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I. INTRODUCTION 

In this investigation the unsteady, laminar flow of a 

viscous, incompressible fluid in the entrance region of a 

circular tube is treated analytically and experimentally. 

In particular, the case for a fluid initially at rest and 

rapidly set in motion under a constant head is considered. 

Such a starting flow situation is often experienced, but 

relatively little research has been done on this problem. 

To provide a proper background to the unsteady entrance 

region.problem it is appropriate to discuss the developing 

flow phenomenon for the steady flow case. When a fluid 

flows steadily and smoothly through a tube connected to a 

large reservoir the velocity distribution in the tube changes 

from some initial uniform velocity profile at the tube 

entrance to a fully developed parabolic profile, which is 

independent of axial position far downstream. The pressure 

gradient also varies from some initial value at the inlet 

to a value that remains essentially constant beyond some 

downstream position. The length of the tube over which this 

change takes place is designated the entrance length 

(Figure 1-a). The change in the velocity profile is due to 

the viscous forces. Through the influence of wall friction, 

flow near the wall is retarded, and a boundary layer starts 

growing at the inlet and gradually approaches the tube center 

as the flow proceeds downstream. A core of fluid essentially 
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undisturbed by the wall friction, but accelerated to com­

pensate for the retarded flow near the wall, exists in the 

central portion of the tube. Close to the entrance where the 

boundary layer is thin and the velocity gradient is large there 

will be high friction loss in comparison to that occurring in 

the fully developed region. Also, the variation in the 

velocity profile with axial location contributes to a momentum 

change resulting in a relatively high pressure drop. 

For the case of unsteady flow, in which the entrance 

velocity is time-dependent, the downstream velocity profile 

depends on both axial position and time. Also, one can vis­

ualize an entrance length beyond which the velocity distri­

bution and pressure gradient are independent of location, but 

dependent on time. It should be emphasized that for this case 

the entrance length depends on time (Figure 1-b). The objec­

tives of the present investigation were: (l) to determine the 

velocity profile at any instant and position in the entrance 

region when the flow is started from rest, (2) to determine 

the time-dependent entrance length theoretically and compare 

with an experimentally determined value, and (3) to develop 

a suitable experimental technique for unsteady flow problems 

of this type. 

A survey of the fluid mechanics literature has shown that 

the integral momentum equation has not been fully exploited 

in solving unsteady flow problems. An attempt has been made 
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in this study to use this equation in conjunction with a 

boundary layer model in the entrance region to obtain a 

theoretical solution of the problem under consideration. 
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II. REVIEW OP LITERATURE 

In view of the importance of the flow characteristics 

in the entrance region there has been considerable interest 

in the so-called "entrance-region" problem. Various 

investigators have attacked the steady flow problem using 

several different methods of solution, and numerous solutions 

are available. 

For steady flow in the entrance region of a circular tube 

Langhaar (13) by means of a linearizing approximation solved 

the Navier-Stokes equations. The family of velocity pro­

files were defined by Bessel functions and expressions for 

pressure drop and entrance length were obtained. Han (9) 

applied a similar technique to rectangular ducts. The 

linearizing method was also applied by Lundgren _et _al. (l4) 

for determining the pressure drop in the entrance region of 

ducts of arbitrary cross section. The most significant 

aspect of this method was that the incremental pressure drop 

in the entrance length could be calculated from a knowledge 

of the fully developed velocity profile alone. Results of the 

application of this method to a variety of duct cross-sections 

were in good agreement with the available analytical and 

experimental results. 

Another method consisting of patching boundary layer 

solutions, that apply near the beginning of entrance region, 

to perturbations of the fully developed solutions that apply 
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far downstream was used by Schlichting (l8) for the parallel 

plate channel. This method with a slight variation was 

applied to a circular tube by Atkinson and Goldstein (8). 

Still another approach considering an integral repre­

sentation of the momentum equation for a circular tube was 

followed by Schiller (17) in which a boundary layer and 

inviscid core model was assumed for the entire entrance region. 

In this approach the velocity profile was described as a 

parabolic one. Campbell and Slattery (3) refined Schiller's 

solution by accounting for viscous dissipation within the 

boundary layer. 

A numerical approach was considered by Wang and Longwell 

(24) using the Navier-Stokes equations for the inlet region of 

a channel. Hornbeck (11) solved numerically the boundary layer 

equations for the entrance region of a circular tube. 

While numerous references are available for steady flow 

very few were found that are related to unsteady flow in 

the entrance region of-ducts. Atabek (l) using a linearizing 

approximation, solved the Navier-Stokes equations for 

unsteady and oscillating flows in the entrance region of 

coaxial tubes, tubes and channels with the inlet velocity 

described as an arbitrary function of time. However, the 

starting flow problem of the type considered in the present 

investigation was not solved. Atabek, Chang and Fingerson 

(2) published an experimental study on the measurement of 
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oscillating flow in the inlet region of a circular tube to 

verify Atabek's earlier theory. The experimental results 

were in good agreement with the theory. Pearson (15) using 

a numerical technique solved the Navier-Stokes equations for 

the time-dependent laminar flow of a viscous fluid in the 

inlet section between two suddenly accelerated parallel 

plates. 

There are a number of publications on unsteady boundary 

layers which are of interest with respect to this thesis. 

Stewartson (22) published a paper concerned with the motion 

of a fluid in a boundary layer developed on an impulsively 

started semi-infinite plate. In one of his approaches he 

obtained an approximate solution from the boundary layer 

integral momentum equation by the method of characteristics. 

His results were in good agreement both with Rayleigh's 

solution for the Infinite plate (for small time) and with 

Blasius's solution for the flat plate (for large time). 

Schuh (19) developed a general method, based on the integral 

momentum equation, for the approximate calculation of 

unsteady boundary layers. Results of the particular cases 

considered in Schuh's work were in agreement with available 

exact solutions. It was also shown in the general case, 

for an arbitrary velocity distribution in time and space, 

outside the boundary layer, that the integral momentum 

equation could be reduced to two simultaneous differential 
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equations that could be solved by the method of character­

istics . 

In the present investigation the unsteady entrance 

velocity was determined indirectly using unsteady pressure 

gradients measured in the fully developed region. There are 

several publications in which discharge and the corresponding 

unsteady pressure gradients for fully developed flows are 

discussed. Ito (12), using methods of operational calculus, 

determined expressions for the velocity distribution and 

discharge for various types of non-steady pressure gradients. 

Szymanski (23) solved the Navier-Stokes equations for flow of 

a fluid started from rest in an infinitely long circular 

tube under a constant pressure gradient. Gerbes (6) by means 

of Laplace transformation solved the Navier-Stokes equations 

for flow in a long circular tube with sudden application of a 

constant pressure gradient, with sudden removal of the 

constant pressure gradient, and with an oscillating pressure 

gradient. Rogge and Young (l6) presented a general method 

for obtaining an exact solution of the Navier-Stokes equations 

for time-dependent flow in parallel plate channels and 

circular tubes, given the discharge as a prescribed function 

of time. An approximate solution, valid for small times, was 

also obtained using the integral momentum equation. For 

both the cases of constant discharge and linearly accelerated 

flow the exact and approximate solutions were in good 
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agreement. 

It was apparent from the review of lij^rature that the 

use of the momentum equation for the study of unsteady flow 

problems was feasible but had not received much attention. 



10 

III. EQUATIONS AND METHOD OP SOLUTION 

A. Derivation of the Governing Equation 

The general integral momentum equation applied to a 

control volume is 

f dV + f pv(n . v)dS = sF (l) 

V- s 
Where 

t = time 

v = velocity vector 

n = unit vector normal to the surface of the control 

volume 

dS = surface element of the area enclosing the control 

volume 

dV = volume element of the control volume 

p = density of the fluid 

2? = vector sum of all forces acting on the control 

volume 

Consider an element of fluid in the entrance region of a 

circular tube (figure 2). . Application of the momentum 

integral equation to this element in the axial direction 

gives 

[j* ̂  2TTrdr]dx - f^pU^2Trrdr + p(u+ -|^ dx)^2nrdr 
o o o 

= -T 2TrRdx - a r^2TTrdr +(G+dx) r^2Trrdr (2) 
to li. 



2nRTujdx 

R u 

R 
2nrdr 

o 

- u+ a# dx 

R 
(a + dx) J Snrdr 

dx. 

Fig. 2. Control volume in the entrance region for momentum analysis. 
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where 

u = velocity in the axial direction 

T = wall shear stress 
(JU 

R = radius of the tube 

u = normal stress in the axial direction, assumed 

constant over the cross-section of the tube 

In Equation 2 the quantity (~ dx)^ is neglected in compari­

son with u^ and 2u ̂  dx. On dividing by 2~pdx and 

simplifying we obtain, for an incompressible fluid, 

^ 4% rdr + J^2u ̂ rdr = -Z^+l-^ J^rdr (3) V ot J 9x p p ÔX J 

With the transformation 

r = R - y 

dr = -dy (4) 

where y is defined as shown in Figure 1-a, Equation 3 can 

be written as 

/ # + J^2u -g (R-y)dy = - ^ J^(R-y)dy 

(5) 

For an incompressible fluid, the normal stress and velocity 

gradient in the axial direction are related'-by the equation 

3u 
CT = -P + 2n "5^ 

where 

p = pressure (average normal stress) 

y = absolute viscosity of the fluid 

Thus, 
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In the inviscld core of the entrance region, where the 

viscosity is assumed to be zero, 

liz = _ ̂  
ÔX BX 

P 2 And, in the boundary layer o u/ax is usually neglected. 

Thus, for the entire cross-section, we can take 

lS = --g (6) 

Prom Equations 5 and 6 we obtain 

^ (R-y)dy + J^2u II (R-y)dy = - ^ H 

(7) 

In the analysis that follows, the following assumptions 

are made with respect to the Inviscld core model considered: 

(1) The entrance velocity, which is a function of time, 

is uniform over the entire cross-section of the 

tube at the inlet, that is, at x = 0. 

(2) The velocity in the inviscld core is uniform over 

the cross section of the core. That is, the radial 

component of the fluid velocity is zero in the 

inviscld core. Let the core velocity be u^. 

(3) As noted earlier, the pressure variation within 

the boundary layer in the radial direction is 

negligible in comparison with that in the axial 

direction. This leads to the conclusion that the 
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axial pressure-gradient in the entire fluid is the 

same as the axial pressure-gradient in the inviscid 

core. Since the viscosity and the radial velocity 

are zero in the inviscid core this assumption 

reduces the Navier-Stokes equation for velocity u^ 

within the core to 

' u. ^ # (8) 
at 1 ax p ox 

(4) The fluid is Newtonian. 

(5) The velocity profiles in the "boundary layer are 

similar and the dimensionless velocity profiles can 

be expressed as 

^ = 2 2 ^ (9) 

where 6 is the boundary layer thickness. 

From Equations 7 and 8 we have 

f # (R-y)<Jy+ f 2u ^ ̂  (R-y)ay 

•p 3U-] 
+ r^i s3r 

By rearranging the terms we obtain 

— = ^ (u-u^)(R-y)dy+ |^(R-y)dy- g~(H-y)dy 

To the right hand side let us add and subtract the term 

J^u ^)dy and simplify. Observing that J -^(uu]_)(l- '^)(3y= 
o ° 

ÔU-, 
Ju •^)dy+/u^ -^(l- '^)dy we can further write 
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"T "It |)dy+ f -§32 (uui)(l- g)dy- f ̂(1- g)dy 

" t s3r (%i-u)(i- #)dy- ^ (1- ̂ )dy 

Since is not a function of y we can write 

f̂ i (̂ 1 f R̂ ŷ} 

âu, 
+ u 1 ax 1̂ (1- |)dy-û  f li (1- |)dy (10) 

The last term in Equation 10 can be proved to be zero through 

the equation of continuity. For axi-symmetric flow the 

equation of continuity is 

IJJ (ur) (vr) = 0 

-§32 (ur) = - I? (vr) (11 ) 

where v is the radial velocity. Prom Equations 4 and 11, 

.H iU |)<lr 
ÔX 

o 

= 5 f & R J ar 
0 

= i fd(vr) =1 fvr 
0 ° 

= 5 = ° (12) 

Further, in boundary layer theory, for axi-symmetric flow. 
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the quantities J^(l- g-) (l- i)dy and f -^(l- (l- |)dy 
o * o ^1 ^1 ^ 

are defined as the displacement thickness and momentum 

thickness, respectively. The displacement thickness is the 

distance by which the irrotational core is displaced toward 

the center of the tube due to the decrease in velocity in the 

boundary layer, and the momentum thickness is that distance 

within which the momentum, if the flow is irrotational, is 

equivalent to the momentum loss in the boundary layer. Let 

the displacement thickness be 

J^(l- g)dy = (13) 
o ^ 

and the momentum thickness 

(1- s'ay . e (i4) 

With Equations 12, 13, and l4 in Equation 10 we can write 

(Ui6*) +13^ (u^e) (15) 

Differentiation of the second term on the right hand side and 

2 division throughout by u^ gives 

-̂ 5 = ̂ 2 at ("iG*) + ̂ a) +-§& (16) 
PUN U-J J. 

