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I. INTRODUCTION

In this investigation the unsteady, laminar flow of a
viscous, incompressible fluid in the entrance region of a
circular tube is treatéd analytically and experimentally.

In particular, the case for a fluid initially at rest and
rapidly set in motion under a constant head is considered.
Such a starting flow situation is often experienced, but
relatively little research has been done on this problem.

To provide a proper background to the unsteady entrance
region. problem it 1s appropriate to discuss the developlng
flow phenomenon for the steady flow case. When é fluid
flows steadily and smoothly through a tube connected to a
large reservoir the velocity disteibution in the tube changes
from some initial uniform velocity profile at the tube
entrance to a fully developed parabolic profile, which 1is
independent of axial position far déwnstream. The pressure
gr%dient also varies from some initial value at the inlet
to a value that remains essentially constant beyond some
downstream position. The length of the tube over which this
change takes place is designated the entrance length
(Figure 1l-a). The change in the velocity profile is due to
the viscous forces. Through the influence of wall friction,
flow near the wall is retarded, and a boundary layer starts
growing at the inlet and gradually approaches the tube center

as the flow proceeds downstream. A core of fluid essentially
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undisturbed by fhe wall friction, but accelerated to com-
pensate for the retarded flow near the wall, exists in the
central portion of the tube. Close to the entrance where the
boundary layer is thin and the velocity gradient is large there
will be high friction loss in comparison to that occurring in
the fully developed region. Also, the variation in the
velocity profile with axial location contributes to a momentum
change resulting in a relatively high pressure drop.

For the case of unsteady flow, in which the entrance
velocity is time-dependent, the downstream veloclty profile
depends on both axial position and time. Also, one can vis-
ualize an entrance length beyond which the veloecity distri-
bution and pressure gradient are independent of location, but
dependent on time. It should be emphasized that for this case
the entrance length depends on time (Figure 1-b). The objec-
tives of the present investigation were: (1) to determine the
velocity profile at any instant and position in the entrance
region when the flow is started from rest, (2) to determine
the time-dependent entrance length theoretically and compare
with an experimentally determined value, and (3) to develop
a suitable experimental technique for unsteady flow problems
of this type.

A survey of the fluid mechanics literature has shown that
the integral momentum equation has not been fully explolted

in solving unsteady flow problems. An attempt has been made
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in this study to use this equation in conjunction with a
boundary layer model in the entrance region to obtain a

theoretical solution of the problem under consideration.



ITI. REVIEW OF LITERATURE

In view of the importance of the flow characteristics
in the entrance region there has been considerable interest
in the so-called "entrance-region" problem. Various
investigators have attacked the steady flow problem using
several different methods of solution, and numerous solutions
are available.

For steady flow in the entrance region of a circular tube
Langhaar (13) by means of a linearizing approximation solved
the Navier-Stokes equations. The family of velocity pro-
files were defined by Bessel functions and expressions for
pressure drop and entrance length were obtained. Han (9)
applied a similar technique to rectangular ducts. The
linearizing method was élso applied by Lundgren et al. (14)
for determining the pressure drop in the entrance region of
ducts of arbitrary cross section. The most significant
aspect of this method was that the incremental pressure drop
in the entrance length could be calculated from é knowledge
of the fully developed veloclty profile alone. Results of the
application of this method to a variety of duct cross-sections
were in good agreement with the available analytical and
experimental results.

Another method consisting of patching boundary layer
solutions, that apply near the beginning of entrance region, .

to perturbations of the fully developed solutions that apply



far downstream was used by Schlichting (18) for the parallel
plate channel. This method with a slight variation was
applied to a circular tube by Atkinson and Goldstein (8).

Still another approach considering an integral repre-
sentation of the momentum equation for a circular tube was
followed by Schiller (17) in which a boundary layer and
inviscid core model was assumed for the entire entrance region.
In this approach the velocity profile was described as a
parabolic one. Campbell and Slattery (3) refined Schiller's
solution by accounting for viscous dissipation within the
boundary layer.

A numerical approach was considered by Wang and Longwell
(24) using the Navier-Stokes equations for the inlet region of
a channel. Hornbeck (11) solved numerically the boundary layer
equations for the entrance region of a circular tube.

While numerous references are avallable for steady flow
very few were found that are related to unsteady flow in
the entrance region of ducts. Atabek (1) using a linearizing
approximation, solved the Navier-Stokes equations for
unsteady and oscillating flows in the entrance region of
coaxial tubes, tubes and channels with the inlet velocity
described as an arbitrary function of time. However, the
starting flow problem of the type considered in the present
investigation was not solved. Atabek, Chang and Fingerson

(2) published an experimental study on the measurement of



oscillating flow in the inlet region of a circular tube to
verify Atabek's earlier theory. The experimental results
were in good ag?eement with the theory. Pearson (15) using
a numerical technique solved the Navier-Stokes equations for
the time-dependent laminar flow of a viscous fluid in the
inlet section between two suddenly accelerated parallel
plates.

There are a number of publications on unsteady boundary
layers which are of interest with respect to this thesis.
Stewartson (22) published a paper concerned with the motion
of a fluid in a boundary layer developed on an impulsively
started semi-infinite plate. 1In one of his approaches he
obtained an approximate solution from the boundary layer
integral momentum equation by the method of characteristics.
His results were in good agreement both with Rayleigh's
solution for the infinite plate (for small time) and with
Blasius's solution for the flat plate (for large time).
Schuh (19) developed a general method, based on the integral
momentum equation, for the approximate calculation of
unsteady boundary layers. Results of the particular cases
considered in Schuh's work were in agreement with available
exact solutions. It was also shown in the general case,
for an arbitrary velocity distribution in time and space,
outside the boundary layer, that the integral momentum

equation could be reduced to two simultaneous differential



equations that could be solved by the method of character-
istics.

In the present investigation the unsteady entrance
velocity was determined indirectly using unsteady pressure
gradients measured in the fully developed region., There are
several publications in which discharge and the corresponding
unsteady pressure gradients for fully developed flows are
discussed. Ito (12), using methods of operational calculus,
determined expressions for the velocity distribution and
discharge for various types of non-steady pressure gradients.
Szymanski (23) solved the Navier-Stokes equations for flow of
a Tluid started from rest in an infinitely long circular
tube under a constant pressure gradient. Gerbes (6) by means
of Laplace transformation solved the Navier-Stokes equations
for flow in a long circular tube with sudden application of a
constant pressure gradient, with sudden removal of the
constant pressure gradient, and with an oscillating pressure
gradient. Rogge and Young (16) presented a general method
for obtaining an exacc solution of the Navier-Stokes equations
for time-dependent flow in parallel plate channels and
circular tubes, given the discharge as a prescribed function
of time. An approximate solution, valid for small times, was
also obtained using the integral momentum equation. For
both the cases of constant discharge and linearly accelerated

flow the exact and approximate solutions were in good



agreement.
It was apparent from the review of literature that the
use of the momentum equation for the study of unsteady flow

problems was feasible but had not received much attention.
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III. EQUATIONS AND METHOD OF SOLUTION
A. Derivation of the Governing Equation

The general integral momentum equation applied to a

control volume is

[ 2L AV + [ ov(R . ¥)dS = 5F (1)
3t
v S
where
t = time
v = veloecity vector
n = unit vector normal to the surface of the control

volume

dS = surface element of the area enclosing the control

volume

av

p = density of the fluld

volume element of the control wvolume

vF = vector sum of all forces acting on the control
volume

Consider an element of fluid in the entrance region of a

circular tube (Figure 2). . Application of the momentum

integral equation to this element in the axial direction

gives

R 3(ou R _ 2 R U 2
EJ ._%E_l 2mrdrydx - g ou“2mrdr + g p(u+-3§ dx)“2nrdr

= ' 3o R
= -'rw 2nmRdx - o .CI:RQTI'I'dI’ +(O-+_BTC dX) g 2rnrdr (2)



Fig. 2.

'\x
-

-~ J

=
- u
a
-
- -

— e OB ax
u ~1- vt 3%

R
R A X R
o[ enrdr e — - - (o + =2 dax) [ 2mrdr
) )

ox

ax

Y

Control volume in the entrance region for momentum analysis,

1T



12

where

u = velocity in the axial direction

T = wall shear stress

R = radius of the tube

= normal stress in the axial direction, assumed
constant over the cross-section of the tube

In Equation 2 the quantity (%% dx)2 is neglected in compari-

son with u2 and 2u a; dx. On dividing by 27pdx and

simplifying we obtain, for an incompressible fluid,

ﬂi_%g rdr + fReu Y rar = -~I%— +-%-§% gerr (3)
With the transformation
r=R-y%
dr = -dy (&)

where y is defined as shown in Figure l-a, Equation 3 can

be written as
T R
&u. - = - w2t -
f‘ (R-y)dy + ﬂ‘eu (R-y)dy += 32 (R 7)ey.

e
o]
(5)
For an incompressible fluid, the normal stress and veloclty
gradient in the axial direction are related by the equation
. 3
0'='p+2l~13—;'{
where
p = pressure (average normal stress)

= absolute viscosity of the fluid

Thus,
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2

80 _ _ 2R 2u
3X ~ d¥X + 2u ax2

In the inviscid core of the entrance region, where the

viscosity is assumed to be zero,

30 = _ 90
X 3X

And, in the boundary layer aeu/ax2 is usually neglected.

Thus, for the entire cross-section, we can take

30 _ D
g--2 ®

r

From Equations 5 and © we obftain

(j;R 2 (R-y)ay + (j}‘R2u 22 (R-y)ay = - —T‘;J—R - =2 z)FR(I:i—:,r)dy
(7)

In the analysis that follows, the following assumptions

are made with respect to the inviscid core model considered:

(1) The entrance velocity, which is a function of time,
is uniform over the entire cross-section of the
tube at the inlet, that is, at x = 0.

(2) The velocity in the inviscid core is uniform over
the cross section of the core. That is, the radial
component of the fluid velocity is zero in the
inviscid core. Let the core velocity be U, .

(3) As noted earlier, the pressure variation within
the boundary layer in the radial direction is
negliglible in comparison with that in the axial

direction. This leads to the conclusion that the
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axial pressure-gradient in the entire fluid is the
same as the axial pressure-gradient in the inviscild
core. Since the viscosity and the radial velocity
are zero in the inviscid core this assumption
reduces the Navier-Stokes equation for velocity Uy

within the core to

v} S _ 13 (8)
3t 13x p oX

(4) The £luid is Newtonian.
(5) The velocity profiles in the boundary layer are
similar and the dimensionless velocity profiles can

be expressed as

2
u .
az = 2‘% -'§§ (9)

where § is the boundary layer thickness.

From Equations 7 and 8 we have

T R 3u
’;R | (o]
2 (rey)ay+ j“zu 3(R-y)ay = - L +[" =% (R-y)dy
o o 5 O
3uq
+ f‘u <= (R-y)dy
By rearranging the terms we obtain
TR R 2 R u° ouy
- — =CJ; G (u-ul)(R-y)dy+6[‘ = (R-v)ay- r ) == (Rey)ay

To the right hand side let us add and subtract the term

R aul ) ) ) ~
j' u -rx—(l— %)dy and simplify. Observing that br—ca’—}-c(uul)(l— %)_dy=

__l - sy _ ¥ :
Iu (1 R)dy+fu1 ax(1 R)dy we can further write
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8 =2 Ry u)(1- Lag+ f* (wu, ) (1- ¥)ay- J"R °u (1- )ay

2 (u;-u) (1~ L)ay- IR w2 (1- §ay

Since Uy is not a function of y we can write
.
3 R U - R
oo [T Dayp & (uf [ 4 5 (10 —)(1— £lay}
o)

+u1—§i—1gﬁ<1- %5)(1- £)dy-uy (R (- £)ay  (10)

The last term in Equation 10 can be proved tc be zero through
the equation of continuity. For axi-symmetric flow the

equation of continuity is
EJ—C (U.I') T%—I‘- (VI’) =0
or, - S
ax (ur) = = (v7) (11)

where v is the radial velocity. From Equations 4 and 11,
R Ju S r
ol (1 X = - S_ L
s (1- £)dy = fi = (u g)ar

=7 [" 55 (w)ar

0

oy [

fRd(vr) =~% {vr ]R}
5 o

=-% {(ve)pg-(vr)._g1 =0 (12)

Further, in boundary layer theory, for axi-symmetric flow,
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the quantities IR(I— %—)(1—'%)dy and fﬁ-%—(l--%—)(l-.%)dy
o) 1 : 6 1 1

are defined as the displacement thickness and momentum
thickness, respectively. The displacement thickness is the
distance by which the irrotational core is displaced toward
thé center of the tube due to the decrease in velocity in the
boundary layer, and the momentum thickness is that distance
within which the momentum, 1f the flow is irrotational, is

equivalent to the momentum loss in fthe boundary layer. Let

the displacement thickness be
u Yy N
- )0 oy = e (13)

and the momentum thickness

, o (- 5 ey = 8 (14)

u
o 1 1

With Equations 12, 13, and 14 in Equation 10 we can write

Ty _ 3 5 1.2 !
Eﬂ =3 (u, 6%) + 3% (u7e) +uy = - (15)

Differentiation of the second term on the right hand side and
division throughout by u? gives

T

I
2~ .2 5%t
PRy Yq

3u
e , 1 1,
S et tialer +20) + 2 (16)

2

With the parabolic velocity profile %- =2 ¥ - Eé the
) uq 8 5

quantities §* and g can be evaluated. Since.%_ = 1 for
1

R >y > 6 we can write



. u
o = (1- ) (1- ay = [P(1- L)1~ Pay
o) 1 o 1
S0 0T . Fori. X 1 1 6°
= [T(z-2 < +45)(1- flay =5 8- 45 - (17)
2 8
'R
5= o (- 0-Pay = p° 2 (- - Pay
! 1 5 1 1
6 2 2 2
= Y oI y1-2¥ + T )(1- Lyay = 2. 5 - £ =
£ (2 5 62)(1 25 62)(1 Jay =15 6 - o R
(18)
and 8% + 2¢ =35 - 1L EE
=53 -"%0R
" “(-S_E)X—O du
Also, A =V 3§)y=0
2 2yu
= Vo _ ¥ . - —
= Vg (23 ;;'2‘)}]%0 =73 (19)
T
Substitution for EQ, 8% and ¢ into Equation 16 gives
~ 2 du e
2v_ _ 1 08 (2 s - r 8y .1 L (3 _ 1L 8"
T—ul—uia{ul(Sé Rt w Bo-wmR) ¢t
2
3 (2§ _ L1 &
d3X (15 o 20 R ) (20)

