wiyi
are the same within each group. Thus the REE will be more ef-
ficient than the DEE if the observations are relatively homoge-
neous within each group.

When the first-phase sampling weights are the same, as con-
sidered by Rao (1973) and Cochran (1977), then REE is equal
to DEE and the ratio bias of REE is 0. Among the authors
who have studied two-phase stratified sampling with unequal
first-phase sampling weights, Särndal et al. (1992) focused
on DEE-type estimation, whereas Kott and Stukel (1997) and
Binder et al. (2000) focused on variance estimation for the REE.

3. REPLICATION VARIANCE ESTIMATION

We consider a replication method comprising the number of
replicates, the replication factors, and the replication weights.
Let the replicate variance estimator for the first-phase sample
estimator Ŷn1 of (1) be written in the form

V̂n1 =
Ln∑

k=1

cnk
(
Ŷ(k)

n1 − Ŷn1
)2

, (24)

where Ŷ(k)
n1 is the kth version of Ŷn1 based on the observations

included in the kth replicate, Ln is the number of replications,
and cnk is a factor associated with replicate k determined by
the replication method. The kth replicate for the complete first-
phase sample estimator Ŷn1 be can be written in the form

Ŷ(k)
n1 =

∑

i∈An1

w(k)
ni yni, (25)

where w(k)
ni denotes the replicate weight for the ith unit of the

kth replication. Constructing the replicate variance estimator
in (24) is possible if the sampling design is measurable (see Fay
1989). For example, consider a stratified random sample with
whi = n−1

h Nh for unit i in stratum h. Then, the full-sample jack-
knife variance estimator is defined by the number of replicates
Ln = n, the replication factor cn,hk = (1 − N−1

h nh)n
−1
h (nh − 1)

for the kth element in stratum h, and the replication weights

w(sk)
hi =






0 if s = h and k = i

(nh − 1)−1Nh if s = h and k �= i

n−1
h Nh if s �= h.

Other commonly used replication methods, such as balanced
half samples and the bootstrap, can also be written in the
form (24).

Rao and Shao (1992) proposed an adjusted jackknife method
for variance estimation in the context of hot-deck imputation.
The imputation cell used in imputation corresponds to the
second-phase stratum. The Rao–Shao jackknife replicate for the
REE of (5) is

Ŷ(k)
nr =

Gn∑

g=1

( ∑

i∈An1

w(k)
ni xnig

)∑
i∈An2

w(k)
ni xnigyni

∑
i∈An2

w(k)
ni xnig

, (26)

where the w(k)
ni ’s are the full-sample replicate weights of (25).

The replicate variance estimator can be written as

V̂nr =
Ln∑

k=1

cnk
(
Ŷ(k)

nr − Ŷnr
)2

, (27)
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where the cnk are determined by Ln and the design. A complete
set of jackknife replicates has a number of replicates equal to
the number of first-phase primary sampling units. The replicate
weights are applied to the second-phase units. Kott and Stukel
(1997) suggested using the adjusted jackknife method defined
by (26) and (27) to estimate the variance of the REE.

To estimate the variance of the DEE, we propose the replicate
variance estimator

V̂nd =
Ln∑

k=1

cnk
(
Ŷ(k)

nd − Ŷnd
)2 (28)

with replicates

Ŷ(k)
nd =

Gn∑

g=1

( ∑

i∈An1

w(k)
ni w−1

ni xnig

) ∑
i∈An2

w(k)
ni xnigyni

∑
i∈An2

w(k)
ni w−1

ni xnig

. (29)

The replicates (29) are motivated by the fact that DEE can be
written as a special case of REE with weights equal to 1 and
variables equal to wiyi.

We assume that the variance of a linear estimator of a total is
a quadratic function of y and assume that

nN−2
n var

( ∑

i∈An1

wniyni
∣
∣Fn

)

=
Nn∑

i=1

Nn∑

j=1

�nijyniynj, (30)

where the coefficients �nij satisfy

Nn∑

i=1

|�nij| = O(N−1
n ). (31)

Under simple random sampling, condition (31) is satisfied be-
cause

�nij =
{

N−1
n (1 − N−1

n n) if i = j

−N−1
n (Nn − 1)−1(1 − N−1

n n) if i �= j.

