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I. INTRODUCTION 

Life is a costly, energy consuming process which develops and sus­

tains gradients In temperature, pressure, concentration, and chemical 

affinity. Living systems fuel this process through the capability of 

transforming energy from one form to another through Intricate chains of 

biochemical and physlochemlcal events. In this sense, they have been 

compared to a complex chemical factory In which the primary purpose Is 

the creation and maintenance of life. 

This analogy suggests that the principles of thermodynamics and 

transport phenomena used for analyzing physical systems may be applied 

to the study of energy flows in the development, growth, and regulation 

of living organisms. The application of the principles of conservation 

of material and of energy to biological systems has appeared frequently 

In thermodynamics research since the mid-nineteenth century. Calorimetric 

studies of the heat production of animals were performed in the late 1700s 

by Lavoisier and Laplace and subsequently served as a basis for more 

rigorous thermodynamic analyses. In the late 1800s, the link between food 

as a fuel, the heats of combustion of the nutrients in the food, and the 

resulting heat production by the system was demonstrated. These later 

studies warranted assumptions about the applicability of the laws of con­

servation of matter and energy, although the data were not analyzed to 

represent the proper thermodynamic quantities. 

The first law of thermodynamics and the concepts and quantities used 

therein often imply a restriction to measurements done on systems at 
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equilibrium since some of the quantities used In the first law expression 

are defined rigorously only at equilibrium. Classical thermodynamics Is 

a study of static situations constrained largely to spatially homogeneous, 

time-Invariant entitles. Biological systems are Inherently complex and 

heterogeneous, open, transient, and not at equilibrium. This Indicates 

the need for additional studies using Irreversible or nonequlllbrlum 

thermodynamics In which the concept of local equilibrium permits the use 

of equilibrium thermodynamic variables. 

The first law, however, does serve as an adequate and useful tool In 

the macroscopic analysis of biological systems over relatively short time 

spans. Classical thermodynamic theory can be used In dealing with over­

all features, constraints, and consequences to obtain limiting statements 

about the system and Its operation. It Is a bookkeeping device and has 

no predictive capabilities. 

The concepts of Irreversible thermodynamics allow further insights 

Into the thermodynamic description of biological systems through the use 

of ideas such as local equilibrium, entropy flow, entropy production, 

and stationary states. Many biological processes may be modelled by the 

phenomenological relations between forces and fluxes developed by 

Onsager in 1931. The investigation is somewhat simplified in living 

organisms which operate within a limited temperature range and at nearly 

constant pressure and which are composed of solutions that may be con­

sidered ideal. 

The second law of thermodynamics implies that the entropy of an 

Isolated system in which irreversible processes take place must increase. 
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Since most of the processes In living systems are Irreversible, Prlgoglne 

(80) has hypothesized that the specific Internal entropy production rate 

of living systems must be positive but that it continually decreases as a 

system develops, matures, and ages. These two ideas suggest that life 

may be placed into a global framework in which living things contribute 

to the overall entropy increase of the universe. 

Once the first law analysis has provided a thorough understanding of 

the energy flows of a system, irreversible thermodynamics, subject to 

overall energy balance constraints, serves as a predictive tool to 

characterize and quantify the dlssipatory mechanisms and efficiencies of 

energy conversion in living systems. 

This study will in part deal with the human body during work and 

exercise. The physiology of the human at work provides basic information 

about the effects of stress on the nature, range, and efficiency of the 

resultant energy flows. Energetics and mechanics of athletic events and 

of single muscle activity are well-documented by many researchers in the 

field of work physiology providing an excellent data bank, although some 

of the data are misrepresented and Incomplete. 

The thermodynamics of growth and development will be examined in 

systems such as the avian egg and microbial cultures. Newly developed 

applications of material and energy balances in studies of microbial 

energetics will be extended to Include applications of the second law 

of thermodynamics and a qualitative evaluation of entropy production for 

these systems. 
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In summary, the primary goals of this work are to perform a compre­

hensive thermodynamic analysis of the flows of material, energy, and 

entropy which occur In living systems, to use the resulting generalized 

energy and entropy balances to evaluate and reinterpret existing data on 

these quantities, to gain an understanding of the energy and entropy 

relationships In development, growth, and regulation processes, and to 

suggest experiments to further the understanding of these processes. 
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11. LITERATURE OVERVIEW 

The following Is a summary of the Important literature In areas 

pertinent to this study. Contributions originate from several Independent 

disciplines, so the related literature Is potentially vast. 

This section Is Intended to briefly describe these main areas and 

present a concise account of the work done In each. The nature of this 

work Is such that a literature review Is more coherent If more specific 

and analytical comments are presented when the Individual topics are 

discussed In the body of the thesis. 

A. Energy and Biology 

The study of the thermodynamics of living systems Is by no means new. 

Calorlmetrlc studies were being performed on guinea pigs and other species 

as early as the 1700s. However, not until the twentieth century were such 

studies performed on specific subsystems of living organisms, such as 

muscle. 

1. Muscle contraction energetics 

Huxley (60) made great contributions regarding the microscopic 

muscle contraction mechanism with the sliding filament theory. Through 

the use of electron-microscopic observation, he was one of the first to 

recognize the cross-bridge linking of muscle filaments as the force-

generating mechanism in muscle. This area is still an active area of 

research since many details remain to be investigated. 
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Hill (54, 55) and Wllkle (117) were some of the first to begin 

studies on the measurement of work performed by muscles. Hill's force-

velocity relationships for isolated muscle demonstrated that the maximal 

force developed when a muscle is contracting is a function of the velocity 

of contraction. This work formed the foundation for the mechanical study 

of muscle. 

The study of the energetics of muscle contraction was a logical con­

sequence of the mechanical studies. Major contributions describing heat 

production during working conditions, the changes in chemical substrates 

in working muscle, and muscle efficiencies were made by Fenn (43, 44), 

Hill (56, 57, 58), Hill and Howarth (59), Wilkie (120), Curtin £t 

(32), and Edwards ̂  (36). In situ research was done by Stainsby 

(105, 106). Almost every study showed that performance of muscular work 

by contraction resulted in an increased heat production by the muscle, 

called the Fenn effect, and an increased energy consumption rate. The 

work done by Hill (54), Kushmerick and Paul (67), and Stainsby (105, 106) 

demonstrated the direct proportionality between muscle energy consumption 

and muscle oxygen uptake. Recently, the effect of muscle length and the 

degree of muscle filament overlap on muscle energy consumption has been 

determined by Matsumoto and McPhedran (73) and Aubert and Gilbert (7). 

A good review of muscle energetics studies has been presented by 

Kushmerick (66). 

2. Exercise physiology and energetics 

Advancing from the isolated muscle to the human body as the system 

under analysis, the field of exercise physiology developed as a link 
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between mechanical and energetics studies during the early 1900s. 

The energetics of sprinting and running were studied as early as 

1923 by Sargent (95) and In 1930 by Fenn (45, 46). Knuttgen (63) studied 

the effects of stride length on energy consumption. Later research 

Included "work platform" analyses which allowed the calculation of 

kinetic and potential energy changes on a per stride basis. Such work 

was done by Cavagna et (25, 26, 27) and Margarla (70) for sprinting, 

walking and running. 

The drag effects associated with running Into a wind as compared to 

still air were Investigated by Pugh (84) and Davles (33). 

A complete study of the work performed by a man-blcycle system was 

done by Dlprampero et jd. (35) In 1979 and on the effect of various 

cycling frequencies by Seabury et (98). 

As the popularity of long-distance running Increased, so did the 

research done on Its effects on the human body. These studies are 

exemplified by work done by Saltln et al.(94), Costlll (30), and Maron 

and Howarth (72) on marathon running. 

A typical outcome of work-energy studies was the analysis of working 

efficiency. These types of calculations were found throughout the litera­

ture previously cited and were specifically considered In the work done 

by Whlpp and Wassermar (115) on phosphorylatlve- and contraction-coupling 

efficiencies, by Suzuki (110) on the efficiency of fast and slow twitch 

muscle fibers, and by Stalnsby ̂  (107) In a review of commonly used 

efficiencies and baselines. 
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Because some of the efficiencies found In running, jumping, and 

sprinting were much larger than what was usually given In the literature 

for muscular work, the Idea of reusable elastic energy storage In muscles 

became a popular research topic. Abbot ̂  (2) and Abbot and Bigland 

(1) were some of the first to quantitatively study the effects of nega­

tive work, or work done on the muscle system, during bicycle pedalling. 

Cavagna ̂  (28) performed experiments on isolated muscle and found 

an Increased capacity to perform work immediately after stretching. The 

capacity diminished as the time between the stretch and subsequent con­

traction Increased. Assmusen and Bonde-Petersen (4, 5) and Margarla (71) 

did studies on the elastic energy storage during jumping, running, and 

cycling. Each group concluded that it was definitely possible to reuse 

stored elastic energy as a direct source of energy for contraction, 

thereby lowering the muscle's subsequent demand for chemical energy. 

These storage effects were quantified for single muscles and other living 

tissue by Alexander and Bennet-Clark (3) and Minns ejt (74). Currey 

(31) found that tendons served as the best living tissue for elastic 

energy storage. He attributed this to the vlscoelastlc behavior of this 

tissue caused by the internal rearrangement of the molecules of tendon 

tissue to minimize strain. 

Astrand and Rodahl (6) have published a complete and concise text 

that is presently the definitive work in the field of exercise physiology. 

These studies have proved to be excellent sources of data for per­

forming energy balances on the human body during stressed conditions. 
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3. Development and growth 

The study of development and growth has been an interesting topic of 

energetics research. The energy transformations accomplished by an 

organism during growth are the direct cause of the notable macroscopic 

changes observed during this period of the organism's lifetime. 

The chicken egg has served as an excellent system for study. Romijn 

and Lokhorst (90, 91, 92) have measured the fetal heat production and 

fetal respiration in eggs as an assessment of the metabolism of the 

embryo. They have calculated both convective and evaporative heat loss 

from the egg and have attempted to perform an energy balance. Their 

success is questionable and will be discussed later in this work. 

Romanoff (89) has compiled a comprehensive, quantitative analysis of 

the prenatal development of various avian embryos. He has dealt with all 

pertinent components of the developing eggs and has discussed both 

chemical and energy transformations. His book has been useful in this 

study and will be referred to again. 

The study of microbial growth is a second area of research that has 

been important in this research. The energy transformations and energy 

content of bacteria have been investigated by Battley (10), Senez (101), 

Hadjipetrou et al. (52), Forrest and Walker (47), De Hollander et al. 

(34) and others. Through elemental balances and a thorough investigation 

of growth yields and substrate uptake, these investigators have been 

able to write explicit expressions for the growth of microbial organisms. 

The biochemical pathways of biosynthesis have been well-defined. Although 

the results of their work have not been used specifically in this research. 
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they have served as a basis for understanding the useful techniques 

described in the paragraph to follow. 

The methods of material and energy balances have seen recent success 

in applications to the study of microbial cultures by Erickson (37, 38), 

RoeIs (88), Erickson and Patel (40, 41), Erickson and Hess (39), and 

Erickson et al. (42). These investigators' use of electron balances has 

made the microbial culture a highly analyzable system, particularly help­

ful for the purposes of this study. 

The text written by Bailey and Dills (8) on the fundamentals of bio­

chemical engineering has served as an excellent source of background 

information in this area. 

B. Entropy and Biology 

The question of whether entropy Is a quantity of significance for 

living systems has been debated by many scientists by various approaches. 

Brillouln (18), Schrodinger (97), and Von Bertalanffy (114) all recog­

nized that living organisms were able in some way to control entropy 

production because they were open systems and were capable of exchanging 

material and energy with their surroundings. Their writings, cited by 

many of their successors, were an instigation of and inspiration for 

further research in this particular field. 

The tendency to consider entropy as a measure of disorder has been 

the cause of much confusion. Living things seemed to avoid decaying to 

a state of disorder and, therefore, have been perceived by many to be in 

violation of the second law of thermodynamics. The work of Brillouln (18), 
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Schrodlnger (97), and Horowitz (76) soon discouraged such comparisons 

between entropy and disorder as a reason for denying the relevance of 

entropy In biology. They attempted to Justify the apparent trends In 

entropy production by considering the entropy flows as compensation for 

the entropy changes due to the establishment of order. Living systems 

were described as feeding on negative entropy, or "negentropy," which 

permitted the apparent decrease In entropy due to the ordering process of 

biosynthesis. 

Brlllouln (18) also discussed the fact that since living things were 

open systems, they were not bound by the second law of thermodynamics for 

closed systems. He was among the first to consider the use of Informa­

tion theory as a means of quantifying the entropy changes resulting from 

organization. Several other authors (76, 97) have discussed the concept 

of relating entropy and Information. This Idea will be considered In 

the discussion of entropy and organization. 

1. Irreversible thermodynamics 

With the development of the concepts of Irreversible thermodynamics 

by Onsager In 1931, their use In describing living systems became an active 

area of research within two decades' time (61). Prlgoglne and Wlame (83) 

were the first to suggest the applicability of Irreversible thermo­

dynamics In biology. They argued that, because living organisms reach 

a final equilibrium only at death at which the Internal entropy produc­

tion Is zero, the rate of specific Internal entropy production must be 

decreasing, but possibly fluctuating. In the approach to that state. 
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2. Development and growth 

The development and growth of organisms became an area of Intense 

academic debate In the mid-1960s. Trlncher (112, 113) questioned the use 

of Prlgoglne's hypothesis In biology and used the heat emission data from 

developing eggs to demonstrate his objection. He used experimental data 

on heat loss from fertilized eggs (90, 92) and incorrectly equated the 

specific internal entropy production to the heat loss from the egg. Since 

the experimental data showed that during embryonic development the rate of 

specific heat production Increased, he concluded that the entropy produc­

tion rate increased and that Prlgoglne's hypothesis was incorrect or 

inapplicable. 

Zotin (122) argued that Trlncher's calculation had not considered 

the increasing weight of the active embryo and therefore the calculations 

of specific entropy production were wrong. Zotin recalculated these 

values and found that as the embryo grew, the specific internal entropy 

production decreased. 

In further studies, Zotin and Zotlna (124) discussed the concept of 

steady states in developing organisms and related entropy production to 

growth rates of animals. They examined experimental data of heat produc­

tion and respiration of many developing organisms and found that 

Prlgoglne's hypothesis seemed to apply. The same was shown for man. In 

so doing, Zotin compiled a very complete collection of heat production 

data for a variety of developing animals and a concise explanation of 

the possible role of entropy production in development, ageing, and 

growth (123). 
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Brief periods of Increased rates of entropy production were found in 

situations where organisms deviated from steady state, such as in the 

early stages of oogenesis and during the regeneration and healing of 

wounds. Zotln and Zotina (124) also showed that malignant growths caused 

a sudden deviation from steady state as the metabolic rate of cancerous 

cells was much higher than that of normal cells. By having done this, 

they were one of the first to suggest that entropy production rates could 

serve as a means of describing the state of an organism, its health and 

development. 

Zotln (123) refined his theory of homeoscatic and developmental 

steady states in a thorough analysis of the entropy production during 

development. He again reaffirmed the validity of Prlgogine's hypothesis 

in the development, growth, and ageing of living organisms. 

Several other researchers have considered entropy production changes 

in relation to changes in steady state operation to model the oscillatory 

phenomena which occur in biology, such as the regulatory mechanisms of 

homoiothermic animals, "biological clocks," and the overall behavior of 

biological systems (11, 49). 

Entropy production was considered to be a direct Ctvuse for the 

ageing of organisms, as discussed in studies by Sacher (93), Calloway 

(22), and Balmer (9). 

The question of evaluating entropy production during embryogenesls 

has persisted. Schaarschmidt et al. (96) considered the evaluation of 

the internal dissipation function, of a yeast cell colony In two por­

tions, that which is dissipated externally, and the part that remains 
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bound In the system, They assumed that resplratlve and glycolytic 

metabolisms determine all dissipation processes occurring in organisms. 

By measuring the difference between metabolism, q^, and the specific rate 

of heat production, q " the bound dlBslpatlon could be directly 

measured. 

They used calorlmetrlc measurements on a growing yeast culture to 

determine that ip decreased monotonlcally with the age of the organisms 

and became zero for systems at equilibrium. 

Hlemaux and Babloyantz (53) considered the use of nonlinear ir­

reversible thermodynamics to evaluate dissipation during embryogenesis. 

They showed that nonlinear thermodynamic models properly predicted the 

increase in entropy production during the early stages of development. 

Three years later, Lurie and Wagensberg (69) argued that nonlinear 

thermodynamics need not be invoked to explain heat dissipation during 

embryogenesis. They attempted to include the effects of the entropy 

change due to reaction and did not assume that internal entropy produc­

tion could be approximated simply by heat production calculations. As 

a result, the total rate of specific entropy production was written as 

the sum of entropy addition due to growth and the changes resulting from 

biomass organization and differentiation. In initial growth phases, the 

growth term was expected to make a large positive addition to the entropy 

production. Beyond these Initial periods of growth, the organization 

term, assumed by the authors to be negative, became the dominant term. 
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Although the entropy production had been rewritten In a concise 

form, It had not simplified the calculation or eliminated the difficulty 

of measuring internal entropy production. 

3. Entropy and evolution 

Early eoibryonic development has often been considered to be a 

miniaturized display of evolutionary processes. It was inevitable that 

irreversible thermodynamics was to become an Instrument with which to 

study aspects of evolution. Prlgogine et al. (81, 82) and Nicolls and 

Prigogine (78) stated that fluctuations and dissipation on the molecular 

level can eventually drive an entire system to some new, stable regime. 

An example of this effect is seen in fluid mechanics where small In­

stabilities in laminar flow near the critical Reynolds number eventually 

cause the flow to become turbulent. In biological systems, such a sud­

den transition is seen in the sudden depolarization of excitable 

membranes. The authors hypothesized that under far-fromi-equillbrlum 

conditions, new structures could appear as a consequence of fluctuations. 

If the new structure were more stable, evolution and Darwin's "survival 

of the fittest" could be viewed as having occurred through such mech­

anisms. A major argument in opposition to this idea is that the apparent 

probability of such an occurrence is prohibitively low (16). 

4. Irreversible thermodynamics and muscle contraction 

An entirely different area in which irreversible thermodynamics has 

been applied in biology is energy conversion in muscles. Caplan (23) was 

the first to model muscle contraction as a linearly-coupled energy con­
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verter using thermodynamic forces and fluxes. Wllkie and Woledge (121) 

showed that his model did not adequately agree with data and concluded 

that it was therefore incorrect. Bornhorst and Minardi (13, 14, 15) 

defended Caplan and showed good agreement with integrated data. They 

further modified Caplan's model using Huxley's sliding filament theory 

of muscle contraction. Their approach included the effects of muscle 

length variation (15). The site of the linear energy converted was then 

assigned to be at the cross-bridge coupling of the myosin and actin 

fibers of muscle and not the entire muscle. The force generated was 

postulated to be a function of the number of activated cross-bridges. 

Caplan (24) has offered a good summary of the nonequilibrium 

approach to biochemistry and to muscle contraction. Other applications 

are discussed by Katchalsky and Curran (61). 

From these highlighted works, it is apparent that there is at 

present no coherence between these separate but related fields. In 

order that communication be improved between physiologists and thermo-

dynamicists, vocabularies should be unified and standardized so that the 

data being measured can actually be represented by the intended thermo­

dynamic quantities and that phenomenological coefficients have practical 

physiological meaning. 

In the techniques, analyses, and applications described in the pages 

to follow, it is hoped that some progress will be made toward this end. 
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III. TECHNIQUES AND ANALYSIS 

A. The Mass Balance 

The first step In interpreting relationships between mass and energy 

flows Is the development of generalized material balances. Balances are 

performed first on the overall mass and then on specific species of 

Interest. 

M " total mass within system boundaries 

m^ - mass of chemical species 1 

Wj " mass flowrate of stream J crossing the system boundaries 

- mass flowrate of the 1th species In the jth stream, 

such that W, • Z w.. 
J ^ 

- rate at which species 1 Is produced In the kth chemical 

reaction (£ £ f. - 0 If the reaction rate Is on a 
1 k 

mass basis) 

6j - quantity Indicating direction of flow, + 1 In, - 1 out. 

A system gains mass from or loses mass to the streams crossing Its 

boundaries. Each of these streams may be composed of several species 1. 

The composition of the streams Is affected by the k chemical reactions 

occurring within the system. 



18 

For a particular species 1, 

(2) 

r,. - MLVa, -rr^ (2a) 

where Is the stoichiometric coefficient of 1 In the kth reaction 

(positive for products, negative for reactants), Is the molecular 

weight of 1, and Is the molar extent of reaction k. The molar extent 

Is a normalized extensive property related to the number of moles reacted 

by the following relationship: 

where dn^ Is the number of moles of 1 consumed or produced In the kth 

reaction. If species 1 Is a product, and dn^ are both positive and 

the extent Increases. If the species being observed is a reactant, 

is negative and dn^ decreases which also indicates the progression of the 

reaction by an increase in extent. The time rate of change of extent, 

dg^/dt, is often written as the velocity of reaction, Vj^. Extent changes 

may also occur without reaction when a species i is added to or withdrawn 

from the system. 

The species mass balance can then be written 

dn 
1 

V 
i 

(2b) 

(3) 



19 

Several species are of particular physiological Interest as measures 

of the metabolic activity In a system operating In resting or In stressed 

states. The first quantity Is the measure of oxygen consumption rate. 

% 
2 , : .. '(k 

Oxygen consumption Is usually measured In volumetric units, ml Og/mln, 

so that the quantity , the oxygen uptake rate, may be related to the 

mass uptake rate by 

% • •' KA 
where and are the chosen reference temperature and pressure. If 

the time rate of oxygen storage Is negligible (dm. /dt - 0), then 
"2 

- RT 

The main function of oxygen Is to serve as an oxidant In physiologi­

cal reactions, making v. . a negative quantity. 

Carbon dioxide Is an eventual product for virtually all oxidizing 

reactions In living systems. The production of COg Is given by 

""ko. 

j 'fcOjj'cOjJ ' at  ̂  ̂"ooj ̂ COjk'k 
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The storage of carbon dioxide In living tissue may not always be 

negligible. In hypercapnic conditions, this amount may be more than an 

order of magnitude higher than oxygen accumulation because of the HCO^/ 

HgCOg buffer system of the cellular fluid (48). However, for normal cell 

function, a steady state assumption leads to the following equations: 

• «co/„ 

RT 

H " ̂  k H"'" 

Since CO^ is a reaction product, the ^'s are positive numbers. 

The ratio of carbon dioxide production (- ) to oxygen consump-
"2 

tion (Vq ) is called the respiratory quotient. This ratio serves as an 

indicator of the types of substrates or fuels (carbohydrates, fats, 

proteins) being oxidized by the system. 

" I ^CO k\ 
R 5 —Ç—^ ^ (5) 

The oxidation of biological fuel to high-energy compounds utilized 

for cellular function Involves various complex biochemical pathways and 

cycles. The combustion of these organic fuels is usually simplified to 

consider only the oxidation of carbohydrates (C), fats (F), and proteins 

(P) as the three major chemical reactions. Then the reaction terms of 
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Equation 5 may be rewritten as 

ĈO.̂ C ĈO.̂ F ĈÔ P 
R - - ^ ^ 

- (''o/c + + ''o/p) 

If each chemical reaction Is rewritten so that the stoichiometric 

coefficient of oxygen Is equal to one, as shown for the combustion of 

glucose below. 

6̂®12®6 + *0% + acOg + ÔHjO 

rewritten to 

i <=6"l2°6 + °2 * °°2 + «2® 

and Vg + Vp + Vp " the total reaction velocity, then 

ĈO.̂ C ĈO.̂ F ĈÔ P 

' - (+I)C—-

ĈÔ C ĈO,*F ĈO-̂ P 
R--^ + (5b) 

TOT TOT ^TOT 

k k 
The ratios /v^ are relatively constant for each specific class 

of organic compound (C, P, or F) regardless of the particular molecule 

being combusted. Typical values from Lehnlngcr (68) are 
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V, 
CO 

0 
2jP 

2 - 0.80 

Replacing with x^, a simple expression for the respiratory 

quotient results 

which Is valid for Interpretation of measured values If the following 

limitations are observed: 

1. The accumulation of oxygen and carbon dioxide Is negligible. 

2. The combustion reactions are normalized with respect to oxygen. 

3. The total number of chemical reactions occurring may be grouped 

Into three major compound groups, carbohydrates, fats, and proteins. 

4. The ratio of stoichiometric coefficients is approxi­

mately constant in a particular compound group Independent of the 

specific molecule type. 

Material balances are Important in primary analysis because they 

characterize the reactant consumption and the product type and removal 

rate, Important quantities in the subsequent step, the energy balance 

analysis. 

The open system first law expression may be written in general in a 

form modified from Seagrave (99): 

R - L.OXG + O.SOXP + 0.71XP (6) 

2 "2 

B. The Energy Balance 
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[U + * + K] - Z (Hj + + Q - W (7) 

The terms on the right represent flows across the boundaries of the 

system. The left represents the time rate of change of energy within the 

system. All three quantities on the left must be related to a chosen 

reference state. Potential energy is referenced to a convenient position 

in a potential field. For the kinetic energy, K, the reference state is 

zero velocity relative to a stationary coordinate system. These two 

terms are usually negligible in biological systems although situations 

do exist where their contributions are important. These are addressed 

further in the discussion. The reference state for the internal energy, 

U, depends largely upon the system being considered. 

