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ABSTRACT 

 Sedentary endoparasitic phytonematodes are a group of taxa comprised of cyst 

nematodes (Heterodera and Globodera spp.) and root-knot nematodes (Meloidogyne spp.), 

which are some of the most economically important crop pathogens on earth. These pests 

infect plant roots by creating elaborate feeding sites around the vasculature, which diverts 

nutrients away from the plant to feed the nematode and causes yield reduction in the plant. 

The nematodes create their feeding sites by delivering effector proteins into plant tissues. 

Effectors interact with plant components to modify development, metabolism, and defense 

pathways within plant cells, ultimately forming and maintaining the feeding site within the 

host root.  

 In order to find ways to mitigate the damages caused by these nematode pathogens, it 

is vital to identify nematode effectors and understand how effector proteins are able to 

manipulate the plant host. This dissertation first summarizes what is currently known about 

nematode effector proteins and then contributes to that body of knowledge. Our data show 

that two effectors from Heterodera schachtii (Hs4E02 and Hs25A01) are likely to function in 

the plant-nematode interaction by binding to plant proteins. Through the preparation and 

mining of gland transcripts we have also identified 18 additional putative effectors that are 

expressed specifically within the esophageal gland cells of Meloidogyne incognita during 

infective life stages. Two of these putative effectors are part of the major avirulence protein 

(MAP) family of effectors. Interestingly, we were able to identify conserved amino acid 

motifs within this effector family that resemble plant CLAVATA3/ESR (CLE) signaling 

peptides found in plants and cyst nematodes. These data indicate that the MAP effector 



 vi

family from root-knot nematodes may manipulate plant developmental signaling in a manner 

analogous to the CLE effectors secreted from cyst nematodes.  

 



 1

 
CHAPTER 1. AN INTRODUCTION TO SEDENTARY 

ENDOPARASITIC PHYTONEMATODES 
 
 The phylum Nematoda contains over 25,000 described species. This makes it one of 

the most diverse phylums of metazoans, second only to Arthropoda. A large proportion of 

nematode species are parasites of either animals or plants. The annual yield loss attributed to 

plant-parasitic nematodes has been estimated to be in excess of 100 Billion U.S. dollars 

(Koenning, Overstreet et al. 1999), which makes them one of the most devastating groups of 

agricultural pests. 

The etiology of plant-parasitic nematodes is quite diverse. Though most species feed 

on the roots of the plant, there are several species that parasitize the aerial portions of plants 

as well. The root parasites are classified by their mode of infection. Species are either 

ectoparasites (feed from outside the host root) or they are endoparasites (boring into and 

feeding from inside the host root). At the same time, the parasites are classified as either 

mobile (migrating while feeding) or sedentary (stationary while feeding). By far the most 

economically important group of plant parasitic nematodes are the sedentary endoparasites 

(cyst nematodes and root-knot nematodes) (Sasser and Freckman 1986; Koenning, Overstreet 

et al. 1999; Chitwood 2003), and consequently a majority of the research on the nematode-

plant interaction has also focused on this group. This literature review specifically 

concentrates on the interaction between the sedentary endoparasitic nematodes and their host 

plants.  

As a group, sedentary endoparasitic nematodes are defined as plant-parasitic 

nematodes that bore into a host plant root and establish an elaborate feeding site. This 

feeding site sustains these nematodes throughout their sedentary lifecycle. This group of 
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parasites is composed of two taxonomic groups, commonly referred to as the cyst nematodes 

(Heterodera and Globodera spp.) and root-knot nematodes (Meloidogyne spp.). Though root-

knot and cyst nematodes share similar modes of infection, it is thought that the sedentary 

endoparasitic lifestyle evolved separately in the two taxonomic groups (Holterman, Karssen 

et al. 2009). Because of their unique evolutionary paths, it isn’t surprising that the two groups 

exhibit very distinct morphology and infection etiology. 

 

Root-Knot Nematodes (Meloidogyne spp.) 

The genus Meloidogyne is composed of 97 described species as of June 2009 

(Koenning, Overstreet et al. 1999; Trudgill, Bala et al. 2000; Trudgill and Blok 2001; Perry, 

Moens et al. 2009). These species are distributed worldwide and are considered to be some of 

the most devastating crop pathogens on earth (Abad and Williamson 2010). One of the 

reasons Meloidogyne spp. are so successful and prolific is that they have an enormous range 

of potential host plants. Indeed, it is thought that one of the prolific species, Meloidogyne 

incognita, has a host range that exceeds 3,000 plant species (Ehwaeti, Fargette et al. 1999). 

Taken as a group, the Meloidogyne genus is thought to infect nearly every flowering plant 

(Trudgill and Blok 2001). This expansive host range allows Meloidogyne species to 

overcome the classical crop rotation strategies used to combat many other soil borne 

pathogens. In the past, fumigation was used to try and control these pests. However, many of 

the nematicides successfully used in the past have been removed from the market in recent 

years due to environmental concerns. As a result, controls strategies have increasingly relied 

on a limited number of resistance genes such as Mi-1. Unfortunately, Meloidogyne species 

have shown the ability to overcome these resistance genes, particularly when they are 
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overused (Castagnone-Sereno 2002; Meher, Gajbhiye et al. 2009). The destructive and 

obdurate nature of Meloidogyne infestation makes it important that researchers understand 

how these pests infect their plant hosts.  

 

Infection and life cycle 

All Meloidogyne species begin their life cycle when they hatch from eggs in the soil 

surrounding a plant root. The parasites emerge as second-stage pre-parasitic juveniles (pre-

J2), having already completed one molting within the egg. The newly hatched vermiform 

juveniles use plant exudates as chemotactic signals to migrate to the root tip of a potential 

host plant. Once at the root tip, a pre-J2 will penetrate the host near the zone of elongation. 

Unlike cyst nematode species, the J2 will migrate intercellularly slipping between the cell 

walls of adjacent cells. Because of this unique mode of migration, little root damage can be 

observed as the nematode travels through the root (Gravato Nobre, Von Mende et al. 1995; 

Mende 1997). Once within the root of the host plant the nematodes first migrate to the region 

near the root tip, where they proceed to make a 180 degree U-turn into the vascular cylinder 

of the root (Wyss, Grundler et al. 1992; Mende 1997). It has been speculated that this 

circuitous migration pattern allows the nematode to avoid the casparian strip, which may 

pose a significant barrier to the nematode’s migration.  

Once inside the vascular cylinder of a host root, the J2 migrates back up the root until 

it reaches a group of cells that it will use to form a feeding site. The signals and mechanisms 

used by the nematode to choose these specific plant cells are still not well understood. 

However, it is well documented that the juvenile nematode chooses a group of procambial 

cells near or directly adjacent to the sieve elements of the xylem (Hoth, Stadler et al. 2008). 
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To begin the process of forming the feeding site, the J2 nematode uses a hollow protrusible 

mouth spear (a stylet) to pierce the outer plant cell wall and invaginate the cell membrane. 

The stylet is a direct extension of the nematode’s esophagus and functions similarly to a 

hypodermic needle, conducting a flow of effector proteins from the esophagus into the host 

plant’s tissues (Hussey 1989). Using its stylet, the parasite injects 5-10 procambial cells with 

a cocktail of proteins. The cells that receive these injections soon begin to enlarge and take 

on unique morphological characteristics. Ultimately, they form the giant-cells (GC), which 

make up the feeding sites of all Meloidogyne species (see Giant-Cell Morphology and 

Physiology). In addition to the drastic morphological changes that take place within the GC, 

Meloidogyne species also cause systemic hypertrophic growth in the surrounding root tissue. 

This increased growth causes a gall to form around the growing nematode. This characteristic 

“root-knotting” can cause extensive damage in root crops; deforming the roots to a point 

where market value is reduced (Coyne, Tchabi et al. 2006). The growing nematode spends 

the remainder of its sedentary life cycle within the gall feeding from the GC.  

In order to feed from a GC, the nematode will reinsert its stylet and will produce a 

long feeding tube that protrudes into the cytoplasm of the GC. Electron micrographic images 

indicate that the feeding tube extends from the end of the stylet opening and into the GC 

cytoplasm. It appears to be a crystalline structure that may polymerize from stylet secretions, 

which are as of yet unidentified (Sobczak, Golinowski et al. 1999; Mitchum, Hussey et al. 

2013). Though the exact constituents of the feeding tube are not yet known, it has been 

shown experimentally that the feeding tube creates a size barrier for molecules ingested by 

the nematode. Allowing only molecules under 40kDa to pass into the nematode’s esophagus 

(Hussey and Mims 1991; Mitchum, Hussey et al. 2013). In Meloidogyne species the multiple 
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discarded feeding tubes can be seen within each giant-cell, indicating that the parasite creates 

a new feeding tube each time it probes a cell and discards it after feeding. Researchers have 

postulated that the feeding tube functions to prevent clogging of the stylet while the 

nematode feeds from the cytoplasm of the GC. 

Sedentary J2 nematodes continue to feed off of the GCs for many days, and 

subsequently begin to enlarge and soon will proceed to go through three consecutive molts. 

Within a matter of hours it will progress through the J3 and J4 stages to become a 

reproductive adult. During the relatively short J3 and J4 stages, sexual dimorphisms become 

apparent. Females will form extensive ovaries, a vagina, and rectal glands, taking on a rotund 

pear-like shape. Males recapitulate a vermiform shape, albeit with a mass several times that 

of the J2 worms. The vermiform males will leave the root tissues, and in sexually 

reproducing species such as M. hapla, they will seek out and mate with the adult females. 

However, many species of Meloidogyne are asexual. In the case of these obligately 

parthenogenic species, such as M. incognita, males exit the host root but don’t successfully 

mate with females (Rohini, Ekanayake et al. 1986; Trudgill and Blok 2001).  

Once females have reached sexual maturity, they begin to secrete a gelatinous matrix 

from glands in their rectum (Maggenti and Allen 1960). The components of the this matrix 

have cellular lysis activity, which induces the formation of a pore through the surrounding 

gall tissue (Orion 1987; Orion and Franck 1990). Adult females deposit their eggs within the 

gelatinous matrix to create an egg mass, which flows out of the pore and into the rhizosphere. 

In addition to forming the pore, components of the gelatinous matrix have been shown to 

have anti-microbial activity, and will protect the egg mass in the soil environment until the 

new J2 nematodes hatch. 
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The length of the life cycle for Meloidogyne spp. varies depending on the species, as 

well as the environmental conditions. In the case of M. incognita, perfect conditions can 

produce reproductive cycles as short as 20 days from egg to egg. This short life-cycle allows 

multiple generations of nematodes to re-infect host plants multiple times and can result in 

increasing infection loads over the course of a growing season (Rohini, Ekanayake et al. 

1986).  

 

Giant cell morphology and physiology 

The GCs induced by Meloidogyne spp. are drastically different, both morphologically 

and physiologically, from the procambial cells they develop from. After the nematode 

secretes its effector cocktail, the first and most apparent morphological change within these 

cells is the observation of successive nuclear divisions without cytokinesis, resulting in 

multiple nuclei within each cell (Huang 1985). Soon the cells begin to hypertrophy, 

eventually increasing to many times their original volume and containing as many as 100 

lobed nuclei. Other overt morphological changes are apparent: the central vacuole dissolves 

into many smaller vesicles and the cell wall thickens and produces extensive ingrowths, 

which are particularly prolific on the side adjacent to the xylem tissue (Huang 1985). These 

ingrowths have been likened to the folding structures present in transfer cells (Bird 1961; 

Jones and Northcot.Dh 1972; Hoth, Stadler et al. 2008), and are thought to increase the 

surface area available for nutrient transfer from the vasculature. At the same time, root-knot 

nematode infections also have systemic effects on the surrounding root tissue. Hypertrophic 

cell division in the tissue around the GCs produces a gall. Detailed anatomical analysis of 

this gall tissue has revealed that it contains nucleated sieve elements that adjoin the GCs 
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(Hoth, Stadler et al. 2008). Since the GCs are symplastically isolated, these sieve elements 

are presumed to provide nutrients that can be absorbed through the apoplast of the GCs. 

The morphological changes in the feeding site are accompanied by physiological 

changes as well. Early histochemical studies revealed that the GCs display marked amylase 

and invertase activity along with a distinct lack of starch compared to uninfected 

tissues(Orion and Bronner 1973). More recent transcriptomic analysis of GCs has revealed 

that their gene expression patterns are drastically different from uninfected cells. Barcala et. 

al. showed that the transcriptome of GCs induced in Arabidopsis showed similarities to 

differentiating xylem cells, as well as the crown galls induced by Agrobacterium tumefaciens 

(Barcala, Garcia et al. 2010). Another recent study has found that a number of specific 

metabolic pathways are differentially regulated during GC formation (Ibrahim, Hosseini et 

al. 2011). These pathways included cell cycle regulators, cell wall remodeling enzymes, 

glycolysis and gluconeogenesis, as well as plant defense response genes. Furthermore, it has 

been found that 26 different membrane transporter genes are significantly up-regulated in 

GCs (Hammes, Schachtman et al. 2005), which is consistent with the idea that GCs are 

symplastically isolated and must import nutrients from the apoplast. 

Together, this body of evidence paints an elaborate picture of the feeding site 

produced by Meloidogyne spp, one that depicts the GCs and surrounding gall tissue as a 

specialized organ that diverts nutrients away from the plant to feed the growing nematode.  

 

Cyst Nematodes (Heterodera and Globodera spp.) 

Cyst nematodes are exceptionally devastating pathogens of crop plants worldwide 

(Koenning, Overstreet et al. 1999; Chitwood 2003). Species from both Heterodera and 
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Globodera infect a wide range of host plants. However, individual species display a 

relatively narrow host specificity, particularly when compared to root-knot nematodes (Abad 

and Williamson 2010). The relatively narrow host range of cyst nematodes seems to be 

compensated for by their extreme survivability in the soil; eggs can remain dormant for many 

years waiting for a suitable host plant. This degree of persistence makes control of these pests 

difficult when using crop rotation strategies (Fleming and Powers 1998). The most effective 

means of control has been through the use of resistant varieties of crop plants. However, 

integrating resistance genes into multiple crops has proven to be a challenge, and specific 

field populations have been known to overcome resistance genes (Dale and Phillips 1982; 

Lilley, Atkinson et al. 2005). Although the life cycle of cyst nematodes is similar to root-knot 

nematodes species, there are distinct differences in how they infect as well as in the feeding 

site they create.  

 

Infection and life cycle  

As in root-knot nematode species, all cyst nematodes emerge from the egg as J2-stage 

nematodes, after being stimulated to hatch by host root exudates. The J2 nematodes migrate 

to the host root using the plant exudates as chemotactic factors (Masamune, Anetai et al. 

1982). Once they reach the root, the nematodes tend to preferentially penetrate the root at the 

zone of elongation, boring through the walls of host cells. Unlike root-knot nematodes, cyst 

nematodes collapse the cytoplasm of each plant cell as they migrate to the vascular cylinder, 

causing significant damage to the host root (Wyss 1986; Golinowski, Sobczak et al. 1997). 

Once in the vascular cylinder, the nematode selects a procambial cell adjacent to the xylem to 

be the initial feeding site cell. The nematode then uses its stylet like a hypodermic needle; it 
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carefully pierces the cell wall, invaginates the underlying membrane, and secretes a cocktail 

of effector proteins (Hussey 1989). The secretion of this effector cocktail into plant tissues 

initiates the development of the nematode’s syncytial feeding site (see syncytium 

morphology and physiology). Upon initiation of the syncytium, the nematode produces a 

feeding tube very similar to that produced by root-knot nematodes. This structure extends 

into the syncytium and acts as a molecular sieve through which the nematode ingests the 

symplastic contents (Bockenhoff and Grundler 1994; Sobczak, Golinowski et al. 1999). The 

nematode feeds from the growing syncytium; undergoing three successive molts to become a 

sexually mature adult. Unlike many root-knot nematode species, cyst nematode species 

reproduce sexually. Female cyst nematodes feed from the syncytium all the way through 

adulthood. They grow drastically taking on a rotund body shape that eventually forces its 

way out of the root, exposing the posterior of the female to the surrounding rhizosphere. By 

contrast, male cyst nematodes only feed through the J3 life-stage, after which they undergo 

two successive molts to become a much larger sexually mature vermiform. The mature male 

exits the plant root to mate with exposed females. The uterus of the adult female fills with 

fertilized eggs, and she eventually dies. The tough outer cuticle persists, forming the ‘cyst’ 

that typifies the group. The cyst forms a protective sheath around the eggs inside. Many of 

the eggs will hatch within a few days, allowing the nematode to have multiple infection 

cycles over the course of a growing season. However, some cyst eggs will remain dormant to 

wait for future growing seasons. These eggs can remain viable within the soil for up to 

twenty years waiting for the presence of a viable host to repeat the infection cycle (Lilley, 

Atkinson et al. 2005).  
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Syncytium morphology and physiology 

The syncytium produced by cyst nematodes has some distinct differences compared 

to the GCs produced by root-knot nematodes. After the nematode injects its effector proteins, 

the initial syncytial cell begins to exhibit hypertrophic growth. The cell walls of adjacent 

cells begin to break down, and their cytoplasms fuse with the initial cell. This process 

continues until several hundred cells become fused into one continuous symplast directly 

adjacent to the vasculature tissue (Jones and Northcote 1972; Jones 1981). The cytoplasm of 

the mature syncytium becomes dense and highly metabolically active, with proliferation of 

mitochondria, free ribosomes, and smooth endoplasmic reticulum. Other subcellular changes 

also become apparent. The Vacuole is broken down into smaller vesicular bodies 

(Golinowski, Grundler et al. 1996; Golinowski, Sobczak et al. 1997). Nuclear morphology 

also changes dramatically; multiple rounds of DNA endoreduplication in the absence of 

karyokinesis results in increased nuclear and nucleolar size (Niebel, de Almeida Engler et al. 

1996; Goverse, de Engler et al. 2000). Eventually, the cell wall around the syncytium 

thickens, and in-growths similar to those seen in GCs begin to appear (Jones and Northcote 

1972). In contrast to GCs, it is clear that the syncytium is symplastically connected to the 

vasculature tissue (Hoth, Schneidereit et al. 2005; Hoth, Stadler et al. 2008), indicating that 

cyst and Meloidogyne species have very different strategies for extracting nutrients from their 

host plant into the feeding site. In female cyst nematodes, the syncytium will continue to 

expand as the nematode progresses through the J3 stage of development, incorporating 

several hundred root cells surrounding the vasculature. After the J3 stage, the feeding site 

will maintain a stable volume through the remainder of the female nematode’s lifecycle. 
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Males produce smaller syncytia that only last through the J3 life stage, when the male exits 

the root.  

As in GCs, the morphological changes are accompanied by drastic changes in 

physiology. This has been highlighted in recent gene expression studies that have isolated 

and the syncytial cytoplasm. Numerous differentially expressed genes have been identified 

within the syncytium when compared to uninfected root cells (Ithal, Recknor et al. 2007; 

Klink, Overall et al. 2007; Szakasits, Heinen et al. 2009). Gene ontology analysis has 

revealed that a significant number of these differentially expressed genes are associated with 

metabolic activities and defense responses. Interestingly, it was also found that there are 

genes expressed within the syncytium that are not normally expressed in root tissues, such as 

those involved in pollen and seed development (Szakasits, Heinen et al. 2009). This data 

suggests that the nematode causes drastic shifts in the normal physiology of root cells during 

the formation of the syncytium.  

 

Effector Proteins Secreted By Cyst and Root-Knot Nematodes 

Hogenhout defines effectors as any molecule secreted by a parasite that “alter host-cell 

structure and function” (Hogenhout, Van der Hoorn et al. 2009). In the past decade, there has 

been a huge increase in the number of secreted proteins identified from plant-parasitic 

nematodes. The vast majority of these putative effectors have been isolated from the three 

esophageal gland cells, which secrete proteins directly into the esophagus and out the stylet 

(Gao, Allen et al. 2001; Gao, Allen et al. 2003; Huang, Gao et al. 2003). Only a few of these 

secreted proteins have confirmed or even putative effector functions in planta. Despite the 



 12

limited scope of our understanding, a picture of how these proteins function to alter host 

plants is beginning to emerge.  

Despite differences in the etiology and evolutionary history of cyst and root-knot 

nematodes, the effector repertoires secreted by these two groups do show some similarities. 

In fact, there are some effector families that are found in both cyst and root-knot species. At 

the same time, there are also certain effectors that are only found in either root-knot or cyst 

nematodes, and still others that seem to be confined to only certain species in either group 

(summarized in Table 1). Despite these differences, the nematode effectors characterized to 

date can generally be divided into groups based on their function in planta: cell wall 

modifying effectors, defense suppressing effectors, and development altering effectors.  