We can obtain a relation between the inlet velocity u,
(Figure 1-b) and the core velocity uq by applying the
principle of conservation of mass for thé fluid between the
inlet and any downstream position. The principle of

conservation of mass gives

2 2 R )
R u, = m(R-5)", fRIG 2 rude

ﬁ(R-é)Qul + f52n(R—y)udy
! .
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Replacement of u in the integral by the parabolic velocity

2
; sy - - 2 6
profile results in m2u = n(R-8)<u; + [ 2w(R-y)ul(2-% - %ﬁ)dy

(o]

Y-S 2, 2 2_ 2
or, TR, = m(R-5) u; - 2ml (3 Rs - 12 8%)

Simplification of the above equation yields

u 2 2
O 2 8 lo
o _1 .28 .15 (21)
Uy 3R o) R2
u
or, u1= (0] 5
1__?__6_+1_5__
3R F 32

With the use of ul Equation 20 can be written as

gé_,_li_e .1‘.6_.1‘_..”__
5 > s (-35+3%)° _ w &)
£V (1. 6 +.%.§§) = 5 R 2 ¢ =
du, 3R R w2 ot .25, 18°
33"6R
(1- 28 . 182
+ 3R R (- 24+ 1&%)}(.3 6. L1 .5_2_)
‘ U X 3 R ’632 5 B0 R
3 (2, _ 1 62
= 5 ¢-%57) (22)
On simplification Equation 22 is reduced to
2y 28,192 Ras 182 25 1857
5 3R 5/ =33 %~ I3 3R 3T
0 R ug R R
+;L_(_1.'_1_&.)(1_.g_é.+1_6.3)ﬁ
uw_ '3 6 R 3R TB .23
o) R
38 _ 11687yl 18y, 1 _ 1 & 2
+ 25 g 6‘632)(3 sRT5 - R 3
L 1Ay 28 (23)
% .2 X
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The pertinent initial and boundary conditions are:
8 =0 att =0 forx>0

§ =0 atx=0 fort >0

Let us define the dimensionless variables g, n, T and uf by

the relations

£ = x/R

n = &8/R

r = tU/R and,
ug = u,/U

where U = steady state average velocity. Equation 23 in

terms of the above dimensionless variables becomes

- ou¥
2v 2 1 2.2 1 1 1 2 2 1 2,2 o
ﬁﬁﬁﬁg (1-'§ﬂ + &N ) -';;5 an - 13N )(l-'g +'5ﬂ ) Y
(0]
=T% (3 - (- 50+ g0°) 2
+20(@n - )G - gn)+(Es - Fon) (1- S0+ gt)ED

(24)
The corresponding initial and boundary conditions in terms of
the new variables are:

n=0 at T 0O forg>0

(25)
n=0 atg=0 for 72>0
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B. Method of Solution

Equation 24 is a quasi-linear partial differential

equation of the first order of the type

T = R(gJT:ﬂ) (26)

01|01
3

P(g,m.n) 2 + Q5. 7.n)
and its solution, as shown by Sneddon (21), is obtained by
integrating the system of ordinary differential equations
chosen from the auxiliary system

e (27)

P Q@ "R
There are two independent ordinary differential equations in
the system 27. Each ordinary differential equation has
solutions represented by a one-parametér family of curves,
which are called characteristics of the first order quasi-
linear partial differential equatibn. The characteristics
comprising a one-parameter family of solutions of Equations
27 generate the surface n = n(§,;), which is the solution of

the Equation 26. Following this well-known method of solution

the auxiliary system associated with Equation 24 can be

written as

dg__
20(21- g51°) (5 - gn)+(Es - 3gn) (1= Sn + 21°)1
-1 1
(5 - zn)(1- =1 + Zn°)
53 0 B (28)
_ dn
2 au
2oaE(l- S gn0)%- S5 Gnm ) (1- S+ gn0)% 52
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In the following, Equation 28 in conjunction with the
appropriate initial and boundary conditions is solved (i)
for constant entrance velocity, i.e., for ug = 1; which
implies that the entrance wvelocity u, has reached the value
of the steady state velocity U for t > O, and (ii) for a
time-dependent entrance velocity derived from unsteady
pressure gradients measured in the fully-developed flow
region.

1. Solution for constant entrance velocity

For ug = 1 the system of ordinary differential equations,

given by Equation 28, becomes

dg
2[(2n- 251°) (5 - En)+gz - 5gn) (- Sn + E00)3
- d" d'ﬂ (29)

2.2
(_ - ’571)(1- T‘+ ’61"] ) RﬂU(l 31'] +"6n )
Two independent ordinary differential equations can now be

written: RU 1 10

5o (En - n7)
dr = 3 ? > dﬂ (3O>
1- —'i’] +-6'r]
RU 11 2y,1  12y.,1 12 2 12
- TrEn- g5n°) G- gn )+ zo10) (- nv gn)) an

(1 - "2‘T] + 1n2)2
3778 (31)

Integration of Equation 30 between the limits 0 and T in
conjunction with the initial condition m = 0 at ¢ = 0 for
g > 0 gives

= ={- 8 -3 L 1n(1- 'ﬂ+'6"1 )+J_—2_-_ta l(\l—) F 1((;3}
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Integration of Equation 31 between the limits O and € using
the boundary condition

n=0at g=0and v >0 gives

11 3 31 2.4
RU. 3 ,q+(€6” - 50N

] 5 2
s=3 110 7. 1 =)+ 45 In(1- S+ gn°)
1- =0+ gn
- 4 E a2y e (- ) £ (33)

Defining the Reynolds number as Re = 2RU/y, we may replace
the quantity RU/v by Re/2 in the above equations. It can be
observed in Equations 32 and 33 that the dimensionless
boundary layer thickness n is not thained explicitly as a
function of r and as a function of g. However, the n-r,

n-g relationships are expressed graphically by plotting r-
and € for various values of 7m (see Figures 3 and 4). The
value of n may vary from O to 1 since this is the range of
interest, in the sense that at n = 1 the boundary layer
thickness is equal to the radius of the tube at which time
the flow is considered to have attained the fully-developed
state. Treating m as a parameter, ¢ and ; are related through
The parameter n, and the characteristic fhrough the origin on

the g-+ plane 1s plotted. This characteristic divides the

|

g-- plane into two regions which are designated as Region I
and Region II (Figure 5). Region I is the range of influence
of the initial curve § = O (the Tt-axis along which T > 0), and

Equation 33 which is valid for 7 > O glves the appropriate
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solution in this region. It can be seen from Equation33 that
the boundary layer thickness, n, is independent of 7, and is
a function of g alone. This means that at any axial position
in Reglon I the boundary layer thickness developed is constant
for all 7. The limiting value of g, for which the boundary
layer thickness is a function only of the axial position, 1is
determined by the g-coordinate corresponding to the 7 '
in question on the g-7 characteristic of Figure 5. This value
of g corresponds to the instantaneous dimensionless entrance
length. The boundary layer thickness for various values of
g (and 7) in Region I are determined from Figure L.

Region II 1s the range of ihfluence of the 1nitial
curve T = O (the g-axis along which g > 0). Equation 32,
which is valid for ¢ > 0, gives the appropriate solution in

this region. The boundary layer thickness, as can be seen

in Equation 32, is independent of g, and is a function of T

alone. That is, at any particular time the boundary layer
thickness is constant for all axial positions beyond the
value of ¢ determined from the g-¢ characteristic, as
described above. The boundary layer thicknesses at various
7 in Region II are determined from Figure 3.

Figure 5 illustrates the nature of the boundary layer
growth at any 7 and at any €. Suppose the modes of the
boundary layer growth at rt = Ta and at T = TR are required.

The lines T = Ta and 1t = T8 intersect the characteristic at
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A and B respectively. The axial positions 3N and Eg are

the respective entrance lengths corresponding to 7, and -
4long the straight line = Ta the boundary layer thickness
is a function of g over the portion A'A (in Region I) and is
constant for g > A'A (in Region II). In the same manner,
along the straight line ¢ = ) the boundary layer thickness
is a function of g over the portion B'B (in Region I) and

is constant for g > B'B (in Region II). Now, let us consider
the boundary layer growth along the straight line g = Ep-
Along the line ¢ = gp the boundary layer thickness is a
constant over the portion AB" (in Region I). That is, q

is constant along this line for . > . For r < 75, in
Region II, the boundary layer thickness is a function of
time. Since in Region I, the boundary layer thickness is
constant, at any axial position, for a;l + the axial
dependence of the boundary layer thickness is the same over
the portions A'A and B'B". This means that the boundary
layer development at 7 = .5 18 the same as that for the
boundary layer at = T UP to an axial length g = Ep-
Similar patterns of boundary layer growth can be observed for
all time. A sketch of the boundary layer development in the
entrance region, as determined by the Equations 32 and 33,
for the case of constant entrance velocity is shown in
Figure 6. Although the solution for n, as presented in

Equations 32 and 33, is not obtained explicitly as a function
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L2p and Lsp are entrance
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of ¢ and - 1t is a closed form solution.

In computing ¢ and r (Figures 3, 4, and 5) a Reynolds
number of 1610 was used. The reason for using this number
is convenience from the point of the experiment designed to
produce this number based on a steady state velocity. A
detailed description of the experiment is given in the next
chapter. |

For the case of a time-dependent velocity at the inlet,
Equation 24 does not yield a closed form solution because
of the coupling of the n and ; functions. A computer method
involving a numerical technique according to Runge-Kutta-Gill
(7) is employed to solve this problem, as described in the
next section.

The main purpose for obtaining the solution for the
constant entrance veloclity was to establish some level of
confidence in the computer program for the solution of the
more general problem with a time-dependent entrance velocity.
Before making this comparison a discussion of the time-
dependent entrance velocity problem will be given.

2. Solution for time-dependent entrance velocity

Consider once again Equations 26 and 27. Let us seek a
solution of 26 passing through a prescribed initial curve
g =¢eg(r), 1 =r1(r), n = n(r) (34)

in space. Garabedian (5) Has shown that this problem can be

solved by considering for each value of r the integral curve
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o the auxiliary system 27 with initial values defined by
Equation 34. If we now introduce a parameter, s, along these
integral curves we obtain a surface

g =g(s,r), 7 =q(s,2), n=nq(s,r) {35)
in parametric form. I we represent n as n(g,T) in Equation
35, which we can, this should yield the solution of Equation
26 passing through the initial curve given by Egquations 34.

—_—

Then the system of Eguations 27 can be replaced by The system

Al

3 aT ds
"g“é‘ = P(g:"‘:ﬂ): 'd_sl' = Q(g:'r:n): 'd_g' = R(g:T:ﬂ) (36)

where the parameter s plays the role of an Iindependent
variaple.
In accord with the above theory we can replace the

system of Equations 28 by the system

G _ s3Il 2yl 1yl 1 2 12y, .2
5 = 2l(En- 5pn )5 - Bl (g5 - Son) (3- gnt gn ) Iwg

Gn 4 L2 122 1 1 2 2, 122 %
35 = ®e U2 30+ g0 ) on(Gn- g ) (- Snt )" 57 (37)
4T _ e (1 _ 1 2 12

r-rils ugnC§ "gﬂ)(l' 3N BN )

Now we have a system of ordinary differential equations for
which we seek the solution passing through the initial curve
g:O’ 'r]=o
(38)
r =0, T]=O
It was not possible to obtain a closed form solution of

Equations 37 because of the coupling of n and T functions on

the right hand side. Therefore we considered a numerical
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solutlion employing a step-by-step integration procedure.

A computer program called NODE, available in the Computer
Science Library of Iowa State University, was used to solve
Equations 37. The NODE program makes use of R. L. Crane's
predictor-corrector procedure with the starting process

due to Runge-Kutta-Gill, and is available in FORTRAN
version for the IBM 360'system. The listing of the main
program and the subroutines associated with NODE are pre-
sented in Appendix A. The solution of Equations 37 for the
time-dependent entrance velocity problem is pfesented in
Chapter VI.

To establish some level of confidence in the computer
program, the previously described problem of constant entrance
velocity is considered, and the results are compared with
those given by the closed form solution.

3. Comparison of the closed form solution and the computer
solution for the case of constant entrance velocity

For the case ug = 1, the set of Equations 37 become

2
28 = 2030 $n0) G - En)+(5 - Fon) (1= S g )3
% =-§—e- (1- =n +%n2)2 - (39)
L =05 - 2 Sn +E0)

The appropriate initial and boundary conditions remain
the same as in Equation 38. The Reynolds number used in
Equations 39 is 1610. After integration of the set of

Equations 39 with the NODE subroutine, we can construct a
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family of characteristics in g-7 space by treating n as a
'parameter. Such a family of characteristics, mechanically
plotted by incorporating the Simplotter (GRAPH) subroutine
into the NODE program, 1s shown in Figure 7.

With reference to Figure 7, the space above the character-
istic through the origin is Region I and the space below is
Region II as defined earlier, | |

For values of m from the computer solution the corres-
ponding £ and T can be computed from the closed form solution
given in Equations 32 and 33, and compared with g and t of
the computer solution. The validity of the computer program
can then be evaluated by considering the agreement between
the computer solution and the closed form solution for g
and r. Table 1 illustrates the good agreement for various

values of n.