1. Development 

Internal energy may be written as 

U - mU (8) 

where m is the mass of the system and U is its mean specific internal 

energy. Specific internal energy changes reflect changes at the molecular 

level within the system. The energy of molecules of a given species may 

be altered in several ways, by changes in thermal energy, in specific 

volume or pressure, in strain, and in the electrical charge of the 

system particles. 
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Then 

dU - dU^ + dUy + dUjj + dUg (9) 

where dU^ represents the thermal contribution, dUy, the volume changes, 

dU^, the deformatlonal specific internal energy, and dU , the electrical 
u E 

specific internal energy. These dependences are written more generally 

as 

(10) U - U(T, V, Cg, z ) 

which expresses internal energy as a function of the intensive parameters 

temperature, T, specific volume, V, strain, e , and charge, z . These are 
s p 

internal parameters of the system. 

The differential of U is written as a function of the four intensive 

variables. 

dU dT 
3U 

3V 
dV 

T'Cs'Zp 

+ Z 
s 

au 
3e, 

de^ + I  

T,V,z_ 

3U 

r^pj T,v,e. 

(11) 

The third term on the right represents a s>jmmation of s deformations 

and the fourth term is a summation over p charged particles. 

The term 
3U 
3T 

?.:.':p 

is the specific heat at constant volume, C^, 

and 
3U 

is hy, the isothermal specific energy of compression. 

In addition to the changes in total internal energy, U, which occur 

due to changes in intensive properties, changes in extensive properties 
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and concentration can also affect U; I.e. 

Intensive ̂  ̂^extenslve + composition 

The changes In Intensive properties have been described In Equations 10 

and 11. Changes In extensive Internal energy are due to changes in the 

system mass and composition which may occur by changes In the mass of any 

or all species 1 of the system, so that 

^extensive " ^ 
+ composition 

3U 
dm. 

dm^ 

T.V.Cs'p 

(12) 

Equation 11 Is rewritten as 

dU • mdU + E 
1 

3U 
dm. 

dm. (13) 

and the rate expression obtained by taking the time derivative of Equa­

tion 13 Is 

dU „ dU . -
dt - * dt + Ç 

3U 
dm. 

dm^ 

d t  
(14a) 

The partial derivative. 
au 
dm. 

T.V.Gs'Zp 

Is equivalent to U^, the 

partial molal Internal energy of species 1, so that 

dm. 

dî " " if + ^Hi dF (14b) 
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The second term Is expanded by replacing dm^/dt with the mass 

balance Equations 2 and 2a, which leads to 

f - f  ̂2i + I "iVk' 

The second term, £ Z U.d)..6. is equal to Udm/dt and represents the 
i j -1 ij J 

change in system internal energy due to the net addition of mass. This 

system growth is caused by integrated flow differences as is demonstrated 

when Equations 2 and 2a are summed over all 1 species 

dm 

" 11 Vik'k 
dm , 

^ "dî " d? • ̂ ̂  ''ij'] 

since Z £ - 0 when the reaction term is written on a mass basis. 

The summation of over all species of the system is equivalent to the 

mean internal energy of the system, U. Equation 15 is now written as 

+ (16) 
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Combination of Equations 11 and 16 results in an expanded expression 

for the rate of internal energy change in the system; 

s 

au 
de 

de 
§ 

dt 
+ E 

P 

3U 
3z 

dz 

dt 

+ l l SiVik\ (17) 

The last three terms on the right side of Equation 17 may be further 

simplified. 

The term Z Z -i^i^ik^k considered for isochoric, isobaric systems 

so that the partial molal internal energy and enthalpy are equal. For 

ideal solutions, a good approximation in most living organisms, 

"A • «1 au 3m. 
3H 
3m^ 

(18) 

3H 
3m. 

(19) 

where is the partial molar enthalpy which is approximately equal to 

the specific enthalpy. 

Substitution of the results of Equations 18 and 19 into the term 

JI Wik\ 

I ^ 2iVik\ ' J ™i^ik ^ f iV 
<20) 
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As shown by Strunk (109), E the nolal heat of reaction for 

the kth reaction. 

Therefore, with the assumptions implied in Equation 19, 

I ? Si ^ ^ 
k i k 

The term I(3U/3e )de /dt represents the dependence of system internal 
s 

energy on the state of strain in the system, a geometric dependence. 

Elastically deformable bodies are capable of storing elastic energy as 

an elastic potential that is released when the system is allowed to return 

to its original unstrained geometric configuration. 

For the one-dimensional case, the strain, is 

the increment of deformed length in the sth strain and is the original 

system length. 

Because some elastic systems are capable of storing energy upon 

compression while others do so upon tension, a generalized length term 

Z' is defined as 

Z' " Z-Ẑ  when energy is stored under tensile forces 

Z' - when energy is stored under compressive forces, 

where Z serves as the reference. 
o 

In each case, the character of the system must be known to make the 

proper choice of the generalized length term. The forces are assigned 

a positive value whether they are compressive or tensile. The direction 
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of the change In Internal energy is determined by the length changes, 

d&'. 

The strain, e^,is now rewritten with the new length term, e^-

Then, 
dJl' 
s r fau 1 '3U ' 

L  ae. dt ^ 
8 s s 

dt . 

The term is symbolized by f^, the applied force, tensile or 

compressive, which is the product of tensile or compressive stress and 

the area through which it acts (62). 

'3U " 5. T au " 
dr 

3e_ dt 
Zf 

H '  dt . ». s 1 ®. 

- Z k  I  a  
o s 

de 
s 

dt 
- Z 
s 

(22) 

where A is the area and is the stress acting through area A. 

The system internal energy change due to electrical charge is 

simplified by making use of the fact that total charge,dq,is related to 

the particle charge,z^, by the expression from Kestin (62) 

dq " Z z Fdn 
p P P 

where F is Faraday's constant and dn^ is the number of charged particles 

with charge z 

Then 
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When (3U/dq) Is expressed as the electrical potential difference across 

which the charge Is maintained, the expression for system energy 

changes due to changes of electrical charge Is 

dq • dq 

The equivalent expression for the time rate of change of the Internal 

energy of an Isochorlc, Isobarlc system is given below as Equation 23. 

f - a C , f ( 2 3 )  
k 8 

The kinetic and potential energies of the flows, the elastic energy 

storage, and the electrical charge energy are required in the energy 

balance in only a relatively few cases in living systems. When these 

effects are temporarily neglected, the most frequently useful expression 

for the energy changes of an open, transient system,con'lining Ideal 

solutions is 

+ + ̂  + ^ (24) 

2. Discussion of terms 

Terms and dimensions are defined and discussed below, using the 

following symbols to represent dimensions : 

M - mass, F - force, T - temperature, t - time, n - moles, 

L - distance 

M 
3q 
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I Z 

- specific enthalpy (FL/M) of species 1 in stream j 

entering or leaving the system referenced to 

and pure elements 

" the mass flowrate of species 1 In stream J (M/t) 

" +1 for input stream, -1 for output streams. 

The energy content of flow streams is described by this term. The 

enthalpies are evaluated at their Interface conditions. This term is 

important in evaluating the flows of products and reactants of reactions 

occurring in the system and often serves as an indirect measure of the 

reaction term on the left of the equation. In this Instance, the term 

is divided into two portions, Z Z [(H^j The 

former term represents those flows which are directly related to reac­

tions (R) within the system, such as the flow of oxygen and carbon 

dioxide. The latter term is used to describe flows of passive (?) streams 

of species such as nitrogen which do not directly participate In reactions. 

Q: ^ - rate of heat gain by the system from the surroundings 

(FL/t). 

Q denotes the heat appearing at the system boundaries. It Is an 

indirect measure of the inefficiencies of biological processes since Q Is 

usually negative for living systems and heat is lost by the systems. 

• • 

W: W • rate at which work is performed on the surroundings by the 

system (FL/t). 
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The evaluation of this term Is a major portion of this study. The 

evaluation of the performance of physical work and the rate of doing 

work will be discussed In Section IV. 

: 

m - the mass of the system contents (M) 

A 
Cp " the specific heat (FL/MT) of the system contents 

T • the average temperature (T) of the system contents. 

This term represents the thermal portion of the Internal energy of 

the system. 

« T . -

U - specific Internal energy (FL/M) of the system contents 

referenced to T^, P^, and pure elements. It Is an 

average Internal energy If a system Is heterogeneous. 

U dm/dt allows for Internal energy changes due to variation in the 

mass of the system. These changes may be due to loss or gain of mass 

caused by flows, as in mass gain by consumption of substrates or mass 

lost in respiration or sweating, or they may also be a result of growth 

of a developing system. 

M . 
dt • 

^ " the potential energy of the system referenced to a 

convenient position in a potential field. 
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The potential energy change corresponds to a change In the position of th# 

system In the potential field which causes a change in the potential 

experienced by the system. The potential of Interest is usually gravita­

tion, so that d(|) - mg dz. The gravitational acceleration is symbolized 

by g, m Is the system mass, and dz is the height displacement in the 

gravitational field. 

^ . 
dt * 

K " the kinetic energy of the system referenced to a state in 

which the system has zero velocity relative to a 

stationary coordinate system. ^ 
m V 

The total kinetic energy may be written as K - Z > summed 
n 

over n particles of the system. For a rigid body, the velocity of a 

particle is v - p + w x r , where p is the velocity of the system origin 
n ~ ~n 

relative to stationary coordinates, w is the angular velocity of the 

moving axis, and r^ is the distance from the origin to the particle n. 

Then the total kinetic energy is 

• "trw. !?•!•!? 

where K is the translational kinetic energy and I is the moment 
trans , 

dyadic of the system ( 2 9 ) . Kinetic energy will usually be represented 

dv 
as K » * dt where v now represents the velocity of the center 

of gravity of the system relative to stationary coordinates. 
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-'•V 

- the molal heat of reaction of the kth reaction (FL/n) 

dÇj^/dt - the change in extent of the reaction as discussed in 

Section A. 

The symbol AM will often be used to represent this term. 

Z AH^dÇ/dt is the energy transformed due to reactions occurring 

within the system, the chemical portion of the internal energy. By 

including this term, several physiological functions may be analyzed, 

such as the Ingestion of energy substrates by the system, the metabolic 

activity of both resting and active systems, and the depletion of energy 

sources and the limitations that this condition imposes. It is worth­

while to note that in the physiology literature this term is often 

evaluated as an energy expenditure. It is more appropriate to view AM 

as the consumption of energy necessary to fuel a process. Because this 

term does play a variable role in describing the chemical internal 

energy of the system, further discussion is warranted. 

The combustion of substrates as "fuel" is a straightforward applica­

tion. Several reactions occurring within the system deplete the internal 

energy transforming it to heat, work, thermal internal energy, or other 

forms of energy. For an exothermic reaction k, AH^^^ is negative. The 

reactants are being depleted so that dS%/dt - dn^/dt is positive 

since both and dn^/dt are negative for reactants. If the progress of 

a reaction product is followed, and dn^/dt are both positive. Both 
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situations give the appropriate sign, dg^/dt - AN < 0, to describe 

the depletion of Internal energy. 

Conversely, a fully fueled system, one with energy stores, has a 

higher Internal energy than when fuel has been expended. Therefore, the 

process of food Ingestion, or "refueling," should Increase Internal 

energy, indicated by a positive AH^dg^/dt. This implies that, for most 

exothermic reactions that represent the metabolism of the living system, 

dÇ^/dt should be negative during refueling. Refueling replenishes 

reactants, so that dn^/dt is positive for a reactant, but is negative. 

The change in extent, dg%/dt,is a negative term making AM positive. It 

is important to note that the change in extent is negative due to the 

addition of reactants and not because of a shift in chemical equilibrium. 

This term may also be used to describe changes in the state of aggrega­

tion of a system. This will be illustrated in the subsequent discussion. 

3. Special cases 

It is instructive to consider special cases of the first law expres­

sion as predecessors to the final overall equation capable of describing 

the many physiological conditions of living systems. 

1. Nonphysiological conditions 

A. Isolated, constant mass, reacting system 

dU ^ dT ^ ^ 
d ï ' ® S d î " ^ J ^ " d r " °  ( 2 4 '  
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Integrated over a time increment At, 

•^"2 - II) - I - 5^^) 

«CpiT - - Z  AH^5^ 

By definition and as shown in this reduced first law expression, an 

isolated system does not interact with its surroundings. Total internal 

energy does not change, but is reallocated between the thermal and 

chemical portions. 

B. Isothermal, constant mass, closed, reacting system 

The reaction energy is entirely transformed into either heat and/or 

work. To illustrate the limitations of the first law, this expression 

suggests that a system may be energetically refueled by either having 

work performed upon it or by absorbing heat. No distinction is made 

between reversible and irreversible processes. 

C. Open, steady state, constant mass, adiabatic system 

(24b) 

I ^Rk^^k "Q- W 
k 

(24c) 



37 

Z H Am - W 
j ^ 3 

where Is the average enthalpy of the jth stream. 

This expr sslon Is often used to describe adlabatlc shaft work. 

However, In living systems work cannot usually be accomplished by flows 

alone. Although steady state exists and the entire left side of the 

first law expression is zero, reactions may be occurring at a steady rate. 

This would occur if reactants were being supplied at the same rate at 

which they were being consumed. In this case, the energy from the ongoing 

reactions would appear as changes in enthalpies and masses of the flow 

streams and as the energy of work. 

None of the above examples are entirely physiologically realistic; 

but represent some aspects of actual physiological energy balances and 

appear in various combinations below. 

2. Physiological conditions 

A. Constant mass, maintenance steady state, fueled continuously, 

isothermal 

Mass balance : I Z w, .6. - 0 
J 1 ij J 

Energy balance : -^-O-Q-W+EZ (24d) 

This is similar to example l.C, since the reactions within the 

system do not appear explicitly, but their energy contributions appear 

in each of the existing terms. The expressions may be Integrated and 

rewritten to account for the reactive and passive flows. 
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L S m 6. - 0 
J 1 ij J 

AU - 0 . Q - W + + (I 

This is an idealized approximation to a living system being fueled 

at a rate equivalent to its fuel consumption, so that mass and extent of 

reaction remain constant. 

B. Constant mass, nonisothermal, fueled continuously 

E E - 0 
j 1 J J 

f . f - Q - W + I J <"«) 

Integrated, 

Z Z m 6 « 0 
J i ij J 

n>Cp(T2 - Ti) - Q - W + Z Z 

The situation is similar to example 2.A, but the thermal energy 

may vary due to temperature changes. 

C. Approximately constant mass, open, no fueling, isothermal 

Z Z w..6. - 0 
J i ij 3 
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Stored chemical energy is being depleted to supply the terms on the right. 

The internal energy Is decreasing since the extent of reaction Is positive. 

These equations describe a living system between fuellngs, e.g., a normal, 

resting human between meals. 

D. Approximately constant mass, fueled periodically. Isothermal 

The integrals of the expression are not continuous because of the 

nature of the fueling. During fueling the change in extent is negative, 

while after fueling, the extent is positive for a metabolically function­

ing system. 

This expression may represent the dally functioning of a living 

system Including periods of fuel consumption (meals). 

E. A better description of a normal human system is given if the 

mass is allowed to vary. Then the equation becomes 

Z Z w,.6. - 0 
J 1 ij J 

Q - W + I I Syûy,, 

* a! + z ' (24g) 

with E Zw,.6. \ot necessarily equal to zero. The integral is again dis 
J 1 ij J 

continuous 
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F. Growing, continuously fueled. Isothermal system 

S aÊ + : . s - a + Z E SjjAygj 

The presence or absence of the reaction term Is determined by rela­

tive rates of fueling and reaction. The change In mass Is now representa­

tive of the addition of mass to the system by growth, the building of new 

system matter from chemical reaction products. Fuel storage may also 

Increase the system mass. The equation may be approximately related to 

a growing mammalian fetus being constantly supplied with fuel by Its 

mother. 

G. Growing, fueled periodically. Isothermal 

The expression Is the same as that of example F except that the 

Integral Is not continuous. This expression characterizes a homlothermlc 

"grower." 

H. Constant mass, constant temperature, changing state of aggrega­

tion. 

: % - Q +  ̂  ̂ ("h) 

This situation arises when the relative concentrations of the 

constituents of a system are changing. The effects are Included in the 

reaction term. Since the reference for the heat of reaction is usually 
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pure elements at the reference temperature and pressure, a reaction which 

changes the state of aggregation because the reaction products vary with 

time will have a heat of reaction that varies with the product composi­

tion. The changes in component concentrations are also included in the 

extent of reaction term, dg^/dt. In biological systems, reactions which 

change the state of aggregation are known as biosynthetlc reactions. 

Their heats of reaction are usually endothermic. 

I. Variable mass, internally fueled, nonisothermal. 

This system is best analyzed in two sections, the growing, reacting 

system and the fuel supply. 

Fuel Fuel 
consumer 11 

I 

Exchange of mass and energy between the two subsystems is necessary 

and allowable. 

Subsystem 1: * 

Subsystem II: 

dt " dt^II "*• dt^II " ̂11 ®ij"ij^j^ll 
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The fuel source, II, is continuously depleted and so constantly 

loses mass. The fuel consumer, I, is continuously fed with fuel. The 

existence of the reaction term for I depends on whether or not it is 

operating at steady state. Both subsystems I and II exchange mass with 

the surroundings and with each other. Usually, these flows cannot be 

externally distinguished one from the other and must be accounted for in 

a general flow term. If T^ " T^^, the remaining equation is 

^  / V  A  HT 

"l dt~ * "ll ~dt~ * '"iSj 3c 

+ Sii - A; + z 

This expression best characterizes the energy balance around a 

developing egg. The embryo utilizes fuel sources within the system and 

respires, metabolizes,and exchanges heat with the surroundings. It is 

incapable of performing work until the developed endsryo hatches from 

within its rigid system boundaries. 

The preceding has been a demonstration of how the general first law 

expression may be applied to open or closed, steady state or transient, 

variable-mass systems. It is adaptable to and useful for analysis of 

experimental data and the interpretation and quantification of traditional 

physiological concepts. As discussed earlier, the general energy relation 

along with the material balance serve as the groundwork for the investiga­

tion of second law relationships. A more detailed discussion of several 
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of the terms of the first law equation and examples of mass and energy 

balances applied to living systems in various thermodynamic states will 

be presented later. 

C. The Entropy Account 

As sho%m in the previous examples, the first law analysis can only 

balance energy accounts after changes have occurred. It has no ability 

to predict the relative distribution of system energies and it can esti­

mate only minimum energy requirements. Also, the first law balance does 

not distinguish between types of energy or irreversible conversions from 

one to another; a simplistic view could imply that a human body might be 

chemically refueled by exposure to a radiant energy source or by per­

forming work on the body. Clearly, the first law is limited in its 

application. The second law is now introduced with the intent of comple­

menting and augmenting first law analyses. 

1. Development 

The second law is often introduced as a formulation describing the 

limitations of cyclic processes. This leads to two important results 

known as Camot's theorems dealing with cyclic efficiency and process 

reversibility. Although the ideas of cycles, heat engines, and effi­

ciencies are useful in understanding the concept of entropy, a more 

general approach to the second law is needed for this study. 

The second law quantitatively defines the directional tendencies of 

natural and spontaneous processes towards an equilibrium state. Dissipa­

tion of the motive forces is Inevitable in natural processes. Aa an 
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example, this is Illustrated by the equation for the change In Glbbs' 

free energy of chemical reactions, AG. 

In general. In an isothermal process, 

AG - AH - TAS. 

Of the total energy change for a reaction, AH, only AG is available for 

useful work. The remainder, TAS, is unavoidably lost. This lost energy 

appears as heat, and for reversible processes. 

dS - ̂  and AS • «2 
T 

where AS - the change in entropy 

6Q - the heat transferred 

T " the isothermal temperature of the system. 

The description of entropy change becomes more complicated when irrever­

sible processes are involved. 

Onsager developed the basic theory of Irreversible thermodynamics 

in 1931. The development Involved the use of classical thermodynamics, 

linear laws relating flows to forces, J. - Z L. X , and the Onsager 
X' _ JGia n 

m 

reciprocal relations for the phenomenologlcal coefficients, 

Irreversible processes are always accompanied by the production of 

entropy, 

d S 

d T - Y ^  V m  ( 2 5 )  
m 
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Each of the terms, represents a flow or flux which, along with 

its conjugated driving force, X , contributes to the rate of entropy 

production in a system, d^S/dt. The fluxes and forces are related 

through the phenomenological coefficients, such that - Z 

To maintain the linearity of this relationship, and to Justify the 

use of equilibrium thermodynamics quantities, the processes are confined 

to regions very close to equilibrium. 

Living organisms exchange mass and energy with their environment 

and, therefore, represent open systems. This implies that the entropy 

of a system may be changed by entropy production within the system 

boundaries or by the flow of entropy across system boundaries (80). The 

rate of entropy production of a system may then be written 

where d^S represents entropy flow through exchange with the surroundings 

and d^S is the Internal entropy production. Equation 26 becomes 

m 

dt T 
(27) 

and 
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where S - entropy content of the system 

T " absolute temperature 

Sj^j " specific entropy of species 1 crossing the system 

boundary In stream j referenced to pure species at a 

reference temperature T^. 

According to the second law of thermodynamics, the entropy produc­

tion due to Irreversible processes Is always positive 

^>0 .  

For an Isolated system, (d^S/dt - 0), It follows that 

3E > 0-

In a closed system, where exchange Is confined to heat transfer. 

dt T 

and therefore. 

T ^ 

For an open system, the entropy flow may be positive, negative, or zero 

and, as a consequence, dS/dt may also be positive, negative, or zero. 

This permits situations In which a system's total entropy could decrease 

by proper regulation of entropy flows to and from the environment. 
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Unlike Internal energy and enthalpy, entropy Is not a conserved 

quantity. It Is a function of state and It Is, therefore, worthwhile to 

consider the development of expressions to describe the forces and fluxes 

In terms of measurable state variables. 

The evaluation of the forces and fluxes Is dependent upon the 

characteristics of the system. In the case of living organisms, coupled 

heat transfer-temperature gradient, mass transfer-concentration gradient, 

and chemical reaction velocity-affinity products are the main contribu­

tions Included In the force-flux summation. The major Internal contribu­

tion arises from the reaction velocity, v^ (a flux and the chemical 

reaction affinity, (a force X^). 

As shown by Prlgoglne (80), the affinity of the kth reaction may be 

expanded as follows: 

\ • 
'3G " '3H ' 38 ' Kj P,T KJ *r i 

P,T K\ (28) 
P,T 

The Glbbs' free energy, G, represents the maximum amount of reaction 

energy which can be utilized. If the reaction energy is to be used to 

perform work, Glbbs' free energy equals the work maximum. As shown 

previously, (3H/3€^)p ̂  is equivalent to the heat of reaction of the 

kth reaction, AH^. The term (3S/3Çj^)p ^ may be considered to represent 

an entropy of rearrangement caused by the change in entropy with 

reaction extent, expressed as I dg^/dt - AS. For the purposes 

k 
of entropy production calculation, only extent changes due to reaction 

will be considered. 
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Equation 27 may be rewritten by expanding the internal force-flux 

summation with these known terms. 

The same result is obtained using a continuum approach to entropy as 

described by Katchalsky and Curran (61) and Bree and Beevers (17). They 

relate the total rate of increase of internal system entropy to the 

volume integral of the local entropy production, a. 

The calculation of a is based on the existence of local equilibrium. The 

ability to calculate d^S/dt, then, rests on the evaluation of o. The 

final result is 

" local flux of chemical species i 

" dÇ/dt, the reaction velocity 

A • reaction affinity 

• chemical potential or specific Gibbs* free energy 

T - absolute temperature 

(29) 

0 • J • 
-q 

grad(^) + Z J • 

i-1 

- A 

where J • local heat flux 
~q 
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and the flow of entropy, J^, Is 

J .iiiiliiii 
~8 T 

The rate of change of total system entropy, dS/dt, is obtained by 

integrating the local specific entropy change, 3s^/3t, where 

3s 
- - V • J + cr. 

Then 

If • I ar 
V 

2. Discussion of terms 

The evaluation of the entropy production of living things begins 

with the interpretation of the terms present in Equation 29 with the aid 

of the first law. The terms and their dimensions are discussed below 

dS Ô . 1 ~ 1 
df " T + ZZ ^ij'^ij^j - T : AHRk dl- + z AS^k a;- + , Z JpX, 

M " mass, F - force, T • temperature, t • time, n «• moles, L -

distance 

Q/T (FL/tT); 

Q • rate of heat gain by the system (FL/t) 

T - temperature at which Q is transferred (T) 
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This Is the same heat energy term as Is present in the first law 

energy balance. It is usually a negative quantity for living systems. 

Z Z s w «5 (FL/tT): 
j i ] J ] 

s^j - specific entropy of species i entering or leaving the 

system in stream j referenced to T^, P^, and pure 

materials (FL/HT) 

- the mass flowrate of species i entering or leaving the 

system in stream j 

- +1 for inputs, -1 for outputs. 