 

Cell wall modifying effectors 

The cell wall modifying effectors are currently the largest class of defined nematode 

effectors. This is largely because they contain detectable enzymatic domains that are not 

normally found in metazoans, making them relatively easy to identify. Interestingly, 

bioinformatics analysis has shown that most of these cell wall associated effectors have 

arisen from multiple horizontal gene transfers from prokaryotes (Bird, Scholl et al. 2003; 

Danchin, Rosso et al. 2010; Paganini, Campan-Fournier et al. 2012). All of these enzymes 

are used by the nematode to mechanically disrupt the plant cell wall during nematode 

migration, or to allow for the morphological changes that take place within the feeding site.  

Multiple classes of cell wall modifying enzymes are known to be secreted from the 

esophageal gland cells, or are present within the nematode’s genome. Endoglucanases 

(Smant, Stokkermans et al. 1998; Bera-Maillet, Arthaud et al. 2000), Expansins (Qin, Kudla 
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et al. 2004; Danchin, Haegeman et al. 2011), and Pectate Lyases (Kudla, Milac et al. 2007; 

Vanholme, W et al. 2007; Danchin, Rosso et al. 2010) have been identified in both cyst and 

root-knot nematodes. Additionally, investigations of the genomes of root-knot nematodes 

have facilitated the identification of polygalacturonases and xylanases that as of yet have not 

been found in cyst nematodes (Abad, Gouzy et al. 2008; Opperman, Bird et al. 2008; 

Danchin, Haegeman et al. 2011). 

In addition to enzymatic cell wall modifiers, other proteins that contain cellulose binding 

domains have been identified from both cyst and root-knot nematodes (Ding, Shields et al. 

1998; Adam Mohamed A. M. 2008; Hewezi, Howe et al. 2008), and have been shown to 

have functions in planta. One such protein, secreted from Heterodera schachtii, was shown 

to bind to a pectin methylesterase. When expressed in planta, this effector caused increased 

susceptibility to nematode infection and increase root growth (Hewezi, Howe et al. 2008). 

These data indicate that this cellulose-binding effector likely functions by facilitating the 

modification of plant cell walls through its interaction with a plant pectin methylesterase. The 

presence of this large and conserved class of cell wall modifying effectors indicates that these 

types of modifications are important in facilitating the nematode’s ability to infect its host 

plant.  

 

Defense suppressing effectors  

Plants are continuously assailed by pathogens from their surrounding environments, 

and have evolved multiple layers of defense to sense and resist being infected by these pests. 

At the same time, successful biotrophic pathogens have evolved effectors that suppress the 
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host plant defenses (Hogenhout, Van der Hoorn et al. 2009). Unsurprisingly, multiple 

effectors from both cyst and root-knot nematodes have been shown to subvert plant defenses.  

One such effector (10A06) is secreted from Heterodera schachtii, and has been 

shown to interact with spermidine synthase in planta (Hewezi, Howe et al. 2010). This 

interaction is thought to alter polyamine synthesis, thereby reduce the host plant’s ability to 

produce defense associated compounds such as salicylic acid. Another effector from H. 

schachtii (30C02) binds and inhibits the pathogenesis related protein β-1,3-endoglucanase 

and increases host susceptibility to nematode infection (Noureddine Hamamouch 2012). 

Another cyst nematode, Globodera rostochiensis, secretes a venom allergen-like protein (Gr-

VAP1) which interacts with the papain-like cysteine protease Rcr3pim, a protein known to be 

involved in plant defenses (Lozano-Torres, Wilbers et al. 2012). Yet another effector 

secreted by Globodera spp., SprySec19, interacts directly with a plant resistance protein, yet 

doesn’t elicit a defense response (Rehman, Postma et al. 2009). This raises the intriguing 

possibility that SprySec19 inhibits the R-protein’s function. These nematode effectors are the 

only nematode effector proteins to date that are known to directly target defense machinery.  

However, many other secreted proteins have been identified that are likely to play a 

role in suppressing host plant defenses. Superoxide dismutases have been identified in the 

secretions from both cyst and root-knot nematodes (Robertson, Robertson et al. 1999; 

Bellafiore, Shen et al. 2008). It is hypothesized that these proteins may blunt the plant 

defense response by acting as antioxidants to counteract the reactive oxygen species 

produced by the plant. Similarly, root-knot nematode species secrete glutathione-s-

transferases, which are thought to detoxify anti-microbial compounds produced by the plant 

(Dubreuil, Magliano et al. 2007). Nearly all plant-parasitic nematodes also secrete chorismate 
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mutase, a key enzyme in the plant shikimate pathway (Bekal S 2003; Doyle and Lambert 

2003; Huang, Dong et al. 2005; Vanholme, Kast et al. 2009). These effectors are thought to 

alter the shikimate metabolic pathway, thereby disrupting salicylic acid production and 

defense signaling. Another effector (4F01) secreted from Heterodera spp. shows sequence 

similarity to plant annexins and has even been shown to complement endogenous plant 

annexins in planta (Patel, Hamamouch et al. 2010). Since annexins are known to function in 

plant stress responses, it is thought that this effector directly modulates these same stress 

response pathways during nematode infection. Still other secreted effectors from cyst 

nematodes are homologous to ubiquitin-associated proteins (Gao, Allen et al. 2003; Tytgat, 

Vanholme et al. 2004; Jones, Kumar et al. 2009). Though these proteins have not yet been 

shown to function in planta, recent studies have identified effectors with similar domains in 

both bacterial and oomycete pathogens that target plant resistance machinery proteins for 

degradation (Gohre, Spallek et al. 2008; Birch, Armstrong et al. 2009). This raises the 

intriguing possibility that nematodes may have evolved similar effectors to targets analogous 

defense machinery.  

Though the list of nematode effectors with confirmed roles in defense suppression is 

still short, the prevalence of these types of effectors in other plant pathogens, and the large 

number of uncharacterized effectors in nematodes, indicates that there are likely to be more 

effectors added to this list in the future.  

 

Development altering effectors  

Nematodes profoundly alter the morphology and physiology of the root cells they 

infect (see giant-cell and syncytium sections), it is therefore not so surprising to find that 
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certain nematode effectors have been shown to alter plant developmental pathways. One such 

effector (19A07) is secreted from Heterodera schachtii, interacts with the auxin transporter 

LAX3 in planta, and is thought to alter auxin influx into the syncytium (Lee, Chronis et al. 

2011). Since auxin signaling has been implicated in syncytium formation (Grunewald, 

Cannoot et al. 2009), it is reasonable to think that 19A07 could play a role in transporting 

auxin into the developing feeding site. 

 Evidence is accumulating that plant-parasitic nematodes also manipulate other plant 

developmental pathways. It has recently become apparent that cyst nematodes secrete 

effector proteins that mimic the 12- and 13-amino acid CLAVATA3/ESR (CLE) signaling 

peptides from plants (Olsen and Skriver 2003). These CLE mimics have been shown to 

interact with receptor-like kinases within plants, and subsequently initiate developmental 

changes (Wang, Mitchum et al. 2005; Lu, Chen et al. 2009; Replogle, Wang et al. 2011; 

Wang, Replogle et al. 2011). More recently, other small secreted proteins have been 

identified in root-knot nematodes which may mimic plant IDA signaling peptides (Tucker 

and Yang 2013). It is increasingly apparent that multiple groups of small signaling peptides 

play important roles in plant development (Stahl and Simon 2012). Because of their 

importance in plant development and their small size, it is possible that nematodes still 

contain many other small plant peptide mimics that have yet to be discovered.  

 Another small effector (16D10) from root-knot nematodes has been shown to play a 

very different role in altering plant development. It has been shown that 16D10 interacts in 

planta with a SCARECROW-like transcription factor, and when expressed in plants it 

drastically increases root growth (Huang, Dong et al. 2006). This evidence indicates that 

16D10 likely functions to promote the development of the GCs.  
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Some other effectors that disrupt defense pathways (Doyle and Lambert 2003; Hewezi, 

Howe et al. 2010) are also known to alter root growth when expressed in planta. This 

highlights that there is signaling cross that occurs between developmental and defense 

pathways in plants, and raises the possibility that some effectors could have dual roles in 

altering both defense and development during nematode infection.  

 

Effectors with unknown functions 

 The vast majority of proteins secreted from plant-parasitic nematodes still have no 

known or putative function within the host. This lack of information is largely due to the 

unique nature of these proteins, which tend to have few or no homologs in other species 

(Gao, Allen et al. 2001; Gao, Allen et al. 2003; Huang, Gao et al. 2003). These ‘pioneers’ 

require ab initio scientific approaches, making it difficult to determine how they function in 

the plant-nematode interaction. Still other effectors are known to have a function in plant 

parasitism, yet their exact mechanism of functionality is still a mystery. Two of these 

effectors are MAP-1 and the putative Cg-1 from root-knot nematodes. Both of which have 

been isolated as potential avirulence factors against the Mi-1 resistance gene in tomato 

(Semblat, Rosso et al. 2001; Gleason, Liu et al. 2008). Both of these genes have been 

confirmed to have effects on nematode parasitism, and the MAP-1 gene has even been shown 

to be part of a family of secreted proteins within root-knot nematodes (Castagnone-Sereno, 

Semblat et al. 2009; Tomalova, Iachia et al. 2012). Yet neither of these proteins, or their 

family members, have been attributed a function. Studies in this dissertation hypothesize a 

function for the MAP-1 effector family, but future studies will be needed to confirm the 

function of these proteins and others like them.  
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It is also worth noting that there are other factors that likely contribute to virulence of 

these nematodes in planta. To date, the majority of known effectors are expressed within the 

esophageal gland cells of plant parasitic nematodes. However, this doesn’t mean that there 

aren’t other proteins from other organs that alter the host plant and facilitate nematode 

parasitism. Indeed, a protein isolated from the outer cuticle surface of Globodera pallida was 

shown to bind the precursors of plant defense compounds (Prior, Jones et al. 2001). It is not 

unreasonable to think that other proteins that come into contact with plant tissues, such as 

those secreted from the rectal glands or phasmids of the nematode, may function to alter the 

plant host and increase nematode virulence.  

After appreciating the wealth of knowledge that has been accumulated on nematode 

effector proteins over the past decade, it is clear that these are very complex plant-pathogen 

interactions. Much more research will be needed in order to understand how all of these 

effectors work in concert to facilitate nematode parasitism.  

 

Dissertation Organization 

This dissertation is composed of four independent journal papers (chapters 2 through 

5); each contains its own introduction, results, and discussion sections, with accompanying 

figures and references at the end of each chapter. The author of the dissertation was 

responsible for the majority of the research as well as the writing of each paper. Chapter 1 is 

a general introduction to sedentary endoparasitic nematodes and the previous research 

preformed on their effector proteins. Chapter 6 presents general conclusion, and relates the 

data from this dissertation to the general knowledge of plant-nematode interactions, and 

states how it could be useful in the future.  
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Table 1. A compiled list of effector proteins from both root-knot (Meloidogyne spp.) and cyst 
nematodes (Globodera and Heterodera spp.) that have confirmed or putative functions in the 
plant-nematode interaction. 
 

 
 

Effector Species  Functions  Research 
Major Avirulence 
Proteins (MAP-1) 

Meloidogyne spp. Early interactions 
between J2 and host 
plant. May trigger 
Mi-1 mediated 
resistance in tomato 

(Semblat, Rosso et al. 
2001; Castagnone-
Sereno, Semblat et al. 
2009; Tomalova, Iachia 
et al. 2012; Rutter et al. 
unpublished) 

Endoglucanases  Heterodera, 
Globodera and 
Meloidogyne spp.  

Cellulose 
degradation 

(Smant, Stokkermans et 
al. 1998; Bera-Maillet, 
Arthaud et al. 2000; 
Danchin, Rosso et al. 
2010) 

Pectate Lyase  Heterodera, 
Globodera and 
Meloidogyne spp. 

Pectate degradation (Kudla, Milac et al. 
2007; Vanholme et al. 
2007; Danchin, Rosso 
et al. 2010) 

Chorismate mutases  Heterodera, 
Globodera and 
Meloidogyne spp. 

Disruption of 
shikimate pathway 
and salicylic acid 
signaling 

(Bekal S 2003; Doyle 
and Lambert 2003; 
Huang, Dong et al. 
2005; Vanholme, Kast 
et al. 2009) 

Polygalacturonases Meloidogyne spp. Galacturonan 
degradation  

(Abad, Gouzy et al. 
2008; Opperman, Bird 
et al. 2008; Danchin, 
Haegeman et al. 2011) 

Xylanases Meloidogyne spp. Xylan degradation  (Abad, Gouzy et al. 
2008; Danchin, 
Haegeman et al. 2011) 

Cellulose binding 
proteins  

Heterodera, 
Globodera and 
Meloidogyne spp. 

Cell wall 
modifications 

(Ding, Shields et al. 
1998; Adam Mohamed 
A. M. 2008; Hewezi, 
Howe et al. 2008) 

Expansins  Heterodera, 
Globodera and 
Meloidogyne spp. 

Loosening of cell 
wall components 

(Qin, Kudla et al. 2004; 
Danchin, Haegeman et 
al. 2011) 

Proteases Heterodera, 
Globodera and 
Meloidogyne spp. 

Degradation of host 
proteins 
(Unconfirmed) 

(Vanholme, Mitreva et 
al. 2006; Jones, Kumar 
et al. 2009; Vieira, 
Danchin et al. 2011) 
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Table 1 (continued) 
 
Effector Species  Functions  Research 
Glutathione-S-
Transferases 

Meloidogyne spp. Detoxification of 
plant defense 
compounds 
(Unconfirmed) 

(Dubreuil, Magliano et 
al. 2007) 

superoxide 
dismutase 

Globodera and 
Meloidogyne spp. 

Antioxidation 
(Unconfirmed) 

(Robertson, Robertson 
et al. 1999; Bellafiore, 
Shen et al. 2008) 

Gp-RBP-1 (aka 
SPRYSEC) 

Globodera spp. Triggers plant 
resistance through 
the Gpa2 protein.  

(Sacco, Koropacka et 
al. 2009) 

10A06 Heterodera spp. Stimulates polyamine 
biosynthesis and 
suppresses host 
defenses 

(Hewezi, Howe et al. 
2010) 

Ubiquitin associated 
proteins 

Heterodera and 
Globodera spp. 

Alter Ubiquitination 
in planta  
(Unconfirmed) 

(Gao, Allen et al. 2003; 
Tytgat, Vanholme et 
al. 2004; Jones, Kumar 
et al. 2009) 

19C07 Heterodera spp. Binds Auxin 
importer in planta 
Alters Auxin 
transport into the 
feeding site 

(Lee, Chronis et al. 
2011) 

Plant signaling 
peptide mimics  

Heterodera, 
Globodera and 
Meloidogyne spp. 

Manipulate 
developmental 
signaling pathways 
in the host plant 

(Wang, Mitchum et al. 
2005; Lu, Chen et al. 
2009; Tucker and 
Yang 2013) 

16D10 Meloidogyne spp. Interacts with a host 
transcription factor 
to alter plant 
development 

(Huang, Dong et al. 
2006) 

Annexin mimics 
(4F01) 

Heterodera spp. Can complement 
endogenous plant 
annexins and alter 
host defenses 

(Patel, Hamamouch et 
al. 2010) 

Venom allergen-like 
proteins  

Globodera spp. Bind to papain-like 
cysteine proteases in 
planta and interfere 
with host defenses 

(Lozano-Torres, 
Wilbers et al. 2012) 

30C02 Heterodera spp. Binds and inhibits a 
pathogenesis related 
gene in the host 
plant 

(Noureddine 
Hamamouch 2012) 
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Table 1 (continued) 
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Abstract 

 4E02 is a putative effector protein secreted from the esophageal gland cells of both 

Heterodera glycines and Heterodera schachtii. Previous studies have shown that Hs4E02 

localizes to the nucleus in planta. However, the functional role of this effector has not yet 

been assigned and attempts to show that this protein has an effector function have been 

unsuccessful. In the current study we have used a yeast two-hybrid system to show that 

Hs4E02 interacts with the active site of the papain-like cysteine protease RD21A from 

Arabidopsis. Since RD21A and its homologs have been shown to play integral roles in other 

pathosystems, it is likely that this interaction has functional relevance in the plant-nematode 

interaction.  

  

Introduction 

The plant-parasitic soybean cyst nematode (Heterodera glycines) engages in complex 

interactions with its host plant. During infection, this parasite bores into the roots of its host 
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plant and secretes a cocktail of effector proteins into plant tissues. In the past decade, a large 

body of evidence has shown that these effector proteins are important factors that facilitate 

the parasite’s ability to infect its host (Mitchum, Hussey et al. 2013). Once within the root 

tissue, the nematode’s effector proteins interact with and manipulate host factors, causing 

drastic morphological and physiological changes within the host. These changes ultimately 

result in the formation of a syncytium composed of several hundred fused root cells 

(Golinowski, Sobczak et al. 1997). This syncytium acts as the nematode’s sole source of 

nourishment throughout its entire life cycle. Interestingly, the formation of the syncytium is 

also accompanied by drastic morphological changes within the nuclei, which increase in size 

due to DNA endoreduplication in the absence of nuclear division (Endo 1971; Goverse, de 

Engler et al. 2000). This increase in genomic DNA along with a concomitant increase in 

transcriptional activity indicates that the nematode’s effector proteins alter plant nuclear 

biology to create the syncytium. Understanding how the secreted effector proteins are able to 

induce the formation of the feeding site is a necessary first step in the development of new 

control strategies to mitigate the damage this pathogen causes to crop plants.  

To date, over 60 putative effector proteins have been isolated from H. glycines (Gao, 

Allen et al. 2001; Wang, Allen et al. 2001; Gao, Allen et al. 2003). The process of attributing 

a function to these putative effectors is hampered by the unique nature of their amino acid 

sequence. Indeed, the majority of these secreted proteins have no homologs within the 

National Center for Biotechnology Information (NCBI) non-redundant protein database and 

few contain detectable protein domains. The cryptic nature of these proteins, and the limited 

resources available to investigate their function, has prompted researchers to prioritize these 

proteins based on other criteria.  
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One putative effector that has sparked considerable interest is Hg4E02. This protein 

was first identified in an effector screen as a transcript encoding an N-terminal signal peptide 

that was specifically expressed within the subventral esophageal gland cells of H. glycines 

(Gao, Allen et al. 2003), which are known to be a major source of secreted effector proteins 

(Hussey 1989). Like other putative effector proteins, Hg4E02 has no homologs within the 

NCBI non-redundant protein database and contains no known protein domains with the 

exception of a SV40-type nuclear localization signal (NLS) (PSORT II). The functionality of 

this NLS was confirmed experimentally by localizing Hg4E02 to the nuclei of onion 

epidermal cells and Arabidopsis protoplasts (Elling, Davis et al. 2007). The localization of 

Hg4E02 to the plant cell nucleus highlights this protein as one that may elicit changes within 

the host nucleus.  

In an attempt to test whether Hg4E02 performs a virulence function for cyst 

nematodes, Patel et. al. (2008) cloned a homolog of Hg4E02 from the closely related sugar 

beet cyst nematode (Heterodera schachtii), which was found to be 99% identical to the H. 

glycines sequence (Patel, Hamamouch et al. 2008). Unlike H. glycines, H. schachtii is able to 

infect the model plant Arabidopsis thaliana, making it a much more tractable pathosystem 

for studying the nematode-plant interaction (Sijmons, Grundler et al. 1991). In fact, the H. 

schachtii-Arabidopsis pathosystem has been used to confirm the virulence functions of many 

cyst nematode effectors (Hewezi, Howe et al. 2010; Lee, Chronis et al. 2011; Noureddine 

Hamamouch 2012; Mitchum, Hussey et al. 2013). In an unexpected twist, Arabidopsis lines 

expressing an Hs4E02 transgene, with or without a signal peptide, showed no change in their 

susceptibility to H. schachtii infection (Patel, Hamamouch et al. 2008). At the same time, 

Arabidopsis lines expressing hairpin RNAs against the Hs4E02 transcript were tested for 
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their susceptibility to H. schachtii infection. In spite of the fact that these lines caused a 

significant reduction of Hs4E02 transcript abundance within the nematode, no statistically 

significant difference in nematode susceptibility could be detected (Patel, Hamamouch et al. 

2008). Though these data do not support a strong virulence function for Hs4E02, it does not 

exclude the possibility that it is an important effector protein.  

In this study, we have gone a step further in the characterization of the Hs4E02 protein and 

have identified plant proteins with which this effector could potentially interact to carry out a 

virulence function. 

