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AUTOMATIC CORN PLANT POPULATION

MEASUREMENT USING MACHINE VISION

D. S. Shrestha,  B. L. Steward

ABSTRACT. A machine vision–based corn plant population sensing system was developed to measure early growth stage corn
population. Video was acquired from a vehicle–mounted digital video camera at V3 to V4 stages under different daylight
conditions. Algorithms were developed to sequence video frames and to segment, singulate, and count corn plants. Vegetation
segmentation was accomplished using a truncated ellipsoidal decision surface. Two features were extracted from each pixel
row of the segmented images: total number of plant pixels, and their median position. Adjacent rows of the same class were
grouped together and iteratively refined for final plant counting. Performance of this system was evaluated by comparing
its estimation of plant counts with manual stand counts in 60 experimental units of 6.1 m sections of corn rows. The number
of corn plants in these experimental units ranged from 14 to 48, corresponding to a population of 30,000 to 103,000 plants
/ha. In low–weed field conditions, the system plant count was well correlated to manual stand count (R2 = 0.90). Standard
error of population estimate was 1.8 plants over 33.2 mean manual plant count, or 5.4% coefficient of variation.
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orn plant populations that are higher or lower than
optimal can reduce crop yield. Duncan (1958)
found that corn yield was maximized at particular
plant populations depending on nutrient

availability. Wiley and Heath (1969) investigated the
relationships established by different researchers between
corn population density and yield and found that the
predictions had similar trends of yield maximization at
particular plant population densities. Duncan (1984) pre–
sented the theory of crowding as a reason for yield reduction.
However, optimum plant densities have not been constant
over time but have increased substantially over the last
several decades (Troyer and Rosenbrook, 1983; Nafziger,
1994).

Even if a corn variety is planted at its optimal population,
row spacing and interplant distance within a row can also
affect the final yield. Plant population density, as well as
interplant distribution, is important in effective utilization of
available resources like nutrients and sunlight. Barbieri et al.
(2000) studied the row spacing effect at different levels of
nitrogen availability in corn. They found that the corn yield
was higher when the row spacing was decreased for the same
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population density. The relative yield increase was higher for
nitrogen–deficient  fields. Doerge et al. (2002) measured
spacing of 6,000 plants in research conducted in Missouri,
Iowa, and Minnesota. The whole–field plant spacing stan-
dard deviation ranged from 3.2 to 6.9 inches. They estimated
that every inch reduction in plant spacing standard deviation
in a commercial field would increase the yield by about
3.4 bu/acre. Nafziger (1996) found that when there is a
missing plant, the plants on either side compensated for only
47% of the reduced yield in lower population density fields
(18,000 plants /acre) and 19% in higher plant density
(30,000 plants/acre) fields, hence decreasing the final yield.

There are three main causes of variability in plant spacing:
seed germination, planter seed placement, and plant death.
Seed germination rates typically range from 90% to 95%
(Nielsen, 2001). Planter performance depends both on
planter maintenance and speed. Nielsen (1995) reported that
when the planter speed varied from 6.4 to 11.2 km/h (4 to
7 mph), the planted seed rate at higher speeds was signifi-
cantly different than the planted seed rate at lower speeds. He
concluded that a yield loss of at least 1.9 bu/acre occurs at
every 1 mph speed increase in the range of 4 to 7 mph.
Weather– and pest–related damage may result in unevenly
spaced plant survivors within a row (Nielsen, 2001). Because
of these factors, established plant population and spacing
may be different than target plant population.

Bullock et al. (1998) found that for variable–rate seeding
to be profitable, a farmer needs extensive knowledge of
site–specific plant population versus yield data from many
years. Manual stand counts would not be feasible for a large
field and are also susceptible to human error. An automated
plant counting system provides a method for counting plants
quickly and objectively. In addition, comparison of early
stage plant population measurements with populations at
harvest can be used to measure the plant survival rate
throughout the growing period. Plant survival rates could be
used to estimate the population density required at planting
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time to achieve the desired population density at harvesting
time.

