
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may 

be from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely afreet reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from lefr to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 





Order Number 9311514 

The assignment problem in distributed computing 

Medepalli, Anand, Ph.D. 

Iowa State University, 1992 

U M I  
300 N. ZeebRd. 
Ann Arbor, MI 48106 





The assignment problem in distributed computing 

by 

Anand Medepalli 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Mathematics 
Major: Mathematics 

Appr<wed: 

In Charge of Major Work 

For the Major Department 

For the Graduate College 

Members of the Committee: 

Iowa State University 
Ames, Iowa 

1992 

Copyright © Anand Medepalli, 1992. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



u 

DEDICATION 

Dedicated to my family, especially to my mother, whose sacrifice and love made 

this day possible. This achievement is mine in name and hers in spirit. 



Ill 

TABLE OF CONTENTS 

DEDICATION ii 

ACKNOWLEDGEMENTS ix 

CHAPTER 1. INTRODUCTION 1 

The Distributed System Environment 2 

The Module Allocation Problem (MA) 3 

Factors Involved in the Assignment Problem 4 

Applications of Module Allocation 5 

Model Formulation: The Graph Theoretic Approach 7 

Problem Definition 8 

Variants of the Assignment Problem 10 

Parametric Module Allocation (PMA) 10 

Constrained Module Allocation (CMA) 10 

Balanced Module Allocation (BMA) 11 

Other Constraints 11 

Outline of the Thesis 12 

CHAPTER 2. COMPUTATIONAL COMPLEXITY OF THE AS

SIGNMENT PROBLEM 13 

Analyzing Algorithms 13 



iv 

An Overview of NP-completeness 15 

The Complexity Class P 15 

Decision Problems 16 

The Complexity Class NP 17 

Polynomial-time Reductions 17 

Approximation Algorithms 18 

Complexity of MA, CMA and BMA 20 

CHAPTER 3. SURVEY OF PAST WORK 25 

Network Flow Techniques 25 

Dynamic Programming Techniques 27 

Parametric Module Allocation 28 

Constrained and Balanced Module Allocation 30 

Alternative Approaches 31 

Related Problems 32 

Partitioning Problems for Parallel and Pipelined Programs 32 

The Mapping Problem 36 

Summary 37 

CHAPTER 4. PARAMETRIC MODULE ALLOCATION 38 

Introduction 38 

Organization of the Chapter 40 

Preliminary Concepts and Results 41 

Finding a Separator in a fc-tree 45 

Parametric Module Allocation on Partial A;-trees 49 

Further Results 55 



V 

The Vertex Cover Problem 55 

The Independent Set Problem 55 

The 0-1 Quadratic Programming Problem 56 

Discussion 57 

CHAPTER 5. CONSTRAINED AND BALANCED MODULE AL

LOCATION 58 

Introduction 58 

Organization of the chapter 61 

Nonserial Dynamic Programming 61 

Variable Elimination and CMA 65 

Variable Elimination and BMA 71 

Module Allocation on Partial t-Trees 73 

CMA on Partial A;-trees 73 

BMA on Partial A;-Trees 74 

Module Allocation on Trees with Uniform Costs 75 

CMA on Trees with Uniform Costs 76 

BMA on Trees with Uniform Costs 77 

Approximation Schemes 78 

Discussion 81 

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTAL RE

SULTS 82 

The Data Structure 82 

The Variable Elimination Process 84 

The Experiments 87 



vi 

The Communication Graphs 87 

Runtime Measurement 88 

Cost Scaling 89 

Discussion 92 

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS . . 94 

BIBLIOGRAPHY 97 

APPENDIX A. THE C CODE FOR THE EXACT CMA ALGO

RITHM 105 

APPENDIX B. THE C CODE FOR THE EXACT BMA ALGO

RITHM . 130 

APPENDIX C. A GENERIC UNIX SHELL PROGRAM THAT 

IMPLEMENTS THE ALGORITHMS 154 

APPENDIX D. THE C CODE FOR RANDOM GRAPH GENER

ATION 156 

APPENDIX E. THE C CODE FOR RANDOM TREE GENERA

TION 163 

APPENDIX F. A SAMPLE INPUT GRAPH FOR CMA 168 

APPENDIX G. A SAMPLE INPUT GRAPH FOR BMA 171 



vil 

LIST OF TABLES 

Table 3.1: Runtimes of the algorithms for the partitioning problem ... 35 

Table 5.1: CMA and BMA results for the example problem in Figure 5.1 61 

Table 5.2: Summary of the runtimes of the algorithms for CMA and BMA 62 



vin 

LIST OF FIGURES 

Figure 1.1: A distributed processing system 3 

Figure 1.2: A balanced load allocation strategy 5 

Figure 1.3: A minimum IPC allocation strategy 6 

Figure 1.4: An example communication graph 8 

Figure 4.1: Communication graph, cost functions and the plf describing 

the optimal solution for a 3-module, 2-processor system. ... 39 

Figure 4.2: (a) A partial 2-tree and (b) An embedding 2-tree 43 

Figure 5.1: An Example Problem to illustrate CM A and BMA 60 

Figure 6.1: The initial CM A data structure for Figure 5.1(a) 83 

Figure 6.2: The data structure after vertex 1 is eliminated 85 

Figure 6.3: The data structure after vertex 2 is eliminated 86 

Figure 6.4: Some of the experimental results for CMA. The plots show 

the number of list operations versus number of modules for 

various e : c ratios 90 

Figure 6.5: Some of the experimental results for BMA. The plots show 

the number of list operations versus number of modules for 

various e : c ratios 91 



ix 

ACKNOWLEDGEMENTS 

I would be forever thankful for the encouragement, help, and support I received 

from my thesis advisor Dr. David Fernandez-Baca of the Department of Computer 

Science in the completion of this degree. I could not have chosen a better person to 

help me define and achieve, what is easily the most significant goal of my life. David 

introduced me to research and to the world of algorithms and was ever so patient 

in doing so. He took me on without knowing anything about me and trusted me to 

be able to conduct research. He was a friend who stood by me during moments of 

frustration and was a patient teacher when I needed guidance in my work. I learned 

a lot from you David, and I can never thank you enough for all that you have done 

for me. 

I would also like to record my appreciation for Dr. Peter Colwell of the De

partment of Mathematics for agreeing to be my co-major professor. Though he did 

not have any technical input in my thesis work, I am certain that I could not have 

completed this degree without his advice, kindness, patience, and the words of en

couragement he always had for me. Without his help, I could not have met the 

language requirement in Russian. Thank you Dr. Colwell for everything — you 

made my life in the department a very pleasant one. 

I would also like to thank Dr. Wolfgang Kliemann and Dr. Stephen Willson, 



both of the Department of Mathematics, Dr. Howard Meeks of the Department of 

Industrial and Manufacturing Systems Engineering, and Dr. Gurpur Prabhu of the 

Department of Computer Science for serving on my program of study committee. In 

addition, I would like to thank two professors who have had a profound influence 

on my student life. One is Dr. Arlington Fink of the Department of Mathematics 

at Iowa State, who introduced me to the field of optimization, and the other is Dr. 

Tarun Kumar Mukherjee of the Department of Mathematics in Jadavpur University, 

Calcutta, who showed me the beauty of mathematics for the first time, and changed 

the course of my life forever. I know I would not be where I am today without their 

teachings. 

My family, both immediate and extended, especially niy late grandfather and 

uncles, have a great deal to do with this day. Over the years, they stood by me and 

my dreams, and helped me get to this stage. I remain eternally grateful to all of 

them. 

No person is an island, and I am no exception. My friends at Iowa State were 

god-sent and they made my life as a graduate student just that much more easier and 

fun. Thank you Anindya for standing by me when I needed your support. Thank 

you Vimal and Nitin for helping me laugh at a time when I desperately needed to. 

Living with you two as roommates was a high point in my life at Ames, and I will 

always cherish the times we had. Thank you John, Cindy and Ellen for providing 

me with the family I needed when I was thousands of miles away from home. We 

will always be family. Especially you Cindy, who knew exactly what to say to make 

me feel better whenever I was down. And yes John, I owe you a few meals!! Thank 

you J.D., Lisa, Kathy, Tim, Jay, Kirk and all my friends in the Department of 



xi 

Mathematics, who made studies a challenge and at the same time, the department a 

fun and friendly place to visit. A special thanks to Lisa, who was always there for me 

to help put things in perspective. Thank you Kurt and Paul, for patiently answering 

all my questions about Canvas, Adobe and Mathematica in the math lab. Thank you 

Piyush, for helping me get started on the C language, and for the company during 

summer, when this thesis was on its last leg. Thank you Joe, for helping with shell 

programming and for the numerous tips on C. Thank you Tim-san for the help in 

Russian. Thank you Madonna, Ruth, and Jan, for all the help and cheer in the math 

office. 

Two very special people in my life are Mithu and Titu. Both have been my 

friends for a long time, and both have been there for me whenever I needed them. 

Thank you both, for helping me start and finish this degree. 

Last, but not least, I would like to acknowledge the Department of Mathematics 

at Iowa State University, for the financial support during my tenure as a graduate 

student. 



1 

CHAPTER 1. INTRODUCTION 

A recent trend in computer systems has been to distribute computation among 

several physical processors. Distributed processing applications range from large 

database installations, where processing load is distributed for organizational effi

ciency, to high-speed signal processing and image analysis, where extremely fast 

processing must take place in real-time environments. The modularity, flexibility 

and reliability of distributed processing makes it attractive to users. One of the 

driving forces behind this interest in distributed systems is the affordability and wide 

availability of large heterogeneous networks of workstations. These systems have sev

eral advantages over traditional systems. These include the capacity for incremental 

growth, increased reliability and availability, since parts of the system can be down 

without disturbing the users on other parts. Programs can be written so as to exploit 

the different capabilities of the processors in the network in the sense that, program 

modules can be assigned to different processors, depending on their particular com

putational requirements. The drawback, however, is the overhead of communication 

protocol, which can be a major source of inefficiency. In this dissertation, we shall 

study some of the combinatorial optimization problems that arise when trying to 

make the best use possible of the processing power of distributed systems. 



2 

The Distributed System Environment 

A distributed system is a collection of two or more processors each with its own 

private memory. These processors are interconnected by a communication network 

and a system-wide operating system provides a message-passing mechanism among 

the processors. The processors may vary in size and function. They may include 

personal computers, workstations, and large general-purpose computer systems. 

One of the motivations behind distributed systems is computation speedup. Sup

pose a particular computation, which we will refer to as a job, can be partitioned into 

a number of communicating tasks, which we will refer to as modules. A module could 

be a collection of procedures or subroutines, or could be one or more data files. The 

availability of a distributed system allows us to distribute the modules among various 

processors. The motivation in doing so is to take advantage of the specific efficiencies 

of certain processors in executing certain types of computation. Thus if our job does 

floating point computation in one procedure and extensive symbol manipulation in 

another, we would like to execute the first procedure on a processor with a powerful 

floating point unit, and the second on a processor with an instruction set designed for 

symbol manipulation. The program activity then moves among processors as execu

tion proceeds. The program may be serial, in which case only one module is active on 

one processor at a time, or parallel, in which case several modules are concurrently 

active on several processors. In addition, if a particular processor is overloaded with 

modules, some of them may be moved to other, lightly loaded, processors. This in 

effect, expedites the job and enhances system performance. A representation of a 

generic distributed system is shown in Figure 1.1. The key elements in this system 

are the set of n modules {Afj, • • •, M^}, which make up a job, and a module alio-



3 

Figure 1.1: A distributed processing system 

cation mechanism, 5, which assigns each of the modules to one of the p processors, 

{Pv - ,Pp) -

The Module Allocation Problem (MA) 

In this dissertation, we focus on the allocation or the assignment problem in 

distributed computing, which involves the initial assignment of the modules of a job 

to the processors in the distributed system. We assume that the job partitioning 

process has been performed and that jobs arrive in the system already partitioned. 

We further assume that a module is an indivisible entity, the smallest viable com

putational unit. Executing a module on a processor involves the so called execution 

cost. In general, any module can be assigned to any processor, but because of differ



4 

ent processor capabilities, speeds, or resources, the cost of executing a module may 

differ from processor to processor. The cost may be the running tiïne of the module, 

a financial cost, or some other measure of resource usage. When modules have data 

to communicate to one another, the processors to which they are assigned to, must 

communicate with each other. When this happens, a communication cost between 

the modules is incurred because of the overhead due to the communication protocols 

and transmission delays in the communication network. We assume that these costs 

are all available to us. Our goal is to assign these modules to the processors so as to 

minimize a certain measure of the total cost of the job. 

Factors Involved in the Assignment Problem 

On the surface, the assignment problem may seem simple. An intuitive strategy 

would be to assign the modules so that all processors in the system are evenly loaded. 

See Figure 1.2 for an example system where this strategy is implemented. We as

sume that each module has identical processing requirements and each processor has 

identical processing abilities. For simplicity, we further assume that each processor 

can process one module per unit of time. For the illustrated case, the system is able 

to process the entire job in two time units. This would be an acceptable solution 

if all interprocessor communication (IPC) costs are zero; i.e., there is no overhead 

of passing control and parameters from a module resident on one processor to one 

resident on another. However, on most real systems this overhead is significant. If, 

on the other hand, we attempt to minimize the IPC without considering load balanc

ing, communicating modules tend to be assigned to relatively few processors, thus 

overloading them. An example of this is shown in Figure 1.3. The allocation used 



5 

Figure 1.2: A balanced load allocation strategy 

there generates a minimum IPC, but the processing time for the entire job increases 

by a factor of three. Thus, it is clear that the two conflicting factors, load balancing 

and IPC, influence the allocation strategy for optimal system performance. 

Applications of Module Allocation 

The module allocation problem is an important aspect of all phases of the de

velopment of a distributed system. 

• Design phase. Here, it is necessary to evaluate competing design configurations 

including network topology, channel bandwidth, number of processors, etc. of 

the distributed system. Module allocation allows determination of the value of 

these parameters to achieve a desired level of performance. 



Mg 

Figure 1.3: A minimum IPC allocation strategy 

• Scheduling phase. Here, local CPU scheduling of the individual modules is 

done, with due consideration to the overall progress of the job. In certain real

time systems, it is important to assign incoming modules to processors to meet 

critical timing constraints. An additional complication arises in this phase due 

to the presence of unfinished modules still resident in processor queues, and in 

the processors themselves, at the time of a new module allocation. It cannot be 

assumed that all processors are ready and available at allocation time. Further, 

there may be precedence constraints involved, wherein a certain module has to 

wait for some other module to finish execution before it can start executing. 

Module allocation can provide a strategy for optimum use of available resources. 



7 

• Migration phase. In this phase, dynamic reassignment of modules to processors 

in response to changing loads on the processors and communication networks is 

done. Module allocation can provide a strategy to reallocate modules dynami

cally. This process should be transparent to the user. 

In practical situations, system resources are limited. That is, the number of avail

able processors, processor speed, memory capacity, and the number and types of 

peripheral devices are fixed and limited by available system resources. In real-time 

applications, allowed elapsed time is also a limited resource. In this case, the module 

allocation strategy must provide simple and fast methods to meet system performance 

requirements. 

Model Formulation: The Graph Theoretic Approach 

Graph theoretic techniques have been successful in modeling many problems of 

assignment in distributed systems. The reason is that the notions of vertex, edge 

and graph partitioning from graph theory are very similar to the concepts of module, 

communication and program partitioning respectively in distributed programs. There 

is usually a very clear relationship between a problem and its graph theoretic model. 

This gives a great insight into the structure and properties of the problem. However, 

the creation of the model is not enough, a solution to the required problem must be 

found. There exist many problems that can be stated very simply in graph theoretic 

terms but are as yet unsolved. 



8 

12 

12 

Figure 1.4; An example communication graph 

Problem Definition 

Suppose we have a distributed program of n modules each of which must be as

signed to one of p processors and an undirected graph , called the communication 

graph of the system, whose vertices are the modules of the program and whose edges 

indicate that the corresponding modules communicate. We assume that the pro

cessors are completely connected, so that any processor can communicate with any 

other processor. Without loss of generality, assume that the modules are numbered 

from 1 to n and processors from 1 to p. P{ denotes the processor to which module 

i has been assigned. The cost of executing module i on processor v is denoted by 

^Throughout this dissertation, V(G) and E{G) denote vertex and edge sets re
spectively of the graph G. We also assume that | V{G) |= n and | E[G) |= m. 



9 

e^(v). When a module i must be assigned to a particular processor u, ej(u) = oo, 

for all processors u ^ v. If modules i and j communicate, then c^j{u,v) denotes the 

communication cost between modules i and j when they are assigned to processor 

u and V respectively. If u = u then cij{u,v] can be interpreted as an interference 

cost, which could indicate the degree of incompatibility between modules i and j. 

For instance, a pair of modules that are both highly CPU-bound would have greater 

interference costs than a pair in which one module is CPU-bound and the other is 

I/O-bound. If c^j{u, v) = oo for all processors u and v, then modules i and j must be 

assigned to the same processor. Communication costs are said to be uniform if the 

communication cost between co-resident modules is zero and every pair of modules 

assigned to different processors incur the same communication cost, (i.e., for any two 

modules i and j, cij{u,v) = r^j is independent of u and v ii i ^ j). We assume that 

all the costs are available a priori in tables. An example communication graph with 

six modules A — F, and uniform communication costs is shown in Figure 1.4. Note 

that in this example, the costs are represented as weights on the edges. 

An assignment of the job is a complete specification of the processors on which 

modu le s  o f  t he  job  a r e  execu ted .  I t  c an  be  r ep re sen ted  by  a  vec to r  A =  {P i ,  •  •  • ,  Pn)  €  

{1, • • • ,p}^. In the most common version of the module allocation problem, which 

we will refer to as MA, the cost C{A) of A is the sum of all the module execution 

costs and the intermodule communication costs given the assignment A', i.e., 

C{A)= E  e i (P i )+  C idP i .P j ) .  
(ij)eB(O) 

The problem is to find an assignment of minimum cost; i.e., to find the assignment 

A* such that C(v4*) < C{A) for all possible assignments A. Throughout this dis-



10 

sertation, we denote the value of the optimum solution by C*. 

Variants of the Assignment Problem 

In this section we introduce some variations of MA. Subsequent chapters consider 

these problems in detail. 

Parametric Module Allocation (PMA) 

In multiple computer systems, the optimal assignment of a distributed system 

is sensitive to load conditions on the processors and the traffic on the IPC link. In 

other words, costs vary over time. Often one or more of the processors on which a 

distributed program is running is time-shared with other applications. The optimal 

assignment then changes each time the load on one of the processors changes. This 

is because, as more and more load is put on the processor, the time (i.e., the cost) for 

executing modules on it increases. The optimal assignment at a new value of load may 

warrant a relocation of some modules between the processors. On the other hand, 

there could be transmission delays on the communication network, which might slow 

the links in the network, leading to higher communication costs. The problem thus 

is to find a sequence of optimal assignments that are found as the loads vary. We 

refer to this problem as PMA and investigate it in Chapter 4. 

Constrained Module Allocation (CMA) 

The solution to MA assumes that there are no resource constraints on any of the 

processors, so that if need be, we may assign any number of modules, requiring any 

amount of any resource, to any processor. This creates no problem if all processors 



11 

have enough resources to cater to the entire program. This, however, may not be 

possible in real situations and hence we need to take into account resource restrictions 

on processors. We assume that one of the processors has a limited resource, referred 

to as "memory" and investigate the solution of the assignment problem subject to 

this constraint in Chapter 5. We refer to this problem as CMA. 

Balanced Module Allocation (BMA) 

The optimum solution to MA may be very unbalanced, in that several modules 

may be placed on a single processor in order to minimize IPC. This may lead to the 

overloading of the processor. As such, it would be desirable to obtain assignments 

which distribute the modules among the processors evenly, thus balancing the loads 

on them. As it turns out, this problem is closely related to CMA and is called the 

balanced module allocation problem. This problem is referred to as BMA and is also 

investigated in Chapter 5. 

Other Constraints 

Other constraints that arise in real situations include precedence relationships 

among modules, which specify the execution sequence of the modules; real-time con

straints which indicate the maximum amount of time that a processor is allowed 

to finish processing the modules assigned to it; queuing delays which arise due to 

a module waiting to begin execution on a processor which is busy executing some 

other module; etc. We do not consider these constraints in our work. Needless to say, 

however, that these are important considerations and make solving MA that much 

harder. 



12 

Outline of the Thesis 

We conclude this chapter with a plan of this dissertation. Chapter 2 presents 

some complexity results and the computationally intractable nature of MA, CMA and 

BMA, thus highlighting the theoretical limitations in solving them. We show that MA 

is NP-c6mplete and that both CMA and BMA are strongly NP-complete. Chapter 3 

presents a survey of past and related work on this problem. Chapter 4 discusses PMA. 

In that chapter, we consider communication graphs which are 6-trees^. We develop 

efficient algorithms to solve this restricted version of PMA. As an auxiliary result, 

we present an algorithm to find a (A; + l)-vertex separator in a fc-tree. The results 

of this work will appear in IEEE Transactions on Computers. Chapter 5 focuses on 

CMA and BMA. We present exact dynamic programming algorithms to solve these 

problems and present approximate algorithms for fc-trees. Faster algorithms for trees 

with uniform costs are also developed. Chapter 6 discusses the implementation and 

experimental results of the dynamic programming algorithms developed in Chapter 5. 

Finally, Chapter 7 concludes the thesis and presents some future directions and open 

problems. 

^See Chapter 4 for a definition 



13 

CHAPTER 2. COMPUTATIONAL COMPLEXITY OF THE 

ASSIGNMENT PROBLEM 

This chapter deals with the computational complexity of MA, CMA and BMA. 

We begin with a review of algorithm analysis techniques and the theory of NP-

completeness. See [27, 39, 58] for more details on these subjects. 

Analyzing Algorithms 

By analyzing an algorithm, we mean predicting the resources that the algorithm 

requires. Occasionally, resources such as memory or communication bandwidth are 

of primary concern, but most often it is the computational time that we want to 

measure. We would like to do that without actually implementing it on a specific 

computer. The advantages in doing so are clear. It is much more convenient to have 

simple measures for the efficiency of an algorithm than to implement it and test the 

efficiency every time a certain parameter in the underlying computer system changes. 

Unfortunately, it is usually impossible to predict the exact behavior of an algo

rithm as there are too many influencing factors. Instead, we try to extract the main 

characteristics of the algorithms by defining certain parameters and measures that 

are most important for the analysis. Many implementation details are ignored. The 

analysis is thus only an approximation; however, even this approximate analysis can 



14 

yield significant information about the algorithm. 

The usual methodology used to predict an approximate run time of an algorithm 

ignores constant factors and concentrates on the behavior of the algorithm as the 

input size increases. The number of different possibilities for inputs is enormous 

and most algorithms behave differently for different inputs. In general, the running 

time of an algorithm increases with the size of the input, so the running time of the 

algorithm is defined as a function of the input size. We next formalize the concepts 

of "input size" and "running time" of an algorithm. 

INPUT SIZE. The input size depends on the problem being studied. For many 

problems, such as sorting, the input size is the number of items in the input. For 

other problems, like multiplying two integers, the input size is the total number of 

bits needed to represent the input in ordinary binary notation. Sometimes, more 

than one number describes the input size. For example, if the input to the algorithm 

is a graph, then the input size can be described by the numbers of vertices and edges 

in the graph. In this dissertation, we let the number of modules and processors be the 

input size to our algorithms. For the rest of this chapter, unless otherwise specified, 

n will denote the input size. 

RUNNING TIME. The running time, also known as the time complexity, of an 

algorithm on a particular input is the number of primitive operations or "steps" 

executed. We identify one or more major steps in the algorithm; for instance, in 

sorting, comparisons constitute a major step. We assume that these major steps 

dominate the computation. Since we will ignore constant factors, it will suffice to 

estimate the total number of the major steps executed by the algorithm and report 

that as its running time. Throughout this dissertation, we shall be interested in the 



15 

worst-case running time, which is the longest running time for any input of size n. 

Even though this may be overly pessimistic for some algorithms, for others the worst 

case occurs fairly often. We need the following definition. 

Definition 2.1 (THE O NOTATION) A function g{n) is 0{ f { n ) )  for another function 

/(n) (pronounced "Big Oh" of /(«)), if there exist constants c and N, such that, for 

all n > TV, we have g{n) < c/(n). 

Note that, by this definition, the function g { n )  may be substantially less than 

c f { n ) .  T h e  0  n o t a t i o n  b o u n d s  i t  o n l y  f r o m  a b o v e .  F o r  e x a m p l e ,  5 n ^  +  1 5  =  0 { n ^ )  

since 5n" + 15 < 6» for n > 4. This notation allows us to ignore the constants 

conveniently. We always write 0{n) instead of, say, 0{bn +4). Similarly, we write 

O(logn) without specifying the base of the logarithm, because changing the base 

would change the logarithm only by a constant. Also, note that 0(1) denotes a 

constant. 

An Overview of NP-compIeteness 

The Complexity Class P 

Definition 2.2 (POLYNOMIAL-TIME ALGORITHM) An algorithm is said to be a 

polynomial-time algorithm if, for inputs of size n, its running time is 0{vP) for 

some constant c. 