 

Materials and Methods 

Ectopic expression in Arabidopsis 

 The Hs4E02 coding sequence was amplified without the signal peptide sequence 

using specific primers containing the restriction sites BamHI and SacI on the forward and 

reverse primers respectively (Forward primer: 5’-TAT AGG ATC CAT GGA AGA GGG 

AGG GCG AGT GAA GCG C-3’ and reverse primer: 5’-TAT AGA GCT CTT AAT GTT 

TGG GCT TCT TCC CGC AAC ATG-3’ (restriction sites underlined). The attached 

restrictions sites were used to directionally clone the amplified Hs4E02 fragment into the 

multiple cloning site of the pBI121 binary vector. This created a T-DNA cassette containing 

the Hs4E02 coding sequence under the control of the CaMV 35S promoter. The construct 

was confirmed using Sanger sequencing, and transformed into Agrobacterium tumefaciens 

strain C58 using the freeze thaw method (An 1988). A. tumefaciens transformed with the 

Hs4E02 expression construct were used to transform Arabidopsis thaliana ecotype 

Columbia-0 using the previously described floral dip method (Clough and Bent 1998). T1 
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seeds were screened on MS media containing 50mg/L kanamycin) to select for the presence 

of the NPTII selection marker. Transgenic lines were self-fertilized and selected to the T3 

generation, and segregation was used to determine which lines were stable carriers of the 

transgene. 

 

Quantitative Real-Time RT-PCR 

Total RNA was isolated from three separate biological replicates of each Hs4E02 

expressing line and wild type (ecotype columbia-0), using the perfect pure RNA fibrous 

tissue extraction kit (5 Prime) according to the manufacturer’s instructions. DNase treatment 

was performed with the DNase I provided with the RNA extraction kit according to the 

manufacturer’s instructions. Gene-specific primers for the Hs4E02 coding sequence and 

Arabidopsis actin (AT1G49240) were designed (Hs4E02 forward primer: 5’-CCT TTT CCG 

TCC TCA ATC GCT GC-3’ Hs4E02 reverse primer: 5’-GTT TGG GCT TCT TCC CGC 

AAC ATG-3’). One ng of DNase treated RNA and the appropriate primer pairs [10mM] 

were used in a 15uL reaction for cDNA synthesis and PCR reaction with component 

mixtures from a One-step RT-PCR kit (Quanta) according to the manufacturer’s instructions. 

The PCR reactions were run in an I-Cycler (Bio-Rad) using the following program: 50°C for 

10 min, 95°C for 5 min, and 40 cycles of 95°C for 30 sec and 60°C for 30 sec. Following 

PCR amplification, the reactions were subjected to a temperature ramp to create the 

dissociation curve, determined by changes in fluorescence measurements as a function of 

temperature, by which the nonspecific products can be detected. The dissociation program 

was 95°C for 1 min, 55°C for 10 sec, followed by a slow ramp from 55°C to 95°C. Four 

technical replicates of each reaction were performed, averaged, and then normalized to the 
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internal control (actin). Expression levels of the transgene were calculated a using the 2-∆∆CT 

method (Livak and Schmittgen 2001). The baseline was calculated using the non-specific 

background detected in the reactions using the Hs4E02 primer set with the wild type RNA.  

 

Nematode assays 

Seeds from all five Hs4E02 expressing Arabidopsis lines and wild type (Columbia-0) 

were surface sterilized using 50% bleach. Individual sterilized seeds were planted in 

individual wells of 12-well culture plates (Falcon) containing modified Knop’s medium in a 

randomly blocked experiment using 60 seeds from each line. Plates were grown at 23°C 

under 16-h-light/8-h-dark conditions. Two week old seedlings were inoculated with ~250 

pre-parasitic J2 Heterodera schachtii per seedling that were surface sterilized using a 

previously described protocol (Baum, Wubben et al. 2000). Inoculated plants were grown 

under the same conditions for an additional 3 weeks. After which, each plant was 

individually scored for the number of adult J4 female nematodes. P-values for the difference 

in the average number of adult females between Hs4E02 expressing lines and wild type were 

calculated using a least squares mean model (nematode=plate genotype) (SAS).  

 

Yeast two-hybrid assay 

A yeast-two-hybrid screening was performed as described in the BD Matchmaker 

Library Construction and Screening Kits (Clonetech). The Hs4E02 coding sequence was 

amplified without the signal peptide using specific primers containing the restriction sites 

EcoRI and PstI on the forward and reverse primers respectively (Forward primer: 5’-TAT 

AGA ATT CGA AGA GGG AGG GCG AGT GAA GCG C-3’ and reverse primer 5’-ATG 
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ATC TGC AGG TCA ATG TTT GGG CTT CTT CCC GCA AC-3’ restriction sites 

underlined). The attached restrictions sites were used to directionally clone the amplified 

Hs4E02 fragment into the multiple cloning site of the pGBKT7 bait vector to produce a 

fusion construct of Hs4E02 bound to the GAL4 DNA binding domain (BD). This construct 

was verified by sequencing, and transformed into Saccharomyces cerevisiae strain Y187 to 

create the bait strain. The previously generated prey libraries using cDNA made from the 

roots of Arabidopsis infected with H. schachtii at 3, 7, and 14 days after infection (Hewezi, 

Howe et al. 2008). The bait strain was mated separately with the three prey libraries in the 

compatible S. cerevisiae strain AH109. Screening and subsequent co-transformation analysis 

of interacting prey vectors was carried out according to Clonetech protocols, using the empty 

bait vector as well as human lamin C containing bait vector as negative controls.  

 

Results 

Arabidopsis lines expressing Hs4E02 display an inconsistent susceptibility trend  
 

To detect a potential virulence function that Hs4E02 may have during the interaction 

between H. schachtii and Arabidopsis, the Hs4E02 coding sequence, without the signal 

peptide was constitutively expressed within Arabidopsis. Five independently transformed 

lines were developed, which stably express the Hs4E02 transgene. The level of transgene 

expression was assessed for each line using quantitative real-time RT-PCR (qPCR). Each 

line was shown to express the Hs4E02 transgene mRNA, but variability was observed in the 

level of transgene expression in each line (Fig. 1).  

To assess the relative susceptibility of each Hs4E02-expressing line to H. schachtii 

infection, all five lines were infected with H. schachtii alongside untransformed controls, and 
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the number of successfully developing adult female nematodes was counted 21 days after 

inoculation (Fig. 2). Two of the lines (line 1-3 and line 5-1) showed significant increases in 

the number of J4 female nematodes compared to control plants, although this susceptibility 

phenotype was not consistently observed in all five lines.  

 

Identification of Hs4E02-interacting partner from Arabidopsis 

Many well characterized nematode effector proteins are known to interact with host 

proteins to carry out their function in planta (Hewezi and Baum 2012). To determine whether 

Hs4E02 interacts with any proteins within Arabidopsis, the Hs4E02 protein, without the 

signal peptide, was used as bait in a yeast two-hybrid screen against three separate prey 

libraries. Each of the three prey libraries contains proteins expressed in Arabidopsis roots 

during different stages of H. schachtii infection (J2, J3, and J4 stage) (Hewezi, Howe et al. 

2008). After screening all three prey libraries, 123 positive colonies were identified, which 

showed an interaction with the Hs4E02 bait. Prey plasmids were isolated and sequenced from 

each colony, to identify which protein was present in each prey vector. After discarding 

known false positives, a final candidate list of 33 Arabidopsis proteins was identified. The 

isolated prey vectors for each of these candidates was co-transformed into yeast with the 

Hs4E02 bait as well as non-specific negative controls to assess the specificity of the 

interaction. Three separate Arabidopsis genes recapitulated a positive interaction that was 

specific for Hs4E02 (Table 1). Of the three interacting candidates, only one, i.e., Resistant-

to-Dehydration 21A (RD21A), was represented by more than one prey clone. A total of 13 

RD21A prey clones were isolated from separate yeast colonies from all three yeast libraries. 

An alignment of the 13 RD21A clones revealed that they were different lengths, spanning 
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different regions of the RD21A protein (Fig. 3). It was apparent that all of these different 

clones shared the same 85 amino acid stretch of the RD21A protein (R237-K321), which 

resides within the 216 residue cysteine protease catalytic domain (L137-I352) within the 

RD21A protein (Fig. 3). This alignment indicates that Hs4E02 is likely to interact 

specifically with a region within the catalytic domain of the RD21A papain-like cysteine 

protease.  

 

Discussion 

In the current study we set out to characterize the function of the putative effector 

protein Hs4E02. Previous studies have shown that Hs4E02 contains a functional NLS that 

targets it to the plant nucleus (Elling, Davis et al. 2007). However, exogenous expression of 

Hs4E02 in Arabidopsis, as well as host-derived RNAi targeting of its transcript, failed to 

show an effect on host susceptibility to H. schachtii infection (Patel, Hamamouch, et al. 

2008). Despite these unexpected results, 4E02 still stands out as a likely effector protein that 

has a role in the nematode-plant interaction.  

In this study, we produced five separate Arabidopsis lines that constitutively 

expressed Hs4E02 (Fig. 1). Contrary to previously published data, we found that two of the 

five lines showed a significant increase in susceptibility to H. schachtii infection (Fig. 2). 

Additionally, the line with the highest level of Hs4E02 expression (line 1-3) also displayed 

the greatest increase in nematode susceptibility. These results indicate that Hs4E02 

expression may have an effect on the nematode-plant interaction in a dose dependent manner. 

However, the correlation between Hs4E02 expression level and susceptibility is not 

consistent across all five transgenic lines. Lines 5-1 and 11-1 show equivalent levels of 
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Hs4E02 expression (Fig. 1). Yet, line 5-1 shows a significant increase in nematode 

susceptibility, while line 11-1 shows no difference compared to the wild type (Fig. 2). The 

inconsistency across all Hs4E02 expressing lines, from the current and previous studies, has 

led to uncertainty as to whether Hs4E02 expression truly has an effect on nematode 

susceptibility. At present, we cannot definitively say whether the increase in susceptibility is 

a result of Hs4E02 expression, or merely a chance effect of the transgene insertion site. What 

is clear is that low levels of Hs4E02 expression do not produce a measurable effect on host 

susceptibility. However, it is possible that future investigations into the functions of Hs4E02 

using higher expressing transgenic lines could find a more consistent susceptibility 

phenotype.  

Despite the inconsistency of the Hs4E02 phenotype there is further evidence showing 

that Hs4E02 performs an effector function in planta. Furthermore, there are several variables 

that can confound the results of the susceptibility assays that have been performed with 

Hs4E02. One such confounding variable is the degree of redundancy within an effector 

family. Effector proteins, from both nematodes and other plant parasites, are often part of 

multi gene families within a single genome (Abad, Gouzy et al. 2008; Haas, Kamoun et al. 

2009; Raffaele, Farrer et al. 2010). It is thought that these effector gene families perform 

redundant functions within a host plant. The presence of multiple redundant copies of 

Hs4E02 could have interfered with the efficacy of host derived RNAi targeting this 

transcript. Small polymorphisms in the coding sequence of different protein isoforms could 

reduce the effect of host-derived RNAi. It is also conceivable that Hs4E02 functions in 

conjunction with other nematode effector proteins to carry out its function. In which case 

expressing Hs4E02 without its cognate partner would be unlikely to elicit a phenotype. Still 



 40

other confounding variables could have arisen from expressing a nematode protein in an 

exogenous plant environment. This could result in posttranslational modifications that do not 

occur when Hs4E02 is expressed within the nematode. In short, the negative results seen in 

susceptibility assays thus far do not exclude Hs4E02 from having an effector function.  

Working on the presumption that Hs4E02 has an effector function we set out to 

determine whether Hs4E02 interacts with proteins from Arabidopsis. Using a yeast two-

hybrid assay we were able to identify three separate Arabidopsis genes that showed an 

interaction with Hs4E02 in yeast (Table 1). Two of the candidate genes (AT3G45960) and 

(AT3G54440) were represented by one prey clone each. Though these were considered as 

potential host interacting proteins, their ontologies and subcellular localizations did not fit 

with the nuclear localization of Hs4E02. AT3G45960, which encodes Arabidopsis expansin-

like a3 (ATEXLA3), has roles in plant cell wall modifications, while AT3G54440 encodes a 

glycoside hydrolase with a role in carbohydrate metabolism within the chloroplast. Though 

neither of these two candidates stands out as proteins with overt functional significance in the 

nematode-plant interaction, we cannot discount the possibility that they do interact with 

Hs4E02 during infection. As such, future studies should investigate whether these 

interactions occur in planta. 

In contrast to the first two candidates, the third (AT1G47128) was isolated a total of 

13 times from all three yeast libraries used in our assay. AT1G47128 encodes a papain-like 

cysteine protease known as Responsive to Dehydration 21A (RD21A). It is well established 

that cysteine proteases of this class have functional roles in senescence and plant-parasite 

interactions (van der Hoorn 2008). In fact, two recent studies have shown that RD21A has 

pro-death function, and mutations of this gene result in altered susceptibility to necrotrophic 



 41

pathogens (Shindo, Misas-Villamil et al. 2012; Lampl, Alkan et al. 2013). Other studies have 

identified homologous papain-like cysteine proteases that are required for pathogen-triggered 

immune responses in multiple plant species (Gilroy, Hein et al. 2007; Deslandes, Bernoux et 

al. 2008). Still other studies have shown that papain-like cysteine proteases are directly 

targeted and inhibited by effector proteins from multiple different pathogens (Rooney, Van't 

Klooster et al. 2005; Bozkurt, Schornack et al. 2011; Bar-Ziv, Levy et al. 2012). Taken 

together, this body of evidence shows that RD21A and other papain-like cysteine protease 

are well-conserved immune modulators that are targeted by multiple plant pathogens. With 

its established role in plant-pathogen interactions, we think that RD21A is a likely functional 

target of Hs4E02.  

At first glance, the fact that RD21A is a vacuolar associated protein makes it hard to 

imagine that it could interact with the nuclear localized Hs4E02. However, this type of 

interaction is not unprecedented. A recent study of another vacuolar localized paralog 

(RD19) showed that this papain-like cysteine protease is targeted by the effector protein 

PopP2, from Ralstonia solanacearum. Furthermore, once PopP2 interacts with RD19, the 

complex is relocalized to the plant nucleus (Deslandes, Bernoux et al. 2008). It is tempting to 

speculate that Hs4E02 could interact with and relocalize RD21A in a similar manner. Indeed, 

this hypothesis fits with recent data that has shown that certain nematode effectors localize to 

the nucleus only after interacting with host proteins first (Hewezi and Baum 2012).  

Inspection of the 13 RD21A clones isolated from our yeast two-hybrid assay lent 

more credence to the hypothesis that this protein interacts specifically with Hs4E02. A 

protein alignment of the 13 clones revealed that together they only share an 85-residue 

stretch of the RD21A protein in common (Fig. 3). This short stretch of amino acids lies 
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within the catalytic protease domain of RD21A and includes two of the three catalytic 

residues within the active site (van der Hoorn 2008). Additionally, a review of the literature 

revealed that this Hs4E02 interacting stretch overlaps a region homologous to the site bound 

by the viral protein V2 in an orthologous papain-like cysteine protease (Cyp1) (Bar-Ziv, 

Levy et al. 2012). Together, this data suggest that Hs4E02 binds specifically to a region 

within the active site of RD21A, and makes it likely that this is a functional interaction and 

not a random occurrence. Given the fact that RD21A is only active after cleavage of both its 

N-terminal inhibitor domain and its C-terminal granulin domains (Yamada, Matsushima et 

al. 2001), specific interaction with the catalytic domain is important for a functional 

interaction. 

As of yet, the interaction between RD21A and Hs4E02 has only been confirmed in 

yeast cells. Future functional studies of Hs4E02 should confirm this interaction in planta 

using either bimolecular fluorescence complementation or co-immunoprecipitation. Once 

this interaction between Hs4E02 and RD21A is confirmed in planta, there are still several 

questions that need to be answered to determine the functional significance of this 

interaction. The question: Does Hs4E02 perform a virulence function?. In this study, our 

Hs4E02-expressing lines have not shown a consistent change in nematode susceptibility. 

However, since mutations in RD21A have been shown to affect the growth of Botrytis 

cinerea and Sclerotinia sclerotiorum, infecting our Hs4E02 lines with these necrotrophic 

pathogens could reveal a susceptibility phenotype. An alternative approach would be to 

deliver Hs4E02 as an effector in a known avirulent interaction, perhaps using Pseudomonas 

syringae Dc3000, to see if the protein effects the induction of the hypersensitive response. 

The second question: Does RD21A play a role in the plant-nematode interaction? A 
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straightforward approach to answering this question would be to test RD21 knock-out 

mutants and overexpression lines for their susceptibility to nematode infection. Positive 

results in these experimental approaches would provide convincing evidence that Hs4E02 

binds and modulates the function of RD21A in planta.  

In summary, using a yeast two-hybrid system we have found that the putative effector 

protein Hs4E02 interacts with the active site of the papain-like cysteine protease RD21A 

from Arabidopsis. Based on previous data showing the importance of RD21A in other 

pathosystems, we hypothesize that this interaction has functional significance in the plant-

nematode interaction. Future studies will be needed to investigate this possibility.  
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Figure 1. qRT-PCR expression analysis of Arabidopsis lines expressing Hs4E02. Five 
independently transformed non-segregating lines were assessed for their relative expression 
of the Hs4E02 transgene.  
 
 
 
 
 
 
 
 

 
 
Figure 2. Assay for susceptibility of Hs4E02-expressing lines to H. schachtii infection. Two 
lines showed a significant increase in their susceptibility to nematode infection compared to 
Col-0 controls (p-values above bars), while three other lines showed no significant 
difference.  
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Figure 3. Alignment of RD21A yeast two-hybrid clones with the full-length protein. The 
thirteen RD21A prey clones, which showed a specific interaction with the Hs4E02, shared a 
common 85 amino acid stretch representing the putative Hs4E02-binding site (*). This 
putative binding site resided within the catalytic domain of RD21A (RED). This binding site 
also contains two of the three catalytic residues within the RD21A active site (star), and 
overlaps a region homologous to the 15 residue binding site of V2 (from Tomato Yellow 
Leaf Curl Virus) in a homologous papain-like cysteine protease from Nicotiana 
benthamiana. This putative Hs4E02-binding site did not overlap the N-terminal inhibitor 
domain (BLUE) or the C-terminal granulin domain (YELLOW) of RD21A.  

RD21A  MGFLKPTMAILFLAMVAVSSAVDMSIISYDEKHGVSTTGGRSEAEVMSI YEAWLVKHGKAQSQNSLVEKDRRFEIFKDNLRFVDEHNEKNLSYRLGLTRFADLTNDEY RSKYLGAKMEKK
J2-67  ------------------------------------------------------------------------------------------------------------------------
J3-37  ---------------------------------------------------------GKAQSQNSLVEKNRRFEIFKDNLRFVDEHNEKNLSYRLGLTRFADLTNDEYRSKYLGAKMEKK
J3-51  ------------------------------------------------------------------------------------------------------------------------
J3-56  ------------------------------------------------------------------------------------------------------------------------
J4-2   ------------------------------------------------------------------------------------------------------------------------
J4-6   ------------------------------------------------------------------------------------------------------------------------
J4-9   ------------------------------------------------------------------------------------------------------------------------
J4-21  ------------------------------------------------------------------------------------------------------------------------
J4-24  ------------------------------------------------------------------------------------------------------------------------
J4-46  ------------------------------------------------------------------------------------------------------------------------
J4-50  ------------------------------------------------------------------------------------------------------------------------
J4-52  ------------------------------------------------------------------------------------------------------------------------
J4-64  ------------------------------------------------------------------------------------------------------------------------

RD21A  GERRTSLRYEARVGDE LPESIDWRKKGAVAEVKDQGGCGSCWAFSTIGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J2-67  ---RTSLRYEARVGDELPESIDWRKKGAVAEVKDQGGCGSCWAFSTIGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J3-37  GERRTSLRYEARVGDELPESIDWRKKGAVAEVKDQGGCGSCWAFSTIGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J3-51  -------------------------------------------------------------------------------------------------IDTDKDYPYKGVDGTCDQIRKNA
J3-56  ---RTSLRYEARVGDELPESIDWRKKGAVAEVKDQGGCGSCWAFSTIGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J4-2   ----------------------------------------------IGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J4-6   ----------------------------------------------IGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J4-9   ------------------------------------------------------------LITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J4-21  ----------------------------------------------IGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J4-24  ------------------------------------GCGSCWAFSTIGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J4-46  --------------------------------------------------------------------------------------------------------------------RKNA
J4-50  -------------------------------------------------------------------------------------------------IDTDKDYPYKGVDGTCDQIRKNA
J4-52  ------------------------KKGAVAEVKDQGGCGSCWAFSTIGAVEGINQIVTGDLITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
J4-64  ------------------------------------------------------------LITLSEQELVDCDTSYNEGCNGGLMDYAFEFIIKNGGIDTDKDYPYKGVDGTCDQIRKNA
                                                                                                                           ****

RD21A  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPI KNGENPPN
J2-67  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J3-37  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGK---------------------------------------
J3-51  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J3-56  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-2   KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-6   KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-9   KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-21  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-24  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-46  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-50  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-52  KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
J4-6   KVVTIDSYEDVPTYSEESLKKAVAHQPISIAIEAGGRAFQLYDSGIFDGSCGTQLDHGVVAVGYGTENGKDYWIVRNSWGKSWGESGYLRMARNIASSSGKCGIAIEPSYPIKNGENPPN
       *********************************************************************************                                   

RD21A  PGPSPPSPIKPPTQ CDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYSCCPHEYPVCDLDQGTCL LSKNSPFSVKALKRKPATPFWSQGRKNIA
J2-67  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYG-YCFAWGCCPLEAATCCDDNYSCCP-------------------------------------------
J3-37  ------------------------------------------------------------------------------------------------------
J3-51  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYSCCPHEYPVCDLDQGTCLLSKNSPFSVKALKRKPATPFWSQGRKNIA
J3-56  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAW--------------------------------------------------------------
J4-2   PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDD-------------------------------------------------
J4-6   PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYSCCPHEYP---------------------------------------
J4-9   PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYS----------------------------------------------
J4-21  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDD-------------------------------------------------
J4-24  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYSCCPHEYPVCDLDQGTCLLS---------------------------
J4-46  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYSCCPHEYPVCDLDQGTCLLSKNSPFSVKALKRKPATPFWSQGRKNIA
J4-50  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYSCCPHEYPVCDLDQGTCLLSKNSPFSVKALKRKPATPFWSQGRKNIA
J4-52  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYSCCPHEYPVCD------------------------------------
J4-64  PGPSPPSPIKPPTQCDSYYTCPESNTCCCLFEYGKYCFAWGCCPLEAATCCDDNYSCCPHEYPVCDLDQGTCLLSKNSPFSVKALKRKPATPFWSQGRKNIA

V2
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Table 1. Hs4E02 Interaction candidates identified in our yeast two-hybrid screen. 
Descriptions of each of the individual genes that showed specific interactions with the 
Hs4E02 bait in yeast. * The number of prey clones from each interaction candidate and the 
yeast two-hybrid library from which they were isolated (J2, J3, or J4).  
 