Table 1. Comparison of computer solution and closed form
solution for the case of constant entrance velocity

T

computer closed form computer closed form

n solution solution solution solution
0.0773 0.1849 0.1842 0.4039 0.4041
0.1131 0.4216 0.4206 0.8683 0.8685
0.2111 1.7233 1.7235 3.0554 3.0555
0.3241 4,7967 4,7966 7.2729 7.2731 .
0.4217 9.2567 9.2569 12.4024 12.4027
0.5075 14,9143 14,9141 18.0572 18.0580
0.6194 25,2422 25.2435 27.0275 27.0283
0.7161 37.2935 37.2963 36.1880 36.1889
0.8526 60.0134 60.0187 51.2461 51.2480
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Fig. 7. Characteristics of the development of boundary
layer in the entrance region of a circular tube.
Constant entrance veloeity, Re = 1610.
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IV, EXPERIMENTAL INVESTIGATION
A. Objectives

The main purpose of the experimental investigation was
to veryify the theoretical solution (computer solution)
obtained for the time-dependent entrance length when a
fluid, initially at rest, was suddenly set in motion
under a constant head. Also, the development of suitable
experimental techniques for studies involving unsteady
flows of this type was considered to be important.

The experiments were further intended to determine
indirectly, the unsteady entrance veloclty from the pressure
gradients measured in the fully developed region. The
criterion for determining the fully developed region was
based on the constancy of the unsteady pressure gradient with
respect to axial position. The entrance velocity thus

determined was used for ug in the Equations 37.
B. Description of Equipment

The apparatus used in the investigation is shown in
Figure 8. The flow system consisted of a constant head tank,
a calming chamber, a test section, a mechanism to start the
flow at the end of the tube, a collection tank and a pump.
The instrumentation consisted of two strain-gage type

pressure transducers, two Dana D.C. amplifiers and a two



Fig. 8.

Overall view of the equipment.

A-constant head tank, B-test section,
C-pressure tap, D-pressure transducer,
E-spring-mounted plunger, F-Dana amplifier,
G-0Oscilloscope equipped with Polaroid
camera,
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channel cathode ray oscilloscope with Polaroid camera. A
simple manometer and a traveling microscope were used to
calibrate the pressure transducers. A graduated cylinder
and a stop watch were used for determining steady-state flow
 rate.

The flow system schematic is illustrated in Figure 9.
The constant head tank was made of an 8 in. inside diameter
plexiglass tube, and was designed to produce a hydrostatic
head of approximately 7-3/4 in. The calming chamber was made
of a 3-1/2 in. inside diameter plexiglass tube and was
positioned parallel to the test section as shown in Figure
11. The test section was a 12 ft. long brass tube with a
nominal inside diameter of 0,375 in., and a wall thickness
of 1/16 in. Twelve pressure taps, each of diameter 0.032 in.
were drilled radially along the top edge of the tube. The
inside surface of the ftest section was polished to eliminate
burrs by rubbing with emery cloth. At each pressure tap a
B & D one-way female louver valve was permanently fixed to
the tube by means of a resin cement. The construction of a
pressure tap is shown in Figure 13. The construction of the
first tap in the entrance region was different from that of
others because of its special pecsition (see Figure 14). The
distances of the pressure taps, measured from the inside
surface of the face plate of the calming chamber, are given

in Table 2. The distance of the first tap measured from the



38

constant head
tank

pressure
calming chamber transducer D.C. motor

— ) ori{iceﬂ?(% \\
| t \t ti [f§§é:j<;:~iE§L

plunger
; collection tank
pump
Fig. 9. Schematic of the flow system.
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Fig. 10. Schematic of the instrumentation.



Fig. 11. The constant head tank and the calming
chamber. Pressure transducer located at
tap 2 can be seen on the right.

Fig. 12, Equipment for pressure measurement.
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- B & D one-way louver
red valve

pressure tap
0.32" dia.

resin cement

Fig. 13. Construction of the pressure tap at various axial
positions.

face plate of the
calming chamber

\'\.
\

pressure tap-——fl\~ I-

X

0.1
97\_/

+

Fig. 1l4. Construction of the pressure tap at the entrance
of the fest section.
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inside surface of the face plate is illustrated in Figure 14,
The pressure taps were placed closer near the entrance than
in the region far downstream to measure the more rapidly
varying pressures near the entrance. The inlet of theltest
section was carefully rounded with curvature equal to the

radius of the tube as shown in Figure 14.

Table 2. Distances of the pressure taps from the inside
surface of the face plate of the calming chamber

Tap No. Distance in Tap No. Distance in
inches inches
1 0.197 4 28.375
2 1.375 8 40.375
3 2.857 S 58.375
4 4,375 10 82.375
5 10.375 11 106.375
6 16.375 12 143.375

A plexiglass orifice was inserted ét»the'end of the test
section to obtain the desired rate of flow. Two orifices were
used which gave Reynolds numbers of 700 and 1610 based on the
steady state average velocity. The flow was started by
pulling a plunger held tight against the orifice by spring
action (Figure 15). The pulling of the plunger was effected
by winding a string, in conjunction with a light coiled
spring, on a constant diameter sheave mounted on the shaft

of a D.C. motor. The light coiled spring helped to generate



Fig. 15. Mechanism to start the flow. Plunger in the
closed position.

Fig. 16, Mechanism to start the flow. Plunger in
the open position.
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reproducibility in opening the end of the tube by absorbing
the initial shock the plunger would experience when the
string became taut. The position of the plunger, when the
end of the tube was opened, is shown in Figure 16. The

D.C. motor, which was a General Electric aircraft motor,

was powered by Electro Model EFB Filtered D.C. Power Supply.
The motor and the power supply unit can be seen on the
right-hand side of Figures 15 and 16.

The fluid from the test section was collected in a
large glass container and pumped back to the constant head
tank by means of a Jabsco 1/8 hp self-priming pump.

The pressﬁré sensing device was Model P-23Db physiologi~
cal pressure transducer manufactured by Statham Laboratories,
Inc. (see Figure 17). This type of pressure transducer has
been widely used for dynamic pressure measurements in
physiological systems. The frequency response of the
transducer, as reported by the manufacturer, was appfoxi-
mately 200 cycles per second. The pressure transducer
consisted of a thin metallic diaphragm with a fluid chamber
on one side and a strain-gage bridge bonded on the other.
The fluid chamber of the transducer was filled with the
working fluid and connected to a pressure tap on thevtube
through the B & D‘one—way louver valve fixed thereon. The
deformation of the diaphragm, due to pressure change in the
fluid chamber, would cause the strain-gage bridge to produce

an electrical signal proportional to the pressure change.



Fig. 17. Statham P-23Db physiological Fig. 18. Traveling microscope and
pressure transducer, the simple manometer,
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The signal from the strain-gage bridge of the trans-
ducer was amplified with a Dana D.C. amplifier and recorded
on a Tektronix Type 502 Dual Beam Oscilloscope equlpped with
a Tektronix Type C-12 Polaroid camera (see Figure 12). The
choice of the Dana D.C. amplifier was dictated by the
necessity to eliminate the presence of small amplitude
fluctuations, attributed to noise, which appeared on the
pressure-time curve when a Brush amplifier (model BL-520) was
used. With the Dana amplifier it was possible to select the
range of high frequency response required to obtain a
relatively sharp trace by filtering the fluctuations due to
noise. The maximum possible frequency response on the Dana
amplifier filter system was 1000 cycles per second. A

schematic of the instrumentation is shown in Figure 10.

A simple open-end manometer and a Gaertner traveling
microscope (Series No. 2119-P) were used to calibrate the
pressure transducer. The manometer was constructed of a
1/8 in. inside diameter glass tube fixed to a graduated
wooden ruler. To the lower end of the glass tube a B & D
male louver valve was attached so the manometer could be
directly connected to the female louver valve fixed to the
pressure tap on the test section. The traveling microscope
with a least count of 0.0001 had a capability of measuring
the displacement up to 2 in. (see Figure 18). The details
of the calibration procedure are presented in section C of

this chapter.
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C. Experimental Procedure

The procedure described in the following relates to the
measurement of pressures at various axial positions along
the test section in which a fluid, initially at rest, was
set in motion under a constant head. The fluld used was
water.

1. Preparation of the pressure transducer

It was observed that the presence of air bubbles in the
fluid chamber of the pressure transducer had a strongly
adverse effect on its frequency response. A device to sub-
ject the pressure transducer to a sudden change in pressure
was built and the frequency response of transducer was
checked. The device, shown in Figure 19, consisted of a 1
in, diameter brass tube, to which the transducer was
connected at the lower end through a B & D one-way louver
valve. The tube was partly filled with water and the upper
end was closed with a thin plastic membrane. The fluid
chamber of the pressure transducer was filled with water and
the strain gage side of the transducer was connected to the
amplifier and the oscilloscope equipped with a Polaroid
camera. The sudden change in pressure on the transducer
was generated by pressurizing the space above the liquid
surface in the brass tube, by the rubber bulb of a -
sphygmomanometer, until the plastic membrane ruptured. From

the transient damped pressure-time trace recorded by the
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Fig. 19. "Pop" test equipment.
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Polaroid camera the frequency response of the pressure
transducer was estimated.

By performing a few "pop" tests described above it was
learned that the removal of minute air bubbles trapped in
the fluid chamber of the pressure transducer resulted in
marked increase in the frequency response, To achileve as
high a frequency response as possible the fluid chamber of
the transducer was first flushed with distilled water to
wnich a small quantity of a mild detergent was added. This
operation, not only cleaned the surface of the metallic
diaphragm, but also improved the adhesion between the fluid
and the walls of the chamber. The air bubbles, 1f there
were any, were removed by gently forcing water to and fré
through the fluid chamber of the transducer by means of a
hypodermic syringe. This step was takén regardless of
whether air bubbles were visible or not. The frequencies
recorded from the "pop" tests were consistently in the
range of 150-180 cycles per second.

In actual use in the flow tests, the pressure transducer
was fixed to the pressure tap, on the test section, where
the pressure variation was to be recorded. The air bubbles,
possibly trapped while the transducer was being fixed to the
pressure tap, were removed by using the hypodermic syringe
once again. The pressure transducer was then ready to use

in the recording of the pressure-time curve.
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2. Recording of the pressure-time curve

Before the actual measurement of pressures, the water
in the flow system was allowed to circulate for approximately
an hour to reach a steady state temperature. Two pressure
transducers were simultaneously used for the pressure
measurements. One of the transducers was attached to the
first pressure tap at the inlet, and the other to the last
tap at the end of the tube. A time lapse of about 5 minutes
was allowed for the transducers to gftgin the temperature of
the fluid. This procedure was followed whenever the trané—
ducer was shifted to a different axial location, since the
transducers were found to be temperature-sensitive.

Appropriate sensitivity settings were selected on the
amplifiers and the oscilloscope. The selection was dictated
by the amount of measurable deflection and the degree of
clarity of the recorded curve. The shutter of the Polaroild
camera was kept open, and the oscilloscope was placed on
single sweep. When the end of the tube was opened by pulling
the plunger with the help of the D.C. motor the oscilloscope
was triggered, and the pressure-time curve was photographed
by the camera. The transducer at the first tap was then
shifted to the second, to the third, and so on. The trans-
ducer attached to the last tap at the end of the tube was
always retained at that position. If only one transducer

was used in the experiment i1t would have been difficult to
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decide whether the flow was started exactly the same way
eacn time the plunger was pulled. To check the reproducl-
bility of the starting of flow the signal from the trans-
ducer retained at the last tap was examined intermittently
during the experiment. Also, the pressure-time trace at a
randomly chosen tap was recorded for repeated startings of
the flow and all traces superimposed on the same photograph.
Some examples of such photographs, shown in Figure 20,
indicate satisfactory reproducibility.. In Figure 20 the
maximum deviation from the average curve was estimated to
be + 4 per cent.

The pressure-time curve at each pressure tap was
recorded at two different sweep rates. A slower sweep raée
was chosen to record the complete pressure-time curve up to
fully established flow. A faster sweep rate was selected to
extend the pressure-time curve, for better readability, in
the initial period of the flow development. The two sweep
rates were different for the two rates of flow considered.
For the Reynolds number 1610, sweep rates of 50 milliseconds
per centimeter and 0.2 second per centimeter were used. UFor
the Reynolds number 700, sweep rates of 20 milliseconds per
centimeter and 0.1 second per centimeter were used. At
each location the pressure-time curves using both the sweep
rates were recorded on the same photograph. Some examples

of the pressure-time curves for the Reynolds number 15610



Fig. 20.

Demonstration of reproducibility.

Frames A and B are exposed at tap 8.

Each contains four exposures superposed on
one another., Frames C and D are exposed at
tap 12. Each contains three superpositions.
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are shown in Figure 21. The lower curves were obtained with
the sweep rate of 0.2 second per centimeter and the upper
curves were obtained with the sweep rate of 50 milliseconds
per centimeter.

The pressure-time curve, as can be seen in one of the
frames in Figure 21, is characterized by a rapid drop in
pressure from the available hydrostatic pressure and then a
"~ gradual increase in pressure to a steady value, independent
of time, at which stage the flow is considered to be fully
developed. The deflection of the pressure-time curve from
the line of reference (corresponding to a state of rest) in
the steady state region gives steady state pressure drop when
multiplied by the appropriate calibration factor. Figure 21
presents pressure-time curves at tap numbers 1, 3, 4, 6, 8
and 9 with appropriate adjustments of the sensitivity on the
amplifier and the oscilloscope. The reference line corres-
ponding to the state at which the fluid is at rest is not
shown in Figure 21. In the frames 2-6 the reference line is
the lower most horizontal grid line. In the frame 1 the
first and third horizontal grid lines from below are the
reference 1ines.for the slower and faster traces respectively.
It can be observed in these curves that the peak pressure
drop occurred nearly at the same instant (40 milliseconds
from the start of the flow) at all the axial locations, and
the magnitude of pressure drop increased as we moved down-

stream. Also, the time required to reach a steady value of



Fig. 21. OSome examples of pressure-time curves;

Re 1610.

Frame 1 Pressure-time curve at tap 1
Frame 2 Pressure-time curve at tap 3
Frame 3 Pressure-time curve at tap 4
Frame 4 Pressure-time curve at tap 6
Frame 5 Pressure-time curve at tap 8
Frane 6 Pressure-time curve at tap 9
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pressure increased as we moved downstream from the inlet
to the subsequent axial positions.