Many problems, like sorting an array of numbers, have polynomial-time algo

rithms. Such algorithms are said to be efficient and the corresponding problems are 

said to be tractable. The complexity class P (for polynomial time) is the class of all 

tractable problems. The terminology can be misleading, since, after all, algorithms 



16 

that run in are not efficient by any standard. Nevertheless, this definition is 

valid from the practical viewpoint — the vast majority of tractable problems have 

practical solutions and conversely, algorithms whose running times are larger than 

any polynomial are not usually practical for large inputs. 

Decision Problems 

Definition 2.3 (ABSTRACT PROBLEM) An abstract problem is a binary relation on 

a set I of problem instances and a set S of problem solutions. 

As an example, consider the problem of finding the shortest path between two 

given vertices a and 6 in a graph G. An instance of this problem is a triple (G, a, b). 

A solution is a sequence of vertices in the graph, with an empty sequence denoting 

the empty path. The abstract problem is a relation that associates the triple with a 

solution. 

Definition 2.4 (DECISION PROBLEM) A decision problem is an abstract problem 

having a yes/no solution. In this case, the problem is a function that maps the 

instance set I to the solution set {0,1}. 

In the above shortest-path example, the decision version would be to answer the 

following question. Given G, vertices a and 6 in G and an integer A: > 0, does there 

exist a path whose length is at most k? 

The theory of NP-completeness compels us to cast optimization problems, such 

as our assignment problem, as decision problems. This can be done by imposing a 

bound on the function to be optimized. If we caji provide evidence that the decision 



17 

version is hard (i.e., not tractable), we also provide evidence that the related opti

mization problem is hard. It is usually easier to go this route than to try and directly 

deal with the optimization problem. 

The Complexity Class NP 

A verification algorithm is a two-argument algorithm A, where one argument is 

an ordinary input string x and the other is a binary string y called the certificate. A 

two-argument algorithm A verifies an input string x if there exists a certificate y such 

that A{x,y) = 1. The language C, verified by a verification algorithm A is the set of 

binary strings x for which there exists a certificate y, such that A{x,y) = 1. In other 

words, A uses y to prove that x € C. Further, for any string a: ^ £, there must be no 

certificate proving that x £ £. Note that an input x E C may have many certificates 

that do not verify x; all we need is one certificate which will verify its membership 

in C. The running time of a verification algorithm refers to the worst-case running 

time for inputs x Ç. C (inputs not in C are ignored). The complexity class NP (for 

nondeterministic polynomial time) is the class of languages that can be verified by 

a polynomial-time algorithm. While it is known that P C NP, it is still an open 

problem if P = NP. 

Polynomial-time Reductions 

A decision problem D can be viewed as a language-verification problem. Let £ 

be the subset of all possible inputs J for which the answer to V is "yes". £ is the 

language corresponding to V. V is thus to verify whether or not a given input r 6 £. 

In what follows, we use the terms problem and language interchangeably. 



18 

Definition 2.5 (POLYNOMIAL REDUCTION) Let C\ and C2 be two languages from 

the input spaces Jj and 2*2 respectively. We say that Ci is polynomially reducible 

to C2 if there exists a polynomial-time algorithm that converts each input E 

to another input 22 € T2 such that € Ci if and only if 12 6 

Intuitively, a problem can be reduced to another problem V2, if any instance of 

"Di can be easily rephrased as an instance of ©2- Thus, if indeed reduces to X>2i 

then Vi is, in a sense, "no harder to solve" than î?2-

We now define NP-completeness. 

Definition 2.6 (NP-HARD PROBLEM) A problem A' is said to be an NP-hard prob

lem if every problem in NP is polynomially reducible to A'. 

(NP-COMPLETE PROBLEM) A problem X is said to be an NP-complete problem if 

(1) X E NP, and (2) X is NP-hard. 

Thus, the NP-complete problems are intractable. [27, 39, 58] provide several 

examples of NP-complete problems. 

Approximation Algorithms 

Many problems of practical significance are NP-complete, but are too important 

to abandon merely because obtaining an optimal solution is hard. If a problem 

is NP-complete, we are unlikely to find a polynomial-time algorithm for solving it 

exactly. However, there are two approaches to getting around NP-completeness. 

First, if the actual inputs are small, then an exponential-time algorithm may be 

satisfactory. Second, it may still be possible to obtain near-optimal solutions in 



19 

polynomial time. In practice, this second approach is often good enough. We have 

the following definitions. 

Definition 2.7 (C-APPROXIMATE ALGORITHM) An e-approximate algorithm for a 

minimization problem 11 is an algorithm that, for any instance I of 11, produces a 

solution of cost C such that C < (1 + e)C*, where C* is the cost of the optimum 

solution for I. 

Definition 2.8 (APPROXIMATION SCHEME) An approximation scheme for N is a 

family of algorithms {/le} such that for each e > 0, Ae is an e- approximate algorithm 

for n. 

Definition 2.9 (FULLY POLYNOMIAL-TIME APPROXIMATION SCHEME (FPTAS)) 

(1) An approximation scheme is a polynomial-time approximation scheme if, for any 

fixed e > 0, i4e runs in time polynomial in the size of its input. 

(2) The scheme is a fully polynomial-time approximation scheme if its running time 

is polynomial both in 1 /c and the input size. 

Definition 2.10 (STRONG NP-COMPLETENESS) A decision problem on graphs is 

strongly NP-complete if there exists a polynomial q such that the problem remains 

NP-complete even when restricted to the case where no cost exceeds q{n), where n 

is the number of vertices. 

We need the following lemma in our subsequent discussions. It is taken from 

[39], pp. 140-141. 

Lemma 2.1 Suppose that II is an optimization problem on graphs such that (a) the 

decision version ofYl is strongly NP-complete, and (b) for any instance I of II, the 



20 

optimal cost is polynomially bounded in n and in the size of the largest cost appearing 

in I. Then there exists no FPTAS for 11, unless P = NP. 

Complexity of MA, CMA and BMA 

We now investigate the complexity of module allocation in order to show the 

difficulties and limitations encountered in solving the assignment problem. Recall 

that p represents the number of processors and P^ denotes the processor that module 

i is assigned to. 

We begin with the following theorem, the idea for which is due to Tamir [82]. 

To our knowledge, the proof of this theorem has not appeared in print. 

Theorem 2.1 MA with uniform costs is NP-complete even for p = 3. 

Proof. The 3-way Cut problem is defined as follows: Given a graph G, a 

se t  of  3  s p e c i f i e d  n o d e s  A ,  B ,  a n d  C  ,  f i n d  a  m i n i m u m  c a r d i n a l i t y  s u b s e t  S  Ç  E { G ) ,  

such that the removal of S from E{G) disconnects each of the above three nodes 

from the other two. Dalhaus, et al. [28] have shown that the 3-way cut problem is 

NP-complete. We reduce an instance C of the 3-way Cut problem to an instance M. 

of MA with uniform communication costs and three processors as follows. 

Let the nodes A, B and C correspond to the 3 processors and let the communi

cation graph be H = G — {A,B,C}. Define execution and communication costs as 

follows. For each module i G V{H)^ define 

0 if neither (i,i5) nor (i,C) E E { G )  

= " 1 if exactly one of { i , B )  and { i , C )  6 E { G )  

2 otherwise. 



21 

6^(5) and ej(C) are similarly defined. 

For each edge { i , j )  €  E { H )  and for any two processors u  and u, define 

[ 1 iî u ^ V 
C i j { u , v )  =  i  

I 0 otherwise. 

The theorem follows immediately from the following claim. 

Claim: There is a solution <S to C if and only if there is a solution A to 

M with cost C{A) = I 5 |. 

Proof. First, let S be a solution to C. Let Vx be the connected component 

in G containing the node z, where x 6 {A,B,C}. Note that there could be other 

components in G as well. Define an assignment A to solve M. as follows. For each 

i G V{H), define 

X if i e V x ,  where x  E { A , B , C } .  
Pi = \ 

A otherwise. 

The following two cases are possible. 

Case 1: i E Now, if i is not connected to either of B and C in G', then 

those edges need not be cut. This is reflected in the execution costs, since ej^{A) = 0 

in this case. If i is connected to exactly one of B and C, then that edge has to be 

cut and this also is reflected in the execution costs, since in that case e^iA) = 1. The 

case when i is connected to both B and C is taken care of by defining e^(i4) = 2. 

Next, consider the edges. Suppose (i,j) 6 E{G) where j ^ {A, C}. If i,j Ç. V^, 

then (i,j) need not be cut; consequently in M, the cost on this edge is defined to 



22 

be zero. On the other hand, if j  ^ then { i , j )  has to be cut, for which, in M ,  

we define the cost on such edges to be 1. Similar arguments can be made about the 

nodes in Vq and Vq. 

Case 2: i ^ V® V x 6 {A, S, C}. In this céise, i is not connected to any 

of y4, B,C in G and hence it does not belong to ajiy of Vq, Vq after C is solved. 

As such, edges involving i do not contribute to S. By definition, the corresponding 

module node i in H is assigned to A and ei{A) = 0. Also, all the modules i is 

connected to are assigned to A as well, so there is no communication cost incurred 

between these modules. 

Thus we see that the assignment A we define, indeed solves M, and furthermore, 

C{ A )  =  I  5  | .  

Conversely, suppose that A is a. solution to A4. Define, for each x G {A, B, C}, 

the set 

Vx =  { x }  U { i  e  V{H)  :  P i  =  x } .  

Then, define, 

5]^ =  {(u,u) G E i G )  :  I I  e  V x  and v  G V y ,  where x , y  G (A, 5, C }  with x  ̂  y}. 

Again, for x G {A,B,C}, define 

Sx = {(w,z) : w G Vx and z ^ z}. 

Finally, define 

5 = 5^ U 1 IJ Sx . 
\a:G{A,5,C} / 



23 

Then, clearly, 5 is a solution to C, and furthermore, arguments similar to the one in 

the previous part can be used to show that | 5 | = C{A). Hence the claim. • 

Regarding the complexity of finding an approximation algorithm to solve MA, 

the following result was proved in [32]. 

Theorem 2.2 Unless P = NP, there exists no polynomial-time e-approximate algo

rithm for MA, even if p = Z and the underlying graph is planar and bipartite. 

Given the difficulty in solving MA, it is not surprising that CMA and BMA are 

even harder. In fact, they are strongly NP-complete, as will be shown later. We shall 

consider their decision versions, where, along with an instance of each problem, we 

are given an integer U and are asked to determine if there exists a solution of cost at 

most U. CMA was proved NP-hard in [68] by a reduction from the knapsack problem. 

Indeed, the argument in [68] implies that the problem remains NP-hard regardless 

of the structure of the communication graph. For broader classes of graphs, we have 

the following result. 

Theorem 2.3 C M A  i s  s t r o n g l y  N P - c o m p l e t e  f o r  p  >  2  e v e n  i f  G  i s  p l a n a r .  T h e r e 

fore, unless P = NP, there exists no FPTAS for CMA. 

Proof. By Lemma 2.1, it suffices to prove the strong NP-completeness of 

CMA. We use reduction from the vertex cover problem, which is defined as follows: 

G i v e n  a  g r a p h  G  a n d  a n  i n t e g e r  K  <  | V ( G ) | ,  d e t e r m i n e  i f  t h e r e  e x i s t s  a  A  Ç  V { G )  

such that for all (u,v) 6 E(G'), {u,i;}nA ^ 0, and |/1| < A'. This problem is strongly 

NP-complete even for planar graphs [39]. An instance of vertex cover can be reduced 

to an instance of CMA with communication graph G, p = 2, U = M = K and where 



24 

costs and memory requirements are defined as follows. For all i Ç V(G), m^- = 1, 

ej(l) = 1, and e^(2) = 0. For all {i,j) G ^{G), Cj^j(a,b) = n + I i( a = b = 2, and 

c^j{a,b) = 0 otherwise. Intuitively, z, = 1 will mean that i € A, and = 2 will 

mean that i ^ A. Obviously, all costs are polynomially bounded in n. • 

Theorem 2.4 BMA is strongly NP-complete, regardless of the structure of the com

munication graph. Therefore, unless P = NP, there is no FPTAS for BMA. 

Proof. We use a reduction from the minimum makespan schedule problem 

(MMS), which is known to be strongly NP-complete [39] — the rest follows from 

Lemma 2.1. The input to MMS is a set of n jobs, with processing times to be 

scheduled on p identical processors. A schedule is an assignment of jobs to processors. 

The makespan of a schedule is the maximum time that a processor is busy under that 

schedule. The problem is to find a schedule that has minimum makespan. MMS is 

a special case of BMA where the e.xecution cost of a module is independent of the 

processor to which it is assigned and all communication costs are zero. Obviously 

again, all costs are polynomially bounded in n. For such instances of BMA, the actual 

communication graph is immaterial. • 

We conjecture the following result. 

Conjecture 2.1 Unless P = NP there exists no FPTAS for BMA for any fixed 

P > 2 .  

It is thus clear that the assignment problem and its variants are all quite difficult 

problems to solve. Despite the negative results for CMA and BMA, we show in 

Chapter 5 that these problems do have FPTAS when the communication graphs are 

k-trees. 



25 

CHAPTER 3. SURVEY OF PAST WORK 

The module assignment problem has received a lot of attention in the past 

decade. One approach to this problem has been through the development of cen-

tralized algorithms. These algorithms minimize an objective function which meets 

the goals mentioned in Chapter 1. This dissertation focuses on this approach. To 

put our work in context, we shall review the work that has been done in the field. 

Network Flow Techniques 

The pioneering work in module allocation was done by Harold Stone [79], who 

applied network flow algorithms to solve MA in a dual-processor distributed system 

with uniform communication costs. He showed that MA in this case, can be trans

formed into a network flow problem such that there is a one-to-one correspondence 

between assignments and cutsets. Using any one of the several available maximum 

flow algorithms (e.g., see [27]), one can find a minimum cut in the network, which in 

turn due to the above correspondence, gives the assignment of minimum cost. Since 

the maximum flow problem can be solved in O(n^) time^, MA in a dual-processor 

system with uniform communication costs can be solved in 0{n^) time. For the three 

processor case. Stone [81] extended his earlier result and developed an algorithm that 

^There are faster algorithms which run in time 0(n^/logn), see [22]. 



26 

finds a minimum weight three way partition in the communication graph. This algo

rithm works in most cases, however there are pathological graphs for which it fails to 

find the optimal cost three way partition. For these graphs, the algorithm does indi

cate that the solution found is not optimal and gives a bound on the sub-optimality. 

The fact that Stone's algorithm does not work in all cases is not surprising, since, as 

was shown in Chapter 2, the three processor problem is NP-complete. 

The assignments obtained using Stone's network flow techniques are static in 

the sense that once a module is assigned to a processor, it remains there throughout 

program execution. In order to make the best use of resources in a distributed system, 

we must relocate modules during program execution whenever this leads to improved 

efficiency. Such an assignment is said to be dynamic. There is, however, the extra cost 

of relocation in this case and clearly the gains from relocating modules must outweigh 

the cost of relocation. Further, there are the residence costs — these are costs of 

modules residing on processors without executing. Bokhari [15] extended Stone's 

network flow techniques to obtain an algorithm that finds an optimum dynamic 

assignment (i.e., one that minimizes the sum of execution, residence, relocation, and 

communication costs). The complexity of Bokhari's dynamic algorithm is same as 

that of Stone's static algorithm. 

Lo [57] has pointed out that Stone's model (and for that matter Bokhari's above 

model) has the deficiency that it makes no direct effort to achieve a balance in 

processor workloads, yielding assignments which utilize only a few of the processors. 

She extended Stone's model to include interference costs between modules when 

they are assigned to the same processor. In that work, a heuristic algorithm is 

developed which combines recursive invocation of maximum flow algorithms with 



27 

a greedy-type algorithm to find sub-optimal assignments. She has experimentally 

shown that the addition of interference costs as a factor in the model greatly improves 

the concurrency of the assignments. 

Dynamic Programming Techniques 

MA is a special case of nonserial dynamic •programming. As such, techniques 

for solving nonserial dynamic programming problems can be adapted to solve MA in 

certain cases. A well-known technique is variable elimination [9]. The basic idea in 

this technique is to replace the given problem by another one with fewer variables 

such that the optima of both the problems are the same. This is done by somehow 

capturing all the eliminated information in the objective function of the new problem. 

This process continues until either all variables are removed or the number of variables 

is sufficiently small to solve the problem directly by exhaustive enumeration. 

Arora and Rana [4] seem to be among the first to use these ideas. They consid

ered the two-processor MA when the communication graph G is a tree^ and developed 

a 0{n) algorithm to solve the problem. Recently Sagar, et al. [71] found that the 

algorithm fails to find the optimum assignment on some graphs and suggested a 

modification. They may have been unaware of the fact that soon after Arora and 

Rana's work was published, Bokhari [16] gave a correct O(np^) time algorithm to 

solve MA on p processors when G is a tree. Billionnet [10] gave a 0{np) algorithm 

for the same problem when all the communication costs are uniform. Towsley [83] 

has solved MA when the number of processors is p and G is a series-parallel graph. 

His algorithm has a run time of 0{np^). A mistake in his paper and its correction 

^See Chapter 4 for definitions of trees, series-parallel graphs and t-trees. 



28 

were reported recently [53] and acknowledged by Towsley [84]. Fernandez-Baca [32] 

generalized these results and developed a 0(np^"^^) algorithm when G is a partial 

k-tree and a algorithm when G is an almost tree with parameter k. 

Indeed, trees are partial 1-trees and series-parallel graphs are partial 2-trees. 

Parametric Module Allocation 

The optimal assignment of tasks to processors in a distributed system is sensitive 

to load conditions on the processors and to the traffic on the communication links. 

In other words, costs vary over time. The optimal assignment may change when the 

load on one of the processors changes, since, as more and more load is put on the 

processor, the time (i.e., the cost) for executing modules on it increases. The optimal 

assignment at a new load may warrant a relocation of some modules between the 

processors. Communication links may also have varying loads, which, in turn, may 

affect the optimal assignment. Thus, it would seem that successive instances of MA 

have to be solved, where each instance differs from the others by modification of 

some parts of the problem data. Rather than solving each instance from scratch, 

it is desirable to develop methods which address the problem of efficiently solving 

all of the instances. The goal of parametric computing is to compute the cost of 

the optimum solution as a function of the parameters. Given this function, the cost 

of an optimum solution for any values of the parameters can be retrieved rather 

than computed. For simplicity, we assume that the loads (i.e., costs) vary as linear 

functions of some parameter t, for convenience referred to as time. Since the cost of 

any assignment is a linear function of t, one can verify that, in general, the function 

describing the optimum assignment is a concave piecewise linear function (plf), see 



29 

[42]. Points at which the plf changes its slope are called its breakpoints. It is at these 

points that the optimum assignment changes. See Chapter 4 for further definitions 

and examples. 

Parametric MA for 2-processor systems was first studied by Stone [80], who 

analyzed the problem of determining the sequence of optimal assignments as the load 

on one of the processors is held fixed while the load on the other processor is varied. 

He showed that in this case, there can be no more than n + 1 different assignments. 

Each assignment is a line in the two-dimensional space. The optimal assignment is the 

lower envelope of these lines and can be found using an algorithm developed by Eisner 

and Severance [31], which uses no more than n + 1 applications of the maximum flow 

algorithm. Sinclair [77] studied the case where processor loads remain constant, but 

where there are varying transmission delays. Fernandez-Baca and Slutzki [35] showed 

that if all costs (both execution and communication) vary, then for a tree structured 

program and fixed p, the optimal assignment has polynomial number of breakpoints 

and can be computed in polynomial time. Gusfield [42] considered the situation 

where the loads on both the processors vary simultaneously. Suppose that the loads 

on the two processors vary with the parameters and (g respectively. In this case, 

the cost of each assignment is no longer a line, but a plane in the three dimensional 

space. The optimal assignment, which is the lower envelope of all these planes, is 

therefore a convex polyhedral set. Each of its sides represents an assignment and is 

optimal for all points <2) that lie within its projection on the — to plane, called 

the load plane. Cartensen [21] showed that the number of faces on the polyhedron, or 

equivalently the number of regions on the load plane (and hence assignments) may 

be exponential in n. Algorithms to construct this polyhedron have been given in [36] 



30 

and [42]. 

Constrained and Balanced Module Allocation 

The first results on CM A are due to Rao, et al. [68], who studied the problem of 

finding the optimal assignment in a two-processor system where there is a memory 

constraint on one processor and infinite memory on the other. They were motivated 

by the situation that arises when a host computer with large memory shares its 

load with a smaller, more specialized processor with limited memory. They showed 

that this problem is equivalent to the knapsack problem, which is NP-complete [39]. 

Rao, et al. devised a method that uses network-flow techniques to reduce the size of 

the communication graph by condensing certain sets of modules, according to some 

criteria, into a single node. One of the minimum cuts in this reduced graph happens 

to be a feasible minimum cut in the original graph. This minimum cut is obtained 

by exhaustively enumerating all the cuts in the reduced graph. Unfortunately, this 

set of cuts can be exponential in size in the worst case. As such, their method does 

not guarantee polynomial efficiency for the general case. 

BMA was originally proposed by Chu and Lan [25] as a way to obtain assignments 

where processor loads are balanced. Those authors considered uniform communica

tion costs along with the additional constraint of precedence relationships among the 

modules. A two-phase heuristic algorithm was developed. In phase I, some modules 

are grouped into a single set. This grouping is based on factors like reducing IPC, so 

that heavily communicating modules are put into one set to avoid the IPC, and on 

the precedence relationship of the modules. These sets form a much smaller assign

ment tree for the phase II, where the actual assignment of the modules takes place. 



31 

This assignment is found using exhaustive enumeration and in the worst case, may 

take exponential time. 

In this context, we should also mention an earlier work due to Chu, et.al. [24]. 

There, a 0-1 quadratic programming approach is taken (see next section) for a sys

tem with p processors, all of which have memory restrictions. In addition, each 

processor has a real-time constraint in that, the length of time required to execute 

all the modules assigned to a single processor is restricted. These constraints ensure 

a more balanced assignment than a regular solution to the corresponding instance of 

MA. Once again, however, this approach is not efficient, but serves as a heuristic to 

generate sub-optimal assignments. 

Alternative Approaches 

While the graph-theoretic approach is simple and adapts naturally to the as

signment problem, it has some limitations. It cannot easily incorporate such fea

tures as memory restrictions, load balancing mechanisms, precedence constraints, 

etc. Further, it cannot measure the impact of queuing delays on throughput. These 

limitations have prompted researchers to consider alternative approaches. 

One approach which has been used successfully is 0-1 quadratic programming. 

This is a flexible technique since we can easily incorporate constraints into the model 

as appropriate to the application, which is difficult, if not impossible, with the graph-

theoretic approach. Pioneering this effort were Chu, et al. [24], who formulated the 

assignment problem as a 0-1 quadratic programming problem with linear constraints. 

They considered memory restrictions on all processors and the real-time constraint 

and developed heuristics to solve this problem. They also included the possibility 



32 

of processors being not fully connected. Recently, Billionet, et al. [11, 12] also 

considered the same approach to the assignment problem. In [11], MA is considered, 

while in [12], all processors are allowed to have memory constraints. Instead of solving 

this problem directly, the approach taken is to relax one of the constraints and form 

the Lagrangian dual of the original problem. Using branch and bound techniques, 

they solve the dual to obtain sub-optimal solutions to the original problem. This 

novel approach works rather well in finding approximate solutions to the assignment 

problem with one or more constraints. 

Another method is to use efficient search techniques to find the optimal solution 

in the search space. Price and Pooch [67] discuss how such techniques can be applied 

to solve nonlinear assignment problems. Doty et al. [30] present a set of assignment 

problems and propose solution techniques based on dynamic programming. 

Related Problems 

Partitioning Problems for Parallel and Pipelined Programs 

The research reported so far dealt with serial programs, i.e., programs in which 

only one module is active on one processor at a given time. For completeness, we 

shall survey results for the case of parallel programs, where two or more modules 

may execute concurrently for various periods during the lifetime of a program. The 

objective is to reduce the total wall-clock^ time of the program by running different 

parts of the program in parallel. All the factors that influence the time to execute a 

serial distributed program also apply to parallel programs. In addition, there is the 

problem of scheduling the parallel computation, i.e., arranging the order of execution 

of the various modules on the processors. This is the scheduling problem and is 



33 

beyond the scope of this dissertation. 

The problem of optimally assigning the modules of a parallel program in a dis

tributed system is also NP-complete [19]. In the general partitioning problem, one 

is given a multicomputer system with a specific interconnection pattern as well as a 

parallel program composed of modules that communicate with each other in a spec

ified manner. One is required to assign the modules to the processors in such a way 

that the total execution time of the program is minimized. The partitioning problem 

has several applications including signal processing [20], image analysis [78] and the 

solution of partial differential equations [74]. Iqbal, et al. [50] studied the problem 

of uniformly distributing the load of a parallel program over a multiprocessor system 

and suggested different strategies for load balancing. They discuss both static and 

dynamic methods to do this. Bokhari [19] proposed efficient algorithms to solve the 

following problems: 

1. Partition chain-structured parallel or pipelined programs over chain-connected 

systems. 