We establish the consistency of V̂nr defined in (26) and (27)
and the consistency of V̂nd defined in (28) and (29) in the fol-
lowing theorem.

Theorem 2. Let the assumptions of Theorem 1 hold with
the exceptions that (6) holds for τ ≥ 2 and that 0 ≤ λ < 3−1

in (15). Assume (30) and (31). Let the first-phase sample be
without replacement and the replication variance estimator for
the complete sample be of the form (24). Assume that for any
complete-sample estimator of a total, γ̂n, for a variable with
fourth moments, the replicates satisfy

E
{[

cnk
(
γ̂ (k)

n − γ̂n
)2]2 ∣

∣ Fn
}

< Kγ L−2
n

[
var(γ̂n | Fn)

]2
(32)

for some constant Kγ , uniformly in n. Also assume that

c−1
nk = O(Ln). (33)

Let V̂(θ̂n) be the first-phase sample replicate estimator of the
variance of θ̂n = ∑

i∈An1
wniyni, and assume that

E

{[
V̂(θ̂n)

Var(θ̂n | Fn)
− 1

]2 ∣
∣Fn

}

= o(1) (34)

for any y with bounded fourth moments. Then, the variance es-
timator defined in (27) with replicates (26) satisfies

V̂nr = var(Ŷnr | Fn)

−
Gn∑

g=1

π−1
ng (1 − πng)

Nn∑

i=1

xnige2
nig + op(n

−1N2
n), (35)

where enig = yni − Ȳng. Also, the variance estimator defined
in (28) with replicates (29) satisfies

V̂nd = var(Ŷnd |Fn)

−
Gn∑

g=1

π−1
ng (1 − πng)

Nn∑

i=1

xnigη
2
nig + op(n

−1N2
n), (36)

where ηnig = yni − w−1
ni (

∑Nn
i=1 xnigw−1

ni )−1 ∑Nn
i=1 xnigyni.

For the proof see Appendix B.
By condition (32), no one of the squared deviates in the repli-

cation variance estimator dominates the others. Condition (34)
states that the first-phase sample replication variance estima-
tor is consistent. Conditions (32), (33), and (34) can be sat-
isfied by many replication methods, including the jackknife,
balanced half samples, and the bootstrap. Consistency results
for the first-phase sample replication variance estimators have
been discussed by, for example, Krewski and Rao (1981).

For fixed πng, the second term on the right side of equality
(35) is small relative to the first term if all first-phase probabil-
ities are small. If some first-phase probabilities are large, then
an estimator of

Gn∑

g=1

π−1
ng (1 − πng)

Nn∑

i=1

xnige2
nig

can be added to (27). An estimator is

Gn∑

g=1

π−2
ng (1 − πng)(rng − 1)−1rng

∑

i∈An2

wnixnigê2
nig, (37)

where ênig = yni − ȳng2 and ȳng2 is defined in (11). For DEE
variance estimation, the corresponding estimator is

Gn∑

g=1

π−2
ng (1 − πng)(rng − 1)−1rng

∑

i∈An2

wnixnigη̂
2
nig, (38)

where η̂nig = yni − w−1
ni (r−1

ng
∑

i∈An2
wnixnigyni). A replication

version of the estimator (37) with rn replicates is

Gn∑

g=1

∑

i∈An2

cngi
(
Ŷ(gi)

nr − Ŷnr
)2

, (39)

where rn = ∑Gn
g=1 rng, cngi = (rng −1)−1rngπ

−2
ng (1−πng)wnixnig

and Ŷ(gi)
nr = Ŷnr − ( yni − ȳng2) for xnig = 1. Expression (39) is

algebraically equivalent to (37).

Remark 1. In Theorems 1 and 2, we assume stratified simple
random sampling for the second phase. The proof of Theorem 2
rests on a proof for Poisson sampling. Hence the results also
hold for Poisson sampling at the second phase.
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Remark 2. Theorem 2 is stated and proven for without re-
placement sampling at the first phase. Under mild conditions, it
can be shown that with first-phase replacement sampling,

V̂nt = var(Ŷnt |Fn) + op(n
−1N2

n)

for t = r,d.