Arabidopsis 
gene ID 

Description 
Prey clones* 

J2 J3 J4 

AT3G45960 
Arabidopsis thaliana expansin-like A3 
(ATEXLA3): cell wall modification 

0 0 1 

AT3G54440 
glycoside hydrolase family 2 protein: 
carbohydrate binding and carbohydrate 
metabolic processes within the chloroplast 

1 0 0 

AT1G47128 
Responsive to dehydration 21A (RD21A): 
peptide ligase and protease activity, involved in 
plant stress response and immunity 

1 3 9 
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Abstract 

Cyst nematodes are a pervasive threat to many crop plants around the world. In an 

effort to combat these parasites, much effort has been focused on characterizing the effector 

proteins that allow them to infect their plant hosts. A family of putative effector proteins 

composed of three members (Hg25A01, Hg30G12, and Hg4G05), has previously been 

isolated form the esophageal gland cells of the soybean cyst nematode (Heterodera glycines). 

In this study we have identified an orthologous member of this protein family (Hs25A01) 

within the closely related species H. schachtii. Overexpression of Hs25A01 in Arabidopsis 

produced plants with increased susceptibility to H. schachtii and increased root length. The 

Hs25A01 protein interacts with multiple Arabidopsis proteins in yeast as well as in planta. 

We conclude that Hs25A01 represents a secreted effector protein that alters development 

within the plant cell, and performs a virulence function for the nematode parasite.  

  

                                                 
1Primary researcher and writer 
2Intellectual and editorial contributions 
3Intellectual and research contributions 
4Intellectual, editorial, and financial contributions, primary corresponding author 
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Introduction 

The soybean cyst nematode (Heterodera glycines) causes extensive monetary losses 

in yield each year (Koenning, Overstreet et al. 1999). The success of this pathogen relies on 

its ability to engage in a complex interaction with its host plant, and at the interface of this 

interaction are effector proteins. These effector proteins are known to be secreted by the 

nematode into host plant tissues using a hollow needle-like structure known as a stylet 

(Hewezi and Baum 2012). Once in plant tissues, many nematode effector proteins interact 

with and manipulate host plant factors, ultimately resulting in the formation of an elaborate 

feeding site within the root tissue known as a syncytium. The syncytium acts as a nutrient 

sink in the plant, diverting energy away from normal plant processes to feed the growing 

nematode through adulthood and reproduction. The nematode’s effector proteins underlie the 

parasite’s ability to form the syncytium and to live off of host plant tissues. Understanding 

how these effector proteins function within the plant can lead to new ways to combat these 

pests as well as a better understanding of the host-parasite interaction.  

The effector proteins secreted through the nematode’s stylet are produced in the 

esophageal gland cells (one dorsal and two subventral) (Hussey 1989). These three gland 

cells empty their proteinaceous content into the nematode’s esophagus, from where it is then 

released through the stylet. Many putative effector proteins have been isolated from the 

esophageal gland cells of cyst nematodes, and several have been shown to perform a 

virulence function for the nematode. Multiple cell wall modifying enzymes such as 

cellulases, pectate lyases, and cellulose-binding proteins are secreted from the esophageal 

gland cells (Smant, Stokkermans et al. 1998; Hewezi, Howe et al. 2008). These proteins are 

thought to facilitate the drastic changes associated with the formation of the syncytium. A 
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functional chorismate mutase protein is secreted from the nematode’s esophageal gland cells, 

and has been shown to alter the shikimate pathway in planta (Bekal S 2003). Other cyst 

nematode effectors have been shown to mimic CLAVATA3/ESR (CLE) signaling peptides 

within the plant, and consequently affect plant growth (Olsen and Skriver 2003; Wang, 

Mitchum et al. 2005; Lu, Chen et al. 2009). These well-characterized cyst nematode effectors 

have revealed important details of the plant-nematode interaction, and yet they only represent 

a small portion of the cyst nematode’s secretome, which currently stands at over 60 protein 

constituents (Gao, Allen et al. 2001; Wang, Allen et al. 2001; Gao, Allen et al. 2003). The 

vast majority of these putative effectors remains uncharacterized and has no predicted 

function. 

In this study we have characterized a small gene family of putative effectors that we 

collectively refer to as 25A01. Three distinct isoforms of the 25A01 protein family 

(Hg25A01, Hg30G12, and Hg4G05) were previously isolated from H. glycines gland-

specific cDNA libraries (Gao, Allen et al. 2001). These clones encode a predicted N-terminal 

secretion signal, and were all shown to be expressed specifically within the dorsal gland cell 

of H. glycines during parasitic stages, indicating that all three proteins are likely to be 

secreted into host plant tissues. Though each of these three proteins was isolated individually, 

a more in depth analysis revealed that they share 86-95% amino acid identity, and comprise a 

protein family within H. glycines (Fig. 1). Despite their abundance within H. glycines, 

attempts to infer the functions of these proteins using computational tools have been 

unproductive, revealing that this protein family has no significant homologs in the NCBI 

non-redundant protein database (BLASTp) (Altschul, Gish et al. 1990) and is predicted to 

contain no functional domains (Interpro-scan) (Quevillon, Silventoinen et al. 2005). 
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Interestingly, a microarray experiment probing for the expression of specific H. glycines 

effector proteins showed that Hg25A01 was specifically up-regulated during the parasitic-

second stage juvenile (J2) stage of nematode development (Ithal, Recknor et al. 2007). This 

stage of development coincides with the early establishment of the syncytium within the host 

plant, indicating that Hg25A01 could play a role in formation of the feeding site.  

Taken together, these data indicate that the 25A01 protein family represents a group 

of unique proteins specifically secreted from the esophageal glands of H. glycines during the 

early stages of nematode infection. We hypothesized that the 25A0l gene family contains 

secreted proteins that carry out a virulence function for the nematode in planta. In this study, 

we have isolated a homologous clone of the 25A01 protein family from the closely related 

sugar beet cyst nematode H. schachtii, and investigated the role this protein plays in H. 

schachtii’s infection of the model plant Arabidopsis thaliana. We have determined that 

Hs25A01 effects the cyst nematode-plant interaction; increasing plant susceptibility to 

nematode infection as well as effecting plant growth. 

 

Materials and Methods 

In situ hybridization of effector transcripts 

 Specific forward and reverse primers were designed for the coding sequence of each 

of the Hs25A01 transcript. These primers were used to amplify an amplicon 90 bp in length 

from cDNA pools generated from H. schachtii. This amplicon was used as a template in a 

unidirectional PCR reaction to produce single stranded sense and anti-sense digoxigenin 

(DIG)-labeled probes for each candidate effector transcript. Unidirectional PCRs were 

performed in 25µl volumes using a DIG-nucleotide labeling kit (Roche). In situ 
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hybridizations were performed on mixed parasitic stages of H. schachtii as previously 

described (de Boer, Yan et al. 1998). Nematodes were fixed in a 2% formaldehyde solution. 

Fixed nematodes were permeabilized by hand cutting with a razorblade on a glass slide in 

combination with a partial proteinase-K digestion (20mg/mL, 30 min RT). DIG-labeled 

probes were hybridized to permeabilized tissue over night at 50°C. Hybridized probes within 

the nematode were detected using and anti-DIG antibody conjugated to alkaline phosphatase 

and it’s substrate. Samples were then visualized using a Zeiss Axiovert 100 inverted light 

microscope.  

 

In planta subcellular localization 

The Hs25A01 coding sequence was amplified without the signal peptide sequence 

using specific primers containing the restriction sites EcoRI and EagI on the forward and 

reverse primers respectively (Forward primer: 5’-TAT AGA ATT CCC GAC TCC TTA 

TGA TGC TGA ATC GGA ATC TTC TGA AT-3’ and reverse primer: 5’-TAT ACG GCC 

GCC GTT AGT GCT AGG GCC GGC GAA GTT GG-3’). The attached restrictions sites 

were used to directionally clone the amplified Hs25A01 fragment into the multiple cloning 

site of the pRJG23 vector (Grebenok, Pierson et al. 1997). The ligation produced a construct 

containing Hs25A01 fused with the coding sequence of GFP and a GUS reporter gene under 

the control of a double CaMV 35S promoter. The construct was sequenced using Sanger 

technology. The Hs25A01 fusion construct was attached to 1.6µm gold particles, and 

bombarded into onion epidermal cells using Biolistic Particle Delivery System (Bio-Rad) as 

described in previous studies (Elling, Davis et al. 2007). Bombarded onion epidermal peels 

were incubated in the dark for 24 hours at 26°C. Fluorescent GFP reporter was assessed and 
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photographed using an Zeiss Axiovert 100 inverted microscope. Bombardment was repeated 

3 times in independent experiments.  

  

Generation of transgenic Arabidopsis  

 The Hs25A01 coding sequence was amplified without the signal peptide sequence 

using specific primers containing the restriction sites Bam HI and Sac I on the forward and 

reverse primers respectively (Forward primer: 5’-TAT GGA TCC ATG CCG ACT CCT 

TAT GAT GCT GAA TCG GAA TCT TCT GAA T-3’ and reverse primer: 5’-TAT AGA 

GCT CCT ACA GCC GCA GCA GCA GAA GTT TCT CCG-3’ restriction sites 

underlined). The attached restrictions sites were used to directionally clone the amplified 

Hs25A01 fragment into the multiple cloning site of the pBI121 binary vector. This created a 

T-DNA cassette containing the Hs25A01 coding sequence under the control of the CaMV 

35S promoter. The construct was confirmed using Sanger sequencing, and transformed into 

Agrobacterium tumefaciens strain C58 using the freeze thaw method (An 1988). A. 

tumefaciens transformed with the Hs25A01 expression construct were used to transform 

Arabidopsis thaliana ecotype Columbia-0 using the previously described floral dip method 

(Clough and Bent 1998). T1 seeds were screened on MS media containing 50mg/L 

kanamycin, to select for the presence of the NPTII selection marker. Transgenic lines were 

self fertilized and selected to the T3 generation, and segregation was used to determine which 

lines were stable carriers of the transgene. 

  

Quantitative Real-Time-RT-PCR 



 56

Total RNA was isolated from three separate biological replicates of each Hs25A01 

expressing line and wild type (ecotype columbia-0), using the perfect pure RNA fibrous 

tissue extraction kit (5 Prime) according to the manufacturer’s instructions. DNase treatment 

was performed with the DNase I provided with the RNA extraction kit according to the 

manufacturer’s instructions. Gene specific primers for the Hs25A01 coding sequence and 

Arabidopsis actin (AT1G49240) were designed (Hs25A01 for primer:5’-GCG CCG AAA 

AGT GAA CAG ACG C-3’ Hs25A01 rev primer: 5’-CGC CTT TGG CTG CTT GTC TTC 

C-3’). One ng of DNase treated RNA and the appropriate primer pairs [10mM] were used in 

a 15uL reaction for cDNA synthesis and PCR reaction with component mixtures from a One-

step RT-PCR kit (Quanta) according to the manufacturer’s instructions. The PCR reactions 

were run in an I-Cycler (Bio-Rad) using the following program: 50°C for ten min, 95°C for 

five min, and 40 cycles of 95°C for 30 sec and 60°C for 30 sec. Following PCR 

amplification, the reactions were subjected to a temperature ramp to create the dissociation 

curve, determined by changes in fluorescence measurements as a function of temperature, by 

which the nonspecific products can be detected. The dissociation program was 95°C for one 

min, 55°C for ten sec, followed by a slow ramp from 55°C to 95°C. Four technical replicates 

of each reaction were performed, averaged, and then normalized to the internal control 

(actin). Expression levels of the transgene were calculated a using the 2-∆∆CT method (Livak 

and Schmittgen 2001). The baseline was calculated using the non-specific background 

detected in the reactions using the Hs25A01 primer set with the wild type RNA samples.  

  

Root length assay 
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Seeds from each of the three non-segregating lines as well as wild type (Columbia-0) 

were surface sterilized and planted into four-well polystyrene rectangular plates (Thermo 

Scientific) containing MS media. Eight separate plates were used containing at least 15 seeds 

from each line, each line was planted in each relative well position twice to negate potential 

effects of well position on growth. Plates were placed vertically and incubated at 23°C under 

16-h-light/8-h-dark conditions. After 10 days root lengths were measured in a blinded 

fashion as the distance between the crown and the tip of the root in three independent 

experiments. At least 100 combined data points were collected for each line. Statistics for the 

difference between the mean root length of each transgenic line and wild type controls were 

calculated using a two-tailed Student’s t-test.  

  

Infection assay  

Seeds from all three Hs25A01 expressing Arabidopsis lines and wild type (Columbia-

0) controls were surface sterilized. Individual sterilized seeds were planted in individual 

wells of 12-well culture plates (Falcon) containing modified Knop’s medium in a randomly 

blocked experiment using 60 seeds from each line. Plates were grown at 23°C under 16-h-

light/8-h-dark conditions. Two week old seedlings were inoculated with ~250 pre-parasitic J2 

Heterodera schachtii per seedling that were surface sterilized using a previously described 

protocol (Baum, Wubben et al. 2000). Inoculated plants were grown under the same 

conditions for an additional three weeks. After which, each plant was individually scored for 

the number of adult J4 female nematodes. P-values for the difference in the average number 

of adult females between Hs25A01 expressing lines and wild type were calculated using a 

least squares mean model (nematode=plate genotype) (SAS).  
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Yeast two-hybrid assays 

 A yeast two-hybrid (Y2H) screening was performed as described in the BD 

Matchmaker Library Construction and Screening Kits (Clonetech). The Hs25A01 coding 

sequence was amplified without the signal peptide using specific primers containing the 

restriction sites EcoRI and BamHI on the forward and reverse primers respectively (Forward 

primer: 5’-TAT AGA ATT CCC GAC TCC TTA TGA TGC TGA ATC GGA ATC TTC 

TGA AT-3’ and reverse primer: 5’-TAT AGG ATC CCT ACA GCC GCA GCA GCA GAA 

GTT TCT CCG-3’ restriction sites underlined). The attached restrictions sites were used to 

directionally clone the amplified Hs25A01 fragment into the multiple cloning site of the 

pGBKT7 bait vector to produce a fusion construct of Hs25A01 bound to the GAL4 DNA 

binding domain (BD). This construct was verified by sequencing, and transformed into 

Saccharomyces cerevisiae strain Y187 to create the bait strain. The previously generated 

prey libraries using cDNA made from the roots of Arabidopsis infected with H. schachtii at 

three, seven, and 14 days after infection (Hewezi, Howe et al. 2008). The bait strain was 

mated separately with the three prey libraries in the compatible S. cerevisiae strain AH109. 

Screening and subsequent co-transformation analysis of interacting prey vectors was carried 

out according to Clonetech protocols, using the empty bait vector as well as lamin C 

containing bait vector as negative controls.  

 

Bimolecular fluorescence complementation assay 

The Hs25A01 coding sequence was amplified without the signal peptide using 

specific primers containing the restriction sites EcoRI and BamHI on the forward and reverse 
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primers respectively (Forward primer: 5’-TAT AGA ATT CAC CGA CTC CTT ATG ATG 

CTG AAT CGG AAT CTT CTG AAT-3’ and reverse primer: 5’-TAT AGG ATC CCT AGT 

TAG TGC TAG GGC CGG CGA AGT TGG-3’ restriction sites underlined) for directional 

cloning in pSTAT-nYFP-C1 vector. This created a fusion protein of Hs25A01 and the n-

terminal domain of the eYFP protein, which was confirmed by sequencing. The amplified 

coding sequence of AT1G08110 with the restriction sites XhoI and EcoRI (Forward primer: 

5’-TAT ACT CGA GAA ATG GCG TCG GAA GCG AGG GAA TCA CC-3’ and reverse 

primer: 5’-TAT AGA ATT CTC AAG CTG CGT TTA CGG TAG TAG TTC CGA TAG 

TC-3’ restriction sites underlined). AT1G08110 was directionally cloned tin pSTAT-cYFP-

C1 vector to produce a fusion protein with the c-terminal domain of the eYFP, and was 

confirmed by sequencing. A fusion protein of AT5G28830 in pSTAT-cYFP-C1 was used as 

a negative control to confirm the specificity of the BiFC interaction. The construct was 

delivered to onion epidermal cells using previously described particle bombardment 

method(Hewezi, Howe et al. 2008). Bombarded tissues were incubated at 26°C in the dark. 

A positive protein-protein interaction, seen as a fluorescent GFP signal, was assessed and 

photographed using a Zeiss Axiovert 100 inverted microscope. Bombardment was repeated 

three times in independent experiments.  

 

Results 

Isolating 25A01 homolog from Heterodera schachtii  

PCR primers based on the three known H. glycines isoforms of 25A01 were used to 

amplify and clone fragments from H. schachtii cDNA. Sequence analysis of these clones 

revealed several different isoforms, none of which contained a stop codon, indicating a likely 
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sequence divergence at the 3’-end of the transcript. To overcome this difference, 3’ race was 

used to isolate a complete 630 bp clone that contained a stop codon and a 3’ poly-A tail 

(Hs25A01). Hs25A01 showed 73-77% amino acid identity with all H. glycines isoforms of 

25A01 (Fig. 1). To be sure that Hs25A01 shares the same gland-specific expression pattern 

as its H. glycines orthologs, we performed in situ hybridization on H. schachtii tissue using 

an anti-sense probe specific for Hs25A01. Like the 25A01 isoforms from H. glycines, 

Hs25A01 showed specific expression within the dorsal esophageal gland cells of H. schachtii 

(Fig. 2)  

 

Hs25A01 localizes to the cytoplasm in planta 

Effector proteins secreted by plant-parasitic nematodes are known to be localized to 

specific subcellular compartments and to perform diverse functions within a host cell (Elling, 

Davis et al. 2007). Knowing where an effector localizes within the host cell can provide clues 

about the role it plays in promoting virulence. Subcellular localization can also help identify 

interacting host factors. To identify the subcellular localization of Hs25A01, the coding 

sequences (CDS) was fused to GFP and β-glucuronidase (GUS) reporter protein and placed 

under the control of the CaMV 35S promoter. This construct was bombarded into onion 

epidermal cells, and fluorescence microscopy revealed a GFP reporter signal localized within 

the cytoplasm after 24 hours (Fig. 3A) as well as a cytoplasmic GUS reporter signal detected 

after 48 hours (Fig. 3B). This result indicates that Hs25A01 localizes to the cytoplasm in 

planta. This finding supports our previous in silico predictions (PSORTII) and suggests that 

Hs25A01 functions within the cytoplasm of the host plant cell.  
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Ectopic expression of Hs25A01 in Arabidopsis 

Producing stably transformed host plants expressing a nematode effector CDS has 

allowed researchers to assess the effects these proteins have on nematode parasitism (Wang, 

Mitchum et al. 2005; Hewezi, Howe et al. 2008; Hewezi, Howe et al. 2010). Additionally, 

expression of certain nematode effector CDSs within plants also has produced morphological 

phenotypes that likely result from their interactions with endogenous plant factors. To 

analyze the potential role of Hs25A01 in H. schachtii infection, we expressed the CDS 

without the signal peptide in A. thaliana ecotype Columbia-0 (Col-0) under the control of the 

CaMV 35S promoter. Three non-segregating T3 Hs25A01-expressing lines were selected and 

tested for transgene expression using quantitative real-time RT-PCR (qRT-PCR) (Fig. 4). 