A chain-structured program has n modules numbered 1, • • •, n such that module 

i is connected only to modules i -t- 1 and i — 1 (excluding of course, modules 

1 and n, which are connected to only modules 2 and n — 1 respectively). We 

can similarly define a chain-connected system of p processors. Given a set of 

n modules connected in a chain-like fashion and a chain-connected multipro

cessor system of size p < n, the problem is to assign subchains of modules to 

processors so as to minimize the load on the most heavily loaded processor. 

The constraint is that the partitions of the chains have to be such that adja

cent modules must be assigned to the same or to adjacent processors. We call 



34 

this the contiguity constraint. This problem is considered for both the parallel 

and pipelined processing. In pipelined processing, each processor works on a 

distinct frame of data. The maximum rate of processing is determined by the 

processor that takes the maximum time to perform its task — the bottleneck 

processor. 

2. Partition multiple chain-structured parallel or pipelined programs over single-

host, multiple-satellite systems. 

A host-satellite system consists of one large host computer connected with sev

eral satellite computers, each of which receives a stream of data from a real-time 

environment. These data streams may have different arrival rates and the indi

vidual satellites may have different computational capabilities. To each stream 

corresponds a chain-structured program, the modules of which are to be exe

cuted on the corresponding satellite or possibly in part by the more powerful 

host. The objective is to minimize the total execution and communication time 

on the bottleneck processor. We assume that each chain-structured program 

has fewer than n modules. 

3. Partition multiple arbitrarily-structured serial programs o ver single-host, multiple-

satellite systems. 

4. Partition single tree-structured parallel or pipelined programs over single-host, 

multiple identical satellites sxjstems. 

Bokhari solved (1) by a minimum bottleneck path algorithm. To solve (2), (3) 

and (4) he used an algorithm which solves the minimum sum-bottleneck path problem 



Table 3.1: Runtimes of the algorithms for the partitioning problem 

Problem 
Structure 

Processor 
Structure 

Processing Partial 
Constraint 

Hansen-Lih's 
Complexity 

Bokhari's 
Complexity 

Single chain of n 
modules 

single chain of p 
processors 

pipelined / parallel contiguous p 
sub-chains 

0 { n ^ p )  O(n^p) 

p chains, totally 
n modules 

single host, p 
dissimilar satellites 

individual 
pipelined / parallel 
chains executing 

in parallel 

contiguous two 
subchains of each 

processor 

O(nlogn) O(^logn) 

arbitrary p 
programs, totally n 

modules 

single host, p 
dissimilar satellites 

individual serial 
programs executing 

in parallel 

none 

single tree of n 
modules 

single host with 
p < n identical 

satellites 

pipelined / parallel maximal subtrees 
on satellites 

0(re(logn)2) 0{n^ log n) 



36 

on a graph. The latter consists in finding a path in a doubly-weighted graph which 

minimizes the maximum of the sum of the first type of weights and of the maximum 

of the second type of weights associated with its edges. This algorithm has a run 

time complexity of 0{v^ log e) for a graph of v vertices and e edges. Hansen and 

Lih [44] improved Bokhari's algorithms for the above four problems. For (1) they 

used dynamic programming and for (2) they used sorting and bisection search for the 

bottleneck value. They also noted that Bokhari's algorithms for problems (3) and (4) 

can be improved using the recent results of G alio, et al. [38] and by implementing 

Dijkstra's algorithm [29] with a heap structure. Table 3.1 summarizes and compares 

their work with that of Bokhari's. Iqbal [48] developed an approximation technique 

w h i c h  o p t i m a l l y  s o l v e s  t h e  a b o v e  f o u r  p r o b l e m s  i n  t i m e  n o  w o r s e  t h a n  0 [ n p \ o g { C / e ) )  

where C is the cost of assigning all modules to one processor and e is the desired 

accuracy. Another paper by the same author [49] discusses the partitioning problem. 

A recent paper by Nicol and O'Hallaron [63] also addresses the same problem. 

The Mapping Problem 

A closely related problem to MA is the following. Besides the communication 

graph G'c of the modules, we are also given the graph describing the intercon

nection of the processors. The maximal number of hops between two processors in 

GI to which two adjacent modules in Gc are assigned is called the dilation of that 

assignment, clearly it would be desirable to find an assignment which minimizes 

this dilation. Chugthai [26] addressed an extrême form of this problem where he 



37 

considered Gc to be a complete binary tree and to be an 8-nn array^. Now, by 

keeping the dilation below a specified value, we can keep the communication delay 

between any two adjacent tasks in Gc low. An assignment is said to be acceptable 

if its dilation is less than or equal to the specified value. Characterizations and the 

use of acceptable assignments for given G^ and Go were discussed by Shin and Chen 

[75]. 

Suppose the same setup as in the above paragraph, except that we have a parallel 

program now. Further suppose that the number of modules in Gc is equal to the 

number of processors in Gj and we have to assign exactly one module per processor. 

The mapping problem is to find an assignment which maximizes the number of edges of 

Gc being mapped onto the edges of Gi by the assignment. This problem is equivalent 

to the graph isomorphism problem [18] and is hence NP-complete. Bokhari [17] found 

a heuristic which finds a good solution rather than an exact one. Berger and Bokhari 

([7], [8]) considered a variant of the mapping problem where it is no longer required 

to map exactly one module onto one processor. 

Summary 

While this chapter is by no means an exhaustive survey, it should give the reader 

some insight into the state of the art of the module allocation problem and should 

show that the problem has received and continues to receive considerable attention. 

Some other techniques and related research are reported in [6, 23, 43, 59, 62, 66]. A 

good overview of the module assignment problem can be found in [18]. 

^An 8-nn array is one in which each processor is connected to to its 8 "nearest 
neighbors". 



38 

CHAPTER 4. PARAMETRIC MODULE ALLOCATION 

Introduction 

Parametric module allocation (PMA), is the problem of allocating modules to 

processors in a distributed system to minimize total costs when the costs are all 

functions of some parameter <, 0 < i < oo. In this chapter, we shall consider the 

case where the communication graph G is a partial k-tree (see the next section for 

definitions). We assume that all costs are linear functions of t; i.e., all costs are of 

the form a + bt where a,b > 0. .•\s mentioned in Chapter 3, we can interpret t as 

time and can view the changing costs as varying costs over time as the situation in 

the distributed system changes. We also observed there that the cost of the optimal 

assignment in G is a function of t under these assumptions. Let CQ{t) be the plf 

describing the cost of the optimal assignment. Since M .A is a minimization problem, 

CQ{t) is the lower envelope of all the lines associated with assignments. Recall that 

Cq^I) is a piecewise linear function and that the points at which the slope of CQ{t) 

changes are called its breakpoints. 

An instance of PMA is shown in Figure 4.1. There, we exhibit a communication 

graph along with the execution and communication cost functions of the modules. 

Among the several possible assignments, three contribute to the optimal solution 

as shown in the figure. CQ{t) is the lower envelope of the associated lines. The 



39 

®1 

1 
2 

1+31 
3+t 

P2 02 

1 
2 

5+21 
1+61 

P3 ® 3  

1 
2 

2+21 
2+31 

CG(t )  

100" 

P2 S2 

1 1 0 
1 2 4+t 
2 1 4+t 
2 2 0 

P  R  c _ 1  3  13 

1  1  0 

1  2  3 
2  1  3 
2  2  0 

P2P3 923 

1  1  0 

1  2  1+t 
2 1 1+t 
2 2 0 

Figure 4.1: Communication graph, cost functions and the plf describing the optimal 
solution for a 3-module, 2-processor system. 



40 

breakpoints occur at ( = 2/3 and t = 9. The assignment f^ = 2, of 

cost 6 + lOf (line I) is optimal in the interval (0,2/3); Pj = P2 = = I, of cost 

8 + 7/ (line II), is optimal in (2/3,9); Pj = 2,f^ = = 1, of cost 17 + 6/ (line III), 

is optimal in (9,00). Stone [80] showed that for the restricted version of parametric 

MA he was studying, CQ{t) has 0{n) breakpoints. Fernandez-Baca and Slutzki [35] 

showed that if G is a tree and all costs vary, then CQ{t) has 0(n^^'^°8P) breakpoints 

and can be computed in logjz) time. Here we extend the results of [35] 

to show that if G is a partial t-tree, then Cg(() has ^°SP) breakpoints 

and can be computed in P logn) time. Thus, for reasonably tree-

structured programs running on systems where the number of processors is fixed, the 

number of distinct optimum assignments that are encountered when processor load 

and transmission delays are varied, is polynomially-bounded. 

Organization of the Chapter 

We begin with some basic definitions, notations and results needed in this and 

the next chapter. Our first result is a 0(7?) algorithm to find a (A: -j- l)-vertex sep

arator of an 7i-vertex Â;-tree. This result generalizes the 0{n) algorithm to find the 

centroid of a tree due to Kariv and Hakimi [52]. Subsequently, we present an al

gorithm that solves PMA on partial fc-trees. We then discuss applications of PMA 

to parametric versions of the vertex cover, independent set, and 0-1 quadratic pro

gramming problems on partial /:-trees, and conclude the chapter with a discussion of 

related open problems. Note that all logarithms in this chapter, and for that matter, 

in this dissertation, are to the base 2. 



41 

Preliminary Concepts and Results 

Definition 4.1 (t-TREE) A graph G is a k-tree if and only if 

(1) it is either a complete graph on k vertices, or 

(2) it has a vertex v with exactly k neighbors forming a fc-clique, such that G — {v} 

is a fc-tree. 

In case (2) of the above definition, v is called a k-leaf. 

Definition 4.2 (PARTIAL A:-TREE) A partial k-tree is a subgraph of a Ar-tree. 

An 7i-vertex A;-tree has k { n  —  k )  +  k { k  — l)/2 edges and k { n  — + 1 t-cHques. 

Trees and series-parallel graphs are partial Â;-trees with k = 1 and k = 2 respectively, 

Halin graphs are partial 3-trees, and almost trees with parameter r are partial (r+1)-

trees. These and other results are surveyed in [13, 14]. For k = 1,2,3 it is possible 

to determine if an n-vertex graph G is a partial k-tree, and, if so, to construct an 

embedding k-tvee in 0{n) time [2, 60]. Reed [69] has shown that, for any fixed k, it 

is possible to determine in 0(n log n) time whether G is a partial fc-tree. 

Without any loss of generality, we can assume that the communication graph 

given to us is a A:-tree for the following reason. Any instance of the assignment 

problem on a partial k-tvee G can be converted into an equivalent k-tree problem by 

(1) finding an embedding k-tree H and (2) creating a new instance of the allocation 

problem with the same execution costs and where the communication cost between 

m o d u l e s  i  a n d  j ,  ( i ,  j )  e  E { H ) ,  i s  t h e  s a m e  a s  i n  t h e  o r i g i n a l  p r o b l e m  i f  { i , j )  €  E { G ) ,  

and equal to zero, regardless of the assignments for i and j, if {i,j) ^ E{G). Clearly, 

the optima for both problems are the same. In subsequent discussions we therefore 

always assume that the input graph is a k-tree. 



42 

Let G be a t-tree. The definition of a t-tree gives a reduction sequence or vertex 

elimination ordering Seq{G), by which, starting from G, we arrive at a final &-cHque, 

called the root clique, by repeatedly removing fc-leaves and their incident edges. Let 

Kv be the t-clique induced by the neighbors of v at the time of its 

elimination. For each G 1 < « < fc, let Ky^ be the A-clique induced by the 

vertices in For a fc-clique K, let I{K) = {u: Ky = K}. Each 

vertex in I { I \ )  is said to be an immediate descendant of K. If K is a t-clique then 

V ^ K is a descendant of K in a given reduction sequence if and only if when v was 

being removed, each vertex it was adjacent to was either a member of K or was a 

descendant of K. The subgraph induced by the descendants of K is called a branch 

on K and is denoted by B[K). A partial k-lree is a subgraph of a k~tree. Given an 

a r b i t r a r y  g r a p h  G ,  a n  e m b e d d i n g  t - t r e e  G '  o f  G  i s  a  t - t r e e  s u c h  t h a t  V { G ' )  =  V ( G )  

and E{G) C E{G'). The general problem of finding an embedding A:-tree for an 

a r b i t r a r y  g r a p h  i s  N P - h a r d  f o r  a r b i t r a r y  k  b u t  c a n  b e  s o l v e d  i n  0 { n )  t i m e  f o r  k  < Z  

and in 0(nlogn) time for each fixed t > 4, see [60, 69]. 

Figure 4.2 illustrates the various definitions. The 2-tree G shown there has 23 

2-cliques, one for each edge in the graph. Vertices of G are numbered according 

to a valid reduction sequence. According to this sequence we have, for example, 

Ki = {2,3}, 7^3 = {11,13}, and Kn = {12,13}. The descendants of clique K = 

{9,10} are vertices 6, 7, and 8; thus, the branch on K is the subgraph induced by 

{6,7,8}. The only immediate descendant of clique {9,10} is vertex 8. Finally, note 

that = {11,12} and = {11,13}. 

The motivation in considering communication graphs which are partial fc-trees is 

as follows. Modular programs whose communication graphs are tree-like include pro-



Figure 4.2: (a) A partial 2-tree and (b) An embedding 2-tree 



44 

grams written as a hierarchy of subroutines. It has been suggested (see [85]) that all 

large modular programs should deliberately be constructed with a tree-like structure 

for ease of understanding, maintenance and high reliability. Series-parallel graphs 

include program graphs in which modules lie in loops or in conditional branches 

[83]. Therefore working on partial fc-trees is a natural extension of previous work to 

include more kinds of programs. We have the following results. 

Lemma 4.1 If K is a k-clique in G, then there are no edges {u,v) in G such that 

u 6 B{K) — K and v ^ B{K) U A'. 

Proof. Suppose u  is connected to one or more vertices v  ^  B { K )  U K .  

S ince u G  B { K )  a n d  v  ̂  B { I \ ) ,  a n y  s u c h  v  m u s t  b e  e l i m i n a t e d  b e f o r e  u .  C h o o s e  v  

to be the last vertex in Seq{G) such that v ^ B{K) U K and (u,u) E E(G). Since, 

by assumption, v is not a descendant of A', when v is eliminated, at least one of its 

n e i g h b o r s  i s  n o t  i n  B { K ) U K .  L e t  w - ^ ,  -  •  •  , w r  b e  t h e  n e i g h b o r s  o f  v  n o t  i n  B [ K ) U K .  

Since v is also a neighbor of u at the time of elimination and G is a A; tree, u must be 

connected to each w^. But • • •, tur follow v in Seq{G), and are not in B{K) U A', 

contradicting the definition of v. • 

Lemma 4.2 For all v E Seq[G) and for all 1 < i,j < k, i ^ j 

(i) B{Kv^) and B{Kv^) have no vertices in common 

(ii) there is no edge {uj,uj) such that 6 B{Kv^) and uj G B{Kv^). 

Proof. Follows from Lemma 4.1. • 



45 

Lemma 4.3 5(/C) = Uue/(A') [{«} U (U^i B{Kv'^))\. 

Proof. Follows from the definitions. • 

In what follows, we shall assume that a plf is represented by the sequence of 

segments that make it up. For each segment, we store the associated optimum solu

tion. With this representation, plf's can be easily manipulated. Let b{g) denote the 

number of breakpoints of a plf g. The following two lemmas are taken from [35]. 

Lemma 4.4 Let fi{t) and f2(t) be plf's. Then 

rV 6(/l+/2)<6(/l) + 6(/2). 

(ii) If f I and /2 are both concave or both convex then 

b { m i n { f i , f 2 } )  < K/l) + H f 2 )  + 

(iii)fl + f2 o,nd min{fi,f2} can be computed in time 0{b{fi) + 6(/2)). 

9 
Lemma 4.5 Let ... ,nq be a partition of n; i.e. rir = n, such that 

r=l 
0 < Ur < nf 2 for 1 < r < q. Then, for every real number a > 1, 

r=l 

Finding a Separator in a A:-tree 

It is known that every n-vertex partial t-tree G has a set of vertices S of size 

+ 1 such that no connected component of G — 5" has more than [(n — k)/2\ vertices 

[70]. Such an S is referred to as a separator. For example, in Figure 4.2(b) the set 

of vertices {11,12,13} is a separator. We shall present an algorithm that finds a 

separator in a A:-tree G given a reduction sequence Seq{G). The algorithm uses a 



46 

copy H  of the original 6-tree G  and associates an integer S { K ) ,  called the state of 

K, which is initialized to zero, with every A-clique K of H. S[K) is updated when 

a fc-leaf v with K = Ky is removed. 

Algorithm 4.1 ( Separator of a k-tree ) 

1. H  G ]  S e q { H )  S e q { G ) ;  S { K )  <— 0 for all t-cliques K  in H .  
2. Find the next vertex v  in S e q ( H ) .  
3. Let A'Q be the {k + l)-clique induced by Kv and v. 

4. 5O S { K v )  + EFLI S i K v ' )  + 1. 
5. if 5o > r(n — k ) / 2 ]  then 

Halt : A'Q is the separator. 
else S { K v )  ̂  H  * —  H  —  {u}; go to step 2. 

It can be verified that the set {11,12,13} is, indeed, the output returned by 

Algorithm 4.1 for the graph in Figure 4.2(b). We now prove the validity of this 

procedure. 

Lemma 4.6 The following property holds after every step of Algorithm 4-1-

F o r  e v e r y  k - c l i q u e  K  i n  H ,  ( i )  S { K )  <  f ( n  —  k ) / 2 ]  a n d  ( i i )  S { K )  =  |  B e { K )  | ,  

where Be{K) = [{v} U (U^Li B{Kv^))\. 

(Intuitively, B e { K )  is the portion of B { K )  that has been collapsed into K  so far). 

Proof. Clearly, (z) holds after every step. After step 1, H = G and for all 

f c - c l i q u e s  K  i n  H ,  S { K )  =  0 .  F u r t h e r  I { K ) - V { H )  =  0  s i n c e  I { K )  C  V { H )  =  V { G ) .  

Therefore Be{K) — 0 and hence (n) is true after step 1. Notice that we now only 

need to consider the effect of step 5, since it is the only place in the algorithm where 



47 

( k . > 
W u  U  B { K v ' )  

\z=l / 

H is altered and a state is updated. Assume (ii) holds immediately prior to step 5. 

To maintain (ii) after v is eliminated, step 5 must add to S{Kv) the size of the 

portion of G containing v and the descendants of each Ky, I < i < k] i.e., it must 

add 

r = \  U  
v e i { K )  

Now, just before vertex v  is eliminated from H ,  I { K y )  D V { H )  = 0, 1 < * < &, since 

all descendants of A'y must be eliminated before v. Thus, Be{Klo) = B{Ky), for 

each i. Since (ii) holds, 5(A'^) = | B{kI) | for 1 < i < k. Thus, 

k 
r = l +  E  S i K l ) ,  

which is precisely the value added to S { K v )  by the algorithm. • 

Note that each execution of step 5, except for the last one, reduces the number 

of fc-cliques in H by k and increases one (indeed, this sum always 

equals the number of eliminated vertices). Thus, at some point, we must have Sg > 

\{n — A:)/2], which implies that Algorithm 4.1 terminates. By Lemmas 4.2 and 4.3, 

removal of A'Q splits G into fc + 2 subgraphs, namely the B(A^)'s, Be{Kv), and 

R  =  G -  ({v} U K v  U B e i K v )  U ^ (J B { K v ' ) ^  ), 

with no edges connecting any two of them. Now by Lemma 4.6, 

1 B(A'i) I = 5(A'i) < \{n - k)/2] for l < i <  k ,  

\  B e i K v )  \ <  \ { n - k ) / 2 ] ,  

and 

5o = I {.) U Be(Ko) U ^ U I . 



48 

Since > [(" — ^)/2l, the set 

{ v }  U Kv U Be{I<v) U ^ (J B{Kv')^ 

has at least k  + f(n — k ) / 2 ]  vertices. Therefore, R  has at most 

n - { k +  [(n - A:)/2]) = [(n - k ) / 2 \  

vertices. Thus, no connected component of G—Kq has more than [_{n — k)l2\ vertices. 

We conclude that Kq is the desired separator. Since there are at most (n — — 1) 

vertices to be removed, Algorithm 4.1 takes 0{n) time on an n-vertex fc-tree. We 

thus have the following result. 

Theorem 4.1 Algorithm 4-i correctly finds a {k+l)-vertex separator in 0{n) time. • 

Remark. The algorithm proves constructively that a fc-tree has a separator of t +1 

vertices. • 



49 

Parametric Module Allocation on Partial fc-trees 

We now present a recursive algorithm PARAM that constructs the function 

C(^(t) w h i c h  d e s c r i b e s  t h e  c o s t  o f  t h e  o p t i m u m  a s s i g n m e n t  i n  G  a s  a  f u n c t i o n  o f  t .  

We assume that the underlying graph G is a partial k-tree and that all costs are 

linear functions of a parameter t, 0 < i < oo. 

Algorithm 4.2 f Parametric Module Allocation on a Partial k-tree J 

Procedure PARAM(G, C(y(t)) ; 
INPUT: G together with all its costs. 
OUTPUT: %(<). 

begin { PARAM } 
(1) Find an embedding k-tvee H o( G and Seq{H) ; 
(2) for all edges (z,j) 6 E { H )  —  E { G )  do 

for all u, V such that 1 < u, u < p do 
cij{u,v) := 0 ; 

(3) Use Algorithm 3.1 to find a separator S j j  = {«i, • • • ,u/} in H  ;  
(4) Assign{Sff) := { all assignments to modules in Sff } -, 
(5) for each A = (Pup • • •, G Assign{Sff) do begin 

( G )  : =  e u - i P u ^ )  +  C u ^ u j i P u ^ ,  P u j ) ' ,  

(7) for each component M  o i  H  —  S f j  à o  begin 
(8) for each vertex i in M do begin 
(9) for 9 = 1 to p do 
(10) ej((jf):= e i { q )  + E {cji{Pj, q )  : (z,i) E E { H )  and j  6 S j j ]  ;  

end; 
(11)PARAM(M, C^/(0); 
(12) Restore original weights in M 

end; 
A) := A) + E : Mis a component o i  H  —  S j j }  

end; 
(14)Cg(<) := min{ C g ^ { t ; A )  : A G Assign{Sff) } 

end { PARAM }. 

PARAM is a divide-and-conquer algorithm that is closely related to procedures 

presented in [35, 56]. After embedding the original problem into an equivalent prob



50 

lem on a k-tree (steps 1 and 2), it finds a separator Sfj and then considers each 

possible assignment A to the variables associated with the separator. Step 6 records 

in Cg^{t',A) the cost of each such assignment when restricted to the subgraph in

duced by the vertices of Sjj (this graph is complete, since H is a. fc-tree). In steps 

7-10 each connected component M o{ H — Sjj is considered. The communication 

costs between the vertices in the separator and those of M are incorporated into the 

execution cost functions of vertices in M. This allows us to set up several indepen

dent subproblems, which are solved recursively in step 11. Finally, step 14 combines 

the various solutions to construct Cq. A full proof of correctness of Algorithm 4.2 

can be obtained using the techniques developed in [35, 56]. Note that steps 6 and 

10 manipulate linear functions while steps 13 and 14 manipulate plf's. We have the 

following result. 

Theorem 4.2 For any n-vertex partial k-tree G, b{CQ{t)) is 

and CQ{t) can be constructed in logn) time. 

Proof. Let h { n )  denote max{6(C(^(<))} over all t-trees G  with n  vertices. 

Since Sfj has at most t -p 1 vertices, there are at most assignments in 5^. 

From step 14 of Algorithm 4.2 and from Lemma 4.4(n'), we have 

» ( % ( ' ) )  :  A  S /Issijn(S^)} +/+1 - 1. 

Thus, we shall concentrate on finding an upper bound on b{Cg^{t] A)). 

Observe that after step 6, C g ^ { t ;  A )  is simply a linear function of t  since it is 

the sum of linear functions; thus, after that step, b{Cg^{t-,A)) = 0. After step 13 



51 

we have, using Lemma 4.4(i), that 

b { C s ^ ( f , A ) )  <  E  S  E  M n r )  
r=l r=l 

where , * • •, Mg are the connected components oî H — Sj^ and rir = | Mr |. Thus 

^ IZ i(nr) -  1 
r=l 

and 

b { n )  <  p ^ + ^ m a x {  ^  b { n r ) }  + -  1,  

r=l 

where the maximum is taken over all partitions n i ,  -  •  •  , n q  o ï  n  —  k  such that 

Mr < [(n — A:)/2] ; r = 1, • • •, q. We have the following lemma. 

Lemma 4.7 

b { n )  <  1 

for a suitable constant a. 

Proof. The lemma is certainly true for sufficiently small values of n. As

sume that the lemma is true for all values less than n. For the induction step, we 

argue as follows. We have 

b{n) < max | ^ 6(nr)| - 1 

< p^"^  ̂ max I ^ - 1) j + - 1, 

by induction hypothesis. 