Because of the importance of plant population density and
spacing distribution to produce the optimum yield, several
researchers have investigated population measurement sys-
tems. Most population sensing technologies have been
developed for application at harvest. Birrell and Sudduth
(1995) and Sudduth et al. (2000) developed a combine–
mounted mechanical sensor to map corn population at
harvest. Plattner and Hummel (1996) developed another corn
population sensor using non–contact optical sensors at
harvest. Nichols (2000) also developed a corn population
sensor using a moisture sensor to count corn stalks as they are
pulled into the combine head. Easton and Easton (1996)
developed a mechanical sensing system for counting young
corn plants, which was mounted on a one–wheeled, human–
powered cart.

With current advances in digital video technology,
machine vision has potential as a sensing technology for corn
plant population measurements. In addition, a machine
vision system could be extended to measure other field
variables like plant color, soil color, plant height, and other
crop characteristics. Therefore, machine vision was investi-
gated as a means to sense corn plant population.

Automated plant counting using machine vision involves
three major steps. First, the individual video frames must be
separated and the amount of overlap of the scene in two
subsequent frames must be determined in order to avoid
multiple counting of plants that occur in two frames. Second,
the plants must be segmented from the scene background.
Third, plants must be singulated and counted.

The objective of this research was to develop a machine
vision sensing system for counting corn population at an
early growth stage ranging from V3 to V4. Specific research
objectives were to:
� Develop an image correspondence methodology for video

frame sequencing that could reliably find the amount of
shift from one frame image to the next in a video of field
scenes.

� Develop a corn plant segmentation and singulation
algorithm that would accurately estimate corn plant
population over row lengths.

METHODOLOGY
EXPERIMENTAL SETTING

Two weeks after plant emergence, video sequences were
collected in corn plots planted on 26 April 2001 (Asgrow
RX686RR) at the Iowa State University Agronomy and
Agricultural Engineering Research Center in Boone, Iowa. A
Sony DCR–TRV900 digital camcorder was mounted on a
John Deere Gator utility vehicle at 0.60 m above the ground
with a 0.30 � 0.40 m field of view. Each captured image size
was 480 � 720 pixels with 24–bit color resolution. The
vehicle was driven over a corn row in a straight line with the
camera directly over the plants at a speed of about 1 m/s. The
shutter speed was adjusted to 1/1000 second, frames were
captured in progressive scan mode, and other camera settings
were set to auto. In the field, the video stream was recorded
on a miniDV tape.

The corn plants were at V3 to V4 growth stages, which are
the vegetative growth stages of corn when the third or fourth

leaf collar is visible. The corn row spacing was 0.76 m
(30 in.), and the target population was 74,000 plants/ha
(30,000 plants per acre). Corn rows were divided into 6.1 m
(20 ft) long sections by staking yellow construction tape
perpendicular  to the row direction. Each 6.1 m long corn row
section was considered to be an experimental unit, and a
total of 60 experimental units were used in the study. This
length represented a trade–off between population measure-
ment resolution and spatial sampling resolution. In addition,
6.1 m row sections are slightly longer than the row length
recommended to achieve the recommended 1/1000–acre
stand counts for 0.76 m (30 in.) rows (Benson, 1990). The
number of plants within each experimental unit was deter-
mined through manual stand counts.

In the laboratory, video streams were transmitted from the
camera to a personal computer using an IEEE 1394 serial
interface.  Adobe Premiere 6 (San Jose, Cal.) was used to
capture the video stream as AVI files and then to decompress
and store individual frames as color tagged image file format
(TIFF) files. Matlab Ver. 6 (The Mathworks, Inc., Natick,
Mass.) was used for development of image processing
algorithms and subsequent image processing.

IMAGE SEQUENCING

Image sequencing is the process of determining the
amount of overlap in succeeding video frames. This is
essentially an image correspondence problem in which
common scene points in two images are identified and
matched. There are many methods available in the literature
for image correspondence. One technique is to match a
pattern and a searched image through the use of a matching
criterion that serves as a measure of correlation (Sonka et al.,
1998). Feature–based image correspondence, such as the
method developed by Dai and Khorram (1999), is another
possible approach for matching remotely sensed image pairs.
Their algorithm included image segmentation, control–point
selection and correspondence, and transformation parameter
estimation. In general, for the feature–based algorithms to be
effective, images should contain objects with well–defined
shapes and edges, like a river or road, as are usually
encountered in remote sensing. Feature–based algorithms
also tend to be computationally expensive. For cornfield
scenes, the objects are not well defined. In addition, the
computation time must be constrained due to the large
number of frames to be sequenced. Sanchiz et al. (1995)
developed a feature–based system to sequence the video
frames in fields containing small cabbage plants with the
assumption that there is no movement in the scene itself. In
our case, however, the corn plant leaves were moving in the
wind, and inclusion of plant regions in the correspondence
algorithm produced erroneous results.