Remark 3. Theorem 2 for Poisson sampling is an extension
of the result of Rao and Shao (1992) for the REE in that we
allow Gn to increase, but at a rate slower than n1/3.

Remark 4. Using an argument similar to that of theorem 3.4
of Krewski and Rao (1981), it can be shown that the replica-
tion method can be applied to estimate the variance of a smooth
function of several DEEs or of several REEs.

4. EXTENSIONS

4.1 Two-Phase Regression Estimator

To simplify the notation, we suppress the subscript n in what
follows. The two-phase regression estimator can be written in
the form

Ŷt,REG = T̂′
c,1β̂2 :=

∑

i∈A2

αiyi, (40)

where the notation A := B denotes that B is defined to be equal
to A, T̂c,1 is the vector of estimated population totals estimated
with the first-phase sample, β̂2 is a vector of estimated regres-
sion coefficients estimated with the second-phase sample, and
the αi are functions of the sample but not of y. The estimator
T̂c,1 is the vector of realized first-phase sample sizes in the DEE
and is the vector of estimated population sizes of the second-
phase strata calculated from the first-phase sample for the REE.

For a control variable ci of fixed dimension observed on the
first-phase sample and a stratified second-phase sample, the es-
timated total is

T̂c,1 =
∑

i∈A1

wici,

and the estimated regression coefficient is

β̂2 =
(∑

i∈A2

wiw
∗
i cic′

i

)−1 ∑

i∈A2

wiw
∗
i ciyi,

where w∗
i = r−1

g n1g for xig = 1. Then β̂2 is a smooth function
of two DEEs (a DEE for the total of cic′

i and a DEE for the total
of ciyi), and by Remark 4, replicates can be used to construct a
variance estimator for the two-phase regression estimator; that
is, the kth replicate for Ŷt,REG is

Ŷ(k)
t,REG = T̂(k)′

c,1 β̂
(k)
2 :=

∑

i∈A2

α
(k)
i yi, (41)

where

T̂(k)
c,1 =

∑

i∈A1

w(k)
i ci,

β̂
(k)
2 =

(∑

i∈A2

w(k)
i w∗(k)

i cic′
i

)−1 ∑

i∈A2

w(k)
i w∗(k)

i ciyi,

and w∗(k)
i = (

∑
i∈A2

w(k)
i w−1

i xig)
−1 ∑

i∈A1
w(k)

i w−1
i xig for

xig = 1. The resulting replication weights satisfy
∑

i∈A2

α
(k)
i ci =

∑

i∈A1

w(k)
i ci (42)

for each k = 1,2, . . . ,L.

4.2 Three-Phase Sampling

Replication variance estimation can be extended to three-
phase stratified sampling. Let a three-phase estimator be written
in the form

Ŷ3 = Ẑ′
2β̂3, (43)

where Ẑ2 is the control total for certain characteristics, denoted
by zi, calculated from the second-phase sample; β̂3 is the es-
timated regression coefficients estimated with the third-phase
sample; and A3 is the set of indices for the third-phase sample.
We assume that we can write

Ẑ2 =
∑

i∈A2

αizi,

(44)

β̂3 =
(∑

i∈A3

αiα
∗
i ziz′

i

)−1 ∑

i∈A3

αiα
∗
i ziyi,

where αi is the two-phase sampling weight of unit i defined
in (40) and α∗

i is the conditional sampling weight for third-
phase sampling.

If the conditional third-phase sampling weight can be written
as α∗

i = (
∑

i∈A3
Iis)

−1 ∑
i∈A2

Iis for unit i in the sth third-phase
stratum, where Iis is the indicator function for the inclusion of
unit i to the sth third-phase stratum, then the kth replicate for the
three-phase estimator can be created as Ŷ(k)

3 = Ẑ(k)′
2 β̂

(k)
3 , where

Ẑ(k)
2 and β̂

(k)
3 are constructed using α

(k)
i and α

∗(k)
i instead of

using αi and α∗
i in (44), where α

(k)
i is as defined in (41) and

α
∗(k)
i = (

∑
i∈A3

α
(k)
i α−1

i Iis)
−1 ∑

i∈A2
α

(k)
i α−1

i Iis for unit i in the
sth third-phase stratum.