= ap^"^^ max | ^ — 1)| — + p^+^ — 1 



52 

< max | ^ - 1)| — 1, since q > l  

^ M (n-ifc-l)l+(^+l)logP , u T 
< ap ^ . 1, by Lemma 4.5 

2(A;+l)logp 

= û(„-fc-l)l+(^+l)loSP-l 

< anl+(^'+l)logP-l 

which proves the lemma, and, in turn, the first part of the theorem. 

Next, let T { n )  denote the worst-case running time of the algorithm. Step 1 takes 

O ( n l o g n )  t i m e  [ 6 9 ] .  S t e p s  2  a n d  3  t a k e  0 { k n )  t i m e  e a c h .  S t e p  4  t a k e s  0 { p ^ ' ^ ^ )  

t i m e .  T h e  f o r  l o o p  i n  s t e p  5  i s  i t e r a t e d  a t  m o s t  t i m e s .  S t e p  6  t a k e s  0 { k ^ )  

time. Step 10 takes 0 { p  | E { G )  |) time over all iterations, which is 0 { p k n ) ,  since 

I E{G) I is 0{kn). The recursive calls take a total of ^("r) time. Step 12 

takes 0 { k n )  time. Step 13 is implemented using the techniques given in [35]. First, 

the components oi H — Sff are sorted according to their size. Assume, without loss 

of generality, that < ... < ng < [(n — fc)/2j. This sorting process takes 0{q log q) 

time, which is clearly dominated by O(nlogn). The sum Y.C^{t) is computed as 

follows. If Ml,..., Mq are the components oi H — Sfj, then the sum is 

[... + [[C'Mi(0 + + •••] + 

By Theorem 4.2, for every r, 1 < r < q. Hence by 

Lemma 4.4(n'i), the time to compute the above sum is 0 | VI Yl ^ |. 
\5=2r=l / 

However, 

E é n5 E 
5=2 r=l 5=1 r=l 



53 

- #+l)logp_i ' by Lemma 4.5 

2 („_ifc_i)(fc+l)logp ^ 
5=1 

( „ _ j f c _ l )l+(Hl)Iogp 
pfc+1 

< _i_„i+(^+i)iogp 
pfc+i 

< n l+(À;+l)logp 

Thus, the sum in step 13 can be computed in time P), which is 

proportional to the total number of breakpoints of the functions being added. Steps 

6 to 13 are executed 0(p^"^^ ) times and thus the total time spent on them is bounded 

by 

^K) + 0(nl+(^+l)l°gP)). 
r=l ^ 

By step 13, Lemma 4.4, and the first part of the present theorem, C g ^ { t \ A )  has 

breakpoints. Thus by Lemma 4.4(zii) the time required to com

pute the minimum of the plf's in step 14 is 

Summarizing, the total time spent in constructing CQ{t) satisfies the recurrence 

relation 

'T{n)<p^'^^ max | T(nr)|-}-

for some constant c and where the maximum is taken over all partitions nj, • • • ,nç 

of n — A: such that nr < f(« — ^)/2] ; r — 1, - - , g. We have the following lemma. 

Lemma 4.8 

T(n) < an^+(^+^)^°SPlogn 

for a suitable constant a > c. 



54 

Proof. The lemma holds clearly for sufficiently small values of n. Assume 

that the lemma holds for all values less than n. In the inductive step, we argue as 

follows. 

T(«) < max jf; 

I E a4+('+^)'°8flog„r| +cnl+(*+l)'°8P < max 

by induction hypothesis. 

< max I E _ t)/2J I +cl+(A:+l)kSP 

= ap^''*'Mog [{n —/;)/2J max | ^ 

< ap'+l log(L(n - + _l+(t+l)l°gp 
2U' + 1) logp 

= a(log(n — k — \) — l)(n — k — P P 

< a(logn-l)n^+(^'+l)l°gP + cnl+(^+l)logP 

= anl+(^+l)^°gPlogn - (a - c) „l+(fe+l)logp 

< ONL+(6+l)logPi(,g^ 

where the last inequality holds if and only if a > c. This proves the lemma, which in 

turn proves the second part of the theorem. • 



55 

Further Results 

In this section, we present some applications of MA. Specifically, we comment 

on three combinatorial optimization problems that are closely related to MA: the 

minimum weight vertex cover problem (VC), the maximum weight independent set 

problem{lS), and the 0-1 quadratic programming problem (QP). 

Let G be an undirected graph every vertex of which has a weight that is a linear 

function of a parameter t. The weight of a set S of vertices in G is the sum of the 

weights of the vertices in S. The weight of S is therefore a linear function of t. 

The Vertex Cover Problem 

A vertex cover of G is a set A of vertices such that for each edge (a, 6) in G, at 

least one of a and b is in A. VC is to find a vertex cover of minimum weight. Let 

Wyci^) denote the weight of the optimum vertex cover as a function of t. VC can 

be formulated as MA with p = 2 (see [35, 56]). Thus when G is a 6-tree, we conclude 

from Theorem 4.2 that the number of breakpoints of Wy(j{t) is 0(n^'^^) and that 

Wyc{t) can be computed in logn) time. 

The Independent Set Problem 

An independent set of G is a set B of vertices such that no two vertices in B are 

adjacent. IS is to find an independent set of maximum weight. Let Wjg{t) denote 

the weight of the optimum independent set as a function of L It is well known that a 

set of vertices 5 is a maximum weight independent set of G if and only if V(G) — S is 

a  m i n i m u m  w e i g h t  v e r t e x  c o v e r  o f  G .  T h u s  W j g { t )  =  W { t )  —  W y Q { t )  w h e r e  W { t )  

is the weight of V(G). W{t) is a linear function of t, while WyQ{t) is a concave plf 



56 

of t .  Therefore, W j g { t )  is a convex plf of t .  Thus, the results obtained above for 

VC imply Wjg{t) has breakpoints and can be computed in logn) 

time. 

The 0-1 Quadratic Programming Problem 

QP is the problem of computing min® f { x )  = b^x+x^Qx, where a; = (xj, • • •, xn) 

and Q = [q^j] is an n x n symmetric matrix with all zeroes on its diagonal, subject 

to x^ E {0,1} for i = l,---,n. Several applications of QP are presented in [40]. 

To every instance of QP we can associate a graph G where V{G) = {1, • • • ,n} and 

{i,j) 6 E{G) if and only if q^j ^ 0 [5]. QP can thus be reformulated as a problem of 

minimizing 

f { x ) =  Y ,  + 2 ^ Çij^iXj 
(w)eE(G) 

subject to 

xi e {0,1}. 

We can transform any instance I q p  of Q P ,  with associated graph G ,  into an instance 

^MA MA with p = 2, communication graph G, and where costs are defined as 

f o l l o w s .  F o r  e a c h  i  €  V { G ) ,  e j ( l )  =  0  a n d  e j ( 2 )  =  6 -  f o r  e a c h  ( i , j )  €  E { G ) ,  

Cij{Pi,Pj) = ^qij if Pi = Pj = 2, cij{Pi,Pj) = 0 otherwise. It is now easy 

to check that the values of the optimum solutions to Iqp and are equal, 

and, furthermore, that {Pi, - • • ,Pn) is an optimum solution to if and only if 

(H,- • • ,xn)) with x^ = Pj — 1 for i = 1, • • • ,n, is an optimum solution to Iqp-

In the parametric version of Q P ,  the i^-'s and the ç^ j's are linear functions of t .  

WQp{t), which gives the cost of the optimum solution as a function of t, is a plf. The 

relationship between MA and QP, together with Theorem 4.2, imply that, when the 



57 

associated graph is a k-tree, the number of breakpoints of WQp{t) is (9(n^"^^) and 

that this function can be computed in log 7%) time. 

Discussion 

We note that the bound of Theorem 4.2 is not tight for l-trees (i.e., trees), since 

in [35], a bound was proved. It is an open question whether Theorem 4.2 

is tight for > 1, or, indeed, whether the bounds in [35] are the best possible. 



58 

CHAPTER 5. CONSTRAINED AND BALANCED MODULE 

ALLOCATION 

Introduction 

In this chapter, we shall be concerned with two versions of the assignment prob

lem. The first is constrained module allocation (CMA), where the objective is to 

minimize a certain measure of total system cost, subject to a resource constraint 

on one of the processors. The second is balanced module allocation (BMA), where 

the objective is to minimize the maximum processor load. We design exact dynamic 

programming algorithms for both problems, which lead to approximation schemes 

for the case where the communication graph is a partial fc-tree. Faster algorithms 

are presented for trees with uniform communication costs. 

In CMA, one of the processors, for convenience assumed to be processor 1 (Recall 

that the modules are numbered from 1 to n and processors from 1 to p), has a limited 

amount of a certain resource, which we shall refer to as "memory". The remaining 

processors have unlimited memory. Let M E (the set of non-negative integers) 

denote the memory capacity of processor 1, and for i G n}, let G 

denote the memory requirement of module i. An assignment X is feasible if the total 

amount of memory required by the modules assigned to processor 1 does not exceed 

that processor's available memory; i.e., if = 1} < M. The objective is to 



59 

find a feasible assignment X that minimizes 

C { X ) =  Y ,  H i ^ i ) +  I Z  
*€V(G) (w)EE(G) 

(5.1) 

Note that in the absence of the memory constraint, CMA becomes the standard 

module allocation problem, MA. 

In BMA, the objective is to obtain assignments where processor load is balanced. 

The total load on processor r for a given assignment X, denoted Ldr(%), is the 

total execution cost of the modules assigned to that processor plus the sum of the 

communication costs from that module to all modules; i.e., 

Ldr(X) = = r} + ]] {cij{xi,xj):xi = r0rxj=r} 

Note that if two communicating modules are assigned to different processors then 

their communication cost will contribute to the load on both processors. The optimum 

balanced assignment problem (BMA) is to find an assignment X that minimizes 

To clarify our definitions, we now illustrate CMA and BMA by means of the 

inter-module communication graph of Figure 5.1 (a), taken from Sinclair[76]. There 

are 5 modules and we consider a 3 processor system. The execution costs and memory 

requirements of the modules are given in Figure 5.1 (b). Communication costs are 

uniform and the r^^s are shown on the edges. Table 5.1, which was computed using 

the algorithms developed in this paper, shows the optimum solutions to instances of 

CMA and BMA derived from Figure 5.1. In the case of CMA, we have computed the 

solutions for distinct values of M. Note that for a sufficiently large M, the cost of the 

Load (A') = max Ldr(%) 
rG{ li-.-iP} 

(5.2) 



60 

(a) Intermodule communication 
graph with uniform costs 

Modules 
1 2 3 4 5 

P
ro

ce
ss

or
s 

CO
 

ro
 

40 25 20 30 15 

20 25 45 35 30 

25 20 25 30 40 

Memory 20 30 25 15 35 

(b) Module execution costs and 
their memory requirements 

Figure 5.1: An Example Problem to illustrate CM A and BMA 

optimum solution to CMA is the same as that of the corresponding instance of MA 

obtained by eliminating the memory constraint on processor 1. In our example, any 

value of M > 105 yields an optimum solution of cost 118, which matches the solution 

given by Sinclair in [76]. In the case of BMA, there are 2 optimum solutions, both 

of which are listed. Recall that the cost of the optimum assignment in this case is 

the maximum processor load. This explains the large difference between the values 

of the optimum solutions for this problem and CMA. Note also that BMA does a 

better job of distributing the load evenly than does CMA. 



61 

Table 5.1: CM A and BMA results for the example problem in Figure 5.1 

Problem Value of Assignment Cost of the Memory requirement 
M X2 X4 Assignment on Processor 1 

CMA > 105 2 1 1 1 1 118 105 
100 2 3 1 1 1 120 75 
50 3 3 3 1 1 124 50 

<25 3 3 3 3 2 140 0 

BMA N/A 3 1 3 2 1 56 N/A 
N/A 3 2 3 1 1 56 N/A 

Organization of the chapter 

To begin with, we develop exact, dynamic programming algorithms for both 

CMA and BMA with arbitrary costs. These have exponential running times in the 

worst case. However, these same algorithms are considerably faster when the under

lying communication graph is a partial t-tree. In these cases, our algorithms run 

in pseudo-polynomial time and lead to FPTAS, which in polynomial time, compute 

solutions to within any desired level of accuracy. We develop faster exact and approx

imate algorithms for trees with uniform costs. We conclude the chapter by discussing 

further results and related open problems. The algorithmic results of this chapter are 

summarized in Table 5.2. Recall that C* denotes the value of the optimum solution. 

Also, € is a bound on the relative error of the solution obtained by the approximation 

schemes. 

Nonserial Dynamic Programming 

In [32], MA was shown to be a special case of nonserial dynamic programming 

[9]. This observation was the basis for an algorithm for MA in [32], based on the 



62 

Table 5.2: Summary of the runtimes of the algorithms for CMA and BMA 

Problem Problem 
Structure 

Exact 
Algorithm 

Approximation 
Scheme 

CMA k-treea with 
arbitrary costs 0(np^+l(C*)2) ©(nV+^d/e^ + logC*)) 

CMA 

trees with 
uniform costs 0(np(C*)2) 0(n3p(l/£2+logC*)) 

CMA 

almost trees with 
parameter r with 
arbitrary costs 

0(npr^/2l+2(C*)2) 

BMA fc-trees with 
arbitrary costs 0{np^+UC*)~P) 0(772p+lp^-+l(l/e2p + iogC*)) 

BMA 

trees with 
uniform costs 0(n2p+lp(l/£-P + logC*)) 

BMA 

almost trees with 
parameter r with 
arbitrary costs 

0(„2p+lprr/2l+l(i/,2p + logC*)) 

technique of variable elimination. We shall briefly describe this technique here. See 

[9] for more details. 

In nonserial dynamic programming (NSDP), we are asked to minimize (or max

imize) a function 

n v h - - - , v n ) =  Y ,  (5 3) 

i € T  

where variable j/^, 1 < z < n, takes on values from a finite set {1,..., c/j}, T is an 

index set, and each term is a function of a subset Fj of the variables. We assume 

that the values of the terms for different values of their arguments are provided 

in tables. Associated with 5.3, there is an interaction graph G, whose vertices are 

integers i such that yj is a variable, and such that there is an edge between vertices 

i and j if and only if and yj appear together as arguments of some term. In that 



63 

case, we say that and yj interact. Clearly thus, MA is a special case of NSDP — 

the communication graph of an instance of MA is simply the interaction graph of the 

objective function of MA. 

A well-known technique to solve NSDP problems is variable elimination. Con

sider the problem of minimizing 5.3. Our goal is to replace this problem by another 

one with fewer variables such that the minimum for the new problem is the same as 

that of the original problem. Assume, without loss of generality, that j/j,..., are 

the variables to be eliminated. Let 

D  = •  { i \  /j is a function of at least one of ,..., t/^} 

and 

= [ ^ i e D ^ i )  -  {2/1," 

i.e., Yjj is the set of variables that appear together with one of yi,...,yi in some 

term. Define 

i e D  

and let 

i/1 

Then it can be shown that 

f ' i y i + l , ' - - ' > y n )  =  f b { Y j ) ) +  ^  f i i Y i )  (5.4) 
i e T - D  

has the same minimum as / [9]. The new term captures all the information about 

the eliminated variables and terms that is needed for minimization. The interaction 

graph for the new problem can be obtained from that of the original problem by 



64 

removing the vertices corresponding to eliminated variables, along with their inci

dent edges, and by completely connecting the vertices corresponding to variables in 

Y£). Since there is such a close correspondence between variable elimination and 

the removal of vertices from the interaction graph, in what follows, we shall refer to 

variable and vertex (or module) elimination interchangeably. I'he elimination pro

cess is continued until either all variables are removed or the number of variables is 

sufficiently small enough to solve the problem directly by exhaustive enumeration. 

O n c e  w e  h a v e  a  c h o i c e  o f  •  •  •  , 2 / n  t h a t  m i n i m i z e s  / ' ,  a n  a s s i g n m e n t  ( 2 / 1 , . . .  , y n )  

that minimizes / can be obtained by standard back pointer techniques employed in 

many dynamic programming algorithms [55]. This technique calls for storing, when 

constructing from /a, the values of that minimize /a, together with each 

entry in the table for /^. 

Bokhari's algorithm for trees (1-trees) [15], Towsley's algorithm for series-parallel 

graphs (2-trees) [83], and Fernandez-Baca's algorithm on partial fc-trees [32] are ap

plications of the variable elimination technique. In the next two sections, we shall 

extend the approach used in [32] to obtain enumerative algorithms for CMA and 

BMA. Recall from Chapter 2 that both of these problems are strongly NP-complete. 

As one would expect therefore, these algorithms are exponential in the worst case 

and, hence, are practical only for relatively small problem instances. As we will later 

see, their performance is significantly better on partial fc-trees. Furthermore, on this 

same class of graphs, our algorithms lead to fully polynomial-time approximation 

schemes. 



65 

Variable Elimination and CMA 

In what follows, the terms we shall be dealing with are list functions; i.e., func

tions that map each assignment of their variables to a list of pairs of nonnegative 

integers. One example is xj E {1,2}, where = ((2,10), (4,8), (6,6)) 

and .F%(2) = ((5,9), (10,2)). Note that the lengths of lists need not be the same, 

even within a given function. Given two lists L-^, Z-2 of pairs, + Z.2 is the list of all 

p a i r s  ( c ,  h )  w h e r e  c  =  c j  +  0 3 ,  i  +  6 9 ,  f o r  s o m e  ( c j ,  6 ^ )  G  L i  a n d  ( c 2 , 6 2 )  G  L ^ -

CMA is a special case of a problem that we shall call PAIR-NSDP. The latter 

involves list functions !F that can be expressed as sums of one or more terms, which 

are themselves list functions; i.e., 

where variable z,, 1 < < < n, takes on values in the set {1,... ,p}, JT" is an index set, 

and, for each j 6 J, term is a list function of Ç •.,%»}. In addition 

to (5.5), we are given an integer M. The problem is to find, among all the lists 

associated with all possible assignments, the pair with the smallest first component 

among all pairs whose second component is at most M . If no such pair exists, the 

problem is infeasible. Formally, let opt be a function that, given a list L of pairs, 

returns min({00} U {c : (c,6) 0. L^b < M}). Then, PAIR-NSDP is the problem of 

computing 

Before proceeding, let us interpret CMA as an instance of PAIR-NSDP. For each 

j ^ J  
(5.5) 

min opt ,... ,a;n). (5.6) 



66 

i  €  V { G ) ,  we define the list function as 

g. , , if = 1 

((e^(x^),0)) otherwise. 

and, for each (i,j) 6 E { G ) ,  we define the list function Cij{xi,xj), as 

We can now formulate CMA as an instance of PAIR-NSDP with objective function 

zey(G') (%j)eE(G) 

For any assignment X = (zj,...,x n ) ,  T { X )  is a single-element list ((c,fe)), where c 

and b are the cost and the memory requirement of X, respectively. The interaction 

graph of this instance of PAIR-NSDP is the communication graph of the instance of 

CMA. 

We will find it more convenient to work with a slight modification of PAIR-

NSDP. Suppose i is a list of pairs and (7 is a positive integer. Let opt^^'^ be given 

by 

opt^^''^(Z/) = min({oo} L i  { c  :  { c , b )  E  L , c  <  U , b  <  M } ) .  

The problem we will actually be solving is to compute 

_ min opt^^^''.F(zi,... ,xn). (5.7) 

That is, the objective function is the same as that of (5.6), except that we only con

sider feasible solutions with cost at most U. The motivation for this formulation will 

become clear later. We note, however, that problems (5.6) and (5.7) are equivalent, 

provided U is sufficiently large. 



G7 

To solve (5.7) we follow the variable elimination technique. We repeatedly reduce 

the size of the problem by removing variables one at a time until we are left with 

a function of a single variable. We then solve the associated problem by exhaustive 

enumeration. The basic step in this algorithm is procedure PAIR-VAR-ELIM, which 

reduces an instance of PAIR-NSDP to another instance with one fewer variable, but 

with the same optimum solution. We shall assume, without loss of generality, that 

the variable to be eliminated is PAIR-VAR-ELIM uses a function REDUCE that 

exploits the following simple dominance relation to bring down the size of its input 

l i s t  L:  Given  two pa i r s  p j  =  (c^ ,  6% )  and  po  = (co ,  62)  where  c j  =  C2,  dominates  

P2  i f  ^1  ^  h -

REDUGE(L): Return a maximal sublist L' of L such that (i) for all (c, b)  Ç:  L ' ,  c  <  U 

and b < M, and (ii) for any two pairs PI,P2 6 P\ does not dominate P2-

If L is sorted in lexicographic order, it is easy to implement REDUCE so that it runs 

in 0{\L\) time. 

Procedure PAIR-VAR-ELIM 

Input: An instance of PAIR-NSDP with objective function ..., Xn) and whose 

interaction graph is G,  and a cost upper bound U.  

Output: A new instance of PAIR-NSDP with the same optimum solution as the 

input instance, objective function jFj • • • 1 Zn), and a new interaction graph 

Gi. 

Step  1 .  Compute the set X of all variables that interact with x-^  and the index set 

=  {J  €  J  :  XI  G XJ) .  



68 

Step  2 .  Construct the tabular representation of the function HiiX) ,  defined as fol

lows. 

"HI(X) = REDUCE I (J H{XI,X) 

where 

(5.8) 

n{x i,X)= X: (5.9) 

j eJ i  

S tep  3 .  Return the instance of PAIR-NSDP with objective function 

jE j—Ji  

and interaction graph Gi ,  , which is obtained from G by removing x-^ and 

introducing edges between every pair of vertices that interacted with in G.  

• 

It is easy to check that G^ is the interaction graph of the function !F\ returned 

in Step 3. The following lemma proves the correctness of procedure PAIR-VAR-ELIM. 

Lemma 5.1 

Proof. Let A', Hi, and J-i be as defined in procedure PAIR-VAR-ELIM. 

Note that 

T{x i , . . . , xn)  =  H{x i ,X) - \ -

Therefore, we have 



69 

min optr?^''"^(xi,...,xn) 

=11™.% p^i ' j ) 

=X2™.„°p'r' ( ^ u ^ («(n.^) + E 
\xie{i,.",p} \ j e j - j i  

\ Z 2 E { l , . . . , p }  j e J - J i  

\  J E J — J \  

= x2™.%°'"r"^l("--2.- ••^••). 

as desired. In going from the second to the third line of this derivation, we are simply 

using the observation that, while in the third line, the minimum is over {x2, • • •, xn), 

all lists involving are explicitly considered by taking a union over all possible values 

of X]i. The definition of opt^^" gives the equivalence of the two minima. In going 

from the third to the fourth line, we have used the fact that only 7i depends on 

The fifth line is obtained by observing that all numbers are nonnegative and that, 

therefore, REDUCE will only discard a pair in pj %) if it cannot 

possibly lead to a better solution than one of the pairs that remains. This proves the 

lemma. • 

Clearly, step 2 is the crucial part of procedure PAIR-VAR-ELIM. For efficiency, 

we shall implement it as follows. First, we construct the tabular representation 

of Wq(xj,Â') = REDUCE(?i(x]^,X)) by carrying out the sum in equation (5.9) 

for each possible assignment to xi,X. The sums in this equation are done in 

pairs, applying REDUCE after each step, in order to ensure that at all times all 



70 

lists will have 0{U)  elements. Therefore, each list addition will, require 0{U'^ )  

time. Afterwards, we construct the tabular representation of Hi by noting that 

'H\{X) = REDUCE(Ua;j^ We will not at present give an analysis of the 

running time of PAIR-VAR-ELIM since it depends critically on the structure of the 

interaction graph. In particular, this number is a function of the maximum number 

of variables with which an eliminated variable interacts. This number can be made 

very low for certain interaction graphs, such as trees and series-parallel graphs (where 

it equals 1 and 2, respectively), but will be high for others. In fact, for any given 

graph, certain elimination orderings can be far better than others. We return to this 

subject later again. 

We can combine our solution to (5.7) with a search scheme SEARCH to obtain 

an algorithm for (5.6) [51]. We describe this scheme next. Assume, for simplicity, 

that C* > 0. 

Procedure SEARCH 

(1) Set C/ = 1. 

(2) Compute the cost C of the optimum solution to (5.7). 

(3) if C = oo then U := '2U\ goto step (2) 

else Halt. 

Clearly, at termination, C = C*.  Note that at all times U < 2C* and that the 

number  of  i t e ra t ions  i s  0 ( log  C*) .  

Remarks. Note that in step 3 of SEARCH, the value of U need not be doubled; in 

fact any factor greater than 1 (e.g., 1.25 or 1.5) will result in 0(logC*) iterations. 

Note also the practical utility of keeping U small. An excessive value for U has the 

potential of increasing the amount of time and space used by our algorithms, since, if 



71 

U is too large, the algorithms may generate pairs whose cost component is larger than 

C*. Such pairs will never lead to an optimum solution and should thus be discarded. 

The importance of this observation is borne out in the experimental results reported 

in Chapter 6. 