Image correspondence can be done both in spatial and
frequency domains. In the frequency domain, image corre-
spondence can be obtained to sub–pixel accuracy, but the
computational  cost is higher than spatial correlation–based
image matching (Averbuch and Keller, 2002). Correspon-
dence is a key problem in machine vision applications and no
general reliable solution exists (Maciel and Costeira, 2002).

In this research, to accomplish image sequencing, intensi-
ty images were derived from color images, and the amount
of shift between sequential frames was estimated. Assuming
that camera rotation was negligible from frame to frame, the
image sequencing problem consisted of finding the shift in
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the next frame relative to the current frame being processed.
A patch was selected randomly in the current frame with the
constraint that its expected corresponding matching location
(search region) was within the boundary of the next frame. A
30 � 30 pixel patch was selected as a balance between two
competing criteria: to minimize computation time and to
maximize textural content, which both increase with patch
size. This patch size corresponded to 1.88 cm in the direction
of travel and 1.67 cm perpendicular to the direction of travel.

When selecting a patch in the current frame for matching
with the next frame, the anticipated shift was taken into
account so that the search region in the next frame completely
lay within the next frame boundary (fig. 1). The search region
was set such that the patch could be moved by 30 pixels in any
direction from the anticipated amount of shift. The average
shift of two previous images was used to determine the
anticipated shift amount. Once a patch in the current frame
and the corresponding search region were selected, both
patch and search region were searched for vegetation by
segmenting plants using the truncated ellipsoid method,
described in the next section. If more than 5% of the pixels
in either the patch or the search region were classified as
vegetation,  then that patch selection was disqualified from
further processing. In addition, if the patch was very dark
(average intensity < 0.2) or very bright (average intensity >
0.8), then the patch was disqualified and another patch was
reselected randomly. Plant regions were excluded because
the position of a plant may change from frame to frame due
to wind moving the leaves, leading to a false match. If the
intensity of a patch was too high, generally it was too
saturated to contain texture information. Similarly, dark
patches usually had a low level of information.

For the first two images in a sequence, there was no
information available for the anticipated shift. Therefore, to
determine the amount of shift between the first and the
second frame in the sequence, it was assumed that the vehicle
always traveled forward, and the patch was selected within
the lower 100 rows of the first frame within a 50–column
margin from both right and left sides. The entire second frame
was then searched for the match location of that patch.

If the patch was m � n pixels and the search region was
M � N pixels, the matching error for each position was
determined by:
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Figure 1. For image sequencing, an image patch (X) in the current frame
was shifted in a search region in the next frame to find the best match. The
difference in coordinates of the patch matched to the second frame gives
the amount of shift from the current frame to the next frame.
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Figure 2. Process of calculating an error matrix (Err). The patch was shift
over the search region. For the position shown above Err1,1 = |(0.0 – 0.1)|
+ |(0.4 – 0.3)| + � + |(0.2 – 0.0)| = 3.3.

where Err is the (M – m) � (N – n) error matrix. The (p,q) term
of Err corresponds to the sum of absolute errors when the
patch was shifted by (p,q) pixels from the upper left corner
of the search region. P is the intensity patch from the current
frame, and S is the search region from the next frame (fig. 2).

A candidate match was found by finding the minimum
valued element in Err. To determine the validity of a match,
the minimum value of Err had to be significantly lower than
other values (fig. 3). In order to test for a statistically
significant minimum, the values in Err were sorted in
ascending order, and the difference between successive
values was calculated. For a valid match, the difference
between the lowest error and the next to the lowest error value
was required to be higher than five standard deviations (5�)
from the mean of the remaining error differences. For
example, the error matrix for figure 2 was calculated as:

8.36.21.4
0.30.08.2
3.43.43.3

Err=  (2)

The matrix Err was rearranged in a row of ascending
values, and the difference �Err was calculated as:

[ ]0.02.03.05.03.02.02.06.2Err=∆  (3)