APPENDIX A: PROOF OF THEOREM 1

First, we express the REE as

Ŷnr = Ŷn1 +
Gn∑

g=1

X̂ng1( ȳng2 − ȳng1), (A.1)

where ȳng1 and ȳng2 are defined in (8) and (11). Write yni =
∑Gn

g=1 xnig(Ȳng + enig), where Ȳng = X−1
ng Yng is the population mean

of y for group g. Then (A.1) becomes

Ŷnr = Ŷn1 +
Gn∑

g=1

(X̂ng1X̂−1
ng2T̂eng2 − T̂eng1), (A.2)

where

(T̂eng2, T̂eng1, X̂ng2, X̂ng1)

=
∑

i∈An1

wnixnig(π−1
ng anienig, enig,π−1

ng ani,1),

πng is the second-phase selection probability in group g, and ani is the
second-phase sample indicator.
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By the unbiasedness assumption (9) and the definition of πng,

E(T̂eng1, T̂eng2, X̂ng1, X̂ng2 |Fn) = (0,0,Xng,Xng).

By assumptions (18) and (14),

var
{
(T̂eng1, X̂ng1) | Fn

} = O(G−1
n n−1N2

n ). (A.3)

Thus, using corollary 5.1.1.2 of Fuller (1996), we have

(T̂eng1, X̂ng1) = (0,Xng) + Op
(
G−1/2

n n−1/2Nn
)
. (A.4)

The variance of T̂eng2 can be decomposed into two parts,

var(T̂eng2 |Fn) = var
{
E(T̂eng2 |Fn,An1, r) |Fn

}

+ E
{
var(T̂eng2 |Fn,An1, r) |Fn

}
, (A.5)

where r = (rn1, rn2, . . . , rnGn). Under simple random sampling in
each group at the second phase,

E(T̂eng2 |Fn,An1, r) = T̂eng1 (A.6)

and

var(T̂eng2 |Fn,An1, r)

=






π−1
ng (1 − πng)n1ng(n1ng − 1)−1

×
( ∑

i∈An1

w2
nixnige2

nig − n−1
1ngT̂2

eng1

)

if n1ng > 1

0 if n1ng ≤ 1.

Thus,

var(T̂eng2 | Fn,An1, r) ≤ 2π−1
ng (1 − πng)

∑

i∈An1

w2
nixnige2

nig

= Op(n−1G−1
n N2

n ), (A.7)

by (14) and (16). Thus, inserting (A.6) and (A.7) into (A.5), we have

var
{
(T̂eng2, X̂ng2) | Fn

} = O(G−1
n n−1N2

n ). (A.8)

By (14), X−1
ng = O(GnN−1

n ), and by a Taylor expansion,

X̂ng1X̂−1
ng2T̂eng2 = T̂eng2 + Op(n−1Nn). (A.9)

Because the estimator is defined to have moments,

Ŷnr − Ŷn1

=
Gn∑

g=1

∑

i∈An1

wni

(
ani

πng
− 1

)

xnigenig + Op(Gnn−1Nn), (A.10)

and O(Gnn−1Nn) = o(n−1/2Nn) by (15).
Define

Ỹnr = Ŷn1 +
Gn∑

g=1

∑

i∈An1

wni

(
ani

πng
− 1

)

xnigenig.

By simple random sampling in each group at the second phase,

E(Ỹnr |Fn,An1, r) = Ŷn1 (A.11)

and

var(Ỹnr |Fn,An1, r)

=
Gn∑

g=1

π−1
ng (1 − πng)

n1ng

n1ng − 1

∑

i∈An1

w2
nixnige2

nig

−
Gn∑

g=1

π−1
ng (1 − πng)(n1ng − 1)−1

( ∑

i∈An1

wnixnigenig

)2
(A.12)

for n1ng > 1 and var(Ỹnr | Fn,An1, r) = 0 for n1ng ≤ 1. The second

term on the right side of equality (A.12) is Op(
∑Gn

g=1 n−1
1ngN2

n G−1
n ×

n−1) = op(n−1N2
n ), by (14) and (15). Hence we have result (21).