Variable Elimination and BMA 

The ideas used for CMA can be modified to obtain an algorithm for BMA. BMA 

is a special case of a problem that we shall call TUPLE-NSDP. The objective function 

in TUPLE-NSDP has the same form as equation (5.5). As before, J- and all the terms 

are list functions. In TUPLE-NSDP, however, list functions map each assignment of 

their variables to a list of p-tu pies of nonnegative integers. As in PAIR-NSDP, we 

shall assume that list functions are implemented as tables of pointers to lists. The 

addition operator will represent tuple-list addition; i.e., given two lists of p-

tuples, Li  -1- ^2 is the list of all tuples (ij,..., tp )  where, for 1 < i < p, t j  =  r j  +s j ,  

fo r  some ( r j , . . . ,  rp)  £  Z/ j  and  ( s j , . . . ,  sp)  6  L2-

Let L be a list of p-tuples and let U he  a,  positive integer. In keeping with the 

conventions of the previous section, let opt^j'^'P'^(L) be defined as 

opt^"P^®(L) = min({oo} U {weight(r) : weight(T) <U,T e  L})  .  

where, for a tuple T = (<2,...,fp), weight(T) = maxi<^<pfr- TUPLE-NSDP is 

the problem of computing 

min optry"P^®:r(i2,...,a;„). (5.10) 

BMA can be formulated as an instance of TUPLE-NSDP as follows. For each 



72 

i  G V{G) ,  we define Sj{x^)  = ({£^i{xj),.. .,Sip{x^))), where, for 1 < r < p, ^ ip \  

Hi^ i )  if H = r 

0 otherwise. 

Note that this conforms with the fact that module i  contributes only to the load of 

the processor it is assigned to. 

For each (%,;) G E{G) ,  let xj) = {{Ciji{x^,xj),... ,Cijp{xi,Xj))), where, 

for 1 < i < p, 

0 if Z; and x j  ^  t  

Cy ( X J, Xj ) otherwise. 

Note that if either one of the modules i  and j  is assigned to t  and the other is assigned 

to some other processor 5, then the communication cost c^j{x^,xj) contributes to the 

load on both t and s. If both modules are assigned to t, then c^j{xj,xj) contributes 

on ly  to  the  load  on  t  as  an  in te r fe rence  cos t ,  and  i f  ne i ther  module  i s  ass igned  to  t ,  

then  ne i ther  con t r ibu tes  to  the  load  on  t .  

BMA is thus an instance of TUPLE-NSDP with objective function 

Note that, for any assignment X = (xj,... ,xn), J^{X)  consists of a single tuple 

tp), where tj = Ldj(%). 

Procedure TUPLE-VAR-ELIM is identical to PAIR-VAR-ELIM except that, in

stead of REDUCE, it uses operation TRIM, which is described below. 

TRIM(Z<): Return a maximal sublist L ' of L such that (i) for all tuples T 6 Z/', 

weight(r) < U and (ii) for any two tuples E L', Ti ^ 



73 

It is not hard to devise a 0(|L|)-time implementation of TRIM, provided the tuples 

in L are in lexicographic order. The correctness of TUPLE-VAR-ELIM can be proved 

as in Lemma 5.1. 

Module Allocation on Partial fc-Trees 

The algorithms of the previous sections have running times that are exponential 

in n for arbitrary graphs. This situation, however, is considerably better for partial 

k-trees [1], which are well-suited for the variable elimination approach. As observed 

in Chapter 4, we assume that the input graph G is a k-tree and that the elimination 

ordering Seq(G) of the vertices in G is provided. 

CMA on Partial t-trees 

We shall first show that if the communication graph is a k-tree, procedure PAIR-

YAR-ELIM can be implemented to run in time. We assume that Step 2 

of this procedure is implemented as described; i.e. REDUCE is applied after each list 

addition. Then, for any assignment A'-?, \Tj{XJ)\ < C/+1 and each list addition takes 

0{U^) time. Next, we note that if G is a A:-tree, when z^is eliminated, one vertex, 

at most k edges, and at most k t-cliques disappear. In other words, xi interacts 

with at most k other variables. Consequently, \ J-\^ | < A +1 and k pairwise sums need 

to be done to calculate H. Further, each of the fc + 1 variables takes its value from 

{1,... ,p}. Thus the procedure takes 0{kp^'^^u'^) time, which is since 

A; is a constant. 

Since PAIR-VAR-ELIM is applied 0{n)  times, the total running time of the algo

rithm is 0{np^'^^U^) as claimed. To find C*, we incorporate this algorithm into the 



74 

search procedure SEARCH. Recall that, at all times during the search U < 2C*. 

Since the value of U is doubled in each iteration, the time to find C* will be 

0 (np^+l  ( (2C*)2  +  (C*)2  +  (C*/2)2  +  (C*/4)2  +  . . .  +  ! ) ) ,  which  i s  {C*) \  

As discussed above, for each K £  G and each Xj^  € 

will have 0{C*)  elements. Since G has k{n  — t) + 1 t-cliques, the total memory 

requi rement  i s  0{np^C*) .  

To construct the optimum assignment we can use standard back pointer tech

niques. Each pair generated in step 6 is the sum oft + 2 pairs, k of which come from 

cliques Kjil), j G A'(/) that are disappearing as a consequence of the elimination of 

vertex /. For each such newly-generated pair, we maintain a pointer to the k pairs 

associated with the disappearing cliques. With this structure, it is possible to re

construct the optimum solution in 0(n) time, once the algorithm is done, by tracing 

back following the pointers. 

BMA on Partial t-Trees 

As before, assume variables are eliminated following a natural ordering. The 

behavior of TUPLE-VAR-ELIM is quite similar to that of PAIR-VAR-ELIM. For that 

reason we only point out the main differences between the two procedures. 

The application of TRIM ensures that the size of the lists manipulated by BMA 

is 0{UP). In analogy to CMA, we compute the sum in Step 2 of TUPLE-VAR-ELIM in 

pairs and applying TRIM after each list addition. This will ensure that at all times we 

will be manipulating lists of size 0{U^P). Using this observation we can show that the 

cost of the optimum assignment of cost at most U can be obtained in u'^P) 

time and the cost of an optimum assignment can be found in 0{np^'^^ {C*)^P) time. 



75 

The total memory requirement for BMA is 0{np^{C*)P)  and an optimum solution 

can be constructed in 0{n) time using back pointers. 

Module Allocation on Trees with Uniform Costs 

If the communication graph is a tree, then the algorithms of the previous section 

imply that CMA will run in 0{np^U^) time, leading to a (9(np^(C*)^) algorithm to 

determine the optimum assignment. Also, the respective time bounds for BMA can 

be seen to be 0{np^U^P) and 0{np"{C*)^P). These bounds are true for the arbitrary 

communication costs case; however, as we will see these time bounds can be improved 

for the uniform costs case, using a modification of Billionet's approach [10], by a factor 

of p. Recall that in this case, co-resident modules incur a zero communication cost 

and communicating modules i and j, if assigned to different processors, will incur a 

communication cost r;;. 'J 

In describing the algorithms refered to above, we depart from the convention we 

adopted so far in the description of the algorithms in the general cases. Here, the 

elimination process starts at a leaf. We eliminate a leaf variable and the information 

about it is stored in the £ function of its neighbor; i.e., we store the eliminated 

information in the execution costs of the neighbor. At termination, all the information 

about the eliminated vertices is stored in the root of the tree and the optimum solution 

at the root is obtained by exhaustive enumeration. 



76 

CMA on Trees with Uniform Costs 

The proposed algorithm, which we call UTCMA, is given below. 

Algorithm UTCMA(Ai, (/) 

begin 

1 forall i  £  G and a  Ç.  {1,... ,p} do 

2 £:^(a) ((ej(a),u'(«))); 

3 while |V(G')1 > 1 do begin 

4 Choose any leaf i  €  G\  

5 Let j  be the neighbor of i  in G'; 

6 

7 Q REDUCE(Q); 

8 forall 6 e {1,..., p} do begin 

9 £j{b)  S j {b)  ® {£ i{b)  U {Q ® {{r i j ,0 ) )y ,  

10 Sj{b)  4- REDUCE(5j(6)) 

end; 

11 G ^ G - { i ]  

end; 

12 Let 5 be the remaining vertex of G; 

13 return min^g^j opt^^'''(6:a(o)) 

end 

The correctness of this approach follows from the correctness of Billionet's algorithm 

and arguments similar to those used for CMA. We analyze the runtime of UTCMA 

next. 



77 

Steps 1-2 of UTCMA take 0(np)  time. The while loop beginning at step 3 is 

carried out n — 1 times. The initialization of the Sj^s and the application of REDUCE 

in step 10 ensure that, immediately before and after every execution of the while 

loop, l^i(a)l < C/ + 1, for all i E V(G) and all a G {1,... ,p}. Thus, steps 6 and 7 

can be implemented in 0{pU) time. Since, after step 7, |Q| < + 1, steps 8-10 take 

0{pU^) time. After the while loop is exited, we will have |fg(o)| < C/ + 1 for all 

a 6 {1,... ,p} in lines 12 and 13. Thus, the cost of an optimum feasible assignment 

of cost not exceeding U can be computed in 0(npU'^) time. 

We can combine this algorithm with procedure SEARCH to obtain the time bound 

o f  0{np{C*)^)  t o  o b t a i n  C*.  

It can also be verified that the space requirement of this algorithm is 0{nC*) .  

Back pointers can be used to reconstruct the optimum solution in 0{n) time. 

BMA on Trees with Uniform Costs 

The algorithm we propose to solve this problem is called UTBMA. It is given 

below. 

Algorithm UTBMA(vW, (7) 

begin 

1 forall i  €  G  and a € {1,... ,p} do 

2 +— {{T  : T[a]  = e^ ia)  and T[d\  = 0, ' i  d  ^  a ,  \  < d <  p)) \  

3 while |V(G)| > 1 do begin 

4 Choose any leaf i  G G\  

5 Let j be the neighbor of i in G', 



78 

® G ^ Uae{l,...,p} 

©((r  :  T[a]  =  r^ j  and T[c l]  =  0  d  ^  a , l  <  d  <  p))^  ;  

7 Q*-  TRIM(Q); 

8 forall b G {1,... ,p} do begin 

9 Sj ib )  <- Sj{b)® 

(S i ib )  U (Q © (T : T[h]  = r^ j  and T[cf] = 0V(f^6, l<(f< p))); 

10 Sj{h)  4- TRm{£j ib ) )  

end; 

11 G G - {/} 

end; 

12 Let s  be the remaining vertex of G;  

13 return min^^^j optJ"P^®(£,s(a)) 

end 

Just as in the case of UTCMA, we can conclude that an optimum assignment can 

be computed in 0{np{C*)^P) time where C* is the cost of this assignment and that 

the space requirement of this algorithm is 0{n{C*)P). Back pointers can be used to 

reconstruct the optimum solution in 0{n) time. 

Approximation Schemes 

We shall now use the algorithms from the previous sections together with well-

known scaling techniques [51, 55] to obtain FPTASs for CM A and for BMA with 

fixed p, when the communication graph is a fc-tree or a tree with uniform costs. Our 

schemes rely on the following generic procedure. 



79 

APPROX-MA(A4,{/J, {72,E); M is an instance of CMA or BMA, whose optimum 

solution has value C*, C/j, (/g; ^re positive integers, where ^ C* and 

(/g — e > 0 is the allowed relative error. Return the cost C' of a 

feasible solution to M such that C' — C* < eC* and C' < t/^. If no such 

solution exists, return oo. 

We implement APPROX-MA as follows. Let J  = max {1, [C/2e/(2nA;)J}. Given 

an instance M, we construct another instance M' with the same graph, memory 

requirements, and memory constraint, but where the execution and communication 

cos t s  a re  e ' -  =  [e j / . / ]  fo r  a l l  i  6  V'(G ' )  and  d-  = for  a i l  ( i , j )  E  E\G) .  

APPROX-MA invokes a procedure XMA(A^,F/), which, given an instance M. of the 

problem at hand (BMA or CMA on trees or t-trees), returns the best solution of 

cost not exceeding U. APPROX-MA returns J • where C' = XMA(A^', C/2/J). 

We need to verify that J  -C '  fulfills the necessary requirements. It is not hard to 

show that, for both CMA and BMA, \î C' < 00, J • C' - C* < ./(|V(G)| + |^(G)|). 

Thus, since |V(G)| = n and, for a t-tree, |E(G)| = k{n — A:) + k{k — l)/2, we have 

J • C' — C* < eC*. Thus, J • C' is the desired (-approximate solution. On the 

other hand, if C' = 00, it must be because (/G < (1 + e)C*. Therefore APPROX-MA 

produces the required output. 

The running time of APPROX-MA depends on that of XMA. For CMA, the 

running time is 

For BMA, the time is 

0(n( -p(V2lJ f ) ' ' ^ ' ^ )  = 0(n2P+V'+'(l/£)2P(£/2/Ci)2''). 



so 

Now, using a technique clue to Johnson and Niemi [51], we can apply APPROX-

MA to obtain FPTAS's for CM A and for BMA for fixed p. The procedure consists 

of two phases. In the first, using the following procedure, we find values and [/g 

such that Ui < C* < U2 and U2/U1 < 2. 

1 .  Ui*-1  

2. U2 *— 4(72 

3. & <- APRROX-MA{MMI,U2,L) 

4. if C' < CX3 then return Ui = \C'I2'\ and Uo = C' 

5 .  else < r -2U\  \  goto 2 

The above algorithm iterates steps 2-5 0(logC*) times, and when it calls APPROX-

MA, it does so with e = 1 and Uo = 4Ui. Also, at all times, Ui < C*, assuming 

C* > 0. Furthermore, since e = 1, at termination C' < 2C*, which implies that at 

this point Ui and [/g satisfy the desired conditions. More details can be found in [51]. 

The first phase takes logC*) time for CMA and logC*) 

time for BMA. 

In the second phase, we use the above values of Ui and Uo and the desired error 

ratio e to call APPROX-MA(7W, (/j, t/2, e). By the definition of APPROX-MA, this 

will give us a solution of value at most (1 + e)C*. Since as a result of the first phase, 

U2IU1 < 2, this will take 0(n^p^"'"^(l/e^)) time for CMA, while for BMA the bound 

is 0(n^P'^^p^''^^(l/c^P)). 

The total running time for each algorithm is obtained by simply adding the work 

for the two phases. Similar analysis can be done for UTCMA and UTBMA. These 

running times are recorded in the last column of Table 5.2. 



81 

Discussion 

Our variable elimination algorithms for CMA and BMA can be viewed as hav

ing been constructed from their counterpart MA algorithms (see [32]) by replacing 

integer-valued functions, integer addition, and the "min" operation, with list func

tions, list sum, and union, respectively. To keep list sizes small, REDUCE or TRIM 

were used. In essence, a variable-elimination algorithm for MA can be transformed 

into algorithms for CMA and BMA whose running times are slower by factors of 

and respectively, where the factors account for the sizes of the lists that are 

manipulated. Table 5.2 lists all the runtimes. That same table also lists results for 

almost trees which are based on algorithms described in [32]. 

Several open problems remain. One is whether the large amount of memory 

required by our algorithms can be reduced by, say, using the techniques of [51]. An

other question is whether there exist approximation schemes for the problem with 

multiple resource constraints. For instance, can the work of Frieze and Clark [37] 

on multi-dimensional knapsack problems be adapted to the multiple-resource con

strained MA? Finally, even though our algorithms seem to perform better in practice 

(see Chapter 6) than the results in Table 5.2 imply, the magnitude of these time 

bounds limits their applicability. While the results of Chapter 2 pose significant 

theoretical limitations to the amount of improvement that could be expected, faster 

algorithms may exist for uniform cost problems on A:-trees. 



82 

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

We have implemented the exact variable elimination algorithms of Chapter 5. 

This chapter discusses the implementation details and the experimental results. We 

illustrate the entire working of the program using the CM A example of Chapter 1. 

The Data Structure 

We shall briefly discuss the main data structures used by the program. The 

fundamental building blocks of the data structure are function descriptors which 

represent terms. Each term !Fj{X^) is implemented using a dynamically-allocated 

data structure with two components: a list of variables in and an array of size 

where r denotes the number of variables in . Each entry of this array is a pointer 

to the list associated with a particular assignment to the variables of X^. Depending 

on whether CMA or BMA is being considered, these lists contain either pairs or 

p-tuples. All lists are maintained sorted in lexicographic order, which simplifies the 

implementation of REDUCE and TRIM. Note that, since the pointers to lists are in 

an array, the beginning of any given list can be accessed in constant time. 

To implement the variable elimination process, the objective function T is rep

resented as follows. We maintain an array A of length n, whose i^^ element /Ifz] 



83 

<(0,0)> 
<(8.0)> 

<(40,20> 
<(20.0)> 
<(25,0)> 

{2.5} 

<(0,0)> 
<(5,0)> 

•{2,3} 

<(0,0)> 
<(2.0)> 

<(25.30)> 
< (25,0)> 
< (20,0)> 

•{3,4} 

<0.Q)> 

<(3,0)> 

{3,5} 

<(0,0)> 
<(1,0)> 

<(20,25)> 
<{45,0)> 
<(25,0)> 

•<(30,15)> 
<(35.0)> 
<(30,0)> 

<(15.35> 
<(30.0)> 
<(40.0> 

Figure 6.1: The initial CM A data structure for Figure 5.1(a) 



84 

is a pointer to a list of all terms T j { X J )  such that E X J .  This list enables us 

to implement Step 1 of the elimination efficiently. The initial data structure for the 

CMA example of Chapter 5 is shown in Figure 6.1. Recall that p = 3 in this case. 

The first entry in the list for the variable is the function descriptor for 

Each subsequent element is a pointer to the function descriptor for C{j{x^,xj) for 

every j such that modules i and j communicate. For every function descriptor, we 

show (1) its variable list and (2) the lists associated with each possible assignment. 

Initially, these are 1-element lists. Since p = 3, each has 3 lists. For instance, 

for S2{x2), these lists are ((25,30)), ((25,0)), and ((20,0)), indicating the execution 

cost and memory requirement on processors 1, 2 and 3 respectively. For the Qj's, we 

have adopted a different convention. Since there are 9 possible assignments to x^,Xj, 

listing all of them could unnecessarily clutter the figure. Instead, we used the fact 

that costs are assumed to be uniform, and we show only 2 of the possible lists: one 

representing the case where modules i and j are co-resident (the (0,0) pair) and the 

other representing the Ccise where i and j are assigned to different processors. Thus 

in Figure 6.1, the function C-;^r:^{x-;^, x^) has pairs (0,0) reflecting the case when both 

the modules 3 and 5 are assigned to the same processor, and (1,0) indicating the case 

when they are put on different processors. Note that the descriptor for (^35(3:3, rg) 

is accessible via both 3 and 5. 

The Variable Elimination Process 

To illustrate the behavior of the variable elimination process, we shall show the 

changes in the objective function that result from the first two invocations of the 

procedure PAIR-VAR-ELIM. When x-^ is eliminated, Step 2 of PAIR-VAR-ELIM uses 



85 

<28.0). (33.0). {40.20)> 
<(20,0). (33,0):(48.20)> 
<(25,0). (28,0). (48a0)> 

(2.5) 

<(0.0)> 
<(5.0)> 

{2,3} 

<(0,0)> 
<(2.0)> 

<(25.30)> 
<(25.0)> 
<(20,0)> 

(3.4) 
•{3.5}\ 

<(0,0):A 
<(1,0)> 

<(0,0)> 
<(3,0)> 

<(20.25)> 
<(45.0)> 
<(25,0)> 

(4.5) 

<(0.0)> 
<(4.0)> 

<(30.15)> 
<(35.0)> 
<{30.0)> 

<(15,3S> 
<(30,0)> 
<(40.0)> 

Figure 6.2: The data structure after vertex 1 is eliminated 



86 

<(28.0), (33.0), (40,20)> 
<20,0, (33,0), (48,20)> 
<(25,0), (28,0), (48,20)> 

»I(K3'KS) 

<(25,30), (27,0), (32.0)> 
<(27,0), (30,0> 
<(25.0), (27.30), (32,0)> 
<(27.0), (30,30)> 
<(25,0). (27,0), (32,30)> 
<(22.0). (30.30), (32,0)> 
<(22,0), (30,0), (32,30)> 
<(20,0). (32,0)> 

<(0,0)> 
<(3,0)> 

<(20.25)> 
<(45,0)> 
<(25,0)> 

<(0,0)> 
<(1,0)> 

<(30,15> 
<(35,0)> 
<(30,0)> 

<(0,0 
<(4,0> 

<(15,35> 
<(30,0)> 
<(40,0)> 

Figure 6.3; The data structure after vertex 2 is eliminated 



87 

list addition to combine and ^13(21,2%) into a function 'W(x^,x3), which is 

then reduced to a term A pointer to the descriptor for this term is added 

to the list i4[3]. The data structure representing the function resulting from Step 3 

of PAIR-VAR-ELIM is shown in Figure 6.2. When X2 is eliminated, Step 2 of PAIR-

VAR-ELIM combines ^2(®2)'^25(®2'®5)»^23(®2'^S) i^ito a function 

which is then reduced to a function ?^j(x3,x5), whose descriptor is made accessible 

via lists A[3] and A[b] (Figure 6.3). The elimination process continues until all the 

vertices are eliminated. At this stage, we will have exactly one list at hand, and since 

the list is sorted lexicographically, the cost component of the first pair in this list is 

the optimum cost C*. 

The Experiments 

We have run our programs on several randomly-generated graphs. The perfor

mances of these programs are affected by a number of factors. Following Sinclair [76], 

we have attempted to examine their behavior as a function of (1) the number of pro

cessors, (2) the number of modules, (3) the density of the communication graph and 

(4) the ratio e : c, where e is an upper bound on all the processor execution costs 

and c is an upper bound on the communication costs. Furthermore, we have studied 

the effect of using different elimination orderings. For this purpose, our program has 

been designed so as to allow us to use any ordering we wish. 

The Communication Graphs 

To simplify the construction of test cases and the implementation of the algo

rithms, we considered uniform costs. Random connected graphs were generated using 



88 

the method suggested in [76]. First, the values of n  and p were decided. Next, an 

edge between a pair of modules was created with a certain fixed probability. As might 

be expected, we encountered problems with physical memory limitations in trying 

to apply our algorithms to dense communication graphs. For this reason, we kept 

the edge probability low in order to guarantee that the number of edges, m, would 

be small; i.e., we were looking for graphs where m < cn for some small constant c. 

As a result, most of the graphs we generated were partial 1- or 2-trees, with only 

a few being partial 3-trees. We also generated random trees using the algorithm 

given in [64]. Costs were randomly selected from uniform distributions. With the 

goal of considering systems that ranged from having relatively high to relatively low 

interprocessor communication, we tried e : c ratios of 1:10, 1:2, 1:1, 5:1, and 10:1. 

Intuitively, one would expect that higher execution costs tend to force modules to be 

assigned to different processors. 

Runtime Measurement 

To get some idea of the running time of our algorithms, we have measured their 

performance in terms of the number of list operations that they do. A list operation 

is any step where an element is scanned or added to or deleted from a list. List 

operations are system-independent, and we believe, a fciir measure of the running 

time. The number of list operations also gives us some idea of the amount of space 

used. Our experimental results are summarized in Figures 6.4 and 6.5. 

In our simulations, we observed that in most cases, the time and space estimates 

derived in the previous sections are pessimistic, although the run time and space 

requirements go up drastically with increasing values of p, n or m. In most Ccises, 



89 

a good elimination ordering reduced both the run time and space requirements by 

great amounts. We observed that the run time is quite sensitive to the costs and the 

e : c ratio, with the procedures being faster for communication-intensive systems than 

for those where execution costs are high. For example, when the ratio was 1:10, we 

were able to run our programs on instances with many more modules and processors 

than when the ratio was 1:2. A fact not evident from the plots is that the run time 

is also sensitive to the value of U. While, in theory, we can start with [/ = 1, this 

can result in an excessive number of useless iterations. Ideally, one would like the 

starting value of U to be as close to C* as possible. .'\n educated guess could be 

made about this value by studying the costs, however there is no way to know the 

"right" value of U to begin with. Our implementation uses the heuristic of choosing 

U to be the maximum of the costs. If an optimum is not reached with a given value 

of U, then U is increased by a factor of 1.5. The factor 1.5 was chosen instead of 

the value 2 suggested in Chapter 5 for several reasons. First, recall that any factor 

greater than 1 would guarantee 0(log C*) attempts before the true value of C* is 

found. However, too large a factor may increase the run time and space unnecessarily 

(in fact, we found that, in most cases, the average list size was much smaller than 

U),  whi le  too  low a  fac tor  may  force  the  a lgor i thm to  a t t empt  too  many  va lues  o f  U.  

The value 1.5 was chosen as a good compromise, after testing factors ranging from 

1.2 to 2. 

Cost Scaling 

We also tried to investigate the usefulness of scaling the costs as discussed in 

Chapter 5. Scaling has the effect of reducing the number of distinct costs and. 