From the pressure-time curves at various axial locations
the pressures at various instants along the length of the
test section were determined and plotted as pressure versus
length curves. These curves are presented in section D of
this chapter.

on of the pressure transducer

=2

3. Calibrat

The pressure transducer was calibrated by determining
the deflection of the pressure-time curve in the steady
state region and relating this deflection to the actual
pressure drop for steady flow through the test section at
the corresponding locations. The actual steady-flow pressure
drop was measured. in inches of water, by using the previously
described simpie manometer and a traveling microscope for
both flow rates considered. The steady-flow pressu;e drops
encountered in the experiment at various axial locations were
in the range 0 to 0.53 inches of water. To determine the
actual pressure corresponding to the line of reference in
the pressure-time curves the hydrostatic head was measured.
Slight variation in the hydrostatic head at each location
was considered likely due to possible misalignment in laying
the test section and diversity in the height of the louver
valves. In view of the small magnitudes of pressure d4rops

encountered in the experiment this variation could not be
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overlooked. The local variation of the hydrostatic head was
taken into account in determining the local pressure drob

and in plotting the pressure versus length curves at wvarious
instants. The local hydrostatic pressure head and the
pressure drop for the two flow rates are presented in Table 3.
The hydrostatic pressure head at taps 1, 9, 10, 11, and 12
were not measured due to difficulties encountered in setting
up the manometer and the traveling microscope.

The deflections in the steady state region of the
pressure-time curves were then related with the actual
pressure drops and expressed in the form of calibration
curves presented in Figure 22. These curves were obtalned
for various sensitivity positions, on the amplifier and the
oscilloscope, associated with the pressure-time curves,.
Although the pressure transducer was calibrated against
known steady state values of pressufe drop, the resulting
calibration factors were used in determining the pressure
drop in unsteady flow because the frequency response of the
transducer was considered to be sufficiently high.

There were some inherent advantages in regard to the
calibration procedure just described. Firstly, it did not
require a delicate dévice to produce known values of
pressure in the range 0-0,53 inches of water. Secondly, since
the pressure drops were measured at the time of recording

the pressure-time curves, the time lapse between the
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Oscilloscope Amplifier
sensitivity gain

Pressure drop, inches of water

5 mv/cm 500
10 mv/cm 500
10 mv/cm 200
10 mv/cm 100
; ] I i | 1
o 10 20 30 40 50

Deflection on scope, millimeters

Fig, 22. Calibration curves.
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Table 3. Local hydrostatic pressure head and pressure 4arop
in steady flow

Tap No. Hydrostatic Steady state pressure drop in
pressure heads inches of water
in inches of Re = 1610 Re = 700
water .
2 7.816 0.0580 0.0210
3 7.820 0.0700 0.0238
4 7.817 0.0850 0.0309
5 7.807 0.1091 0.0408
6 7.804 0.1290 0.0559
7 7.791 0.1917 0.0900
8 7.772 0.2429 0.1190
°) - 0.3211 0.1642
10 - 0.4266 0.2296
11 - 0.5226 0.2900

calibration and the actual performance of the experiment was
at a minimum thus avoiding possible calibration drift.

4, Mesasurement of the rate of steady flow

A 50 ml graduated cylinder and a stop watch were used
to measure the rate of flow after 1t was fully dqveloped.
Two flow rates were considered in the experiment. For each
flow rate an average of ten measurements was obtained. The
temperature of the water was 28.5O C throughout the duration
of the experiment. The average inside diameter of the tube
was 0.374 inch. One flow rate was 0.609 cubic inches per

second, and the resulting Reynolds number was 1610. The other
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©low rate was 0.265 cubic inches per second and the

Reynolds number 700.

D. Experimental Results

From the pressure-time curve at each tap the pressure
drops at various instants after the flow was commenced were
dstermined. From these data, curves relating pressure drop
and axial length, at various instants, were obtalned. For
the two flow rates considered these curves in gimensionless
form are presented in Figures 23 and 24. The data obtained
from the pressure-time curves, converted into dimensionless
pressure drops, are given in Appendix D.

As shown in Figures 23 and 24, the pressure gradient,
at any instant, first varied up to a certain length of the
tube and then remained constant. Tnhnis length beyond which
the pressure gradient remained constant is defined as the
entrance length for this investigation. From Figures 23
and 24 it is hard to determine the entrance length because
of the scale to which these figures are drawn., The variation
of the instantaneous pressure gradient in the proximity of
the inlet can be clearly seen when the figures are drawn to
an enlarged scale. This is discussed in detail in Chapter
VI. Also, the pressure gradient line, which was initially
horizontal sweeps across the pressure-length plane until it

reached an extreme position at the instant corresponding to
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the peak pressure drop and then approaches the position of
the steady-state pressure gradient. - AR -

The instantaneous value of the mean velocity in the
tube 1s difficult to measure and no completely satisfactory
Tlow meters are available for this measurement. Thus a
method based on the relationship between the pressure
gradient and flow was used.

To determine the unsteady entrance velocity the pressure
gradient in the fully developed region was expressed as a
function of time. Figures 25 and 26 show the pressure
gradient-time relationship for the two rates of flow con-
sidered. The variable along the horizontal axis is expressed
as dimensionless time ., and the variable along the vertical
axis as dimensionless pressure gradient dp*/dg, where p¥* =
p/%pUe. The method of determining the unsteady entrance
velocity 1s described in Chapter V.

For steady flow with the Reynolds number 1610, the
measured volume rate of flow and the volume rate of flow
determined by using the Hagen-Polseuille equation were
compared. By the Hagen-Poiseuille equation the flow rate

' is given by the equation

il
AP TR
Q=% T (80)
where -%2 = Pressure gradlient in the fully developed region
R = radius of the tube

absolute viscosity of the fluid

T
ll
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From the pressure-time curves recorded at the taps 10 and
12 the pressufe drop was determined to be 0.26 inches of
water or 0.26 x 0.03613 pounds per square inch. The distance
between the taps (see Table 2) was 61 inches. The viscosity

6

of water at 28.5° C is 17.3 x 10™° pound-second per square
foot or 17.3 x 10'6/144 pound-second per square inch. The
radius of the tube was 0.374/2 inch or 0.187 inch.

Then
Q = 9:26 x 0.03613 7 (0.187)%
ol 8(17.3 x 107°) /144

- = 0.615 cubic inches per second.
The volume flow rate of 0.615 cubic inches per second,
determined from the Hagen-Poiseuille equation, agreed well
with the measured flow rate of 0.609 cubic inches per
second. This agreement gave an added degree of confidence

in the flow system.
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V. DETERMINATION OF THE UNSTEADY
ENTRANCE VELOCITY

To solve the set of Egquations 37 it is necessary to
specify the dimensionless velocity, ug, as a function of
time and space. One of the assumptions assoclated with the
boundafy layer model for unsteady flow in the entrance region
is that the entrance velocity is uniform over the cross-
section of the inlet and therefore ug is a function of time
alone. The subject of discussion in this chapter 1s the
determination of ug for the specific tests run.

By the principle of continuity the volume réte of flow
crossing the inlet is equal to the discharge obtained by
integrating the velocity profile, at any downstream position,
over the entire cross-section of the tube. An expression for
the unsteady velocity can be derived by integration of the
Navier-Stokes equations. If we choose to use the veloclty
profile in the fully developed region, the Navier-Stokes
equations may be integrated, at least in principle, since
the nonlinear (convective acceleration) terms become
identically zero in the fully developed region. It can be
observed in Figures 23 and 24 that the pressure gradient in
the fully developed region 1s a function of time alone. The
experimental data of the instantaneous pressure gradient
(Figures 25 and 26) may be approximated by a function of time

and this function can subsequently be used in solving the
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Navier-Stokes equations. Thus the determination of the
entrance velocity from the solution of the Navier-Stokes
equations is tantamount to an indirect measurement of the
entrance velocity from the experimentally determined
instantaneous pressure gradient. In the present investigation
this indirect method of determining the entrance veloclty was
utilized since it was not possible to measure directly the
unsteady entrance velocity (or, unsteady discharge) with any

available experimental means.
A, Determination of the Pressure Gradient Function

The sheape of the pressure gradlent versus time curve,
as can be seen in Figures 25 and 26, is characterised by a
rapid rise in the pressure gradient and then a gradual fall
to a constant value independent of time. The general shape
of this experimental curve may be approximated by the
function g(r) = A(l—e"&T) + BTme"kT, where A, B, k, 42, and m
are appropriate constants. The function g(7) is 0 at = = 0
and approaches the value A as 1 -» ». The value, A, is the
constant pressure gradient pertaining to the steady state,
and it is Iixed from the experimental data obtained for
large time. In the function g(.) the constants B, k, 4, and
m are determined by trial and error.

For the flow corresponding to the Reynolds number 1610

the instantaneous pressure gradient in the fully developed
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region was approximated by the function

_e—O.QST) O.l8e—0.16'r (41)

*
Cg(m)= - £ = 0.02(1 40.197

For the case of the Reynolds number 700 the function was

determined to be

glr)= - %%f = O.O47(l-e'o'627)+2.070-52e-1.177 (42)

The curves of the function g(r) for both the Reynolds
numbers are superposed on the corresponding experimental

curves in Figures 27 and 28 to demonstrate the goodness of

fit.
B. Solution of the Navier-Stokes Equations

For axial flow in the fully developed region, the
Navier-Stokes equations in the nondimensional form reduce to

2

sut _ _laok, v 3%ur 1 du
5r ~ " 2% T UR (ar*e * 7% orF) (43)

where the dimensionless parameters

u¥ = u/U

r¥ = r/R

o* = p/bpU°

+ = tU/R, and
£ = x/R

From the definition of the Reynolds number<%§ =-§5

Let
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so that
sg(T)

-
= 3{A(1-¢” " )+Bre

Hy
~~
-1
—
Il

-kT
}
= a(1-(—:7'ﬁ"")J.-b'rme"kT
where a2 = A/2 and b = B/2,

Then Equation 43 can be written as

(agu* o1 au*) _ Re 3u* _ _ Re
ar*2 r¥ 3r¥ 2 37 2

£(r)

The pertinent boundary and initial conditions are

u¥* = 0Oatr*¥ =1 forall 1 >0

u¥ = 0at T =0 for all 0 Sr¥* <1

Define the Laplace transforms with respect to a variable

L(u#) =0 = [ e 5Tuxdr
O

= [ e STe(T)dr
o

(2]

Lie(e)} =

The Laplace transform of Equation 45 is

2 . . ;
o u* 1 3u¥ Re Ju*
Lz +w=i Lt 571 - Lt

= 1

Re = Re
T, Upsps T ¥ -2

Q - 5= =
U 5~ U

wnere suffix denotes differentiation. The corresponding

boundary condition is
u=0ator*t=1

The general solution of Equation 47 is

Re
- _ - Re - S—= r*) +
u =4I ( /s§— r¥) + AK, (V2

Hl

Re

26 f(T)

Y]

(44)

(45)

(46)

(47)

(48)
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where A1 and A2 are functions of s, and IO and KO are modified
Bessel functions of the first and second kind of zero order,
respectively. Since u must be finite at r* = 0, the function

A, = 0. Then the solution of Egquation 47 is

2
- R P
= AIIO(,/S—QE r*) + 2 (49)
With the boundary condition u = 0 at r* = 1 the solution
becomes
( Re
- I ( S— r*)
- 7 2
u =< --§ = = (50)
sie
Io( 2 )
1 7%
wnere Uy =.§’ and
Re
_ o I ({55 v¥)
27 Re
Io(Jsg—)
According to Carslaw and Jaeger (4) the inverse Laplace
transform of u is
-1,- -1,= -1,-
w = LH@) =L () - L7 Ey)
= uf - uj (51)
, -1,f i
Then uf =L () = [ £(T) aT (52)

(o]

where T 1s a dummy varlable, and

L A
S

Re
I, (s5)

3

uz

We express ﬁ2 as the product fG, where
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. IO( s 5 r¥)

s I( s 22)
so that Re .
¢ =l - et e

S IO( S gé)
By definition of the Laplace transform
ug = £7H(EE)
By the convolution theorem we can write
T T
= [ £(r-T)a(T)daT = [ £(T)G(7-T)aT (53)
¢ o .

where Re

G(T) =L7H(6) = 5= § &7 (54)

By expansion of the functions IO( sgg r*) and Io(/sgg)
it can be seen that s = 0 is not a branch point. By applying
the results of the Cauchy's residue theorem Eguation 54
becomes 5
e
© J (CX. I’*) -2 =— T
G(T) = 1-2 y —7—7 Re
=1 1'%

where o_ are the roots of J (Vé ——J(see Appendix B for details).