The unbiasedness of the DEE follows directly from

E(Ŷnd |Fn) = E
{
E(Ŷnd |Fn,An1, r) | Fn

}

= E(Ŷn1 |Fn).

Result (20) follows because Ŷn1 is unbiased for Yn, by (6).
To derive the variance of the DEE, we write

Ŷnd = Ŷn1 +
Gn∑

g=1

∑

i∈An1

wnixnig

(
ani

πng
− 1

)

yni,

and, using the unbiasedness assumption, we have

var{Ŷnd |Fn}
= var{Ŷn1 | Fn}

+ E

{ Gn∑

g=1

var

( ∑

i∈An1

wnixnig
ani

πng
yni

∣
∣Fn,An1, r

) ∣
∣
∣ Fn

}

.

By simple random sampling at phase two,

var(Ŷng2 | Fn,An1) = n2
1ng

(
1

rng
− 1

n1ng

)

σ 2
nwyg1,

where

σ̂ 2
nwyg1 = (n1ng − 1)−1

∑

i∈An1

(

xnigwniyni − n−1
1ng

∑

j∈An1

xnjgwnjynj

)2
.

APPENDIX B: PROOF OF THEOREM 2

Either the REE or the DEE can be written as

Ŷn,tp =
Gn∑

g=1

[ ∑

i∈An1

wnixnigqni

( ∑

i∈An2

π−1
ng wniqnixnig

)−1

×
∑

i∈An2

π−1
ng wnixnigyni

]

=
Gn∑

g=1

x̂ngẑ−1
ng ûng, (B.1)

where

(x̂ng, ẑng, ûng) =
∑

i∈An1

wnixnig(qni,π
−1
ng aniqni,π

−1
ng aniyni)

and qni = 1 for the REE and qni = w−1
ni n−1Nn for the DEE. Similarly,

we can write the replicates

Ŷ(k)
n,tp =

Gn∑

g=1

x̂(k)
ng

(
ẑ(k)ng

)−1û(k)
ng , (B.2)

where
(
x̂(k)

ng , ẑ(k)ng , û(k)
ng

) =
∑

i∈An1

w(k)
ni xnig(qni,π

−1
ng aniqni,π

−1
ng aniyni).

By the argument used for (A.3) and (A.8),

var
{
(x̂ng, ẑng, ûng) |Fn

} = O(G−1
n n−1N2

n ).

Thus, by assumption (32),

c1/2
nk

(
x̂(k)

ng − x̂ng, ẑ(k)ng − ẑng, û(k)
ng − ûng

)

= Op
(
L−1/2

n G−1/2
n n−1/2Nn

)
. (B.3)
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By a Taylor expansion, using (B.3),

N−1
n c1/2

nk

[
x̂(k)

ng
(
ẑ(k)ng

)−1û(k)
ng − x̂ngẑ−1

ng ûng
]

= N−1
n c1/2

nk

[
ẑ−1
ng x̂ng

(
û(k)

ng − ûng
) − ẑ−2

ng x̂ngûng
(
ẑ(k)ng − ẑng

)

+ ẑ−1
ng ûng

(
x̂(k)

ng − x̂ng
)] + N−1

n c1/2
nk Rng,k, (B.4)

where

Rng,k = z̃−1
ng

(
x̂(k)

ng − x̂ng
)(

û(k)
ng − ûng

)

− z̃−2
ng ũng

(
x̂(k)

ng − x̂ng
)(

ẑ(k)ng − ẑng
)

− z̃−2
ng x̃ng

(
û(k)

ng − ûng
)(

ẑ(k)ng − ẑng
)

+ z̃−3
ng x̃ngũng

(
ẑ(k)ng − ẑng

)2
,

and (x̃ng, z̃ng, ũng) is on the line segment joining (x̂ng, ẑng, ûng) and

(x̂(k)
ng , ẑ(k)ng , û(k)

ng ). By (33), (B.3), and (15),

(x̃ng, z̃ng, ũng) = (x̂ng, ẑng, ûng) × [1 + op(1)].
For example, by (14) and (32),

c1/2
nk z̃−1

ng
(
x̂(k)

ng − x̂ng
)(

û(k)
ng − ûng

)