The entropy flow term is analogous to the enthalpy flow term of 

Equation 24. It is usually negligible. This and the previous term make 

up the external entropy exchange. 

1 ~ dSk 

Î J dT 
k 

Except for the factor of 1/T, this has the same form as the reaction 

term found in the first law balance. It was taken to represent the 

metabolic activity of living systems and will have the same meaning in 

this expression, so that 
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I "HC ^ = 

This term accounts for the entropy changes due to reaction and has 

been considered as the entropy of molecular rearrangement. The entropy 

of rearrangement term Is referenced to the same conditions as the heat of 

reaction. As shown in Equation 28, both the entropy change and the heat 

of reaction arise from the chemical affinity-reaction velocity force-flux 

pair. 

Y Z JpXp(FL/tT); 

This summation accounts for the internal dissipation due to the 

remaining forces Jp and their corresponding fluxes Xp. Their contribu­

tion to entropy production arises from gradients in state variables such 

as temperature, concentration mechanical force, or electrical charge. 

External measurements alone cannot determine the magnitude of these terms. 

1 
However, since ̂  EJpXp is part of the internal entropy production rate, 

- - T f A*Rk di*^ + : ASk + i : JpXp 
k k P 

and since the second law mandates that this quantity must be equal to 

zero or positive, the term ̂  ̂ JpXp must contribute to the positiveness 

of the internal entropy production rate. 

Erickson and Patel (40) have calculated the mean entropy change for 

the combustion of 253 large biological molecules and have found that 
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TAS^ 1» less than three per cent of the mean value of the heat of 

combustion for those same molecules. Therefore, since the entropy of 

rearrangement contributes so little to the internal entropy production 

and since the heats of reaction for living systems are usually negative, 

Y Z JpXp must be positive. 

The external entropy exchange is related to the constraints imposed 

by the environment and can usually be measured. Therefore, since d^S/dt 

may be determined and at least the sign of d^S/dt is known, a reasonable 

estimate of the total system entropy production rate may be made. 

Of further interest is the relationship between the terms in the 

external entropy exchange rate and terms in the internal entropy produc­

tion rate for living systems. According to the first law, the system's 

metabolism and its rate of heat gain (or loss) are always related. As 

was shown in Equation 24g, for an isothermal, nonworking, unsteady state, 

growing organism, the first law expression is 

UAm + AM - Q + E Z H m 6 
j i J 3 3 

Flows will be assumed to be negligible. As growth ceases and steady 

state is achieved, the expression simplifies to 

AM Ï Q. 

The approach to steady state involves an approach to equivalence 

between metabolism and heat exchange. 
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When this fact is viewed In the context of the entropy production 

rate expression of Equation 29 In which entropy flows are negligible, 

H "  ( T  - f ) +  ^  D T  * Î J •'p*p 

whether dS/dt Is positive or negative can be determined from values of Q 

and AM since the sum of the last two terms on the right must be positive. 

The heat loss Is usually a by-product of metabolism, and Is an end 

result of Inefficient conversion processes. In growing systems, a portion 

of the metabolic energy Is eventually stored In the new matter of the 

system. This amount does not appear as thermal energy or heat loss. The 

difference between Q and AM Is, In this case, a positive number. In 

general, unless a system experiences the effects of an external energy 

source which causes thermal energy to be gained by the system and as long 

as the energy source of the system is Indigenous, Q can never be larger 

in magnitude than AM. Therefore, the grouping of the difference, Q-AM, 

must be greater than or equal to zero. As long as entropy flows may be 

considered to be negligible, for the usual functioning of a living 

organism, the total entropy production rate must be positive or zero. 

In order to determine a system's total entropy over any time period, 

the entropy production rate is Integrated between limits as shown below: 

S(t) ), w 
So(t-O) 

dt - S - - AS (31) 
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Since may be chosen as a constant reference value for the state 

function S, and since dS/dt ^ 0 as time progresses, AS must also be ̂  0. 

It may therefore be concluded that living systems may experience 

Increases in entropy and may do so without violating the second law of 

thermodynamics. This hypothesis will be tested using the first and 

second law expressions in the analyses of the energy and entropy flows 

of the microbial culture and avian egg systems. 

3. Entropy and living systems 

Living things are open, irreversibly operating systems that often 

exist in a dynamic steady state. They are composed of lifeless molecules 

but have the ability to maintain a high level of morphological and 

physiological organization and complexity. They are capable of extracting 

and transforming energy from the environment in order to develop and main­

tain their structural organization, whereas inanimate matter eventually 

decays to a more random state when it absorbs energy. 

Living organisms operate on a principle of maximum economy of parts 

and processes; metabolism is an efficient linkage of many parallel and 

consecutive organic reactions where energy is transferred between steps 

of complex biochemical pathways. Energy containing substrates are taken 

in from the environment, broken down, and utilized in precise patterns 

for the synthesis of system components and of enzymes with which these 

reactions are catalyzed. 

Reactions may be categorized as either blosynthetic (anabolic) or 

degradatlve (catabolic). Blosynthetic and degradatlve pathways are not 



55 

generally the same, since if this were so, no stable structures could 

result from biosynthesis. Biosynthesis Is a genetically programmed 

process that produces complex multicellular products from relatively 

siiq)le precursors. This process gives living things the ability to 

reproduce and allows the formation of order and structure from relative 

disorder. Thus, living organisms appear to have evaded the limits 

imposed by the second law of thermodynamics. Their highly organized 

nature has apparently, for a naive observer, violated the tendency of 

matter to spontaneously decay to a state of disorder and increased entropy. 

Prigogine and Wiame (83) were among the first to suggest that the 

concepts of irreversible thermodynamics could be applied to the develop­

ment and growth of living organisms. They stated that, in the stationary 

state with unchanging external parameters, the rate of system entropy 

production is constant and minimal. This is an important application for 

living systems because they often exist in such a state. In steady state 

processes all properties of a system are independent of time. Since 

entropy is a single-valued function of the parameters of the system, the 

rate of change of system entropy is zero. In this instance the exchange 

of entropy with the surroundings balances the system's internal entropy 

production and it is possible to evaluate the entropy production of a 

living organism. 

Prigogine's hypothesis further states that, if the final stationary 

state occurs at minimal entropy production with respect to all other 

previous states of the system, then the approach to this state must 
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necessarily be along a path of a continually decreasing, but possibly 

fluctuating, rate of specific Internal entropy production. If Td(S^/m)/dt 

" ij), the dissipation function (m Is the mass of the system), then this 

means that di|//dt < 0. 

Zotln (123) has suggested that living systems experience tvo types 

of stationary states. Basal metabolism Is a level of minimal metabolism 

of an animal in a resting state. This corresponds to a homeostatlc 

stationary state. It is altered by changing environmental or internal 

factors causing the system to operate at unsteady state conditions (in­

creased oxygen uptake, increased system temperature) until the system can 

eventually act to return its functioning to steady state and a local 

minimum entropy production. 

On a larger time scale, the final stationary state to which all 

organisms must inevitably proceed is the equilibrium following death. 

The small-scale oscillations about a homeostatlc steady state which may 

cause a temporary Increase in internal entropy production are super­

imposed upon the overall trend for the decrease of the rate of entropy 

production over the time scale spanning the organism's lifetime. It is 

the "openness" of living things which allows many of them to regulate 

their entropy production rates and survive the fluctuations of internal 

and external parameters. Many of the processes of life may be character­

ized by physical, chemical, electrical, and biochemical descriptions. It 

has been demonstrated that the first law of thermodynamics can be success­

fully applied to quantify these descriptions. Difficulties arise in the 

attempt to determine absolute values for entropy production rates since 
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many of the Internal forces and fluxes necessary to completely evaluate 

entropy production are impossible to measure directly. 

These restrictions notwithstanding, it is still of great interest 

to determine a method of approach in which approximating system entropy 

production rates is physically and physiologically practical. This 

approach should determine whether some of what occurs internal to a 

system can be deduced from external parameter variations. Some portion 

of the dissipation occurring within a system must eventually appear at 

the system boundary. From measurements taken at the boundary it may be 

possible to at least determine the direction or to calculate an estimate 

of system entropy. 

The properties of maintained system heterogeneity and self-organiza­

tion are unique to living systems and therefore of possible consequence 

in entropy calculations. These will be considered. 

Finally, this approach may help determine whether entropy and 

entropy production rate can serve as a distinguishing measure between 

living and nonliving systems. 

In order to establish a basis from which to begin the development 

of the approach described above, in this research entropy will be con­

sidered as a measure of a system's progress toward equilibrium. In 

complex systems such as living organisms the system's total entropy or 

total entropy production rate will be viewed as a summation of the 

entropies or entropy production rates, respectively, of each of the sub­

systems comprising the whole. The assumptions of local equilibrium and 

linear force-flux dependence will be considered valid. Without these 
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assumptions and simplifications, the analysis of the entropy flows of 

living systems would extend beyond the realm of practicality and nanag-

ability. This will not significantly detract from the conclusions 

reached. 

With the first law providing a good understanding of the energy 

flows of living systems, it is a major intent of this study to gain a 

similar understanding of entropy flows of living systems by parallelling 

first and second law analyses. 

D. Efficiency 

Efficiency is a measure of the departure from ideality or the 

wastefulness of an energy conversion process. As a result of the second 

law of thermodynamics, a certain measure of inefficiency in spontaneous 

processes is a direct consequence of entropy production. 

1. Thermodynamic efficiencies 

Efficiencies have been evaluated in two general ways. One method 

defines efficiency as the units of useful energy obtained per unit of 

total energy expended. This is often called mechanical efficiency. A 

second approach is to evaluate the ratio of the real process function to 

the ideal. This is denoted as a thermodynamic efficiency. 

These approaches may be viewed in the context of either the first 

or the second law of thermodynamics. 

First law efficiencies involve the evaluation of physical work 

obtained per unit of supply energy. A common physiological definition 
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for efficiency, n, Is 

n • X 100 
AM 

(32s) 

where W • the work rate 

AM • the change In metabolic rate to accomplish W 

In the context of Equation 24, this Is written 

n X 100 
Z  A H ^ d Ç ^ / d t  

(32b) 

Second law efficiencies, or Camot efficiencies, compare the way In 

which heat and work effects are split by heat engines. They are a direct 

result of the second law which disallows the total conversion of heat to 

work In cyclic processes. 

The second law efficiency Is not entirely descriptive of Isothermal 

biological systems. Biological systems do not generally operate as heat 

engines. In a system at uniform temperature. It Is Impossible that the 

only type of energy conversion Is from heat to work. Heat Is, In general, 

an end product rather than a motive power of living processes. One 

exception to this Is the photosynthetlc conversion of solar thermal energy 

to chemical energy as discussed by Erlckson and Patel (40), 

The second law does make further contribution to several particular 

means of evaluating efficiency. In the example of physlcochemlcal systems 

where chemical energy Is converted to mechanical work, the total energy 

given up by a reaction, AH, Is not all available for work. Only the 
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change in Gibbs' free energy, AG, is utillzable. In fact, the theoreti­

cally maximum amount of work is obtained if all of AG is converted. 

Then, as shown by Wilkie (119), efficiency is given by 

" AH-TAS * 1°° 

n . X 100 

n - X 100 (33) 
max 

The evaluation of efficiency by Equation 33 results in values higher 

than the efficiency given by Equation 32b. The latter is in most fre­

quent use in physiological efficiency studies. 

Caplan (23) has written a generalized entropy production rate expres­

sion for an energy converter with one input and one output force-flux pair. 

T 3! -

where represents the output and represents the input. Caplan 

has used this to describe the mechanicochemlcal functioning of muscle, so 

that 

-Jj^Xj^ - Fv, JgXg - Av 

where Fv - the force-velocity product describing physical work 

Av • the affinity-reaction velocity product describing the 

energy source. 
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The efficiency la then written In terns of the force-flux palra, 

J X 

n - - -nr (34) 
J 2*2 

Theae expressions have been used by several authora (13,14,15,121) as an 

Irreversible thermodynamic description of working muscle. Using phenomeno-

loglcal equations to describe the force-flux relations, 

"'l " ̂11*1 •*" ̂ 12*2' "̂ 2 " ̂21*1 * ̂22*2 

a degree of coupling between the Input, the output, Is 

defined by CapIan as 

^2 
q • • (Onsager aymmetry assumed, L._ - L,,) 

•̂ 2 

Then the maximum efficiency and the efficiency at maximum output 

result and are written as 

• w  o u t p u t - i < " >  

2. Biochemical efficiencies 

The coupling of mechanical and chemical proceaaea Involve a more 

detailed examination of biochemical energy transformations and their 

efflclenclea. In most biochemical cycles, there exists an Intricate 
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series of coupled reactions. Many of the Important reactions along the 

biochemical pathway of the oxidation of foodstuffs are not spontaneous, 

that Is, the Glbbs' free energies of reaction, AG^, are positive. These 

endothermic reactions are coupled with exothermic reactions such that the 

progress of the exothermic reaction feeds and pulls to completion the 

endothermic reaction. As long as the sum of Glbbs' free energy changes 

for both reactions Is a positive number, the coupling will result In the 

forward progress of the coupled reactions. 

Consider the following example of a reaction (1) which Is not 

spontaneous, coupled with a reaction (2), which Is spontaneous. 

(1) X + Y ^XY > 0 

(2) HGO + ATP—K-ADP + AWG < 0 

3G 
where - (g^).j. p ̂  , the specific Glbbs ' free energy or chemical 

potential of species 1, and Ay > E v.p.. The stoichiometric coefficient, 
1 

v^. Is positive for reaction products and negative for reactants. 

dn 
If the sum dG - Ap^dG^ + Ap2d€2» where dÇ^ - —— , Is positive, the 

reactions will proceed forward. 

This discussion gives rise to an efficiency of coupling expressed by 

iUldÇ 
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This efficiency Is pertinent in this study because of its Importance 

in the chemical-mechanical energy conversions in active muscle tissue. 

The direct source of energy for muscular contraction is the hydrolysis 

of ATP. It is a product of the complex oxidation-reduction reactions of 

glycolysis, fatty acid oxidation, and the tricarboxylic acid cycle (6). 

The phosphorylative coupling efficiency, rip, is an overall coupling effi­

ciency for the entire biochemical pathway. 

_ free energy conserved as ATP ... 
^ free energy of oxidized foodstuff 

This efficiency is typically estimated at 60% (68). 

The contraction coupling efficiency. Hg, is the efficiency describing 

ATP energy conversion to the mechanical work of muscle contraction 

_ mechanical work output 
C free energy of ATP hydrolysis * 

and is estimated by Vlhipp and Wasserman (115) at 48% for human muscle. 

Since these two efficiencies are independent events occurring in series, 

the overall total efficiency is then equal to the product of Hp and 

(115). 

HTOT " [(Hp/lOO) * (ng/lOO)] X 100 s 29% 

which is a typical value found for the overall mechanical efficiency of 

muscle contraction. 
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3. Physiology and efficiency 

The above discussion has Illustrated the importance of recognizing 

system boundaries to aid in the identification of the energy source and 

the resulting work output that a particular efficiency is used to describe. 

Physiological processes pose additional alternatives in the choice of 

evaluating efficiency. Stainsby et al. (107) have defined several physio­

logical efficiencies. In addition to the phosphorylative coupling and 

contraction coupling efficiencies described earlier, they define a fre­

quently used overall efficiency, the external work accomplished per free 

energy of oxidized foodstuff. Gross efficiency is the external work per 

total energy expenditure whereas net efficiency is defined as the external 

work accomplished per energy expenditure above the resting energy expendi­

ture. Delta efficiency is the ratio of Incremental work to the corre­

sponding incremental energy expenditure. All of these efficiencies 

involve quantities integrated over the time of the event. They are 

different from and should not be confused with instantaneous efficiency 

relating instantaneous work rate to instantaneous energy expenditure. 

Additional variations in efficiency calculations occur because of 

the choice of baselines for energy expenditure. The frequent choice made 

by physiologists is the resting metabolic rate, referred to as the basal 

metabolism. External work accomplished raises the metabolic rate. The 

change between working and resting metabolism is used as the energy 

expenditure value. It is important to recognize that a large portion of 

the Increased energy consumption goes to support unmeasured "work," the 

internal processes that operate to support the accomplishment of external 
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work. These may Include Increased heart and ventilation rates, accelera­

tion and deceleration of lints, and the transporting of ions against 

electrochemical gradients. An efficiency used in such a manner, then, is 

a process efficiency, and should not be compared to the actual muscle 

efficiency. 

Another commonly used baseline is a modification of the previous one. 

The baseline la set as the energy consumption level during unloaded 

exercise in which lind) movements are allowed to occur, but in which no 

external load is carried. The implications of using this baseline are 

similar to those discussed above. This is a process efficiency rather 

than an Isolated muscle efficiency. 

To obtain an efficiency to measure changes in energy consumption for 

the performance of external work alone, the only reasonable approach is 

to isolate the subsystem which is responsible for the performance of the 

external physical work. This is accomplished by Jji vitro and in situ 

studies of muscle contraction i*ich are then true muscle efficiencies. 

However, it should be noted that any measure of efficiency, when used 

with an understanding of its limitations, provides a convenient method 

by which to compare systems. 

4. General efficiency and efficacy expressions 

The efficiency proposed in this work is an overall efficiency 

relating changes in work energy to the chemical or metabolic energy con­

sumed from the energy source available to the system. The possibility of 

the storage of elastic energy for reuse has been considered. This is 

accounted for by the symbol W, defined as the energy stored in elastic 
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fibers when previous work Is done on them by stretching. If this term 

Is neglected. It Increases the apparent efficiency, which then no longer 

accounts for solely chemical to mechanical energy conversion. Several 

authors (2,4,5,27,71) have measured the apparent efficiency In order to 

Illustrate the contribution of elastic energy In exercise. 

The definition of efficiency, n, given here Is Intended to maintain 

consistency for the purposes of this and future studies. 

AMdt - W 

W • the external work done by the system 

W - the energy stored as elastic energy. It Is related 

to the work previously done on the system by an 

efficiency of conversion. 

AM " the change In the metabolism above the resting, or 

basal, value (or some other appropriate baseline) 

t - the end of the time Interval over which metabolic changes 

are a direct response to mechanical changes. The time 

over which mechanical changes occur may not correspond 

exactly with the time, t, over which metabolic changes 

occur. 

When no physical work is performed, efficiency is no longer a useful 

concept. However, muscular activity which does not result in the per­

formance of physical work still consumes energy. To evaluate the 

W 
X 100 (38) 
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effectiveness of energy conversion, the term efficacy. Introduced by 

Caplan (24), will be used and expanded upon. 

Efficacy Is a measure of the effectiveness of energy utilization 

when the resultant output Is a force without a flux or a flux without a 

force. The flux efficacy Is then defined by Caplan as e. : 
"^1 

\ - <") 

where Is the output, and Jg and Xg are Inputs. The force efficacy Is: 

where is the output force. The force efficacy is useful In studies of 

Isometric muscle contraction in which a force is maintained, but no work 

is performed. 

In addition to these expressions, situations often occurring in 

exercise physiology require a third definition of efficacy in which 

energy conversion Tor purely mechanical state changes are considered. 

The potential or kinetic energy change efficacy is defined as: 

AMdt - W 
J o  

where • the change in potential energy of the system from Equation 

24 

AK " the change in kinetic energy of the system from Equation 24 
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W, AM, and t represent the same quantities as previously. 

This expression evaluates the energy required to perform some objective, 

usually mechanical changes of the system. 

It Is best to consider several cases as examples. 

A. In running uphill at a constant velocity, no physical work Is 

done, but the subject Is expending energy to raise himself In a potential 

field. The possibility of reusing stored elastic energy Is considered. 

The potential energy change efficacy Is then 

B. In running uphill with acceleration. Increases In both and 

AK terms are the objective of the energy expenditure. Therefore, the 

efficacy of acceleration Is 

C. Some difficulties arise when the subject Is lowered In a 

potential field. In running downhill, the objective of the runner Is to 

prevent free-fall. The muscles act as a braking mechanism. The effective­

ness of accomplishing this objective or the efficacy of deceleration,then, 

Is the difference between the kinetic energy change that would occur If 

^A<|),AK ' ft 
. 100 

AMdt - W 
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the potential energy change was entirely transformed Into kinetic energy 

and the actual apparent kinetic energy change. 

If no acceleration occurs, the observed kinetic energy change 

^obs " kinetic energy change of free-fall, would occur if 

the system's potential energy were converted entirely to kinetic energy 

A* - - AK^g 

so that the efficacy of this potential energy change becomes 

|AK« - AK . I 
e . .  •  —  X  100, and since AK . - 0, 
A* ft , obs 

AMdt - W 
J o  

AK 
ff' 

"A* 
f AMdt - W 
•'0 

X 100 

% ' 
f AMdt - W 
J n  

X 100 

If acceleration occurs, AK^y^ is nonzero and positive, but can never 

be greater than AK^^. Then the efficacy of downhill acceleration Is 

.100 

[ AMdt - W 
Jn 
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If deceleration occurs such that < 0, the body Is braking more 

than Is needed to prevent acceleration and requires more energy utiliza­

tion than In the previous case. If the data of Margarla (71) are analyzed 

in this manner, the calculated efficacy of running up a ten per cent grade 

at a constant speed Is - 0.16. The efficacy of walking up a ten per 

cent grade, which requires smaller energy expenditure. Is - 0.20. The 

efficacies of running and walking downhill on a ten per cent grade are 

0.39 and 0.94, respectively. These values of efficacy demonstrate the 

relative ease of accomplishing changes in the mechanical state of the 

system. Running uphill is the most difficult and requires the largest 

energy consumption to accomplish the potential energy change. Walking 

downhill requires little effort, and the potential energy changes and the 

energy consumption are almost equal. 

The definition of efficacy avoids the use of negative efficiencies 

as calculated by Margarla (71) and Davles (33) and avoids the use of the 

work definition when no physical work is being performed. 

Efficiencies and efficacies are useful, dimenslonless quantities for 

performing comparisons. The definitions given here accommodate situa­

tions in which energy conversions result in the performance of work and 

situations in which energy is converted to a force or flux or to achieve a 

change in state. A summary is given in Table 1. 

The analysis of subsystem efficiencies as they contribute to the 

overall system serves as a means of identifying the location of major 

inefficiencies that limit total system performance. This is exemplified 

by the phosphorylative coupling and contraction coupling efficiencies. 
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Table 1. A sunmary of the efficiency and efficacy definitions presented 
in this section 

Efficiency or efficacy Definition Reference 

Physiological work efficiency I j X l O O  

w 
Efficiency based on work maximum x 100 

In general use 

(118) 

W 
X 100 

Efficiency of an energy converter -

max 

% 
(23) 

- degree of coupling 

- maximum efficiency 

^ " ̂12^^ ̂ 11^22 

q^/(l + /I - q^)^ 

efficiency at maxlmua 
output 

J (2/q2 - 1) 

Efficiency of biochemical coupling e * -

Phosphoxrylative coupling 
efficiency 

AyjdÇj 
(68).(76) 

Free energy conserved 

•v-
as foodstuff 

Contraction coupling 
efficiency 

mechanicAl work 
output 

free energy of ATP 
hydrolysis 

X 100 (115) 

Gross efficiency 
external work 

total energy expenditure 
X 100 (107) 
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Efficiency or efficacy Definition Reference 

Net efficiency 
external work 

energy expended above 
resting levels 

X 100 (107) 

Delta efficiency 
incremental work 

Incremental energy expenditure 
X 100 

(107) 

Instantaneous efficiency 
instantaneous work rate 
instantaneous energy 

expenditure 

X 100 (107) 

Mechanicochemlcal efficiency n -
w 

[ AMdt - W 
h 

X 100 this work 

Flux efficacy 
-Ji 

(24) 

Force efficacy . -lil 

'Xi 
(24) 

Potential and/or kinetic 
energy change efficacy 

-A<j),AK 
+ AK 

f AMdt - W 
J n  

X 100 this work 

The total organism efficiency could never be expected to exceed the product 

of the subsystem efficiencies. Efficiencies can predict extremes of per­

formance, whether the system is a mechanical process or a world-record 

holding athlete. 
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IV. APPLICATIONS 

In this section, several examples of the applications of the mass 

balance and the first and second law expressions in the study of biology 

and physiology will be discussed. A separate section will discuss the 

mechanical, biochemical, and molecular aspects of muscle contraction. 

Special attention will be devoted to the thermodynamics of growth and 

development. This will be followed by a definition and description of 

physical work and the calculation of system energy consumption. 

A. Mass Balances 

As has been previously discussed, oxygen consumption serves as a 

direct measure of a system's metabolic level. An example of this calcu­

lation will be given for the dally oxygen consumption rate of man. 

Recalling Equations 3 and 4, 

. ft/.". ». 

"o/o 

•5.... -i 

At steady state dn^ /dt - 0 and In most situations Is negligible. 

