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ABSTRACT: Increasingly, modern computer systems comprise a multicore
general-purpose processor augmented with a number of special purpose devices
or accelerators connected via an external interface such as a PCI bus. The
NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two
examples of such accelerators. Accelerators offer peak performances that can be
well above those of the host processor. How to exploit this heterogeneous
environment for legacy application codes is not, however, straightforward. This
paper considers how matrix operations in typical quantum chemical calculations
can be migrated to the GPU and Phi systems. Double precision general matrix
multiply operations are endemic in electronic structure calculations, especially
methods that include electron correlation, such as density functional theory,
second order perturbation theory, and coupled cluster theory. The use of
approaches that automatically determine whether to use the host or an
accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For
data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload
and download rates between 5−5.6 GB/s and 5.4−6.3 GB/s, respectively. The GPU outperforms the Phi for both square and
nonsquare matrix multiplications.

1. INTRODUCTION

The use of accelerators to enhance scientific computing goes
back at least to the early 1980s, when the FP730 floating point
accelerator was introduced for the VAX 11/730 computers that
had only recently become popular in academic departments. In
the last several years, the most popular accelerator has been the
NVIDIA graphical processing unit (GPU). This accelerator has
been employed successfully in molecular dynamics simulations1

and in electronic structure theory methods, such as Hartree−
Fock (HF),2 density functional theory (DFT),3 second order
perturbation theory (MP2),4 and coupled cluster (CC) theory.5

The use of the NVIDIA GPU accelerator has been largely
successful, but a large investment in novel programming is
required to gain a significant improvement over purely CPU
computations. Several popular electronic structure codes, such
as TeraChem,6 GAMESS,7 NWChem,8 and Q-Chem,9 to name
a few, offer GPU-enabled codes. While hybrid GPU/CPU
speedups of up to 2 orders of magnitude relative to purely CPU
computations have been reported,10 these often fail to compare
GPU acceleration relative to the very best and most efficient
CPU code running on all cores of the host CPU.
Recently, the Intel Phi accelerator has gained some interest,

in part because the Phi is purported to require little or no new
programming effort; however, there have been few reports in
which the performance of the Phi accelerator is compared with
native CPU performance or with GPU speedups.
The focus of this work is to compare the performance of the

Intel Phi 5110P with the NVIDIA K20 GPU for matrix

operations using compiler directives and vendor supplied
accelerated math libraries. In particular, double precision
general matrix multiply (DGEMM) operations are used for
benchmark comparisons. These are a core functionality
requirement for electronic structure theory computations,
especially for methods that incorporate electron correlation
corrections at some level. Also, as data must be communicated
from the host to the accelerator in order to perform the
DGEMM, the data-transfer performance of the Peripheral
Component Interconnect (PCI)-e is evaluated.

2. COMPUTATIONAL APPROACH

The need for DGEMMs is ubiquitous in quantum chemistry.
All methods that include electron correlation, as well as analytic
second derivatives, require a four index integral transformation
from the atomic orbital (AO) to the molecular orbital (MO)
basis. This is best performed as a set of four DGEMM
operations. For CC and MP2, DGEMMs also occur in the
contraction of integrals and amplitudes.11

Typically, migrating matrix multiplications onto accelerators
involves the transfer of matrix data from the host to the
accelerator, computing the matrix product on the accelerator,
and transferring the matrix product from the accelerator back to
the host. The benefit of migrating matrix multiplications onto
accelerators is evaluated by comparing the total time needed
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with and without the accelerator. This provides the speedup
relative to the host.
The data-transfer performance of the Phi 5110P and the