The Hs25A01 transcript was detected in all three non-segregating lines and could not be 

detected in untransformed Col-0 controls. Quantification of the relative transcript abundance 

revealed variability in the expression level in each non-segregating line. More specifically, 

line 15-3 showed significantly higher expression than the other two lines. The construction of 

stably transformed lines expressing the Hs25A01 protein allowed us to detect in planta 

phenotypes caused by this putative effector protein.  

 

Constitutive expression of Hs25A01 stimulates root growth of Arabidopsis and increases 
plant susceptibility to H. schachtii infection 
 

To investigate the impact of Hs25A01 expression on root development, a comparative 

root growth experiment was performed using the three Hs25A01-expressing lines grown 

simultaneously alongside wild type Col-0 controls. Root lengths were recorded 10 days after 

planting. All three Hs25A01-expressing lines had average root lengths significantly longer 

than those of Col-0 controls (p-value <0.001, two-tailed students t-test) (Fig. 5). Moreover, 
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the degree of root length increase in each transgenic line positively correlated with its level 

of Hs25A01 expression. In other words the line with the longest average root length (Line 

15-3) also had the highest expression of Hs25A01 mRNA, and the line with the shortest 

average root length had the lowest level of transgene expression. These data indicate that the 

nematode Hs25A01 protein has a biological function in planta that promotes root growth.  

 To determine whether Hs25A01 has a virulence function, the three Hs25A01-

expressing lines were used in nematode susceptibility assays alongside untransformed Col-0 

used as controls. The number of J4 females was counted at 21 days post inoculation and used 

to determine the susceptibility level of each line. All three Hs25A01-expressing lines showed 

a significant increase (P-value<0.05, LSM test) in the number of J4 females compared to 

Col-0 controls (Fig. 6). These data indicate that Hs25A01 performs a virulence function for 

the nematode, increasing the susceptibility of the host plant to nematode infection. 

 

Hs25A01 binds promiscuously to proteins from Arabidopsis 

 In order to perform a virulence function, effector proteins are known to interact with 

and modulate host proteins (Hewezi and Baum 2012). Previously characterized nematode 

effectors have been found to interact with a wide array of plant proteins, interfering with the 

normal functions of these host factors and promoting successful infection by the parasite 

(Hewezi and Baum 2012). To identify host proteins that interact with Hs25A01, the protein 

without a signal peptide was used as bait in a Y2H screen against prey libraries containing 

transcripts from Arabidopsis. Each plant library was composed of transcripts isolated from A. 

thaliana infected with H. schachtii at various stages of development (J2, J3, and J4). After 

screening 15.62 × 106 yeast colonies, 173 colonies were identified by their ability to grow on 



 63

selective drop out media (SD-Leu, -Trp, -His, -Ade). Prey plasmids from each positive 

colony were isolated and sequenced, which allowed us to identify 51 individual clones. 

Several of these clones were discarded because they contained peptide sequences from 

previously known false positives. To confirm the specificity of the interaction with 

Hs25AO1, each prey vector was co-transformed with the Hs25AO1-bait vector, empty bait 

vector, and bait vector containing human lamin C protein. Specific interactions were 

confirmed for 11 individual prey clones. To further confirm these interactions, the full-length 

coding sequences for eight of these candidates were cloned into prey vectors. Subsequent 

yeast co-transformation revealed six full-length and three partial clones of various lengths 

that showed specific interactions with Hs25A01 (Table 1). These successful and specific 

interactions indicate that Hs25A01 may bind to multiple plant proteins.  

 The protein-protein interactions that occur within yeast cells may differ from the 

interactions that occur in a heterologous environment such as a plant cell. Therefore, to 

confirm the interaction in planta, Bimolecular Fluorescence Complementation (BiFC) was 

conducted. Even though the cytoplasmic interaction between Hs25AO1 and a selected 

candidate interacting protein (AT1G08110) was confirmed in planta (Fig. 7A), fluorescence 

was also observed when a non-specific gene (AT5G28830) was used as a negative control 

(Fig. 6B). This same interaction was replicated in multiple co-bombardments. Based on these 

results, we cannot conclude whether these protein-protein interactions are specific. However, 

future investigations using the interaction partners in multiple fusion conformations could 

elucidate which interactions are truly specific. 

 

Discussion 
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Hg25A01 and its protein isoforms (Hg30G12 and Hg4G05) represent a unique family 

of putative effector proteins secreted from the dorsal esophageal gland cells of H. glycines. In 

order to characterize the potential roles that this family of proteins may play in cyst 

nematodes infection, we cloned an orthologous protein from the closely related cyst 

nematode species Heterodera schachtii. Unlike H. glycines, H. schachtii is able to 

successfully infect Arabidopsis, making it a much more tractable system for studying the 

plant-cyst nematode interaction. The full-length clone isolated from H. schachtii (Hs25A01) 

shares 73-77% amino acid identity with the three H. glycines isoforms (Fig. 1). In situ 

hybridization of the Hs25A01 transcript reveled that this protein also shares the same dorsal 

gland cell expression pattern as the isoforms from H. glycines (Fig. 2). These strong 

similarities between this H. schachtii clone and those from H. glycines make it likely that 

Hs25A01 is part of the same putative effector family. These protein family members likely 

carry out analogous functions in both species during infection of their respective host plants. 

It is worth noting that although Hs25A01 was the only complete clone isolated from H. 

schachtii, other incomplete clones were also amplified. These incomplete clones showed 

small sequence divergences akin to those seen between the other members of the 25A01 

family in H. glycines. This observation indicates that H. schachtii contains other 25A01 

protein family members. The presence of multiple and diverse 25A01 family members in 

both species of cyst nematode could be an indication that this protein family is under 

increased diversifying selection. Interestingly, increased diversifying selection has recently 

become a generally accepted feature of effector proteins secreted from other plant parasites 

(Dodds 2010). The close contact that effector proteins have with host factors forces them to 

diversify quickly to avoid detection by the plant immune system. Without an in depth 
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genome wide comparison it is difficult to say for certain that the 25A01 protein family is 

under increased selection pressure. However, the presence of multiple diverse members of 

this protein family fits the paradigm of how effector proteins evolve, and is another piece of 

evidence supporting the idea that this is a true family of effector proteins. Future 

investigations of the 25A01 family will be needed to identify all of the members of this 

family, as well as determine how broadly these proteins are conserved amongst other species 

of cyst nematode. 

  In order for a protein to be a true effector it must have a function within the host 

plant that promotes infection by the invading pathogen. In this study we have shown that 

Hs25A01 carries-out just such a function. Indeed, transgenic Arabidopsis expressing 

Hs25A01 showed a statistically significant increase in susceptibility to H. schachtii infection 

compared to the wild type Col-0 controls (Fig. 6). These results indicate that Hs25A01 

performs a function in planta that enhances the nematode’s ability to infect. These data 

provide strong evidence that Hs25A01 is a true effector protein with a functional role in the 

host-pathogen interaction.  

 In addition to affecting the plant’s susceptibility to cyst nematode infection, we have 

also shown that Hs25A01 causes morphological changes when expressed in planta. All three 

Arabidopsis lines expressing Hs25A01 showed significantly increased root length compared 

with wild type controls (Fig. 5). Furthermore, the average root-length for each line positively 

correlated with the relative expression level of the transgene. The data clearly show that 

Hs25A01 changes the normal development of the host root, and the trend may indicate that it 

does so in a dose-dependent manner. The increase in root length and the concomitant 

increase in nematode susceptibility may lead to the hypothesis that increased root length 
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allows for increased nematode infection rates. However, this conclusion is not supported by 

previous studies of the H. schachtii-Arabidopsis interaction. Previous studies have found that 

cyst nematode infection does no correlate with root-length (Wubben, Su et al. 2001; Hewezi, 

Howe et al. 2008; Hewezi, Maier et al. 2012). Moreover, the penetration rate of J2 H. 

schachtii has been shown to be the same between wild-type and transgenic Arabidopsis roots 

with long root phenotypes (Hewezi, Howe et al. 2008; Hewezi, Maier et al. 2012), and the 

size of the nematode’s syncytium has also been shown to be unrelated to root-length (Jin, 

Hewezi et al. 2011). This body of evidence leads us to conclude that the increase in nematode 

susceptibility observed in Hs25A01-expressing lines is not a result of the longer root length 

but is due to a virulence function carried out by the effector within the plant cell. 

 In order to produce the susceptibility and morphological phenotypes observed in 

Hs25A01-expressing lines, this effector protein must be causing developmental changes 

within the plant root that enhance the nematode’s ability to infect. This conclusion is 

supported by observations in previous studies showing that the expression of Hg25A01 

specifically increases during the early parasitic J2 stage of the nematode’s lifecycle (Ithal, 

Recknor et al. 2007). This early stage of development coincides with the establishment of the 

feeding site, when the nematode must secrete effectors that facilitate the development of the 

syncytium. Indeed, other nematode proteins that are thought to support syncytium 

development show a similar expression pattern (Hewezi, Howe et al. 2008; Lee, Chronis et 

al. 2011). This same type of early up-regulation of the Hs25A01 transcript supports the 

conclusion that the effector may be enacting some developmental change within the root that 

enhances feeding site development.  
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To bring about developmental change within the plant, Hs25A01 must be interacting 

with some factor within the host plant. In an attempt to identify host protein(s) that are 

targeted by Hs25A01 we used this protein as the bait in a Y2H screen against prey libraries 

prepared from H. schachtii-infected Arabidopsis. After screening ∼15.62 × 106 yeast 

colonies we were able to identify six full-length and three partial length candidate 

Arabidopsis proteins that showed a positive protein-protein interaction with Hs25A01 (Table 

1). It is important to acknowledge that protein-protein interactions that take place within a 

yeast cell don’t necessarily represent the same interactions that occur in a different 

biochemical environment (i.e. the plant cell) (Stephens and Banting 2000). As such, it is vital 

to confirm that Hs25A01 can successfully interact with the candidate Arabidopsis proteins in 

planta. In an attempt to confirm these interactions, we performed BiFC in onion epidermal 

cells, using Hs25A01 fusion construct co-bombarded with complimentary constructs 

containing the potential interacting proteins. Though one of the candidate proteins displayed 

positive interactions with Hs25A01 in planta, we also observed a positive interaction with 

two non-specific negative control proteins included in our BiFC assay (Fig. 7). This result 

indicates that the Hs25A01 fusion protein used in our BiFC experiments binds promiscuously 

to many proteins. As such, the positive results seen between Hs25A01 and our Arabidopsis 

proteins cannot reliably be considered specific.  

 The non-specific BiFC results do not negate the validity of the interactions discovered 

in our Y2H screen. The complimentary fusion proteins used in BiFC assays have the 

potential to alter the affinity of protein-protein complexes (Kerppola 2009), and the 

promiscuous binding observed for the Hs25A01 fusion protein could be the result of such a 

disruption. Despite the inconclusive BiFC results, several of the interaction candidates from 
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our Y2H look like promising leads. Indeed, several of the identified candidates have been 

associated with plant diseases. Six of the nine candidates were identified as differentially 

expressed in a microarray experiment comparing Arabidopsis roots with and without H. 

schachtii infection (Table 1) (Szakasits, Heinen et al. 2009). Research into the potential 

functions of these plant proteins has revealed that several of these candidates have the 

potential to function in plant defense. One such candidate gene (AT5G13930) encodes a 

chalcone synthase, which is a key enzyme in the flavonoid biosynthetic pathway that 

produces important plant defense compounds, including salicylic acid and phytoalexins (Dao, 

Linthorst et al. 2011). If Hs25A01 was to interfere with the function of this chalcone 

synthase, it could conceivably affect the plant’s ability to defend against nematode infection. 

Recently a homolog of another candidate gene identified in our Y2H screen eukaryotic 

initiation factor 2 (AT5G01940), was shown to play a role in the innate immune response in 

wheat and was shown to be specifically induced by the stripe rust pathogen Puccinia 

striiformis (Zhang, Hu et al. 2013). Yet another candidate interaction protein (AT1G78100) 

encodes an F-box protein. F-box-containing proteins direct specific proteins to the E3 

ubiquitin ligase complex for ubiquitination and eventually degradation (Gagne, Downes et al. 

2002). E3 Ubiquitin ligases have been shown to play important roles in plant defense as well 

as plant growth (Zheng, Miller et al. 2011; Li, Dai et al. 2012), and have been shown to be 

specifically targeted by effectors secreted by fungal pathogens (Park, Chen et al. 2012). 

Though we have not conclusively linked any of these candidate proteins to Hs25A01, any or 

all of them could conceivably be functional interacting partners of Hs25A01, and future 

research should take these candidates into consideration.  
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 Though we were not able to confirm our Y2H results using BiFC, there are still 

several experimental approaches that could identify which plant factors Hs25A01 interacts 

with to carry out its effector function. One such alternative approach would be to use co-

immunoprecipitation. This approach could utilize the same Arabidopsis lines expressing 

Hs25A0l that have already been used to assess nematode susceptibility and root length. Cell 

lysates from the Hs25A0l expressing lines could be probed using an antibody specific for 

Hs25A01. Any proteins bound to Hs25A01 would be simultaneously precipitated with our 

antibody-bound effector and could then be identified using mass spectrometry. One major 

drawback to this approach is the need for the production of an antibody. Another approach to 

identifying the functional interaction factors of Hs25A01 could utilize next generation RNA 

sequencing technology. By sequencing transcripts expressed in Hs25A01-expressing 

Arabidopsis lines alongside wild type controls it would be possible to see the changes in gene 

expression levels caused by the presence of the Hs25A01 protein. Comparing these data to 

our Y2H data could narrow the list of potential interaction candidates and point to those that 

are directly affected by the presence of Hs25A01. In addition to potentially identifying a 

differentially expressed protein that directly interacts with Hs25A01, this approach could 

have an added advantage of providing a global view of the plant gene expression altered by 

this effector. This broader profile could identify entire pathways within the plant that have 

been altered by Hs25A01 and perhaps provide a better understanding of how it enhances the 

nematode’s ability to infect. Either of these approaches could provide important evidence for 

how Hs25A01 functions within Arabidopsis.  

 In summary, we have found compelling evidence suggesting that Hs25A01 performs 

an effector function in planta, increasing the susceptibility of the plant to H. schachtii 
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infection and at the same time inducing developmental changes within the host root. In light 

of what is already known about the orthologs of this protein in H. glycines, we think it is 

likely that the 25A01 family of proteins represents a group of effector proteins that have 

evolved specifically within cyst nematodes to enhance their ability to infect their host plants. 

Future investigations can build upon this work by confirming the conserved functionality of 

this family of proteins by determining the exact mode of action that these proteins use to 

carry out their effector function.  
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Figure 1. Amino acid alignment of the four full-length members of the 25A01 protein family 
cloned from both H. glycines and H. schachtii (PRALINE multiple alignment software). 
Consistency numbers denote the degree to which each residue position and its chemical 
properties are conserved within all four proteins. What do the colors mean? 
 

 
 

Figure 2. In situ hybridization of the Hs25A01 transcript within H. schachtii tissue. A DIG-
labeled anti-sense probe, specific for the Hs25A01 transcript, was used to localize the 
Hs25A01 transcript within the dorsal gland cell (DG) of H. schachtii, which is located on the 
posterior side of the metacarpus (M).  
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Figure 3. Sub-cellular localization of the Hs25A01 without a signal peptide in onion 
epidermal cells. A) Bombardment of the Hs25A01:GFP:GUS fusion constructs into onion 
epidermal cells produced a fluorescent signal that was visible within the cytoplasm. B) The 
cytoplasmic localization of the Hs25A01 fusion was also confirmed using the GUS reporter 
system. 
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Figure 4. Comparison of the relative expression level of the Hs25A01 transcript within three 
independently transformed non-segregating T3 lines. Expression of the Hs25A01 transcript 
could be detected within the roots of all three lines, while no specific product could be 
detected within untransformed controls.  
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Figure 5. Comparison of the average root growth of Hs25A01-expressing lines compared to 
Columbia-0 control. Each transgenic line displayed significantly longer roots then controls 
(P-values displayed above each bar). The relative effect size for each line was positively 
correlated with its relative level of Hs25A01 expression.  
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Figure 6. Susceptibility of Hs25A01-expressing lines to infection by H. schachtii. All three 
lines showed a significant increase (P-values above each bar) in the average number of 
developing J4 female nematodes compared to untransformed Columbia-0  
controls.  
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Figure 7. in planta BiFC assay of Hs25A01 with a putative interaction candidate. A) The co-
bombardment of the fusion construct containing the N-terminal domain of YFP fused to 
Hs25A01 with a complementary fusion construct containing the C-terminal domain of YFP 
fused to the interaction candidate (AT1G08110) produced a strong fluorescent signal, 
indicating an interaction within the plant cell. B) The same Hs25A01 fusion construct was 
co-bombarded with the non-specific negative control protein (AT5G28830) fused to the 
complementary C-terminal domain of YFP. This co-bombardment also produced a 
fluorescent signal.  
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Table 1. Putative Hs25A01-interacting proteins from Arabidopsis. Each candidate was 
identified as a prey vector in a Y2H screen and then confirmed by co-transformation with the 
Hs25A01 bait vector. All clones showed enhanced growth on QDO media (SD-Leu-Trp-His-
Ade) compared to empty bait vector and a non-specific negative control. The positive 
interaction for most of the candidates could also be detected as a blue color when the co-
transformed yeast lines were grown on media containing X-alpha-galactose (X-Gal). * 
Qualitative expression levels within the syncytium was investigated for each Arabidopsis 
gene using previously published microarray data (Szakasits et al. 2009) which compared the 
expression levels of Arabidopsis genes within syncytia formed by H. schachtii with their 
expression levels in uninfected root cells.  

Arabidopsis 
Gene 

Gene description 
Gene expression 
within syncytium* 

Clone 
length 

Yeast two-Hybrid 

QDO X-Gal 

AT1G78100 
F-box containing 
protein 

Down regulated Partial Positive Positive 

AT1G07240 
UDP-glucosyl 
transferase 71C5 

Up regulated 
Full-
length 

Positive Positive 

AT1G08110 lactoylglutathione lyase Up regulated 
Full-
length 

Positive Positive 

AT5G13930 Chalcone Synthase Down regulated Partial Positive Positive 

AT4G24690 

ubiquitin-associated 
(UBA) zinc-finger and 
PB1 domain-containing 
protein 

Down regulated 
Full-
length 

Positive Positive 

AT5G01940 
translation initiation 
factor eIF-2 beta 
subunit 

Up regulated 
Full-
length 

Positive Positive 

At5G14040 
mitochondrial 
phosphate transporter 

No Difference 
Full-
length 

Positive 
Negativ
e 

AT1G33290 
putative stage III 
sporulation protein 

No Difference Partial Positive Positive 

AK230153 Hypothetical Protein Not Detected 
Full-
length 

Positive 
Negativ
e 
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Introduction 

Cell-to-cell communication through small-secreted peptides has emerged as an 

important signaling mechanism in plant growth and development. One important gene 

family, the CLAVATA/ESR-related (CLE) gene family, encodes a large and diverse group of 

small signaling peptides found ubiquitously in plants (Cock and McCormick 2001; Oelkers, 

Goffard et al. 2008; Katsir, Davies et al. 2011). The Arabidopsis genome alone encodes 32 

known CLE genes, which share similar 14 amino acid CLE motifs. These motifs are 

processed into 12 or 13 amino acid secreted peptides that act as ligands for Receptor-Like 

Kinases (RLKs), which subsequently incite developmental changes within the cell (Fiers, 

Golemiec et al. 2006; Ito, Nakanomyo et al. 2006). The nature of the developmental changes 

enacted by these small peptides varies depending on their amino acid sequence, how they are 

processed, as well as the expression patterns of the CLE genes within the plant (Strabala, 

O'Donnell P et al. 2006; Whitford, Fernandez et al. 2008; Jun, Fiume et al. 2010). The best-

studied CLE protein, CLAVATA3, modulates stem-cell proliferation in the shoot and root 
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apical meristems (Fiers, Golemiec et al. 2006; Ito, Nakanomyo et al. 2006). While other CLE 

proteins have been shown to activate developmental pathways in the plant vasculature (Ito, 

Nakanomyo et al. 2006; Kinoshita, Nakamura et al. 2007; Katsir, Davies et al. 2011). 

Furthermore, certain CLE peptides have been shown to function in both the apical meristems 

and the vasculature (Whitford, Fernandez et al. 2008). Though it has been established that 

CLE signaling influences plant growth and development, the exact roles that most CLE genes 

play in modulating these processes remains only partially understood.  