An average human at rest breathes approximately twelve times per 

minute Inspiring 500 ml/breath of air. Dry air contains 21 mole percent 

oxygen and 79 percent nitrogen. A typical expired air analysis at rest 

(48) shows 15.1% O2, 3.7% COg, 6.2% H^O, and the remainder Ng. The 

total volume of gases expired Is 527 ml/breath 
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RT 

0̂, • - "O,out̂   ̂
2 "2̂ " "2°"'̂  ftp P̂  

_ fsoo mi)fl2 breathsl^ f527 mil (12 breaths! « 
ibïïïithJ r~lïiï , 0-21 - ibîiïïhj jO'lSl 

VQ - 305 ml Og/mln (STP) 

The mass rate of oxygen consumption Is 

[305 mil [32 g | , .  1 I f  K m o l e  1  
[ mln J[molej ^ ^[273 kJ[82.06 ml'atmj 

118.9 g Og 

mln 

This amount of oxygen Is being utilized by the body in Its basal 

metabolic activities. 

A similar example Illustrates that the human body loses mass during 

breathing because expired air is humidified to saturation. 

.0 

dt ' J 4*20]"^] ^ dt 

If the production of metabolic water is neglected. 

dt " ̂ 

If dry air is breathed, - 0. Using data of the previous 

example, 

^ V out - <»•»«» 
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0.28 g/mln 

""2° _ _ 0.28 g 

dt min 

During the course of one 24-hour day, the body's mass loss by this 

process amounts to 0.4 kg or about 0.88 Ibm. 

Knowledge of the average mass or molar flows of the substrates, or 

food, consumed by a human coupled with a general stoichiometric descrip­

tion of the reactions In which these substrates participate leads to an 

Interesting calculation of the metabolic water produced by the human. 

The amount of water produced In physiological oxidation reactions Is 

approximated by equating the stoichiometric coefficients of the carbon 

dioxide and water products. This Is a reasonable estimate as shown by 

the following combustion reactions for glucose and palmitic acid. 

6̂̂ 12°6 •*" °̂2 6CO2 + GHgO 

palmitic acid + 230^ ->• I6CO2 + IGH^O 

An average, moderately active 70-kg man consumes a typical diet 

described In Table 2. 
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Table 2. Average 24-hour fuel utilization by an adult male (68) 

Carbohydrates 200 7.5 7.5 1.00 

Protein 70 3.0 2.4 0.80 

Fat 60 5.25 3.8 0.72 

Therefore, the moles of water produced in a 24-hour period is approxi­

mately equal to the moles of CO^ produced, or 

(7.5 + 2.4 + 3.8)moles COg x 1 mole HgO/mole COg - 13.7 moles H^O 

• 246.6 g HgO 

The data of this example may also be used to calculate the respira­

tory quotient for the diet shown. 

(7.5 + 2.4 + 3.8)moles COg/day 

^ave ^ (7.5 + 3.0 + 5.25)moles Og/day 

The respiratory quotient, then, is a function of the proportions of 

carbohydrate, protein, and fat intake. 

The use of mass balances as a means of analyzing reactant consunq)-

tion and product manufacture from system chemical reactions is an 
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Invaluable technique for the study of energy consuming processes In 

living systems. Energy consumption measurements are discussed In the 

next section. 

B. Energy Consumption Measurements 

• 

The metabolic term Z AH^^dF^/dc or AM of the first law energy balance 

is a measure of a large portion of the energy with which a living system 

supplies its functions. In complex organisms, distinguishing and 

separating the contributions of every chemical reaction taking place 

within the organism wouJd be difficult. Several methods are used 

which simplify this task. 

1. Traditional techniques 

One method of evaluating system metabolism involves measuring all 

other terms of the energy balance nnd calculating the metabolism term by 

differences. Experimentally this is achieved in calorlmetric studies by 

measuring the heat exchange rate and evaporative losses. For example, 

for a fully grown homoiothermic organism at rest and between fuelings, 

the first law expression is 

I 5 I "ijûij'j + Q 
The metabolism, or the rate of use of stored chemical internal 

energy, is balanced by the heat exchange wlth the surroundings and the 

enthalpy difference between the entering and exiting streams. This 
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resting metabolism represents the fueling of internal energy consuming 

processes and the eventual transformation of this energy to heat. For 

humans, the basal metabolism is about 1.7 kcal/kg'hr (6). The basal value 

is used to determine the absolute value of additional energy requirements 

of increased physical activity. 

A second approach utilizes the fact that oxygen, while contributing 

a minimal amount to the enthalpy flow term, is the major oxidant of all 

biological fuels. Its consumption rate can be used to approximate the 

reaction velocity term, v^, from Kquation 4a 

Using the total reaction velocity, v^ = v^, + v^, + Vp, together with an 

average heat of reaction for carbohydrates, proteins, and fats per 

volume of oxygen consumed (b8), 

V 
RT 

o 
0 

2 

AHRC/VQ = -5.47 kcal/liter 0 
2 

AHJ^/VQ = -4.23 kcal/litir 0^ 

AH^p/V^ = -4.60 kcal/llter 0 
1 

AH /V = -4.825 kcal/]iter 0 
ave 0„ 2 

the approximate value for the energy consumption is 

AM » S AH^^v^ = VQ X - 4.825 kcal/1 0 

with VQ in liters per minute. 

2 
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2. The electron balance technique 

In their recent work with microbial cultures, Erickson (37, 38), 

Erlckson and Patel (40, 41), and Erickson e_t (42) have contributed to 

the development of material and energy balances based on the available 

electron concept and several regularities of microbial culture bio­

chemistry. Their work is summarized below. 

The reactions of microbial growth are viewed as a series of 

electron transfers between the compounds involved In the reactions. 

According to Erickson and Patel (40), growth is represented by the equa­

tion 

CH 0. + a NH, + b 0- -»• y CH O N + zCH 0 N + cHLO + dCO, (42) 
mx,  3  Z  c P n q  rst  2 2  

where CH 0. is the elemental composition of organic substrate, CH 0 N 
m * .  p n q  

is the elemental composition of blomass, and CH^O^N^ represents the 

elemental composition of the extracellular product. The coefficients 

y^, z, and d are the fractions of organic substrate converted to blomass, 

products, and carbon dioxide, respectively. 

The reductance degree, the number of equivalents of available 

electrons per g-mole of carbon, of each compound is then calculated 

according to the following equations: 

substrate: = 4 + m - 2& 

product: - 4 + r - 2s - 3t 

blomass: Yy = 4 + p - 2n - 3q 
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The reductance values are based on the electrons available for each 

element as follows: C - 4, H - 1, 0 - -2, N--3. The highly reduced 

substrate transfers electrons to oxygen, to blomass, and to products. On 

a fractional basis relative to the electrons available In the sub­

strate, the fractions transferred are symbolized by e, the fraction 

transferred to oxygen, n, the fraction transferred to blomass, and 

the fraction transferred to products. Since the total numbers of 

electrons must be conserved 

Yg + b(-4) - y^Yjj + zYp (43) 

and e + n + Çp • 1. (44) 

Associated with each equivalent of electrons transferred Is heat evolu­

tion Q^. Each term In Equation 43 Is multiplied by giving an electron 

energy balance 

Vs + • Vc^b + Qo% (45) 

The first term on the right side of Equation 45 represents the 

energy Incorporated Into the blomass and the second, the energy In the 

products. The term 4Q^b Is the heat evolution and the energy associated 

with electrons transferred to oxygen Is evolved as heat. The term e may 

be written as 
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accounting for the fraction of energy In the organic substrate evolved as 

heat. This heat Is a result of energetic Inefficiencies In maintenance 

requirements, In cell growth, and In product formation. Analogously, n 

Is the fraction of energy stored In blomass and the energy contained 

in products. 

Many experiments have shown that is relatively constant at about 

26.5 kcal per g-equlvalent of electrons transferred (37). Furthermore, 

the number of available electrons per carbon atom is a relatively con­

stant value at 4.291 and the weight fraction of carbon in blomass is 

generally found to be equal to 0.462 (40). These regularities are the 

basis for the general application of the electron and energy balances. 

The application of these balances in the analysis of experimental 

results has proven to be a viable method of testing data consistency (37, 

40,41,42). 

It is significant to note that when the units for - 26.5 kcal/g-

equiv are converted to units of kcal/llter of oxygen, - 4.821 kcal/ 

liter O2. This value is virtually the same quantity as that used in 

physiological energetics studies for the energy equivalent of oxygen. In 

exercise physiology studies, oxidative reactions are of major importance 

for energy supply. The generalized reaction is written below (41): 

Y 
CHpOn^q + 4^ 0% + €0% + q + ̂ (p - 3^)8^0 (47) 

where Yy i# the reductance degree of the substrate, " 4 + p-2n-3q. 

For example, the oxidation of glucose, is represented when p - 2, 

n - 1, q • 0, and Yy " 4, 
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CHgO + Og + COg + HgO 

and the energy produced per mole of glucose combusted Is calculated by 

26.5 kcal 4 K-equiv 
6 moles of 0^ 

g-equiv 
X 

mole Og 
X 

mole of glucose 
636 kcal 

mole of glucose 

which corresponds well to the commonly used value for the heat of combus­

tion of glucose, -673 kcal/mole, a difference of only -5.5% (40). 

Using oxygen consumption as a measure of heat production is further 

justified by the fact that oxygen is almost entirely absent from the 

biosynthetic processes of biochemical pathways. It enters the bio­

chemical cycle at the end of oxidative phosphorylation to produce energy 

as heat. 

It may be concluded that the use of the energy equivalent of oxygen, 

4.821 kcal/liter Og,is a good way of assessing metabolism in nongrowing, 

steady state organisms. However, when growth and development are domi­

nant phenomena, the principles of the available electron balance should 

be used to calculate the energy allocated to growth and to product forma­

tion. Oxygen consumption then becomes a measure of heat production. An 

example of the use of the energy equivalent for oxygen in the first law 

balance is shown below. 

An average person inhales about 300 ml of Og/mln. The metabolic 

rate is calculated 
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AM - Z - - Vo X 4.821 kcal/1 0^ 

- - 1.45 kcal/mln 

If the only flows across the boundaries of the body are the air 

inhaled and exhaled, the enthalpy flow term, with reference at 25*C, is 

found to be 

Z  â.W.{, - EW,C. (T. - T ,)6, - - 0.021 
min 

The total balance shows that the resting heat loss for an inactive 

person should then be 

AM + H ^ - Q 
out 

- 1-43 . Q 

In particular, this illustrates the small contribution that flow terms 

make in an overall energy balance. 

C. Thermodynamics of Growth and Development 

Prigogine and Wiame (83) first suggested that irreversible thermo­

dynamics might be applicable to the study of growth and development of 

animals. The consequences of a thermodynamic approach are not only of 

theoretical significance but have practical importance as well. The 
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analysis of the driving forces and fluxes In development and growth may b# 

logically extended to studies of malignant growth, ageing, and wound 

healing. 

Since 1946, the research dealing with the application of Irreversible 

thermodynamics In biology has been active, but published results have 

often been contradictory. The apparent cause of this has usually been the 

misinterpretation of the thermodynamic meaning of experimentally measured 

quantities. This section is Intended to clarify the Interpretation of 

terms in the entropy account and to apply this in the analysis of well-

defined systems. 

1. Growth and development 

Growth and development is an unsteady state period during the life 

of an organism in which the biosynthetic reactions dominate the bio­

chemical pathways of an organism's metabolism. In the thermodynamic 

sense, it is a period in which a system's externally measurable parameter* 

are changing. During growth these are generally mass, dimension, and 

state of aggregation. These changes are fairly rapid relative to the 

lifespan of the organism. The changes that occur in a healthy adult 

organism are largely replacement and repair, imperceptible when viewed 

on the macroscopic level. The adult stage is therefore characterized 

thecmodynamlcally as a steady state. 

The study of growth and development provides an opportunity to 

investigate the changes in energy utilization and allocation as an 

organism matures. 
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It is generally agreed that adenosine triphosphate, ATP, or some 

intermediate formed from its participation is the energy-coupling device 

between the exothermic reactions of oxidative metabolism and the endo-

thermic processes of cell biosynthesis. Although the detailed biochemical 

mechanisms and substrates used vary from organism to organism, the ulti­

mate requirements of biosyntliasis are mainly the synthesis of proteins, 

nucleic acids, and lipids. These similarities between organisms provide 

a sound reason for studying periods of growth and development in well-

defined living systems such as bacterial cultures and avian eggs, for 

using these results to make general comments about possible trends in all 

living systems, and to suggest avenues for further investigation. 

2. Analyses of the microbial culture system 

The thermodynamic study of growth energetics has been of recent 

importance in biotechnology. Material and energy balances have been 

applied to microbial growth and product formation as a means of under­

standing energy and product yields, important aspects of bioengineering 

process development (see 34, 37, 88). The methods developed and the data 

obtained have been an extremely useful addition to the analysis procedures 

described herein. 

When unicellular organisms are provided with adequate nutrients and 

proper temperature and pH, they will grow. The cells Increase in number 

thereby increasing the amount of living matter, or blomass. Associated 

with the growth process are the uptake of material from the cell's 

environment and the release of metabolic end products, many of which are 

industrially desirable. 
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Blomass may be grown In either a batch or a continuous (chemostat) 

culture. The discussion here will deal mainly with batch cultures such 

as fermentors. 

A typical batch growth curve is represented in Figure 1. 

After the lag phase during which the Inoculated organisms are 

adjusting to their environment, exponential growth begins. The maximum 

stationary phase is reached either when the substrate has been consumed or 

when further growth is inhibited by toxic products. The ensuing death 

phase has not been extensively studied as it is no longer Industrially 

profitable. It is assumed to be exponential. 

The general pattern of the batch culture growth curve Is of interest 

because its shape and the significance of each phase resemble the general 

nature of the lifespan growth curves of other living organisms. In 

addition, the relatively short culture times, and the availability of 

fairly accurate methods of the monitoring of blomass, product,and heat 

production suggest that a batch culture may be a convenient system to 

use experimentally in the study of energy and entropy flows over the life­

time of the system. A batch culture portrays diversity in cell popula­

tion and the interdependence between individual cells within the culture, 

thus promising to be an excellent model of a living organism. 

a. The first law analysis Data taken by Selga et (100) have 

been cited and analyzed by Erlckson et al. (42). Brevlbacterlum was 

grown in a batch culture containing molasses, corn extract, and other 

nutrients. Lysine was the extracellular product of this fermentation. 

The measured variables were blomass productivity, lysine productivity. 



Figure 1. A typical batch growth curve of a microbial culture (8) 

Figure 2. The material and energy flows of the microbial culture 
system (Amp and Amg represent system growth due to products 
and blomass, respectively) 
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oxygen consumption rate, heat evolution rate, substrate consumption, and 

respiratory quotient. Erlckson ̂  (42) calculated n, (p, and E from 

these data. The data for Selga's Experiment 1 and the calculated 

efficiencies are presented In Table 3. 

Table 3. Measured values of blomass productivity, lysine productivity, 
oxygen consumption, heat evolution, substrate consumption, 
carbon dioxide production, and efficiencies of energy trans­
formation as reported In (42) for the data of Selga ̂  al. (100) 
for Brevlbacterlum. experiment 1, total volume - 2.9 x 10% 
liters, and Initial mass - 11.3 g/llter 

H»»ured variable Time period (ht.) ~ 

0-12 12-24 24-36 36-48 

Blomass productivity 
g/llter-hr 0.292 0.366 0.258 0.125 
(g/hr) X 10-3 0.85 1.1 0.75 0.36 

Lyslne'HC& productivity 
g/llter-hr 0.200 0.417 0.279 0.434 
(g/hr) X 10-3 0.58 1.2 0.81 1.3 

Oxygen consumption 
g/llter-hr 0.40 1.57 1.78 1.85 
(moles/hr) x 10-3 36 140 160 170 

Heat evolution 
kcal/liter-hr 0.60 4.25 5.75 6.50 
(kcal/hr) x 10"^ 1.7 12 17 19 

Substrate consumption 
g/llter-hr 0.417 1.410 2.580 2.90 
(g/hr) X 10-3 1.2 4.1 7.5 8.4 

Carbon dioxide production 
(moles/hr) x 10*3 39 150 170 180 

Fraction of substrate transformed to: 
blomass, n 0.38 0.19 0.14 0.07 
product, Çp 0.24 0.20 0.14 0.21 
oxygen, e 0.38 0.61 0.72 0.72 
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The system to be analyzed Is the blomass plus the products It forms. 

The system consumes organic substrate by metabolism, produces additional 

blomass and products (grows), and expels wastes and heat. The growing 

system is depicted in Figure 2. The process is isothermal. 

The first law expression used in analyzing the system energy flows 

is an expanded version of Equation 24g, 

where the growth rate of the system is represented in two portions, 

dm^/dt, the growth rate of biomass, and dmp/dt, the production rate of 

lysine. 

An example of the calculations for the first 12-hour period is shown 

below. 

The fraction of energy consumed from the substrate that is evolved 

as heat is given as e • 0.38. The heat evolved is Q • 1.7 x 10^ kcal/hr. 

The total metabolic rate, or the energy consumed in the substrate, is 

the energy per gram*equivalent of available electrons transferred (g* 

equiv a.e.) times the number of electrons in the substrate consumed 

hourly, Q^Yg- The term Yg is calculated from Equation 46, 

(46) 
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so that 

Q - 1.7 X 10^ kcal/hr 

_ 170 8-equlv a.e. 
hr 

The total metabolic rate is then, 

~ dCk . 

Vs 

- - 4500 
hr 

From Equation 45, the products contain the amount of energy 

The fraction of substrate energy contained In the products is • 0.24. 

Vs • 

Since Y_ and Ç are known, Y , and the rate of energy 
8 p 8 P P 

Storage as products is given by 

"p - Wp 

• <»•"> 

- 1080 
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Lastly, the rate of energy storage as blomass Is the total consump­

tion rate of substrate times the fraction stored as biomass, or AMn, so 

that 

S df * (45°° ̂ >(0.38) 

• "1° ̂  

Since the data analysis performed by Erickson ̂  al. (42) is con­

sistent because n + Cp + e • 1.0, as a consequence, the energy account 

must balance. 

^ dm ^ dm^ . 

"p df + dT + ̂  

1080 + 1710 + - 4500 Ï - 1700 
hr hr hr 

The calculated values for each 12-hour measurement period are listed 

in Table 4. The mass, m, is a mean value for the biomass plus products 

for each time period. 

Table 4. The specific rates of energy storage and transformation calcu­
lated for Brevibacterium in units of kcal/g*hr. (Data from 
(42. 100)) 

Period 
(hrs) 

m (g) AM (â dm /dt)/m 
P P 

(fig dmg/dt)/m Q 

0-12 41300 -0.11 0.03 0.03 -0.04 

12-24 63500 -0.31 0.06 0.06 -0.19 

24-36 86500 -0.28 0.04 0.04 -0.20 

36-48 106000 -0.25 0.05 0.02 -0.18 
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b. Second law analysis The first law analysis has made available 

the quantities necessary to estimate the entropy production rate of the 

system. I.e. heat loss and metabolism energies. 

Although no information about temperature was provided by Selga 

^ (100), a system temperature of 25*C Is assumed. It Is within a 

range reasonable for the growth of Brevlbacterlum. In this case, the 

entropy flow term Is negligible since flows enter and leave at the same 

temperature, which may be chosen as the reference state. 

In order to test Prlgoglne's hypothesis, the entropy production rate 

In Equation 29 will be written for specific rates In units of energy per 

time (t) • temperature (T) • unit mass (m). 

 ̂- I - ̂  + Z ^ ^ JpXp (48) 

The last term cannot be evaluated, but it is known that it has a 

positive value. 

As pointed out previously, for biological molecules, the entropy 

change of reaction, or the entropy of rearrangement, is small. It will 

be neglected leaving the following simplification of Equation 48 

r ^ ^ + (positive number) 

Using the data provided in the first law analysis and shown in Table 

4, the calculated specific entropy production rate for the system, dS/dt, 

is shown in Table 5. A plot of these values is presented in Figure 3. 

The rates are mean values for each time period. 
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Table 5. An approximation of the specific entropy productlqp rate of the 
Brevibacterlum system (42). (T - 25*C, units of dS/dt in 
kcal/ghr-'C) 

Period Q/T AM/T dS/dt = (Q - AM)/T 

0-12 -1.6 X 10"^ -4.4 X 10"^ 2.8 x lO"^ 

12-24 -7.6 X 10"^ -1.2 X lO"^ 4.4 x lO"^ 

24-36 -8.0 X 10"^ -1.1 X lO"^ 3.2 x lO"^ 

36-48 -7.2 X 10"^ -1.0 x lO"^ 2.8 x lO"^ 

The total system entropy can be approximated by assuming some initial 

system entropy, S^, and integrating the total entropy production rate 

over each time period. The total entropy production rate is simply the 

product of the specific entropy production rate for each period and the 

mean value of the mass of the system for the same period. These results 

are shown in Table 6 and Figure 4. 

Table 6. An approximation of the total system entropy change per 
measurement period for the Brevibacterlum system (42, 100) 
(units of total system entropy change are in kcal/*C, average 
mass, m, in grams, specific rates in kcal/g'ht•°C, and total 
rates in kcal/hr-'C) 

Period 
(hrs) 

;t+l( 
m dS/dt dS/dt AS • rii) dt 

0-12 41300 2.8 X lO"^ 116 1390 

12-24 63500 4.4 x 10~^ 279 3350 

24-36 86500 3.2 x lO"^ 277 3320 

36-48 106000 2.8 x lO"^ 297 3560 



Figure 3. The specific entropy production rate In kcal/g*hr.°C versus 
time period for Brevlbacterlum culture at 25'C (42, 100) 
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Figure 4. The cumulative change in total system entropy (S-S^) in 
kcal/*C versus time period for Brevibacterium 
culture at 25"C 
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The cumulative value for system entropy is S^+11600 kcal/®C. This 

represents a minimum since the contribution from the remaining internal 

forces and fluxes has been neglected. 

From this analysis it is apparent that total system entropy is a 

large positive value that is Increasing for the duration of this experi­

ment. 

3. Analyses of the avian egg system 

Avian eggs have been the subjects of extensive study by embryologists, 

geneticists, biochemists, and, lately, biophysicists. The system is well-

defined. This allows its energy exchange with the environment to be 

readily measured. The system's energy source is self-contained; therefore, 

the system is regarded as semi-closed, since only the flows of gaseous 

reaction products, reactants, and inerts are present. 

The egg system contains the developing embryo, the egg albumen, the 

egg yolk, the chorioallantoic membrane, which is the chief organ of 

respiration and heat exchange, and other structures. These structures 

are depicted in Figure 5a. The embryo is the chief metabolizing portion 

of the egg. Chemical compounds are selectively transported within the 

egg, transformed by synthesis, and incorporated into the tissues of the 

embryo. The mass of the embryo increases throughout the 21 day period 

of incubation and the mass of the remaining portions decreases yielding 

an overall mass loss for the whole egg. 

The system's chief means of heat dissipation appears to be water 

vaporization. The exact physical mechanism of water loss is not 



Figure 5. The physiological and thermodynamic depictions of the 
energy flows of avian eggs 

a) as suggested by (87) 
b) as viewed In a first law analysis 
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completely understood, but it is clear that eggs of most avian species 

lose approximately sixteen per cent of their original system mass in 

water (86). Gas enters to replace the lost water and forms an air cell, 

which serves as the primary chamber for the pre-hatch chick's attempts at 

lung-breathing. 

a. First law analysis The developing embryo is the real system 

of interest since it is the portion of the egg that is living and metabo­

lizing. The goal is to ultimately determine the entropy production rate 

of the living tissue in the analysis of Brevibacterium. 

As before, the analysis begins with the first law. Figure 5b is an 

analytically descriptive illustration of the egg system. The available 

electron balance technique will be applied. This is done first for the 

entire egg system. Data are available from several sources. The most 

complete is provided by Romijn and Lokhorst (92) for eggs of White Leg­

horn and Blue North Holland hens. However, the data have been misinter­

preted by the authors because metabolism has apparently been calculated 

from oxygen consumption. This energy equivalent does not apply to 

growing systems. A value for n, the fraction of total metabolic energy 

incorporated into biomass, is required. Brody (19) has found this to be 

n - 0.63 for chick embryos. It is questionable whether n is constant 

for the entire incubation period, but the value of 0.63 will be used 

since it is the only one presently available. The number does show good 

agreement with values of energy storage and losses obtained by Tangl (111). 

He combusted a fertile chicken egg and a fully developed chicken embryo 

with its remaining yolk. The fertile egg contained approximately 88 kcal. 
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The pre-hatch embryo contained 36 kcal and the remaining yolk, 28 kcal. 

Thus, the pre-hatch egg held a total of 64 kcal and 24 kcal had been lost 

during Incubation. The total amount of substrate expended equal to the 

metabolism was 88-28 = 60 kcal. The value of n " 0.63 would predict a 

blomass energy storage of 60 x 0.63 - 38 kcal. This Is In very close 

agreement with the experimental value of 36 kcal. 

To evaluate the utility of predicting theoretical heat production of 

a chick embryo from oxygen uptake, the predicted value will be compared 

to the heat loss as calculated from experimental values of water vaporiza­

tion from the egg. These values are generally calculated for the entire 

egg system, both living and nonliving portions. In order to Isolate the 

heat loss by water vaporization from the embryo, some estimate of the 

water losses between sterile and fertile eggs must be used. Bywaters and 

Roue (21) have measured this difference for sterile and fertile eggs under 

the same Incubation conditions. For the sterile eggs, the dally losses 

were approximately thirteen per cent of the Initial egg masses. The fact 

that the dally losses of the sterile eggs are constant suggests that this 

water loss may be dependent upon the system's environmental conditions, 

which were held virtually constant, and may be a desiccation process. 