X ± 2 
With the parabolic velocity profile ̂  = 2 - -2— the 

^1 ^ 6 
quantities 5* and e can be evaluated. Since = 1 for 

^1 
R > y > 6 we can write 
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6* = f^d- ̂ )(1- |)dy = [5(1- ̂ )(1- |)dy 
b *1 " o 1 

= i = 3 ̂'- h h (17) 
o 

Ji 
= g-)(i- |)dy 

O  1  1  o i l  

6. ,7 -rr̂ . . tT . 2 , 16̂  

(18) 

~ I (2 2 _.Zg) (1-2 -f + •^) (1- |)dy =Ï3 6 - 2Ô R 

2 
and + 20 = I Ô - |-

AXSO, -» = . V 

= V[|^C"l(2|-4)}]y=0=^ (19) 
g 

Substitution for —, 6* and G into Equation l6 gives 
P 

% = G - jg #-)} + E[ âS" (5 * -iSG:#-) + 

a: (%3 G - iô F-) (20) 

We can obtain a relation between the inlet velocity u^ 

(Figure 1-b) and the core velocity u^ by applying the 

principle of conservation of mass for the fluid between the 

inlet and any downstream position. The principle of 

conservation of mass gives 

TrR\ = TI(R-6)\ 2wrudr 

= rr(R-6)2u-j_ + j52Tr(R-y )udy 
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Replacement of u In the integral by the parabolic velocity 
2 

profile results in -R2u = -(R-ô)^u-, + r^2n(R-y)u. (2 - •^)dy 
o o ^ ^ à 

or, TrR^u^ = rr(R-ô)^u^ + 2ttu^ ~ "12 

Simplification of the above equation yields 

U ,  = —  
^  ,  2  6  1 6 ^  

3 R + ^ p 

With the use of u^ Equation 20 can be written as 

.  . . < i f I  

o n 

+ is (%5 G (22) 

On simplification Equation 22 is reduced to 

2v ,, 2 6.1 «2 2 R ,1 6 1 «2 26,1 
1 R ̂  S js> = ;2(3 R -12 3 5 + % 

+ (23) 

. orc3 6 11 «2, .1 1 6i,,l 1 6w, 2 
+ - 55 %2)(3 • •S R'+(Ï5 - 3 



19 

The pertinent initial and boundary conditions are: 

6=0 at t = 0 for X > 0 

6 = 0 at X = 0 for t > 0 

Let us define the dimensionless variables T], t and u* by 

the relations 

§ = x/R 

T] = 6/R 

T = tU/R and, 

uj = 

where U = steady state average velocity. Equation 23 in 

terms of the above dimensionless variables becomes 

2 v  - 2 , 1  2 \ 2  1 / 1  1  2 \ / ,  2  ,  1  2 \ 2  ̂ ^ o  /•t ^ X fX J. , J. L 
I (1- 3^1 + -^Tl ) - ̂  (^Ti - Ygn )(1- -^r] + 

o 

= I'n •§? 

+ 2[(|̂  -

(24) 

The corresponding initial and boundary conditions in terms of 

the new variables are; 

•n = 0 at T = 0 for § > 0 
(25) 

n = 0 at Ç = 0 for T > 0 
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B. Method of Solution 

Equation 24 is a quasi-linear partial differential 

equation of the first order of the type 

-|̂  = R(§,T,ri) (26) 

and its solution, as shown by Sneddon (21), is obtained by 

integrating the system of ordinary differential equations 

chosen from the auxiliary system 

f = f (27) 

There are two independent ordinary differential equations in 

the system 27. Each ordinary differential equation has 

solutions represented by a one-parameter family of curves, 

which are called characteristics of the first order quasi-

linear partial differential equation. The characteristics 

comprising a one-parameter family of solutions of Equations 

27 generate the surface ri = r](§,T)j which is the solution of 

the Equation 26. Following this well-known method of solution 

the auxiliary system associated with Equation 24 can be 

written as 

dg 

[̂(3̂ - ~ 

rlT 

•̂ (3 - -̂ n)(l- |ri + ̂ T]̂ ) 
b J " J " (28) 

dn 

2v 2 . 1 2\2 1/11 2\/. 2_. 1 2\2 ^^o 
r:™(i- 311+ sn ) - --5 (3'n- inn )(i- 3̂ + ) — 
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In the following. Equation 28 in conjunction with the 

appropriate initial and boundary conditions is solved (i) 

for constant entrance velocity, i.e., for u* = 1; which 

implies that the entrance velocity u^ has reached the value 

of the steady state velocity U for t > 0, and (ii) for a 

time-dependent entrance velocity derived from unsteady 

pressure gradients measured in the fully-developed flow 

region. 

1. Solution for constant entrance velocity 

For u* = 1 the system of ordinary differential equations, 

given by Equation 28, becomes 

-  (22) 
(3 - •̂ Ti)(i- |TI+ 1̂ (1- fn + 

Two independent ordinary differential equations can now be 

wpitten: jjjj  ̂g 

dT = ̂  f - rJ dn (30) 
1- -̂ r\ + -̂ T] 

(3̂ - ) (-gTi-

Integration of Equation 30 between the limits 0 and T in 

conjunction with the initial condition TI = 0 at T = 0 for 

§ > 0 gives 

T= — " p  ~  " è  " § 1 1 +  - 5 1 - 1 ^ ) + — t a n  — t a n  ̂ ( - \ / É " ) }  

(32) 
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Integration of Equation 31 "between the limits 0 and § using 

the boundary condition 

n = 0 at Ç = 0 and r > 0 gives 

Defining the Reynolds number as Re = 2RU/v, we may replace 

the quantity RU/v by Re/2 in the above equations. It can be 

observed in Equations 32 and 33 that the diraensionless 

boundary layer thickness ti is not obtained explicitly as a 

function of T and as a function of §. However, the 

T|-§ relationships are expressed graphically by plotting t • 

and § for various values of r\ (see Figures 3 and 4). The 

value of n may vary from 0 to 1 since this is the range of 

interest, in the sense that at t] = 1 the boundary layer 

thickness is equal to the radius of the tube at which time 

the flow is considered to have attained the fully-developed 

state. Treating r) as a parameter, ç and t are related through 

the parameter r\) and the characteristic through the origin on 

the §-7 plane is plotted. This characteristic divides the 

§-T plane into two regions which are designated as Region I 

and Region II (Figure 5). Region I is the range of influence 

of the initial curve § = 0 (the r-axis along which T > O), and 

Equation 33 which is valid for T > 0 gives the appropriate 

(33) 
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solution in this region. It can be seen from Equation33 that 

the boundary layer thickness, r\3 is independent of 7, and is 

a function of § alone. This means that at any axial position 

in Region I the boundary layer thickness developed is constant 

for all T. The limiting value of ç, for which the boundary 

layer thickness is a function only of the axial position, is 

determined by the ^-coordinate corresponding to the T 

in question on the §-t characteristic of Figure 5. This value 

of § corresponds to the instantaneous dimensionless entrance 

length. The boundary layer thickness for various values of 

Ç (and T) in Region I are determined from Figure 4. 

Region II is the range of influence of the initial 

curve T = 0 (the g-axis along which ç > O). Equation 32, 

which is valid for § > 0, gives the appropriate solution in 

this region. The boundary layer thickness, as can be seen 

in Equation 32, is independent of §, and is a function of t 

alone. That is, at any particular time the boundary layer 

thickness is constant for all axial positions beyond the 

value of § determined from the characteristic, as 

described above. The boundary layer thicknesses at various 

T in Region II are determined from Figure 3. 

Figure 5 illustrates the nature of the boundary layer 

growth at any T and at any §. Suppose the modes of the 

boundary layer growth at T = and at T = XG are required. 

The lines T = and T = TG intersect the characteristic at 
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A and 3 respectively. The axial positions and are 

the respective entrance lengths corresponding to and Tg. 

Along the straight line ? = the "boundary layer thickness 

is a function of ç over the portion A'A (in Region I) and is 

constant for ç > A'A (in Region II). In the same manner, 

along the straight line t = T3 the boundary layer thickness 

is a function of g over the portion B'B (in Region I) and 

is constant for ç > B'B (in Region II). Now, let us consider 

the boundary layer growth along the straight line ç = 

Along the line g = the boundary layer thickness is a 

constant over the portion AB" (in Region I). That is, -q 

is constant along this line for T > T < in 

Region II, the boundary layer thickness is a function of 

time. Since in Region I, the boundary layer thickness is 

constant, at any axial position, for all j the axial 

dependence of the boundary layer thickness is the same over 

the portions A'A and B'B". This means that the boundary 

layer development at T = TG IS the same as that for the 

boundary layer at 7 = up to an axial length g = 

Similar patterns of boundary layer growth can be observed for 

all time. A sketch of the boundary layer development in the 

entrance region, as determined by the Equations 32 and 33, 

for the case of constant entrance velocity is shown in 

Figure 6. Although the solution for rj, as presented in 

Equations 32 and 33, is not obtained explicitly as a function 
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of I and T It is a closed form solution. 

In computing ç and y (Figures 3, and 5) a Reynolds 

number of l6lO was used. The reason for using this number 

is convenience from the point of the experiment designed to 

produce this number based on a steady state velocity. A 

detailed description of the experiment is given in the next 

chapter, 

For the case of a time-dependent velocity at the inlet. 

Equation 24 does not yield a closed form solution because 

of the coupling of the ^ and ^ functions. A computer method 

involving a numerical technique according to Runge-Kutta-Gill 

(7) is employed to solve this problem, as described in the 

next section. 

The main purpose for obtaining the solution for the 

constant entrance velocity was to establish some level of 

confidence in the computer program for the solution of the 

more general problem with a time-dependent entrance velocity. 

Before making this comparison a discussion of the time-

dependent entrance velocity problem will be given. 

2. Solution for time-dependent entrance velocity 

Consider once again Equations 26 and 27. Let us seek a 

solution of 26 passing through a prescribed initial curve 

§ = T = T(r), T| = T^r) (34) 

in space. Garabedian (5) has shown that this problem can be 

solved by considering for each value of r the integral curve 
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of the auxiliary system 27 with initial values defined by 

Equation 34. If we now introduce a parameter, s, along these 

integral curves we obtain a surface 

§ = g(s,r), 7 = 7(3,r), T] = T^s,r) (35) 

in parametric form. If we represent ri as in Equation 

35J which we can, this should yield the solution of Equation 

26 passing through the initial curve given by Equations 34. 

Then the system of Equations 27 can be replaced by the system 

n), = R(g,T,r) (36) 

where the parameter s plays the role of an independent 

variable. 

In accord with the above theory we can replace the 

system of Equations 28 by the system 

•§§ = 2[(|-n- -̂ 11̂ ) (3 -

•fi = ̂ 2̂ (3 - in)(i- 3T)+ §T1̂ ) 

Now we have a system of ordinary differential equations for 

which we seek the solution passing through the initial curve 

F = 0, T) = 0 
(38) 

T = 0, T| = 0 

It was not possible to obtain a closed form solution of 

Equations 37 because of the coupling of n and T functions on 

the right hand side. Therefore we considered a numerical 
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solution employing a step-by-step integration procedure. 

A computer program called NODE, available in the Computer 

Science Library of Iowa State University, was used to solve 

Equations 37. The NODE program makes use of R. L. Crane's 

predictor-corrector procedure with the starting process 

due to .Runge-Kutta-Gill, and is available in FORTRAN 

version for the IBM 36O system. The listing of the main 

program and the subroutines associated with NODE are pre­

sented in Appendix A. The solution of Equations 37 for the 

time-dependent entrance velocity problem is presented in 

Chapter VI. 

To establish some level of confidence in the computer 

program, the previously described problem of constant entrance 

velocity is considered, and the results are compared with 

those given by the closed form solution. 

3. Comparison of the closed form solution and the computer 
solution for the case of constant entrance velocity 

For the case u* = 1, the set of Equations 37 become 

dp gr/3 11 2wl 1 >,,/l 1 2,1 2\_ 
ds = -gôn A3 - - 20^1X1- 311+ ;]ti 

(39) 

dy /I 1 W-] 2 1 2 \ 

The appropriate initial and boundary conditions remain 

the same as in Equation 38. The Reynolds number used in 

Equations 39 is 16IO. After integration of the set of 

Equations 39 with the NODE subroutine, we can construct a 
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family of characteristics in space by treating ^ as a 

parameter. Such a family of characteristics, mechanically 

plotted by incorporating the Simplotter (GRAPH) subroutine 

i n t o  t h e  N O D E  p r o g r a m ,  i s  s h o w n  i n  F i g u r e  J .  

With reference to Figure 7, the space above the character­

istic through the origin is Region I and the space below is 

Region II as defined earlier. 

For values of "n from the computer solution the corres­

ponding § and T can be computed from the closed form solution 

given in Equations 32 and 33> and compared with § and t of 

the computer solution. The validity of the computer program 

can then be evaluated by considering the agreement between 

the computer solution and the closed form solution for g 

and T- Table 1 illustrates the good agreement for various 

values of r|. 

Table 1. Comparison of computer solution and closed form 
solution for the case of constant entrance velocity 

n 
computer 

F 
Closed form computer 

T 
closed form 

n solution solution solution solution 

0.0773 0.1849 0.1842 0.4039 0.4041 
0.1131 0,4216 0.4206 0.8683 0.8685 
0.2111 1.7233 1.7235 3.0554 3.0555 
0.3241 4.7967 4.7966 7.2729 7.2731 
0.4217 9.2567 9.2569 12.4024 12.4027 
0.5075 14.9143 14.914I 18.0572 18.0580 
0.6194 25.2422 25.2435 27.0275 27.0283 
0.7161 37.2935 37.2963 36.1880 36.1889 
0.8526 60.0134 60.0187 51.2461 51.2480 
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Fig. 7. Characteristics of the development of boundary 
layer in the entrance region of a circular tube. 
Constant entrance velocity. Re = l6lO. 
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IV. EXPERIMENTAL INVESTIGATION 

A. Objectives 

The main purpose of the experimental investigation was 

to veryify the theoretical solution (computer solution) 

obtained for the time-dependent entrance length when a 

fluid, initially at rest, was suddenly set in motion 

under a constant head. Also, the development of suitable 

experimental techniques for studies involving unsteady 

flows of this type was considered to be important. 

The experiments were further intended to determine 

indirectly, the unsteady entrance velocity from the pressure 

gradients measured in the fully developed region. The 

criterion for determining the fully developed region was 

based on the constancy of the unsteady pressure gradient with 

respect to axial position. The entrance velocity thus 

determined was used for u* in the Equations 37. 