= c−1/2
nk z̃−1

ng
[
cnk

(
x̂(k)

ng − x̂ng
)(

û(k)
ng − ûng

)]

= Op
(
L−1/2

n n−1Nn
)

and

c1/2
nk Rng,k = Op

(
L−1/2

n n−1Nn
)
. (B.5)

Also, by a Taylor expansion of ȳng2 of (11) and applying (14), we have

ẑ−1
ng x̂ng = 1 + Op

(
n−1/2G1/2

n
)

(B.6)

and

ȳng2 − Ÿng = Op
(
n−1/2G1/2

n
)
, (B.7)

where

Ÿng =
( Nn∑

i=1

xnigqni

)−1 Nn∑

i=1

xnigyni.

Thus, inserting (B.5)–(B.7) into (B.4), we have

c1/2
nk

(
Ŷ(k)

n,tp − Ŷn,tp
)

= c1/2
nk

Gn∑

g=1

∑

i∈An1

xnig
(
w(k)

ni − wni
)[yni + (π−1

ng ani − 1)δnig]

+ Op
(
Gnn−1L−1/2

n Nn
)
, (B.8)

where δnig = yni −qniŸng. The remainder term is Op(Gnn−1L−1/2
n Nn)

because of the existence of moments (see Fuller 1996, p. 304, ex. 21).
By assumption (32) and by (10), the main term of (B.8) is

Op(n−1/2L−1/2
n Nn). It follows from (B.8) that

Ln∑

k=1

cnk
(
Ŷ(k)

n,tp − Ŷn,tp
)2

=
Ln∑

k=1

cnk

{ Gn∑

g=1

∑

i∈An1

xnig
(
w(k)

ni − wni
)[yni + (π−1

ng ani − 1)δnig]
}2

+ Op
(
Gnn−3/2N2

n
)
.

By (15), a term that is Op(Gnn−3/2N2
n ) is op(n−1N2

n ).

Assume for now that the second-phase sampling is Bernoulli within
each group (sometimes called “stratified Bernoulli sampling”) with
rates πng,g = 1,2, . . . ,Gn. Let ani, i = 1,2, . . . ,Nn, be random vari-
ables with ani = 1 if unit i is selected for the second-phase sample and
ani = 0 if unit i is not selected. Conceptually, the second-phase sample
indicator ani can be extended to the entire population. The extended
definition of ani has been discussed by Fay (1991) and used by Rao
and Shao (1992) and Shao and Steel (1999).

Fix an = (an1,an2, . . . ,anNn ) and consider variance estimation for
the population total of [yni + (π−1

ng ani − 1)δnig] based on the sample,
where the estimator of the total is

Ỹn,tp =
Gn∑

g=1

∑

i∈An1

wnixnig[yni + (π−1
ng ani − 1)δnig]

=:
∑

i∈An1

wniζni. (B.9)

By assumption, the full-sample variance estimator is consistent for any
variable with fourth moments. Thus, because yni + (π−1

ng ani − 1)δnig
satisfies (6) with τ ≥ 2, by assumption (34), the replicate estimator of
the variance of Ỹn,tp satisfies

V̂{Ỹn,tp | an,Fn}

= var

{ Gn∑

g=1

∑

i∈An1

wnixnig[yni + (π−1
ng ani − 1)δnig]

∣
∣
∣ an,Fn

}

+ op(n−1N2
n ). (B.10)

The variance of Ỹn,tp can be expressed as

var(Ỹn,tp |Fn) = var
[
E{Ỹn,tp | an,Fn} |Fn

]

+ E
[
var{Ỹn,tp | an,Fn} |Fn

]
. (B.11)

We next show that V̂{Ỹn,tp | an,Fn} of (B.10) is a consistent estimator
of the last term of (B.11). For this, it suffices to demonstrate that

var
{
nN−2

n var(Ỹn,tp | an,Fn) |Fn
} = o(1). (B.12)

Writing uni = ∑Gn
g=1 xnig(π−1

ng ani −1)δnig and Ûn1 = ∑
i∈An1

wni ×
uni,

var(Ỹn,tp | an,Fn) = var(Ŷn1 | an,Fn) + var(Ûn1 | an,Fn)

+ 2 cov(Ŷn1, Ûn1 | an,Fn).