For fertile eggs, the daily losses varied, increasing past the ninth day 

of incubation, and averaged to about sixteen per cent of the initial mass. 

This is in agreement with the results of Rahn and Ar (86). 

The "live" water losses found by taking the difference between the 

average fertile and sterile egg water losses account for the remaining 

three per cent of the initial mass lost. With the data currently 
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available, the water actually lost by the embryo cannot be determined. 

However, an estimate of this value is made if the "live" losses are 

attributed to the embryo and the water loss for the whole egg is visu­

alized as the "live" losses added to the sterile losses, the latter of 

which are assumed to be lost from the nonliving portions of the egg. 

That the extra water losses of the fertile egg above the losses of 

the sterile egg are required as a means of metabolic hear, dissipation may 

be justified as follows. As was demonstrated earlier in the section 

describing the use of the mass balance, the knowledge of the respiratory 

quotient and the general stoichiometry of the system reactions allows the 

calculation of an estimate of the metabolic water production. The metab­

olism of a chicken embryo is fueled largely by lipids such as oleic and 

stearic acid. The combustion of these compounds generally produces equal 

molar yields of water and carbon dioxide, so that carbon dioxide produc­

tion may be used to calculate water production. As shown in Figure 6, 

the general trend of the rate of "live" water loss resembles the trend 

in the increase of metabolic water production. Although the embryo 

water loss may not arise directly from the metabolic water produced. 

Figure 6 serves to illustrate the parallel between Increased metabolic 

activity and increased embryo water loss. Moreover, data from Romanoff 

(89) show that the percentage of solids in the embryo increases past the 

seventh day of incubation. The total water loss required to maintain an 

Increase in the solids concentration cannot be calculated from the data. 

However, since the embryo is also producing metabolic water, a "live" 

water loss seems necessary. If this loss is then equated to the water 



Figure 6. A comparison between the average sterile and average fertile 
egg dally water losses (data from (21)) contrasted with the 
metabolic production of water 
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vaporized by the embryo, an estimate of the heat loss from the embryo 

alone Is obtained. The heat of vaporization at 39*C Is used in the cal­

culation, - -0.575 kcal/g H^O. The water loss heat flux is compared 

to the heat loss predicted from oxygen consun^tion in Figure- 7 and Table 7. 

Table 7. Comparison between the theoretical heat loss predicted from 
oxygen consumption (89) and the experimental heat loss calcu­
lated from water loss data (21) 

Day "Live" water loss -Q ^ -Q Unaccounted heat loss 
2 2 

(g in 24 hrs) (kcal/hr) (kcal/hr) (-Q ) - (-Q ) 
"2 "2° 

1 0.02 4.8 X 10"4 3.3 X 10-4 -1.5 X s
 1 

3 0.06 1.44 X 10"^ 7.8 X 10-4 —6.6 X 10-4 

5 0.06 1.44 X 10-3 1.78 X 10-3 3.4 X 10-4 

7 0.07 1.68 X 10-3 4.81 X 10-3 3.1 X 10-3 

9 0.07 1.68 X 10-3 8.41 X 10-3 6.0 X 10-3 

11 0.10 2.40 X 10-3 1.84 X 10-2 1.6 X 10-2 

13 0.07 1.68 X 10-3 3.65 X 10-2 3.5 X 10-2 

15 0.10 2.40 X 10-3 6.41 X 10-2 6.2 X 10-2 

17 0.18 4.31 X 10-3 8.10 X 10-2 7.7 X 10-2 

19 0.14 3.35 X 10-3 1.00 X 10-1 9.7 X 10-2 

It is readily apparent that a difference exists. The value of the differ­

ence between the predicted (by oxygen consumption) and the measured (by 

water loss) values is plotted in Figure 8. Along with this curve is 

shown the temperature gradient between the incubating egg and the 



Figure 7. A comparison of the theoretical heat loss from oxygen 
consumption data (89) with experimental heat loss from 
water vaporization data (21) 
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Figure 8. The unaccounted heat loss, -Q, versus day of Incubation and 
the temperature gradient between the egg and Its surroundings 
versus day of Incubation 
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Incubating chamber which is the driving force for convective heat transfer 

from the egg. It can now be shown that the heat losses unaccounted for 

by water vaporization are due to convective losses to the egg's immediate 

surroundings. 

The expression for the overall heat transfer coefficient is, from 

(12), 

H - ̂  (A9) 

where Q is the total heat loss rate, A is the area for heat loss, and AT 

Is the temperature gradient. Using the unaccounted heat loss difference 

of Day 19 as an example, the corresponding AT - 2.4°C, and the surface 

2 
area of a 60-gram egg, A - 0.0074 m , the predicted total heat transfer 

coefficient is h - 5.46 kcal/m^»*C*hr. 

Whether this is within reason for the conditions of incubation can 

be assessed by evaluating the Nusselt number heat transfer correlation for 

free convection from a sphere (12), 

Nu - - 2 + 0.60(Gr)l/4(Pr)l/3 (50) 

where Gr is the Grajhof number, Pr is the Prandtl number, and k is the 

thermal conductivity of the sphere material. 

Using the physical properties of air from Kreith (64) and an equi­

valent spherical diameter for the egg of D - 5cm, the overall heat 

transfer coefficient predicted by this correlation for the conditions of 

2 
incubation is h > 4.8 kcal/hr<m '*C. This agrees well with the overall 
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heat transfer coefficient obtained from experimental data and Equation 49. 

The experimental value may be larger due to the presence of some forced 

convection as well. Therefore, since the discrepancy between theoretical 

and experimental heat loss can be successfully accounted for, calcula­

tions using oxygen uptake and the energy equivalent of oxygen give good 

estimates of the system's total heat loss. 

Romljn and Lokhorst (92) have provided good oxygen consumption data 

for the entire egg system. In order to analyze the energy flows of the 

embryo alone, however, the oxygen consumption for the embryo available 

from Romanoff (89) will be used. Employing the available electron 

balance techniques described in the previous section, the oxygen consump­

tion becomes a measure of heat evolution. Assuming that no extracellular 

products are formed by the embryo, only biomass production and heat 

evolution consume the available substrate. Therefore, e + n " 1 and, 

since n is known to be 0.63, c - 0.37. Knowing c, r|, oxygen consumption 

data, and the energy equivalent of oxygen, all remaining terms of the 

first law balance are calculable. An example of such a calculation for 

the embryo follows. 

* —2 
The measured values are n - 0.63, e - 0.37, and - 2.98 x 10 

liters of oxygen/24 hours. The heat loss, -Q, is the energy equivalent 

of the consumed oxygen, so that 

embryo 
2.98 X 10 ̂  liters 0? 

24 hrs 
4.821 kcal 
liter Og 

- -5.99 X 10 ^ kcal/hr 
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Since this is 37% of the total metabolic energy transformed, the metabolic 

rate is 

-5.99 X 10 ^ kcal/hr 
 ̂" 0737 

" -1.62 X 10 ^ kcal/hr 

The energy storage is 63% of the metabolism since n • 0.63. Then 

HAm • N X AM 

- 0.63 X 1.62 X 10"2 
nr 

- 1.02 X 10"^ 
hr 

The original data and the calculated first law terms are shown in 

Table 8. The data are taken for 19 days rather than 21, since, after the 

nineteenth day, the embryo begins lung breathing from the air cell and 

thus alters its enthalpy flows. The egg also experiences a temperature 

rise, but, relative to the other contributions to system energy, that due 

to stored thermal energy is negligible. 

b. Second law analysis The mass specific quantities required in 

the second law analysis are listed in Table 9. 

The entropy flows, Z I s û .6., account for less than 5% of the 
j i J J 

total entropy change and will be neglected. Upon applying the same 

reasoning as in the previous section in which AS^^dg^/dt is negligible 

and by temporarily disregarding the positive contribution of the internal 



Table 8. Pertinent data for an Incubating chicken egg (oxygen uptake and mass data from 89 and 92) 

m m ^ V_ V_ Q ^ AM ^ HAm ^ 
egg embryo O^egg O^embryo embryo embryo embryo 

(g) (g) (ml/24 hrs) (ml/24 hrs) (^) (^) (^) 

1 63.3 0.0002 1.92 1.63 3.27 X 10-4 8.85 X 10-4 5.58 X 10-4 

2 62.6 0,003 3.12 2.35 4.72 X 10-4 1.28 X 10-3 8.08 X 10-4 

3 62.01 0.021 5.52 3.89 7.81 X 10-4 2.11 X 10-3 1.34 X 10-3 

4 61.4 0.060 8.88 6.51 1.31 X 10-3 3.53 X 10-3 2.23 X 10-3 

5 60.73 0.160 13.44 8.84 1.78 X 10-3 4.75 X 10-3 2.97 X 10-3 

6 60.10 0.34 22.32 14,56 2.93 X 10-3 7.91 X 10*3 4.97 X 10-3 

7 59.46 0.64 34.80 23.92 4.81 X 10-3 1.30 X 10-2 8,19 X 10-3 

8 58.82 1.07 44.64 29,82 5.99 X 10"3 1.62 X 10-2 1,02 X 10-2 

9 58.18 1.56 62.40 41,87 8.41 X 10-3 2.27 X 10-2 1,43 X 10-2 

10 57.55 2.39 88.80 61.16 1.23 X 10-2 3.32 X 10-2 2,09 X 10-2 

11 56.82 3.49 123.36 91.73 1.84 X 10-2 5.0 X 10-2 3,16 X 10-2 

12 56.12 5.04 174.48 136.55 2,74 X 10-2 7.41 X 10-2 4,67 X 10-2 

13 55.4 7.05 221.76 181.64 3,65 X 10-2 9.86 X 10-2 6,21 X 10-2 

14 54.66 9.86 291.37 248.63 4,99 X 10-2 1.35 X 10-1 8,51 X 10-2 

15 53.91 12.50 360.72 319.08 6.41 X 10-2 1.73 X IQ-l 1,01 X 10-1 

16 53.19 15.06 397.68 358.21 7,20 X 10-2 1.95 X lo'i 1.23 X IQ-l 

17 52.41 18.31 441.12 403.41 8.18 X 10-2 2.20 X 10-1 1.39 X IQ-l 

18 51.66 22.09 446.80 417.74 8.39 X 10-2 2.27 X lo'i 1.43 X lOTl 

19 50.94 25.79 520.50 497.48 0 .10 0 .27 1.7 X 10 1 
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Table 9. Specific energy flows and the estimated entropy production rates 
of the chicken embryo 

Day Q am (|£g) (g) TdS/dtSQ- M IdS/dt 

1 -1.635 -4.425 0.0002 2.79 5.6 X 10-4 

2 -0.157 -0.427 0.003 2.70 X 10"! 8.1 X 10-4 

3 -0.037 -0.101 0.021 6.40 X 10-2 1.3 X 10-3 

4 -0.022 -0.059 0.060 3.70 X 10"2 2.2 X 10-3 

5 -0.011 -0.030 0.160 1.90 X 10"2 3.0 X 10-3 

6 -0.009 -0.023 0.34 1.40 X 10-2 4.8 X 10-3 

7 -0.008 -0.020 0.64 1.20 X 10-2 7.7 X 10-3 

8 -0.0056 -0.015 1.07 9.4 X 10-3 1.0 X 10-2 

9 -0.0054 -0.0146 1.56 9.2 X 10-3 1.4 X 10-2 

10 -0.0052 -0.0139 2.39 8.7 X 10-3 2.1 X 10-2 

11 -0.0053 -0.0143 3.49 9.0 X 10-3 3.1 X 10-2 

12 -0.0054 -0.0147 5.04 9.3 X 10-3 4.7 X 10-2 

13 -0.0052 -0.014 7.05 8.8 X 10"3 6.2 X 10-2 

14 -0.0051 -0.0137 9.86 8.6 X 10"3 8.5 X 10-2 

15 -0.0051 -0.0138 12.50 8.7 X 10-3 1.1 X 10-1 

16 -0.0048 -0.013 15.06 8.2 X 10"3 1.2 X 10-1 

17 -0.0044 -0.012 18.31 7.6 X 10-3 1.4 X IQ-l 

18 -0.0038 -0.010 22.09 6.2 X 10-3 1.4 X 10-1 

19 -0.0039 -0.010 25.79 6.1 X 10-3 1.6 X 10-1 
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forces and fluxes, the specific entropy production is presented in 

Figure 9. The total entropy production rate and the integrated entropy 

change for the chicken embryo is presented in Table 10. The cumulative 

change in total minimal system entropy is depicted in Figure 10 and has 

a value of S +0.6 kcal/"C. 
o 

The general trend of the estimated minimum entropy production rate 

for the chicken embryo system is a decrease from a relatively high 

initial value. As before, the actual value of the entropy production 

rate is unknown since the internal forces and fluxes represented in Equa­

tion 29 by the term ̂  E cannot be measured. The highly irreversible 

nature of the internal processes of growth and development suggest that 

these unmeasured contributions must be positive. The changes in a system 

that are caused by these processes are largest at the beginning of the 

growth period and, therefore, their positive contribution to internal 

entropy production is likely to be largest then also. By definition from 

(80), at steady state, the total system entropy production rate is nearly 

zero and internal entropy production is approximately balanced by entropy 

exchange with the surroundings, so that from Equation 26 

dt dt 

For a normally functioning organism at steady state with wholly 

indigenous energy generation, d^S/dt is usually negative, and so d^S/dt 

must be positive. Since d^S/dt is positive at steady state, its value 

in the initial unsteady state phases of growth and development should be 

an even larger positive number. Furthermore, the internal entropy 



Figure 9. The approximate specific entropy production rate versus day 
of Incubation for the chicken embryo (data from (89)) 
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The total entropy production rate and the integrated total 
entropy change for the chicken embryo (temperature data from 
(91)) 

T . (*C) 
embryo 

dS/dt (kcal/hr 'C) AS 

37.7 1.5 X 10"^ 3.6 X 10-4 

37.7 2.1 X 10"5 5.2 X 10-4 

37.8 3.4 X 10"^ 8.3 X 10-4 

37.8 5.8 X 10-5 1.4 X 10-3 

37.9 7.9 X 10-5 1.9 X 10-3 

37.9 1.3 X 10-4 3.0 X 10-3 

37.9 2.0 X 10-4 4.9 X 10-3 

37.9 2.6 X 10-4 6.3 X 10-3 

37.9 3.7 X 10-4 8.9 X 10-3 

38.0 5.5 X 10-4 1.3 X 10-2 

38.0 8.2 X 10-4 2.0 X 10-2 

38.0 1.2 X 10-3 3.0 X 10-2 

38.8 1.6 X 10-3 3.8 X 10"2 

38.8 2.2 X 10-3 5.3 X 10-2 

38.8 2.8 X 10-3 6.8 X 10-2 

38.8 3.1 X 10-3 7.4 X 10-2 

38.9 3.6 X 10-3 8.6 X 10-2 

40.0 3.5 X 10-3 8.4 
-2 

X 10 ^ 

40.1 4.0 X 10-3 9.6 -2 
X 10 ^ 



Figure 10. The change in the total cumulative system entropy, 

STOT ~ ^O* kcal/"C versus day of incubation for the 

chicken embryo 
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production rate must be zero at death. These facts suggest that 

/V 2 2 
Prlgoglne's hypothesis, which states that d^S/dt > 0 and that d^S/dt £ 0, 

Is correct, although absolute proof cannot be given. 

The results of this research demonstrate that a similar trend Is 

found to occur for the specific rate of the minimal system entropy produc­

tion, dS/dt, as well. The term dS/dt represents the difference between 

entropy lost by the system by exchange with the surroundings, -d^S/dt, 

and the internal entropy produced by the system, d^S/dt. As the system 

begins developing, the difference is a large, positive number. As growth 

and development progress, -d^S/dt and d^S/dç approach equivalence and, 

consequently, dS/dt becomes smaller as depleted in Figure 11. If a 

steady state is achieved by the system, d^S/dt • -d^S/dt. Therefore, it 

may be concluded that, for the period of growth and development In 

living systems, the specific rate of minimal system entropy production 

is positive and decreasing, or 

f > 0 (49) 

^ < 0 (50) 
dt 

The total system entropy of the chicken embryo is shown to increase 

over the incubation time. The expected leveling trend in the value of 

the total system entropy change due to the effect of the decreasing rate 

of entropy production is apparent in Figure 10. This was not obvious 

for the Brevibacterlum system entropy since the time of data measurement 

was much shorter than for the chicken embryo data. 



Figure 11. The decreasing rate of the specific rate of system entropy 
production; the comparison between the specific rate of 
the Internal entropy production and the specific rate of 
entropy exchange as the system grows, develops, and approaches 
a steady state 
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The results of this section have demonstrated the utility of 

techniques which couple first and second law analyses in the study of 

energy and entropy flows in living systems. The techniques have been 

successful in estimating minimal values of both the entropy production 

rates and the total system entropy change. Living systems do not violate 

the second law of thermodynamics during the period of growth and develop­

ment. 

In order that these techniques be developed, several assumptions 

have been made. The most fundamental is that the concept of local equi­

librium, which is basic to the development of nonequilibrium thermo­

dynamics, applies. This cannot be tested directly, but it is reasonable 

to hypothesize that even macroscopically unsteady state nonequilibrium 

systems can be divided into small enough subsystems so that, at some 

level, equilibrium operation Is achieved. 

Another assumption deals with the linear relationships between 

force-flux pairs of the Onsager expression for dissipation. Nicolls and 

Prigogine (78) have used the reaction affinity-reaction velocity force-

flux pair as an example where such linearity may not exist. The nature 

of the biochemical pathways in living systems are such that the individual 

reactions which compose the pathways may be operating within the linear 

range and at equilibrium. When the system reactions are viewed as a sum 

of the constituent linear reactions, the assumption of overall linearity 

Is acceptable for the purposes of the analyses of this study. 

The contributions to total values of the entropy change due to the 

rearrangement of molecules and the entropy change due to material flows 
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have not been Included. Calculations performed on presently available 

data and the discussion on entropy and organization to follow, suggest 

that these values are very small. It has been a goal of this work to be 

able to rigorously calculate the values of the minimum entropy production 

rates and the total system entropy. The assumptions which have been made 

do not apparently detract from the achievement of this goal. 

It is interesting to extend the analysis techniques that have been 

developed to periods before and beyond those which have been investigated 

here. The study of the entropy production of living systems during stages 

previous to growth and development requires study of the energy flows and 

energy transformations as the organism is conceived. At this time, the 

system is ill-defined and the energy changes are difficult to assess. It 

may be hypothesized that the highly irreversible nature of the conception 

of an organism results in a sharp increase in the rate of entropy produc­

tion to reach the high value from which the rate then decreases as the 

system begins to develop and grow. Some evidence of this initial rise is 

demonstrated in the entropy production rate plot of Brevlbacterium 

(Figure 5). 

Beyond the period of growth and development a system enters what has 

been called a steady state period of adulthood. However, as discussed by 

Zotin (123), ageing processes begin soon after physical maturity is 

achieved. On an hourly or daily basis, changes in the system parameters 

are not perceptible, but when viewed over larger portions of the 

organism's lifespan, macroscopic changes become obvious. This suggests 

that no true steady state is reached and that the total entropy production 
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rate of a living system never quite reaches a steady state level of zero, 

which has been presumed by Katchalsky and Curran (61) and Zotin (123). 

It may be hypothesized that, in accordance with Prigogine's hypothesis, 

the entropy production rate of a living system, except for local fluctua­

tions, decreases continually over the system's lifetime until it reaches 

a minimum at maximum lifespan. Consequently, the total entropy of the 

system continues to increase toward a maximum value as ageing occurs. 

These hypothesized trends are depicted in Figures 12a and 12b. 

Since living organisms are not in violation of the laws of thermo­

dynamics, a comparison between living and nonliving systems suggests an 

aspect by which the entropy production in living systems differs from the 

entropy production in nonliving systems. Unlike nonliving systems, 

living systems seem capable of regulating their entropy production rate. 

This regulation occurs at two main levels, as suggested by Zotin (123). 

Living organisms exercise homeostatic regulation which involves autonomic 

neural and hormonal controls that maintain system functioning within 

definite limits around the system's basal operating level. An example 

of this is the complicated mechanism of homeostatic regulation during 

exercise. As the muscles perform work, they require metabolic energy to 

fuel this process. As discussed on page 53, this and similar diversions 

of metabolic energy upset the steady state balance between internal 

metabolic energy production eind heat loss, so that the performance of 

work results in a fluctuation in the total system entropy production rate. 

The second level of control is the regulation of entropy production 

rate over the lifetime of the organism. Nonliving systems do not 



Figure 12. Hypothetical entropy production patterns over the lifespan 
of an organism 

a) The specific minimal entropy production rate, dS/dt, 
versus time 

b) The minimal total system entropy, AS, versus time 
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demonstrate the ability to survive unassisted against adverse gradients 

imposed by their surroundings and usually decay to higher states of dis­

order as a result of energy transformations within the system. Living 

systems are capable of prolonging their decay by self-organization and 

self-replication which maintain their system integrity and pseudo-steady-

state functioning over much longer periods of time. Living systems are 

open to both material and energy flows and these flows are either auto-

nomically or consciously regulated. This seems to be instrumental in the 

system's control over its entropy production rates. 

Entropy production rates are directly related to chemical reaction 

rates and process rates that constitute the functioning of a living 

organism. Recent literature has suggested that these rates may regulate 

the lifespan of an organism. For example, Gunther (50) has suggested 

that each species is given an approximate number of breaths and an 

approximate number of heartbeats per lifetime. These conclusions have 

been the result of the dimensional analysis of a wide range of rate data. 

The rate at which the system uses its "allotment" determines its lifespan. 

Furthermore, Kuehn (65) has suggested that, if a human heart is destined 

to beat a given average number of times, the Increase in heart rate which 

an athlete experiences during exercise temporarily consumes some portion 

of the given total number of heartbeats, but has longterm effects that 

cause bradycardia and therefore lengthen the athlete's life. Rahn and Ar 

(86) have found a similar generality in the water loss of incubating eggs. 

Almost all avian eggs lose about sixteen per cent of their initial mass 

In water. The length of the incubation period for a particular avian 
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species Is dependent upon the dally rate of water loss, so that the total 

loss of sixteen per cent Is achieved regardless of the incubation environ­

ment. 

An analogy may be drawn between process rates of living systems and 

entropy production rates. Since death represents a state of maximum 

entropy. It Is suggested that the entropy production rate in living 

systems Is a factor which determines longevity. In the same manner as a 

system uses heartbeats and breaths, each system may be specified a 

certain pattern of entropy production, such as achieving a maximum entropy 

level at equilibrium. Although such a hypothesis requires extrapolation 

of present knowledge, it suggests opportunities for further investigation 

into the Importance and possible omnipotence of entropy in the processes 

of life. 

4. Entropy and organization 

Forrest and Walker (47), Horowitz (76), Schrodlnger (97), and others 

have attempted to describe the contribution that the organization of matter 

in a living system has on the system's total entropy, referred to as the 

entropy of rearrangement, It is the ability of living things to 

self-organize molecules into morphological units that separates them 

from nonliving systems and has been believed to be the major contribution 

to their internal entropy production. 

The concepts of sequence and order have led to the use of information 

theory in biology. Information theory was first applied in the communi­

cations industry to provide a measure of the information contained in 

ordered and random sequences of symbols (102). Its application to the 
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analysis of physical systems deals with the random distribution of micro-

states within the system. The prediction of the macroscopic properties 

of the system is done by averaging all possible mlcrostates of the system. 

The distribution of mlcrostates is related to distributions which are 

derived from statistical mechanics. A brief summary of these arguments 

follows. 

A system is viewed as an ensemble containing N particles. The 

system is completely described by specifying the position and properties 

of each of these particles. The time trajectory of the ensemble is found 

by specifying these properties with time. However, any macroscopic 

measurement made on the ensemble is a time average of the changing prop­

erties of the N particles. For large ensembles and long time trajectories, 

these two representations approach each other. This postulate is known as 

the ergodlc hypothesis. Simply stated, it suggests that macroscopic 

measurements can be predicted by the mlcrostate average over the ensemble. 

At equilibrium, the ensemble average of a measurable property will be the 

same as the time average of that property for a given system. 

It has been shown by Shannon and Weaver (102) that the information 

obtained from an ensemble by knowing the mlcrostate or quantum state of 

the system is given by 

I - - ZFJ ANGFJ (51) 

where the f^ are normalized probability distributions of the states of 

particle j. This is similar in form to the expression for entropy derived 

in statistical mechanics 
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S - -kZfjJlnfj (52) 

where for very large numbers of particles 

fj - Nj/N (53) 

and Nj is the number of particles In the jth quantum state, N Is the total 

number of particles, and k Is Boltzmann's constant. In a rigorous deriva­

tion, fj is the normalized probability distribution 

-Ej/kT 

• E -Ej/kT 
j 

where E^ is the energy of the jth particle. This expression is simplified 

as shown above to illustrate the comparison between Information and 

entropy. 