In an intriguing example of co-evolution of plants and parasites, it has become 

evident over the last decade that cyst nematodes (Heterodera and Globodera spp.), which are 

important sedentary plant-parasitic roundworms, secrete CLE ligand mimics as effector 

proteins into their host plants (Olsen and Skriver 2003). Interestingly, sedentary plant-

parasitic nematodes developmentally reprogram plant cells to induce the formation of novel 

plant cell types that serve as feeding cells to the nematodes. In the case of cyst nematode 

parasitism, these feeding cells fuse and form a multinucleated syncytium (Golinowski, 

Sobczak et al. 1997). Similar to endogenous CLE proteins, cyst nematode CLE effectors are 

processed into functional 12 and 13 amino acid peptides after being secreted in planta and 

have been shown to enact plant developmental changes that facilitate parasitism. (Wang, 

Mitchum et al. 2005; Lu, Chen et al. 2009; Wang, Lee et al. 2010; Replogle, Wang et al. 

2011). Indeed, cyst nematode CLE effector genes can rescue Arabidopsis CLAVATA3 

mutant phenotypes (Wang, Mitchum et al. 2005; Lu, Chen et al. 2009; Wang, Lee et al. 2010; 

Wang, Replogle et al. 2011), suggesting that these effectors can mimic CLE-dependent 

signaling in planta. 
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All sedentary plant-parasitic nematodes deliver effectors into their host plant tissues. 

These proteins alter normal host development to induce the formation of highly specialized 

feeding cells (Hewezi and Baum 2012). The ability to engage in this type of sophisticated 

plant-parasite interaction has evolved in several groups of nematodes, the most prominent of 

which are the root-knot nematodes (Meloidogyne spp.), a large assembly of taxa that contains 

the world’s most notorious and damaging plant-parasitic nematodes. As with cyst nematodes, 

root-knot nematodes induce the formation of modified feeding cells (called giant-cells) 

within the plant, though with etiology and structure distinct from that of the syncytia induced 

by cyst nematodes. Despite the analogous parasitic strategies of root-knot and cyst 

nematodes, only a few common effectors have been shown to be secreted by both groups 

(Gao, Allen et al. 2001; Huang, Gao et al. 2003; Hassan, Behm et al. 2010). Given the 

importance, variability, and abundance of CLE-mimicking effectors in cyst nematodes, it is 

surprising that no obvious and abundant ligand mimics have yet been identified in root-knot 

nematodes. 

Here we report that the previously described family of proteins secreted from root-

knot nematodes, the Major Avirulence Proteins (MAPs), contain CLE-like motifs. These 

findings suggest that root-knot nematodes may use ligand mimics to tap into plant signaling 

pathways in a manner similar to cyst nematodes. 

 

Results 

We are continuously mining M. incognita sequence data to confirm new effector 

identities. While scrutinizing a group of newly confirmed M. incognita effectors 

(unpublished data) we found that two proteins (designated Minc04584 and Minc00344 by the 
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M. incognita genome sequencing consortium (Abad, Gouzy et al. 2008; 2009) contain 

repetitive 14 amino acid motifs with sequence similarities to known CLE peptides. 

Interestingly, Minc04584 and Minc00344 belong to the MAP gene family containing the 

previously reported Major Avirulence Protein (MAP-1) secreted from M. incognita 

(Castagnone-Sereno, Semblat et al. 2009; Tomalova, Iachia et al. 2012). MAP-1 is the type 

member of the gene family and was identified as being differentially present between 

virulent and avirulent lines of M. incognita (Semblat, Rosso et al. 2001). While MAP 

proteins are thought to function in the interaction between M. incognita and its plant hosts, 

their exact mode of action remains unknown. Furthermore, while multiple members of this 

gene family have been reported in multiple Meloidogyne species, the presence of CLE-like 

repeats has been overlooked. 

 The similarity between our two newly confirmed MAP-family effectors and CLE 

motifs prompted us to investigate the extent to which CLE–like motifs are conserved in the 

MAP protein family. Previous studies have identified eight MAP-family members from M. 

incognita (Minc00365, Minc10365, Minc10366, Minc00158, Minc00344, Minc04584, 

MAP-1.2, CAC27774.1) (Semblat, Rosso et al. 2001; Castagnone-Sereno, Semblat et al. 

2009). Our analysis was extended to also include four MAP proteins from Meloidogyne 

javanica, which were available in the NCBI protein database (CAP59537.1, CAP59538.1, 

CAP59536.1, and CAP59535.1). We also included a previously reported Meloidogyne 

effector protein (16D10) that appears to have a single conserved CLE domain, although its 

function has been shown to be very different from that of the cyst nematode CLE effectors 

(Huang, Dong et al. 2006). Using the MEME software suite (Bailey, Boden et al. 2009) we 

screened all of the 12 Meloidogyne MAP proteins and 16D10 for the presence of common 
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motifs. Using a 12 amino acid search window, the MEME software identified similar CLE-

like motifs conserved in all of the MAP family proteins (Fig. 1A). This motif was repeated a 

variable number of times within each of the MAP family members. While Minc10365 

contained only a single CLE-like motif, nine CLE-like repeats were found in Minc00365. In 

all, we discovered a total of 43 separate CLE-like motifs among the 12 MAP proteins. Many 

of these motifs were identical, even when compared between the proteins from M. javanica 

and M. incognita. After removing redundant copies, a total of 14 unique CLE-like variants 

were identified and were named MAP.V1 to MAP.V14 (Fig. 1B).  

CLE motifs are inherently hard to identify. The 178 known CLE proteins from plants 

can only be grouped by the common 14 amino acid CLE motif, and within this motif there is 

no single amino acid that is conserved throughout the entire gene family. Indeed, studies of 

plant CLE motifs have identified only 6 well-conserved residues (invariant residues) that are 

considered hallmarks of the CLE family (Oelkers, Goffard et al. 2008). Because of the 

central location and relatively high conservation of glycine within the CLE motif, this residue 

is used as a reference point for locating the other invariant residues (R-5,P-2,G0,P+1,P+3,H+5).  

To quantify the similarities between the MAP CLE-like motifs and known CLE 

peptides, MAP.V1 through V14 were aligned with known CLE motifs from plants as well as 

from cyst nematode species (Fig. 1B). Examination of the alignment revealed that 5 of the 6 

invariant residues found in CLEs (R-5,P-2,G0,P+1,P+3) are also present in the MAP CLE-like 

motifs to varying degrees. Furthermore, all 43 identified CLE-like motifs contain at least 

three of the six invariant residues. The central highly conserved glycine (G0) and proline 

(P+1) in plant CLEs are also present in all 43 CLE-like motifs in the MAPs. 35 of the CLE-

like motifs also contain the invariant proline (P-2). The invariant arginine (R-5) of most plant 



 87

CLEs, is consistently found one residue back in 40 of the MAP motifs (R-6). This is 

consistent with the positioning of arginine (R-6) in CLE39 from Medicago truncatula and 

several other plant CLEs (Oelkers, Goffard et al. 2008). The invariant histidine (H+5) is the 

only residue that is not present in any of the Meloidogyne CLE-like motifs. In total, 27 of the 

motifs in the MAP proteins contain five of the six ‘invariant’ CLE residues (Fig. 1B). This 

alignment shows that sequence divergence within MAP CLE-like motifs resembles the 

natural variation found in known CLE motifs from plants and cyst nematodes. The presence 

of the prolines (P-2 and P+1) are of particular significance. Both of these residues have been 

shown to be hydroxylated or arabinosylated in planta, and these post-translational 

modifications have been shown to enhance the interactions between CLE peptides and their 

cognate RLKs (Kondo, Sawa et al. 2006; Ohyama, Shinohara et al. 2009) 

In addition to the CLE domains, the CLE effector proteins secreted from cyst 

nematodes also contain variable domains (VDs), which share little or no sequence homology 

with plant CLE proteins or with other cyst nematode CLE effectors. Despite their lack of 

sequence conservation, VDs are documented as having regulatory functions that are required 

for the CLE effectors to function in planta. Indeed, previous research has shown that VDs 

function in trafficking of CLE effectors to the host apoplast, processing of mature CLE 

peptides, and may also determine host specificity (Wang, Lee et al. 2010; Guo, Ni et al. 

2011). In the MAP proteins, we observed that there is additional repetitive sequence outside 

the CLE-like domains where the amino acids tended to be less well conserved. Therefore, we 

searched the MAP proteins and 16D10 for the presence of variable domain like sequences, 

which could corroborate the hypothesis that Meloidogyne MAP effectors function in a 

manner similar to known cyst nematode CLE effectors. We identified two separate MAP 
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family motifs that show sequence similarity with the variable domains of cyst nematodes, 

while no such domains are present in 16D10. Curiously, one MAP motif was found only in 

Heterodera CLE protein VDs, while the other one was found only in Globodera CLE VDs. 

We named these two conserved motifs Heterodera Variable Domain Like Motif (HVLM) 

and Globodera Variable Domain Like Motif (GVLM) respectively. HVLM is a stretch of 15 

amino acids (G78-P92 within Heterodera CLE effectors) in the variable domains of all 

reported Heterodera CLE effectors. HVLM occurs multiple times within 7 of the 12 MAP 

proteins searched (Minc00365, Minc00158, Minc00344, MAP-1.2, CAC27774.1, 

CAP59537.1, CAP59538.1), and was interspersed between the CLE-like motifs (Fig. 2A). 

Sequence alignment of the HVLMs from MAPs with those found in Heterodera VDs 

revealed that five of the 15 residues are perfectly conserved, and an additional five residues 

have conserved properties (Fig. 2B) (≤ 0.5 Gonnet PAM 250 matrix). 

GVLM is a 19 amino acid stretch that occurs in the variable domains of G. 

rostochiensis CLE effectors. We found GVLM directly downstream of the CLE-like repeats 

in nine of the twelve MAP proteins (Minc10365, Minc10366, Minc00158, MAP-1.2, 

CAC27774.1, CAP59537.1, CAP59538.1, CAP59536.1, and CAP59535.1) (Fig. 2A). When 

comparing the GVLMs from the MAP proteins with those from the G. rostochiensis VDs, we 

found that seven GVLM residues are perfectly conserved and an additional five residues 

have conserved properties (Fig. 2C) (≤ 0.5 Gonnet PAM 250 matrix). 

Of the 12 MAP proteins, only MAP-1 from M. incognita and one MAP protein from 

M. javanica have been subjected to limited functional characterization. MAP-1 has been 

shown to be secreted from infective nematodes into plant tissues (Semblat, Rosso et al. 2001; 

Vieira, Danchin et al. 2011). Surprisingly, in M. incognita the MAP-1 protein was shown to 
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be secreted from the amphids, chemosensory organs in the nematode head region (Semblat, 

Rosso et al. 2001; Vieira, Danchin et al. 2011), while the M. javanica gene was shown to be 

specifically expressed in the subventral esophageal glands of M. javanica (Adam, Phillips et 

al. 2009). These esophageal gland cells are the main sources of secreted effector proteins 

from both root-knot and cyst nematodes (Gao, Allen et al. 2001; Huang, Gao et al. 2003). To 

determine where the other members of this protein family are expressed, we performed in 

situ hybridization on mixed developmental stages of M. incognita juveniles using probes 

specific for three MAP family members (Minc00158, Minc00344, and Minc04584). We were 

able to localize these three MAP family members specifically to the subventral glands of J2 

nematodes (Fig. 3). Given the specific expression in the esophageal gland cells, the MAP 

family proteins are likely to be secreted through the nematode’s stylet into host plant cells 

during parasitism.  

 

Discussion 

Given the fundamental roles of CLE signaling in plant development, it would not be 

surprising to find that root-knot nematodes have evolved a mechanism to co-opt CLE-

dependent signaling pathways into their mode of parasitism. Previous attempts have been 

made to identify CLE-motifs in root-knot nematodes, but the small size of the CLE-like 

motifs in MAPs, as well as their atypical arrangement, could easily cause them to be 

overlooked. Indeed, our discovery of these motifs could be called fortuitous, and more in 

depth studies may reveal as yet undiscovered CLE motifs in other root-knot nematode 

effectors. It is intriguing to think that CLE-mimicry could be responsible for some of the 

drastic developmental changes seen in roots infected with Meloidogyne species. Meloidogyne 
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species infect a wide range of host plants, and the ubiquitous presence of CLE signaling 

proteins in diverse plant species makes these proteins an ever-present target for mimicry. 

Modulating CLE signaling in infected root cells could help to establish feeding sites and may 

help the nematode evade plant immune responses. Though the exact functional role of the 

MAP CLE-like motifs will require further investigation, it is clear that these proteins are 

playing an important role in facilitating parasitism. The secretion of MAP proteins from both 

the amphids (Semblat, Rosso et al. 2001; Vieira, Danchin et al. 2011) and the subventral 

glands (Adam, Phillips et al. 2009; this study) of infective second-stage juveniles (J2) 

suggests that these proteins may be involved in the early recognition stage between the host 

plants and the nematode and lends credibility to the hypothesis that these proteins are acting 

as ligand mimics binding extracellular host receptors. Indeed, immunodetection of the MAP-

1 protein showed that it accumulates along the giant cell wall as well as within the apoplast 

(Vieira, Danchin et al. 2011).  

The repetitive region of the MAP-1 gene, which contains the CLE-like motifs, was 

recently amplified from thirteen Meloidogyne species out of the twenty one that were 

searched (Tomalova, Iachia et al. 2012). These CLE-like regions within the MAP-1 protein 

are nearly devoid of mutations between species, indicating that they have a virulence 

function that has enhanced parasite fitness and enforced strong purifying selection to 

conserve these sequences. Furthermore, the presence of functional and diverse CLE mimics 

in cyst nematodes is a testament to the functional importance that the CLE signaling pathway 

can have in plant parasitism.  

Though the majority of CLE proteins from plants contain a single CLE motif on their 

C-terminus, several have been documented as having multiple tandem CLE repeats, similar 
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to the Meloidogyne MAPs (Oelkers, Goffard et al. 2008). In nematodes, CLE effector 

proteins secreted by the potato cyst nematode (Globodera rostochiensis) contain CLE motifs 

that are organized in tandem repeats, and these effectors have recently been shown to be 

processed into functional CLE peptides in planta (Guo, Ni et al. 2011). It is plausible that the 

tandem CLE-like motifs seen in the MAP family proteins could be processed in a similar 

manner, in which individual motifs are cleaved and secreted to interact with cognate 

extracellular RLKs. Similar to G. rostochiensis, the existence of multiple non-identical CLE-

like motifs in MAP proteins may reflect an evolutionary adaption to enable root-knot 

nematodes to infect a wide range of host species. In this context, one can expect that such 

motifs can function by mimicking host factors more effectively in one particular host plant 

than in others. 

In contrast to the tandem CLE motifs found in G. rostochiensis effectors, the CLE-

like motifs in the MAP proteins have additional repetitive sequences between each motif. It 

is conceivable that this additional sequence could have functions similar to the variable 

domains found in cyst nematode and plant CLE proteins. The variable domains of CLE 

proteins are thought to play roles in the processing of active CLE peptides and have been 

shown to effect host specificity in cyst nematode CLE effectors (Jun, Fiume et al. 2008; 

Wang, Lee et al. 2010). Consistent with this line of evidence, the HVLM was identified 

within the MAP proteins that have multiple CLE-like motifs, and is interspersed between 

individual CLE-like motifs (Fig. 2A). This type of arrangement could allow separate MAP 

CLEs to have their own processing signal. While there is no direct evidence to prove that the 

HVLMs in the MAP proteins function in CLE-like processing, the fact that they are closely 
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associated with the CLE-like motifs and share sequence homology with the variable domain 

region of cyst nematode CLEs, suggest that they may have regulatory roles.  

The presence of CLE mimicking effectors in both cyst and root-knot nematode 

species begs the question: how did these genes arise? Outside of the three motifs, there is 

very little sequence conservation between the flanking protein sequences from Heterodera, 

Globodera, and the MAP proteins from Meloidogyne. This suggests that these CLE-like 

motifs may well have arisen through convergent evolution, where the nematodes 

independently evolved features similar to host factors. Another striking possibility is that 

these CLE proteins were acquired through horizontal gene transfer (HGT) from host 

genomes. A recent study identified multiple HGT events that have taken place in plant-

parasitic nematodes and identified a large repertoire of cell wall-degrading enzymes that 

were acquired from bacteria (Danchin, Rosso et al. 2010). Indeed, this same study showed 

that some of the MAP proteins have regions outside their tandem CLE-like repeats that have 

similarities with expansins from fungi (Danchin, Rosso et al. 2010), though no expansin 

activity has yet been reported. With the nematode’s propensity for HGT and the similarities 

that MAP proteins share with plant proteins, it’s reasonable to assume that CLE mimicking 

effectors could represent yet another instance of HGT in nematodes.  

In summary, CLE ligand mimics are known to be secreted by cyst nematodes to 

facilitate successful infection of their host plants. Here we have identified CLE-like motifs, 

as well as VLMs, in the MAP family proteins secreted from root-knot nematodes, a family of 

proteins that was previously known to be involved in the host-parasite interaction. We have 

shown that several members of this gene family are expressed in the esophageal gland cells, 

which produce many known nematode effectors, including the CLE-mimics found in cyst 
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nematodes. With the evidence at hand we hypothesize that the MAP family of proteins 

function as CLE-mimics, with roles analogous to the CLE-mimicking effectors secreted from 

cyst nematode species. The presence of CLE-mimicking effectors in both cyst and root-knot 

nematodes highlights a common host node that is targeted by two evolutionarily diverse 

groups of nematodes, and highlights the CLE signaling pathway as a node that may have 

evolved in other phytonematodes as well. 
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Figure 1. Comparison of CLE-like motifs in the MAP protein family to known CLE motifs in 
Cyst nematode and plant proteins A) Sequence logo comparison of the 43 individual CLE-
like motifs identified in MAP proteins with the Sequence logos 9 known CLE motifs from 
cyst nematodes and 179 CLE from plants B) Sequence alignment of the CLE-Like motifs 
identified in the MAP proteins (MAP.V1-14) (black) and those identified in cyst nematodes 
(blue), plants (green), and the 16D10 effector protein from M. incognita. Residues that match 
invariant residues are highlighted in black, and other residues found in both CLEs and MAP 
proteins are highlighted in grey. 
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Figure 2. Identification of the HVLM and GVLM in MAP proteins and their distribution 
within MAP family proteins. A) Scaled representation of the relative locations of HVLM 
(Blue), GVDLM (Purple), and CLE-like domains (Green) within MAP proteins and cyst 
nematode CLE effectors. B) Sequence alignment of all HVLMs from 7 MAP proteins and 
those found in the CLE effectors of Heterodera spp. (Blue) along with a sequence logo 
highlighting the conserved residues among all motifs. C) Sequence alignment of all GVLMs 
from 9 MAP proteins and those found in the CLE effectors of Globodera spp. (Blue) along 
with a sequence logo highlighting the conserved residues among all motifs. 
 
 

M. i nc . 00158_GVLM    KTGRFVWHPLTNAHSYGGE
M. j a v. CAP59538_GVLM KTGRFVWHPLTNAHSYGGE
M. j a v. CAP59535_GVLM KTGRFVWHALTNAHSYGGE
M. j a v. CAP59536_GVLM KTGRFVWHALTNAHSYGGE
M. i nc . 10366_GVLM    KTGRFVWHALTNAHSYGGE
M. i nc . 10365_GVLM    KTGRFVWHALTNAHSYGGE
M. i nc . MAP1_GVLM     KTGRFVWHALTNAHSYGGE
M. j a v. CAP59537_GVLM KTGRFVWHALTNAHSYGGE
M. i nc . CAC27774_GVLM KTGRFVWHALTNAHSYGGE
G. r . CLE4D_GVLM      KVGRVVTVALAMSSRLGGA
G. r . CLE4A1_GVLM     KVGRVVTVALAMSSRLGGA
G. r . CLE4A2_GVLM     KVGRVVTVALAMSSRLGGA
G. r . CLE4B1_GVLM     KVGRVVTVALAMSSRLGGA
G. r . CLE4A3_GVLM     KVGRVVTVALAMSSRLGGA
G. r . CLE4B2_GVLM     KVGRVVTVALAMSSRLGGA
G. r . CLE4C_GVLM      KVGRVVTVALAMSSRLGGA
G. r . CLE1_GVLM       KAGRFVTVALAMSSRLGGA
                    * . **. *   . *:  :    **  

M. i nc . MAP1_HVLM. 1     GQVASHKPPAAPSTP
M. i nc . CAC27774_HVLM. 1 GQVASHKPPAAPSTP
M. i nc . 00158_HVLM. 1    GQVASHKPPAAPSTP
M. j a v. CAP59537_HVLM. 1 GQVASHKPPAAPSTP
M. j a v. CAP59538_HVLM. 1 GQVASHKPPAAPSTP
M. i nc . 00365_HVLM. 2    GQVASHKPPAAPSTP
M. i nc . 00365_HVLM. 1    GQVASHKPPAAPSTP
M. j a v. CAP59538_HVLM. 2 GKVASHKPPAAPSTP
M. j a v. CAP59537_HVLM. 2 GKVASHKPPAAPSTP
M. i nc . 00158_HVLM. 2    GKVASHKPPAAPSTP
M. i nc . MAP1_HVLM. 2     GKVASHKPPAAPSTP
M. i nc . CAC27774_HVLM. 2 GKVASHKPPAAPSTP
M. i nc . 00365_HVLM. 3    GQVASHKPPSAPSTP
M. i nc . 00344_HVLM. 1    GQVASHKPPSGPAAP
M. i nc . 00344_HVLM. 2    GQVASHKPPSGPAAP
M. i nc . 00344_HVLM. 3    GQVASHKPPSGPAAP
H. s . CLE1_HVLM         GLVPSHVTNRSMAPP
H. g. CLE2_HVLM         GLVPSHVTNRSMAPP
H. g. CLE1_HVLM         GLVPSHLTNRSMAPP
H. s . CLE2_HVLM         GLVPSHVTNRAMAPP
                      * * . ** .   .  : . *
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Figure 3. In situ hybridization of transcripts from three MAP family members. Labeled anti-
sense probes specific for three separate MAP family members (Minc00344, Minc0458, and 
Minc00158) were used to localize the expression of their respective transcripts within M. 
incognita. All three MAP family members showed specific expression within the subventral 
gland cells (SvG), which are located posteriorly relative to the metacorpus (M).  
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Abstract 

M. incognita is one of the most damaging plant parasites on earth. Identifying and 

characterizing the effector proteins involved in the interaction between M. incognita and its 

host plant is an important step towards finding new ways to combat this pest. In this study we 

have identified 18 putative effector genes that have the potential to facilitate M. incognita 

parasitism and reproduction in host plant roots. These genes encode secreted proteins that are 

expressed specifically in the secretory gland cells of the nematode, indicating that they are 

available to interact with plant host factors. Many of the transcripts encoding these putative 

effectors are specifically up regulated during different stages of the nematode’s life cycle, 

indicating that they may have a role at specific stages during M. incognita parasitism. 