(55)

n
From Equations 51 and 55, with convolution theorem, we have
o T (a,r*) -23‘3
* = - * = -
u uf ul 22 -a—nj'i'-(—-—yff(’r 4T
o J(anr*)

L En WO e



where

Equation 44 can
o(r-T)
Substitution of

F,(7)

where

We can also writ

7, (%)

where, Gn(T)

u* = 2

78

2
(o4
n
2 g T

-~
[
IS

J £(r-T)e
0

aT

be written as

_£(T_T))

+b(T-T)me—k(T—T)

= a(l-e

this result in Egquation 57 gives

(57)

o 2 > 2
T - n -
- T 2 =T AN _._EE)T
=a [e Re 4T - ae [e Re /~4T
o) o)
i 2.
Uk (T=T V=D ——
+o [(7-T)"e k(7-T)-2 55 T g
0
_2a,? _ec?
= aR; _ aRg e -—ﬁ-e-— - _ aRe 2(6 —Hé'r_e-%r.-)
Qan ”5 %Re-Qc.n )
(58
-+ bIn(T)
2
%n
-1 —_ - —
_ f (-=T)%% k(r-T)-2 e T4 (59)
o)
e
aRe
= -3 + Gn(’l') 2 (60)
2an an
aRe 2 Re'
=DbI_(7) - =—% e
n 5 2
Sn
—EGi (61)
_ aRe (e Ee_"" _e—'ﬁT)
iRe-
Re 2an
With Equation 60 the expression for velocity becomes
o J (o r%)
o' n aRe ~
T ( + G (7)) (62)
n=1 "n’1(f) 22 P
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Observe that G (r) - O as r - ». Therefore, the steady state

solution may be obtained from
.x.
I (o, %)

u¥ = aRe % m (63)

n=1
Now, let us evaluate In(T). By the convolution theorem we
can replace the variable ¢-T with T. Then

2

T %

n(r) = [T 7T = 2rg(T-Tlgy
o)

I
2 2
BRAT T (ke2D)r
=e  [TRe Re’~ 4T (64)
o
With Equations 58 and 64 we can determine the dimensionless
veloecity from Equation 56 as 5 o
- % Q Cn_
. e I, (e r¥) aRe aRe ~ Re T aRe Gy
BT ER e 22 ° T me2d?
n=1 “n oy Qan {Re- o
a%T ai
+ = 5 € + be I milly (k QRe)TdT} (65)
4Re-2an o

Equation 65 gives the velocity profile in the fully developed
region. We have to integrate this velocity profile to obtain
the unsteady discharge. The method of determining the

unsteady discharge is discussed in the following.
C. Velocity Calculations

Define the dimensionless discharge, Q¥, as the ratio
Q/Qs where, Q is the instantaneous discharge and Qs is the

steady state discharge. Then, if u is the velocity in the



fully developed region,

2n

Q
Q'X- = —_— =
QS

=2 f u¥r¥ gr¥ ' (66)

o)
With the velocity profile given by Equation 65

1 J_(c.o%)
@ =2 [2 30T 1 (@B g (r))ex are
o) Cn®1\0n 2a

aZe G ( )) f T (Gpr# )r*ar®

_ ,w 1 aRe :L
- 43 ey G5 e (0) 3 (sy)

2 aRe 5 =3 + 4 -lﬁ G,(7) (67)
n=1 aﬂ n=1 Cp

As 7 , = the second term on the right hand side becomes zero,

8

and the dimensionless discharge in the steady state will be

given by
Q¥ = 2 aRe ¢ -;E (68)
n=1 Cp

n Equation 68, as n o » the right hand side should approach

=

1. Equation 68 can be written as

Q* = 2aRe féﬂ +-lE +-1E'+-l£ + o) (69)
& G a3 oy

The first four roots of Jo(an) are:
a; = 2.4048 ag = 676537 :
11.7915 (70)

It
Il

ap 5.5201 (24
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With Equations 69 and 70 the dimensionless discharge in the
steady state for the Reynolds number 1610 is

1 L1 |
(2.2048)%  (5.5201)7

Q¥ = 2 x 0.01 x 1610 ¢{

1

t———— % ...} = 0.9994 . (71)
(8.6537) :

From the discharge measured in the experiment

. _ 0.609 _
Q* = 57805 = 10 (72)

Comparison of Equations 71 and 72 indlcates that the dimen-
sionless discharge determined from theory approaches 1
as expected.

Using Equations 61 and 67 we can write the dimensionless

unsteady discharge as 5
an 2a2
@ —o5—T 7 , n
« R ~ -xT+ —=T
Q¥ =2aRe § Iy + LT Agpe . [ TTTT TRelgr
n=1 Cy n=1 ey o
_ 2¢5 _ 2¢f
_ &Re e ReT - aRe < (e “Re _e LT)}
2G 1Re-2¢
n n 2
2a
202 St
L ; {aRe _ aRe eﬁ_ﬁgT aRe e €
- 4 4 - , 2
n=l 2¢. 2c (43e-2an)an
=27 T 20f Eai

By the principle of continuity, and by the fact that the
entrance velocity, U, is uniform over the cross-section of
the inlet, we can express the unsteady discharge by the

equation
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Q= ﬂRguo (74)

The steady state discharge is given by
2

QS = mRU

Then the dimensionless discharge becomes
2 )
nR“u u P )
Q’-X-=.-%-—.--_—.-——2O:-TJ_—O-='I,12)e (75)
S R™U

The ratio uO/U has been defined as the dimensionless unsteady

entrance velocity, ug. From Eguatlons 73 agd 75 we will have

2Qn 2an
- T T —T
aRe _ aRe Reé _aRe e Re
S, -—7g ¢ - oy 2
n=l 2o, 2a, (4Re-2ap Jay
ot 2@2 2a§
; e(rRe e 22 5 + 25 r (T"e KTt "R TReT)ar}  (76)
{Re-2¢ % o

For a given Reynolds number and the correSpohding

m kT the

pressure-gradient function £(1)= a(l-e” -7 )+b¢
unsteady entrance veloclty can be determined from Equation'76.
For the pressure gradient functions described in Equatilons

41 and 42, the integral of the last term in Equation 76
cannot be obtained explicitly. Hence, the evaluation of

ug by Equation 76 was programmed on the computer. In the
evaluation of u¥ the first sixty roots (i.e., n =1,60) of
the Bessel function Jo(an) were considered. The summation

of the series was stopped when the difference in the sums

up to any consecutive roots was less than 0.00001. That is,
-Sp| < 0.00001. The values of the roots of Jo(an)

when ]sn+1
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were supplled by the Computer Science Library of the Iowa
State University. The listing of the computer program used
in the determination of ug and the results are presented in
Appendix C. The unstead& entrance velocities for the
Reynolds numbers 1610 and 700 are shown in Figures 29 and 30.

As ‘expected Figures 29 and 30 show that the curves
representing the velocity development are not similar in
shape to those for the pressure gradient. While the pressure
gradient increased rapidly there was no corresponding
exceedingly rapid rise in the velocity. In the case of the
Reynolds number 1610 the pressure gradient reached the steady
state approximately at 7 = 47, but at this T the corresponding
velocity was approximately 72 per cent of the steady state
velocity. The behavior was similar in the case of the
Reynolds number 700. The lagging of the velocity development
confirms that the velocity does not respond to the pressure
gradient instantaneously.

In the set of Equations 37 we also need to know duj/dr.

Differentiation of u¥ in the Equation 76, with respect to

gives 2
du* © 20,2 - ‘2:."—'1' 2 2 - EEI}'T
o _ n aRe Re % aRe Re
—2 =45 2 e + e
ar -1 Re > 4 Re Z 2y .2
= o, (LRe-20y Jay
L 2@§F 2a§
- 2tRe e™ Ty B qMemKrgg'- "R}
(%Re-2a§)a§ arzl
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eaﬁ 20°
© - s - 7
n=1 an {Re-2q
a4Re 27 . b -k :
T (tRe-2a) Q2 T+ 2 e ] (77)
n’"n e}

2a2 2a2
1 2
dug a __ "Re' a _ "ReT
_E'i: = 4(——2- e + - e -+ .)
% L
2@% 2@3
- —T - ——T
+4 —EEL——7§ e Re +--£EL——7§ e Re + )
%Re-2a1 LRe-Qag
Z 47 -
_y (& Re e %x+ aiRe — e @T +..0)
(&Re-2al)a1 ( Re-2a2)a2 :
+4 CE§ e KT +-E§ MK L) (78)

il a2
Using the roots of the Bessel functlon Jo(an) each series in
the parenthesis of Equation 78 was evaluated. The summation
of each series was cutoff when the difference between the
consecutive terms of the series was less than 0.00001 with
T = 0. With this method of evaluation, for the flow
corresponding to the Reynolds number 1610, we have obtained

du¥®

26 _ 45.09308 70+18,-0.167

—0.00843 =0-25T7

-0.00727 -0.038'7‘+

+ 0.00712 e +0,00155 e

. (79)

In the same manner, for the flow corresponding to the
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Reynolds number 700, we have obtained

dug 0.52_-1.175
_Fi: = 0.98734 T ° e * T
-0.00096 &~ 99270 01669 ¢ 0-017T, (80)

Using u¥* and the corresponding dug/dT, for the
Reynolds numbers 1610 and 700, Egquations 37 were solved
by employing the NODE program as outlined in Chapter III.
More terms than shown in Equations 79 and 80 were used for
dug/dT. The unsteady velocity ug at any instant, for use
in the NODE program, was obtained by interpolating between
the appropriate discrete values of . The interpolation was
done with the subroutines ALI and ATSM incorporated into the
NODE program. The results pertaining to this solution are

presented in the next chapter.
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VI. RESULTS AND DISCUSSION

The solution of the system of Equations 37 obtained with
the help of the NODE program described earlier is presented
in the following in the form of families of characteristics,.
The boundary layer development, the velocity profiles at
varioué instants and axial positions, and the instantaneous
entrance lengths are determined from these characteristics.
The instantaneous entrance lengths obtained from the computer
solution are compared with those estimated from the experi-
mental results. Also, the steady state solution’for the
entrance length is compared with some of the solutions

availlable in the fluid mechanics literature.

A, Boundary Layer Growth, Instantaneous Entrance

Length and Velocity Profile

The families of characteristics presented in Figures 31
and 36 are from the solution for the cases of the Reynolds
numbers 1610 and 700, respectively. The solution for the
flow with the Reynolds number 1610 will be discussed in
detail. In Figure 31 we have a family of characteristics in
the g-r1 space obtained with various initial values along the
v and § axes. The boundary layer thickness, n, varies along
each characteristic. These characteristics can be replotted
with - and g versus m, as shown in Figures 32 and 33,

respectively. If the boundary layer thickness is desired
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at any point on a characteristic, it can be determined from
the corresponding replotted curve.

For example, let the development of the boundary layer
along the tube at 1 = 30 be required. In Figure 31 the
line 7 = 30 cuts various characteristics at A, B, C, D and
E, and §nr Emo €05 Ep and Ep are the corresponding axial
positions. The boundary layer thickness at A, B, and C can
be obtained from the appropriate characteristics in Figure
32. These are the boundary layer thicknesses at Eps Ep and
g The boundary layer thickness at C, D and E can be
obtained from the appropriate characteristics in Figure 33.
In Figure 33 it can be observed that the boundary layer
thickness corresponding to the points C, D and E is constant,
although the points are at various axial distances. This
nature of the boundary layer growth can be observed’for any «.
The boundary layer growth at various values of ¢ is presented
in Figure 34.

Consistent with the mode of development of the boundary
layer described above, the g-¢ space of Figure 31 is divided
into two regions by the characteristic passing through the
origin. The two regions are designated as Region I and
Region II. In Region I the boundary layer thickness (ﬂ)
is a function of both axial position (g) and time (7). At
a fixed 7, n 1is a functlon qf g and at a fixed §, n 1s a

function of 7. This behavior, which can be observed in
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Figure 34, is in contrast with the result obtained for the
case of constant entrance velocity in that the boundary
layer thickness, at a fixed axial position, 1s constant for
all time (Figure 6). The time-dependence of the boundary
layer thickness at a fixed axial position cén be attributed
to the time-dependence of the entrance velocity. In Region
II the boundary layer thickness, at any particular time, is
independent of the axial position. At any instant, the
axial distance beyond which the boundary layer thickness no
longer depends upon the axial positlion is the so-called
entrance length. Thus, the characteristic through the
origin that divides the g-t space into Region I and Region II
gives the instantaneous entrance length. The entrance
lengths at T = 10, 20 and 30 are shown in Figure 34.

Figure 34 indicates that, at a position corresponding
to a point on the characteristic through the origin, there
1s an abrupt transition from the boundary'layer thickness
being a function of time and axial distance to a function
of time alone. In reality such an abrupt transifion does not
exist. Although the solution of the integral momentum
equation indicates an abrupt change in the boundary layer
thickness along the characteristic through the origin, a
gradual transition seems likely.

At any axial position the development of velocity profile

with respect to time can be obtained by considering Equations
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9 and 21:
2 b o (9)
S A S
Uy 8 52
Y4, 2 % 1 62
-IT:L'=1--§§+-6-R?- (21)

Equation 9 can be written as

.2 ,.2
u v/R R
_Zg_=2.7____l_ (81)
Equation 21 can be written as
oY 28,15 (82)
ul7U 3R OR2

The quantities‘uo/U, u/U and §/R have been defined as ug, u¥*
and n respectively. Now, by defining ul/U and y/R as uf and
y*, respectively, and by eliminating uf from Equations 81
and 82 we can write

u*
O

2
u* = o, 172 (2?‘1’;') (83)
1-—3'17%--67] n

From Equation 83 we can determine the dimensionless velocity,
u¥*, in the boundary layer at any distance y* from the wall.
ug and n required in Equation 83 are determined from Figures
29 and 34, respectively. It can be observed that at y* = n~
Equation 83 gives u¥* = ug/(l--%n +-%—n2) = u¥. That is, at
the edge of the boundary layer the velocity in the boundary
layer equals the velocity in the irrotational core. The
velocity profiles determined from Equation 83, for various

times and axial positions, are illustrated in Figure 35.
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The procedure described in the foregoing discussion is
repeated for the characteristics associated with the Reynolds
number 700 (Figure 36). Figures 37 and 38 present the
characteristics replotted with + and g against n, and
Figures 39 and 40 illustrate the boundary layer growth, and

velocity proflles respectively.

B. Comparison of Theoretical and Experimental

Results

In Table 4 the theoretical, time-dependent entrance
lengths for the Reynolds numbers 1610 and 700 are presented.
From the experimental pressure-drop data tabulated in Tables
7 and 8 in Appendix D the experimental entrance lengths at
various instants were determined by identifying the lengths
beyond which the pressure gradient remained constant.