Then, since the distributions f^ are the same for large N in both 

Equation 51 and Equation 52, entropy is related to information content by 

Equation 54 

S - 0.693 kl (54) 

It is further observed that both Equations 51 and 52 are similar in form 

to the entropy of ideal mixing given by Modell and Reid (75), 

ID 
AS " - -R Z X. &n X, (55) 

j-1 ^ J 
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where R - the gas constant -

23 
- Âvogadro's number, 6.023 x 10 

Xj - the mole fraction of the jth component 

For an N-partlcle or N-mole system. 

N 

and the entropy of mixing becomes 

ID " N N 
. -R Z ^ &n ̂  (56) 

J-1 

As the number of particles present In the system Increases, I.e. 

fj + Nj/N - Xj, the expression for the entropy of mixing becomes the same 

&. the expression for the entropy evaluated from Information content. 

Equation 55 Is on a molar basis and Equation 54 Is on a particle basis. 

As a means of testing the applicability of this approach In biologi­

cal systems at the level of cellular organization, the following calcula­

tion Is performed. 

A "typical" cell can be shown to weigh approximately 5.6 x 10 

grams. This average Is obtained by dividing the mass of the cellular 

matter of a human by the estimated total number of cells present, 100 

trillion (51). Assuming that the typical cell mass does not change 

appreciably from human to chicken, the number of cell types in each major 

body compartment of the chick is calculated (Table 11). 
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Table 11. The distribution of cell number in the major body compartments 
of the chick (mass data from (89)) 

Body compartment Compartment mass (mg) Approximate number 
of cells per compartment 

Fat 3000 5 X 10^ 

Bone 1100 2 X 10^ 

Intestine 2900 5 X 10^ 

Gizzard 1650 3 X 10^ 

Brain 1000 

s
 

X
 

C
M

 

Liver 950 2 X 10^ 

Eyes 450 8 X 10® 

Heart 250 5 X 10® 

Lungs 200 4 X 10® 

Kidneys 200 4 X 10® 

Blood 2400 4 X 10® 

Skin 1500 3 X 10^ 

Noncellular 8400 

The total number of cells in the chick is approximately 3 x 10^^ 

cells. The entropy of rearrangement at the cellular level is approximated 

by finding the entropy of mixing of the given amount of each cell type 

into one mixture containing all cells. In this model of cellular arrange­

ment, the entropy of rearrangement is evaluated as the reverse of mixing, 

i.e. the original state becomes the mixture of cells which are then 
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organized according to cell type, the reversal of the mixing process. 

When this calculation is performed employing Equations 55 and 56, the 

resultant entropy of ideal mixing is 18 J/mole of cells K. However, the 

-14 
chick contains only about 5 x 10 moles of cells. Therefore, the 

entropy change of mixing for the system is only 9 x 10 J/K. The 

entropy change of rearrangement, AS^ is the opposite of the entropy of 

mixing so that 

ASj^ - -AS^° - -9 X 10"13 J/K 

- -2 X 10"1* kcal/K 

When evaluated according to this model, the contribution to the 

entropy change of the chick embryo during the incubation period is very 

small compared to the value obtained from the effects of energy trans­

formations. 

Since the development of this method is rooted in the ensemble 

approach and the theories of quantum states, the evaluation of entropy 

in this way requires the knowledge of the states of a very large number 

of particles. Clearly, even knowledge of the location of 3 x 10^^ cells 

la too small of a number tc successfully utilize this method. 

Since the biochemical reactions of living organisms, which have been 

discussed earlier, deal with Interactions of molecules, it is appropriate 

to consider the rearrangement effect at a second hierarchal level, the 

molecular level. 

The composition of a representative cell is as shown in Table 12 

from data for Escherichia coli (68). Although these bacteria are 
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Table 12. The average molecular composition of a representative cell 
(data from (89)) 

Weight Average Weight Moles 
Molecular species per cent molecular per cell per cell 

weight 

Water 70 18 4 X 10-10 2 X 10-11 

Protein 15 10® 8 X 10-11 8 X 10-17 

DNA 
(deoxyribonucleic acid) 

1 lo' 6 X 10-12 6 X 10-21 

RNA 
(ribonucleic acid) 

6 10® 3 X 10-11 3 X 10-17 

Carbohydrates 3 200 2 X 10-11 8 X 10-14 

Lipids 2 225 1 X 10-4 5 X 10-14 

"Building block" molecules 3 150 2 X 10-11 1 X 10-13 

relatively simple cells, their molecular composition will be assumed to 

be a typical average for other cell types. The total moles of molecules 

in a cell is then calculated to be about 2.2 x 10 ̂  moles/cell. Using 

Equation 55 and the same model of rearrangement utilized previously, the 

entropy of rearrangement is now substantially larger, - -0.5 J/mole 

of molecules.K. If the effect of rearrangement is assumed to be an 

additive property over all cells of the organism, the total system 

entropy change due to rearrangement is AS^ - -8 x lO"^ kcal/K for the 

organism containing 3 x lO^^ cells. This change occurs over the entire 

incubation period. When this value is compared to the minimal total 

system entropy change for the chick embryo, + 0.6 kcal/'C, AS^^ is, at 
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the most, less than one per cent of the total minimal value. For the 

purposes of this example, AS^ may apparently be assumed negligible. 

A comparison between the values of AS^ obtained for cellular organi­

zation, in which 3 x 10^^ cells or "particles" were accounted for, and 

the AS^ evaluated for molecular organization, in which the effect of 

23 
4 X 10 molecules was considered, results in an increase of eleven orders 

of magnitude in the estimate of entropy change for an increase of thirteen 

orders of magnitude in particle number. This suggests that, in order that 

a significant value of AS^ relative to the minimal total system entropy be 

calculated, the knowledge of particle distributions at some submolecular 

level would be required. This type of analysis would not be practical in 

the macroscopic study of living systems. 

The model of molecular organisation presented here considers the 

original mixture as completely random with no tendencies for segregation 

within the mixture. The quasichemical approximation to the total entropy 

of mixing (79) suggests that, if such tendencies exist, the mixture is 

not entirely random and the entropy of nonrandom mixing is smaller than 

the entropy of ideal mixing. According to the model proposed here, the 

entropy of rearrangement would then become smaller as well. If the 

attractive forces between the molecules are large enough such that they 

cause the molecules to act as supramolecular units, thereby reducing the 

effective number of particles, the entropy of rearrangement would 

decrease. Further, if bonding occ.rs between the rearranged molecules 

by exothermic reactions, as ultimately happens in living systems, the 

entropy of rearrangement for an isothermal system would decrease due to 



140 

heat loss. Consequently, It appears that the factors which have been 

neglected would only lower the estimate of AS^. 

Since the evaluation of system entropy In this research has been 

concerned largely with macroscopically measurable energy transformations, 

the entropy of rearrangement, which may only become significant at sub-

molecular levels. Is not significant. The goodness of the evaluation of 

by this method Is uncertain. Therefore, the effects of the entropy 

of rearrangement will be neglected. This does not qualitatively alter the 

results and conclusions of this study, since the remaining terms of the 

Internal entropy production rate must cause the sum of all terms of d^S/dt 

to be positive. 

D. The Thermodynamics of Muscles and Muscle Systems 

The analysis of the energy flows of a contracting muscle system is an 

interesting study of a combination of biochemical, electrical, thermal, and 

mechanical effects. 

Determining the work done by a system is potentially the most per­

plexing aspect of the first law analysis. Physical work has been a 

largely misunderstood and misrepresented quantity. The intent here is to 

define and classify work so that its determination for the purposes of an 

energy balance is consistent for any and all systems considered. A 

general discussion of the work definition will precede its application to 

the specific system. 
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1. Work and muscles 

Work occurs at the boundaries of the system and serves as one means 

of energy exchange between the system and Its surroundings. Work Is 

performed when a force external to the system, X^, Is exerted on or Iw 

acted upon by the system causing a change in an external system parameter 

a^ such that the quantity of work performed Is 6W - Z X^da^ (61). X^ and 

da^ must occur In proper conjugated pairs. In particular, exaiq>les of 

these pairs are 

3W - PdV + Fdx - Ede - fdA 

The term PdV represents the classical expansion work, the change In 

volume dV against a pressure P. Ede describes the electrical work per­

formed when a quantity of charge de Is given off by a system across an 

electrical potential E. The time rate of change of this term, electrical 

power. Is Ede/dt • E«I, where I Is electrical current. 

The two remaining terms are directly suited for applications to 

muscle systems. The term fd& Is the general term for the work of deforma­

tion, where il is the deformed length experiencing a force f. For the 

muscle, fd& can represent the work done by a contracting muscle when dJl 

is negative referenced to the resting length or the work done on a 

stretched muscle when dit is positive. 

The remaining work term, Fdx, is unique. It can represent the change 

in the position of the system in a nonconservatlve force field such as in 

situations when work is performed against friction (drag). This type of 

work results in the dissipation of energy which often appears as thermal 
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energy. This term nay also be uaed to represent the commonly defined 

physical work lAen a force acts through a distance, or 

W - P • X 

where F • the force vector 

X - the distance vector. 

The dot product notation Indicates that In order for work to be 

performed, some components of force and of distance must be parallel. 

The rate of doing work, W, Is then 

dx 

W " P * - 3 7 " F * v  
m» QC ^ A, 

where v la velocity. 

Forces may be and often are exerted with no external work being done. 

Work Is performed only on deformable or moveable surroundings. For 

example. If running Into the wind, lifting weights,and walking In loose 

sand are evaluated for the human body aa the system, these all repreaent 

forms of physical work, whereas climbing up stairs, running on a hard sur­

face, and jumping do not. However, if the balance Is taken around the 

human leg segment as the system, climbing up stalra, running, and Jumping 

are also axamplaa of the legs doing work as they lift and lower the body 

torso. 

In the next step of the hierarchy of subsystems from limb to muscle, 

the Isolated muscle can be easily visualised aa doing work whenever It 

contracts to move a load. It Is Important that the system boundaries are 
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well-defined since Che work, whether it is done by or on the system, must 

occur at these boundaries. 

Since the active muscle initiates all physical work performed by the 

human body, it is worthwhile to consider a description of its character­

istics and operation. The research done on single muscles, its relation 

to this study, and the evaluation of muscle energy sources will be dis­

cussed. 

a. Contraction A single muscle is a bundle of thousands of 

muscle fibers. Each single muscle fiber is made up of myofibrils which 

are the basic contractile element of the entire muscle. The striated 

appearance of muscles is due to the partially overlapping arrays of the 

two main myofibril types, the myosin filament and the thinner actin 

filament. The striations are classified according to bands as depicted 

in Figure 13. The unit from Z-line to Z-line is called a sarcomere. The 

contraction of muscle is brought about by relative sliding between these 

fibrils. In activated muscle the myofibrils shorten. If the ends of the 

muscle are fixed, no overall shortening occurs; the contraction is iso­

metric. When the muscle length shortens, the contraction is concentric 

or isotonic. If the muscle lengthens while contracting, the contraction 

Is eccentric. 

Huxley (60) and others have given strong evidence for the cross-

bridge and sliding filament theory. The sliding of filaments is 

accomplished by individual myosin molecules which each possess a pro­

truding "head," the site of the force-generating mechanism. These heads 

are made up of heavy meromyosin arranged in pairs at regular intervals 



Figure 13. A graphical Illustration of the overlapping arrays of 
myosin and actln filaments In muscle (from (6)) 
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along the myosin filament, each rotated 120* from the neighboring pair. 

The heads are pointed in one direction along one half of the myosin 

filament and in the other direction along the other half. 

The heavy meromyosln has an affinity for a certain active site on 

the actln molecule. This active site is protected by troponin when the 

filaments are not contracting. When a nerve Impulse initiates an action 

potential In the muscle, Ca is released into the spaces between the 

myofibrils. Ca binds to troponin thus uncovering the active site on 

the actln molecule. When the meromyosln head contacts the active site and 

forms the cross-bridge, adenosine triphosphetase, an enzyme, is activated 

and ATP is hydrolyzed to ÂDP causing conformational changes in the mero­

myosln. The result is a relative sliding of the two fibers. Since the 

meromyosln heads in the other half of the myosin strand are oriented in 

the opposite direction, the sliding in both halves causes the muscle to 

contract. 

Meanwhile, the Ca^ has been actively transported away from the 

actln, the troponin again protects the site, and the muscle relaxes. 

Since myosln-actln filaments can only contract 100 Â per movement of the 

meromyosln head, and a muscle on the macroscopic scale can contract over 

30% of its resting length, muscular contraction must be accomplished by 

repeated sliding movements. 

The Interdependence of these chemical and mechanical effects may be 

dlagranmatlcally portrayed as the parallel occurrence of cyclic mechanical 

events and cyclic chemical events. This interpretation is presented in 

Table 13 and Figures 14a and 14b modified from a similar description 
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Table 13. Idealized representation of the cyclic events at the molecular 
level of muscle contraction 

Cycle Chemical Mechanical 
phase event event 

1 to 2 
++ 

Ca in; 
actin-myosin 
cross-bridges form 

Development of 
tension 

2 to 3 ATP hydrolyzed; 
conformational 
changes in cross-
bridge orientation 

Muscle contraction 

3 to 4 Ca out Tension released 

4 to 1 ATP replaced Original length 
restored 

suggested by Katchalsky and Curran (61). The description is somewhat 

idealized in that it may not represent accurately the sequence of chemical-

mechanical events during a contraction. It is offered as a method of 

stepwise analysis of the contraction process. It will be assumed that for 

the single cycle of contraction, heat production is negligible and that 

ATP seirves as the major source of energy substrate. 

The term "reaction" or "chemical potential" will be used inter­

changeably with the internal energy change of reaction. This is valid 

because, when the chemical potential is defined to be - -|^ , it can 

be shown that Z AU^dg^ - E u^dn^. 



Figure 14. A diagrammatic representation of the idealized cyclic nature 
of muscle contraction without afterload in 

(a) the mechanical plane and 

(b) the chemical plane (modified from (61)) 
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A microscopically viewed muscle contraction begins at the resting 

length, resting tension, and at the state of Internal energy corre­

sponding to the resting conditions. These conditions are a suitable 

choice for the reference state and are designated as point 1 on both 

Figures 14a and 14b. 

The release of Ca^ Into the space surrounding the myofibrils. Its 

reaction with troponin, and the Initial Interaction between actln and 

myosin are viewed as a change In the Internal energy from point 1 to point 

2. This event Is considered to occur In parallel with the development of 

tension In the muscle as the actln-myosln cross bridges form. 

The Internal energy changes of the myofibril system for this step are 

described by a simplified first law balance of Equation 24 In which the 

Internal energy of reaction has been substituted for heat of reaction. 

The change In Internal energy from point 1 to point 2, AU^ g. Is due to the 

flow of Ions Into the system which act to change The Internal energy 

change of reaction may be viewed as a change In reaction potential. 

As the ATP In and around the myofibrils Is hydrolyzed, conformational 

changes take place which cause myofibril contraction. As the fibrils 

shorten the tension decreases. The performance of work Is driven by the 

hydrolysis of ATP. 
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t • I] Vk fdA - -W, 
2,3 

^"2.3 - I %k^^k - -^2.3 
As Ca Is released from the system the muscle releases Its tension. 

The reaction potential drops to Its reference value so that of step 1 

to 2 Is equal and opposite to AU^ of step 3 to 4. 

r ? îk'»"°Rk> • s°out dU 
J k 

iU - i £ - Hin, 
k 

To restore the system to Its Initial state, the reaction extent is changed 

by the addition of the energy substrate ATP. The myofibrils return to 

their original positions and the muscle is again at resting length. 

dU «k (Hdm) 
ATP 

A"4.1 - I ""wJ'h • <"^>ATP 

The sum of the internal energy changes over the cycle are zero, as 

required. The remaining effects of the cycle are the performance of work 

by the system on the surroundings exchanged for the consumption of sub­

strate by the system from the surroundings. 
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This model presents a method of analyzing muscle operation as a 

chemical engine that consumes substrate to produce work. It is unrealistic 

in that dissipation and the effects of cycle inefficiencies have not been 

considered. It does demonstrate the utility of the first law energy 

balance in analyzing the functioning of systems, even at the microscopic 

level. A similar approach will be used in a macroscopic muscle analysis 

for the design of muscle experiments. 

b. Force-velocity relationships Several authors have studied the 

mechanics of isometric, concentric, and eccentric contractions and their 

effect on the heat generation of muscle. Hill (55) was one of the first 

to characterize the force-velocity relationships of muscle. He has shown 

that the tension exerted by a frog sartorlus muscle depends on the initial 

muscle length. The tension decreases as the muscle shortens and as the 

speed increases. The maximum isometric tension, P^, occurs when the 

muscle can no longer lift the load. The muscle contracts with the maximum 

velocity, v^, when no load is carried. Hill has also shown that the shape 

of the force-velocity curve is governed by the way in which energy is 

released during shortening. This simple relationship has resulted: 

(P + a)(v + b) - (P + a)b 
o 

P • force of contraction 

V - velocity of shortening 

P_ • isometric force 
o 

a - heat of shortening per resting length, a constant 

b • constant proportional to the maximum velocity of shortening. 
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Wllkle (117) has studied the Isotonic force (P) and velocity (v) in 

elbow flexions and has found the curve for the human muscle to fit the 

Hill equation, after correction for the inertia of the arm. 

The heat effects of working muscle were further studied by Hill (54, 

57, 58), Hill and Howarth (59), Fenn (A3, 44), Wilkie (120), Curtin et al. 

(32), Edwards et al. (36), and others. 

The major result of each of these studies has shown that the activa­

tion of muscle fibers increases heat production. If the contraction Is 

Isometric, extra energy Is liberated as heat. If the contraction is 

Isotonic, energy is consumed to do work, with a large portion also used 

to either increase thermal internal energy or be lost as heat. This is 

in agreement with the changes described by the first law and the inef­

ficiencies of chemical-mechanical energy conversions. 

Although the absolute values of energies measured in the early 

experiments by Hill and Fenn are questionable, the effects they have 

shown are qualitatively correct and have served as noteworthy predecessors 

to later work. Both Hill (54) and Fenn (43, 44) have shown that the 

length of the muscle has a great effect on the energy expenditure. Small 

changes in length produce small changes in energy expenditure. The heat 

production (the actual value measured has been stored thermal energy, 

mCpAT, and not Q) also Increases with greater loads. So heat production, 

which serves as an Indication of energy consumption, was found to be 

proportional both to load and to muscle length, and consequently propor­

tional to work. 
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In studies dealing with energy consumption and work output, the 

evaluation of efficiency arises. Hill (56) has used the results of his 

earlier work to evaluate the mechanical efficiency of frog muscle. He 

has used the characteristic equation for muscle to calculate maximum 

efficiency and the velocity of contraction and load at which this occurs. 

The maximum efficiency was found to be 40.5% at an optimum velocity 0.18 

times the maximum unloaded velocity and the optimum load at 0.475 times 

the Isometric load. The efficiency of the whole contraction Including 

recovery was found to be 20%. His experimental results have verified 

these conclusions; however, the accuracy of the heat measurements is 

questionable. 

Hill and Howarth (59) have studied the effects of stretching muscle 

and have found that the heat production, (mCpAT - Q) • H was often exactly 

equal to the work done on the muscle, W^, over a cycle. This in itself 

Is not surprising. However, they have observed that the net energy, 

H - W^, where is the Integrated work done on the muscle exclusive of 

the stored elastic energy, could drop to large negative values. This 

seems to imply that the energy of the work done on the muscle up to any 
*• 

point in time is greater than what appears as heat. Yet over the cycle, 

the values would balance. These authors have claimed that the only 

explanation can be that the work done on the muscle can act to reverse 

the chemical reactions to return the chemical species to their original 

states. 

Although it is possible to convert work energy to chemical energy 

in electrochemical cells, the mechanism for this transformation in living 
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systems Is unknown. The authors do not provide enough Information to 

completely define the state of the system. Nothing Is said about the 

changes in internal chemical energy or whether the muscle is being pro­

vided with any enthalpy flows that could provide substrates to refuel the 

system. The addition of this type of information would allow a complete 

first law analysis to be performed to determine what effect, if any, the 

work has on the chemical reactions. 

Hill (57) has further studied the effects of load on the heat of 

shortening, the constant "a" found in the force-velocity equation. He has 

found that the heat of shortening is not constant, but a function of load 

and that "a" is only a mechanical parameter of the force-velocity curve. 

The true heat of shortening, a, is related to, but not equal to a. This 

error had arisen because the loads used in his first experiments were 

small, and the dependence of heat of shortening on load was not discern­

ible. However, the experiments that Hill has used to support his theory 

have used the comparison between heat given off during muscular shortening 

versus the heat of Isometric contraction. This comparison is not legiti­

mate because the isometric heat is a poor baseline for isotonic contrac­

tion. The mechanisms of contraction are quite different, as pointed out 

by Stalnsby et (107). 

As the next step. Hill (58) has used these new results to recalculate 

the dependence of muscular efficiency on load. As In previous experiments. 

Hill has used an Isolated frog muscle. A thermopile was used to measure 

the temperature change of the muscle. The heat term, AH, was calculated 

from the temperature changes of the muscle corrected for heat loss. In 
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terms of the first law expression, AH • mCpAT - Q. The work done by the 

muscle was AW. Then efficiency was calculated from (AW/ (AH + AW) x 100. 

If the enthalpy flows are negligible, AH + AW • AM, and the previous 

expression is actually the usual efficiency, AW/AM x 100. 

Hill has concluded that the efficiency of a muscle is independent of 

length, but highly dependent upon the relative load, P/P^. Using the new 

definition of heat of shortening, the maximum efficiency, 43%, was 

obtained at relative loads of about 0.32. The relative velocity at this 

load, v/v^, is also approximately equal to 0.32. These efficiencies when 

applied to exercise conditions can predict the velocities and loads which 

will maximize performance. As shown by Seabury e^ al. (98) and Dlprampero 

e^ (35), the optimum cycling frequency is around 60 rpm. The maximum 

velocity for unloaded pedalling is about 180 rpm. Using Hill's result for 

the relative velocity at maximum efficiency, v/v^ " 0.33, the optimal 

cycling frequency is found to be approximately 60 rpm m (180 rpm) x (0.32). 

These studies have provided very significant and useful results about 

the thermodynamic and mechanical aspects of muscle contraction. It seems 

that much speculation would have been eliminated had a first law balance 

been used in the analyses. The energy balance leaves no doubt about 

accounting of terms and gives straightforward results about the relation­

ship between heat and work. 

Several researchers have studied the chemical changes of muscle as 

they relate to the type of contraction and the heat produced. Wilkle 

(120) measured the heat production, the mCpAT term corrected for heat, and 

related it to the changes in phosphocreatine concentration (PCr) in the 



157 

muscle. His Intent was to determine the ̂  vivo heat of reaction of 

phosphocreatlne breakdown. His results showed a close coupling between 

chemical and thermal events In the muscle. He was also able to quanti­

tatively support the previous results that showed that the energy consump­

tion Increases when physical work Is performed by the muscle. 

Edwards et (36) have measured the concentration changes of PCr, 

ATP, and lactate In Isometrlcally contracted muscle and have related them 

to the thermal energy changes of the muscle. Their data appear to be 

consistent, as will be discussed In the next section. 

Because the measurement of substrate concentration changes In muscle 

by biopsy Is an Invasive technique, Kushmerlck and Paul (67) have per­

formed experiments on frog muscle to relate substrate consumption and 

oxygen consumption. They have found them to be directly related. This 

fact may be useful In determining live, In situ muscle Internal energy 

changes. 

c. Muscle energy sources and their evaluation In an earlier 

example, the consumption of energy by an entire human body was estimated 

from oxygen uptake. If we narrow our viewpoint to a less complicated 

system, the Isolated muscle, the actual changes In concentrations of the 

energy substrates In the muscxe can be used to determine reaction 

velocities. These are measured using needle biopsy techniques as In the 

work done by CurtIn et al. (32) and Edwards et td. (36). The results 

can be evaluated for consistency using a first law balance. 

The Immediate source of energy for muscular contraction Is adenosine 

triphosphate (ATP). Muscles possess a high energy compound that can be 



158 

utilized anaerobically for the rapid generation of ATP. In vertebrate 

muscle, this mechanism operates through phosphocreatine by the following 

reaction: 

PCr + ADP * Creatine + ATP 

The enthalpy of reaction is given by Edwards et (36) as + 3 kcal/mole. 

The PCr is hydrolyzed to ATP which is then an immediate energy source for 

the mechanism of muscular contraction. The enthalpy for the overall reac­

tion is - 7.89 kcal/mole as shown below. 

H (kcal/mole) 
ATP ADP + P^ -11 

. . . PCr + ADP ^ ATP + C + 3 
• reaction; PC C + P^ - 8 (-7.89) 

Anaerobic 1/2 glycosyl unit lactate + 1-1/2 ATP - 6 kcal/mole 

If the muscle is forced to operate in completely anaerobic condi­

tions, a second store of ATP energy becomes available. These energy 

demands are satisfied by glycolysis of glycogen to lactic acid. These 

possible pathways are illustrated in Figure 15. 

The data taken by Edwards et al. (36) are used in the following 

example. 

The system considered was a single leg of a human. 

Subject data: 

Body mass - 75 kg 

Mass of leg segment • 15 kg 

2 
Body surface area * 1.9 m 



Figure 15. The pattern of the utilization of energy sources in 
contracting muscle (from (116)) 
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/S kcAl 
Specific heat of muscle and surrounding tissue, Cp • 0.896 

Experimental procedure: 

Isometric contraction of the quadriceps muscle over a 74-

second time span. 