NVIDIA K20 over PCI-e was evaluated by measuring the time
taken to transfer matrices with data sizes ranging from 2 to
4098 MB (in increments of powers of two) from the host to
the accelerator (upload) and from the accelerator to the host
(download). For each data size, an untimed “warm-up” transfer
was first completed followed by three consecutive transfers that
were timed. The average transfer time was used to calculate the
data-transfer rate.
To evaluate the Phi 5110 and Kepler K20 performance, the

matrix product [m, k] × [k, n] = [m, n] was calculated. The
dimensions of these matrices are usually related to the size of
the AO basis or the number of electrons/number of occupied
MOs. Square matrices are associated with full AO to MO
transformations. For correlation methods with a large basis set
the occupied orbitals typically represent 5% or less of the total
number of MOs.
Square matrix multiplications (m = k = n) were evaluated for

values of m ranging from 1024 to 16384. Three sizes of
nonsquare [m, k] matrices were used: 32, 768, and 1458 MB.
For each size, the row to column ratio, m:k, was varied from 1:1
(square matrix) to 1:110 reflecting the ratio of occupied to total
MOs, in such a manner that the calculation fits within the
memory limits of the K20 GPU.
2.1. Hardware. The host consists of two 2.0 GHz 8-core

Intel Xeon E5-2650 processors, configured with 128 GB of
memory and with a theoretical peak double-precision perform-
ance of 256 GFLOPS.12

The K20 GPU features a streaming multiprocessor (SMX)
and is configured with 5 GB of GDDR5 memory with a
theoretical peak memory bandwidth of 208 GB/s.13 Each of the
13 SMX operates at 705 MHz and contains 64 double-precision
units, each of which can execute a fused multiply-add operation.
The K20 possesses a theoretical peak double-precision
performance of 1173 GFLOPS (4.58× theoretical peak
double-precision performance speed-up relative to the host).
Host memory can be moved or transferred to disk by the
operating system. Pinned memory helps improve memory
access between the host and device by preventing the host
memory from being swapped.
The Phi 5110P coprocessor features 60 64-bit x86-based

Intel cores operating at 1.053 GHz.14 Each core supports four
hardware threads and contains a 512-bit SIMD instruction set.
Each core is capable of executing 16 double-precision fused
multiply-add operations per clock cycle. The Phi has a
theoretical peak double-precision performance of 1010
GFLOPS (3.94× theoretical peak double-precision perform-
ance speed-up relative to the host), is configured with 8 GB of
GDDR5 memory, and has a theoretical peak memory
bandwidth of 320 GB/s. Using the MKL math library, one
can employ either automatic or compiler-assisted offloading.
Automatic offloading (AUTO) is controlled using an environ-
mental variable and no code modifications are needed. The
minimum dimensional requirement for AUTO matrix multi-
plication is m, n > 2048 and k > 256.15 With AUTO, the
computational work division between the host and Phi
coprocessor is determined at runtime. AUTO does not allow
the user to control the movement of data between the host and
coprocessor.
In compiler-assisted offloading (CAO), pragmas are inserted

into the host code to manage data movement and computation

offload onto the coprocessor. In the current study, pragmas are
used to isolate communication between the host and the
coprocessor in order to evaluate data-transfer performance over
PCI-e. Pragmas are also used to isolate and control the
computational offloading between the host and the coprocessor
so that all of the computations are offloaded onto the
coprocessor. The latter allows for a direct comparison of the
DGEMM performance between the Phi coprocessor and the
K20 GPU. In the current work, implementing the CAO model
for offloading DGEMM routines involved the same amount of
effort and code modifications necessary to utilize the NVIDIA
cuBLAS library on the GPU.
The runtime performance of the Phi can also be fined tuned

through the use of environmental variables to control, for
example, the binding of threads to physical processing cores
(thread affinity).16 To distinguish environmental variables that
may be shared by the host and the coprocessor a prefix can be
assigned (e.g., MIC_ENV_PREFIX=MIC). By default, four hardware
threads are assigned to each core on the Phi with one of the
cores being excluded when using the offload runtime. An
offloaded computation on the Phi can make use of up to 236
threads. The MIC_KMP_AFFINITY environmental variable controls
the binding of threads to cores. The default affinity setting,
scatter, uses a round-robin assignment of threads among
available cores. The compact affinity setting assigns threads to
consecutive cores while the balance affinity setting divides
threads up evenly into the available cores but keeping
consecutive threads locally close. At 236 threads, all 59
available cores are saturated with 4 threads and the compact
and balance affinity settings offer the same thread binding.