Additionally, the predicted proteins show little to no homology to known proteins from free-

living nematode species, indicating that they may well have evolved rapidly to evade the host 

immune system and may have functions specific for parasitism. By contrast, several of these 
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genes are part of gene families within the M. incognita genome as well as that of M. hapla, 

which points to an important role that these putative effectors are playing in both parasites. 

With the discovery of these putative effectors we have increased our knowledge of the 

effector repertoire utilized by root-knot nematodes to infect, feed, and reproduce on their host 

plants. Future studies investigating the roles these proteins play in planta will help us to 

mitigate the effects of this damaging pest.  

 

Introduction 

The southern root-knot nematode (Meloidogyne incognita), is one of the most 

economically devastating plant pathogens in the world, and is able to infect nearly every 

cultivated crop species (Sasser and Freckman 1986; Koenning, Overstreet et al. 1999). The 

paucity of effective control strategies for this widely problematic pest makes it crucial to 

understand the factors that underlay its ability to infect plants, so that novel control strategies 

can be developed. 

M. incognita engages in a complex interaction with its host plant. In order to survive, 

the parasite must penetrate a host plant root, overcome host defenses, develop an elaborate 

feeding site within the host (referred to as giant-cells), and maintain these giant-cells as it 

grows and reproduces. To perform these vital steps, the nematode secretes a cocktail of 

effector proteins that interact with and manipulate host plant factors. The functions that these 

effectors perform in planta facilitate the nematode’s ability to infect its host (Hewezi and 

Baum 2012).  

Previously characterized effector proteins from M. incognita have been shown to 

have diverse functions when secreted into the host plant. One such effector protein, 16D10, 
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has been shown to interact with a plant SCARECROW-like transcription factor, and in doing 

so modulates host development and increases the susceptibility of the host to M. incognita 

infection (Huang, Dong et al. 2006). M. incognita also secretes a calreticulin effector protein 

which accumulates in the plant apoplast (Jaubert, Milac et al. 2005) and has recently been 

shown to suppress basal immunity within its plant host to facilitate parasitism (Jaouannet, 

Magliano et al. 2012). Another group of effectors that is secreted from both root-knot and 

cyst nematodes (Heterodera and Globodera spp.) show homology to chorismate mutases and 

have been shown to alter plant development when expressed in planta (Bekal S 2003; Doyle 

and Lambert 2003). And yet another effector protein, Mj-NULG, was recently isolated from 

the closely related species Meloidogyne javanica. This effector was shown to be specifically 

up-regulated during feeding site development and localizes to the nucleus of the giant-cells, 

where it plays an important role in facilitating nematode parasitism (Lin, Zhuo et al. 2012). 

These recent characterization studies highlight the important roles these effectors play in 

specific plant subcellular compartments and at specific times during the parasites life cycle. 

However, the majority of Meloidogyne effector proteins remain undiscovered and 

uncharacterized. This stresses the need for a more complete knowledge of the M. incognita 

effector repertoire and a better understanding of how individual effectors function within host 

tissues.  

Past efforts to identify effectors have utilized whole worm ESTs as well as 

proteomics approaches and have found a number of candidates (Bellafiore, Shen et al. 2008; 

Roze, Hanse et al. 2008). The most successful approach however has incorporated the 

isolation and sequencing of mRNA isolated specifically from the esophageal region of the 

nematode, which contains three gland cells (one dorsal and two subventral) that secrete 



 103

nematode effectors (Huang, Gao et al. 2003). This type of tissue-specific sequencing has 

been successfully implemented in both animals and plants to identify low abundance 

transcripts that would have been missed when sequencing transcriptomes of the entire 

organism (Brandt 2005; Chemello, Bean et al. 2011). This approach in conjunction with 

Sanger sequencing methods has identified 37 putative M. incognita effector proteins to date 

(Huang, Gao et al. 2003). Though this is an extensive list, the fact that there are currently 64 

known effector proteins from cyst nematodes leads us to believe there should be a 

comparable number of effectors in M. incognita.  

In an effort to search for previously undiscovered effectors from M. incognita, gland 

cell-specific mRNA was isolated and sequenced using Roche 454 technology, allowing for 

significantly greater read coverage than previous approaches. The resulting transcript data 

were analyzed using a combination of in silico and molecular approaches to identify 18 M. 

incognita genes encoding putative effector proteins that are expressed specifically in the 

esophageal gland cells.  

The secreted proteins encoded by these M. incognita genes have no annotated 

function and no orthologs in free-living organisms, yet many are members of gene families 

and are conserved within the genome of Meloidogyne hapla, suggesting a conserved and 

specific function within the two parasites. Quantitative real-time RT-PCR allowed us to 

identify several unique expression profiles for these genes during the sedentary parasitic 

stages of M. incognita infection. Furthermore, subcellular localization revealed that the 

majority of these putative effectors localize to the cytoplasm in planta. Together our data 

suggest that these 18 M. incognita genes encode secreted proteins with specific roles at 

different stages of parasitism, and that the majority likely function within the cytoplasm of 
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the giant-cells. The discovery of these new putative effectors has expanded the known M. 

incognita secretome and laid the groundwork for a greater understanding of the molecular 

basis of nematode parasitism. 

 

Materials and Methods 

Microaspiration of gland cell region and mRNA extraction  

M. incognita was grown on greenhouse tomato roots (Lycopersicon esculentum cv. 

Marion). Parasitic stage nematodes (J2-J4) were extracted from roots, surface sterilized, and 

imbedded in 0.7% agarose. A glass micropipette containing 10µL of mRNA extraction buffer 

was used to aspirate the gland cell cytoplasm from individual nematodes. In total two pools 

of gland cell cytoplasm, each derived from 50 individual nematodes, were collected and 

stored at -80°C until mRNA extraction as previously described(Huang, Gao et al. 2003). 

Poly(A) RNA was extracted separately from both the aspirated cytoplasm pools using 

Dynabeads Oligo (dT)25 magnetic beads (Dynal, Lake Success, NY, U.S.A), and eluted with 

DEPC-treated ddH20 as previously described(Gao, Allen et al. 2001). First-strand cDNA 

synthesis was then performed on 4µL of the pooled mRNA sample in a 10µL reaction, which 

also included 0.5µL 3’-RACE cDNA Synthesis Primer (10mM, Clontech Laboratories, Palo 

Alto, CA, U.S.A.), 0.5µL of SMART II oligonucleotide (10µM, Clonetech), 2.0µL of 5Xfirst 

strand buffer, first strand buffer, 1.0µL DTT (20mM), 1.0µL of dNTP (10mM), and 1.0µL 

Superscript II (200u/µL, GIBCO-BRL, Grand Island, NY, U.S.A). The SMART 

oligonucleotide system was used to enrich for full-length cDNA. The reactions were 

incubated for 1.5 hours at 42°C, after which 90µl of TE buffer (10mM Tris [pH7.6], 1mM 

EDTA) was added. LD-PCR was then performed using a 100µl reaction containing first-
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strand reaction solution (10µl), 2µl dNTP (10mM), 10µl of TaqPlus Long low salt buffer, 1µl 

TaqPlus Long polymerase (Statagene, La Jolla, CA, U.S.A.), and 2µl of Nested Universal 

Primer (Clonetech). PCR was performed with a hot start followed by 24 cycles of 94°C 

(20sec), 65°C (30sec), and 72°C (6min). Negative controls using DEPC water were 

performed at each reaction step above.  

 

454 sequencing and assembly  

The gland cell derived cDNA library was split into two separate pools, one of which 

was nebulized to reduce the fragment size, and both were sequenced together using the 

Roche 454 platform (University of Iowa, Iowa City, IA). Sequencing produced 1.7 million 

total reads with an average length of 281bp. After removing short and low-complexity reads 

(Sequence Cleaner) 623 thousand reads were assembled using Newbler v2.5.  

 

Sequence analysis and identification of candidate effectors 

Isotigs were translated (Prot4EST V3.0b), and the Protein predictions were then 

compared against all the known proteins from both M. incognita and M. hapla genomes 

using a cut off of 95% ID over 75% of the length of the isotig (BLASTp) (Altschul, Gish et 

al. 1990). After the known proteins were Identified, they were analyzed using OrthoMCL 

algorithm, which in brief uses an all against all blast strategy to sort proteins from different 

organisms into groups of likely orthologs and paralogs (Chen, Mackey et al. 2006). By 

grouping the identified RKN proteins with the total known proteins from 18 other selected 

species (five free living nematode species, five parasitic nematodes, five Parasitic Helminths, 

the fly, and two host plant species) proteins which had orthologs in free living nematode 
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species were excluded, while those that grouped exclusively with proteins from parasites 

and/or host plant species were selected as candidates. As an added measure the effector 

candidates were then compared (BLAST) against free-living nematodes to assure that no 

consequential homology (over 35 bits) was present. Remaining candidates were analyzed for 

the presence of a signal peptide as well as the absence of a trans-membrane domain outside 

of the first 60 amino acids of the N-terminus (Phobius) (Kall, Krogh et al. 2004). This first 

list of previously annotated secreted candidates consisted of 91 full-length proteins. 

 

In situ hybridization of effector transcripts 

  Forward and reverse primers were designed specifically for the coding sequence of 

each of the 91 candidate genes. These primers were used to amplify an amplicon 150-300 bp 

in length from cDNA pools generated from M. incognita. This amplicon was used as a 

template in a unidirectional PCR reaction to produce single stranded sense and anti-sense 

digoxigenin (DIG)-labeled probes for each candidate effector transcript. Unidirectional PCRs 

were performed in 25µl volumes using a DIG-nucleotide labeling kit (Roche). In situ 

hybridizations were performed on mixed parasitic stages of M. incognita as previously 

described (de Boer, Yan et al. 1998). Established parasitic populations of nematodes were 

extracted from the roots tomato (Lycopersicon esculentum cv. Rutgers) by maceration of the 

infected tissue followed by progressive sieving as previously described (de Boer, Yan et al. 

1999). These parasitic stages were supplemented with freshly hatched pre-parasitic J2 stage 

M. incognita juveniles. Mixed stage nematodes were fixed in a 2% formaldehyde solution. 

Fixed nematodes were permeabilized by hand cutting with a razorblade on a glass slide in 

combination with a partial proteinase-K digestion (20mg/mL, 30 min RT). DIG-labeled 
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probes were hybridized to permeabilized tissue over night at 50°C. Hybridized probes within 

the nematode were detected using and anti-DIG antibody conjugated to alkaline phosphatase 

and it’s substrate. Samples were then visualized using a Zeiss Axiovert 100 inverted light 

microscope.  

 

Developmental expression patterns of putative effectors 

 To assess the developmental expression profile of our positive candidates we 

designed RT-PCR primers specific from 13 unique transcripts (one representative from each 

paralogous gene family). Four biological replicates of M. incognita were separately extracted 

at each of 5 time points during parasitism (Eggs, pre-parasitic J2, 3DPI, 7DPI, 14DPI, and 

21DPI). Total RNA was extracted from each sample using the Perfect Pure RNA fibrous 

tissue extraction kit (5 prime), all according to the manufacturer’s instructions. For 

quantitative RT-PCR approximately two ng of M. incognita mRNA was used for cDNA 

synthesis and PCR amplification in 15µl reactions using a one-step RT-PCR kit (Quanta) 

according to the manufacturers protocol. QRT-PCR reactions were run using an iCycler RT-

PCR thermal cycler (Bio-Rad), using the following program: 50C for ten min, 95C for 5 min, 

and 40 cycles of 95C for 30 sand 60C for 30 s. Four replicated reactions were run for each 

primer pair for each mRNA sample. QRT-PCR data was analyzed using the iCycler IQ 

Optical Systems Software version 3.0a (Bio-Rad). Melting curves of all PCR reactions were 

assessed to assure specific product amplification. M. incognita actin and tubulin primer pairs 

were used as internal controls to normalize gene expression levels at each time point. 

Following the 2-∆∆Ct method (Livak and Schmittgen 2001), relative fold changes were 

calculated using gene expression levels in the egg as a base line. P-values for each time point 
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were calculated using both the Tukey multiple comparisons test (95% family-wise 

confidence level) and Bonferroni pairwise comparisons. A significant difference (p-

value<0.05) was considered biologically significant only if it was consistently seen in both 

the actin and tubulin normalizations.  

  

Sub-cellular localization  

 Full-length coding sequences of 12 of putative parasitism genes were amplified from 

M. incognita cDNA, and cloned into the pGEMt-EZ vector (Promega) for sequencing. 

Confirmed clones were used as templates in PCR reactions to amplify fragments with out the 

signal peptide along with appropriate restriction sites for cloning into the pSAT6-eYFP 

vectors, obtained from ARBC. Cloning into the pSAT6-eYFP vectors created YFP fusion 

proteins under the control of the CaMV 35S promoter, which were confirmed by sequencing. 

Confirmed vectors were bombarded into onion epidermal cells via Biolistic bombardment as 

previously described (Elling, Davis et al. 2007). Bombarded onion cells were incubated for 

16-24 h in the dark, then visualized using a Zeiss Axiovert 100 inverted light microscope.  

 

Results 

Sequencing and assembly 

The cytoplasm of esophageal gland-cells was microaspirated from 50 M. incognita 

nematodes at different parasitic stages to isolate total RNA. The mRNA was then purified 

and used to generate two pools (one nebulized and one un-nebulized) of cDNA using the 

SMART system (CloneTech). Each cDNA pool was sequenced using Roche 454 technology, 

which produced a combined total of 1.7 million reads, with an average length of 281 bp. 
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Reads with insufficient complexity to facilitate assembly were removed (SeqClean software), 

leaving 623,000 clean reads. Out of these 623,000 high quality reads, which were assembled 

using Neubler V2.5 software produced 17,741 isotigs (unique transcripts), which were 

predicted to be contained within 14,443 isogroups (unique genes) alongside 72,397 

singletons. To identify the full-length transcripts associated with the isotigs we compared the 

17,741 isotigs with the 20,359 proteins predicted from the M. incognita genome (Abad, 

Gouzy et al. 2008) using BLASTx with a minimum cut-off of 90% identity over 75% of the 

isotig length (Altschul, Gish et al. 1990). We found that 5,700 gland isotigs (4,548 isogroups) 

had strong sequence homology to 3,758 known M. incognita proteins from the M. incognita 

genome (Fig. 1A). These full-length proteins were subjected to several criteria to identify 

novel effector candidates (see below).  

 

In silico filtering of effector candidates 

Most nematode effectors have evolved to become specific to the parasitic lifestyle, 

and are unlikely to have orthologs in free-living species. This has been demonstrated by the 

lack of sequence homology between the previously identified effector proteins from cyst and 

root-knot nematode parasites, and free-living species (Huang, Gao et al. 2003). To determine 

which of our 3,758 gland-derived candidate proteins had orthologous sequences that are 

specific to parasitic species and absent in free-living species, we utilized a dataset previously 

generated using OrthoMCL (Abubucker, Martin et al. 2011). This dataset contained the 

known proteomes from seven helminth parasites (M. incognita, M. hapla, Trichinella 

spiralis, Brugia malayi, Pristionchus pacificus, Schistosoma japonicum, and Schistosoma 

mansoni), two host plants (Glycine max, Arabidopsis thaliana), as well as proteins from nine 
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free-living species (Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus, 

Homo sapiens and five Caenorhabditis species) (Chen, Mackey et al. 2006; Abubucker, 

Martin et al. 2011). The OrthoMCL algorithm clustered these 18 proteomes into 38,776 

groups of orthologous and paralogous proteins. Of all the groups, 2,419 contained 

orthologous proteins only from parasites or host plant species, and lacked proteins from free-

living S. cerevisiae, Drosophila, and Caenorhabditis species. We identified 4,073 proteins 

from M. incognita that were contained in these 2,419 parasite-specific groups. These 4,073 

proteins, in addition to 5,180 M. incognita proteins that were not clustered with any other 

proteins, were combined (9,253 proteins) and compared to our 3,758 gland-expressed 

candidate proteins. This comparison resulted in the identification of 1,080 gland-derived 

proteins that seem to have evolved specifically for parasitic life-styles (Fig. 1B). 

One of the hallmark characteristics of nematode effector proteins is the presence of a 

secretion signal peptide on their N-terminus that targets the mature protein to the secretory 

pathway, as well as the absence of an internal transmembrane domain that would retain the 

protein in membranes of nematode cells. Therefore, we analyzed 1,080 gland-derived 

proteins for the presence of a secretion signal and the absence of an internal transmembrane 

domain (Kall, Krogh et al. 2004). This selection procedure resulted in the identification of 91 

candidate effector genes (Fig. 1C). This list of effector candidates was then subjected to RNA 

in situ hybridization to determine whether they are expressed specifically in the esophageal 

gland cells.  

Because esophageal gland cells are directly connected through the esophagus to the 

nematode stylet, secreted proteins that are exclusively expressed in and secreted from these 

gland cells are believed to have biological functions in the nematode–plant interactions. To 
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determine the gland-specific expression patterns of the 91 candidate effector genes, we 

generated specific antisense digoxigenin (DIG)-labeled probes for each candidate and 

hybridized them to fixed M. incognita nematodes at different parasitic life stages. Out of the 

91 candidates tested, probes for 14 individual candidate effectors were found that specifically 

hybridized to mRNA accumulating within the subventral (ten probes) or dorsal (three probes) 

gland cells of M. incognita (Fig. 2 and Table 1). Interestingly, another candidate protein 

(Minc00801) showed strong and specific expression in the rectal glands of J4 female M. 

incognita (Fig. 2Q). Since the rectal glands are known to form the egg mass matrix 

(Maggenti and Allen 1960), this candidate is potentially secreted into plant tissues and 

worthy of further analysis. In total, 14 candidates were identified as genes that are likely to 

have effector roles in M. incognita parasitism of host plants (Table 1). 

Sequence analysis of these 14 candidate effector genes revealed that two of these 

proteins, Minc10418 and Minc08073, had 98% amino acid identity, indicating that they are 

likely paralogous members of a gene family within M. incognita. Two other proteins, 

Minc00344 and Minc04584, were previously identified as members of the MAP-1 gene 

family, which are thought to play roles at the early stages of interaction between M. incognita 

and its host plant (Semblat, Rosso et al. 2001; Castagnone-Sereno, Semblat et al. 2009). Two 

additional proteins, Minc02097 and Minc18033, showed near perfect identity with the 

putative esophageal gland cell effector proteins 35A02 and 19F07, respectively (Huang, Gao 

et al. 2003). Finally, eight of the 14 candidate effectors showed no significant sequence 

similarity to any proteins in the NCBI non-redundant protein database, and therefore were 

designated novel effectors.  
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The 14 candidate effectors were also analyzed for the presence of known motifs and 

domains using InterPro Scan (Quevillon, Silventoinen et al. 2005). Only one putative effector 

(Minc01696) was predicted to contain a known functional protein domain. This protein 

contained a region of 337 amino acids with strong sequence similarity (9e-27) to TTK dual-

specificity protein kinases from multiple metazoan species. This region was located 17 

residues from the predicted signal peptide cleavage site and was predicted to contain a 

complete protein kinase catalytic domain (PS50011 InterProScan, Score=29.997). This 

putative effector also contained an additional 210 residues on its C-terminus, which showed 

no homology to any known protein (Table 1). 