Figure 41 illustrates the method of determining the entrance
length from the experimental data for a particular time. The
entrance length is measured from the position of the first
tap on the test section since the curvature of the inlet
joins the inside wall of the test section tangentially at
this position (see Figure 14). It is difficult to determine
the instantaneous entrance length precisely because the |
instantaneous pressure gradient, which varies near the
entrance, changes over smoothly to a constant value at a

downstream position. Figures 42 and 43 illustrate the
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Table 4. Dimensionless, theoretical, time-dependent entrance
lengths. Reynolds number 1610 and 700

Re = 1610 Re = 700
Time (1) Entrance Time (7) Entrance
length (§) length (&)

0.16 0.0003 0.15 0.0009
0.28 0.0009 0.28 0.0042
0.59 0.0049 0.33 0.0059
1.78 0.0546 0.38 0.0086
2.03 0.0719 0.73 0.0383
4,39 0.3677 0.84 0.0519
6.36 0.7799 1.59 0.2007
9.39 1.6704 3.20 0.7348
13.76 3.4030 4.37 1.2327
19.47 . 6.2905 6.46 2.2639
26.25 10.4226 8.84 3.6247
33.75 15.7243 9.69 4.,1502
41.73 22.0936 10.56 4,7129
45.85 25.6543 13.29 6.6374
54.26 33.4944 17.23 9.7997
T1.52 51.7794 19.29 11.6484
80.25 62.1035 24,67 17.0124
88.98 73.1304 31.30 2k .5547
97.69 84.7950 40.00 35.6162
114.84 109.6140 48.29 47.0921

experimental entrance lengths thus determined for relatively
large times for the Reynolds numbers 1610 and 700, respec-

tively. In Figures 44 and 45 are determined entrance lengths
for relatively small times for the Reynolds numbers 1610 and

700, respectively. A comparison of the theoretical and
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experimental entrance lengths for the times ranging from

relatively large to relatively small values is made in

Table 5.

Table 5. Comparison of theoretical and experimental
dimensionless entrance lengths

Reynolds Dimensionless Entrance length (&)
number time () Theoretical Experimental
1610 47 .83 | 27.8 163
38.66 19.7 101
29.89 - 13.3 40
20.93 8.4 16
17.94 5.7 ' 9.2
14.95 4.1 5.1
11.96 3.1 3.3
8.96 1.5 1.7
5.98 0.7 0.7
700 10.41 4.6 T3
.11 3.9 25
8.46 3.5 15
7.81 2.9 8
7.16 2.6 4.2
6.51 2.3 2.4
3.25 0.8 0.9

As can be observed in Table 5, for large times, the
theoretical entrance lengths are not in agreement with the
experimentally determined values. The deviation from the
experimental entrance length is as much as 50 to €00 per cent

in the case of the Reynolds number 1610. For the Reynolds
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number 700 the deviation is even higher. From the observed
discrepancy it is evident that the theory using the
integral momentum technique does not predict the entrance
length accurately for large times.

The results presented in Table 5 also indicate that,
for small times, when the boundary layer thickness is
relatively small in comparison with ftube radius, tTheory and
experiment are in close agreement. With the data of Table 5,
dimensionless time versus entrance length curves are plotted
and presented in Figures 46 and 47 for the Reynolds numbers
1610 and 700, respectively. It can be observed in these
curves that the theory and experiment agree well up to a
certain time and then deviate from each other. The dimen-
sionless boundary layer thickness up to which theory and

experiment agree well is approximately 0.3.

C. Comparison of the Steady State Entrance

Lengths

In the boundary layer and irrotational core model
assumed for the entrance region flow, fully developed flow
occurs when §/R = 1. The application of the integral momentum
equation assumes that Poiseuille flow is established at this
point althoﬁgh, in principle, infinite time and infinite
distance are required for its establishment. In Figures 48

and 49 the experimental and theoretical entrance lengths are



110

/ s
/

’I

- . ] ’-—---—---------—
100 experimental .

steady state
entrance length

T

theoretical
experimental~ "

g

3
T

Dimensionless entrance length

,5 fd L 1} 1 1 L I T S O | ! L A L1
© ) 10 100 600
Dimensionless time, «

Fig. 46. Determination of the limiting value of the
boundary layer thickness for which theory and

experiment agree. Re = 1610,



F

1l

100

$ LI IR

111

experimental stead;//;'
state entrance {
length

experimental// theoretical

1 It | I S T T S | 1 1 ) WSV W T T |

vy
<
w0
& JOF
S C
=i -
o i
(@] -
S
@ i
<
4-’ pre
o
[6)]
0 _
w0
D)
=
c beae
o
o
0w
<
O
£
o
a Ir
0.5
}
ig. 47.

{0
Dimensionless time, T

Determination of the limiting value of the
boundary layer thickness for which theory and
experiment agree, Re = 700.



Dimensionless axial length, £
20 40 60 g0

IQO I?O

IQO

I§O

IQO 290 2?0

Z%O

2?0 2?0 390

100°

1 1 T T

Dimensionless pressure drop, (po-p)/

°r

Fig. 48,

N Lexp i
Legend _
Ly ‘theoretical entrance length
Lexp experimental entrance length

Comparison of the theoretical and experimental entrance lengths for

steady state, Re

1610,

AN



Dimensionless pressure drop, (po—p)/%pug

o

——
—

[\

o

o

15

113

Dimensionless axial length, g

29 40 60 80 IPO !?O 140 160 180 200
T » T T T

<0
Legend <
- Lth theoretical entrance length
Lexp experimental entrance length
-

. 49. Comparison of the theoretical and experimental

entrance lengths for steady state, Re = 700.



114

shown for the Reynolds numbers 1610 and 700, respectively.
The tneoretical value of the steady state entrance length is
determined from the computer solution at 3/R = 1. In Table
6 the steady state entrance length expressed as a dimension-
less parameter ¢/2Re is compared with the entrance lengths

obtained by various methods (20).

Table 6. Comparison of steady state entrance lengths

Source g/2 Re
Boussinesgue 0.065
Langhaar 0.057
Schiller : 0.029
Modified cubic profile 0.030
Modified Pohlhausen metnod 0.02%56
This investigation (theory, n = 1) 0.034
This investigation (experimental), Re = 1810 0.051
This investigation (experimental), Re = 700 0.052

It is observed from Table & that the theoretical methods
employing the integral momentum equation give inaccurate
entrance length in steady flow. The fallure of the theory to
predict accurately the entrance length in the steady flow is
attributable to the assumption of the inviscid core in the
central portion of the tube. The assumption of the inviscid
core is good near the entrance Where'the'baﬁndary’léyer is

thin, but as the boundary layer becomes thick downstream
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the viscous effects from the tube wall are diffused into the

flow field and the assumed inviscid core does not really
exist, i.e., the velocity profile in the core is not flat
as assumed. The experimental entrance length of the steady
flow agrees with the theoretical entrance length obtained

from the solutions of the Navier-Stokes ecuations

(Boussinesgque and Langhaar), rather than with those obtained

from integral momentum methods.
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VII. SUMMARY AND CONCLUSIONS

The problem of unsteady, laminar flow of a viscous,
incompressible fluid in the entrance region of a circular
tube was investigated. The unsteadiness of the flow was
produced by rapidly setting the fluid in motion from a state
of resf. The objectives of the investigation were to deter-
mine the boundary layer thicknesses, velocity profiles and
instantaneous entrance lengths for this type of unsteady flow.

In the aﬁalYtical treatment of the problem, the general
integral momentum equation was applied to a fluid element in
the entrance region. And by assuming a physical model,
consisting of a growing boundary layer with a parabolic
velocity profile and an accelerating irrotational core,
Equation 24 was derived. Equation 24 is a first order
quasi-linear partial differential equation. By the method
of characteristics, this equation was reduced to a system of
three ordinary differential equations (Equations 37), which
were solved numerically. Assuming the entrance velocity to
be a constant for all time the Equations 37 were reduced to
Equations 39, which yielded a closed form solution. The
closed form solution served to verify the computer program
(Table 1).

The solution of Equations 37 was obtained in the form of
a family of characteristics from which the boundary layer

thicknesses at various instants were determined. A salient
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feature of these characteristics was that the characteristic
through the origin divided the characteristic space (the
-1 sSpace, where § and T are dimensionless axial distance
and time respectively) into two regions in which the nature
of the boundary layer development was significantly different.
The two regions, designated as Reglon I and Regilon II are
shown in Figures 31 and 35 for the Reynolds numbers of 1610
and 700. In Region I, the boundary layer thickness is a
function of both axial distance and time, and in Region II,
it is a function of time but independent of axial distance.
The length of the tube beyond which the boundary layer
thickness is independent of the axial distance is defined as
the instantaneous entrance length. Since the characteristic
through the origin.is the boundary between the Region I and
Region II, it gives the instantaneous entrance length. The
boundary layer growth and entrance lengths for various times
are presented in Figures 34 and 39. With Equations 9 and 21,
and the boundary layer thickness determined from the
characteristics, the velocity profiles were defermined at
various times and axial distances as shown in Figures 35 and
40, |

The primary aim of the experiment was %o determine the
entrance lengths at various instants and compare these lengths
with the theoretically determined values. It was also

intended to develop a suitable experimental technique to study
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unsteady Tlow problems of the type considered in the investi-
gation. The pressures at various positions along the test
section were measured while the fluid was rapidly set in
motion and from this data the instantaneous pressure gradient
curves were obtained as shown in Figures 23 and 24. From the
pressure gradient curves the instantaneous entrance lengths
were determined by identifying the axial distances beyond
which the pressure gradient remained constant with respect to
position. The entrance lengths thus determined from the
experiment were compared with those obtained in the theoreti-
cal treatment of the problem. The experiments were carried
out at the Reynolds numbers of 1610 and 700 determined on
the basis orf steady state velocity. From the unsteady
pressure gradients in the fully developed region the unsteady
entrance velocity was determined as described in Chapter v,
and this velocity was used in the solufion of the Equations
37. The experimental apparatus and technique seem to be
satisfactory to study the unsteady flow problems of the
type considered in this investigatilon.

From a comparison of the experimental and theoretical
results the following conclusions are drawn:

With the use of the integral momentum equation it 1is
vossible to theoretically predict the instantaneous entrance
length for small time, that 1is, when the boundary layer

thickness is relatively small as compared to the radius of
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the tube. The limiting value of the boundary layer thickness
for which theory and experiment agree is estimated to be
approximately 0.3R. For large times, as the boundaryilayer
thickness becomes greater than O.3R, the theory fails to
predict the instantaneous entrance length accurately.

The failure to accurately predict the instantaneous
entrance length for large time may be attributed to the
assumption of the inviscid core in the central portion of
the tube. For large times, as the boundary layer grows into
the central portion of the tube, the viscous effects from the
wall are diffused into the core fluid thus making the core no
longer inviscid. The veloclty profiles in the core fluld
do not conform fo the assumption of flat profiles, and the

theory based on the integral momentum equation fails.
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Xe APPENDIX A

LISTING GF THE COMPUTER PROGRAM FOR THE SOLUTION
OF THE SYSTEM OF EQUATIONS 37
REYNDLDS NUMBER 70O

COMMON VAR(14,3)9A(4)98(4)5C(4)4HyBYHAL,ENDVA,FLAG, X5 N,
1Ty PHSIG,NODUMyNODUB,ENDNO,I0s XLAB(5),YLAB(5),GLA3(5),
1DATLAB(S) 4 XICC(500),ETACO(533),TAUCGIS0T) 4NPTS,
1TAUZ2(27) 3 GSTAR(27) 9y ARG{2T )4 VAL(2T)

INTEGER ENDNG,T,PHSIG

VAR(171)=XI’VAR(112)=ETA,VAR(113)=TAU

I10=3

READ(191) NgHyTsBYHAL,ENDVA,PHSIG,NODUM,NODUB  ENDNG,
1XLAB,YLAB,GLAB,DATLABE

1 FORMAT(IS54F5.09159F5e09yE5409415,5/422A4)

TAU2(1)="C.

OSTAR(1)=.0000C01

READ(14273) (TAU2(1),1I=2,27)

READ{(1,2C){(QSTAR(I),1=2,27)

20 FORMAT (8F10.0)

VAR(111)=50

VAR(142)=0.

VAR{143)=Ce2

X=C.

H=1030.

NPTS=(C

CALL NODE

CALL GRAPH (NPTSyXICO,TAUCO9452198e03:10.09C0909C97
1XLABsYLAB,GLABsCATLAB)

D0 1C MM=1,8

X=0,

H=5C.

VAR(1,1)=C.C

VAR(142)=0.,70

VAR(1453)=2.5#MM

NPTS=C

WRITE(3,9)

CALL NODE

CALL GRAPH (NPTSeXICOsTAUCO$43921909089C9C909C095905090)

10 CONTINUE

DO 12 MM=1,16
X=0e
H=1GC0.
VAR(1y1)=2.5%MM
VAR(1,2)=C.
VAR{1,.3)=0C.
WRITE(3,9)