B. Description of Equipment 

The apparatus used in the investigation is shown in 

Figure 8. The flow system consisted of a constant head tank, 

a calming chamber, a test section, a mechanism to start the 

flow at the end of the tube, a collection tank and a pump. 

The instrumentation consisted of two strain-gage type 

pressure transducers, two Dana D.C. amplifiers and a two 



Fig. 8. Overall view of the equipment. 

A-constant head tank, B-test section, 
C-pressure tap, D-pressure transducer, 
E-spring-mounted plunger, P-Dana amplifier, 
G-Oscilloscope equipped with Polaroid 
camera. 
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channel cathode ray oscilloscope with Polaroid camera. A 

simple manometer and a traveling microscope were used to 

calibrate the pressure transducers. A graduated cylinder 

and a stop watch were used for determining steady-state flow 

rate. 

The flow system schematic is illustrated in Figure 9. 

The constant head tank was made of an 8 in. inside diameter 

plexiglass tube, and was designed to produce a hydrostatic 

head of approximately 7-3/4 in. The calming chamber was made 

of a 3-1/2 in. inside diameter plexiglass tube and was 

positioned parallel to the test section as shown in Figure 

11. The test section was a 12 ft. long brass tube with a 

nominal inside diameter of 0.375 in., and a wall thickness 

of l/l6 in. Twelve pressure taps, each of diameter 0.032 in. 

were drilled radially along the top edge of the tube. The 

inside surface of the test section was polished to eliminate 

burrs by rubbing with emery cloth. At each pressure tap a 

B & D one-way female louver valve was permanently fixed to 

the tube by means of a resin cement. The construction of a 

pressure tap is shown in Figure 13. The construction of the 

first tap in the entrance region was different from that of 

others because of its special position (see Figure l4). The 

distances of the pressure taps, measured from the inside 

surface of the face plate of the calming chamber, are given 

in Table 2. The distance of the first tap measured from the 



38 

constant head 
tank 

pressure 
transducer D.C. motor 
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plunger 

collection tank 
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Fig. 9. Schematic of the flow system. 

transducer rn 
#1 

Tektronix type 
502 dual beam 
oscilloscope 
with Polaroid 
camera 

balance box 

transducer 
#2 

] 
Dana D.C. 
amplifier 
#2 

Dana D.C. 
amplifier 
#1 

Fig. 10. Schematic of the instrumentation. 



Pig. 11. The constant head tank and the calming 
chamber. Pressure transducer located at 
tap 2 can be seen on the right. 

Pig. 12. Equipment for pressure measurement. 
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' B & D one-way louver 
valve 

pressure tap 
0.32" dia. resin cement 

Pig. 13. Construction of the pressure tap at various axial 
positions. 

face plate of the 
calming chamber 

pressure tap 
0.197 

Pig. l4. Construction of the pressure tap at the entrance 
of the test section. 
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inside surface of the face plate is illustrated in Figure l4. 

The pressure taps were placed closer near the entrance than 

in the region far downstream to measure the more rapidly 
I 

varying pressures near the entrance. The inlet of the test 

section was carefully rounded with curvature equal to the 

radius of the tube as shown in Figure l4. 

Table 2. Distances of the pressure taps from the inside 
surface of the face plate of the calming chamber 

Tap No. Distance in Tap No. Distance in Tap No. 
inches inches 

1 0.197 7 28.375 

2 1.375 8 40.375 

3 2.857 9 58.375 

4 4.375 10 82.375 

5 10.375 11 106,375 

6 16.375 12 143.375 

A plexiglass orifice was inserted at the end of the test 

section to obtain the desired rate of flow. Two orifices were 

used which gave Reynolds numbers of 700 and l6lO based on the 

steady state average velocity. The flow was started by 

pulling a plunger held tight against the orifice by spring 

action (Figure 15). The pulling of the plunger was effected 

by winding a string, in conjunction with a light coiled 

spring, on a constant diameter sheave mounted on the shaft 

of a D.C. motor. The light coiled spring helped to generate 



Fig. 15. Mechanism to start the flow. Plunger in the 
closed position. 

Fig. 16. Mechanism to start the flow. Plunger in 
the open position. 
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reproducibility in opening the end of the tube by absorbing 

the initial shock the plunger would experience when the 

string became taut. The position of the plunger, when the 

end of the tube was opened, is shown in Figure l6. The 

D.C. motor, which was a General Electric aircraft motor, 

was powered by Electro Model EFB Filtered D.C. Power Supply. 

The motor and the power supply unit can be seen on the 

right-hand side of Figures 15 and l6. 

The fluid from the test section was collected in a 

large glass container and pumped back to the constant head 

tank by means of a Jabsco 1/8 hp self-priming pump. 

The pressure sensing device was Model P-23Db physiologi­

cal pressure transducer manufactured by Statham Laboratories, 

Inc. (see Figure 17). This type of pressure transducer has 

been widely used for dynamic pressure measurements in 

physiological systems. The frequency response of the 

transducer, as reported by the manufacturer, was approxi­

mately 200 cycles per second. The pressure transducer 

consisted of a thin metallic diaphragm with a fluid chamber 

on one side and a strain-gage bridge bonded on the other. 

The fluid chamber of the transducer was filled with the 

working fluid and connected to a pressure tap on the tube 

through the B & D one-way louver valve fixed thereon. The 

deformation of the diaphragm, due to pressure change in the 

fluid chamber, would cause the strain-gage bridge to produce 

an electrical signal proportional to the pressure change. 



Fig. 17. Statham P-23Db physiological Pig. I8. Traveling microscope and 
pressure transducer. the simple manometer. 



47 



48 

The signal from the strain-gage bridge of the trans­

ducer was amplified with a Dana D.C. amplifier and recorded 

on a Tektronix Type 502 Dual Beam Oscilloscope equipped with 

a Tektronix Type C-12 Polaroid camera (see Figure 12). The 

choice of the Dana D.C. amplifier was dictated by the 

necessity to eliminate the presence of small amplitude 

fluctuations, attributed to noise, which appeared on the 

pressure-time curve when a Brush amplifier (model BL-520) was 

used. With the Dana amplifier it was possible to select the 

range of high frequency response required to obtain a 

relatively sharp trace by filtering the fluctuations due to 

noise. The maximum possible frequency response on the Dana 

amplifier filter system was 1000 cycles per second. A 

schematic of the instrumentation is shown in Figure 10. 

A simple open-end manometer and a Gaertner traveling 

microscope (Series No. 2119-P) were used to calibrate the 

pressure transducer. The manometer was constructed of a 

1/8 in. inside diameter glass tube fixed to a graduated 

wooden ruler. To the lower end of the glass tube a B & D 

male louver valve was attached so the manometer could be 

directly connected to the female louver valve fixed to the 

pressure tap on the test section. The traveling microscope 

with a least count of 0.0001 had a capability of measuring 

the displacement up to 2 in. (see Figure I8). The details 

of the calibration procedure are presented in section C of 

this chapter. 



49 

C. Experimental Procedure 

The procedure described in the following relates to the 

measurement of pressures at various axial positions along 

the test section in which a fluid, initially at rest, was 

set in motion under a constant head. The fluid used was 

water. 

1. Preparation of the pressure transducer 

It was observed that the presence of air bubbles in the 

fluid chamber of the pressure transducer had a strongly 

adverse effect on its frequency response. A device to sub­

ject the pressure transducer to a sudden change in pressure 

was built and the frequency response of transducer was 

checked. The device, shown in Figure 1$, consisted of a 1 

in. diameter brass tube, to which the transducer was 

connected at the lower end through a B & D one-way louver 

valve. The tube was partly filled with water and the upper 

end was closed with a thin plastic membrane. The fluid 

chamber of the pressure transducer was filled with water and 

the strain gage side of the transducer was connected to the 

amplifier and the oscilloscope equipped with a Polaroid 

camera. The sudden change in pressure on the transducer 

was generated by pressurizing the space above the liquid 

surface in the brass tube, by the rubber bulb of a • 

sphygmomanometer, until the plastic membrane ruptured. Prom 

the transient damped pressure-time trace recorded by the 
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Pig. 19. "Pop" test equipment. 
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Polaroid camera the frequency response of the pressure 

transducer was estimated. 

By performing a few "pop" tests described above it was 

learned that the removal of minute air bubbles trapped in 

the fluid chamber of the pressure transducer resulted in 

marked increase in the frequency response. To achieve as 

high a frequency response as possible the fluid chamber of 

the transducer was first flushed with distilled water to 

which a small quantity of a mild detergent was added. This 

operation, not only cleaned the surface of the metallic 

diaphragm, but also improved the adhesion between the fluid 

and the walls of the chamber. The air bubbles, if there 

were any, were removed by gently forcing water to and fro 

through the fluid chamber of the transducer by means of a 

hypodermic syringe. This step was taken regardless of 

whether air bubbles were visible or not. The frequencies 

recorded from the "pop" tests were consistently in the 

range of I5O-I8O cycles per second. 

In actual use in the flow tests, the pressure transducer 

was fixed to the pressure tap, on the test section, where 

the pressure variation was to be recorded. The air bubbles, 

possibly trapped while the transducer was being fixed to the 

pressure tap, were removed by using the hypodermic syringe 

once again. The pressure transducer was then ready to use 

in the recording of the pressure-time curve. 
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2. Recording of the pressure-time curve 

Before the actual measurement of pressures, the water 

in the flow system was allowed to circulate for approximately 

an hour to reach a steady state temperature. Two pressure 

transducers were simultaneously used for the pressure 

measurements. One of the transducers was attached to the 

first pressure tap at the inlet, and the other to the last 

tap at the end of the tube. A time lapse of about 5 minutes 

was allowed for the transducers to attain the temperature of 

the fluid. This procedure was followed whenever the trans­

ducer was shifted to a different axial location, since the 

transducers were found to be temperature-sensitive. 

Appropriate sensitivity settings were selected on the 

amplifiers and the oscilloscope. The selection was dictated 

by the amount of measurable deflection and the degree of 

clarity of the recorded curve. The shutter of the Polaroid 

camera was kept open, and the oscilloscope was placed on 

single sweep. When the end of the tube was opened by pulling 

the plunger with the help of the B.C. motor the oscilloscope 

was triggered, and the pressure-time curve was photographed 

by the camera. The transducer at the first tap was then 

shifted to the second, to the third, and so on. The trans­

ducer attached to the last tap at the end of the tube was 

always retained at that position. If only one transducer 

was used in the experiment it would have been difficult to 
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decide whether the flow was started exactly the same way 

each time the plunger was pulled. To check the reproduci­

bility of the starting of flow the signal from the trans­

ducer retained at the last tap was examined intermittently 

during the experiment. Also, the pressure-time trace at a 

randomly chosen tap was recorded for repeated startings of 

the flow and all traces superimposed on the same photograph. 

Some examples of such photographs, shown in Figure 20, 

indicate satisfactory reproducibility.- In Figure 20 the 

maximum deviation from the average curve was estimated to 

be + 4 per cent. 

The pressure-time curve at each pressure tap was 

recorded at two different sweep rates. A slower sweep rate 

was chosen to record the complete pressure-time curve up to 

fully established flow. A faster sweep rate was selected to 

extend the pressure-time curve, for better readability, in 

the initial period of the flow development. The two sweep 

rates were different for the two rates of flow considered. 

For the Reynolds number l6lO, sweep rates of 50 milliseconds 

per centimeter and 0.2 second per centimeter were used. For 

the Reynolds number 700, sweep rates of 20 milliseconds per 

centimeter and 0.1 second per centimeter were used. At 

each location the pressure-time curves using both the sweep 

rates were recorded on the same photograph. Some examples 

of the pressure-time curves for the Reynolds number l6lO 



Fig. 20. Demonstration of reproducibility. 

Frames A and B are exposed at tap 8. 
Each contains four exposures superposed on 
one another. Frames C and D are exposed at 
tap 12. Each contains three superpositions. 
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are shown In Figure 21. The lower curves were obtained with 

the sweep rate of 0.2 second per centimeter and the upper 

curves were obtained with the sweep rate of 50 milliseconds 

per centimeter. 

The pressure-time curve, as can be seen in one of the 

frames in Figure 21, is characterized by a rapid drop in 

pressure from the available hydrostatic pressure and then a 

gradual increase in pressure to a steady value, independent 

of time, at which stage the flow is considered to be fully 

developed. The deflection of the pressure-time curve from 

the line of reference (corresponding to a state of rest) in 

the steady state region gives steady state pressure drop when 

multiplied by the appropriate calibration factor. Figure 21 

presents pressure-time curves at tap numbers 1, 3, 4, 6, 8 

and 9 with appropriate adjustments of the sensitivity on the 

amplifier and the oscilloscope. The reference line corres­

ponding to the state at which the fluid is at rest is not 

shown in Figure 21. In the frames 2-6 the reference line is 

the lower most horizontal grid line. In the frame 1 the 

first and third horizontal grid lines from below are the 

reference lines for the slower and faster traces respectively. 

It can be observed in these curves that the peak pressure 

drop occurred nearly at the same instant (4-0 milliseconds 

from the start of the flow) at all the axial locations, and 

the magnitude of pressure drop Increased as we moved down­

stream. Also, the time required to reach a steady value of 



Pig. 21. Some examples of pressure-time curves. 
Re 1610. 

Frame 1 
Frame 2 
Frame 3 
Frame 4 
Frame 5 
Frane 6 

Pressure-time 
Pressure-time 
Pressure-time 
Pressure-time 
Pressure-time 
Pressure-time 

curve at tap 1 
curve at tap 3 
curve at tap 4 
curve at tap 6 
curve at tap 8 
curve at tap 9 
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pressure increased as we moved downstream from the inlet 

to the subsequent axial positions. 