2.2. Software. The host version of the code was compiled
with the Intel Fortran compiler and made use of the DGEMM
routine from the threaded version of Intel MKL. In addition,
-O3 level optimizations and -align array64byte array alignment
flags were used. All runs on the host employed 16 OMP threads
with the KMP_AFFINITY environment variable unset.
The K20 GPU version of the performance code was built

using the Portland Group Inc. (PGI) CUDA Fortran compiler
version 13.5 with -O3 level optimizations. In addition, the
DGEMM routine from the NVIDIA cuBLAS math library was
used. To improve data transfer performance between the host
and the GPU, pinned host memory was used.
The Phi version of the code used the Intel Many-core

Platform Software Stack (MPSS) 2.1.6720-13 and was built
with the same compiler, optimization, and array alignment flags
used on the host. For DGEMMs on the Phi, the coprocessor-
optimized MKL DGEMM routine was used. For all Phi runs,
the MIC_KMP_AFFINITY environmental variable for the copro-
cessor was set to compact as this was found to offer better
overall performance relative to the default affinity setting of
scatter. To improve data transfer performance on the Phi, the
environmental variable MIC_USE_2MB_BUFFERS=2 M was set to
turn on the use of 2 MB page buffers.

3. NUMERICAL RESULTS
3.1. Data-Transfer Performance over PCI-e. Figure 1

shows the data-transfer performance over PCI-e for the Phi
5110P and the K20 GPU. Overall, the K20 offers the better
data-transfer performance over PCI-e for both upload and
download. The Phi exhibits a data-transfer rate of 3−6.5 GB/s
over the range of data sizes transferred. The K20 has a more
consistent data-transfer rate of 5−6.3 GB/s over the same
range. The K20 download rate is about 0.5 GB/s better than
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the upload rate. The Phi exhibits similar data-transfer rates for
both upload and download for data sizes up to 128 MB. Above
128 MB, the Phi download rate decreases by up to 1 GB/s. For
8−4096 MB data sizes, the Phi produces a data-transfer
performance that is similar to that of the K20. For data sizes
below 8 MB, the data-transfer performance for the Phi is poor;
this poor performance might be attributed to the lack of pinned
host memory support in the CAO model. (In CUDA Fortran,
the use of pinned memory only requires adding the “pinned”
variable attribute to the array declaration.)
3.2. DGEMM Performance. Figure 2 demonstrates the

performance of the Phi and K20 GPU for square matrix

multiplication relative to executing on the host. For the Phi
coprocessor, four different AUTO scenarios are shown for the
computational work division:

• 25% on the host and 75% on one coprocessor (AUTO
75%)

• 0% on the host and 100% on one coprocessor (AUTO
100%)

• determined at runtime using one coprocessor (AUTO
Unspecified)

• determined at runtime using two coprocessors (AUTO
Unspecified (×2)).

For the CAO performance evaluation depicted in Figure 2,
all of the computational work was executed on a single
coprocessor. For comparison with the latter, the K20
performance evaluation executed all computational work on a
single GPU.
Relative to running on the host, the GPU offers the best

overall performance for migrating square matrix multiplication
to a single accelerator. With a single accelerator, the Phi AUTO
Unspecified model offers a peak speedup of 2.6−3.4× relative
to the host for DGEMM square matrix operations, depending
on the work division. The fact that similar performances are
exhibited by AUTO 75% suggest that a 1:3 work division ratio
between the host and Phi was used at runtime in the
Unspecified case for most of the square matrices tested. This
is in line with analysis of the offload report for AUTO
Unspecified, which reveals a Phi work division percentage range
38−77%. For all AUTO scenarios evaluated with a single Phi,
the speedup relative to the host does not exceed 2× until the
value of m is larger than 4096. For m < 4096, AUTO
Unspecified offers the best Phi performance.
Using two Phi coprocessors, AUTO Unspecified (×2) starts

to show performance gains even for relatively small matrix
dimensions, achieving a peak speedup of 5.4× (raw perform-
ance of 1420 GFLOP/s) relative to the host for DGEMM
square matrix operations with m > ∼12 000. Analysis of the
offload report at peak speedup indicates a computational work
division of 13% on the host and ∼43.5% on each coprocessor.
CAO (Figure 2) provides a peak speed-up of 2.8× relative to