Variables measured: 

1) The rate of temperature change of the muscle, AT/At " 

0.257'C/min 

2) Changes in muscle substrate concentrations, A - (final -

initial), 

AATP " 4.3 ymoles/g dry muscle 

APCr • -74.4 ymoles/g dry muscle 

ALactate - -24.5 ymoles/g dry muscle 

Assuming that these are the significant reactions occurring in the muscle, 

the sum of the integrated reaction terms, E AH^Ag^, is 

PC': ^V^PCr - <- 'Yd:y'mll:'") ^ 

= + 5.87 X lOT* 

Lactate: AÎi^AÇ^^^^ - (- ^ <" 

- + 1.521 X 10"^ 
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ATP from this source used In muscle contraction: 

_ /24.5 X 10 * moles lactate^ ,1.5 moles ATP, 
''VW • - < i ' ' We lactate > 

» <- " 1°'' ̂  

ATP= 1^, 

- - 0.473 X ICT* 
g 

The sum of these terms is 

10.96 X lOT* kcal 
I " g dry muscle 

Muscle tissue is 77% water by weight. To find the total Integrated 

metabolic heat, 

X (15,000 g wet muscle) - 4.12 kcal 

The temperature increase was measured to be 0.257*C/mln. 

The term 

mCpAT - (15 kg) X X (°-^^'^) x (1.23 mln) 

"4.26 kcal 
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Although the heat transferred from the limb, Q, was not measured, 

a reasonable approximation of this value is possible using the equation 

for conductive heat transfer 

ft 
Q - -

- - k* AC 

where AT is the difference between the muscle temperature and the skin 

temperature. An •• 2.23 cm (103) is the distance from the muscle to the 

skin surface, k Is the thermal conductivity of the tissue involved and 

equals 1.3 x 10 ̂  cal/cm«®C as given by Shltzer (103), and At is the time 

interval of the event. 

It is necessary to calculate the increase in heat transfer due to 

the activity Q - Q(active) - Q(resting). 

The temperature of resting muscle is about 36*C, while the active 

muscle reaches about 36.3*C. Assuming a constant skin temperature of 

30*C, Q is found to be -0.05 kcal. 

Then the overall balance is 

mCpAT + ZAH^Ag^ - Q 

4.26 kcal + (-4.11 kcal) • -0.05 kcal 

The difference between the thermal internal energy gain of the 

muscle and the metabolic energy is 0.15 kcal, which compares favorably 

with the estimated Q. Although the conditions of this experiment have 
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minimized Che effect of neglecting Q, this example Illustrates the 

desirability of measuring all terms of the first law balance, if possible, 

or of providing some means by which they may be estimated. When the pur­

pose of an experiment is the accurate measurement of the internal energy 

changes due to reaction, the consistency of the data, the accuracy of the 

measurements, and the validity of the conclusions is assured only if all 

possible paths of energy flow have been accounted for. These possible 

paths are clearly listed in the first law expression. 

d. In situ studies The majority of the studies described have 

been performed on or applied to iji vitro Isolated muscle. These condi­

tions bring about the question of how data from situ muscle would 

compare to in vitro results. Stainsby (105, 106) has performed oxygen 

consumption measurements on contracting dog skeletal muscle ̂  situ. He 

was able to measure the oxygen difference between the arterial supply and 

the venous return of a working muscle. He has made such measurements for 

isometric, isotonic, and eccentric contractions. As did researchers 

before him, he also has concluded that oxygen uptake Increases with load 

and decreases when work is done on the muscle. His second group of 

experiments (106) have shown that oxygen uptake Increases with load up to 

the Isometric load, and then decreases as the muscle is stretched. How­

ever, in his first study (105), he had plotted oxygen uptake against load 

for isometric and Isotonic contractions. The results suggest that oxygen 

uptake is dependent only upon load and not upon work, which is in contra­

diction with all previous results. 
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The factor that Stalnsby has excluded from his plots Is the effect 

that muscle length has on oxygen consumption. Purely anatomical consider­

ations Indicate that the length of the muscle has a direct effect on the 

Juxtaposition of cross-bridges and,further, electromyographic techniques 

have shown that the oxygen consumption reflects the number of active 

cross-bridges. The results of Aubert and Gilbert (7) and Matsumoto and 

McPhedran (73) indicate a strong dependence of muscle energy consumption 

on length. In Stalnsby's work, although the loads may have been the same 

for each type of contraction, the muscle lengths were not. In general, 

for a given tension, the Isometric length was much shorter than the 

average Isotonic length. Also, the amount of work performed was small, 

with the muscle contracting to only about 5% of its resting length. There­

fore, the results of Stainsby's work (105) are inconclusive. 

2. Approaches to muscle experimentation 

The previous section has illustrated the lack of consistency in many 

experimental studies of muscle behavior and muscle energetics. Two 

approaches will now be presented which are useful in the design of experi­

ments which are thermodynamically and physiologically complete. 

a. The contraction cycle The operation of a muscle may be viewed 

as a cyclic process in which the muscle begins from rest, prepares to 

contract, contracts, releases, and recovers. This approach is similar to 

that discussed earlier for the muscle cross-bridges, however, the consider­

ations here deal with a macroscopic approach over the whole muscle system. 

Although the physical mechanism of contraction may not correspond 

exactly to the steps of the cycle to be discussed, the model is a 
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convenient way In which to view the energy and entropy flows of muscle. 

Since the contraction Is to be considered as a cyclic process, the initial 

and final states of the muscle should be Identical. This concept helps 

identify the energy conversions and energy flows that must be accounted 

for over the cycle in order that the system be returned to its initial 

state. 

1. The muscle system begins at rest. This state Is described by 

Equation 24. The resting conditions will serve as a baseline or reference 

for subsequent calculations. The steady system is isothermal, unstretched, 

and its total entropy production must be zero 

"rest • J ^ ^ 

Entropy: TdS ~ ̂  
dt 

The muscle is assumed to have sufficient energy stores with which to 

supply the contraction energy requirements. 

2. The muscle prepares to contract. Although no work is done by the 

whole muscle, on the microscopic level, the cross-bridges have engaged and 

are developing tension. The metabolism Increases somewhat above resting. 

The muscle temperature may rise slightly as blood flow is constricted by 

the developing tension, but this amount will be neglected. Since the 

blood supplies the muscle's nutrients and removes its wastes, these 

material flows are prevented and the muscle operates as a closed system. 

The entropy production increases as new gradients are established within 

the system and as reactions proceed more rapidly. 
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Energy. 

TdS 

Entropy: ~dt~ ̂  ̂  

3a. The muscle contracts and work Is performed. The muscle tempera­

ture may rise since the heat energy produced due to the inefficiencies of 

energy conversions cannot be immediately convected and/or conducted from 

the system. 

/\ ^^2 3 • • • 
Energy: mC^ ^ - q, , - Wj 

TdS 

Entropy: ~diE~ ^ ̂  

Entropy Is produced as metabolic energy is used to perform work, 

. . ^ *^^2 3 
since Q - AM - mC^ > 0, thus, from Equation 30, 

- Q- AM + AS„ + EJX >0. 
dt K m in 

m 

3b. If the contraction is isometric, no work is done, but a definite 

temperature increase is observed due to the muscle cross-bridge activity. 

The entropy production is likely to increase because of the "internal" 

work performed by the cross-bridges. 

Energy: 

TdS' 
Entropy: —— > 0 

dt 
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4. The muscle releases the load by an eccentric contraction. Work 

Is done on the system If the muscle length extends beyond the resting 

length. In this case, elastic energy may be stored. 

dt; . 

Energy: ^ "dt ^3.4 " ̂3,4 " *4 ^^4 < 

TdS TdS 
Entropy: < -^ 

Entropy production drops because the system is absorbing energy. 

If the muscle is released from tension without an eccentric stretch, 

this step is not Included in the cycle. 

5. The muscle recovers as energy stores are replenished and gradients 

are restored to their initial state. If the muscle has operated anaero-

bically, lactate will diffuse from the muscle into the blood where it will 

be transported to the liver. Stored thermal energy is lost to the sur­

roundings . 

Energy: mC^ , + I 

TdS TdS 
Entropy: 

Entropy production decreases as thermal energy is lost and gradients are 

restored. 

6. The muscle returns to rest and the cycle is complete 
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Because steps 1} through 6) describe a cycle, certain relationships 

must exist between the terms. These may serve as a test of data con­

sistency and as a guide to distinguishing the paths of energy flows and 

the character of energy transformations. 

All of the stored thermal, stored elastic, and metabolic energies 

must eventually appear either as heat or work. If the work done by the 

muscle and the work done on the muscle are of equal magnitude, only heat 

effects should be observed. 

The flows during the recovery phase include the flow of oxygen and 

glucose to the muscle and the flow of metabolic wastes from the muscle. 

Although these represent relatively negligible quantities as enthalpy 

flows, they represent a means of determining internal chemical energy 

transformations. For example, since the reactions which provide energy 

for muscle contraction are oxidation reactions, oxygen consumption is a 

measure of this reaction rate. If the muscle is forced to operate 

anaerobically, the removal of lactate from the muscle indicates the 

extent to which glycogen and glucose, the primary energy substrates in 

muscle, are broken down anaerobically. 

Although the evaluation of entropy has been qualitative, it appears 

as if the entropy production rate increases from the resting value as the 

muscle contracts and decreases as the muscle relaxes and recovers. These 

changes in the entropy production rate represent the local fluctuations 

which are regulated by homeostatic control. 

Suggestions for the design and use of a muscle-testing chamber in 

which the phases of the cycle are physically realized are discussed below. 
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The suggested apparatus in which the muscle system is contained is 

simply a jacketed reactor. The muscle is bathed in a well-stirred nutri­

tive solution containing known concentrations of oxygen and an energy 

substrate such as glucose. This solution is analyzed before and after 

experimentation to determine the uptake of oxygen and glucose and the 

production of carbon dioxide and lactate. The operating temperature 

should be held within a physiological range. The temperature of the 

muscle may be recorded with a thermopile as described by Wllkle (120). 

The muscle is linked with an ergometer with which the work done by or on 

the muscle may be recorded. The length changes of the muscle should be 

recorded. Such an apparatus is depicted in Figure 16. 

The physical measurements and the thermodynamic quantities which they 

represented are listed as follows: the thermopile reading represents the 

thermal energy storage of the muscle, mC^ dT/dt; the oxygen consumption 

of the muscle from the solution is a measure of the energy consumption of 

the muscle, AM; the glucose uptake represents an enthalpy flow into the 

muscle which should account for the replacement of depleted chemical 

energy stores; the load Imposed on the muscle represents the isometric 

tension if the muscle does not shorten or the work term, W, If the muscle 

shortens (work done by the muscle), if the muscle lengthens (work done on 

the muscle), or the recovery of stored elastic energy; the temperature 

change of the Jacket fluid and the temperature change of the nutritive 

solution are used to calculate the heat loss from the system so that the 

heat galn<îd by the Jacket fluid and by the solution are equal to'Q . . 



Figure 16. An apparatus for the calorlmetrlc study of muscle mechanlco-
chemlcal relationships 
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This stepwise, cyclic approach to muscle activity in which an energy 

balance is written for each phase of muscle contraction assumes that all 

of the energy flows and transformations described for each phase are 

accomplished before the next phase begins. This is a simplification, how­

ever, the sequence of steps describes all possible forms of energy con­

sumption and dissipation as a guide to the design of experiments and the 

analysis of data. By making the proper choice of experimental conditions 

and measuring the appropriate thermodynamic variables, almost all macro­

scopic aspects of muscle contraction may be investigated. 

b. Oxygen consumption as a function of state In an attempt to 

describe the oxygen consumption, which is proportional to the reaction 

velocity, of the muscle system, is written as a function of state, 
2 

V- - V (S,,P,PV) such that 
2 "2 

dV^ 
9A 

(1-1*) + 

3V, 

3P 
(57) 

where P - resting muscle tension 

" resting muscle length 

P • muscle tension 

SL = muscle length 

n » efficiency of transforming chemical to mechanical energy. 

The term dV^ represents changes above the reference oxygen consump­

tion at the chosen and P*. From the research of Kushmerick and Paul 

(67), Stainsby (106) and others, it is known that muscle metabolism, 

or the overall reaction velocity of the muscle system, is proportional to 
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oxygen uptake. When work effects are accounted for, heat production Is 

also a direct measure of metabolic energy. Therefore, In the discussion 

to follow, heat production, oxygen uptake, and metabolism will be con­

sidered equivalent. 

In work done by Aubert and Gilbert (7), the reaction velocity 

measured proportional to heat production was shown to be 40% greater at 

lengths shorter than resting relative to lengths greater than resting for 

the same tension. This trend Is qualitatively depicted In Figure 17a. 

In the ̂  vivo muscle studies performed by Stalnsby (105) tension 

effects on oxygen uptake were Investigated In conditions of approximately 

constant muscle length. A definite trend towards an Increasing reaction 

velocity with Increasing tension was demonstrated. 

These length and tension dependences suggest a set of experiments In 

which oxygen uptake or heat production Is measured as a function of 

length for several choices of constant tension. Length variation should 

be held to within physiologically significant lengths — from 0.7 to 1.2 

times the resting length. Such experiments would result In a family of 

curves as depicted In Figure 17b. 

The maximal static load that a muscle can hold Is related to length 

as shown In Figure 17c. This curve represents the limiting case of 

length tension Interdependence and corresponds to the uppermost curve of 

Figure 17b. The chemical reaction rate at any particular point on the 

length-tension curve can be located on the curve of Figure 17b. 

The conditions described above are static. They now must be related 

to dynamic condition of concentric muscle contraction. 



Figure 17. The qualitative relationships between muscle energy consump­
tion (oxygen uptake), muscle length, and muscle load 

a) Oxygen uptake as a function of relative muscle length 
at a constant load 

b) Oxygen uptake as a function of relative muscle length 
for several values of constant load 

c) The maximal static load as a function of relative 
muscle length 
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Many investigators (36,57,58,66) have endeavored to discriminate 

between the heat effects of various types and stages of muscle contraction. 

In general, their intent has been to find the source or sources of the 

energy for the various energy-consuming phenomena of contraction. Heat 

effects have usually been divided in the following manner: 

E - M + W + ax (58) 

where E is the total energy appearing during muscular activity, M is the 

activation or maintenance heat, W is the work performed by the shortening 

muscle, a is the heat of shortening, and x is the distance shortened. 

The majority of studies done in muscle energetics have measured "heat 

production," h, as the rate of temperature change of the muscle corrected 

for heat lost to the surroundings. Written in terms of the first law 

expression for a system closed to flows, 

AU = mCpAT + AM - Q + (-W) (59) 

and heat production, h =« [mC^AT + (-Q)] is the experimentally measured 

variable. Then metabolism, which is proportional to reaction rate, is 

[—h + (-W)] " AM 

or when no work is done, 

-h " AM 

As shown, metabolism is calculated by difference or by direct measurement. 

Researchers have also measured the changes in substrate concentrations to 

determine AM (32, 120). 
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The Interpretation of the oxygen consumption model of Equation 57 and 

its application to the measurements obtained In muscle contraction experi­

ments will be discussed in relation 1) to the first law energy balance, 

2) to the heat terms described in muscle energetics studies, and 3) to 

phenomenological expressions for reaction rates for muscle obtained by 

Bomhorst and Minardi (14,15). 

Caplan (24) has suggested the following first law Interpretation of 

Equation 58. First, for an isometrically contracting muscle 

*o " *0 

where heat in is positive. 

When work is performed, 

Û - Q + PV 

where P " tension, V • velocity. 

The values for the rates of internal energy must actually represent 

changes above a reference and PV • -W. The Integrated expression then 

becomes 

AU - Q - W 

A quantity a is introduced such that 

Ot - (Q - Q^)/V 

Upon combination and rearrangement Caplan obtains 

Û - Qq + PV + aV 
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and after Integration, 

AU • - W - ooc (60) 

CapIan suggests that must be the maintenance heat and coc the 

shortening heat. The quantity Caplan labels is usually experimentally 

measured as the heat production, h - mC AT + (-Q ) for an isometric 
o p o o 

contraction. Then x becomes the extra heat production above the iso­

metric level present during a contraction (referred to as the Fenn effect), 

h - mCpAT + (-Q). 

The expression for the change in chemical reaction rate or metabolism 

becomes 

AM " -h - W - (~h) 
o 

AM - -mC AT + Q - W - [(-mC AT + Q)] (61a) 
p o o  p  

For convenience and clarity energy losses are equated to a positive 

energy production so that the loss of internal energy is equal to the 

production (loss) of heat (thermal) and work energy symbolically repre­

sented as follows : 

-h = +h' , -W • W , -h - +h', 
o o 

so that 

AU - AM - h* + W + h' (61b) 
o 

Equations 61a and 61b relate experimentally measured quantities to the 

first law and to the various heat effects described in Equation 60. 
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The choice of the Isometric values as a baseline for calculating added 

heat effects due to shortening has been questioned (107). Experiments to 

be suggested that will utilize the oxygen uptake expression of Fquation 57 

as a model will resolve this question. 

Equation 57 is rewritten as 

, • • -IT '«-V + V c-V 

+ (62) 

where the resting oxygen consumption, length, and tension are chosen as 

references. The first two terms of the right hand side of the expression 

are static terms. They are evaluated at a point of a curve rather than 

along its path. The third term represents the effect of the dynamic 

contribution or work on muscle metabolism. 

The dynamic relationship between tension and velocity is represented 

by the classic Hill force-velocity curve (55) shown in Figure 18. The 

curve is described by the equation 

1 _]L 
r Yn_ 

P a . V 
O o p- + y-

o m 

(63) 

where P^ is the isometric tension, the intercept on the ordinate, is 

the maximum velocity of contraction, the intercept on the abscissa, and 

a and b are mechanical constants such that b/V - a/P . 
1ft o 



Figure 18. The maximal static load as a function of relative muscle 
velocity modified from (6) 
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First, parallels are drawn between Equations 58, 61b, and 62 rewritten 

on a rate basis below: 

AM - M + W + CDC 

AM - h* + W' + h* 
o 

Pd«(t) + fiai Pdt(t) 
dt t T) J dt • -ST «-V + -5r «'-V + 

The original term of Equation 62, ̂  P ̂  , has been rewritten as the last 

two terms of the last expression. Correspondences between the thermo­

dynamic description of the first two expressions and the physical-

mechanical description in the third expression are suggested below: 

. . '"«2 \ H - h; - - '•R> 

W - P(t) d&(t)/dt (64b) 

^ P(t) (64c) 

Equation 64b is given by definition. Equation 64a is reasonable 

because for an isometric contraction P dA(t)/dt • 0, leaving AV_ • 
°2 

OVQ /3&)(&-&^) + OVQ /3P)(P-Pg) and AM - h^ • M. The remaining term 

results in Equation 64c and says that the heat of shortening is an 

"Inefficiency" term. 
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Once the accuracy of experimental energy measurements Is assured, 

the following procedure Is suggested to test for the existence of 

maintenance heat that Is distinct from heat due to mechanlcochemlcal 

energy conversion Inefficiencies during contraction. The question of 

whether Isometric heat and maintenance heat during contraction are one and 

the same may also be resolved. 

Maintenance heat. If It exists, must be due to the Inefficiencies of 

energy consuming processes of maintaining the physical characteristics of 

the system In a state other than resting. This energy should be In excess 

of work energy and heat loss due to contraction Inefficiencies. 

A series of static experiments such as those described earlier. In 

which the oxygen uptake Is measured as a function of muscle length with 

load as a parameter, are performed for isometric contractions. These 

data are then compared to oxygen uptake or heat production values in con­

centric contraction experiments performed in the same range of loads and 

muscle lengths. The Instantaneous length of the muscle must be measured 

through each contraction. Comparisons will determine a) whether 

maintenance heats exist and, if they do, b) whether isometric contrac­

tions are related to maintenance heat as described by Equations 62a and 

64a. 

To test these hypotheses, dynamic muscle contraction must first be 

considered to be a set of infinitesimal isometric contractions summed 

to produce an actual concentric muscle shortening. This implies that 

at some physiological level, the mechanism of contraction is the same 

whether the contraction is isometric or concentric. This is most likely 
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to be anatomically true at the cross-bridge level. 

The data for oxygen consumption In a concentric contraction, the 

P-V relationship, and the length vs. time relationship are necessary data. 

As long as both tension and length are known for every Instant of time 

during the contraction, an Instantaneous reading of reaction rate can be 

obtained from data of Figure 17b. The entire P-V curve is then repre­

sented by differential changes in tension and length. The reaction rate 

changes predicted by the integration of these point values are then com­

pared to the work energy, PdH/dt. In summary, the same effects that cause 

reaction rate changes during isometric contractions, namely length and 

tension, are assumed to act instantaneously during a concentric muscle 

reaction. If the maintenance energy as predicted by summation of the 

length-tension dependent reaction rates exactly equals the experimental 

value of reaction rate during a "working" contraction and/or, equlvalently, 

the calculated value of ̂  Pd&(t)/dt, the maintenance effect is either 

small or nonexistent. If the experimental value of reaction rate is 

greater than the integrated data, since ̂  P d&/dt can be calculated 

expllclty (n is known (58)), this suggests that the maintenance heat does 

exist and is evaluated by difference. Then, the accuracy of the oxygen 

uptake model as a predictor for evaluating maintenance heat can be deter­

mined, the validity of using an isometric baseline established, and a 

possible physiological explanation for the maintenance heat considered. 

A quantitative discussion is not possible at this time since required 

data are not presently available. Furthermore, the questions and dis­

crepancies in existing muscle energetics literature often seem to be due 
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to erroneous definition and use of thermodynamic terminology. It is sug­

gested that, when dealing with potentially small differences in energies, 

accurate measurement of all possible heat losses should be taken. The 

heat loss, -Q, is the primary candidate for sources of error since, of 

all papers reviewed in this work, not one had measured it directly. The 

implementation of adiabatic test chambers with accurate temperature 

measurement of both the muscle and its immediate surroundings within the 

system as described earlier is suggested. This, along with more accurate 

accounting of the enthalpy flows of energy substrates and waste products 

entering and leaving the system, as per the first law expression, and a 

precise definition of the boundaries of the system to be considered, will 

aid in distinguishing between the various energy flows of muscle contrac­

tion. 

3. Nonequilibrium thermodynamics of muscle 

Muscle behavior has recently been a major focus of nonequilibrium 

thermodynamics. This introduces an opportunity to study a system which 

has been analyzed in terms of both classical and nonequilibrium thermo­

dynamics . 

CapIan (23) has used irreversible thermodynamics to model the muscle 

as a linearly coupled energy converter regulated by feedback. The output 

is regulated so that its force and flow characteristics are identical to 

the Hill force-velocity expression. The input flow is the chemical 

reaction velocity and the input force is the chemical affinity. Caplan 

has defined the degree of coupling between the input and the output and 
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used It to determine the maximum efficiency and maximum output (see 

Equations 34, 35, and 36). 

CapIan was able to show that the force-flux relationship fit Hill's 

equation exactly with the proper choice of the regulator function. How­

ever, Wllkle and Woledge (121) have shown that,since the phenomenologlcal 

coefficients must be constants, the relation between the rates and the 

affinities of the driving reactions must vary well beyond experimentally 

measured values and that the regulator Is therefore required to act as a 

dlsslpator to reduce the energy supplied to the converter to an acceptable 

level. They have concluded that the muscle does not operate as the energy 

converter described by CapIan. 

Bomhorst and Minardi (14, 15) have proposed a modified phenomeno­

loglcal theory for contracting muscle based on Irreversible thermodynamics 

and the sliding filament theory. The theory has been applied to the sub-

units of the muscle, the cross-bridges. The transport coefficients of the 

phenomenologlcal equations have been shown to be functions of the number 

of activated cross-bridges. Several important but reasonable assumptions 

have been made in their derivation: 1) the cross-bridges are linear 

energy converters, 2) the number of active cross-bridges is a function 

of velocity of contraction and load (tension), 3) the chemical affinity, 

the driving force for contraction, is constant for each cross-bridge, 

and 4) the Hill force-velocity curve is valid for any muscle length. 

They then have derived reaction velocity expressions at a given length 

and, in the second paper, have accounted for generalized length varia­

tions. The results of this second paper seem to be directly related to 

the oxygen uptake model proposed in Equation 62. In view of this 
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apparent relationship, the two expressions will be compared. 

Bornhorst and Minardi have written reaction velocity, v, as a func­

tion of intrinsic load, P^, contraction velocity, V, and the number of 

active cross-bridges, n, which are all functions of muscle length, I. 