From the pressure-time curves at various axial locations 

the pressures at various instants along the length of the 

test section were determined and plotted as pressure versus 

length curves. These curves are presented in section D of 

this chapter. 

3. Calibration of the -pressure transducer 

The pressure transducer was calibrated by determining 

the deflection of the pressure-time curve in the steady 

state region and relating this deflection to the actual 

pressure drop for steady flow through the test section at 

the corresponding locations. The actual steady-flow pressure 

drop was measured, in inches of water, by using the previously 

described simple manometer and a traveling microscope for 

both flow rates considered. The steady-flow pressure drops 

encountered in the experiment at various axial locations were 

in the range 0 to 0.53 inches of water. To determine the 

actual pressure corresponding to the line of reference in 

the pressure-time curves the hydrostatic head was measured. 

Slight variation in the hydrostatic head at each location 

was considered likely due to possible misalignment in laying 

the test section and diversity in the height of the louver 

valves. In view of the small magnitudes of pressure drops 

encountered in the experiment this variation could not be 
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overlooked. The local variation of the hydrostatic head was 

taken into account in determining the local pressure drop 

and in plotting the pressure versus length curves at various 

instants. The local hydrostatic pressure head and the 

pressure drop for the two flow rates are presented in Table 3. 

The hydrostatic pressure head at taps 1, 9, 10, 11, and 12 

were not measured due to difficulties encountered in setting 

up the manometer and the traveling microscope. 

The deflections in the steady state region of the 

pressure-time curves were then related with the actual 

pressure drops and expressed in the form of calibration 

curves presented in Figure 22. These curves were obtained 

for various sensitivity positions, on the amplifier and the 

oscilloscope, associated with the pressure-time curves. 

Although the pressure transducer was calibrated against 

known steady state values of pressure drop, the resulting 

calibration factors were used in determining the pressure 

drop in unsteady flow because the frequency response of the 

transducer was considered to be sufficiently high. 

There were some inherent advantages in regard to the 

calibration procedure just described. Firstly, it did not 

require a delicate device to produce known values of 

pressure in the range 0-0.53 inches of water. Secondly, since 

the pressure drops were measured at the time of recording 

the pressure-time curves, the time lapse between the 
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Oscilloscope Amplifier 
Curve sensitivity gain 

5 mv/cm 
10 mv/cm 
10 mv/cm 
10 mv/cm 

500 
500 
200 
100 

10 20 50 40 

Deflection on scope, millimeters 

Fig. 22. Calibration curves. 
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Table 3. Local hydrostatic 
in steady flow 

pressure head and pressure drop 

Tap No. Hydrostatic 
pressure heads 
in inches of 

water 

Steady state pressure drop in 
inches of water 

Re = 1610 Re = 7OO 

2 7.816 0.0580 0.0210 

3 7.820 0.0700 0.0238 

4 7.817 0.0850 0.0309 

5 7.807 0.1091 0.0408 

6 7.804 0.1290 0.0559 

7 7.791 0.1917 0.0900 

8 7.772 0.2429 0.1190 

9 - 0.3211 0.1642 

10 - 0.4266 0.2296 

11 - 0.5226 0.2900 

calibration and the actual performance of the experiment was 

at a minimum thus avoiding possible calibration drift. 

4. Measurement of the rate of steady flow 

A 50 ml graduated cylinder and a stop watch were used 

to measure the rate of flow after it was fully developed. 

Two flow rates were considered in the experiment. For each 

flow rate an average of ten measurements was obtained. The 

temperature of the water was 28.5° C throughout the duration 

of the experiment. The average inside diameter of the tube 

was 0.374 inch. One flow rate was 0.609 cubic inches per 

second, and the resulting Reynolds number was 16IO. The other 
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flow rate was 0.265 cubic inches per second and the 

Reynolds number 700. 

D. Experimental Results 

Prom the pressure-time curve at each tap the pressure 

drops at various instants after the flow was commenced were 

determined. Prom these data, curves relating pressure drop 

and axial length, at various instants, were obtained. For 

the two flow rates considered these curves in dimensionless 

form are presented in Pigures 23 and 24. The data obtained 

from the pressure-time curves, converted into dimensionless 

pressure drops, are given in Appendix D. 

As shown in Pigures 23 and 24, the pressure gradient, 

at any instant, first varied up to a certain length of the 

tube and then remained constant. This length beyond which 

the pressure gradient remained constant is defined as the 

entrance length for this investigation. Prom Pigures 23 

and 24 it is hard to determine the entrance length because 

of the scale to which these figures are drawn. The variation 

of the instantaneous pressure gradient in the proximity of 

the inlet can be clearly seen when the figures are drawn to 

an enlarged scale. This is discussed in detail in Chapter 

VI. Also, the pressure gradient line, which was initially 

horizontal sweeps across the pressure-length plane until it 

reached an extreme position at the instant corresponding to 
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the peak pressure drop and then approaches the position of 

the steady-state pressure gradient. 

The instantaneous value of the mean velocity in the 

tube is difficult to measure and no completely satisfactory 

flow meters are available for this measurement. Thus a 

method based on the relationship between the pressure 

gradient and flow was used. 

To determine the unsteady entrance velocity the pressure 

gradient in the fully developed region was expressed as a 

function of time. Figures 25 and 26 show the pressure 

gradient-time relationship for the two rates of flow con­

sidered. The variable along the horizontal axis is expressed 

as dimensionless time rr, and the variable along the vertical 

axis as dimensionless pressure gradient dp*/dç, where p* = 
p 

p/rpU . The method of determining the unsteady entrance 

velocity is described in Chapter V. 

For steady flow with the Reynolds number l6lO, the 

measured volume rate of flow and the volume rate of flow 

determined by using the Hagen-Poiseuille equation were 

compared. By the Hagen-Poiseuille equation the flow rate 

is given by the equation 

AP •a = # (40) 

A*D 
Where = Pressure gradient In the fully developed region ij 

R = radius of the tube 

U = absolute viscosity of the fluid 
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From the pressure-time curves recorded at the taps 10 and 

12 the pressure drop was determined to be 0.26 inches of 

water or 0.26 x O.O3613 pounds per square inch. The distance 

between the taps (see Table 2) was 6l inches. The viscosity 

of water at 28.5° C is 17.3 x 10"^ pound-second per square 

foot or 17.3 X 10~^/l44 pound-second per square inch. The 

radius of the tube was 0.374/2 inch or O.187 inch. 

Then 

q ^ 0.26 X 0.03613 T7 (0.187)^ 

^ 8(17.3 X 10"^)/144 

= 0.615 cubic inches per second. 

The volume flow rate of O.615 cubic inches per second, 

determined from the Hagen-Poiseuille equation, agreed well 

with the measured flow rate of 0.609 cubic inches per 

second. This agreement gave an added degree of confidence 

in the flow system. 
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V. DETERMINATION OP THE UNSTEADY 

ENTRANCE VELOCITY 

To solve the set of Equations 37 It is necessary to 

specify the dimensionless velocity, u*, as a function of 

time and space. One of the assumptions associated with the 

boundary layer model for unsteady flow in the entrance region 

is that the entrance velocity is uniform over the cross-

section of the inlet and therefore u* is a function of time 

alone. The subject of discussion in this chapter is the 

determination of u* for the specific tests run. 

By the principle of continuity the volume rate of flow 

crossing the inlet is equal to the discharge obtained by 

integrating the velocity profile, at any downstream position, 

over the entire cross-section of the tube. An expression for 

the unsteady velocity can be derived by integration of the 

Navier-Stokes equations. If we choose to use the velocity 

profile in the fully developed region, the Navier-Stokes 

equations may be integrated, at least in principle, since 

the nonlinear (convective acceleration) terms become 

identically zero in the fully developed region. It can be 

observed in Figures 23 and 24 that the pressure gradient in 

the fully developed region is a function of time alone. The 

experimental data of the instantaneous pressure gradient 

(Figures 25 and 26) may be approximated by a function of time 

and this function can subsequently be used in solving the 
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Navier-Stokes equations. Thus the determination of the 

entrance velocity from the solution of the Navier-Stokes 

equations is tantamount to an indirect measurement of the 

entrance velocity from the experimentally determined 

instantaneous pressure gradient. In the present investigation 

this indirect method of determining the entrance velocity was 

utilized since it was not possible to measure directly the 

unsteady entrance velocity (or, unsteady discharge) with any 

available experimental means. 

A. Determination of the Pressure Gradient Function 

The shape of the pressure gradient versus time curve, 

as can be seen in Figures 25 and 26, is characterised by a 

rapid rise in the pressure gradient and then a gradual fall 

to a constant value independent of time. The general shape 

of this experimental curve may be approximated by the 

function gCr) = A(l-e + B'i^e where A, B, k, Ij and m 

are appropriate constants. The function s(t) is 0 at t = 0 

and approaches the value A as T =. The value. A, is the 

constant pressure gradient pertaining to the steady state, 

and it is fixed from the experimental data obtained for 

large time. In the function gf?) the constants B, k, i, and 

m are determined by trial and error. 

For the flow corresponding to the Reynolds number l6lO 

the instantaneous pressure gradient in the fully developed 
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region was approximated by the function 

g(T)= - = 0.02(l-e"0'25T)^o.l9T°'^Ge"0'lGT (4l) 

For the case of the Reynolds number 700 the function was 

determined to be 

S(T)= - "I— = 0.047(L-E"0'G2T)+2.0T0'52E-l'17T (42) 

The curves of the function gC-r) for both the Reynolds 

numbers are superposed on the corresponding experimental 

curves in Figures 27 and 28 to demonstrate the goodness of 

fit. 

B. Solution of the Navier-Stokes Equations 

For axial flow in the fully developed region, the 

Navier-Stokes equations in the nondimensional form reduce to 

where the dimensionless parameters 

u* = u/U 

r* = r/R 

P* = p/ipn^ 

T = tU/R, and 

§ = x/R 

From the definition of the Reynolds number ̂  

Let 
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so that 

f(T) = ig(T) 

= afl-e-^^j+bfe-kT (44) 

Where a = A/2 and b = B/2. 

Then Equation 43 can be written as 

The pertinent boundary and initial conditions are 

u* = 0 at r* = 1 for all T > 0 

(46) 
u* = 0 at T = 0 for all 0 5 r* < 1 

Define the Laplace transforms with respect to a variable s as 

cC(u*) = Û = J e'^^u^d? 
o 

CO 

Jl[f(r)} = r = ! e-STf(T)dT 
o 

The Laplace transform of Equation 45 is 

^r*r* r* ̂ r* ~ û = - "1^ f (4?) 

where suffix denotes differentiation. The corresponding 

boundary condition is 

Û = 0 at r* = 1 (48) 

The general solution of Equation 47 is 

û = ( fpr*) + {f¥ ̂*1 + i 
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where A, and A_ are functions of s, and I and K are modified 
I d  0  0  

Bessel functions of the first and second kind of zero order, 

respectively. Since û must be finite at r* = 0, the function 

Ag = 0. Then the solution of Equation 47 is 

Û = AiIQC,^ r*) +1 (49) 

Mith the boundary condition û = 0 at r* = 1 the solution 

becomes 

f f ^o( 3 
û t " (50) 

= - *2 

Where 

"2 = s 
î r*) 

According to Carslaw and Jaeger (4) the inverse Laplace 

transform of û is 

u* =X.-^cs) -Z'^cSg) 

= uj - u| (51) 

Then uj =J1"̂ (|) = ff{T) dT (52) 
o 

where T is a dummy variable, and 

u * 

I 

We express ûg as the product fG, where 
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G = 
Io(Js r*) 

s IQO #) 

so that 

s I. 
sf¥^ 

By definition of the Laplace transform 

u| =X-l(fS) 

By the convolution theorem we can write 

J 

o 
u* = J f( T-T)G(T)dT = J f(T)G( T-T)dT (53) 

where 

OCT) =X'^(0) = ̂  
1 ^ .ST fpfjs r*) 

(54) 
8 ±. 

By expansion of the functions I^(Js^ r*) and ^Q(J^§^) 

it can be seen that s = 0 is not a branch point. By applying 

the results of the Cauchy's residue theorem Equation 54 

becomes „ 

•<" - "J. ̂  (55) 

LRë' where are the roots of J^fys •^)(see Appendix B for details). 

From Equations 51 and 55, with convolution theoi^m, we have 

00 T -2 -^T 
u* = u* - u* = Sĵ  S 

' 'n!l 
(56) 
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2 where ce 
- 2  

9^(7) = J t{r-T)e dT (57) 
0 

Equation 44 can be written as 

•f(T-T) = a(l-e-^^'-^))fb(T_Ty%e-k(T-T) 

Substitution of this result in Equation 57 gives 

F^(T) = a J e Re dT - ae"^ J e^^ " W^^dT 
o o 

• 4 
-b jiT_T)me-k(T-T)-2 Ri ̂  dT 

On p 

= (aSe _ ̂  e Re ^)- Mg _(e -Re'^-e"'^'^) 
20^ 2,^ 4Re_2o^ 

+ bl^fT) 

where 2 
n 

(58) 

I^fT) = J^(T-Ty=e-k(T-T)-2 55 Tg, (59) 

o 

We can also write 

5n(') + Sn(T) 2 (50) 

'4  ̂ .2 fit 
where, G (?) = %!_(?) - e 

2 

- iS^-^(e'^^ _e-^') 
4Re-2ag 

With Equation 60 the expression for velocity becomes 

= 'nSl ïw g " (62) 
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Observe that _» 0 as t _ œ. Therefore, the steady state 

solution may be obtained from 

ca J (a r*) 
u* = aRe S —-r i \ (63) 

-, °-n llGn' 
n=l 

Now, let us evaluate By the convolution theorem we 

can replace the variable T-T with T. Then 
2 

!%(?) = J T® e"^^ ^Re(^"^)dT 

o ^ 2 

= e J T® dT (64) 
o 

With Equations $8 and 64 we can determine the dimensionless 

velocity from Equation 56 as g 2 
ccy 

o= JQ (Gnf*)raRe aRe ^ aRe .-^RZ^ 
U* = 22 =r-T r{ ^ - p G - p 

n=l ^n'^1^'^'' 2 a: 2a? ^Re-2a °n ^•n n 

an-r 

-r — 2 e"^' + be (65) 

o 

Equation 65 gives the velocity profile in the fully developed 

region. We have to integrate this velocity profile to obtain 

the unsteady discharge. The method of determining the 

unsteady discharge is discussed in the following. 