the host for square matrix DGEMM operations. The CAO Phi
performance closely matches the AUTO 100% case. This is not
unexpected since all DGEMM operations are executed on the
coprocessor in both cases. Interestingly the CAO performance
drops at values of m coinciding with matrix sizes of large
powers of two.
Completely migrating matrix multiplication onto the GPU

yields a square matrix DGEMM speedup of 1.5−3.5× relative
to the host. The GPU outperforms CAO Phi for all square
matrix sizes evaluated. AUTO Unspecified, which utilizes both
the host and one Phi, exhibits a comparable square matrix
DGEMM performance to the GPU for m > 7168. For m <
4096, the GPU outperforms the Phi.
Figures 3, 4, and 5 display the performance of the Phi and

K20 GPU for migrating nonsquare matrix multiplications. The
choices for matrix sizes and dimensions are strongly driven by
quantum chemistry end use scenarios. The first matrix is taken
to be the orbital coefficient matrix, the second matrix to contain
integrals that can be processed in batches, and the summing
index, k, taken as the number of atomic orbitals. Three different
sizes (32, 768, and 1458 MB) for the first matrix were used.
The ratio of rows to columns in the first matrix, m:k, increased
from 1:1 to 1:110 as might occur if the transformation is to
only a subset of the molecular orbitals. For the second matrix
the number of rows is also k, but the number of columns, n, is
allowed to vary freely. This reflects the fact that it is often
chosen based on available memory and the idea of computing
as many integrals as possible for transformation. Since the

Figure 1. Data transfer performance on the Intel Xeon Phi 5110P
coprocessor and NVIDIA Kepler K20 GPU for upload (host-to-
device) and download (device-to-host).

Figure 2. DGEMM performance on the Intel Xeon Phi 5110P
coprocessor and NVIDIA Kepler K20 GPU for [m, m] × [m, m] = [m,
m] using various [m, m] matrix sizes.
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available memory is usually large, n is usually greater than both
m and k. In all cases the Phi CAO model was used for
comparison with the GPU and all DGEMM operations were
executed on a single accelerator (the host was left idle).
Considering first the results for the m:k ratio fixed at 1:1, for

n:m ratios <1 performance degrades quickly with little or no
benefit resulting from use of an accelerator. This is most clearly
evident in Figure 5. Fortunately however, as mentioned above,
this situation is unlikely; for the more important case where the
ratio of n:m is larger than one, performance is relatively flat.
Now, for a fixed n:m ratio, performance consistently decreases
with increasing m:k ratios; that is, for a given [m, k] matrix size
and for any n:m ratio, an m:k ratio of 1:1 (square) provides an
upper-bound to the performance that can be achieved on an
accelerator for migrating matrix multiplication.
Relative to running on the host, the GPU provides the best

overall performance for matrix multiplication involving non-
square matrices. For a 32 MB [m, k] matrix (Figure 3), the Phi
provides a speedup of ≤1.5× for all nonsquare [m, k] matrices
tested, while for m:k ratios between 1:70 and 1:110, the Phi

offers no performance improvement over running on the host.
In contrast, the GPU provides a 1−1.5× speedup relative to the
host for matrices with m:k ratios between 1:40 and 1:110. For
m:k ratios less than 1:40, the GPU provides a speedup of 1.5−
2×.
For Olestra with a cc-pVTZ basis set (occupied MO:AO

ratio = 453:9142) or Vitamin B12 using an aug-cc-pVQZ basis
set (occupied MO:AO ratio = 359:11557), migrating AO-to-
MO transformations onto accelerators may offer little to no
performance improvement relative to running on the host. For
both accelerators, the square matrix performance observed for
m = 2048 (2048 × 2048 double precision matrix = 32 MB) in
Figure 2 can be improved by increasing the column dimension
of the [k, n] matrix, as is evident from the performance
observed for n/m values above 1 for m:k ∼ 1:1 in Figure 5. The
latter is more pronounced for the GPU.
For a larger 768 MB [m, k] matrix (Figure 4), the