90 

7 
10 

6 
10 

p=4 

Arbitrary graphs 4 
10 

5 10 15 20 25 30 35 

6 
10 

5 10 

4 10 
P=2 

Trees 

10 20 30 40 50 60 70 

6 
10 

5 10 

4 p=5 

Trees 
10 

3 
10 

0 5 15 10 20 25 30 

Figure 6.4: Some of the experimental results for CMA. The plots show the number 
of list operations versus number of modules for various e : c ratios. 



91 

p=2 

Arbitrary graphs 

Trees 

4 6 8 10 12 14 16 18 20 

Figure 6.5: Some of the experimental results for BMA. The plots show the number 
of list operations versus number of modules for various e ; c ratios. 



92 

consequently, the list sizes. Thus scaling may have the practical advantage of allowing 

us to solve instances where our program takes too long or simply fails to run due to 

lack of space. To a limited extent, this observation seems to be borne out by our 

experiments. Unfortunately, choosing a good scaling factor is not simple. Too large 

a factor yields unacceptably inaccurate solutions, while too low a factor will not 

improve the efficiency of the program sufficiently. Our experiments seem to indicate 

that scaling, while appealing in theory, is not a practical tool for obtaining good 

approximation algorithms. This seems to be due partly to the fact that the scale 

factor J used in Section 5 tends to be very low. For instance, in a 2-tree with 5 

vertices and = 20, J equals 1, which, in effect, implies that we are solving the 

original instance of the problem without scaling. In general, it appears that graphs 

must be enormous, and the e's extremely large before scaling pays off as a practical 

algorithmic tool. Still, we cannot rule out the usefulness of scaling until a more 

thorough study is conducted. 

Discussion 

Of Lo's requirements for task assignment algorithms (see [57]), ours meet with 

the monotonicity and sensitivity requirements, i.e., with increasing number of proces

sors, the cost (load) goes down and our algorithms are not sensitive to small changes 

in costs. 

On a more practical note, we believe that it is possible to improve our program's 

memory management, in order to enable us to solve larger problem instances. We 

chose not to pursue this issue, since our focus was to determine the feasibility of 

implementing our algorithms, rather than how best to implement them. Note that our 



93 

programs do not return the optimal assignments which give rise to the optimal costs. 

The backpointer techniques of [55] could be used, but then this would be prohibitive 

from memory management point of view. It should be an interesting exercise to see 

if indeed there is an efficient way to construct the optimum assignments. 

The actual C codes for implementing the dynamic programming algorithms and 

the codes for the random graph and tree generation are given in the appendices. We 

also provide the sample input and outputs for the programs. 



94 

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 

In this dissertation, we focussed on some of the optimization problems that arise 

in distributed computing. In their most general form, these problems deal with the 

question of assigning the modules of a program to the processors of a distributed 

computer system in order to minimize the cost of running the program. This cost 

depends on the module execution times and the inter-processor communication costs. 

The module allocation problem (MA) arises in several situations and has several 

applications, as seen in Chapter 1. 

We investigated a parametric problem, where all costs are allowed to vary over 

time (PMA); the module allocation problem when one of the processors has a limited 

memory (CMA) and finally, the allocation problem with the goal of balancing the 

loads on the processors (BMA). 

MA has been studied extensively. We saw that even some seemingly simple cases 

are extremely difficult to solve; in fact, we investigated their intractable nature in 

Chapter 2. These negative results have been strengthened in this dissertation. We 

showed that, both CMA and BMA are strongly NP-complete and hence, unless P = 

NP, no FPTAS exist to solve them. On the positive side, however, we showed that 

FPTAS exist for partial t-trees. Faster algorithms have been developed for trees with 

uniform costs. Exact, but exponential time, algorithms using dynamic programming 



95 

have been developed and implemented to solve both CMA and BMA. We observed 

that these algorithms work well for small instances of the problem. Better memory 

management techniques could very well improve the running of these algorithms. 

To our knowledge, our work on CMA presents the first significant progress on the 

problem since Rao, et al. [68] published their results in 1979. 

As for the future, it should be noted that even though MA has been studied 

extensively over the past decade or so, it and all its variants are far from being 

solved completely. As such, this field is still quite open and several unanswered 

questions remain. To begin with, the open problems and questions raised at the end 

of Chapters 4 and 5 could be investigated. In addition, one could consider several 

other directions and we list some of them. 

Parametric Problems. The parametric problem we investigated in Chapter 4 

assumed linear costs. The non-linear cost case would be a challenging problem to 

look at. Also, one could also investigate the parametric versions of CMA and BMA. 

Dual Algorithms. Hochbaum and Shmoys [46] used dual algorithms to solve 

scheduling problems. The aim of dual algorithms is to find super-optimal, but infea-

sible solutions, and the performance is measured by the degree of infeasibility allowed. 

This seems a promising approach. Can it be used for any of the problems discussed 

in this dissertation ? 

Lagrangian Relaxation. Billionet [11, 12] has recently investigated MA and a 

variant of CMA using this approach. This approach provides sub-optimal solutions. 

This approach is definitely worth looking into, especially since several techniques are 

available to solve 0-1 integer programming problems. 

Dynamic Problems and Sensitivity Analysis. Module allocation problems tend to 



96 

occur in dynamic settings, where processor loads vary over time. To achieve optimum 

performance, modules may have to be reassigned from time to time. It would thus 

be interesting to design algorithms that identify the points in time at which these 

reassignments are necessary. A related problem is to investigate the sensitivity of the 

optimum assignment to changes in cost functions. This is especially important if the 

costs are only approximate values, which of course is closer to reality. 

Additional Constraints. In a real system, in addition to the overall cost, other 

issues must be taken into account. Among the prominent ones are precedence rela

tionships among the modules, the queuing delays at the processors and the reliability 

of the system. It is important to be able to integrate some or all of these constraints 

into one tractable model. 



97 

BIBLIOGRAPHY 

[1] S. ARNBORG, D.G. CORNEIL AND A. PROSKUROVVSKI, "Complexity of finding 
embeddings in a A:-tree," SIAM J. Alg. Discr. Methods, Vol. 8, No. 2, pp. 277-284 
(1987). 

[2] S. ARNBORG AND A. PROSKUROVVSKI, "Characterization and recognitions of 
partial 3-trees," SIAM J. Alg. Discr. Methods, Vol. 7, pp. 305-314 (1986). 

[3] S. ARNBORG AND A. PROSKUROVVSKI, "Linear time algorithms for NP-hard 
problems restricted to partial fc-trees," Discr. Appl. Math., Vol. 23, pp. 11-24 
(1989). 

[4] R.K. ARORA AND S.P. RANA, "On module assignment in two-processor dis
tributed systems," Info. Processing Letters, Vol. 9, No. 3, pp. 113-117 (1979). 

[5] F. BARAHONA, "A solvable case for quadratic 0-1 programming," Discrete 
Appl. Math., Vol. 13, pp. 23-26 (1986). 

[6] J. BAXTER AND J.H. PATEL, "The LAST Algorithm; A Heuristic-Based Static 
Task Allocation .Algorithm," Proceedings of the 1989 International Conference 
on Parallel Processing, Vol. 2, pp. 217-222. The Pennsylvania State University 
Press, University Park and London. 

[7] M.J. BERGER AND S.H. BOKHARI, "A partitioning strategy for PDE's across 
multiprocessors," Proceedings of the 1985 International Conference on Parallel 
Processing, pp. 166-170. IEEE Computer Society Press, Washington D.C. 

[8] M.J. BERGER AND S.H. BOKHARI, "A partitioning stategy for non-uniform 
problems across multiprocessors," IEEE Trans. Computers, Vol. C-36, pp. 570-
580 (1987). 

[9] U. BERTELE AND F. BRIOSCHI, Nonserial Dynamic Programming. Academic 
Press, New York (1972). 



98 

10] A. BILLIONNET, "Allocating tree structured programs in a distributed system 
with uniform communication costs," Research Report CEDRIC^o. 90-14 (1989). 

11] A. BILLIONNET, M.C. COSTA AND A. SUTTER, "An efficient algorithm for a 
task allocation problem," Manuscript. 

12] A. BILLIONNET AND S. ELLOUMI, "Placement de taches dans un systeme dis
tribue et dualité Lagrangienne," Manuscript. 

13] H.L. BODLAENDER, "Classes of graphs with bounded tree-width," Tech. Report 
RUU-CS-86-22, Dept. of Computer Science, University of Utrecht, The Nether
lands (1986). 

14] H.L. BODLAENDER, "Some classes of graphs with bounded tree-width," Bulletin 
of the European Association for Theoretical Computer Science (EATCS), Vol. 
36, pp. 116-126 (1988). 

15] S.H. BOKHARI, "Dual processor scheduling with dynamic reassignment," IEEE 
Trans. Software Eng., Vol. SE-5, No. 5, pp. 341-349 (1979). 

16] S.H. BOKHARI, "A shortest tree algorithm for optimal assignments across space 
and time in a distributed processor system," IEEE Trans. Software Eng., Vol. 
SE-7, No. 6, pp. 583-589 (1981). 

17] S.H. BOKHARI, "On the mapping problem," IEEE Trans. Computers, Vol. C-
30, pp. 207-214 (1981). 

18] S.H. BOKHARI, Assignment Problems in Parallel and Distributed Computing. 
Kluwer Academic Publishers, Boston (1987). 

19] S.H. BOKHARI, "Partitioning problems in parallel, pipelined, and distributed 
computing," IEEE Trans. Computers, Vol. C-37, pp. 48-57 (1988). 

20] G. BOLCH, et al., "A multiprocessor system for simulating data transmission 
systems (MUPSI)," Microprocessing and Microprogramming, Vol. 12, No. 5, pp. 
267-277 (1983). 

21] P.J. CARTENSEN, The complexity of some problems in parametric linear and 
combinatorial programming, Ph.D. Thesis, University of Michigan, 1983. 

22] J. CHERIYAN, T. HAGERUP AND K. MEHLHORN, "Can a maximum flow be 
computed in o{nm) time?," Proceedings ICALP 1990, Lecture notes in Computer 
Science, Vol. 443, pp. 235-248, Springer Verlag, New York. 



99 

[23] Y.C. CHOW AND W.H. KOHLER, "Models for dynamic load balancing in a 
heterogeneous multiple processor system," IEEE Trans. Computers, Vol. C-28, 
No. 5, pp. 354-361 (1979). 

[24] W.W. CHU, et al., "Task Allocation in distributed data processing," IEEE 
Computer, Vol. 13, No. 11, pp. 57-69 (1980). 

[25] W.W. CHU AND L.M. LAN, "Task allocation and precedence relations for 
distributed real-time systems," IEEE Trans. Computers, Vol. C-36, No. 6, pp. 
667-679 (1987). 

[26] M.A. CHUGTHAI, "Complete binary spanning trees of the eight nearest neighbor 
array," IEEE Trans. Computers, Vol. C-34, No. 6, pp. 547-.549 (1985). 

[27] T.H. CORMEN, C.E. LEISERSON, AND R.L. RIVEST, Introduction to Algo
rithms. McGraw-Hill Book Company, New York (1990). 

[28] E. DALHAUS, D.S. .JOHNSON, C.H. PAPADIMITRIOU, P. SEYMOUR, AND 
M. YANNAKAKIS, "The complexity of multiway cuts," Proceedings of 24th An
nual Symposium on Theory of Computing, pp. 241-251 (1992), held in Victoria, 
British Columbia, Canada. Sponsored by ACM special interest group for Au
tomata and Computability Theory. 

[29] E.W. DIJKSTRA, ''A note on two problems in connection with graphs," Nu-
merische Mathematik, Vol. 1, pp. 269-271 (1959). 

[30] K.W. DOTY, P.L. MCENTIRE, AND J.G. O'REILLY, "Task allocation in a 
distributed computer system," Proceedings of the 1982 IEEE Infocom, pp. 33-38. 
IEEE Computer Society Press, Piscataway, New .Jersey. 

[31] M.J. EISNER AND D.G. SEVERANCE, "Mathematical techniques for efficient 
record segmentation in large shared databases," J ACM, Vol. 23, pp. 619-635 
(1976). 

[32] D. FERNANDEZ-BACA, "Allocating modules to processors in a distributed sys
tem," IEEE Trans. Software Eng., Vol. 15, No. 11, pp. 1427-1436 (1989). 

[33] D. FERNANDEZ-BACA AND A. MEDEPALLI, "Parametric module allocation on 
partial t-trees," Tech. Report 90-25, Dept. of Computer Science, Iowa State 
University (1990). To appear in IEEE Trans. Computers. 

[34] D. FERNANDEZ-BACA AND A. MEDEPALLI, "Exact and approximate algo
rithms for assignment problems in distributed systems," Tech. Report 92-29, 
Dept. of Computer Science, Iowa State University (1992). 



100 

[35] D. FERNÀNDEZ-BACA AND G. SLUTZKI, "Solving parametric problems on 
trees," J. Algorithms, Vol. 10, pp. 381-402 (1989). 

[36] D. FERNANDEZ-BACA AND S. SRINIVASAN, "Constructing the minimization 
diagram of a two-parameter problem," Operations Research Letters, Vol. 10, No. 
2, pp. 87-93 (1991). 

[37] A.M. FRIEZE AND M.R.B. CLARKE, "Approximation algorithms for the m-
dimensional and 0-1 knapsack problem: Worst case and probabilistic analyses," 
European J. of Oper. Res., Vol. 15, pp. 100-109 (1984). 

[38] G. GALLO, M.D. GRIGORIADES, AND R.E. TARJAN, "A fast parametric max
imum flow algorithm," SI AM J. Comput., Vol. 18, No. 1, pp. 30-55 (1989). 

[39] M.R. GAREY AND D.S. JOHNSON, Computers and Intractability. W.H. Free
man, New York (1979). 

[40] V.P. GULATI, S.K. GUPTA, AND A.K. MITTAL, "The unconstrained quadratic 
bivalent programming problem," European J. of Oper. Res., Vol. 15, pp. 121-125 
(1981). 

[41] Y. GUREVICH, L. STOCKMEYER, AND U. VISHKIN, "Solving NP-hard prob
lems on graphs that are almost trees and an application to facility location 
problems," JACM Vol. 31, No. 3, pp. 459-473 (1984). 

[42] D. GUSFIELD, "Parametric combinatorial computing and a problem of module 
distribution,"IY4CM, Vol. 30, No. 3, pp. 551-563 (1983). 

[43] V.B. GYLYS AND J.A. EDWARDS, "Optimal partitioning of workload for dis
tributed systems," Dig. Papers COMPCON, pp. 353-357 (Fall 1976). 

[44] P. HANSEN AND K. LIH, "Improved algorithms for partitioning problems in 
parallel, pipelined, and distributed computing," Manuscript. 

[45] L.H. HARPER, et al., "Sorting X -f- Y," Communications of the ACM, Vol. 18, 
No. 6, pp. 347-349 (1975). 

[46] D.S. HOCIIBAUM AND D.B. SIIMOYS, "Using dual approximation algorithms 
for scheduling problems: Theoretical and practical results," JACM, Vol. 34, No. 
1, pp. 144-162 (1987). 

[47] O H. IBARRA AND C.E. KIM, "Fast approximation algorithms for the knapsack 
and sum of subset problems,"7/1 CM, Vol. 22, No. 4, pp. 463-468 (1975). 



101 

[48] M.A. IQBAL, " Approximate algorithms for partitioning and assignment prob
lems," ICASE Report 86-40, NASA Contractor Report 178130 (June 1986). 
Available from ICASE, NASA Langley Research Center, Hampton, Virginia 
23665. 

[49] M.A. IQBAL, "Efficient algorithms for partitioning problems," Proceedings of 
the 1990 International Conference on Parallel Processing, Vol. 3, pp. 123-127. 
The Pennsylvania State University Press, University Park and London. 

[50] M.A. IQBAL, J.H. SALTZ, AND S.H. BOKHARI, "A comparitive analysis of 
static and dynamic load balancing strategies," Proceedings of the 1986 Interna
tional Conference on Parallel Processing, pp. 1040-1047, IEEE Computer Society 
Press, Washington D.C. 

[51] D.S. JOHNSON AND K.A. NIEMI, "On knapsacks, partitions, and a new dy
namic programming technique for trees," Math. Oper. Res., Vol. 8, No. 1, pp. 
1-14 (1983). 

[52] O. KARIV AND S.L. HAKIMI, "An algorithmic approach to network location 
problems I : The p-centers," SI AM J. Appl. Math. Vol. 37, pp. 513-538 (1979). 

[53] F. KAUDEL, "Comments on allocating programs containing branches and loops 
within a multiple processor system," IEEE Trans. Software Eng., Vol. 16, No. 
4, pp. 471 (1990). 

[54] J. LAGERGREN, "Efficient parallel algorithms for tree-decomposition and related 
problems," Proceedings of 31st Annual Symposium on Foundations of Computer 
Science, IEEE Computer Society Press, Los Alamito, California, pp. 173-182 
(1990). 

[55] E.L. LAVVLER, "Fast approximation algorithms for knapsack problems," Math, 
of Oper. Res., Vol. 4, No. 4, pp. 339-356 (1979). 

[56] R. LIPTON AND R. TARJAN, "Applications of a planar separator theorem," 
SIAM J. Comput., Vol. 9, No. 3, pp. 615-627 (1980). 

[57] V.M. Lo, "Heuristic algorithms for task assignments in distributed systems," 
IEEE Trans. Computers, Vol. 37, No. 11, pp. 1384-1397 (1988). 

[58] U. MANBER, Introduction to Algorithms: A Creative Approach. Addison Wesley, 
New York (1989). 



102 

[59] R. MARCOGLIESE AND R. NOVARESE, "Module and data allocation methods 
in distributed systems," Proceedings of the second International Conference on 
Distributed Computing Systems, IEEE Computer Society Press, Los Alamito, 
California, pp. 50-59 (1981). 

[60] J. MATOUSEK AND R.THOMAS, "Algorithms finding tree-decompositions of 
graphs," J. Algorithms, Vol. 12, pp. 1-22 (1991). 

[61] S. MORAN, "General approximation algorithms for some arithmetical combina
torial problems," Theoretical Computer Science, Vol. 14, pp. 289-303 (1981). 

[62] L.M. Nl AND K. HWANG, "Optimal load balancing strategies for a multiple 
processor operating system," Proceedings of the IEEE Conference on Parallel 
Processing, pp. 352-357 (1981). Held in Bellaire, Michigan. 

[63] D.M. NICOL AND D.R. O'HALLARON, "Improved algorithms for mapping 
pipelined and parallel computations," IEEE Trans, on Computers, Vol. 40, No. 
3, pp. 295-306 (1991). 

[64] E.M. PALMER, Graphical Evolution. Wiley, New York (1985). 

[65] C.H. PAPADIMITROU AND K. STEIGLITZ, Combinatorial Optimization. 
Prentice-Hall, Englewood Cliffs, New .Jersey (1982). 

[66] C.C. PRICE AND S. KRISHNAPRASAD, "Software allocation models for dis
tributed computing systems," in Proceedings of the fourth International Confer
ence on Distributed Computing Systems, IEEE Computer Society Press, Silver 
Spring, Maryland, pp. 40-48 (1984). 

[67] C.C. PRICE AND U.W. POOCH, "Search techniques for a non-linear multipro
cessor scheduling problem," Naval Research Logistics Quarterly, Vol. 29, No. 2, 
pp. 213-233 (1982). 

[68] G.S. RAO, H.S. STONE, AND T.C. HU, "Assignment of tasks in a distributed 
processor system with limited memory," IEEE Trans. Computers, Vol. C-28, No. 
4, pp. 291-299 (1979). 

[69] B.A. REED, "Finding approximate separators and computing tree width 
quickly," Proceedings of 24th Annual Symposium on Theory of Computing, pp. 
221-228 (1992), held in Victoria, British Columbia, Canada. Sponsored by ACM 
special interest group for Automata and Computability Theory. 

[70] N. ROBERTSON AND P.D. SEYMOUR, "Graph minors II: Algorithmic aspects 
of treewidth," J. Algorithms, Vol. 7, pp. 309-322 (1986). 



103 

G. SAGAR, A.K. SARJE, AND K.U. AHMED, "On module assignment in two-
processor distributed systems: A modified Algorithm," Info. Processing Letters, 
Vol. 32, No. 3, pp. 151-153 (1989). 

S. SAHNI, "Approximate algorithms for the 0-1 knapsack problem," J ACM., Vol. 
22, No. 1, pp. 115-124 (1975). 

S. SAHNI, "Algorithms for scheduling independent tasks," JACM, Vol. 23, No. 
1, pp. 116-127 (1976). 

J.H. SALTZ, Parallel and adaptive algorithms for problems in scientific and 
medical comp^iting, Ph.D. Thesis, Duke University (1985). 

K.G. SLIIN AND M. CHEN, "On the number of acceptable task assignments in 
distributed computing systems," IEEE Trans. Computers, Vol. 39, No. 1, pp. 
99-110 (1990). 

J.B. SINCLAIR, "Efficient computation of optimal assignments for distributed 
tasks," J. Parallel and Distributed Computing, Vol. 4, No. 4, pp. 342-362 (1987). 

J.B. SINCLAIR, "Optimal assignments in broadcast networks," IEEE Trans. 
Comput., Vol. 37, No. 5, pp. 521-531 (1988). 

S.R. STERNBERG, "Biomedical image processing," IEEE Computer, Vol. 16, 
No. 1, pp. 22-34 (1983). 

H. STONE, "Multiprocessor scheduling with the aid of network flow algo
rithms,"/EEE Trans. Softxoare Eng., Vol. SE-3, No. 1, pp. 85-93 (1977). 

H. STONE, "Critical load factors in two-processor distributed systems,"/£'£'£' 
Trans. Software Eng., Vol. SE-4, No. 3, pp. 254-258 (1978). 

H. Stone and S.H. Bokhari, "Control of distributed processes," IEEE Computer, 
Vol. 11, No. 7, pp. 97-106 (1978). 

A. TAMIR, Personal Communication (1990). 

D. TOWSLEY, "Allocating programs containing branches and loops within a 
multiple processor system," IEEE Trans. Software Eng., Vol. SE-12, No. 10, pp. 
1018-1024 (1986). 

[84] D. TOWSLEY, "Correction to allocating programs containing branches and loops 
within a multiple processor system," IEEE Trans. Software Eng., Vol. 16, No. 
4, pp. 472 (1990). 



104 

[85] J. TURNER, "The structure of modular programs," Communications of the 
ACM, Vol. 23, No. 5, pp. 272-277 (1980). 

[86] J. VAN LEEUWEN, Graph Algorithms, In J. van Leeuwen (ed.) Handbook of 
Theoretical Computer Science, MIT press, Cambridge, Massachusetts (1980). 



105 

APPENDIX A. THE C CODE FOR THE EXACT CMA 

ALGORITHM 

/* This program implements the exact algorithm for CMA. 