C. Velocity Calculations 

Define the dimensionless discharge, Q*, as the ratio 

Q/Qg where, Q is the instantaneous discharge and is the 

steady state discharge. Then, if u is the velocity in the 
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fully developed region, 

Q » = i  =  !Lî  = 2/§|d(£) 

1 
= 2 J u*r* dr* (66) 

o 

With the velocity profile given "by Equation 65 

CO 

n 
CO - CO 

= 2 aRe z 4r + 4 2 G (t) (6?) 
n=l %; n=l og 

As T _» = the second term on the right hand side becomes zero, 

and the dimensionless discharge in the steady state will be 

given by 

Q* = 2 aRe g (68) 
n=l cc^ 

In Equation 68, as n _• » the right hand side should approach 

1. Equation 68 can be written as 

Q* = 2aRe H—jj; +....} (69) 

^2 ^3 

The first four roots of J^(a„) are: o n 

= 2.4048 = 6.6537 

% = 5.5201 = 11.7915 (70) 
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With Equations 69 and 70 the dimensionless discharge in the 

steady state for the Reynolds number l6lO is 

Q* = 2 X 0.01 X 1610 {— 77 + — E 
(2.4048)^ (5.5201)^ 

+ — % + ...] = 0.9994 (71) 
(8.0537) 

From the discharge measured in the experiment 

= (72) 

Comparison of Equations 71 and 72 indicates that the dimen-

sionless discharge determined from theory approaches 1 

as expected. 

using Equations 6l and 67 we can write the dimensionless 

unsteady discharge as ^ 

Q* = SaRe 2-^ + 42 J , Re.^dT 
n=l n=l CL. 

h o 

- T5 -. âS| e - SS® (e Tîê .e-^-T)} 

_2og - -â§T 

= 4 S ^ e ^ 2 P 
Z&n 2%% (4Re-2Qg)a% 

4 g + \ j' (#e-^+ -R#^- -^'')dT} (73) 
(<%e-2o%)Gn og o 

By the principle of continuity, and by the fact that the 

entrance velocity, u^, is uniform over the cross-section of 

the inlet, we can express the unsteady discharge by the 

equation 
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Q = ttR^Uq (74) 

The steady state discharge is given by 

Qg = ttR^U 

Then the dimensionless discharge becomes 

n nR^u u 

The ratio u^/U has been defined as the dimensionless unsteady 

entrance velocity, u*. From Equations 73 and 75 will have 

» " ̂ aRe aRe ^ He aRe e Re 

2a^ 2 ou 

+ 2 2 + \ -R?^- - R;'")dT] (76) 
(4Re-2a^)a^ & 

For a given Reynolds number and the corresponding 

pressure-gradient function f(T)= a(l-e"^^)+bT^^"^^, the 

unsteady entrance velocity can be determined from Equation 76, 

For the pressure gradient functions described in Equations 

4l and 42, the integral of the last term in Equation 76 

cannot be obtained explicitly. Hence, the evaluation of 

u^ by Equation 76 was programmed on the computer. In the 

evaluation of u* the first sixty roots (i.e., n = l,6o) of 

the Bessel function Jq(CXĵ ) were considered. The summation 

of the series was stopped when the difference in the sums 

up to any consecutive roots was less than 0.00001. That is, 

when |s^^^-sn| < 0.00001. The values of the roots of J^fa^) 
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were supplied by the Computer Science Library of the Iowa 

State University. The listing of the computer program used 

in the determination of u* and the results are presented in 

Appendix C. The unsteady entrance velocities for the 

Reynolds numbers 1610 and 7OO are shown in Figures 29 and 30. 

A"s 'expected Figures 29 and 30 show that the curves 

representing the velocity development are not similar in 

shape to those for the pressure gradient. While the pressure 

gradient increased rapidly there was no corresponding 

exceedingly rapid rise in the velocity. In the case of the 

Reynolds number 1610 the pressure gradient reached the steady 

state approximately at T = 47, but at this T the corresponding 

velocity was approximately 72 per cent of the steady state 

velocity. The behavior was similar in the case of the 

Reynolds number 7OO. The lagging of the velocity development 

confirms that the velocity does not respond to the pressure 

gradient instantaneously. 

In the set of Equations 37 we also need to know du*/dT. 

Differentiation of u* in the Equation 76, with respect to T 

gives 

d 

a-tRe 

(^Re-2a^)a^ 
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. 2 -
= 4 s {•% e + — J e 

n=l a^ IRe-Za^ 

- g g + iç T™e-kT] (77) 
(œe-2a^)a; % 

Equation 77 can be written as 

2a^ 2a| 

 ̂= 4(̂  e" + -̂  e" + ....) 

ai ag 

20^^ 2al 

+4 (-̂ 2̂  e" e" ...) 
4Re-2a^ '('Re-2a^ 

-4 g—g ^ g—g e-4T + ...) 
('tRe-2aJ)aJ ('('Re-2ag)a^ 

+4 (tL ,*2-^7 + yae-kT + ...) (78) 

ttj Gg 

Using the roots of the Bessel function each series in 

the parenthesis of Equation 78 was evaluated. The summation 

of each series was cutoff when the difference between the 

consecutive terms of the series was less than 0.00001 with 

T = 0. With this method of evaluation, for the flow 

corresponding to the Reynolds number 16IO, we have obtained 

—~ = 0.09308 TO'l8g-0.l6T_o 00842 e"0'25T 

+ 0.00712 e-0'0072T +0.00155 (79) 

In the same manner, for the flow corresponding to the 
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Reynolds number 700, we have obtained 

^ = 0.98734 T0'52e-1.175T 

-0.00096 e"°*°^'^+0.01669 erO'017T+ ... (80) 

Using u* and the corresponding du*/dT, for the 

Reynolds numbers 1610 and 700, Equations 37 were solved 

by employing the NODE program as outlined in Chapter III. 

More terms than shown in Equations 79 and 80 were used for 

du*/dT. The unsteady velocity u* at any instant, for use 

in the NODE program, was obtained by interpolating between 

the appropriate discrete values of T. The interpolation was 

done with the subroutines ALI and ATSM incorporated into the 

NODE program. The results pertaining to this solution are 

presented in the next chapter. 
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VI. RESULTS AND DISCUSSION 

The solution of the system of Equations 37 obtained with 

the help of the NODE program described earlier is presented 

in the following in the form of families of characteristics. 

The boundary layer development, the velocity profiles at 

various instants and axial positions, and the instantaneous 

entrance lengths are determined from these characteristics. 

The instantaneous entrance lengths obtained from the computer 

solution are compared with those estimated from the experi­

mental results. Also, the steady state solution for the 

entrance length is compared with some of the solutions 

available in the fluid mechanics literature. 

A. Boundary Layer Growth, Instantaneous Entrance 

Length and Velocity Profile 

The families of characteristics presented in Figures 31 

and 36 are from the solution for the cases of the Reynolds 

numbers 161O and 700, respectively. The solution for the 

flow with the Reynolds number I61O will be discussed in 

detail. In Figure 31 we have a family of characteristics in 

the Ç-T space obtained with various initial values along the 

T and § axes. The boundary layer thickness, r\, varies along 

each characteristic. These characteristics can be replotted 

with T and g versus -q, as shown in Figures 32 and 33, 

respectively. If the boundary layer thickness is desired 
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at any point on a characteristic, it can be determined from 

the corresponding replotted curve. 

For example, let the development of the boundary layer 

along the tube at T = 30 be required. In Figure 31 the 

line T = 30 cuts various characteristics at A, B, 0, D and 

E, and and are the corresponding axial 

positions. The boundary layer thickness at A, B, and C can 

be obtained from the appropriate characteristics in Figure 

32. These are the boundary layer thicknesses at and 

. The boundary layer thickness at C, D and E can be 

obtained from the appropriate characteristics in Figure 33. 

In Figure 33 it can be observed that the boundary layer 

thickness corresponding to the points C, D and E is constant, 

although the points are at various axial distances. This 

nature of the boundary layer growth can be observed for any T. 

The boundary layer growth at various values of T is presented 

in Figure 34. 

Consistent with the mode of development of the boundary 

layer described above, the Ç-T space of Figure 31 is divided 

into two regions by the characteristic passing through the 

origin. The two regions are designated as Region I and 

Region II. In Region I the boundary layer thickness (n) 

is a function of both axial position (ç) and time (T). At 

a fixed T, ^ is a function of G and at a fixed §, N is a 

function of T. This behavior, which can be observed in 
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Figure 34, is in contrast with the result obtained for the 

case of constant entrance velocity in that the boundary 

layer thickness, at a fixed axial position, is constant for 

all time (Figure 6). The time-dependence of the boundary 

layer thickness at a fixed axial position can be attributed 

to the time-dependence of the entrance velocity. In Region 

II the boundary layer thickness, at any particular time, is 

independent of the axial position. At any instant, the 

axial distance beyond which the boundary layer thickness no 

longer depends upon the axial position is the so-called 

entrance length. Thus, the characteristic through the 

origin that divides the Ç-T space into Region I and Region II 

gives the instantaneous entrance length. The entrance 

lengths at T = lO, 20 and 30 are shown in Figure 34. 

Figure 34 indicates that, at a position corresponding 

to a point on the characteristic through the origin, there 

is an abrupt transition from the boundary layer thickness 

being a function of time and axial distance to a function 

of time alone. In reality such an abrupt transition does not 

exist. Although the solution of the integral momentum 

equation indicates an abrupt change in the boundary layer 

thickness along the characteristic through the origin, a 

gradual transition seems likely. 

At any axial position the development of velocity profile 

with respect to time can be obtained by considering Equations 
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Fig. 33. 
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9 and 21: 

^ = (9 )  

Equation 9 can be written as 

^ = (81) 

Equation 21 can be written as 

1:^ = i + i p (82) 

The quantities u^/U, u/U and g/R have been defined as u*, u* 

and n respectively. Now, by defining u^/U and y/R as u^ and 

y*, respectively, and by eliminating u^ from Equations 8l 

and 82 we can write 

"• • rr̂  ? - f' 
Prom Equation 83 we can determine the dimen-sionless .velocity, 

u*, in the boundary layer at any distance y* from the wall, 

u* and r\ required in Equation 83 are determined from Figures 

29 and 34, respectively. It can be observed that at y* = r 

Equation 83 gives u* = u*/(l- -gn 4- = u^. That is, at 

the edge of the boundary layer the velocity in the boundary 

layer equals the velocity in the irrotational core. The 

velocity profiles determined from Equation 83^ for various 

times and axial positions, are illustrated in Figure 35. 
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The procedure described in the foregoing discussion is 

repeated for the characteristics associated with the Reynolds 

number 7OO (Figure 36). Figures 37 and 38 present the 

characteristics replotted with T and § against N, and 

Figures 39 and 40 illustrate the boundary layer growth, and 

velocity profiles respectively. 

B. Comparison of Theoretical and Experimental 

Results 

In Table 4 the theoretical, time-dependent entrance 

lengths for the Reynolds numbers 16IO and 700 are presented. 

From the experimental pressure-drop data tabulated in Tables 

7 and 8 in Appendix D the experimental entrance lengths at 

various instants were determined by identifying the lengths 

beyond which the pressure gradient remained constant. 

Figure 4l illustrates the method of determining the entrance 

length from the experimental data for a particular time. The 

entrance length is measured from the position of the first 

tap on the test section since the curvature of the inlet 

Joins the inside wall of the test section tangentially at 

this position (see Figure l4). It is difficult to determine 

the instantaneous entrance length precisely because the 

instantaneous pressure gradient, which varies near the 

entrance, changes over smoothly to a constant value at a 

downstream position. Figures 42 and 43 illustrate the 
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Table 4. Dimensionless, theoretical, time-dependent entrance 
lengths. Reynolds number 16IO and TOO 

Re = 1610 
Time (T) Entrance 

length (§) 
Time (T} 

Re = 700 
Entrance 
length (§) 

0.16 0.0003 

0.28 0.0009 

0.59 0.0049 

1.78 0.0546 

2.03 0.0719 

4.39 0.3677 

6.36 0.7799 

9.39 1.6704 

13.76 3.4030 

19.47 . 6.2905 

26.25 10.4226 

33.75 15.7243 

41.73 22.0936 

45.85 25.6543 

54.26 33.4944 

71.52 51.7794 

80.25 62.1035 

88.98 73.1304 

97.69 84.7950 

114.84 109.6140 

0.15 0.0009 
0.28 0.0042 

0.33 0.0059 

0.38 0.0086 

0.73 0.0383 

0.84 0.0519 

1.59 0.2007 

3.20 0.7348 

4.37 1.2327 
6.46 2.2639 
8.84 3.6247 

9.69 4.1502 

10.56 4.7129 

13.29 6.6374 

17.23 9.7997 

19.29 11.6484 

24.67 17.0124 

31.30 24.5547 

40.00 35.6162 

48.29 47.0921 

experimental entrance lengths thus determined for relatively 

large times for the Reynolds numbers I610 and 700, respec­

tively. In Figures 44 and 45 are determined entrance lengths 

for relatively small times for the Reynolds numbers 1610 and 

700, respectively. A comparison of the theoretical and 
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experimental entrance lengths for the times ranging from 

relatively large to relatively small values is made in 

Table 5. 