Since the first value of �Err (i.e., 2.6) is more than five
standard deviations from the mean of the rest of the
differences, the minimum error (0.0) in the Err matrix was
considered to be a true minimum, and the match was
accepted.  If a valid match, based on a 5� criterion, could not
be found in the specific region, then another random patch
was chosen in the current frame and searching was repeated.
This criterion was established from Chebyshev’s theorem,
which applies to any distribution (Walpole and Myers, 1978)
and shows that the minimum probability of a correct match
is given by:

96.0
5

1
1P

2
=−≥  (4)

where P is the probability that the value of the random
variable will be less than five standard deviations from the
mean. Thus, for error differences that are more than five
standard deviations from the mean, there is at most a 4%
probability that the match was due to a random minimum in
the error matrix.
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Figure 3. Example of an error surface and its contour for a typical patch matching. The minimum error value must be significantly different from the
mean error to be accepted as a valid match.

IMAGE SEGMENTATION
The next step after image correspondence was segmenta-

tion of vegetation from background. Different methods are
available for separating vegetation from non–vegetation
regions. Meyer et al. (1998) segmented plant and background
by thresholding the excess green color index. Andreasen et
al. (1997) segmented images by thresholding the median
filtered histogram of the green chromaticity coordinates.
Pérez et al. (2000) used a normalized difference index (NDI)
along with morphological operations for plant segmentation.
The segmentation algorithm employed in this research
should be able to segment the plant in changing lighting
conditions that occur in the field due to clouds and the time
of the day.

Tian and Slaughter (1998) developed an algorithm to
achieve segmentation robustness in outdoor field images
under varying lighting conditions. This algorithm was based
on cluster analysis of pixels in color space for labeling pixels
and Bayesian classification for the development of a decision
surface in color space. The segmentation method used for this
research employed a decision surface in color space that was
defined by only three parameters (Shrestha et al., 2001). This
surface was a truncated ellipsoidal surface given by:
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where R, G, and B were the red, green, and blue intensities
ranging from 0 to 1, and D, E, and F were the parameters
describing the shape of the ellipsoid. Each of these parame-
ters has a physical meaning based on the perceived green
region in color space. D is the maximum red intensity still
perceived green when B = 0 and G =1. E is the slope of the
ellipsoid boundary in the green–blue plane. F is the distance

from maximum to minimum green intensity that is perceived
green when both blue and red channels are zero (fig. 4).
Constant parameter values D = 0.9, E = –0.57, and F = 0.81
were used for image segmentation in this research. These
parameter values were determined by Shrestha et al. (2001)
to provide a general segmentation of plants across varying
outdoor lighting conditions. For a given pixel color vector,
the pixels were classified according to the decision rule:
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where �1 is the background class, and �� is the vegetation
class. Because the surface is only defined by three parame-
ters, adjustments can easily be made as lighting conditions
change. Adjustments of the surface parameters by a neural
net have been investigated and are the topic of another article
(Shrestha et al., 2001).

PLANT COUNTING
After image sequencing and segmentation, images con-

sisting of sequenced frames were analyzed to determine the
number of plants and plant center locations. Jia and Krutz
(1992) studied the feasibility of detecting main veins along
leaves and found the intersecting point to estimate the corn
plant center. At early growth stages, however, there were no
consistent distinct veins observed in corn plant leaves.
Therefore, it was not possible to use main veins for plant
center detection.

In order to determine the plant centers and to count the
plants, two features were extracted from every row of the
binary segmented images: the total number of plant pixels in
each image row, and the median position of the plant pixels
along each row. Once all the image rows were scanned and
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Figure 4. The truncated ellipsoidal decision surface in RGB color space
used to segment vegetation from background. A pixel with RGB intensi-
ties inside the ellipsoid is considered a plant pixel. Parameter values used
to segment plant from background were: D = 0.9, E = –0.57, and F = 0.81.

extracted features were recorded, a row was either classified
as a plant row or a background row. An image row was
classified as a plant row if:
1. The variation in median position of that row to the

previous was less than the total number of plant pixels in
that row, and:

2. The plant pixel count of that row was greater than the
mean value of total plant pixels in each row across the
entire experimental unit.
Once a frame sequence from an experimental unit had

been initially classified, adjacent plant rows and background
rows were grouped into plant or background regions, and the
average length of plant and background regions were
calculated.  Plant center row locations were estimated to be
the middle row of each plant region. The plant center column
was the mean of the median positions for that region. This
classification resulted in an initial estimate of the number of
plants and plant center locations. Next, the plant and
background regions were further refined using the following
rule base:
� Plant regions that were less than 20% of the mean plant

region length were considered to be false plant regions and
were reclassified as background.