Using (30),

var
{
nN−2

n var(Ûn1 | an,Fn) |Fn
}

=
Nn∑

i=1

Nn∑

j=1

Nn∑

k=1

Nn∑

m=1

�nij�nkm cov(uniunj,unkunm | Fn), (B.13)

where the covariances are with respect to the distribution of the ani’s.
Because the ani’s are independent and E(uni | Fn) = 0, among the
N4

n terms in the summation of (B.13), only those terms with (i, j) =
(k,m) or (i, j) = (m, k) are nonzero. Thus the summation in (B.13) re-
duces to

Nn∑

i=1

Nn∑

j=1

(�2
nij + �nij�nji)var(uniunj | Fn)

≤ 2Knu1

(
max

i,j
|�nij|

)
( Nn∑

i=1

Nn∑

j=1

|�nij|
)

, (B.14)
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where Knu1 = maxi,j var(uniunj | Fn). Because π−1
ng is bounded and

by (6) with τ ≥ 2, Knu1 = O(1). By (31), maxi,j |�nij| = O(N−1
n ) and

var
{
nN−2

n var(Ûn1 | an,Fn) |Fn
} = O(N−1

n ). (B.15)

By (30),

var
{
nN−2

n cov(Ŷn1, Ûn1 | an,Fn) | Fn
}

=
Nn∑

i=1

Nn∑

j=1

Nn∑

k=1

Nn∑

m=1

�nij�nkmynjynm cov(uni,unk |Fn). (B.16)

Because the ani’s are independent and E(uni | Fn) = 0, the term
in (B.16) reduces to

Nn∑

i=1

Nn∑

j=1

Nn∑

m=1

�nij�nimynjynm var(uni |Fn)

≤ Knu2

Nn∑

i=1

( Nn∑

j=1

�nijynj

)2

,

where Knu2 = maxi var(uni | Fn). By (6), there exists Ky such that

yni ≤ KyN1/(2+τ)
n for all i = 1,2, . . . ,Nn. Thus, by (31) we have

var
{
nN−2

n cov(Ŷn1, Ûn1 | an,Fn) | Fn
} = O

(
N−τ/(2+τ)

n
) = o(1).

(B.17)

Because var(Ŷn1 | an,Fn) does not depend on an, var{var(Ŷn1 |
an,Fn) |Fn} = 0, and result (B.12) follows from (B.15) and (B.17).

Now,

E{Ỹn,tp − YN | an,Fn} =
Gn∑

g=1

Nn∑

i=1

xnig(π−1
ng ani − 1)δnig,

and the first term on the right side of the equality of (B.11) is

var
[
E{Ỹn,tp | an,Fn} |Fn

] =
Gn∑

g=1

π−1
ng (1 − πng)

Nn∑

i=1

xnigδ2
nig. (B.18)

Therefore, combining (B.10), (B.11), and (B.18), we have

V̂{Ỹn,tp | an,Fn}
= var(Ỹn,tp |Fn)

−
Gn∑

g=1

Nn∑

i=1

π−1
ng (1 − πng)xnigδ2

nig + op(n−1N2
n ). (B.19)

Because δnig = enig = yni − Ȳng for REE, (35) follows for any type of
Poisson sampling including stratified Bernoulli at the second phase.

By the definition of qni of (B.1), δnig = ηnig = yni −w−1
ni n−1NnŸng

for DEE. Substituting δnig for the DEE into the last expression
of (B.10) and using

∑

i∈An1

wni

Gn∑

g=1

(π−1
ng ani − 1)xnigηnig

=
∑

i∈An1

wni

Gn∑

g=1

(π−1
ng ani − 1)xnigyni,

we have

Gn∑

g=1

∑

i∈An1

wnixnig[yni + (π−1
ng ani − 1)δnig]

=
Gn∑

g=1

∑

i∈An1

wnixnigπ−1
ng aniyni = Ŷnd,

and (36) follows for any type of Poisson sampling at the second phase.
So far we have assumed that the second-phase sampling is Poisson.