S FORMAT(///77/7)
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NPTS=0

CALL NODE

CALL GRAPH (NPTS,XICG’TAUCO’4,21’Q'3’\:’C’O’C":,‘ﬁ’c,J)
12 CONTINUE
11 STOP

END
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SUBROUTINE COMPD
COMMON VAR(14453),A(4)9B(4)9C(4) 4HyBYHAL,ENDVASFLAGyXsN,
1TyPHSIGsNODUMyNCDUBy ENDNOyIOs XLAB(5) s YLAB(5)4GLAB(S),
1CATLAB{S) XICO(500),ETACO(500) s TAUCC(500)4NPTS,
1TAU2(27)3QSTAR(27) 3ARG(27) 4 VAL(27)
INTEGER ENDNO»T4PHSIG
D=0.6%VAR{152)-0.183333%VAR(1,2)%VAR(1,2)
E=0e333333-0.166667T#VAR(1,2)
FF=0.06666T-0.05#VAR(1,2)
G=1e0-0.66666T2VAR(192)4+0.16666T#VAR(1,2)#VAR(1,2)
P=0.333333#VAR(1,2)-0.083333#VAR(1,2)*VAR(1,2)
PEE=069873424% (VAR(1,3)##0,52)#EXP(-1.175%#VAR(1,43))~-
10.000964%EXP(~0.6258VAR(1,3))+
10016692#EXP(-0.016538VAR(1,3))+
10.003584=EXP{=0.087T06#VAR(1,3))+
10.001908#EXP(=0.21394%VAR(1,3))
IF(VAR(153)-95.) 34242
2 QUE=C.
G0 TO 5
3 QUE=0.001856#EXP(~0.39723%VAR(1,3))~-
10:022C64%EXP(=0.63694#VAR(1,3) )~
1C.000584*EXP(-0,93303%VAR{1,3))~-
10,0001976%EXP(-1.28557#VAR(1,3))-
10.0000924*EXP(~-1.69448%#VAR(1,93))
IF{VAR(1,3)-22.) 645,45
5 AAR=C.
ESS=0C.
G0 TO 8
6 AAR=-0.0000504%#EXP(~2.15977%#VAR(1,3))—
1050000304*EXP(-2.68143%VAR(1,3))-
1050000195%EXP(-3,25943%#VAR(1,3) )~
10s0000132%EXP(-3.8945#VAR(1493) )~
1040000062 EXP(-4.58457%2VAR(1,43))
ESS=-0,0000067T#EXP(-5,.332%VAR(1,3) )~
10.0000049#EXP(-6.1357*VAR({1,3))~
10:0000038%EXP(~-6.996%VAR(1,3))
R=TIME DERIVATIVE OF UNSTEADY VELOCITY QSTAR
8 R=PEE+QUE+AAR+ESS
CALL ATSM(2741,27)
CALL ALI(Q3274EPS,IER)
QOVER=Q/6G
S=4/REYNOLDS NUMBER
S=0.005714
VAR(851)=2,0#VAR(1,2)#Q»Q%( (D%E)+{(FF=G))
VAR(852)=S%#QuGoG-VAR(1,2) #P2G2GxR
VAR(893)=Q#VAR(1,2)%E=G
RETURN
END
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SUBROUTINE COMPY - - -
COMMON VAR{1493),A(4),B(4),C(4) 9yHyBYHALHENDVAyFLAGyXyNy
1T,PHSIGyNODUM,NODUB, ENDNG, 109 XLAB(5) s YLAB(5),GLAB(5),

1DATLAB(5) 4 XICO(500) ,ETACO(500),TAUCO(500)4NPTS,
1TAU2(27) 5 QSTAR(27)9ARG(2T) 4 VAL(27)

INTEGER ENDNOysToPHSIG

CALL COMPD

RETURN

END
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SUBROUTINE COMPT
COMMON VAR(1493),A(4),B{4),C(4) yHyBYHALSENDVASFLAGyXsN,
1T3PHSIG,NODUMsNODUB,ENDNO,I0,XLAB(5) »YLAB(5),GLAB(5),
1DATLAB(5),XICO(500),ETACO(500), TAUCO{50C) 4NPTS,
1TAU2(27)4QSTAR(27) 9 ARG(2T) 5 VAL(27)
INTEGER ENDNO,T,PHSIG
WRETE(3,5) X,VAR(1,1)4VAR(142),4VAR(1,3)
5 FORMAT (6E16.6)
NPTS=NPTS+1
XICO(NPTS)=VAR(1,1)
ETACCI(NPTS)=VAR(1,2)
TAUCO{NPTS)=VAR(1,3)
IF(X-ENDVA) 6410,10
6 IF(VAR(1,3)-100.)757410
10 FLAG=-1.0
7 RETURN
END
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SUBROUTINE COMPE

INTERVAL CHECK
COMMON VAR(14,3),A(4),B(4),C(4),H,BYHAL,ENDVA,FLAG,X,N,

1Ty PHSIG o NODUMyNODUB,ENDNO IOy XLAB(5),YLAB(5),GLAB(5),
1DATLAB(5) +XICO(500),ETACO{(506),TAUCO(5CC)4NPTS,
1TAU2(27)+:QSTARI27),ARG(27),VAL(27)

INTEGER ENDNG,T,PHSIG

IF (FLAG—.5)1,41,2

WRITE (1044)

FORMAT(20a@,10X3 2HALVEDQ)

RETURN

WRITE (10,3)

FORMAT(202,10X9 aDOUBLEDS)

RETURN

END

BN D
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SUBROUTINE PREDI
C PREDICT Y-VALUE

COMMON VAR(1493),A(4),B{4)sC(4)4H,BYHALSENDVA,FLAGsXyN,
1Ty PHSIG,NODUM, NODUB,ENDNO,I0,XLAB{5) s YLAB(5)5CLAB(5),
1DATLAB(S),XICO(500),ETACO(500),TAUCG(500)4NPTS,
1TAU2(27) 4 QSTAR(27) 3 ARG(27) s VAL(27)

INTEGER ENDNGO,T4#PHSIG

DO 45C I=1,N

450 VAR(15s1)=(1.54T7T651EC*VAR(251))-(1.867505E0*VAR(3,1)) +

1 (2.017207EC#VAR(4,I)) — (.6973528#VAR(5,1I)) + H=
2 112.0C2248#VAR(9,1I)) ~ (2.031688%VAR(10,1)) +
3(1.818611E0#VAR(11,1)) - (.7143201E0#VAR(12,1)))
RETURN

END
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SUBROUTINE CORRT(PERR)

CORRECT Y-VALUE
COMMON VAR({1453)3A(4)sR{4)4C(4)3HyBYHALyENDVAyFLAGs XsNy

1TyPHSIG,NODUM,NCDUB,ENDNGy 10y XLAB(5) 3 YLAB(5)3GLAB(5),
1DATLAB(5) +XIC0O(500)4ETACO(500),TAUCO(500) 4NPTS,
1TAU2(27),QSTAR(27)3ARG(27) 4 VAL(27)
INTEGER ENDNO,sT,PHSIG
DO 462 I=1,N
460 TEMP=VAR(2,1)+H#((.3752VAR(8,1))+{.791666TEO*VAR(S,1))
1-(.2083333EC*VAR{10,1))+{.041666TEO0*VAR(11,1)))
IF {PHSIG)463,4645463
463 TEMPA=ABS(ITEMP-VAR(1,1))/TEMP)
GO TO 465
464 TEMPA=ABS(TEMP-VARI(1,1))
465 VAR(1l,1)=TEMP
IF (PERR-TEMPA) 461,462,462
461 PERR=TEMPA
462 CONTINUE
RETURN
END
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SUBROUTINE INITA
OBTAIN STARTING POINTS WITH RUNGE-KUTTA-GILL METHOD
COMMON VAR(1493)9A(4)+8(4)3C(4) yHeBYHALENDVA,FLAGyXsNy
1Ty PHSIG,NODUM,NCDUB,ENDNOyICsXLAB(5),YLAB(S5),GLAB(5),
1DATLAB(5) +XICO(500)4ETACOI500),TAUCO(50G) 4 NPTS,
1TAU2(27),QSTAR(2T) yARG(2T7) s VAL(2T)
INTEGER ENDNQO.T,PHSIG
RUNGE-KUTTA-GILL COEFFICIENTS
A{l)=.5
A(2)=.2928932E0
A(3)=1.707107EQ
Al4)=.166666T7TEQ
B(1)=1.
B(2)=A{2)
B{3)=A(3)
B{4)=43333333E0Q
C{l)=.5
Cl2)=A{2)
C(3)=A(3)
Cl4)=.5
401 DO 402 I=1,N
402 VAR(6+1)=0:
J=4
GO TO 410
4C3 DO 407 K=1y4
DO 4G4 I=1,N
500 CK=H=#VAR(8,1)
501 R={A{K)=*CK)-(B{K)®*VAR(6,1)})
502 VAR(1,I)=VAR(1,1I)+R
4304 VAR{691)=VAR{G4I)+{3, 2R)-{C(K)=CK)
IF (K-1)4059405,413
413 IF {K—-3)406,405,406
NEW VALUE OF X
405 X=X+(H/2.)
CALL COMPD
GO TO 4C7
406 CALL COMPY
4G7 CONTINUE
IF (NODUM)410,412+411
412 NODUM=-1
410 DO 408 I=1,sN
VAR({ J+1,1)=VAR(1,1)
408 VAR{J+8,1)=VAR(8,1I)
J=J-1
IF (J)409,409,403
409 RETURN
411 CALL COMPT
60 70 410
END
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SUBROUTINE NODE
c NGDE IS MAIN SUBPROGRAM —— CONTROLLING SUBPROGRAM
COMMON VAR{(1433),A(4)9B(4)9C(4) sHyBYHALENDVA9FLAGyXsN,
1TyPHSIGE s NODUMsNODUBENDNO, 10y XLAB(5),YLAB(5),GLAB(5),
1DATLAB(5) 4XICO(500),ETACO(500),TAUCO{500) 4NPTS,
1TAU2(27),QSTAR(27)yARG(27) 4 VAL(27)
INTEGER ENDNOsT9PHSIG
CHECK1 = 16.21966 /(1G#*#=T)
CHECK2 = CHECK1l / 20¢C.
C RUNGE-KUTTA-GILL COEFFICIENTS
All)=.5
A{2)=22928932E0
A(3)=1,707107E0
A(4)=.1666667EQ
B{l)=1.
B(2)=A(2)
B(3)=A(3)
8(4)=23333333E0
Cll)=.5
C(2)=A(2)
C(3)=A(3)
Cl4a)=.5
c INITIALIZE
FLAG=0,
5GC IF (BYHAL)B02,501,502
501 BYHAL=L.S
502 IF (ENDNO)5(03,5C4,503

c ENDPOINT COMPUTES H
503 H={ENDVA-X)/ENDNO
c PREPARE FOR RKG

504 CALL CGMPD
5C5 CALL COMPT

IF (FLAG)560,506,506
506 CALL INITA

NSWHF=1

IF (ENDNQC)S5C7,5084507
5C7 ENDNO=ENDNOC-3
508 M=3
509 FLAG=0.
510 X=X+H
$11 CAEL PREDI
512 CALL COMPD
513 PERR=0.
514 CALL CORRT{(PERR)
515 CALL COMPY
516 IF (PERR-CHECK1 )517,4517:535

c NO HALVING NECESSARY -

517 NSWHF=0

IF (NODUM)5504518,518
518 IF (ENDNO)5194520,4519
519 ENDNO=ENDNO-1.
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CALL CBMPT

IF (FLAG)560,521,521
IS DOUBLING POSSIBLE
IF (PERR- CHECK2

M=3

J=13

DO 524 I=1.N
VAR(J+1,1)=VAR({J,1)
J=Jd-1

IF (J)509,509,523
DOUBLING

M=M-1

IF (M)530,527+528

IF (NODUB)522,529,522
IF (ENDNO)530+531,530
MOD=ENDNO/ 2

MOD= ENDNG-MOD=2
IF(MOD) 52895315528
FLAG=2.

CALL COMPE

IF (FLAG)560,532,532
B0 533 I=14N
VAR{2,I)}=VAR(1,1I)
VAR{4+I1)=VAR(541)
VAR(541)=VAR(731)
VAR(9,1)=VAR(8,1)
VAR(11,1I)=VAR(12,1)
VAR(12,1I)=VAR(14,1)
H=2,#H

IF (ENDNO)534,508,534
ENDNG=ENDNG/ 2

G@ TC 508

HALVING
FLAG=ABS(BYHAL)

CALL COMPE

IF (FLAG)560,561,4561
IF (NODUM)537,537,536
CALL COMPT

IF (FLAG)580,537,537
IF (BYHAL-1.)5485517,517
IF (ENDNO)543,542,543
ENDNO=2 =ENDNO

IF (NSWHF)538,540,538
REPEATED HALVING

DO 539 I=1sN
VAR(151I)=VAR(5;1I)
VAR{851)=VAR(12,1)
X=X=(4.%H)

IF (ENDNO)549,549,544
ENDNQ=ENDNO+6.
H=H=ABS (BYHAL)

152545254522
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GO TO 506

DO 541 I=1,N
VAR{15I)=VAR(251)
VAR(8,I)=VAR(9451)
X=X-~-H

GO0 TO 549

DUMMY OQUTPUTTING
X=X-(3.#%H)

IF (ENDNO)5514552,4551
ENDNO=ENDNO+2.

K=3

DO 553 I=1,yN
VAR(64I)=VAR(1,1)
VAR{1351)=VAR(8,1)
DO 554 I=1,4N
VAR{19IJ)=VAR(K+1,1)
VAR( 851 )=VAR(K+8,1)
CALL COMPT

IF (FLAG)S560,5524562
RETURN

X=X+H

K=K-1

IF (K)5584558,555
IF (ENDNO)556495574556
ENDNO=ENDNO-1

G0 TO 557

DO 559 I=14N
VAR(15I)=VAR(6351I)
VAR(831)=VAR(13,I)
NODUM=0

GO0 TO 518

END



N

owmH W

O 0

10

11
12

13

136

SUBROUTINE ALI(YyNDIM,EPS,IER)

COMMON VAR(1453)9A(4)4B(4),C{4) 3sD9yBYHALyENDVAsFLAGyXX3sNy
1T,PHSIG,NODUM,NODUB,ENDNO,I104XLAB(5),YLAB(5),GLAB(5),
10ATLAB(5) s XICO(500),ETACO(50C) » TAUCGC(50C) s NPTS,
1Z(27)9F(27)3ARG(27) 5 VAL(27)

EQUIVALENCE (X3VAR(1,3))

IER=2

XXX=,0001*X

EPS=AMAX1{:00G014XXX)

DELT2=0.