� Background regions that were less than 20% of the mean
background region length were considered to be false
background regions and were reclassified as plant.

� Any plant center found outside a 5� interval from the
mean plant center position across the sequence was
considered to be a weed, and thus the region is reclassified
as background.
After this refinement, the plants were counted again. If the

plant count varied by more than 5% of the original count, the
plant and background statistics were updated, and the regions

were refined again through the rule base. When the plant
count varied by less than 5%, the algorithm stopped.

Finally, plant regions that were more than twice the length
of an average plant region were counted as doubles, and those
more than three times the length were counted as triples. The
plant center row locations were assumed to be at the middle
of the plant region. In cases of multiple plants, the center was
assumed to be at the middle of each of the adjacent plant
regions.

EXPERIMENTAL DESIGN

Image Sequencing Performance

To evaluate the performance of the image sequencing
algorithm, a video sequence of 50 images was processed with
the algorithm. Processing was repeated 30 times. For each
image pair, the number of failed patch and search region
selection attempts, the number of attempts to achieve a
significant match, and shifts along and across the direction of
travel between subsequent frames were all recorded. The
SAS (SAS Institute, Cary, N.C.) General Linear Model
procedure (GLM) was used to test for significance differ-
ences in shifts statistics across replication of the algorithm
and image pairs.

Plant Counting Performance

The plant count estimated by the sensing system was
compared with that measured manually in 60 experimental
units. Linear regression analysis was used to analyze the
relationship between the two measurements. To determine
the false plant and background region thresholds used in the
algorithm, they were varied from 5% to 25% at 5% intervals.
For each threshold combination, the plant counting algorithm
was used to estimate the number of plants in 13 randomly
chosen sequences. The estimated plant count was compared
to the manual count, and a sum square of error statistic was
calculated.  The combination that minimized the error
statistic was found and was used in the analysis of overall
counting performance. The sensitivity of the algorithm’s
accuracy to the false plant and background thresholds as well
as to the algorithm stopping criteria and distance from the
crop row threshold were analyzed using all 60 experimental
units. The plant count in each of 60 experimental units
estimated by the sensing system was compared with that
measured manually. Linear regression analysis was used to
analyze the relationship between the two measurements.

RESULTS AND DISCUSSION
IMAGE SEQUENCING PERFORMANCE

From the analysis of variance of the 50–frame sequence,
the mean shift between two images along the direction of
travel was 71.58 pixels, which, based on the camera field of
view, would be a shift of 0.045 m of the field surface between
two images. From this shift distance, the vehicle speed was
estimated to be 1.34 m/s. At this speed, 85% of each frame
is overlapped with the previous frame. There were significant
differences in the mean pair–to–pair shifts in the travel
direction (P < 0.0001). These differences were expected and
are due primarily to variations in vehicle speed. After
accounting for the pair–to–pair variation, the standard
deviation in the shift estimation process was 2.3 pixels. This
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corresponded to 0.0014 m of the field surface or 3.2% of the
mean shift. The modified Levene test (Conover et al., 1981)
revealed significant differences in shift variance across
image pairs (P < 0.0001). This finding indicated that the
image correspondence algorithm was finding larger differ-
ences across replications of the algorithm in particular image
pairs than in other image pairs. Since the location of the
patches is random, correspondence of frame pairs may vary
depending on the location of the patch. This variation is due
partly to uneven depth to objects in the image scene and
vehicle yaw across the pair, resulting in a rotation from one
image to the next. The algorithm operated under the
assumption of negligible frame–to–frame camera rotation,
and based on these results, any error introduced because of
this assumption was small.

The mean lateral shift between two images was 0.58 pix-
els, revealing that either the vehicle was turning or that the
camera was slightly rotated relative to the centerline of the
vehicle. After accounting for the pair–to–pair shift with the
ANOVA model, the standard deviation of the shift estimation
algorithm was 1.7 pixels. Once again, there were significant
differences (P < 0.0001) in the shift variance across image
pairs.