The constants are defined assuming the input graph 

of the example in Chapter 5 */ 

#include <stdio.h> 

#define n 5 

#define p 3 

#define q 9 

int m, U, M; 

int listops; 

int assign[n]; 

FILE *fp; 

/* Number of modules */ 

/* Number of processors */ 

/* q = p~2 : To read in the edge information */ 

/* Number of edges, cost upper bound 

and maximum memory on processor 1 */ 

/* This variable counts the number of list 

operations performed by the program */ 

/* This array stores the partial assignments */ 

/* A file pointer to the input file */ 



106 

/* The various data-structures used in the program are defined next 

struct vector 

/* contains the actual cost or memory value */ 

{ 
int key ; 

struct vector *next; 

} 

struct node 

/* This defines the lists — they are linked lists of vectors */ 

{ 
struct vector *hdr; 

struct node *next; 

> 

struct vlist 

/* This defined the variable lists in a term */ 
{ 

int vtx; 

struct termptr *ptr; 

struct vlist *next; 

>; 

struct term 

/* This defined the actual term */ 

{ 
struct vlist *vars; 

struct node **termhd; 

>; 

struct termptr 

/* This defines the actual pointers to terms and also 

connects the function descriptors of a single variable */ 

{ 
struct termptr *prev; 

struct term *ptr; 

struct termptr *next; 

}; 



107 

struct vector *vechead() 

/* This defines a dummy header for vector lists */ 

{ 
struct vector *head; 

head = (struct vector *) malloc(sizeof(struct vector)); 

head->key = -1; 

head->next = NULL; 

return head; 

> 

struct node *initlist() 

/* This defines a list containing dummy header and tail nodes 

{ 
struct node *start, *tail; 

start = (struct node *) malloc(sizeof(struct node)); 

tail = (struct node *) malloc(sizeof(struct node)); 

tail->hdr = NULL ; 

tail->next = tail; 

start->hdr = NULL ; 

staxt->next = tail; 

listops++; 

return start; 

} 

struct vector *addvects(a,b) 

struct vector *a; 

struct vector *b; 

/* This adds two vectors */ 

struct vector *sum, *x, *y, *z; 

sum = vecheadO ; 

X = a->next; 

y = b->next; 

z = sum; 



108 

while ( X != NULL) 

{ 
struct vector *temp; 

temp = (struct vector*) malloc(sizeof(struct vector)); 

. temp->key = x->key + y->key; 

temp->next = NULL; 

z->next » temp; 

X -  x->next;  

y = y->next; 

z = z->next; 

} 
return sum; 

struct node *addelt(lp, vect) 

struct node *lp: 

struct vector *vect; 

/* This appends a vector to an existing list */ 

{ 
struct node *temp; 

temp = (struct node*) malloc(sizeof(struct node)); 

temp->hdr = vect; 

temp->next = lp->next; 

lp->next = temp; 

listops++; 

return Ip; 

> 

int compare(a,b) 

struct vector *a, *b; 

/* This compares two vectors lexicographicadly */ 
{ 

if (a != NULL && b != NULL) 

if ( a->key < b->key ) 

return -1; /* a < b */ 

else 

{ 
if ( a->key > b->key ) 



109 

return 1 ; /* a > b */ 

else /* a->key = b->key */ 

return compare(a->next, b->next); 

} 
} 

else 

{ 

if (a == NULL && b != NULL) 

return -1; 

else 

{ 
if (a != NULL && b == NULL) 

return 1; 

else /* both 'a' and 'b' are NULL */ 

return 0; 

} 
> 

struct node *merge(x,y) 

struct node *x, *y; 

/* This merges two sorted lists into a single sorted list */ 

int i; 

struct node *c, * z ,  *a, *b; 

listops++; 

a = x->next; 

b = y->next; 

c • initlistO; 
z = c; 

while (a->hdr != NULL && b->hdr != NULL) 

{ 
i = compare(a->hdr, b->hdr); 

if (i == -1 II i == 0) 

c->next = a; 

c = a; 



110 

a = a->next; 

} 
else /* i == 1 */ 

{ 
c->next = b; 

c = b; 

b = b->next; 

} 
} 

if (a->hdr == NULL && b->hdr != NULL) 

c->next = b; 

if (a->hdr != NULL && b->hdr == NULL) 

c->next = a; 

return z ;  
y 

struct node *mergesort(a) 

struct node *a; 

/* This sorts a given list of vectors */ 

{ 
struct node »pl, *ql, *r, *s; 

listops++; 

if ( a->next->next->hdr != NULL ) 

/* Check if list has 0 or 1 element */ 

{ 
pi = a; 

ql = a->next->next; 

while (ql->hdr != NULL) 

{ 
a = a->next; 

ql = ql->next->next; 

} 

s = (struct node *) malloc(sizeof(struct node)) 

s->hdr = NULL; 



I l l  

s->next = a->next ; 

r = (struct node *) malloc(sizeof(struct node)); 

r->hdr = NULL; 

r->next = r; 

a->next = r; 

return merge(mergesort(pl), mergesort(s)); 

} 
return a; 

> 

struct node *addlists(a,b) 

struct node *a, *b; 

/* This adds two lists and the addition is done pairwise */ 

{ 
struct node *al, *bl, *c; 

c = initlistO; 

if (a->next->hdr == NULL I I b->next->hdr == NULL) 

return c; 

else 
{ 

for (al = a->next; al->hdr != NULL; al = al->next) 

for (bl = b->next; bl->hdr != NULL; bl = bl->next) 

c = addelt(c, addvects(al->hdr, bl->hdr)); 

return mergesort(c); 

} 
} 

int dominates(a,b) /* returns 0 if 'a' and 'b' are incomparable*/ 

struct vector *a, *b; /* returns 1 if 'b' dominates 'a' */ 
{ 

if (a->next->key == b->next->key) /* if costs are equal */ 

if (a->next->next->key <= b->next->next->key) 

return 1; 

} 
else 



112 

return 0; 
} 

struct node *reduce(a) 
struct node *a; 

/* This implements the procedure REDUCE */ 
{ 

struct node *x, *y, *z; 
struct vector *v; 

listops++; 

if (a->next->hdr == NULL) /* empty list */ 

return a; 

else 

{ 

z = a; 

while (a->next->hdr != NULL) 

{ /* get rid of the costly emd heavy pairs 

V = a->next->hdr->next; 

if ( v->key > U I I v->next->key > M ) 

a->next - a->next->next; 

else 

a = a->next; 

> 

X = z->next; 
y = z->next->next; 

while ( x->hdr != NULL && y->hdr != NULL) 

{ 
if ( dominates(x->hdr, y->hdr) == 1) 

{ 
y = y->next; 
X >next = y; 

} 
else 

{ 

X - x->next; 



113 

y = y->next; 

} 
} 

return z; 

> 
} 

struct vector *singlevec(a) 

int a; 

/» This defines a vector with key = a */ 

{ 
struct vector *vp; 

vp = (struct vector *) malloc(sizeof(struct vector)); 

vp->key = a; 

vp->next = NULL; 

return vp; 
y 

struct vector *vecpair(a,b) 

int a, b; 

/* This creates a pair of 

{ 
struct vector *vpl, *vp2, 

vpl = vecheadO ; 

vp2 = singlevec(a); 

vp3 = singlevec(b); 

vectors with keys a and b */ 

*vp3; 

vpl->next = vp2; 

vp2->next = vp3; 

return vpl; 

> 



114 

struct vlist *initvlist() 

/* This creates a variable list with a dummy header and tail */ 

{ 
struct vlist *vll, *vl2; 

vll = (struct vlist *) malloc(sizeof(struct vlist)); 

vl2 = (struct vlist *) malloc(sizeof(struct vlist)); 

vll->vtx = -2; 

vli->ptr = NULL; 

vll->next = vl2; 

vl2->vtx = -3; 

vl2->ptr = NULL; 

vl2->next = vl2; 

return vll; 
} 

printlist(a) 

struct node *a; 

/* This prints a list of vectors */ 
{ 

int i = 1; 

struct vector *vect; 

if (a->next->hdr == NULL) 

printf("Empty list of pairs\n"); 

else 

{ 

a = a->next; 

while ( a != a->next) 

{ 
vect = a->hdr->next; 

printf ("Vector*/,d\n", i++) ; 

while ( vect != NULL ) 

{ 
printf("%d\n",vect->key); 

vect = vect->next ; 

} 



115 

a = a->next; 

} 
} 

} 

printvlist(v) 

struct vlist *v; 

/* This prints a variable list */ 

{ 
if ( v->next->next == v->next ) 

printf("Empty list of vertices\n"); 

else 

{ 

printf("Vertices\n"); 

while (v->next->next != v->next) 

{ 
printf("%d\n", v->next->vtx); 

V = v->next; 

} 
} 

> 

printtp(t) 

struct termptr **t; 

/* This prints em entire list of terms; 

the initial data structure for instance */ 

{ 
int i, j, limit; 

struct termptr *tl; 

struct vlist *v; 

if ( t == NULL ) 

printf("Empty list of termsXn"); 

else 

{ 

for (i = 0; i < n; i++) 

{ 
tl = t[i]->next; 

while ( tl->next != tl) 

{ 



116 

V = tl->ptr->vars; 

printvlist(v) ; 

limit = q; 

if (v->next->next->next == v->next->next) 

limit = p; 

f o r  ( j  = 0 ;  j  <  l i m i t ;  j + + )  

printlist((tl->ptr->termhd)[j]); 

tl = tl->next; 

} 
} 

} 
} 

int countvar(a) 

struct vlist *a; 

/* Returns the number of variables in a list */ 

{ 
if (a->vtx == -2) 

a = a->next; 

if (a->next -* a) 

return 0; 

else 

return (1 + countvar(a->next)); 

} 

struct vlist *makevtx(i) 

int i; 

/* creates a variable list containing i */ 

{ 
struct vlist *vl; 

vl = (struct vlist *) malloc(sizeof(struct vlist)) 

vl->vtx = i; 

vl->ptr = NULL; 

vl->next = NULL; 

return vl; 



117 

} 

struct vlist *unite(vll, vl2) 

struct vlist *vll, *vl2; 

/* Returns the union of two variable lists */ 

{ 
struct vlist *vl3, *vl4, *vlS; 

vl3 = initvlist(); 

vl4 = vl3; 

vll = vll->next; 

vl2 = vl2->next; 

while (vll->next != vll && vl2->next != vl2) 

{ 

if (vll->vtx < vl2->vtx) 

vl5 = makevtx(vll->vtx); 

vl5->next = vl3->next; 

vl3->next = vl5; 

vll = vll->next; 

} 
else 

if (vH->vtx > vl2->vtx) 

vis = makevtx(vl2->vtx); 

vl5->next = vl3->next; 

vl3->next = vl5; 

vl2 = vl2->next; 

} 
else /* duplicate elements */ 

{ 
vis = makevtx(vll->vtx); 

vlS->next = vl3->next; 

vl3->next = vlS; 

vll = vll->next; 

vl2 = vl2->next; 

} 
vl3 = vl3->next; 

} 



118 

/* copy remainder of one list */ 

if( vll->next == vll ) 

vll = vl2; 

while ( vll->next != vll) 

vl5 = makevtx(vll->vtx); 

vl5->next = vl3->next; 

vl3->next = vl5; 

vl3 = vl3->next; 

vll = vll->next; 

} 

return vl4; 

} 

struct vlist *vertQx(i) 

int i; 

/* makes a vertex */ 

{ 
struct vlist *vll, *vl2; 

vll = initvlistO; 

vl2 = makevtx(i); 

vl2->next = vll->next; 

vll->next = vl2; 

return vll; 

} 

struct vlist *edge(i,j) 

int i, j; 

/* creates an edge */ 

{ 
struct vlist *vll, *vl2, *vl3; 

vll = initvlistO; 

vl2 = makevtx(i); 

vl3 = makevtx(j); 



119 

vl2->next = vl3; 

vl3->next = vll->next; 

vll->next = vl2; 

return vll; 

} 

struct vlist *readvtxnuni() 

/* reads in vertex value from the input file */ 
{ 

int i ; 

struct vlist *vl; 

vl = initvlistO; 

if ( fscanfCfp, "%d", &i) == 1 ) 

vl = unite(vl, vertex(i)); 

else 

{ 

printf("Program Aborted: Check input\n"); 

exit(O) ; 

} 

return vl; 

> 

struct vlist *readedgenum() 

/* reads the vertices that make up the edge from the input file */ 

int i, j; 

struct vlist *vl; 

vl = initvlistO; 

if ( fscanfCfp, "%d %d", &i, &j) == 2) 

vl = uniteCvl, edge(i,j)); 

else 

{ 

printf("Program Aborted: Check input\n"); 



120 

exit(O); 

} 

return vl; 
} 

struct node **readvertex() 

/* read in vertex information from the file */ 

{ 
int i, j, r; 

struct node **np; 

np = (struct node **) malloc(p*sizeof(struct node 

f o r  ( j  = 0 ;  j  <  p ;  j + + )  

np[j] = initlistO; 

if ( fscanf(fp, "%d %d", &r, &i) == 2 ) 

np[0] = addelt(np[0], vecpair(i,r)); 

else 

{ 

printf("Program Aborted: Check input\n"); 

exit(O); 

} 

for (j = 1; j < p; j++) 

{ 
if ( fscanf(fp, "%d", &i) == 1) 

np[j] = addelt(np[j], vecpair(i,0)); 

else 

{ 
printf("Program Aborted: Check input\n"); 

exit(O); 

} 
} 

return np; 



121 

struct node **readedge() 

/* reads in edge information from the input file */ 
{ 

int i, j, r; 

struct node **np; 

np = (struct node **) malloc(q*sizeof(struct node »)); 

for (j = 0; j < q; j++) 

np[j] = initlistO; 

for ( j = 0; j < q; j += (p+1) ) /* same processor case 

np[j] = addelt(np[j], vecpair(0,0)); 

if ( fscanf(fp, "%d", &i) == 1) 

for ( j = 1; j < q; j++ ) 

{ 
if ( np[j]->next->hdr == NULL ) 

np[j] = addelt(np[j] , vecpair(i,0)) ; 

} 
else 

{ 

printf("Program Aborted: Check input\n"); 

exit(O) ; 

} 

return np; 

> 

struct termptr *inittermptr() 

/* creates an initial term pointer with dummy nodes */ 
{ 

struct termptr *start, *tail; 

start = (struct termptr *) malloc(sizeof(struct termptr)); 

tail = (struct termptr *) malloc(sizeof(struct termptr)); 

start->prev = NULL; 

start->ptr = NULL; 

start->next = tail; 



122 

tail->prev = start; 

tail->ptr = NULL; 

tail->next = tail; 

return start; 
} 

struct termptr **maketp(tp,f) 

struct termptr **tp; 

struct term *f; 

/* creates a new term */ 

{ 
int j ; 

struct termptr *t, *z; 

struct vlist *vl; 

vl = f->vars->next; /* Here is where a vertex/edge is stored */ 

while (vl->next != vl) 

{ 
j = vl->vtx; 

z » tpCj] ; 

if (z->next->next != z->next) 

z = z->next; 

t = (struct termptr *) malloc(sizeof(struct termptr)); 

t->ptr = f; 

t->next = z->next; 

t->prev = z; 

2->next->prev = t; 

2->next = t; 

vl->ptr = t; 

vl = vl->next; 

} 
return tp; 

} 



123 

struct termptr **maketerm(file) 

char *file; 

/* creates the initial data structure from the input file */ 
{ 

struct termptr **start, **s; 

struct term *t, *f; 

struct node *z; 

int i, j, r; 

char c; /* c gets 'V or 'E' or something else */ 

start = (struct termptr **) malloc(n*sizeof(struct termptr *)); 

for (j = 0; j < n; j++) 
start [j] = inittermptrO ; 

s = start; 

fp = fopen(file, "r"); 

while ( !feof(fp) ) 

{ 
if ( fscanf(fp, "%c", &c) == 1 ) 

{ 
if ( !isspace(c) ) /* ignore blank spaces in the file */ 

{ 
if ( c == 'V ) 

{ 
f = (struct term *) malloc(sizeof(struct term)); 
f->vars = readvtxnumO ; 

f->termhd = readvertexO; 
s = maketp(s,f); 

} 
else 

{ 
if ( c == 'E' ) 

{ 
f = (struct term •) malloc(sizeof(struct term)); 

f->vars = readedgenumO ; 

f->termhd = readedgeO; 



124 

s = maketpCs.f); 

} 
else 

{ 

printfC" Program Aborted: Check input\n"); 

exit(O); 

} 
} 

} 
} 
} 

fclose(fp); 

return start; 

} 

void index(v, r) 

struct vlist *v; 

int r; 

/* This figures the partial assignments */ 
{ 

int j ; 

while (v->next != v) 

{ 
j » v->vtx; 

assignCj] = (r*/.p) ; 

r = (r/p); 

v = v->next; 

} 
return; 

} 



125 

int value(v, r) 
struct vlist *v; 
int r; 

/* The indices of old terms are figured out here */ 
{ 

int c, d, e, k[n], i; 
struct vlist *vl; 

e = 0; 
c = 0; 
vl = v->next; 

while (vl->next != vl) 
{ 

d = vl->vtx; 
k[c++] = assignCd]; 
vl = vl->next; 

> 

for (i = r-1; i > 0; i—) 
e = p*(e + kCi]) ; 

return (e + k[0]); 
} 

int elim(tp) 
struct termptr **tp; 

/* The actual elimination of variables takes place here */ 
< 

int i, j, k, 1, r, a, b, c, d, x, y, vail, val2, cost, temp 
struct vlist *vi, *v2, *v3, *fv, »vtemp, *tv; 
struct node **g, ***h, **newh; 
struct termptr *tpl, *tp2, *tpr, *tprl, *tpr2; 
struct term *f; 

for ( i = 0; i < n; i++ ) 
{ 

h = (struct node ***) malloc(m*sizeof(struct node **)); 



126 

a = 0; 

tpl = (tp[i])->next; 
tp2 = tpl->next; 

h[03 = tpl->ptr->termhd; 
v3 = tpl->ptr->vars; 

while (tp2 != tp2->next) 
{ 

a++; 
vl = v3; 
v2 = tp2->ptr->vars; 

g = tp2->ptr->termhd; 

v3 = unite(vl, v2); 
vtemp = v3->next; 

c = countvar(v3); 

b = p; 
for (k = 1; k < c; k++) 

b • (b*p); 

h[a] = (struct node **) malloc(b*sizeof(struct node *)); 

for (k = 0; k < n; k++) 
assign[k] = -10; 

for (k = 0; k < b; k++) 
{ 

r = k; 
index(vtemp, r); 
vail = value(vl, countvar(vl)); 
val2 = value(v2, countvar(v2)); 
(h[a])[k] = addlists( (h[a-l] ) [vail] , g[val2] ) ; 
(h[a])[k] = reduce( (h[a])[k] ) ; 

} 
free(h[a-l]); 



127 

tv = v2->next->next; 
while (tv->next != tv) 

{ 
tprl = tv->ptr; 
tprl->prev->next = 
tprl->next->prev = 
tv = tv->ne%t; 

} 

tp2 = tp2->next; 
} 

d = (b/p); 
newh = (struct node **) malloc(d*sizeof(struct node *)); 

1 = 0; 

for (j = 0; j < d; j++) 
{ 

newh[j] = initlistO; 
for (k = 0; k < p; k++) 

newh[j] = merge( newhCj] , (h[a] ) [ l +k] ) ; 

newhCj] = reduce( newh[j] ) ; 
1 += p; 

} 

free(hCa] ) ; 

v3->next = v3->next->next; /* i eliminated */ 

f = (struct term *) malloc(sizeof(struct term)); 
f->vars = v3; 
f->termhd = newh; 

fv = f->vars->next; 
while (fv->next != fv) 

X = fv->vtx; 

tprl->next; 
tprl->prev; 



128 

tpr = (struct termptr *) raalloc(sizeof(struct termptr)); 

tpr->ptr = f; 

tpr->next = tp[x]->next->next; 

tpr->prev = tp[x]->next; 

tp[x]->next->next->prev = tpr; 

tp[x]->next->next = tpr; 

fv->ptr = tpr; 

fv = fv->next; 

} 
} /* the i loop */ 

if(newh[0]->next->hdr == NULL) /* empty list */ 

return (U+1); 

else 

return newhCO]->next->hdr->next->key; 

} 

mainO 
{ 

int cost; 

char graph[50]; /* This stores the input graph name */ 

struct termptr **tp; 

listops = 0; 

M = 100; /* arbitrarily chosen */ 

scanf ("%s", graph).; /* The input graph name */ 

scanf("%d", 4m); /* The number of edges •/ 

scanf ('"/.d", &U) ; /* The starting value of U */ 

tp = maketerm(graph); 

printf("\n"); 

printf("Current value of U is %d\n", U); 

cost = elim(tp); 

printf("Minimum Cost = %d\n", cost); 



129 

printfC'The number of list operations were %d\n", listops) ; 

if (cost == (U+1)) /* too costly */ 
return 1; 

return 0; /* The optimum is reached */ 
} 



130 

APPENDIX B. THE C CODE FOR THE EXACT BMA 

ALGORITHM 

/* This program implements the exact algorithm for BMA. 

The comments which are the saime as in CMA are avoided here */ 

#include <stdio.h> 

#define n 5 

#define p 3 

#define q 9 

int m, U; 

int listops; 

int assign[n]; 

FILE *fp; 

struct vector 

{ 

int key ; 

struct vector *next; 

>; 

struct node 

{ 

struct vector *hdr; 



struct node *next; 
} ;  

struct vlist 
{ 

int vtx; 
struct termptr *ptr; 
struct vlist *n,ext; 

}; 

struct term 
{ 

struct vlist *vars; 
struct node **termhd; 

} ;  

struct termptr 
{ 

struct termptr *prev; 
struct term *ptr; 
struct termptr *next; 

} ;  

void index(v, r) 
struct vlist *v; 
int r ; 

{ 
int j ; 
while (v->next != v) 

j = v->vtx; 
assignCj] = (r%p); 
r = (r/p); 
V = v->next; 

} 
return; 

} 

int value(v, r) 
struct vlist *v; 



132 

int r; 
{ 

int c, d, e, k [n] , i ; 
struct vlist *vl; 

e = 0; 
c « 0; 
vl = v->next; 

while (vl->next != vl) 

d = vl->vtx; 
k[c++] = assign[d]; 
vl = vl->next; 

} 

for (i = r-1; i > 0; i—) 
e = p*(e + k[i] ) ; 

return (e + k[0]); 
} 

struct vector *vechead() 
{ 

struct vector *head; 
head = (struct vector *) malloc(sizeof(struct vector)); 
head->key = -1; 
head->next = NULL; 
return head; 

} 

struct node *initlist() 
{ 

struct node *start, *tail; 

listops++; 

start = (struct node *) malloc(sizeof(struct node)); 
tail = (struct node *) malloc(sizeof(struct node)); 



133 

tail->hdr = NULL ; 

tail->next = tail; 

start->hdr = NULL ; 

start->next = tail; 

return start; 
} 

struct vector *posn(vp,k) 

struct vector *vp; 

int k; 

/* returns pointer to kth position in a tuple */ 

{ 
if ( k == 0 ) 

return (vp->next); 

else 

return posn(vp->next, k-1); 

> 

struct vector *makepvector() 

/* creates a p-tuple with all zeros */ 
{ 

int j; 

struct vector *vpl, *vp2; 

vpl = vecheadC); 

vp2 = vpl; 

vpl->next = (struct vector *) malloc(sizeof(struct vector)); 

for ( j = 0; j < (p-1); j++) 

{ 
vpl->next->key = 0; 

vpl->next->next = (struct vector *) inalloc(sizeof(struct vector)); 

vpl = vpl->next; 

} 
vpl->next->key = 0; 

vpl->next->next = NULL; 

return vp2; 



134 

} 

struct vector *addvects(a,b) 

struct vector *a; 

struct vector *b; 

{ 
struct vector *sum, *x, *y, * z ;  

sum • vecheadO ; 

X = a->next; 
y = b->next; 

z = sum; 

while ( X != NULL) 

struct vector *temp; 

temp = (struct vector*) malloc(sizeof(struct vector)); 

temp->key = x->key + y->key; 

temp->next = NULL; 

z->next = temp; 

X = x->next; 
y = y->next; 

z = z->next; 

} 
return sum; 

struct node *addelt(lp, vect) 

struct node *lp; 

struct vector *vect; 

{ 
struct node *temp; 

listops++; 

temp = (struct node*) malloc(sizeof(struct node)); 

temp->hdr = vect; 

temp->next = lp->next; 

lp->next = temp; 

return Ip; 

} 



135 

int compare(a,b) 

struct vector *a, *b; 

{ 
if (a !« NULL && b != NULL) 

{ 
if ( a->key < b->key ) 

return -1; 

else 

if ( a->key > b->key ) 

return 1; 

else /* a->key = b->key */ 

return compare(a->next, b->next); 

> 

> 

else 

{ 

if (a == NULL && b != NULL) 

return -1; 

else 

{ 
if (a != NULL && b == NULL) 

return 1; 

else /* both 'a' euid 'b' are NULL */ 

return 0; 

> 

> 
} 

struct node *merge(x,y) 

struct node *x, *y; 

{ 
int i; 

struct node *c, *z, *a, *b; 

listops++; 

a - x->next; 

b = y->next; 



136 

c = initlistC); 

z = c; 

while (a->hdr != NULL && b->hdr != NULL) 

{ 
i = compare(a->hdr, b->hdr); 

if (i == -1 II i == 0) 

{ 
c->next = a; 

c = a; 

a = a->next; 

} 
else /* i == 1 */ 

{ 
c->next = b; 

c = b; 

b = b->next; 

> 

} 

if (a->hdr == NULL && b->hdr != NULL) 

c->next = b; 

if (a->hdr ! « NULL && b->hdr == NULL) 

c->next = a; 

return z ;  
} 

struct node *mergesort(a) 

struct node *a; 

struct node *pl, *ql, *r, *s; 

listops++; 

if ( a->next->next->hdr != NULL ) 

/* Check if list has 0 or 1 element */ 
{ 

pi = a; 



137 

ql = a->next->next; 

while (ql->hdr != NULL) 

{ 
a = a->next; 

ql = ql->next->next; 

} 

s = (struct node *) malloc(sizeof(struct node)); 

s->hdr = NULL; 

s->next = a->next; 

r = (struct node *) malloc(sizeof(struct node)); 

r->hdr = NULL; 

r->next = r; 

a->next = r; 

return merge(inergesort(pl) , mergesort(s) ) ; 

> 

return a; 

} 

struct node *addlists(a,b) 

struct node *a, *b; 

{ 
struct node *al, *bl, *c; 

c = initlistO ; 

if (a->next->hdr == NULL I I b->next->hdr == NULL) 

return c; 

else 

{ 

for (al = a->next; al->hdr != NULL; al = al->next) 

for (bl = b->next; bl->hdr != NULL; bl = bl->next) 

c = addelt(c, addvects(al->hdr, bl->hdr)); 

return mergesort(c); 

} 
} 

struct node *trim(a) 



138 

struct node *a; 

/* This implements the procedure TRIM */ 
{ 

struct node *x, *y, * z ;  
struct vector *v; 

int heavy; 

listops++; 

z = a; 

while (a->next->next != a->next) 

{ 
heavy = 0; 

for(v = a->next->hdr->next; v != NULL; v = v->next) 

if (v->key > U) 