Table 5- Comparison of theoretical and experimental 
dimensionless entrance lengths 

Reynolds Dimensionless Entrance length (g) 
number time (T) Theoretical Experimental 

1610 47.83 27.8 163 

38.66 19.7 101 

29.89 13.3 40 

20.93 8.4 16 

17.94 5.7 • 9.2 

14.95 4.1 5.1 

11.96 3.1 3.3 

8.96 1.5 1.7 

5.98 0.7 0.7 

700 10.41 4.6 73 

9.11 3.9 25 

8.46 3.5 15 

7.81 2.9 8 

7.16 2.6 4,2 

6.51 2.3 2.4 

3.25 0.8 0.9 

As can be observed in Table for large times, the 

theoretical entrance lengths are not in agreement with the 

experimentally determined values. The deviation from the 

experimental entrance length is as much as 50 to 600 per cent 

in the case of the Reynolds number 16IO. For the Reynolds 
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number TOO the deviation is even higher. From the observed 

discrepancy It is evident that the theory using the 

integral momentum technique does not predict the entrance 

length accurately for large times. 

The results presented in Table 5 also indicate that, 

for small times, when the boundary layer thickness is 

relatively small in comparison with tube radius, theory and 

experiment are in close agreement. With the data of Table 5, 

dimensionless time versus entrance length curves are plotted 

and presented in Figures 46 and 4? for the Reynolds numbers 

l6lO and 700, respectively. It can be observed in these 

curves that the theory and experiment agree well up to a 

certain time and then deviate from each other. The dimen­

sionless boundary layer thickness up to which theory and 

experiment agree well is approximately 0.3. 

0. Comparison of the Steady State Entrance 

Lengths 

In the boundary layer and irrotational core model 

assumed for the entrance region flow, fully developed flow 

occurs when g/R = 1. The application of the integral momentum 

equation assumes that Poiseuille flow is established at this 

point although, in principle, infinite time and infinite 

distance are required for its establishment. In Figures 43 

and 49 the experimental and theoretical entrance lengths are 
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shown for the Reynolds niimbers I6IO and 700, respectively. 

The theoretical value of the steady state entrance length is 

determined from the computer solution at s/R =1. In Table 

6 the steady state entrance length expressed as a dimension-

less parameter ç/2Re is compared with the entrance lengths 

obtained by various methods (20). 

Table 6. Comparison of steady state entrance lengths 

Source §/2 Re 

Boussinesque 0.055 

Langhaar 0.057 

Schiller 0.029 

Modified cubic profile 0.030 

Modified Pohlhausen method 0.0296 
This investigation (theory, n = l) 0.034 

This investigation (experimental). Re = 1610 0.051 
This investigation (experimental). Re = 700 0.052 

It is observed from Table 6 that the theoretical methods 

employing the integral momentum equation give inaccurate 

entrance length in steady flow. The failure of the theory to 

predict accurately the entrance length in the steady flow is 

attributable to the assumption of the inviscid core in the 

central portion of the tube. The assumption of the inviscid 

core is good near the entrance where' the boundary layer is 

thin, but as the boundary layer becomes thick downstream 
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the viscous effects from the tube wall are diffused Into the 

flow field and the assumed inviscid core does not really 

exist, i.e., the velocity profile in the core is not flat 

as assumed. The experimental entrance length of the steady 

flow agrees with the theoretical entrance length obtained 

from the solutions of the Navier-Stokes equations 

(Boussinesque and Langhaar), rather than with those obtained 

from integral momentum methods. 
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VU. SUMMARY AND CONCLUSIONS 

The problem of unsteady, laminar flow of a viscous, 

incompressible fluid in the entrance region of a circular 

tube was investigated. The unsteadiness of the flow was 

produced by rapidly setting the fluid in motion from a state 

of rest. The objectives of the investigation were to deter­

mine the boundary layer thicknesses, velocity profiles and 

instantaneous entrance lengths for this type of unsteady flow. 

In the analytical treatment of the problem, the general 

integral momentum equation was applied to a fluid element in 

the entrance region. And by assuming a physical model, 

consisting of a growing boundary layer with a parabolic 

velocity profile and an accelerating irrotational core. 

Equation 24 was derived. Equation 24 is a first order 

quasi-linear partial differential equation. By the method 

of characteristics, this equation was reduced to a system of 

three ordinary differential equations (Equations 37), which 

were solved numerically. Assuming the entrance velocity to 

be a constant for all time the Equations 37 were reduced to 

Equations 39, which yielded a closed form solution. The 

closed form solution served to verify the computer program 

(Table l). 

The solution of Equations 37 was obtained in the form of 

a family of characteristics from which the boundary layer 

thicknesses at various instants were determined. A salient 
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feature of these characteristics was that the characteristic 

through the origin divided the characteristic space (the 

§-T space, where § and T are dimensionless axial distance 

and time respectively) into two regions in which the nature 

of the boundary layer development was significantly different. 

The two regions, designated as Region I and Region II are 

shown in Figures 31 and 36 for the Reynolds numbers of I610 

and 700. In Region I, the boundary layer thickness is a 

function of both axial distance and time, and in Region II, 

it is a function of time but independent of axial distance. 

The length of the tube beyond which the boundary layer 

thickness is independent of the axial distance is defined as 

the instantaneous entrance length. Since the characteristic 

through the origin is the boundary between the Region I and 

Region II, it gives the instantaneous entrance length. The 

boundary layer growth and entrance lengths for various times 

are presented in Figures 34 and 39- With Equations 9 and 21, 

and the boundary layer thickness determined from the 

characteristics, the velocity profiles were determined at 

various times and axial distances as shown in Figures 35 and 

40. 

The primary aim of the experiment was to determine the 

entrance lengths at various instants and compare these lengths 

with the theoretically determined values. It was also 

intended to develop a suitable experimental technique to study 



118 

•unsteady flow problems of the type considered in the investi­

gation. The pressures at various positions along the test 

section were measured while the fluid was rapidly set in 

motion and from this data the instantaneous pressure gradient 

curves were obtained as shown in Figures 23 and 24. From the 

pressure gradient curves the instantaneous entrance lengths 

were determined by identifying the axial distances beyond 

which the pressure gradient remained constant with respect to 

position. The entrance lengths thus determined from the 

experiment were compared with those obtained in the theoreti­

cal treatment of the problem. The experiments were carried 

out at the Reynolds numbers of l6lO and 700 determined on 

the basis of steady state velocity. From the unsteady 

pressure gradients in the fully developed region the unsteady 

entrance velocity was determined as described in Chapter Y, 

and this velocity was used in the solution of the Equations 

37. The experimental apparatus and technique seem to be 

satisfactory to study the unsteady flow problems of the 

type considered in this investigation. 

From a comparison of the experimental and theoretical 

results the following conclusions are drawn: 

With the use of the integral momentum equation it is 

possible to theoretically predict the instantaneous entrance 

length for small time, that is, when the boundary layer 

thickness is relatively small as compared to the radius of 
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the tube. The limiting value of the boundary layer thickness 

for which theory and experiment agree is estimated to be 

approximately 0.3R. For large times, as the boundary layer 

thickness becomes greater than 0.3R, the theory fails to 

predict the instantaneous entrance length accurately. 

The failure to accurately predict the instantaneous 

entrance length for large time may be attributed to the 

assumption of the inviscid core in the central portion of 

the tube. For large times, as the boundary layer grows into 

the central portion of the tube, the viscous effects from the 

wall are diffused into the core fluid thus making the core no 

longer inviscid. The velocity profiles in the core fluid 

do not conform to the assumption of flat profiles, and the 

theory based on the integral momentum equation fails. 
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X .  A P P E N D I X  A  

L I S T I N G  O F  T H E  C O M P U T E R  P R O G R A M  F O R  T H E  S O L U T I O N  
O F  T H E  S Y S T E M  O F  E Q U A T I O N S  3 7  

R E Y N O L D S  N U M B E R  7 0 0  

C O M M O N  V A R ( 1 4 , 3 ) , A ( 4 ) , 6 ( 4 ) , C ( 4 ) , H , B Y H A L , E N D V A , F L A G , X , N ,  
1 T , P H S I G , N 0 D U M , N 0 D U B , E N D N 0 , I 0 , X L A B ( 5 ) , Y L A B ( 5 ) , G L A 3 ( 5 ) ,  
1 D A T L A B { 5 )  , X I C G ( 5 0 C )  » E T A C 0 ( 5 G 0 ) , T A U C n ( . 5 0 0 )  , N P T S ,  
1 T A U 2 ( 2 7 ) , Q S T A R ( 2 7 ) , A R G ( 2 7 ) , V A L ( 2 7 )  

I N T E G E R  E N D N O , T , P H S I G  
C  V A R { 1 , 1 ) = X I , V A R ( 1 , 2 ) = E T A , V A R ( I , 3 ) = T A U  

1 0 = 3  
R E A D ( 1 , 1 )  N , H , T , B Y H A L , E N D V A , P H S I G , N 0 D U M , N 0 D U B , E N D N 0 ,  

1 X L A B , Y L A B , G L A B , D A T L A B  
1  F 0 R M A T ( I 5 , F 5 . 0 , 1 5 , F 5 . 0 , 5 5 . 0 , 4 1 5 , / , 2 C A 4 )  

T A U 2 ( 1 ) = 0 .  
Q S T A R { 1 ) = . 0 0 0 0 0 1  
R E A D ( l , 2 ô )  ( T A U 2 ( I } , I = 2 , 2 7 )  
R E A D { 1 , 2 0 ) { Q S T A R ( I ) , 1 = 2 , 2 7 )  

2 0  F O R M A T  ( 8 F 1 0 .C) 
V A R ( 1 , 1 ) = G .  
V A R ( 1 , 2 ) = C .  
V A R ( I , 3 ) = G . O  

N P T S = 0  
C A L L  N O D E  
C A L L  G R A P H  ( N P T S , X I C O , T A U C O , 4 , 2 1 , 8 . 0 , 1 0 . 0 , 0 , D , 0 , 0 ,  

1 X L A 8 , Y L A 3 , G L A B , C A T L A B )  
D O  IC M M = 1 , 3  
X = 0 .  

V A R ( 1 , 1 ) = C .G 
V A R { 1 , 2 ) = 0 . 0  
V A R ( 1 , 3 ) = 2 . 5 * M M  
N P T S = 0  
W R I T E ( 3 , 9 )  
C A L L  N O D E  
C A L L  G R A P H  ( N P T S , X I C O , T A U C O , 4 , 2 1 , 0 , 0 ,0, C,C,C,C. , C,0,C ) 

1 0  C O N T I N U E  
D O  1 2  M M = 1 , 1 6  

H = 1 0 C 0 .  
V A R ( 1 , 1 ) = 2 . 5 * M M  
VAR(1,2)=C. 

'  V A R ( 1 , 3 ) = G .  
W R I T E { 3 , 9 )  

9  F O R H A T ( / / / / / / )  

X = 0  
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N P T S = 0  
C A L L  N O D E  
C A L L  G R A P H  ( N P T S , X I C O , T A U C O , 4 , 2 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , : )  

1 2  C O N T I N U E  
1 1  S T O P  

E N D  
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SUBROUTINE COMPD 
COMMON VAR(I4,3),A(4),B{4),C(4),H,BYHAL,ENDVA,FLAG,X,N, 

1T,PHSIG,N0DUM,NCDUB,ENDN0,I0,XLAB(5),YLABC5),GLA8(5), 
1DATLAB{5),XIC0{500),ETAC0(500),TAUC0(500),NPTS, 
1TAU2(27),QSTAR(27),ARG(27),VAL(27) 
INTEGER ENDNO,T,PHSIG 
D=0.6»VAR{1 y 2)-0.183333»VAR(1,2)*VAR(1,2) 
E=0.333333-0.166667*VAR(1,2) 
FF=0.066667-0.05*VAR(1,2) 
G=l.0-0.666667*VAR(1,2)+0.166667*VAR(1,2)*VAR(1,2) 
P=0.333333*VAR(1,2)-0.083333*VAR(1,2)*VAR(1,2) 
PEE=0.9873424*(VAR(1,3)**0.52)*EXP(-1.175*VAR(1,3))-

10i000964*EXP(-0.625*VAR(l,3))+ 
10j016692*EXP(-0.01653*VAR(l,3))+ 
10i003584*EXP(-0.08706*VAR(l,3))+ 
10.Q01908*EXP(-0.21394*VAR(1,3)) 
IF(VAR(l,3)-95.) 3,2,2 

2 QUE=C. 
GO TO 5 

3 QUE=0.001856*EXP(-0.39723*VAR(1,3))-
lO;022064*EXP(-0.63694*VAR(1,3))-
10i000584*EXP(-0.93303*VAR(l,3))-
10i0001976*£XP(-1.28557*VAR(l,3))-
10.00G0924*EXP(-1.69448*VAR(1,3) ) 
IF(VAR(l,3)-22.) 6,5,5 

5 AAR=C. 
ESS=0i 
GO TO 8 

6 AAR=-0i0000504*EXP(-2.15977*VAR(l,3))-
10i0000304*EXP(-2.68143*VAR(l,3))-
10jOOG0195*EXP(-3.25943*VAR(1,3))-
lCi0000132*EXP(-3.894*VAR(l,3))-
10.0000092*EXP(-4.58457*VAR(1,3)) 
ESS=-Oà0000067*EXP(-5.332*VAR(1,3))-

10.0000049*eXP(^6.1357*VAR(l,3))-
10;0000038*EXP(-6.996*VAR(1,3)) 