The number of attempts required to achieve a significant
match ranged from 1 to 5 across the entire experiment. The
mean was 1.21 attempts, and the standard deviation was 0.49
attempts. There were significant differences in the number of
attempts (P < 0.0001), indicating that some image pairs
tended to require more attempts than others. Upon further
examination of these pairs, often one of the frame images was
blurred, leading to difficulty in establishing a significant
match. Nevertheless, even though on the average more
matching attempts were required for blurred images than for
a sharply focused image, significant matches were found for
each of the pairs in the sequence. In addition, only 1.9% of
the initial patch selections were rejected. A maximum
number of two rejections before final patch selection
occurred in 0.20% of the cases. Even when a randomly
selected patch was valid, the initial search region selection
was rejected 5% of the time, hence forcing the algorithm to
reselect for a new patch. The search region area was nine
times larger, so an increased likelihood of finding a plant
region in a search region was expected.

PLANT COUNTING PERFORMANCE

Manual plant counts over the 60 corn row sections varied
over a range of 14 to 48 plants with a mean value of
33.2 plants. Linear regression analysis resulted in a R2 value
of 0.90 (fig. 5). The slope and intercept of the regression line
were 0.93 and 1.98, respectively, and were not significantly
different from 1 and 0, respectively. The RMS error of plant
counts estimated by the system was 1.8 plants over the 6.1 m
length of a corn row. This error was 5.4% of the mean. Based
on the manual counts, the local population in the corn row
sections varied from 30,100 to 103,000 plants/ha (12,200 to
41,800 plants/acre). Measuring over a 6.1 m corn row with
0.71 m spacing resulted in a measurement resolution of
�2150 plants/ha, which was 3% of the target population.

From the analysis of the set of 13 sequences, the
combination of a false plant region threshold of 20% of the
mean plant region length and a false background region
threshold of 20% of the mean background region length gave
the least squared error. This combination was thus selected

R2 = 0.9018

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Manual count

A
u

to
m

at
ed

 c
o

u
n

t

Figure 5. Regression of system–estimated counts onto manual counts for
60 experimental units. The regression had an R2 of 0.9018 and an RMSE
of 1.8 plants.

and used to count plants in all 60 experimental units in the
analysis of overall system performance. System accuracy
was sensitive to the false plant and background thresholds.
However, an R2 greater than 0.8 was found when the false
plant threshold was within the range of 10% to 20% and that
for false background was between 15% and 25% (fig. 6). A
maximum R2 of 0.9 occurred with the 20% to 20% threshold
combination.

Plant count accuracy was not sensitive to variations in the
threshold for excluding plant pixels. When this threshold was
varied from 3 to 5 standard deviations away from mean row
position, R2 varied by 0.902 to 0.896. The plant count
algorithm–stopping  criterion was also varied to investigate
its effect on the number of refinement iterations and counting
accuracy. When a change in plant counts less than 5% was
required, it took an average of 3.0 iterations before the
refinement algorithm stopped. When the stopping criterion
was increased to 10%, the mean number of iterations
decreased to 2.53, but R2 also decreased to 0.84. When the

Figure 6. Contour plot of R2 for different combinations of plant and back-
ground region thresholds. Thresholds between 10 and 20 for the plant re-
gion and thresholds between 15 and 25 for the background region
produced R2 > 0.8.
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stopping criterion was changed to 1%, the mean number of
iterations increased to 3.38 times before stopping, but R2 only
increased to 0.906. Therefore, the stopping criterion of 5%
was found to be a suitable tradeoff between accuracy and
time.

One of the main sources of error found was variability in
plant size and leaf orientation within an experimental unit.
This made the threshold used to refine the plant and
background region sensitive to plant size distribution. More
weed and noise pixels were counted as plants when the false
plant region threshold was lowered below 20%, and small
plants were considered to be weeds when the threshold was
increased. However, under low–weed conditions and plant
growth stages V3 to V4, the system was able to estimate the
number of plants across in a 6.1 m row with an RMSE less
than 3 plants over a range of parameters.

CONCLUSIONS
A patch–matching algorithm with criteria for region

selection and match validity is a feasible method for
sequencing the video frames of corn row scenes acquired by
a commercial digital video camera on a vehicle moving at 1
to 2 m/s.

A plant–counting algorithm using two easily obtainable
image features and a straightforward iterative rule base was
able to achieve population measurement accuracies similar
to the system measurement resolution.
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