performance is improved on both the Phi and GPU. The Phi
exhibits a peak speedup range of 1.5−2.2×. Above n/m = 2, the
Phi provides a speedup >1.5× for m:k ratios between 1:1 and
1:90. The GPU exhibits a speedup >2× when n/m ≥ 2. For
BPTi using an aug-cc-pVQZ basis set (occupied MO:AO ratio
=1748:56933), the GPU has a potential speedup of 2.8×, while
the Phi only provides a potential speedup of 1.9×, relative to
the host.
The performance for both accelerators continues to improve

as the [m,k] matrix size increases. For a matrix size of 1458 MB
(Figure 5), the Phi provides a speedup of 1.5−2× for n/m = 1.
The GPU continues to outperform the Phi with speedups of
1.8−3.1× for n/m = 1. For n/m > 1, the performance for the
Phi and GPU does not change significantly. The GPU appears
to offer a better overall performance than the Phi for
accelerating matrix multiplications involving nonsquare ma-
trices that may be encountered when studying large molecular
systems using large basis sets.

4. CONCLUDING REMARKS
The performance of migrating matrix multiplications to the Phi
5110P and K20 GPU was evaluated. For data-transfers over
PCI-e, the GPU provides the best overall performance for data
sizes up to 4096 MB with consistent upload and download rates

Figure 3. DGEMM performance on the Intel Xeon Phi 5110P
coprocessor and NVIDIA Kepler K20 GPU for [m, k] × [k, n] = [m,
n] using a 32 MB [m, k] matrix.

Figure 4. DGEMM performance on the Intel Xeon Phi 5110P
coprocessor and NVIDIA Kepler K20 GPU for [m, k] × [k, n] = [m,
n] using a 768 MB [m, k] matrix.

Figure 5. DGEMM performance on the Intel Xeon Phi 5110P
coprocessor and NVIDIA Kepler K20 GPU for [m, k] × [k, n] = [m,
n] using a 1458 MB [m, k] matrix.
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between 5−5.6 GB/s and 5.4−6.3 GB/s, respectively. The Phi
suffers from poor data-transfer performance for data sizes
smaller than 8 MB, possibly due to the lack of pinned memory
support in the CAO model.
Both the Phi and the GPU offered at least 70% of the

theoretical peak double-precision performance speed-up
relative to the host for DGEMM operations offloaded on to
a single accelerator.
For square matrix multiplications, the GPU outperforms

both AUTO and CAO using a single Phi. AUTO Unspecified,
which uses both the host and Phi coprocessor for the
computation, gives the closest performance to the GPU, but
only for m > 7168. Compared to CAO on the Phi, the GPU
does not appear to exhibit performance drops for square matrix
sizes with large powers of two.
For migrating nonsquare matrix multiplications, the GPU

outperforms the Phi for the matrix sizes and dimensions tested.
The GPU provides a greater speedup relative to the host for a
wider range of row to column ratios than the CAO approach on
the Phi. Observed for both accelerators is a decrease in
performance when the row to column ratio of the [m, k] matrix
decreases. However, the performance on both accelerators is
observed to improve for a given row to column ratio as the size
of the [m, k] matrix increases.
Except for AUTO 75%, AUTO Unspecified and AUTO

Unspecified (2×), none of the tests described here made use of
the 16 cores on the host for overlapping computations.
Therefore, the presented performance analyses may offer a
lower bound to the potential speedups that can be achieved. On
the other hand, the AO Unspecified case may represent the best
upper bound to speedups that can be obtained when using a
single Phi coprocessor for migrating matrix multiplications.
Because matrix product operations are ubiquitous in many
areas of science, the analyses presented here are broadly
applicable.
A purported advantage of the Phi coprocessor is the ability to

readily exploit its additional computational power without the
need to develop a new algorithm or introduce a new code base.
The AUTO model does allow users to immediately harness the
additional computing power of the Phi by setting a few
environmental variables. However, based on the analyses
presented here, the Phi AUTO model underperforms relative
to an under-utilized K20 GPU. That is, the best performing
AUTO case evaluated with a single coprocessor made use of
overlapping communication and overlapping computation with
the host, while the GPU used blocking communication and
blocking computation and left the 16 cores on the host idle.
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