C R=TIME DERIVATIVE OF UNSTEADY VELOCITY QSTAR 
8 R=PEE+QUE+AAR+ESS 

CALL ATSM(27,1,27) 
CALL ALI(Q,27,EPS,IER) 
QOVER=Q/G 

C S=4/REYN0LDS NUMBER 
S=0.005714 
VAR(8,1)=2i 0*VAR(1,2)*Q*Q* t(D*E) + (FF*G)) 
VAR(8,2)=S*Q*6*G-VAR(1,2)*P*G*G*R 
VAR(8,3)=Q*VAR(1,2)*E*G 
RETURN 
END 
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SUBROUTINE COMPY 
COMMON VAR(14,3),A|4),B(4),C{4),H,8YHAL,EN0VA,FLAG,X 

1T,PHSIG,N0DUM,N0DUB,ENDN0,I0,XLAB(5),YLAB(5),GLAB(5) 
IDATL AB(5)t XICO(500),ETAGO(500),TAUCO(500),NPTS, 
1TAU2(27),QSTAR{27),ARG(27),VAL(27) 
INTEGER ENDN0,T,PHSIG 
CALL CGMPD 
RETURN 
END 
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SUBROUTINE COMPT 
COMMON VAR(I4,3),A(4),B(4>,C(4),H,BYHAL,ENDVA,FLAG,X 

1T,PHSIG,N0DUM,N0DUB,ENDN0,I0,XLAB(5),YLAB(5),GLAB(5) 
IDATLAB(5),XICO(500),ETACO(500),TAUCO{500),NPTS, 
1TAU2(27),QSTAR(27),ARG C 27),VA L(27) 
INTEGER ENDNO,T,PHSIG 
WR*TE(3,5) X,VAR(1,1),VAR(1,2),VAR(1,3) 

5 FORMAT (6E16.6) 
NPTS=NPTS+1 
XIC0(NPTS)=VARC1,1) 
ETAC 0(NPTS)=VAR(1,2) 
TAUC 0(NPTS)=VAR(1,3) 
IF(X-ENDVA) 6,10,10 

6 IFfVARd,3)-100.)7,7,10 
10 FLAG=-1.0 
7 RETURN 

END 
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SUBROUTINE COMPE 
C INTERVAL CHECK 

COMMON VAR(14,3),A(4),B(4),C(4),H,BYHAL,ENDVA,FLAG,X,N, 
lT^PHSIGfN0DUMiN0DU8,ENDN0,I0,XLAB(5)fYLAB(5),GLAB(5)f 
IDATLAB(5),XICO(500),ETACO(500),TAUCO(500),NPTS, 
1TAU2(27),QSTAR(27),ARG(27),VAL(27) 
INTEGER ENDNO,T,PHSIG 
IF (FLAG-.5)1,1,2 

1 WRITE (10,4) 
4 F0RMAT(aOS,10XiSHALVEDa) 

RETURN 
2 WRITE (10,3) 
3 F0RMAT(a0a,l0X,300UBLEDa) 

RETURN 
END 
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SUBROUTINE PREDI 
C PREDICT Y-VALUE 

COMMON VAR<14,3),A(4),8(4),Cf4),H,BYHAL,ENDVA,FLAG,X,N, 
1T^PHSIG,N0DUM,N0DUB,ENDN0,I0,XLAB{5),YLAB(5),GLAB(5), 
1DATLABC5),XICO{500),ETACO(500),TAUCO(500),NPTS, 
ITAt;2(27),QSTARC27J,ARG(27),VAL(27l 
INTEGER ENDNO,T,PHSIG 
DO 450 1=1,N 

450 VAR(l,I)=(1.547651t0»VAR(2,I))-(1.867505E0*VAR(3,I)) + 
1 (2.017207E0»VAR(4,I)) - {.6973528»VAR(5,I)) + H* 
2 {(2.0C2248»VAR(9iI)) - (2.031688*VAR(10,I ) ) + 
3(1.818611E0»VAR(11,I)) - (.7143201E0»VAR(12,I))) 
RETURN 
END 



131 

SUBROUTINE CORRT(PERR) 
C CORRECT y-VALUE 

COMMON VAR<14,3),A(4),8(4),C(4),H,BYHAL,ENDVA,FLAG,X,N, 
lTiPHSIG,N0DUM,N0DUB,ENDN0,I0,XLAB(5),YLAB{5),GLA8(5), 
1DATLAB(5),XIC0(500),ETACO(500),TAUCO(500),NPTS, 
1TAU2 C 27),QSTAR(27),ARG(27),VAL{27) 
INTEGER ENDN0,T,PHSIG 
DO 462 1=1,N 

460 TEMP=VAR(2,I)+H*((.375*VAR(8,I))+ï.7916667E0*VAR(9,I)) 
l-{i2083333EC»VAR{10,I))+{.0416667E0*VAR(11,1))) 
IF {PHS16)463,464,463 

463 TEMPA=ABS((TEMP-VAR(1,I))/TEMP) 
GO TO 465 

464 TEMPA=ABS(TEMP-VARC1,I)) 
465 VAR(1,I)=T£MP 

IF (PERR-TEMPA)461,462,462 
461 PERR=TEMPA 
462 CONTINUE 

RETURN 
END 
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SUBROUTINE INITA 
C OBTAIN STARTING POINTS WITH RUNGE-KUTTA-GILL METHOD 

COMMON VAR(14,3),A(4),8(4),C(4),H,BYHAL,ENDVA,FLAG,X 
1T,PHSIG,N0DUM,N0DUB,ENDN0,I0,XLAB(5),YLAB(5),GLAB(5) 
1DATLAB(5),XICO(500),ETACO(500),TAUCO(500),NPTS, 
1TAU2(27),QSTAR(27),ARG(27),VAL(27) 
INTEGER ENDNO,T,PHSIG 

C RUNGE-KUTTA-GILL COEFFICIENTS 
C A(l)=.5 
C A(2)=k2928932E0 
C A(3)=1.707107E0 
C A(4)=.1666667E0 
C B(l)=Ii 
C B(2)=A(2) 
C B(3)=A(3J 
C B(4)=.3333333E0 
C C(l)=.5 
C C(2)=A(2) 
C C(3)=A(3) 
C C(4)=.5 
401 DO 402 1=1,N 
402 VAR(6,I)=0i 

J-4 
GO TO 410 

403 DO 407 K=l,4 
DO 404 1=1,N 

500 CK=H»VAR(8,I) 
501 R=(A(K)*CK)-(B(K)*VAR(6,I)) 
502 VAR(l,I)=VAR(liI)+R 
404 VAR(6,I)=VAR(6Vl)+{3.»R)-CC(K)»CK) 

IF (K-1)405,405,413 
413 IF (K-3)406,405,406 

C NEW VALUE OF X 
405 X=X+(H/2.) 

CALL COMPD 
GO TO 407 

406 CALL COMPY 
407 CONTINUE 

IF (N0DUM)410,412,411 
412 N0DUM=-1 
410 DO 408 1=1,N 

VAR(J+1,I)=VAR(1,I) 
408 VAR(J+8,I)=VAR(8,I) 

J=J-1 
IF (J)409,409,403 

409 RETURN 
411 CALL COMPT 

GO TO 410 
END 
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SUBROUTINE NODE 
C NODE IS MAIN SUBPROGRAM — CONTROLLING SUBPROGRAM 

COMMON VAR<14,3),A(4),B(4),C(4),H,BYHAL,ENDVA,FLAG,X 
lTiPHSietNODUM,NODUB,ENDNO,IO,XLAB(5),YLAB(5),GLABC5) 
IDATL AB(51,XICO(500),ETACO(500),TAUCO(500),NPTS, 
1TAU2(27),QSTAR(27),ARG C 27),VAL(27) 
INTEGER ENDNO,T,PHSIG 
CHECKI = 16.21966 /(10»*T) 
CHECK2 = CHECKI / 200. 

C RUNGE-KUTTA-GILL COEFFICIENTS 
A(I)=.5 
A(2)=i2928932E0 
A(3)=1»707107EO 
A(4)=.1666667E0 
B(l)=l. 
B(2)=A(2) 
B{3)=A{3) 
B(4)=i3333333E0 
C(l)=-5 
C(2)=A(2) 
C(3)=A(3) 
CC4)=.5 

C INITIALIZE 
FLAG=0» 

500 IF (BYHAL)502,5C1,502 
501 BYHAL='.5 
5C2 IF (ENDNG)503,504,503 

C ENDPOINT COMPUTES H 
503 H=(ENDVA-X)/ENDNO 

C PREPARE FOR RKG 
504 CALL CGMPD 
505 CALL COMPT 

IF {FLAG)560,506,506 
506 CALL INITA 

NSWHF=1 
IF (ENDN0)507,SG8,507 

507 ENDNO=ENDNO-3 
508 M-3 
509 FLAG=0. 
510 X=X+H 
511 CALL PREDI 
512 CALL COMPD 
513 PERR=Oi 
514 CALL CORRTCPERR) 
515 CALL COMPY 
516 IF (PERR-CHECKl )517,517,535 

C NO HALVING NECESSARY 
517 NSWHF=0 

IF CNODUM)550,518,518 
518 IF {ENDN0)519,520,519 
519 ENDNO=ENDNO-1. 



134 

520 CALL COMPT 
IF (FLAG)560,521,521 

C IS DOUBLING POSSIBLE 
521 IF (PERR- CKECK2 )525,525,522 
522 M=3 
528 J=13 
523 DO 524 1=1,N 
524 VAR(J+1,I)=VAR(J,I) 

J=J-1 
IF (J)509,509,523 

C DOUBLING 
525 M=M-1 
526 IF (M)530,527,528 
527 IF (N0DUB)522,529,522 
529 IF (ENDNO)530,531,530 
530 M0D=ENDN0/2 

MOD= ENDN0-M0D*2 
IF(M0D)528,531^528 

531 FLAG=2. 
CALL COMPE 
IF (FLAG)560,532,532 

532 DO 533 1=1,N 
VAR(2,I)=VAR(1,I) 
VAR(4,I)=VAR(5,I) 
VAR(5,I)=VAR{7U) 
VAR(9,I)=VAR(8»I) 
VAR(11,I)=VAR(12,I) 

533 VAR(12,I)=VAR(14,I) 
H=2.»H 
IF (ENDNO)534,508,534 

534 ENDN0=ENDN0/2 
GG TO 508 

C HALVING 
535 FLAG=ABS(BYHAL) 

CALL COMPE 
IF (FLAG)560,561,561 

561 IF (N0DUM)537,537,536 
536 CALL COMPT 

IF (FLAG)560,537,537 
537 IF (BYHAL-1.)548,517,517 
548 IF (EN0N0)543,542,543 
543 ENDN0=2 *ENDNO 
542 IF (NSHHF)538,540,538 

C REPEATED HALVING 
538 DO 539 1=1,N 

VAR(l,I)=VAR(5iI) 
539 VAR{8,I)=VAR(12,I) 

X-X-(4.»H) 
IF CENDNO>549,549,544 

544 ENDN0=ENDN0+6. 
549 H=H*ABS(BYHAL) 
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GO TO 506 
540 DO 541 1=1,N 

VAR(1,I)=VAR(2,I) 
541 VAR(8,I)=VAR(9;i) 

X=X-H 
GO TO 549 

C DUMHv OUTPUTTING 
550 X=X-(3:*H) 

IF (ENDN0)551,552,551 
551 ENDN0=ENDN0+2, 
552 K=3 

DO 553 1=1,N 
VAR(6,I)=VAR(1,I) 

553 VARI13iI)=VAR(8,I) 
557 DO 554 1=1,N 

VAR(i,I)=VAR(K+l,I) 
554 VAR(8,n=VAR(K+8,I) 

CALL COMPT 
IF {FLAG)56G,562,562 

560 RETURN 
562 X=X+H 

K=K-1 
IF {K)558,558,555 

555 IF (ENDN0)556,557,556 
556 ENDN0=ENDN0-1 

GO TO 557 
558 DO 559 1=1,N 

VAR(l,I)=VAR(6iI) 
559 VAR(8U)=VAR(13,I) 

N0DUM=0 
GO TO 518 
END 
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SUBROUTINE ALKY,NDIM,EPS,1ER) 
C 
C 

COMMON VAR(14,3),A(4),B(4),C(4),D,BYHAL,ENDVA,FLAG,XX,N, 
1T,PHSI6,N0DUM,N0DUB,ENDN0,I0,XLAB(5),YLAB(5),GLAB(5), 
IDATLAB(5),XICO{500),ETACO(500),TAUCC(500),NPTS, 
1Z(27),F(27),ARG(27),VAL(27) 
EQUIVALENCE (XiVAR(l,3}) 
IER=2 
X%X=.0001*X 
EPS=AMAXl{i0OCOl,XXX) 
DELT2=0. 
IF(N0IM-1)9,7,1 

C 
C START OF AITKEN-LOGP 

1 DO 6 J=2,NDIM 
DELT1=DELT2 
IEND=J-1 
DO 2 I=1,IEND 
H=ARG(I)-ARG(J) 
IFIH)2,13,2 

2 VAL(J)=(VAL(I)*(X-ARG(J))-VAL(J)*(X-ARG(I)))/H 
D€LT2=ABS(VAL C J)-VAL(IEND)) 
IF{J-2)6,6,3 

3 IF<DELT2-EPS)10,10^4 
4 IF(J-5)6,5,5 
5 IF(DELT2-DELTI)6,ii,ll 
6 CONTINUE 

C END OF AITKEN-LOOP 
C 

7 J=NDIM 
8 Y=VAL(J) 
9 RETURN 

C 
C THERE IS SUFFICIENT ACCURACY WITHIN NDIM-1 STEPS 

10 IER=C 
GOTO 8 

C 
C TEST VALUE DELT2 STARTS OSCILLATING 

11 IER=1 
12 J=IEND 

GOTO 8 
C 
C THERE ARE TWO IDENTICAL ARGUMENT VALUES IN VECTOR ARG 

13 IER=3 
GOTO 12 
END 
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SUBROUTINE ATSM(IROW,ICOL,NDIM) 
C 
C 

COMMON VAR(14,3),A(4),B(4),C(4),D,BYHAL,ENDVA,FLAG,XX,M, 
lTiPHSIG,N0DUM,N0DU8,ENDN0,I0,XLAB(5),YLAB(5),GLAB(5), 
IDATLAB(5),XICO(500),ETACO(500),TAUCO(500),NPTS, 
1Z(27),F(27),ARG(27),VAL(27) 
EQUIVALENCE (X4VAR(1,3)) 

C 
C CASE IR0W=1 IS CHECKED OUT 

IF(IR0W-1)23,21,1 
1 N=NDIM 

C 
C IF N IS GREATER THAN IROW, N IS SET EQUAL TO IRON. 