{ 
a->next = a->next->next; 

heavy = 1; 

breêik; 
} 

if(!heavy) 

a = a->next; 
} 

X = z->next; 
y = z->next->next; 

while ( x->hdr != NULL && y->hdr != NULL) 

{ 
if ( compare(x->hdr, y->hdr) == 0) 

{ 
y » y->next; 

X >next = y ; 
} 

else 
{ 

X = x->next; 
y = y->next; 

} 



139 

> 

return z; 

} 

int weight(v) 

struct vector *v; 

/* returns the weight of a tuple */ 
{ 

int w; 

if (v == NULL) 

return 0; 

else 

w = weight(v->next); 

return (((v->key) > w) ? (v->key) : 

} 

int minmax(a) 

struct node *a; 

/* returns the minimum processor load */ 

{ 
int w, x; 

struct vector *v; 

listops++; 

V = a->next->hdr; 

if (v == NULL) /* empty list */ 

return (U+1); 

else 

w = weight(v); 

X = minmax(a->next); 

return ( (w <= x) ? w : x ) ; 

} 

struct vector *singlevec(a) 



140 

int a; 
{ 

struct vector *vp; 

vp = (struct vector *) malloc(sizeof(struct vector)); 

vp->key = a; 
vp->next = NULL; 

return vp; 
} 

struct vector *vecpair(a,b) 
int a, b; 

{ 
struct vector *vpl, *vp2, *vp3; 

vpl = vecheadO ; 
vp2 = singlevec(a); 
vp3 = singlevec(b); 

vpl->next = vp2; 
vp2->next = vp3; 

return vpl; 
} 

struct vlist *initvlist() 
{ 

struct vlist *vll, *vl2; 
vll « (struct vlist *) malloc(sizeof(struct vlist)); 
vl2 = (struct vlist *) malloc(sizeof(struct vlist)); 

vll->vtx - -2; 
vll->ptr = NULL; 
vll->next = vl2; 

vl2->vtx = -3; 
vl2->ptr = NULL; 
vl2->next = vl2; 



141 

return vil; 
} 

printlist(a) 

struct node *a; 

{ 
int i = 1; 

struct vector *vect; 

if (a->next->hdr == NULL) 

printf("Empty list of pairs\n") ; 

else 

{ 

a = a->next; 

while ( a != a->next) 

vect = a->hdr->next; 

printf ("Vector'/,d\n", i++) ; 

while ( vect != NULL ) 

{ 
printf ("'/,d\n" ,vect->key) ; 

vect = vect->next ; 

} 
a = a->next; 

} 
} 

> 

printvlist(v) 

struct vlist *v; 

if ( v->next->next == v->next ) 

printf("Empty list of vertices\n"); 

else 

{ 

printf("Vertices\n"); 

while (v->next->next != v->next) 

{ 
printf("%d\n", v->next->vtx); 



142 

V = v->next; 

} 
} 

} 

printtp(t) 

struct termptr **t; 

int i, j, limit ; 

struct termptr *tl; 

struct vlist *v; 

if ( t == NULL ) 

printf("Empty list of termsXn"); 

else 

{ 

for (i = 0; i < n; i++) 

{ 
tl = t[i]->next; 

while ( tl->next != tl) 

{ 
V = tl->ptr->vars; 

printvlist(v); 

limit = q; 

if (v->next->next->next == v->next->next) 

limit = p; 

for (j = 0; j < limit; j++) 

printlist((tl->ptr->termhd)[j]); 

tl = tl->next; 

} 
} 

> 
} 

int countvar(a) 

struct vlist *a; 

{ 



143 

if (a->vtx == -2) 

a = a->next; 

if (a->next == a) 

return 0 ; 

else 

return (1 + countvar(a->next)); 

} 

struct vlist *makevtx(i) 

int i; 

{ 
struct vlist *vl; 

vl = (struct vlist *) malloc(sizeof(struct vlist)); 

vl->vtx = i; 

vl->ptr = NULL; 

vl->next = NULL; 

return vl; 

} 

struct vlist *unite(vll, vl2) 

struct vlist *vll, *vl2; 
{ 

struct vlist *vl3, *vl4, *vl5; 

vl3 = initvlistO; 

vl4 = vl3; 

vll = vll->next; 

vl2 = vl2->next; 

while (vll->next != vll && vl2->next != vl2) 

{ 
if (vll->vtx < vl2->vtx) 

vis = makevtx(vll->vtx); 

vl5->next = vl3->next; 

vl3->next = vl5; 

vll = vll->next; 

} 



else 
if (vll->vtx > vl2->vtx) 

{ 
vl5 = makevtx(vl2->vtx); 
vl5->next = vl3->next; 
vl3->next = vl5; 
vl2 = vl2->next; 

} 
else /* duplicate elements */ 

{ 
vl5 = makevtx(vll->vtx); 
vl5->next = vl3->next; 
vl3->next = vl5; 
vll = vll->next; 
vl2 = vl2->next; 

} 
vl3 = vl3->next; 

} 

/* copy remainder of one list 

if( vll->next == vll ) 
vll = vl2; 

while ( vll->next != vll) 
{ 

vl5 = makevtx(vll->vtx); 
vl5->next = vl3->next; 
vl3->next = vl5; 
vl3 = vl3->next; 
vll = vll->next; 

} 

return vl4; 
} 

struct vlist *vertex(i) 
int i; 

{ 
struct vlist *vll, *vl2; 



145 

vil = initvlistO; 
vl2 = makevtx(i); 
vl2->next = vll->next; 
vll->next = vl2; 

return vil; 
} 

struct vlist •edge(i,j) 
int i, j; 

{ 
struct vlist *vll, *vl2, *vl3; 

vil = initvlistO; 
vl2 = makevtx(i); 
vl3 = makevtx(j); 

vl2->next = vlS; 
vl3->next = vll->next; 
vll->next = vl2; 

return vil; 
} 

struct vlist *readvtxnum() 

int i; 
struct vlist *vl; 

vl = initvlistO; 

if ( fscanfCfp, "%d", &i) == 1 ) 
vl = uniteCvl, vertex(i)); 

else 
{ 

printf("Could not read the vertex\n"); 
exit(O); 

} 

return vl; 



146 

} 

struct vlist *readedgenuin() 
{ 

int i, j; 
struct vlist *vl; 

vl = initvlistO; 

if ( fscanf(fp, "%d %d", &i, &j) ==2 ) 
vl = uniteCvl, edge(i,j)); 

else 
{ 

printf("Could not read the edge\n"); 
exit(O); 

} 

return vl; 
} 

struct node **readvertex() 
{ 

int i, j, r; 
struct node **np; 
struct vector *vp; 

np = (struct node **) malloc(p*sizeof(struct node *)); 

f o r  ( j  = 0 ;  j  <  p ;  j + + )  
{ 

np[j] = initlistO; 
if ( fscanf(fp, "*/,d", &i) == 1 ) 

{ 
vp = makepvectorO ; 
(posn(vp,j))->key = i; 
npCj] = addelt(np[j], vp) ; 

} 
else 

{ 
printf("Could not read vertex information: Check p\n"); 



147 

exit(O); 

} 
} 

return np; 
} 

struct node **readedge() 

int i, j, k, r, a[2]; 

struct node **np; 
struct vector *vp; 

np = (struct node **) malloc(q*sizeof(struct node *)); 

for (j = 0; j < q: j++) 
np[j] = initlistO; 

for ( j = 0; j < q; j += (p+1) ) /* same processor case 
np[j] = addelt(npCj] , makepvectorO) ; 

if ( fscanf(fp, "%d", &i) == 1 ) 
for ( j = 1; j < q; j++ ) 

{ 
if ( npCj]->next->hdr == NULL ) 

{ 
vp = makepvectorO ; 
r = j; 
for (k = 0; k < 2; k++) 
{ 

a[k] = (r'/.p); 

(posn(vp,aCk]))->key = i; 
r = (r/p); 

} 
npCj] = addelt(np[j] , vp) ; 

> 
> 

else 
{ 

printf("Could not read communication cost\n"); 

exit(O); 



148 

} 

return np; 

} 

struct termptr *inittermptr() 

{ 
struct termptr *start, *tail; 

start = (struct termptr *) malloc(sizeof(struct termptr)); 

tail = (struct termptr *) malloc(sizeof(struct termptr)); 

start->prev = NULL; 

start->ptr = NULL; 

start->next = tail; 

tail->prev = start; 

tail->ptr = NULL; 

tail->next = tail; 

return start; 

} 

struct termptr **maketp(tp,f) 

struct termptr **tp; 

struct term *f; 

{ 
int j; 

struct termptr *t, *z; 

struct vlist *vl; 

vl = f->vars->next; /* Here is where a vertex/edge is stored */ 

while (vl->next != vl) 

{ 
j = vl->vtx; 

z = tpCj] ; 

if (z->next->next != z->next) 



149 

z = z->next; 

t = (struct termptr *) malloc(sizeof(struct termptr)); 
t->ptr = f; 
t->next » z->next; 
t->prev = z; 
z->next->prev = t; 
z->next = t; 

vl->ptr = t; 
vl = vl->next; 

} 
return tp; 

} 

struct termptr **maketerm(file) 
char *file; 

{ 
struct termptr **start, **s; 
struct term *t, *f; 
struct node *z; 
int i, j, r; 
char c; /* c gets 'V or 'E' or something else */ 

start = (struct termptr »*) malloc(n*sizeof(struct termptr 

for (j =0; j < n; j++) 
start [j] = inittermptrO ; 

s = start; 

fp = fopen(file, "r"); 

while ( !feof(fp) ) 
i 

if ( fscanf(fp, "%c", &c) == 1 ) 
{ 

if ( !isspace(c) ) /* ignore blank spaces in the file */ 
{ 

if ( c == 'V ) 



150 

{ 
f = (struct term *) malloc(sizeof(struct term)); 
f->vars = readvtxnumO ; 
f->termhd = readvertexO ; 

s » maketp(s,f); 

} 
else 

{ 
if ( c == 'E' ) 

{ 
f = (struct term *) malloc(sizeof(struct term)); 
f->vars = readedgenumO ; 
f->termhd = readedgeO ; 
s = maketp(s,f); 

> 
else 

printfC' Program Aborted as a number was read instead of a V or an E\n") 

exit(O) ; 

} 
} 

} 
} 

} 
fclose(fp); 

return start; 

int elim(tp) 

struct termptr **tp; 

{ 
int i, j, k, 1, r, a, b, c, d, x, y, vail, val2, cost, temp; 

struct vlist *vl, *v2, *v3, *fv, *vtemp, »tv; 

struct node **g, ***h, **newh; 

struct termptr *tpl, *tp2, *tpr, *tprl, *tpr2; 

struct term *f; 

for ( i = 0; i < n; i++ ) 

{ 
h = (struct node ***) malloc(m*sizeof(struct node **)); 



151 

a = 0; 

tpl = (tp[i])->next; 
tp2 = tpl->next; 

h[0] = tpl->ptr->tennhd; 
v3 = tpl->ptr->vars; 

while (tp2 != tp2->next) 

a++; 
vl = v3; 
v2 = tp2->ptr->vars; 

g = tp2->ptr->termhd: 

v3 = unite(vl, v2); 
vtemp = v3->next; 

c = countvar(v3); 

b = p; 
for (k = 1; k < c; k++) 

b = (b*p); 

h[a] = (struct node **) malloc(b*sizeof(struct node * 

for (k = 0; k < n; k++) 
assign[k] = -10; 

for (k = 0; k < b; k++) 
{ 

r = k; 
index(vtemp, r); 
vail = value(vl, countvar(vl)); 
val2 = value(v2, countvar(v2)); 
(h[a])[k] = addlists( (h[a-l] ) [vail] , g[val2] ) ; 
(h[a])[k] = trira( (h[a])[k] ) ; 

} 



152 

free(h[a-l] ) ; 

tv = v2->next->next; 
while (tv->next != tv) 

tprl = tv->ptr; 
tprl->prev->next = tprl->next; 
tprl->next->pr0v = tprl->prev; 
tv = tv->next; 

} 

tp2 = tp2->next; 
} 

d = (b/p); 
newh = (struct node **) malloc(d*sizeof(struct node *)) 

1 = 0; 

for (j = 0; j < d; j++) 
{ 

newhCj] = initlistO; 
for (k = 0; k < p; k++) 

newhCj] = merge( newhCj] , (h[a])[l+k] ) ; 
newhCj] = trim( newhCj] ) ; 
1 +- p; 

> 

free(h[a]); 

v3->next = v3->next->next; /* i eliminated */ 

f = (struct term *) malloc(sizeof(struct term)); 
f->vars = v3; 
f->termhd = newh; 

fv = f->vars->next; 
while (fv->next != fv) 

{ 
X = fv->vtx; 



153 

tpr - (struct termptr *) malloc(sizeof(struct termptr)); 
tpr->ptr = f; 
tpr->next = tp[x]->next->next; 
tpr->prev = tp[x]->next; 
tp[x]->next->next->prev = tpr; 
tp[x]->next->next = tpr; 

fv->ptr = tpr; 
fv = fv->next; 

} 
> /* the i loop */ 

return minmax(newhCO]); 

mainO 
{ 

int load; 
char graph[50]; 
struct termptr **tp; 

scanf("%s", graph); 
scanf ('"/.d", &m); 
scanf("%d", &U); 

listops = 0; 

tp = maketerm(graph); 
load = elim(tp); 

printf("optimum load = %d\n", load); 
printf("The number of list operations were %d\n", listops); 

if (load == (U+1)) /* too heavy */ 
return 1; 

return 0; 
} 



154 

APPENDIX C. A GENERIC UNIX SHELL PROGRAM THAT 

IMPLEMENTS THE ALGORITHMS 

Both CMA and BMA are driven by a shell program. CMA is comiled as "cm" 

and BMA as "bm". When this shell program is invoked, it prompts the user for 

the input graph name, the number of edges and the beginning value of U. If an 

optimum solution is found with the present value of t/, then the optimum value is 

found. Otherwise, U is multiplied by 1.5, shown as 3/2 here, and the program runs 

again. In the program below "xm" must be replaced by "cm" or "bm" as the case 

may be. 



#! /bin/sh 

echo "Enter graph name: " 
read graph 
echo "Enter number of edges 
read m 
echo "Enter the value of U: 
read U 

while true 
do 

if echo "$graph 
$m 
$U" I xm 

then 
break 
else 
U='expr $U \* 3 / 2' 
fi 
done 



156 

APPENDIX D. THE C CODE FOR RANDOM GRAPH 

GENERATION 

We describe the code that generates random graphs for both CMA and BMA. 

The code given below actually generates the random graphs for CMA. However, 

the corresponding code for BMA is easily obtained by not generating the memory 

information of a module in the subroutine "vertices()" — simply remove that piece 

of code. 

To make the graph generated as random as possible, we employ the following 

strategy. We use the unix system command called "rand()", which generates a se

quence of pseudo-random numbers between 0 and 2^^ — 1 = 2147483647. Since we 

are interested in a probability, we divide the generated numbers by this number, to 

get random numbers between 0 and 1. The generator is reinitialized each time by 

calling the system command "srand(seed)" with "seed" as its integer argument. We 

get random starting point by calling srand with a random seed. We choose "process 

id's" as the seed. So each time we run the program on even the same input, we are 

guaranteed a different graph, since the seed is the "id" of the process we just created 

when we called the program. 

The code is self-explanatory and comments are included where appropriate. Note 

that the constant "edgeprob" stands for the edge probability, while "maxexec", 



157 

"maxcom" and "maxmem" represent respectively the maximum execution cost , max

imum communication cost and maximum memory available on processor 1. All of 

these are pre determined. 

#include<stdio.h> 
#include<sys/types.h> 

#define p 3 /* number of processors */ 
#define n 10 /* number of vertices */ 
#define edgeprob (0.15) /* probability of an edge between two vertices 

#define maxexec 20 /» The e:c ratio */ 
#define maxcom 200 

#define maxmem 100 

#define randmax (2147483647.0) /* 2"31 - 1 */ 

int visited[n]; /* To mark a vertex visited in checking 
connectivity of a graph */ 

struct node 
{ 

int vtx; 
struct node *next; 

}; 

float remdomO 
/* This generates a reuidom number between 0 and 1 */ 

{ 
int j ; 
float r; 

r = rand()/randmax; 
return r; 

} 



158 

void vertices0 

/* This generates the vertex information */ 

{ 
int j, k, execcost, memreq; 

for ( j = 0; j < n; j++) 

{ 
printf("V\n"); 

printf ("'/,d\n", j) ; 

/* The next four lines generate the memory requirement of a module */ 

memreq = maxmem*random(); 

while (memreq == 0) 

memreq = maxmem*random(); 

printf("%d\n", memreq); 

/* The following loop generates the execution costs of a module 

on the p processors */ 

for ( k = 0; k < p; k++) 

{ 
execcost = maxexec*random(); 

while (execcost == 0) 

execcost = maxexec*random(); 

printf("%d\n", execcost); 

} 
> 

return ; 

} 

struct node *makenode(i) 

int i; 

/* creates a node in the adjacency list */ 

{ 
struct node *np; 

np » (struct node *) malloc(sizeof(struct node)); 

np->vtx = i; 

np->next = NULL; 



159 

return np; 
} 

struct node *addnode(np, i) 

struct node *np; 

int i; 

/* appends a node to an adjacency list */ 
{ 

struct node *temp; 

if (np == NULL) 

return makenode(i); 

else 

{ 

temp = np; 

while (temp->next != NULL) 

temp = temp->next; 

} 

temp->next = makenode(i); 

return np; 

} 

void visit(el,k) 

struct node **el; 

int k; 

/* visits the vertices of the graph */ 
{ 

struct node *t; 

visited[k] = 1; 

for (t = elCk]; t!= NULL; t = t->next) 

if (visited[t->vtx] == 0) 

visit(el,t->vtx); 

} 



160 

int connected(el) 
struct node **el; 

/• returns 1 if graph is connected, else 0 */ 
{ 

int k; 

for (k = 0; k < n; k++) 
visited[k] = 0; 

for (k = 0; k < n; k++) 
if (visited[k] == 0) 

if (k == 0) 
visit(el, k); 

else 
return 0; 

} 
return 1; 

> 

void edges() 
/* creates the edge information */ 

{ 
int j, k, comcost[n][n], numedges; 
struct node *np, **edgelist; 

start : 
numedges = 0; 
edgelist = (struct node **) malloc(n*sizeof(struct node 

for ( j = 0; j < n; j++) 
edgelist[j] = NULL; 

for (j = 0; j < (n-1); j++) 
for (k = (j+1); k < n; k++) 

{ 
comcost[j][k] = 0; 
if ( remdomO <= edgeprob ) 

/* generate an edge between two vertices with a 



161 

certain probability */ 
{ 

numedges++; 

edgelistCj] = addnode(edgelist[j], k); 
edgelistCk] = addnode(edgelist[k], j); 

while (comcost[j][k] == 0) 
comcost[j][k] = maxcom*random(); 

} 
} 

/* The following condition checks if the graph generated 
is connected; if not it starts all over again */ 

if ( !connected(edgelist) ) 

free(edgelist); 
goto start ; 

} 

/* The following prints out the edges if the 
generated graph is connected */ 

printf("\n"); 
for (j = 0; j < (n-1); j++) 

for (k = (j+1); k < n; k++) 
if (comcost[j][k] != 0) 

{ 
printf("E\n"); 
printf("%d\n", j); 
printf("%d\n", k); 
printf("%d\n", comcost[j][k]); 

} 

/* The number of edges generated is also printed out */ 

printf("\n"); 
printf("numedges = %d\n", numedges); 



162 

} 

mainC) 
{ 
pid.t getpidO; 

srandCgetpidO) ; /* initiate the random sequence at a random point 

verticesO ; 
edges(); 
> 



163 

APPENDIX E. THE C CODE FOR RANDOM TREE GENERATION 

Given below is the code for generating random trees. As with the code for 

generating random graphs given in Appendix D, the code below is for CMA. However, 

as observed there, we can easily modify the code to get the random tree generator 

for BMA. The constants are all same as in Appendix D. The code is adapted from 

the algorithm for random tree generation given in [64]. 

#include<stdio.h> 
#include<sys/types.h> 

#define p 4 /* number of processors */ 
#define n 50 /* number of vertices */ 

#define maxexec 5 
#define maxcom 50 

#define maxmem 100 

«define TRUE 1 
«define FALSE 0 

«define randmax (2147483647.0) /* 2'3i - 1 */ 



164 

float random() 
{ 

int j; 
float r; 

r = ramdO/randmauc; 
return r; 

} 

void verticesO 
{ 

int j, k, execcost, memreq; 
for ( j = 0; j < n; j++) 
{ 

printf("V\n"); 
printf("'/,d\n", j); 

memreq = maxmem*random(); 
while (memreq == 0) 

memreq = maxmem*random(); 
printf("%d\n", memreq); 

for ( k = 0; k < p; k++) 

execcost = maxexec*random(); 
while (execcost == 0) 

execcost = maxexec*random(); 
printf("%d\n", execcost); 

} 
} 

return; 
} 

void reorder(x, k) 
int x[] , k; 

/* This sorts the first k elements in an array of integers */ 
{ 

int i, item, temp; 
for (item = 0; item < k-1; ++item) 



165 

for (i = item+1; i < k; ++i) 
if ( x[i] < x[item] ) 

{ 
temp = xCitem]; 
xCitem] = x[i]; 
x[i] = temp; 

} 
return; 

} 

void edges() 

int i = 0, j, k, comcost, found, sequence[n-23, x[n]; 

for (j = 0; j < (n-2); j++) 
sequenceCj] = (n-l)*random(); 

for (k = 0; k < n; k++) 
xCk] = n+1; 

for (k = 0; k < n; k++) 
{ 

found = FALSE; 

for (j = 0; j < n-2; j++) 

if ( k == sequenceCj] ) 
{ 

found = TRUE; 

break; 
} 

if (!found) 

x[i++] = k; 

} 

k = 0; 

start : 
if (x[0] != n+1) 

comcost = maxcom*random(); 



166 

while (comcost == 0) 
comcost = maxcom*random(); 

if ( x[0] < sequence[k] ) 
{ 

printf("E\n"); 
printf("'/,d\n", %[0]); 
printf("%d\n", sequence[k]); 
printf("%d\n", comcost); 

} 
else 

{ 
printf("E\n"); 
printf("%d\n", sequence[k]); 
printf("%d\n", x[0]); 
printf("%d\n", comcost); 

} 
} 

k++; 

if (k == n-2) 
{ 

numedges++; 
comcost = maxcom*random(); 
while (comcost == 0) 

comcost = maxcom*random(); 
if ( x[0] < sequence[k] ) 
{ 

printf("E\n"); 
printf("%d\n", x[0]); 
printf("%d\n", sequence[k]); 
printf("%d\n", comcost); 

} 
else 

{ 
printf("E\n"); 
printf("%d\n", sequence[k]); 
printf("%d\n", x[0]); 
printf("%d\n", comcost); 

} 



167 

goto end; 
> 

for (j = k; j < n-2; j++) 
if ( sequence [k-1] =?= sequence [j] ) 

x[0] = n+1; 
reorder(x,n); 
goto start; 

} 

x[0] = sequence[k-1]; 
reorder(x,n); 
goto start; 

end: 
return ; 
} 

mainO 
{ 
pid.t getpidO; 

srandCgetpidO); /* initiate the random sequence at a random point */ 

verticesO ; 
edges 0 ; 
} 



16S 

APPENDIX F. A SAMPLE INPUT GRAPH FOR CMA 

This is a sample input graph; in fact it is the same graph given as an example 

in Chapter 5. The letter "V" stands for a vertex (module) and "E" for an edge. 

The number immediately following V is the vertex number. Note that the vertices 

are numbered from 0 to (n-1). This is to maintain consistentency with the computer 

during implementation. The second number after a V is the memory requirement 

of the module. The numbers following the memory requirement are all execution 

costs. For example, module 1 (vertex 0 here) has a memory requirement of 20 and 

its execution costs are 40, 20 and 25 on the three processors respectively. Similarly, 

the first two numbers following an E are the vertices which make up the edge. The 

third number is the communication cost between the two modules making the edge 

up. For example, the edge (2,3) ((1,2) here) has a uniform communication cost of 2. 



V 

0 
20 
40 

20 
25 
V 

1 
30 

25 

25 
20 
V 

2 
25 
20 
45 

25 
V 

3 
15 
30 
35 

30 

V 

4 
35 

15 

30 

40 

109 



0 
2 
8 
E 

1 
2 
2 
E 

1 
4 
E 

2 
3 

3 

E 

2 
4 

1 
E 

3 
4 

4 

170 



171 

APPENDIX G. A SAMPLE INPUT GRAPH FOR BMA 

This is the same input graph as in Appendix F. The only difference from that 

graph is that there are no memory requirements here. 

V 

0 
40 

20 
25 
V 

1 
25 

25 

20 
V 

2 
20 
45 

25 
V 

3 

30 
35 
30 

V 

4 

15 

30 

40 



172 

E 

0 
2 
8 
E 

1 
2 
2 
E 

1 
4 
5 

E 

2 
3 

3 

E 

2 
4 
1 
E 

3 

4 

4 