START OF AITKEN-LOOP

DO 6 J=2,NDIM

DELT1=DELT2

IEND=J-1

DO 2 I=1,1IEND
H=ARG(I)-ARG(J)

IF(H)2413,2
VAL(J)=(VAL({I)*(X-ARG(J))-VAL(J)=(X~ARG(I}))/H
DELT2=ABS(VAL{J)-VAL(IEND))
IF(J-2)646,3
IFADELT2-EPS)10,10%4
IF(J-5)6495+5
IF(DELT2-DELT1)6911911
CONTINUE

END OF AITKEN-LOOP

J=NDIM
Y=VAL(J)
RETURN

THERE IS SUFFICIENT ACCURACY WITHIN NDIM-1 STEPS
IER=C
GOTG 8

TEST VALUE DELT2 STARTS OSCILLATING
IER=1

J=IEND

GOTO 8

THERE ARE TWO IDENTICAL ARGUMENT VALUES IN VECTCR ARG
IER=3

G070 12

END
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SUBROUTINE ATSM(IROW,ICOLsNDIM)

COMMON VAR(1433)3A(4)+B{4)3C(4)9DyBYHAL,ENDVA,FLAGy XXy M,
1T4PHSIG,NODUM,NODUByENDNOyI0sXLAB(5) 3 YLAB(5),GLAB(5]),
1IDATLAB{5),XICO(500) ,ETACO{500) s TAUCCI50G8) s NPTS,
1Z2(27),F(27) ARG (27}, VAL(27)

EQUIVALENCE (X3VAR{(1,+3))

CASE IROW=1 IS CHECKED OUT
IF(IRON=-1)23,21,1
N=NDIM

IF N IS GREATER THAN IROWs N IS SET EQUAL TO IRCW.
IF(N-IROW)3,392 )
N=IROW

CASE IROW.GE.2

SEARCHING FOR SUBSCRIPT J SUCH THAT Z(J) IS NEXT TO Xe.
IF(Z(IROW)-Z(1))594,4

J=IR0OW

1=1

GOTO 6

I=IROW

J=1

K={J+1)/2

IF(X-2Z(K))7,7,+8

J=K

GOTO 9

I=K

IF(IABS(J-I)-1)10,10,6
IF(ABS(Z(J)-X)-ABS(Z(1)~-X))12,12,11
J=1

TABLE SELECTION
K=J

JE=C

JR=C

DO 2C I=1,4N
ARG(I)=Z(K)
IF{ICOL-1)14,14,413
VAL(2#1-1)=F(K)
KK=K+IROW

VAL (2#] )=F (KK)
GOTO 15
VAL(I)=F({K)
JJR=J+JR
IF(JJR-IROW)16,18,18
JJL=J-JL
IF{JJL-1)19,519,917
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IF(ABSIZ{JIR+1)~-X)-ABS(Z(JJL-1)-X))19,19,18
JL=JdL+1

K=39-JL

GOTD 20

JR=JR+1

=J+JR

CONTINUE

RETURN

CASE IROW=1
ARG(1)=Z(1)
VAL(1)=F(1)
IF1IC0L-2)23,22,23
VAL(2)=F(2)

RETURN

END
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XI. APPENDIX B

The details of obtaining Equation 56 from Equation 54 in

Chaepter V are given in the following

I ( sRe #)
a(t) = "*(e) —ngﬁ (5%)

sRe
IQ( 2 )

The integral in the Equation 54 can be evaluated by Cauchy's

residue theorem, which is stated as

n
¢ £(z)dz = 2™ & Res(a )
k=1
where Res(ak) = residue of £(z) at poles z = ay
Re
T ([2Ep%) /s -
Let F(s) = 5T 0N 2 = 5t %ég% (84)

r, (/22

s . Re_ . R
so that N(s) = IO(JEEETW)/S, and D(s) = IO(J§§§)- By

Cauchy's residue theorem

-7:— F(s)ds = R, + & R, (85)
n
where Ro = residue at s = 0O 2
s On
Rn = residue at s = §€7§ in which oy are the roots

of the Bessel function JO (JsRe/2)
The function F(s) has simple poles at s = 0 and at s =

—Qae/Re. That is, F(s) is not finite at s = 0 and for

JEEE = 1 QL - The residues are calculated as follows:

st /sRe
lim ( *)

sF(s) = =1 (86)
5-0 T ( sRe)

Ro = 5.0
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Hildebrand (10) has shown that for simple poles the residue

) 2@%
at s = - =T is given by
st N(s)
Ry = | 2
( ) S=- 2an/Re

From Equation 84
1 (252 r~>/s

st
R =-e 2¢
n n
sRe s = - —
ds {1, (== Re
SRe .
_ st SoliTm T/ 22
- ¢ [SRey Re/2 S = - ——0
Ll( 5—) Re
5 2 JsRe/2
24! 242
L n T
Re "~ (. % " TRe . I
=e I (ia,r )=- e Ioh%g )
202 Gy 17 (16,)/1
(e, )p
pal
St
0 e RE Jo(anr*) (87)
= - - 7
a, J1(% )
From Equations 54, 85, 86 and 87 042
o J (ar*) - —==T
Re
G(T) = 1 -2 z-——(—-)—o 2 e (88)
n=lanJl Qn

Equation 88 is the same as Equation 55 in Chapter V. From

Equation 88 we can write 2
w J (& r*) -2-—— (+-T)
G(7-T) = 1-2 § 5= T €

n=1 n“l‘"m

With this result in Equation 53 of Chapter V we have
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o
* - o
2 nJlian}

O
7, 2“51( 7)
T © a rs.\ - —_— T .
= [ £(T)4T -2 2 f(T)e Re dI
: S |
2
Q.
T © J ( -K-) -2 == T
= [ £(T)aT -2 5 'E—EIT"_T j £(r-T)e =€ “gr (89)
o) n

From Equation 52 in Chapter V and nquatlgn 39 we have

ar

@ o
uf = uf-2 £ ey f(T-T)e dT (90)
2 1 n=1 c‘nJl /3
Since u* = uf - uj (see Equation 51 in Chapter V), Equation 90

can be written as

2
ean

mJ(C(..L")T ——RET

u¥ = u¥ - uf = ————T——j- £(7-T)e dT 91
2 5 22 F (r) (92)
=2 g F (7
n=1 opdildy) B
where, 20

aT (93}

Equations 92 and 93 are the same as Equations 56 and 57 in

Chapter V, respectively.
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XIT. APPE

FoR_

DIMENSIGN Q{372),TAU(3D),

HA{10T),T(4800)

READA(1,5) Mbrv$>me‘Huv.®m.

mom.lmﬁwﬁwc.nu
WRITE(345)

FORMAT(Z13:9X93TAUSH13X0 3
A=li. w

D=,0238

KK=1.175

XL=.625

{i=.52

RE=TGC.

H=otil

J=2%

BRE=D=RE

AEL=XL=RE

Q(l)=C.

TAU{Y)="1,

READ{L,5) (TAU(IY.1=2,53]
230 61 I=24.4
NLTAU==XL=TAU(I)

SUM=10,

S0 5¢C N=1,5C

N1=n

COMPUTE THE INTZERAL

zQ%2) '

CALL mmﬁ,.uqbrhmv S»C1aX¥,yXK)

TERMN = (BRE/{ALP bﬁzvsrroﬁlﬁszu ® (~EXP(-Cls=TAU(TI]i)}=

(1e/C+1./RELC) + 1./C + (1./RELCI=EXP(XLTAU)) +

A=S/{ALPHA{N) =ALPHA{N))
IF(N~1)83520,55

CHECK FOR CCNVERGENCE

IF{ABS{TERNN/SUM)—oC0O01) 60:60,20

SUM=SUM+TERMN
CONT INUE
QlI)=%.=SUM
50 TO 61

Q{I) =4 % ( SUMFTERMN)

WRITE(3,65) TAU(I),Q(I),N1
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FORMATI(2F15.7,17)

A=.895
“=edul

XX=.16129

RE=1610.0C
GC TO 15
STOP

ENL
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SUQ\DUTL-‘E O (XL7XU1Y’C17X;".,:<K)
FCT(T)=Tx=XN = EXP(=XK=T+L1ls=(T-XU))

cCT(T) IS THC USERES INTEGRAND

S {XU+XL)

XU=XL

«4530899%3

-.11P4u Lx(FCT(A+C)+FCT(A=C))
£=,2692347%8

LR L )}

L L )

Y=Y+.23G93143%(FCT(A+C)+FCT{A-C))

Y=8% (Y+.2944444%FCT(A))
RETURN
END



UNSTEADY ENTRAMCE VELBCITY FOR THE
RFYNOLDS MUMISRS 1610 ANDJ 720

DIMINSIUONLESS DIMENSICNLESS ENTRANCE VEILGTITY
J

TINME RE=1510 RE=T04
9.1 540052 9.0182
.2 0.3116 040423
3.3 £.0186 0.0830
8.4 0.0258 0.1194
8.3 9.2332 9.15561

.7 5.0433 0.2266
.3 5.0713 £.3196
.3 000944 0.3945
.0 11459 0.5087
5 0.2157 5.5797

Se33243 Ca6119
Je&245 De62%5

[

N GO U N LY N D)
L]
[ I I G I:

155 £.515% 0.6387
2.0 1e35629 Le5654¢
i5.% Q.6079 D.6822
18.7 J3.6383 D.7CS3
227 CeE536 De.1385
25.0 L6122 5.7559

355 0.6856 D.7716
35.7 $.6957 JeT7T785

'
s T ~ 2,
LZe 0 DeTTHT

47,0 JeT179
5Ce0 ' 5.7223
&leT CeT4:33
7263 De7582
8C.0 C.T757
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APPENDIX D

Table 7. Pressure drop data for the Reynolds number 1610
Dimension- Dimensionless pressure drop, (po—p)/—g-pU2 at
less time, various axial positions

T Tap 1 Tap 2 Tap 3 Tap & Tap 5 Tap ©
0.149 0.68 1.31 2.17 2.88 5.74 8.12
0.448 1.31 2.09 3.39 4.38 8.4 12.58
0.897 1.57 2.51 3.96 5.08 10.34 15.13
1.046 1.57 2.49  3.98 5.19 10.43 15.30
1.196 1.57 2.62 L.o4 5.19 10.51 15.51
1.345 1.52 2.49 3.98 5.03 10.48 15.48
1.455 .49 2,41 3.93  4.98 10.27 15.35
2.989 1.49 2.38 3.62 4.64 9.41 13.94
5.979 1.49 2.09 3.09 3.67 7.53 11.28
8.969 1.49 1.01 2.47 2.93 5.79 8.54
11.958 1.49 1.87 2.09 2.48 4.43 6.47
14,963 1.49 1.85 2.06 2.35 4,19 5.63
17.947 1.49 1.80 1.98 2.04 3.84 4,82
20.928 1.49 1.78 1.96 2.25 3.49 4.70
29.897 1.49 1.78 1.93 2.2t  3.04  3.98
38.866 1.49 1.78 1.93 2.12 2.91 3.73
47.835 1.49 1.78 1.93 2.12 2.01 3.68
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Table 7 (Continued)

Dimension- Dimensionless pressure drop, (po-p)/%pU2 at
less time, various axial positions
- Tap 7 Tap 8§ Tap 9 Tap 10 Tap 11 Tap 12

0.149 15.46 19.22 29.84 39.29 47.26 65.52
0.448 23,84 32,04 47.42 66.15 86.54 112.61
0.897 26,66 36.46 55,48 76.49 98.23 130.50
1.045 27.23 36.67 55.67 76.72 99.00 131.00
1.195 27.42 37.58 55.81 77.66 100.02 131.38
1.345 27.16 36.50 55.43 76.52 99.00 131.00
1.495 26.80 36.23 54.76 75.00 96.10 128.12
2.989 2L,63 34,00 45.48 &s.22 85,10 117.91
5.979 19.56 27.11 39.00 54.38 69.60 92.89
8.959 14.75 19.72° 28.52 39.53 51.10 68.10
11.958 11.27 14.62 20.92 30.00 38.52 51.63
14,963 9.63 13.11 18.33 25.33 33.42 4458
17.947 9.37 11.42 15.61 22.29 28.02 37.72
20.928 7.32 9.58 13.10 18.49 22.78 30.40
29.897 5.71 7.31 9.95 13.30 16.22 22.08
38.866 5.09 6.41 8.51 11.25 13.87 19.64
47.835 4,91 5.97 7.51 10.30 12.77 17.16
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Table 8. Pressure drop data for the Reynolds number 700

Dimension- Dimensionless pressure drop, (p,-p)/3pU° at
less time, various axial positions
- Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap ©

2.77 6.12 8.80 12.77 20.72 30.41
5.54 10.26 17.15 22.68 38.71 58.10
.260 6.92 11.76 18.92 24.89 48,65 73.18
6

0.

0.

0

0.286 .92  11.76 19.08 25.10 49.25 75.30
0.312 6.36 11.07 16.75 24.35 48,15 T72.68
0.364 5.95 10.92 16.60 23.91 47.75 T1.90
0.781 5.25 9.68 14,24 20.47 39.00 60.82
1.561 2.76 5.53 8.85 12.46 27.25 Ll.49
3.253 2.49 3.70 5.22 6.51 12,30 18.00
6.506 2,49 3,58 4,57 5.56  10.04 13.22
7.156 2.49 3.40 4,11 4.88 8.05  11.47
7.807 2.49 3.31 3.88 4.57 6.83 10.00
8.458 2,49 3,16 3.78 4.30 6.25  9.02
9.108 2.49 2.91 3.53 4,12 6.08 7.68
9.758 2.49 2.91 3.53 4.12 5.88 7.50
10.409 2.49 2.91 3.53  4.12 5.88 7.39



Table 8. (Continued)
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lese tine,  Dimensionloss presewre drop, [2,7p)/A et
' Tap { Tap 8 Tap § Tap 10 Tap 11 Tap 12
0.052 15.62 58,08 86.47 112.90 142.52 185.20
0.156 85.73 121.72 172.80 235.00 298.72 396.00
0.260 127.31 178.80 248.93 346.03  442.64 587.13
0.286 130.24 181.06 260.02 360.00 464.90 622.00
0.312 129.52 180.02 258.61 357.13 456.30 611.22
0.364 124,63 178.38 253.13 351.10 453.82 605.06
0.781 109.82 152.10 216.41 304.00 387.52 523.24
1.561 73.26 103.75 146.32 207.50 265.00 362.15
3.253 31.81 45,10 62,25 87.10 112,14 149.43
6.506 21.86 28.40 39.52 47.81  59.26 76.33
7.156 17.33 22.64 31.20 39.84  49.00 66.12
7.807 14,92 19.11 26.72 35.68  44.89 60.86
8.458 13.12 16.66 24,13 32,44 41 .42 55.30
9.108 12.00 15.75 22.21 30.11  38.43 52.16
9.758 11.41 14.82 20.59 29.58  36.04 49.58
10.409 10.75 13.88 19.87 28.38  34.46  148.00
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