In Theorems 1 and 2, in contrast, it is stratified simple random sam-
pling. Using the arguments of Hájek (1960), we can show that there
exists a sequence of simple random sample stratum means that dif-
fer from the Bernoulli stratum means by a term that is an order in

probability of n−3/4
1ng . Let γ̂ng be the difference between the Bernoulli

stratum mean of δnig and the simple random sample mean. That is, let-
ting ani and a∗

ni denote the Bernoulli sample indicator and the simple
random sampling indicator of unit i,

γ̂ng =
∑

i∈An1
wnixniganiδnig

∑
i∈An1

wnixnigani
−

∑
i∈An1

wnixniga∗
niδnig

∑
i∈An1

wnixniga∗
ni

.

Then, by the argument of Hájek (1960),

var(γ̂ng |Fn) = O
(
n−3/2

1ng

)
. (B.20)

Thus, by (32) and (14),

c1/2
nk

(
γ̂

(k)
ng − γ̂ng

) = Op
(
L−1/2

n n−3/4G3/4
n

)
(B.21)

for

γ̂
(k)
ng =

∑
i∈An1

w(k)
ni xniganiδnig

∑
i∈An1

w(k)
ni xnigani

−
∑

i∈An1
w(k)

ni xniga∗
niδnig

∑
i∈An1

w(k)
ni xniga∗

ni

.

Define ẑ∗ng and û∗
ng to be ẑng and ûng of (B.1), with ani replaced by a∗

ni.

Also, define ẑ(k)∗ng and û(k)∗
ng using a∗

ni in expression (B.2), and define

Ŷ∗
n,tp and Ŷ(k)∗

n,tp using a∗
ni in expressions (B.1) and (B.2). Then

Ŷ(k)
n,tp − Ỹ(k)∗

n,tp =
Gn∑

g=1

x̂(k)
ng γ̂

(k)
ng

and

Ŷn,tp − Ŷ∗
n,tp =

Gn∑

g=1

x̂ngγ̂ng. (B.22)

Thus,

c1/2
nk

(
Ŷ(k)

n,tp − Ŷn,tp
)

= c1/2
nk

(
Ŷ(k)∗

n,tp − Ŷ∗
n,tp

) + c1/2
nk

Gn∑

g=1

(
x̂(k)

ng γ̂
(k)
ng − x̂ngγ̂ng

)
.

By a Taylor expansion, using (B.3) and (B.21),

N−1
n c1/2

nk

(
x̂(k)

ng γ̂
(k)
ng − x̂ngγ̂ng

)

= γ̂ng
{
N−1

n c1/2
nk

(
x̂(k)

ng − x̂ng
)}

+ N−1
n x̂ngc1/2

nk

(
γ̂

(k)
ng − γ̂ng

) + Op
(
L−1

n n−3/2G3/2
n

)

= Op
(
L−1/2

n n−3/4G−1/4
n

)
.

Therefore,

c1/2
nk

(
Ŷ(k)

n,tp − Ŷn,tp
)

= c1/2
nk

(
Ŷ(k)∗

n,tp − Ŷ∗
n,tp

) + Op
(
L−1/2

n n−3/4G3/4
n Nn

)
,

and, by (15) with λ < 3−1, a term that is Op(L−1/2
n n−3/4G3/4

n Nn) is

op(L−1/2
n n−1/2Nn). It follows that the replication variance estimator

satisfies
Ln∑

k=1

cnk
(
Ŷ(k)

n,tp − Ŷn,tp
)2 =

Ln∑

k=1

cnk
(
Ŷ(k)∗

n,tp − Ŷ∗
n,tp

)2 + op(n−1N2
n ).

(B.23)
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Also, by (B.22) and using (14), (B.20), and (15) with λ < 3−1,

Ŷn,tp − Ŷ∗
n,tp = op

(
n−1/2Nn

)
. (B.24)

Therefore, by (B.19), (B.23), and (B.24), the consistency of the vari-
ance estimators under second-phase stratified simple random sampling
is established.

[Received July 2004. Revised June 2005.]
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