IF(N-IR0W)3,3,2 
2 N=IR0W 

C 
C CASE IR0W.6E.2 
C SEARCHING FOR SUBSCRIPT J SUCH THAT Z(J) IS NEXT TO X. 

3 IF(Z(IR0W)-Z(1))5,4,4 
4 J=IROW 

1 = 1 
GOTO 6 

5 I=IROW 
J=1 

6 K=(J+I)/2 
IF(X-Z(K))7,7,8 

7 J=K 
GOTO 9 

8 I=K 
9 IF(IABS(J-I)-1)10,10,6 
10 IF(ABS(Z(J)-X)-ABS(Z(I)-X))12,12,11 
11 J=I 

C 
C TABLE SELECTION 

12 K=J 
J£=0 
JR=G 
DO 20 1=1,N 
ARG(I)=Z(K) 
IF(IC0L-1)14,14,13 

13 VAL(2»I-1)=F(K) 
KK=K+IR0W 
VAL(2*I)=F(KK) 
GOTO 15 

14 VAL(I)=F(K) 
15 JJR=J+JR 

IF(JJR-IR0W)16,18,18 
16 JJL=J-JL 

IFIJJL-1)19,19,17 
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17 IF(ABS(Z(JJR+1}-X)-ABS(Z{JJL-1)-X))19,19,18 
18 JL=JL+1 

K=3-JL 
GOTO 20 

19 JR=JR+1 
K=J+JR 

20 CONTINUE 
RETURN 

C 
C CASE IR0W=1 

21 ARG(1)=Z(1) 
VAL(1)=F(1) 
IFtIC0L-2)23,22,23 

22 VAL(2)=FC2) 
23 RETURN 

END 
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XI. APPENDIX B 

The details of obtaining Equation 56 from Equation $4 in 

Chapter V are given in the following. 

G(T) =£-1(G) = ̂  J (54) 

The integral in the Equation 54 can be evaluated by Cauchy's 

residue theorem, which is stated as 

n 
(D f(z)dz = avTi z Res(a, ) 

k=l  ̂

where Res (a,) = residue of f(z) at poles z = a. 

Lier P(s) = ê  ̂ MW (84) 

lo(JÇ) 

so that N(s) = and D(s) = By 

Cauchy's residue theorem 

^ g p ( 8 ) d s  . R g  +  ( 8 5 )  

Where R̂  = residue at s = 0 g 
On 

R̂  = residue at s = - in which are the roots 

of the Bessel function (JsRe/2) 

The function P(s) has simple poles at s = 0 and at s = 

-2â /Re. That is, F(s) is not finite at s = 0 and for 

= i ô . The residues are calculated as follows: 
St /QEE 

R. . sF(s) . fg =1 (86) O 8_u Ŝ u 
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Hildebrand (lO) has shown that for simple poles the residue 
2cS 

at s = - __ is given by 

From Equation 84 

.... 

=  G S T  °  *  2  I  2 A 2  

8Re\ Re/2 s = -  ̂

I 2 2̂ /iRi72 

•LotlV'l _  ̂e "1̂ (10̂ ?*) 

2=1 . > Re " 
Re 

2%̂  

From Equations 54, 85, 86 and 87 
^̂ n 
Re 

•» T 
(88) 

Equation 88 is the same as Equation 55 in Chapter V. From 

Equation 88 we can write 2 

• -i ¥Si " = 
With this result in Equation 53 of Chapter V we have 



I4l 

" 

2a? 
" Jo(y') -R# (?-?)dT 

nil = I WO J 

T  =  J _  ( )  T  - 2  T  
= R r(T)dT -2 S °j \ J f(T-T)e dT (89) 
i n=l o 

From Equation 52 in Chapter V and Equation 89 we have 

•= • "i-'i ̂  (90) 

Since u* = uj - ug (see Equation 51 in Chapter V), Equation 90 

can be written as 

= Ĵ (a_r*) T - T 
u* = u* - U2 = 2 2 ° y \ r f(T-T)e dT (91) 

n=l n̂  ̂  

Where, 2a^ 
T =̂ T 

P%(T)= J f ( T - T ) e  dT (93) 
o 

Equations 92 and 93 are the same as Equations 56 and 57 1% 

Chapter V, respectively. 
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6 5  F a R > i A T ( 2 F 1 5 . 7 , I 7 )  
A = . 0 9 5  
D=.01 
X X = . 1 6 1 2 9  
X L = . 2 5  

IB 
R 5 = 1 6 1 0 . 0  
G O  T O  1 5  

8 0  S T O P  
END 
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S U B R O U T I N E  0 G 5  (  X L , X U ,  Y , C 1 , X I - : ,  X Î O  
F C T ( T ) = T * * X M  *  E X P ( - X K » T + C 1 » ( T - X U ) )  

C  
C  r C T ( T )  I S  T H E  U S E R 2 S  I N T E G R A N D  
C  

A = . 5 * ( X U + X L )  
B = X U - X L  
C = . 4 5 3 0 8 9 9 * 8  
Y = . 1 1 8 4 0 3 4 * ( F C T ( À + C ) + F C T ( A - C ) )  
G = . 2 6 9 2 3 4 7 * 8  

• Y = Y + . 2 3 9 3 1 4 3 * ( F C T ( A + C ) + F C T ( A - C ) )  
Y = 8 $ ( Y + . 2 8 4 4 4 4 4 * F C T ( A ) )  
R E T U R N  
E N D  
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c 
c 

V E L O C I T Y  

ur • • I S T E A D Y  E N T R A N  C E  V E L O C I T Y  FOX T H E  
R r Y N O L D S  NU% : B E R S  1 6 1 0  A N , J  7 0 0  

: N S I O N L E S S  D I . M E N S I G M L E S S  ENTRANCE V  
T I M E  R E = l c l O  R = = 7 0 0  

0 ,  1  0.C052 0 . 0 1 8 2  
C . 2  0 . 0 1 1 6  0.0483 
0 . 3  C . 0 1 S 6  0 . Q 3 3 0  
0 . 4  0.0258 0 . 1 1 9 4  
.  3 0.3332 0 . 1 5 6 1  

0 . 7  0.0483 0 , 2 2 6 6  
1 .0  0 . 0 7 1 3  0.3196 
1 . 3  0 . 0 9 4 4  0 . 3 9 4 5  
2 .0  0.1469 0.5087 
3  .  G  0 . 2 1 6 7  0 . 5 7 9 7  
5.C C . 3 3 4 3  0 . 6 1 1 9  
7 . 0  0.4245 0 . 6 2 0 5  

1 0 .0  . 0 . 5 1 9 4  0.6387 
1 2 . C 0 . 5 6 2 9  C . 6 5 4 9  
1 5  . C  0 . 6 0 7 9  0 . 6 8 2 2  
1 8 .C 0 . 6 3 6 3  0 . 7 0 9 3  

2 2 . 0  0• 6 6 0 6  0 . 7 3 9 5  
2 5  .  G  C .  6 7 7 . 2  0 . 7 5 5 9  
3 0 . 0  0.6856 0 . 7 7 1 6  
3 5 . 0  0 . 6 9 5 7  0 . 7 7 6 6  
40.0 0.7047 
47.0 0 . 7 1 7 0  
5 0 . 0  0 . 7 2 2 3  
6 0 .  0 0.7403 
70.0 0 . 7 5 8 2  
80.Û 0 . 7 7 5 7  
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XIII. APPENDIX D 

Table 7. Pressure drop data for the Reynolds number 161O 

Dimension- Dimensionless pressure drop, (P0-P)/&PÛ  at 
less time, various axial -positions 

T Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 0 

0.149 0.68 1.31 2.17 2.88 5.74 8.12 

0.448 1.31 2.09 3.39 4.38 8.46 12.58 

0.897 1.57 2.51 3.96 5.08 10.34 15.13 

1.046 1.57 2.49 3.98 ' 5.19 10.43 15.30 

1.196 1.57 2.62 4.04 5.19 10.51 15.51 

1.345 1.52 2.49 3.98 5.03 10.48 15.48 

1.495 1.49 2.41 3.93 4.98 10.27 15 ..35 

2.989 1.49 2.38 3.62 4.64 9.41 13.94 

5.979 1.49 2.09 3.09 3.67 7.53 11.28 

8.969 1.49 1.91 2.47 2.93 5.79 8.54 

11.958 1:49 1.87 2.09 2.48 4.43 6.47 

14.963 1.49 1.85 2.06 2.35 4.19 5.63 

17.947 1.49 1.80 1.98 2.04 3.84 4.82 

20.928 1.49 1.78 1.96 2.25 3.49 4.70 

29.897 1.49 1.78 1.93 2.21 3.04 3.98 

38.866 1.49 1.78 1.93 2.12 2.91 3.73 

47.835 1.49 1.78 1.93 2.12 2.91 3.68 
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Table 7 (Continued) 

O 
Dimension- Diraensionless pressure drop, (Po-p)/i'PU at 
less time, various axial positions 

 ̂ Tap 7 Tap 8 Tap g Tap lO Tap ii Tap 12 

o.i4q 15.46 19.22 29.84 39.29 47.26 65.52 

0.448 23.84 32.04 47.42 66.15 86.54 112.61 

0.897 26.96 36.46 55.48 76.49 98.23 130.50 

1.046 27.23 36.67 55.67 76.72 99.00 131.00 

1.196 27.42 37.58 55.81 77.66 100.02 131.33 

1.345 27.16 36.50 55.43 76.52 99.00 131.00 

1.495 26.80 36.23 54.76 75.00 96.10 128.12 

2.989 24.63 34.00 49.48 69.22 89.10 117.91 

5.979 19.56 27.11 39.00 54.38 69.60 92.89 

8.969 14.75 19.72 28.52 39.53 51.10 68.10 

11.958 11.27 14.62 20.92 30.00 38.52 51.63 

14.963 9.63 13.11 18.33 25.33 33.42 44:58 

17.947 9.37 11.42 15.61 22.29 28.02 37.72 

20.928 7.32 9.58 13.10 18.49 22.78 30.40 

29.897 5.71 7.31 9.95 13.30 16.22 22.08 

38.866 5.09 6.41 8.51 11.25 13.87 19.64 

47.835 4.91 5.97 7.51 10.30 12.77 17.16 



Table 8. Pressure drop data for the Reynolds number 700 

2 Dimension- Dimensionless pressure drop, (pQ-py/èp̂ ' 2.t 
less time, various axial positions 

Y Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6 

0.05 2.77 6.12 8.80 12.77 20.72 30.41 

0.156 5.54 10.26 17.15 22.68 38.71 58.10 

0.260 6.92 11.76 18.92 24.89 48.65 73.18 

0.286 6.92 11.76 19.08 25.10 49.25 75.30 

0.312 6.36 11.07 16.75 24.35 48.15 72.68 

0.364 5.95 10.92 16.60 23.91 47.75 71.90 

0.781 5.25 9.68 14.24 20.47 39.00 60.82 

1.561 2.76 5.53 8.85 12.46 27.25 41.49 

3.253 2.49 3.70 .  5.22 6.51 12.30 18.00 

6.506 2.49 3.58 4.57 5.56 10.04 13.22 

7.156 2.49 3.40 4.11 4.88 8.05 11.47 

7.807 2.49 3.31 3.88 4.57 6.83 10.00 

8.458 2.49 3.16 3.78 4.30 6.25 9.02 

9.108 2.49 2.91 3.53 4.12 6.08 7.68 

9.758 2.49 2.91 3.53 4.12 5.88 7.50 

10.409 2.49 2.91 3.53 4.12 5.88 7.39 
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Table 8. (Continued) 

t.-mp Dimensionless pressure drop, (p -p)/ipU at 
less^rime, various axial positions^ 

' Tap 7 Tap b Tap 9 Tap 10 Tap 11 Tap 12 

0.052 45.62 58.08 86.47 112.90 142.52 185.20 

0.156 85.73 121.72 172.80 235.00 298.72 396.00 

0.260 127.31 178.80 248.93 346.03 442.64 587.13 

0.286 130.24 181.06 260.02 360.00 464.90 622.00 

0.312 129.52 180.02 258.61 357.13 456.30 611.22 

0.364 124.63 178.38 253.13 351.10 453.82 605.06 

0.781 109.82 152.10 216.41 304.00 387.52 523.24 

1.561 73.26 103.75 146.32 207.50 265.00 362.15 

3.253 31.81 45.10 62.25 87.10 112.14 149.43 

6.506 21.86 28.40 39.52 47.81 59.26 76.33 

7.156 17.33 22.64 31.20 39.84 49.00 66.12 

7.807 14.92 19.11 26.72 35.68 44.89 60.86 

8.458 13.12 16.66 24.13 32.44 41.42 55.30 

9.108 12.00 15.75 22.21 30.11 38.43 52.16 

9.758 11.41 14.82 20.59 29.58 36.04 49.58 

10.409 10.75 13.88 19.87 28.38 34.46 48.00 