 

Putative effectors have paralogs in M. incognita and orthologs in related parasites 
 

Pathogen effectors that play essential roles in parasitism are often represented by 

multiple paralogous copies within their respective genome (Haas, Kamoun et al. 2009; 

Raffaele, Farrer et al. 2010). These paralogs are thought to have redundant and/or specific 

functions, and may promote plasticity in effector function. To determine whether the newly 

mined putative effectors have paralogs, the protein sequences of these 14 putative effectors 

were used as queries in blast searches against the known proteins from the M. incognita 

genome. Interestingly, four of these proteins showed significant blast hits (BLASTp 

>150bits, 50%ID) to other proteins with predicted signal peptides, making them good 

effector candidates as well.  

To determine if these new paralogs had been detected in the previous in situ 

hybridization, the probes used to identify the original parasitism genes were compared to the 

coding sequences of the newly identified paralog candidates. One paralogous pair, 
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Minc18861 and Minc11817, showed perfect coding sequence homology. Indicating that the 

original probe used was able to cross-hybridize with, and localize, both transcripts within the 

gland cells. The other three pairs of paralogs showed significant polymorphisms in the region 

of the original in situ hybridized probe. To assure that all of the secreted paralogs were 

indeed expressed specifically in the secretory gland cells, new probes were designed 

specifically to hybridize to each paralog. When these probes were used in in situ 

hybridization on mixed stage M. incognita tissue, all three paralogous genes were shown to 

be specifically expressed in the same esophageal gland cells as their originally discovered 

paralog (Table 1, Fig. 2). This raised the total number of newly discovered putative effectors 

to 18 genes within M. incognita.  

Genome comparison of M. incognita with the closely related root-knot nematode M. 

hapla revealed that both genomes contain orthologous sequences (Bird, Williamson et al. 

2009). To determine whether the newly identified putative effectors have orthologs in M. 

hapla, each was blasted against the predicted proteins from the M. hapla genome (Opperman, 

Bird et al. 2008). Importantly, nine of the M. incognita effectors had homologs (BLASTp 

>35bits, 50%ID) in M. hapla, which were also predicted to contain secretion signal peptides. 

These proteins are likely part of orthologous effector families that carry out similar 

functional roles both in M. hapla and M. incognita parasitism.  

 

Putative effectors localize to the cytoplasm in planta  
 

The in planta subcellular localization of nematode effectors provides clues to their 

site of action and the identity of potential host targets. To determine the cellular 

compartments where the newly identified nematode effectors would localize, the full-length 
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coding sequence (minus signal peptides) were fused to GFP and GUS reporter genes under 

the control of the cauliflower mosaic virus (CaMV) 35S promoter. These constructs were 

delivered into onion epidermal cells by biolistic bombardment. All of the fusion proteins 

showed cytoplasmic localization in the plant cells (Fig. 3). These data are consistent with the 

cytoplasmic localization prediction using Psort II software (Yu, Wagner et al. 2010).  

 

Putative effectors are differentially expressed at different stages of M. incognita parasitism  
 

Nematode effector genes are known to be developmentally regulated, with increasing 

mRNA abundances during the parasitic stages. The developmental expression profiles of 13 

of the newly identified parasitism genes were quantified using real-time RT-PCR in eggs, 

pre-parasitic J2, and infective M. incognita stages at 3, 7, 14, and 21days post infection (DPI) 

(Fig. 4). All 13 putative effector genes displayed the lowest detectable expression levels in 

eggs. In contrast, the expression patterns during other developmental stages varied widely, 

with different effectors showing peak expression during the early parasitic stages (3DPI) or 

during late parasitic stages (14-21DPI), supporting the hypothesis that these effectors play 

diverse roles in host parasitism (Fig. 4).  

 

Discussion 

Previous studies have successfully identified putative effector proteins that are 

specifically expressed in the esophageal gland cells of M. incognita and other plant-parasitic 

nematodes (Gao, Allen et al. 2001; Huang, Gao et al. 2003). However, the complexity of the 

plant-nematode interaction indicates that the M. incognita effector repertoire is more 

extensive than previously described. To expand the known effector repertoire of M. incognita 
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we isolated mRNA from the esophageal gland cells, and applied Roche 454 sequencing 

technology to obtain high read coverage. We then took advantage of the availability of the 

whole genome sequence of M. incognita (Abad, Gouzy et al. 2008) to identify full-length 

coding sequences of our gland-derived reads. This approach facilitated the bioinformatic 

identification of candidate effectors based on homology models and the presence of an N-

terminal signal peptide sequence. Combining this bioinformatic approach with an in situ 

hybridization screen resulted in the identification of 18 putative effector genes, whose 

expression was specifically localized to the esophageal gland cells of M. incognita.  

As in previous studies, the majority of these proteins are unique to M. incognita, 

showing no homology to proteins in the non-redundant database and containing no detectable 

functional domains. Only a few of the effector proteins secreted from any parasite are widely 

conserved, and more often than not, they are exclusively produced by one pathogen or a 

group of closely related pathogens. Indeed, recent studies of effectors from both fungal and 

oomycete pathogens have shown they are under increased diversifying selection pressure to 

avoid the host immune system (Haas, Kamoun et al. 2009; Schirawski, Mannhaupt et al. 

2010). As a result of this increased selection pressure, effector proteins quickly evolve to 

become specific to certain parasites and tend to show little homology with other proteins. 

The unique nature of effector proteins often makes it difficult to predict their functions and 

stresses the need for functional characterizations of each individual effector.  

Despite the lack of sequence homology for most of the putative effector proteins, one 

positive candidate, Minc01696, was predicted to contain a complete kinase domain (InterPro 

scan and CDD). This predicted kinase domain has high homology to the unique dual-

specificity kinase domains of the MPS1 family of protein kinases. MPS1 kinases are 
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conserved in most eukaryotes, and members of this family have been shown to play 

important roles in modulating mitosis (Liu and Winey 2012). In fact, it has been recently 

shown that increased levels of MPS1 in human cancer cells mediated the formation of 

aneuploid nuclei (Daniel, Coulter et al. 2011). In light of the fact that the giant-cells formed 

by Meloidogyne species are also characterized by multiple aneuploid nuclei (Jones and Payne 

1978; Huang 1985), we speculate that Minc01696 could function analogously to the MPS1 

kinases in plants, perhaps facilitating aneuploidy during the formation of the giant-cells. This 

hypothesis is further supported by our qRT-PCR data showing that Minc01696 exhibits 

specific and significant up regulation at 3 dpi (Fig. 4A), which coincides with the initial 

formation of the giant-cells. More in depth characterization will be needed to determine 

whether or not Minc01696 functions as an MPS1 kinase in planta.  

Two other putative effectors, Minc04584 and Minc00344, previously have been 

shown to be members of the MAP gene family (Castagnone-Sereno, Semblat et al. 2009). 

Members of this gene family are thought to play roles in the early interaction between root-

knot nematodes and their host plants. More specifically, the first MAP family member 

(MAP-1) was isolated as a candidate avirulence protein and was shown to be secreted from 

the amphids of M. incognita, as the nematode migrates throughout the host root (Semblat, 

Rosso et al. 2001). Though the exact function of this gene family has yet to be described, the 

MAP-1 transcript has recently been isolated from twelve different Meloidogyne species 

(Tomalova, Iachia et al. 2012) indicating that it has an indispensible function for parasitism 

across Meloidogyne species. In contrast to the amphid localization previously described for 

the MAP-1 protein (Semblat, Rosso et al. 2001; Vieira, Danchin et al. 2011), we found that 

both Minc04584 and Minc00344 are strongly expressed in the subventral gland cells of M. 



 117

incognita (Fig. 2M and 2N). Considering that Minc04584 and Minc00344 are distantly 

related to MAP-1 relative to the rest of the family members could explain the different 

secretion schemes of MAP protein family members. The fact that the MAP family proteins 

seem to be secreted both from the amphids and the stylet further establishes these family 

members as important factors in the parasitism of host plant. 

Although the majority of effector molecules tend to be unique to specific parasites 

and not widely conserved in free-living organisms, there are certain families of effectors that 

are well conserved within related groups of parasites. The large effector repertoire of the 

plant pathogen Ralstonia solanacearum contains 3 effector gene families that are broadly 

conserved across different strains of the bacteria (Poueymiro and Genin 2009). These 

conserved gene families are thought to play basal roles in facilitating parasitism in a wide 

variety of hosts. Previous analysis of cyst and root-knot nematode effector repertoires has 

revealed that many effectors are also organized into gene families (Gao, Allen et al. 2001; 

Huang, Gao et al. 2003; Abad, Gouzy et al. 2008). In our study, we found that ten of the 17 

putative effector genes are organized in gene families within the M. incognita genome. For a 

parasite with a wide host range, like M. incognita, it may be advantageous to have different 

effector variants that function best in different host plant species.  

Our study has also shown that these gene families can be used to identify other 

effector candidates. By searching the M. incognita genome we were able to identify paralogs 

of our initial in situ-positive candidates. These paralogs turned out to be positive effector 

candidates that weren’t identified in our original screen. Indeed, every identified paralog with 

a signal peptide was also shown to be expressed specifically in the esophageal gland cells. 

Using the putative effector genes from M. incognita, we were also able to identify seven 
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orthologous proteins in the M. hapla genome as effector candidates. These findings validate 

the use of this approach in future studies to identify other effector candidates in M. incognita 

as well as other closely related root-knot nematode species. Conservation of these 

orthologous gene family members in multiple root-knot nematode species indicates that they 

may have fundamental roles in facilitating nematode parasitism. It would be very interesting 

to study whether these effector proteins also have conserved orthologs in other parasites. A 

more comprehensive analysis of all root-knot nematode species could identify the most 

conserved, and presumably the most indispensible, effector families within the Meloidogyne 

genus.  

 Recent experimental data have provided evidence of extracellular, cytoplasmic, and 

nuclear targeting of root-knot nematode effectors, suggesting diverse functional activities in 

the infected host cells (Tytgat, Vanholme et al. 2004; Elling, Davis et al. 2007; Hewezi, 

Howe et al. 2008). Knowing where effectors localize in planta could help guide future 

analysis of their function. Previous studies have used bioinformatic predictions to localize 

root-knot nematode effectors to specific host subcellular compartments (Huang et al., 2003; 

Bellafiore et al., 2008). Here, we studied the subcellular localization of the newly identified 

effectors (Fig. 3). All candidate effectors displayed a cytoplasmic localization, despite the 

fact that some of these effectors contained predicted nuclear localization signals (Psort II). It 

is possible that these effectors could be redirected towards specific subcellular compartments 

via host interacting factors. This type of effector interaction has been observed for certain 

cyst nematode effector proteins (Hewezi and Baum 2012).  

Nematode effector genes are often differentially regulated over the course of the 

parasite’s life cycle. An effector gene that is specifically expressed during a certain stage of 
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infection is likely to play a specific role during that stage of infection. Quantifying the 

expression profiles of all identified candidate effector genes over the course of M. incognita 

infection of tomato plants revealed distinct stage-specific expression patterns. More 

specifically, two effector candidates (Minc01696 and Minc10418/Minc08073) showed 

significant up regulation at 3 dpi (Fig. 4A and 4B). This early time point coincides with the 

initiation of the giant-cells, suggesting that these genes may have functional roles during the 

establishment of the feeding site. Four additional transcripts (Minc2097, Minc00344, 

Minc13292, and Minc03328) showed a consistent up-regulation during the first three 

parasitic time points (3 dpi, 7 dpi, and 14 dpi), followed by a distinct down regulation at 21 

dpi (when adult females begin to reproduce) (Fig. 4C-F). This pattern of expression is 

consisted with a potential involvement of these putative effectors in early and late events of 

parasitism but is dispensable for nematode reproduction. Interestingly, the opposite trend was 

observed for the candidate effector Minc00801, which exhibits a relatively low expression 

during the first five time points followed by obvious up-regulation at 21 dpi. The high 

expression abundance of this effector specifically at 21 dpi suggests a role in egg laying and 

perhaps the reproductive success of the nematode (Fig. 4L). Consistent with this 

hypothesized function, the mRNA of this candidate effector was specifically localized to the 

rectal glands of the adult female nematodes. This was intriguing because the rectal glands 

produce a gelatinous matrix (GM) which surrounds the nematode’s eggs (Maggenti and 

Allen 1960). In addition to enhancing the viability of the eggs in the soil, the GM is 

implicated in forming a pore in the surrounding plant tissue that allows the egg mass to 

escape the root (Orion and Franck 1990; Orion, Kritzman et al. 2001). In this context, a 

previous study identified a protein with cellulose-binding activity, which was secreted from 
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the vagina of M. incognita (Vieira, Danchin et al. 2011). These observations indicate that 

proteins secreted in the GM could be involved in egg laying and perhaps the reproductive 

success of the parasite. 

In conclusion, the use of next generation 454 sequencing technology has allowed us 

to sequence the gland cells of M. incognita on an unprecedented level. The novel effector 

proteins identified in this study have significantly expanded the effector repertoire of M. 

incognita, and set the stage for a more complete understanding of how this parasite infects its 

host plants.  

 

 

 
 
Figure 1. diagram of in silico filtering methods used to identify effector candidates A) The 
isotigs assembled from the gland cells specific sequences were compared to the known 
protein coding sequences from the M. incognita genome using a nucleotide Blast (minimum 
cut off of 90% identity over 70% of an Isotig’s length). B) M. incognita proteins represented 
in our gland specific sequences were compared to known parasite specific M. incognita 
proteins (previously predicted using OrthoMCL (Abubucker, Martin et al. 2011). C) 
Identified M. incognita proteins were analyzed for the presence of an N-terminal secretion 
signal and the absence of a transmembrane domain (Phobius). 
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Figure 2. Detection of DIG-labeled probes hybridized to transcripts expressed within the 
secretory gland cells of the M. incognita. A total of 16 probes detected transcripts from 17 
genes expressed specifically within the Dorsal (DG) or subventral (SvG) esophageal gland 
cells specific hybridization (A-P). 10-30 nematodes were hybridized with each probe, and 
specific gland expression was determined by the shape, size, and proximity of the stained 
region relative to the metacarpus (M). One probe specific for Minc00801(Q) produced 
specific staining in the rectal glands (RG) attached to the rectum (R) of J4 female nematodes.  
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Figure 3. Sub-cellular localization of effector-GFP fusion proteins in onion epidermal cells. 
N-terminal GFP fusion constructs were made for twelve of the putative parasitism proteins 
cloned from M. incognita. All twelve, including Minc00469 (Above), produced a 
cytoplasmic GFP signal when bombarded into onion epidermal cells.  
 
 
 
  



 123

 
 
 
 

 
 
Figure 4. qRT-PCR expression analysis of putative parasitism gene over the life-cycle of M. 
incognita. A-B) Two putative parasitism genes that show a significant increase in expression 
at 3DPI (* = p-value <0.05). C-F) Four putative parasitism genes that show relatively high 
expression during the parasitic stages of M. incognita (3DPI, 7DPI, and 14DPI), and show a 
significant decrease during the adult stage at 21DPI. G-K) Five putative parasitism genes that 
show a relatively consistent expression pattern across all four infected time points (3DPI-
21DPI). L) Minc00801, the rectal gland specific transcript, shows a significant increase in 
expression during the adult stage of M. incognita 21DPI (* = p-value <0.05). 
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Table 1. Summary of the 18 putative effector genes identified in this study. Column A) 
amino acid similarity to paralogous genes in the M. incognita genome (BLASTp % identity 
and bit score). Column B) amino acid similarity with orthologous proteins containing signal 
peptides in the M. hapla genome (BLASTp % Identity and bit score). Column C) highest 
homolog in the NCBI-nr database (BLASTp minimum cutoff >35 bits). Column D) protein 
domains predicted using InterPro Scan software. Column E) gland specific expression found 
in either the dorsal gland (DG), the subventral glands (SvG), or the rectal glands (RG) using 
in situ hybridization. 
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CHAPTER 6. GENERAL CONCLUSIONS 
 
 During the course of my research I have been struck by the complexity of the 

interaction between sedentary endoparasitic nematodes and their host plants. These parasites 

have evolved the ability to manipulate plant defenses, development, and metabolism to create 

an entirely new plant organ that exists only to feed the nematode. What makes this feat seem 

all the more amazing to me is that they appear to be able initiate all of these changes using 

only a mixture of effector proteins. In my opinion, if we were able identify the entire 

repertoire of nematode effectors and understand how they function within host plants it 

would likely facilitate novel mitigation strategies and give us a better understanding of the 

pathways that nematodes manipulate within plants.  

 In the past fifteen years there has been a huge surge in our understanding of nematode 

effector proteins. Many of these new discoveries have been facilitated by the advent of next 

generation sequencing technologies. These technologies have promoted powerful genomic 

and transcriptomic approaches for identifying effectors and the effects they have within the 

host. Indeed, these approaches have provided a wealth of data that have begun to answer 

many questions about these parasites, and have highlighted even more questions. 

 One question that has caught my attention: ‘How well are these effector proteins 

conserved across the various taxa of parasitic nematodes?’ As described in the introduction, 

there are several characterized effector proteins that are known to be conserved in both root-

knot and cyst nematodes. In fact, chorismate mutase effectors have even been found in 

species of migratory parasitic nematodes (Haegeman, Joseph et al. 2011). This type of broad 

conservation indicates that chorismate mutase likely plays a basal role in facilitating 

parasitism. By identifying which nematode effectors are conserved in different species of 
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nematode we can begin to identify which effectors are likely to function in all nematode 

infections, versus those that are more likely to function only in specific host plants. These 

data could be critical when trying to identify the host specificity determinants of different 

nematode populations.  

 Our ability to gather this type of data is currently limited only to the few specific 

nematode species and isolates for which we have genomic and transcriptomic data. However, 

initiatives are underway to expand nematode effector databases. Empowered by the lowering 

cost of sequencing, as well as new techniques that allow very specific isolation of nematode 

gland cells (Maier, Hewezi et al. 2013), these initiatives seek to identify the effector 

repertoires of multiple species of nematodes that have never been sequenced. In the future, 

these techniques could be applied to multiple field races of each species and give us a more 

comprehensive view of the diversity of these effector proteins. I believe that the availability 

of this type of meta-data will be a huge advantage when trying to identify which effectors are 

the most crucial to which interactions.     

 On the flip side of this interaction, a complementary question can be asked about 

plant factors: ‘what are the specific proteins or pathways within the plant that are targeted by 

effectors from nematodes and other plant pathogens?’ Much of the research on effector 

proteins has been focused on understanding how they function within the plant and what 

pathways within the plant they alter. If we can understand what all effectors do in planta, 

then presumably we will be able to paint a complete picture of how and why pathogens affect 

their plant hosts the way they do.  

 Despite the fact that we are nowhere near having a complete understanding of 

effector functions, common virulence targets have already been identified in pathogens from 
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different kingdoms. During my research I have come across several of these common 

virulence targets. One example that has really stuck in my mind is the discovery of 

Minc01696 from M. incognita (see chapter 5). This putative effector contains a dual 

specificity kinase domain similar to those in TTK/MPS1 kinases, which play important roles 

in regulating mitosis. The possibility that Minc01696 alters mitotic processes is intriguing, 

because one of the iconic morphological characteristics of giant-cells are multiple aneuploid 

nuclei. In fact, increases in plant nuclear DNA ploidy have also been observed at the 

interaction sites of fungal pathogens and symbionts. It has been postulated that this increase 

in ploidy could facilitate increased metabolic activity within plant cells (Wildermuth 2010). 

If the link between TTK/MPS1 kinases and mitosis can be confirmed, it could implicate this 

pathway as a regulatory hub that is targeted by effectors in other pathosystems as well.  

 I came across a similar plant regulatory hub while studying the effector 4E02 from H. 

schachtii (see Chapter 2). I found that Hs4E02 can interact with the active site of the plant 

papain-like cysteine protease RD21A. This is very interesting because RD21A and its 

homologs are known to initiate plant defense responses, and are targeted by effectors from 

diverse plant pathogens (Bar-Ziv, Levy et al. 2012; Lozano-Torres, Wilbers et al. 2012; 

Lampl, Alkan et al. 2013). Indeed, plant papain-like cysteine proteases are a common 

virulence target for multiple pathogens. Many more common virulence targets are beginning 

to emerge in plants, and as more information is gathered regarding these targets I think it is 

likely that we will be able to categorize effectors from different pathogens based on their 

common host targets. This will have wide-reaching effects on our ability to identify new 

effectors, characterize their function, and perhaps even our ability to design pest resistance in 

crop plants.  
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 There are many important questions about the plant-nematode interaction that remain 

to be answered, but in my mind, the two that are the most critical are the ones that I have 

summarized in this chapter. In the relatively short time I have been a graduate student I have 

been fortunate to witness some big discoveries in the field of effector biology, and I am 

excited to see what happens in the future.   
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