These dependences are shown in Equation 27 of reference 15, rewritten 

below as Equation 65a 

The "o" subscripts indicate isometric values, the "m" subscripts are 

values during unloaded contraction, and the "Jt" superscripts indicate a 

function of length, while the superscripts represent the variable 

0 0 0 
evaluated at the resting length Furthermore n , v & P^ are functions 

0 
of velocity as well as length, n is a function only of length since the 

° ^o ^o ^o *o 
subscript indicates an Isometric contraction, and n , n , v , v , P , 

Q o m o m o 
o ® 

and are all constants. Substituting expressions for these various 

constants and functions given in their paper. Equation 65a becomes 

T- + V 1 + 

Si SL 
P °v ° 
o m 

Av 
b+V 

(65b) 

where F(&) is a function of length that allows Hill's force-velocity 

relationship to be applied at the cross-bridge level. To simplify, if 
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1 + 

I 
P V 
o m 

Av 

- K, a constant, then 

HP I  Z 
i- . -I- + [(. °/P,°) IFŴ V 
o _ o 

(65c) 

The oxygen consumption model of Equation 62 has also been written as a 

function of load, length, and velocity. The maximum Isometric tension Is 

achieved at a length very close to resting. Therefore, the oxygen consump­

tion for an Isometric contraction is 

2o 

3v 
3P 

o I 

where now dV is written as v_ . Assuming that at the cross-bridge level 
°2 °2 

(or, alternately, that the relationship between v & P is 

becomes 

9v 
I  

3P 

A *o 
linear) the ratio of /v^ 

2o 

3v 
3& 

1 
i  f3v 

,  lap 

z  

^ +1 
a & p n 
T. 

Po 
fivl 

O 
T} 

3P, 
r 
O 

PV 

I 3v 
3P 

(66a) 

where S,  and ? represent the distance from resting, ( l - l -g)  and (P-P^), 

respectively. 
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Simplifying, 

o o 

'2o 

I p 
2-v (66b) 

Substituting the Hill force-velocity relationship, in which length 

changes have been accounted for, into the term P/P^^ 

a + ^ . F(A) ® 

2o 

~r 
p ° 
o 

& 
V -V 
m 
b+V 

(67) 

When Equations 67 and 65b are compared. 

8 ^ 
—j— is represented by ^ 

p° 

°s 

which is 

a reasonable first order approximation of the dependence of tension on 

length. 

Comparing the second groups of terms; 

V b+V 
P ° 
o "llî 

F(t) V ̂  (V/ - V) 

P " 
o 

which implies, under the assumptions described, that 
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4# (V - V) • a constant, 
m 

The reaction velocity, v, contained on the right side of the equality 

represents the oxygen consumption, dV^ , which is a measure of the 

metabolic energy of the system. If this term is rewritten so that the 

partial derivative of tension appears in the numerator, the result is a 

ratio of efficiencies, 

i <v^o . V, - i 

" ° " 8(d»„ ) 
"2 

which the formulation implies would be constant. 

The analysis of the energy consumption of the muscle as a function 

of state appears to be consistent with the phenomenological relationship 

offered by Bomhorst and Minardi. The proposed model (Equation 62) sug­

gests physiological interpretations of the phenomenological expressions 

which may be evaluated by experimentation to give an improved understand­

ing of the underlying phenomena of energy consumption in muscle contrac­

tion. 

4. Work classification 

At the level of the isolated muscle, the work performed by the system 

is a relatively simple determination. Certainly in the studies and experi­

mental techniques described in earlier sections, the calculation of work 

done has been the most facile portion of the analyses. As the system 
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increases in complexity, the investigation becomes somewhat more compli­

cated and the calculation of work is no longer a clear, straightforward 

procedure. 

The classification of work types when the body is chosen as the sys­

tem can be facilitated through the use of mechanics. Three general 

divisions become apparent and are summarized with examples in Table 14. 

These categories are not intended to be absolute and often a particu­

lar form of work will fall into more than one category. They are a 

convenient guide for the types of work to be considered here. 

a. Exercise without work Running or walking at a constant 

velocity on a nondeformable surface with the analysis performed for whole 

body as the system is described by Equation 24. Since the systems to be 

discussed are isochoric and isobaric, specific *"thalpy will be used in 

place of specific internal energy and Cp in place of 8^. 

+ A* - Q + : ; *ij"ij*j 

Depending upon the severity of the exercise, the system temperature may 

or may not rise, so mCp dT/dt 2 0» The energy consumption, AM, measured 

from oxygen uptake and oxygen debt, is a negative quantity. The mass of 

the body will not change during short bouts of exercise, but in running 

over extended periods of time, such as in marathons, weight loss may be 

significant. The enthalpy flow terms due to respiration are usually 

negligible. The heat exchange term is negative and is represented by 

convectlve, radiative, and evaporative heat transfer. 



Table 16. The classification of physiological work forms 

Work In a gravitational field 

System Body Legs 

Work of propulsion 

Body Legs 

Work against drag 

Body 

Work 
examples 

Weight lifting Lifting the torso 
in a running or 
walking stride 

Throwing a 
projectile 

Accelerating 
the torso in 
a stride 

Swimming; 

Running 
into a 
wind 

Cycling 
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Costlll (30) has presented data on changes in the physiological state 

of a male human during xrunning on a treadmill. Data for oxygen uptake, 

rectal temperature changes, and weight loss are given. Integrated values 

for the duration of the 101 minute run are 

flOl ^ . 
I (H g)dt - -3.2 kcal 

rlOl ^ I " +123.4 kcal 

flOl 
I (E AHjy^dÇj^/dt)dt - -1664.1 kcal 

Heat loss data are not given. Use of the first law balance indicates that 

the heat loss value should be 

Q - HAm + mCpAT - Z 

Q - -3.2 kcal + 123.4 kcal - 1664.1 kcal 

• - 1550 kcal. 

To justify this, if the body weight loss, Am - 3 kg, is due to sweating, 

the total heat loss from the evaporation of this amount of sweat is 

(heat of vaporization at the skin temperature, AH^(30*C) - - 580 kcal/kg 

water) 

Qg " (3 kg) X (- 580 kcal/kg) 

• - 1740 kcal. 
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Any unevaporated sweat does not contribute to this heat loss and, 

while all of the weight loss may not be due to sweating, the value pre­

dicted and the value calculated are in close agreement. 

For the convectlve heat loss, Shitzer (103) has given a formula for 

the overall heat transfer coefficient, h^, as a function of air velocity. 

h^ • 7.5 X v^'*^ (68) 

2 
where h^ is in the units of kcal/m «"C-hr and the velocity is in meters/ 

second. If the subject is running in still air, his running velocity 

becomes the relative air speed. With v - 5 m/s, the body surface area -

2 2 
1.9 m , h^ " 22 kcal/m «"C-hr, the skin temperature, - 30"C, and the 

air temperature, - 25"C, 

"c • 

• (22) X (1.9) X (25 - 30) x (101 min) x (hr/60 min) 

- - 350 kcal. 

The sum of convectlve heat transfer and the maximum evaporative heat loss, 

Qg + Qg, is equal to -2090 kcal. This is in reasonable agreement with 

the first law value for heat loss calculated by difference. 

Similar data have been given by Pugh e^ al. (85) for athletes 

participating in a marathon race (42 km). Although the conditions are 

not as controlled as they are in treadmill experiments, the energy data 

provided balance remarkably well. 
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The following are data and the Integrated values over the entire 

158 minute run: 

Subject: 

Initial weight - 74.4 kg 

2 
DuBois surface area - 1.9 m 

Height • 178 cm 

Average running speed - 16 km/hr 

Weight loss " 5.23 kg 

Rectal temperature change • 2'C 

Calculated values: 

HAm - - 9.0 kcal 

inCpAT - 247 kcal 

AM " - 3000 kcal 

Q - - 2600 kcal + 275 kcal (the second number is the 

authors' estimate of radiation heat transfer) 

E negligible 

HAm + mCpAT + AM • Q 

The balance yields 

- 2762 kcal Z - 2325 kcal. 

The 16% difference in these values may be a result of the inability to 

account for the total heat loss from the body and low value for the heat 

of vaporisation of sweat used by the authors (see 104). However, the 

first law expression has again provided a good comparison between 
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physiological data and the thermodynamic quantities they represent and has 

reasonably satisfied the overall balancing of these data. 

b. Leg segment analysis To illustrate the analysis of a situa­

tion where work is performed, the subsystem to be considered Is the leg 

segment. The active muscles during running are largely the leg muscles 

and an analysis of the work performed by the leg subsystem on the torso 

has been done for running and walking on a per stride basis (26, 27). 

In the first half-stride, one leg works to change the potential and 

kinetic energies of the torso. The torso is lifted and accelerated. 

During the second half-stride, the second leg prepares to duplicate the 

actions of the first. The original working leg becomes passive and acts 

as a brake, absorbing and/or dissipating the energy transmitted to it by 

the falling and decelerating torso. The energy may be taken up as 

Internal thermal energy, partially absorbed in the stretching of muscle 

fibers as elastic energy, or dissipated to the surroundings. The energy 

balances to describe the activity of the legs are taken from Equation 24 

mCp dT/dt + Z dS^/dt - I "ij^ij^j + Q " W 

for the first half-stride and 

di/dt + f, TT + Î iiisk + Q 

for the second half-stride. 
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The values calculated by Cavagna £t (27) for the work done to 

raise and accelerate the body must be slightly modified to account for 

the difference between total body mass used In the calculations done by 

the authors, and torso weight, which is the actual mass supported by the 

legs. The torso is taken to have 60% of the total body mass. Then the 

lifting and accelerating work rates are 18 cal/kg body mass«min and 

30 cal/kg body mass«min, respectively. The legs of a 75 kg man running 

for 158 minutes perform about 570 kcal of work. During heavy exercise 

such as running, the legs receive 87% of the total blood flow (48). 

Consequently, a reasonable estimate of the energy consumption of the 

leg system would be to assume that the legs also consume 87% of the total 

body oxygen uptake. Using oxygen consumption data from Pugh et al. (85) 

as an estimate, the energy consumption of the leg segment is about 2600 

kcal for the 158 minute period. 

To account for the other terms In the first law balance, several 

estimates are required. The temperature rise of working muscle follows 

rectal temperature rise, but the absolute value of the muscle temperature 

is 1-2"C lower (94). Therefore, the rectal temperature data of Pugh 

et al. (85) is utilized to find mCpAT • 53 kcal. The average specific 

heat of the leg system is Cp * 0.84 cal/g'*C, calculated by using the 

weighted average of specific heats of muscle, bone, blood, and skin from 

Shitzer (103). 

The convectlve heat transfer due to the increased blood flow to and 

from the deep tissue of the legs is not significant because of the 

negligible change in blood temperature between the inlet and outlet of 
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the leg system. The blood vessels at the skin surface, however, are 

significant as heat exchangers as they raise the temperature of the skin 

to facilitate heat loss. The external heat transfer can be estimated 

from the expression for convective heat transfer from (12), 

system may be derived from values given for the whole body by comparing 

the Nusselt number for the body as a cylinder to the Nusslet number for 

the legs as cylinders. The results of this calculation predict that the 

heat loss from the legs will be 45% of the total heat loss. The value 

obtained in this manner is similar to the 40% derived from merely taking 

a ratio of surface areas. The heat loss from the legs is then found to 

be approximately 1425 kcal. 

The total integrated balance now yields 

which is within reasonable agreement considering the approximations made 

and the various sources of data. This example shows that the work per­

formed is actually a very small portion of the energy consumption and 

energy transformation during exercise. The overall efficiency of the 

working legs, neglecting elastic energy storage, is approximately 22%. 

h^A(Tg - Tg^p)dt. The heat transfer coefficient for the leg 

mCpAT + I AH^AÇj^ - Q - W 

53 kcal - 2600 kcal " - 1425 kcal - 570 kcal 

- 2550 kcal • - 2000 kcal 
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This Is In good agreement with typical exercise efficiency values found 

In the exercise physiology literature. 

It is worthwhile to further consider several famllar forms of 

exercise and to evaluate their contribution to Individual terms of the 

first law balance. 

c. Work against drag Cavagna et al. (25) have studied the 

mechanics of sprinting. Their data allow the calculation of the work 

done to overcome air resistance and to change the kinetic energy of the 

body. Sprinting is one of the few forms of exercise where the transla-

tional kinetic energy term Is present In the first law balance. 

In still air, the drag Increases as the square of the sprinting 

velocity, v, and, therefore, the power output is proportional to v . The 

situation changes somewhat when running into a wind. This will be 

Illustrated subsequently. 

The drag is evaluated from the expression from (108), 

D - Y CgApv^ (69) 

where D - drag in Newtons 

Cp - drag coefficient, a function of body shape and velocity 

(here - 0.8) 

A • projected body surface area 

p - density of air. 

The total work done against drag in accelerating from rest to a velocity 

of 9.4 m/s was calculated by Cavagna et «1. (25) to be 0.12 kcal. The 
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kinetic energy change of the 68 kg subject was calculated to be 0.454 kcal. 

The changes are small, but they occur over a time Interval of only 4.5 

seconds, so that the Increase in power output is 0.15 hp. 

An important point to consider in evaluating the energy consumption 

in short, transient exercises such as sprinting is that a large portion of 

the energy sources may be anaerobic. Therefore, the AM measured from 

oxygen uptake over the work period alone may be too small. Âstrand and 

Rodahl (6) point out that, in work times of up to two minutes, the anaero­

bic energy Is more Important than the aerobic. For durations of 10 

seconds or less, the anaerobic contribution can amount to 85% of the 

total energy consumption. The data of Fenn (45) and Sargent (95) support 

this. Fenn has calculated the proportion of energy used in producing 

"useful work" (potential energy changes, velocity changes, acceleration 

and deceleration of limbs) and has found it to be almost 23% of the total 

energy requirement. The total energy is 40% anaerobic, consumed largely 

for the "useful work" and its inefficiencies, with the remaining aerobic 

60% used in the recovery period. Sargent has shown that the energy con­

sumption in a series of 120 yard sprints and the subsequent recovery 

periods could not possibly be supplied by aerobic sources alone. There­

fore, it is Important to measure oxygen consumption for any type of 

exercise, but especially for the short, intense activity such as the 

sprinting described above, from initiation of the exercise until recovery 

is complete. 

d. Overcoming wind resistance The calculation of the work to 

overcome drag is similar to that in the previous section. In the case 



202 

of an opposing wind, drag Is calculated from 

D - Y CpApu^ 

where u Is now the relative velocity between the wind and the running 

athlete. 

The data of Pugh (84) can be used to calculate the work to overcome 

drag and to calculate the expected heat loss with the overall energy 

balance. 

The wind velocity for the chosen example is 18.5 m/s. The drag 

coefficient used by Pugh is - 1.04 and the projected surface area of 

2 
the runner is 0.5 m . For a running velocity of v - 4.5 m/s, the rate 

of doing work is found to be 

• 0.147 kcal/s m 0.82 hp. 

The corresponding change In oxygen uptake was measured to be 5.0 

liters/min. Then the energy consumption AM is 

• 1 2 
W - Y CjjPu Av (70) 

-4.82 kcal 

• - 0.40 kcal/s 
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If both the thermal Internal energy change and the flow terms are 

neglected, the Q determined by difference is 

Q " W  +  A M "  -  0 . 2 5  k c a l / s  

Davies (33) has performed similar experiments and has determined 

that the energy cost of overcoming air resistance is 7.8% of the total 

energy consumption required in sprinting, 4% for middle distance running, 

and 2% in marathons. However, his calculations of the work used drag as 

3 
proportional to (wind velocity) rather than the correct (relative wind 

2 
velocity) x (running velocity). It is important to distinguish the two 

velocities ueed in drag power calculations. The velocity used to calcu­

late the drag force depends on the velocity of the object relative to 

the fluid in which it moves. The velocity used to calculate the power, 

W - F ' V, is the velocity of the object relative to fixed coordinates. 

If the sprinter is considered as the system, and the starting line 

2 
as the coordinate system origin, the drag force is proportional to u , 

where u is the relative velocity between the runner and the wind, so that 

u " V - v 

where v is the running velocity and v^ is the wind velocity. The drag 

force is then 

D - Y CjjpAu^ 

and the power becomes 

W • D*v 
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When running into the wind, the runner must exert a force equal and 

opposite to the drag and therefore performs work. 

When running with the assistance of the wind, work may be done on 

the system. This occurs when the relative velocity, u • v - v^, is nega­

tive; i.e. the wind velocity is greater than and in the same direction as 

the running velocity. Since the value of u will be squared in the drag 

calculation and since the value for work must be negative, this situation 

requires that a new proportionality constant, c*, be defined that is nega­

tive when u is negative. This type of modified or "reverse" drag coeffi­

cient has been discussed by Davies (33). 

When the wind velocity and the running velocity are in the same 

direction but v > v^, the runner has effectively "outrun" any wind 

assistance and the drag coefficient for running in still air at a velocity 

of u is used to calculate drag. 

Another example of work against drag is the work done by a cyclist. 

The mechanics and energetics of cycling have been well studied by 

Diprampero et al. (35). Their definition of work has been for the man-

cycle system. The analysis discussed here will be for the man alone. 

Cycling requires the performance of physical work. Each leg of the 

cyclist must apply a force on the pedals to push them through a half-

rotation, thereby satisfying the classical definition of work. The magni­

tude of the force required to achieve a particular cycling velocity is a 

function of several variable, viz. a) the frictional resistance in the 

pedals, the chain, and the gears, b) the frictional or rolling resistance 

of the tires on the cycling surface, c) the incline of the cycling 



205 

surface, and d) the wind resistance. 

If the mechanical friction In the moving parts of the bicycle Is 

neglected, the total resistance to forward motion, Is expressed 

by Dlprampero et (35) Is 

«TOT -

with - rolling resistance (Includes the effects of surface 

Incline) 

1 *2 *2 
D • drag • px • kx , where k is a constant and x 

represents ground speed. 

The equation for power has then been written as 

w - R^; (72) 

and the work done Is 

|w"j*TOT*dt" 

If the analysis Is performed on the rider, however, the use of x, 

the ground speed. Is not entirely correct. If d Is the distance through 

which the pedals move In each half-rotation, this distance Is related to 

the distance x that the bicycle covers through the gear ratio, f, so that 

d <• fx. The distance x Is appropriate In determining the work done to 

overcome wind drag, but the pedal rotation distance, d, should be used 
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to calculate the work performed against rolling resistance. 

Therefore, the modified equations for power and work become 

W - Rg,d + Dx (73a) 

- (fR^ + D)x 

and W - (fR^ + kx^)x (73b) 

Dlprampero and his co-workers have measured the rolling resistance 

and the constant k as 

\ + '•» =1° 9>'' 

where 6 • the angle of the Incline of the surface 

P - the body mass In kg 

k " 0.19 N/m^ • s^ 

The rolling resistance Is specifically calculated for the conditions of 

the experiment and Is dependent upon such variables as the Inflation 

pressure of the tires and the posture of the cyclist. 

e. Projectiles and propulsion In the case of throwing projec­

tiles, the analysis Is similar to the leg segment problem In which the 

legs accelerated the torso In every stride. Work Is done by the body In 

accelerating a mass, m, through a distance, x. If the Initial work of 

lifting the object to the "launching" position Is neglected, work Is 

calculated from 
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r r W  • Fdx " mvdv 
/  T P  ' V  

where v is the projected object's velocity, v • dx/dt. 

If the applied force, F, is considered to be constant throughout the 

distance, x, then 

2 
m, 2 mv 

For force-mass conversion constant, g^, is included to maintain consistent 

units. The force applied for a distance (x - x^) imparts a kinetic energy 

to the projectile and the work is measured from the resultant change in 

the kinetic energy of the object. 

If the initial distance, x^, and the initial velocity, v^, are both 

chosen to equal zero, 

2 
W • Fx = mv /2g^ 

For example, if the mass of the projectile (a Softball) is 0.5 kg and it 

departs the hand of the thrower at v - 70 mph • 31.4 m/s, the work done 

by the thrower is 

W - Y (°'5kg)(31.4 m/s) _ 246 N-m - 0.06 kcal 

1 Ns /kg.m 
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If the distance over which the force Is applied can be measured, the 

force applied may be calculated. For example. If x - 1 m, then F • 246 N. 

The power output Is W - F dx/dt • F adt where a Is the acceleration of 
h  

either the throwing arm or of the ball. If the force Is applied over 1 m, 

the final velocity attained Is 31.4 m/s and the total time of the force 

application, t, can be found. 

From the mechanics relations for acceleration, velocity, distance, 

and time. 

V + at V • 0 
o o 

1 2 
X - X +  I T  a t  x - 0 .  

o 2 o 

Solving for time, t - 2x/v - 0.064 s. The average acceleration Is 

2 
a • (31.4 m/s)/(0.064 s) • 493 m/s . Then the power at any time is 

W - 246 N f " dt 
Jo B 

and the value for the power output for the entire throw is 

Wtot • 7761.5 N m/s - 1.86 kcal/s - 10.4 hp. 

f. Work in a gravitational field The lifting and lowering of 

weights is often analyzed in the literature with the calculation of 

negative work. The work calculation for the lifting of weights is simply 

evaluated by a force times distance expression. However, when weights 

are lowered, they perform work on the body. In the energy balance, W 
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Is in this case a negative number, hence, the misleading term, negative 

work, has been commonly used. 

When work Is done on the body, the resulting energy flows should 

reflect the gain of energy by the system. This situation and the concept 

of negative work are best analyzed through an example of the mechanics of 

weight lifting. 

If a free-body diagram Is drawn for the weight with the positive 

direction designated as upward, Newton's second law zzrfs that the effect 

of the sum of the forces should appear in the acceleration of the mass. 

ZF • ma 

- mg 

where Fp - the force applied by the person 

m - the mass of the weight 

g " gravitational acceleration 

a » acceleration of the mass. 

Then, to solve for the force applied by the subject, Fp, 

ZF • ma 

Fp + W - ma 

m 

W 
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In general, 

Fp • mdv/dc - mg 

where acceleration has been written as the time derivative of velocity. 

For lifting, a la positive and opposite to g. 

Fp - ma - mg 

- m(a + g)e 

where e Is the unit vector in the positive direction. The power output 

during lifting can then be expressed using the velocity of lifting, v, 

Fp • V - m(^ + g)e • V 

and work, W, over the time, T, becomes 

(•T f v ( r )  f X  
W • F_ • v dt • mv ' dv + mg • V dt 

J o  ~ Jv(o) " - ;o ~ ~ 

Since velocity is the time derivative of distance, v - dx/dt, 

l 'V(T) fX(T) 
W • mv • dv + mg • dx 

Jv(0) ~ ~ Jx(0) " 

- Y m(v(T)^ - v(0)^) + mg(x(T) - x(0)) 
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If Initially velocity and distance are set equal to zero, 

W - Y IBV(T)^ + mgx. 

The work done on the weight will be manifested in its potential and 

kinetic energy changes. Specifically, if dv/dt • 0, then the work done 

by the subject is expressed as W * mgx. 

The analysis is slightly more complicated for the lowering of the 

weight. Using the same sign convention and the same free-body diagram, 

Fp - m(a - g) 

with a now in the negative direction a • a(-e). 

Fp - m(a(-e)-g(-e)) 

Fp - m(g - a)e 

The power output of the person is 

Fp • y - m(g - ̂ )e . V 

W " - mgv + mv dv/dt 

This expression shows that the body absorbs energy. To find the 

work done by the subject. 
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W • I Wdt • F • V dt - mge • v dt -
Jo i Q  -  i o  "  "  

rx(T) rv(T) 
mge • dx(- e) - me • v(-e)dv 

Jx(0) - ~ •'v(O) " 

- - mg(x(T) - x(0)) + Y m(v^(T) - v^(0)) 

If the mass is lowered at a constant velocity, dv/dt - 0, or if the 

initial and final velocities are zero, W - -mgx. Clearly, work is done 

on the body by the weight. This has often been misleadingly interpreted 

as the subject doing negative work. 

The body receives the largest amount of energy in the shortest time 

when the weight is allowed to fall freely onto the body. If v(0) "0, 

the potential energy of the weight will be transformed into kinetic 

energy which will enable the weight to do work on the body as it is 

suddenly brought to a halt by its impact with the body. The effects of 

a large kinetic energy change are eliminated if the weight is lowered 

differentially. Then the work done on the body is dissipated or absorbed 

at each increment of lowering, and the effects on the body are not nearly 

as drastic as in the first case. The rate of doing work is minimized. 

Real situations lie between these two extremes. 

The rate at which work is done on the body may appear in the energy 

balance of Equations 23 and 24 in one or more terms. The energy could be 

entirely dissipated, so that 
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Q - W, 

or the system could transform the power input into thermal energy. 

mCp dT/dt - - W. 

If the system is capable of energy storage in a manner similar to a spring, 

elastic internal energy storage is possible. 

: ^3# - - a-
S 

The work done on the system may also be transformed into changes in 

the kinetic and/or potential energies of the system. An example of this 

is the effect of the impingement of a high velocity air stream on a ping-

pong ball causing a change in its translational and rotational kinetic 

energy and/or its potential energy. 

Because of the inefficiencies of energy transformation, the most 

likely form of the first law expression to describe a situation in which 

work is done on the system may include each of the terms described above, 

M + + (74) 

k s 

The necessity of including the metabolic term is Justifiable in the 

following sense. We again consider the extremes of power input into the 

body, the freely falling weight and the differentially lowered weight. 
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The muscles of the body modulate the energy uptake that accounts for the 

difference between these extremes as they lower the weight. This requires 

muscle contraction in what may be approximated as a series of infinitesimal 

isometric contractions at constantly varying muscle lengths. Although the 

positive work performed is not obvious in a macroscopic evaluation of the 

body muscles as the system, on a microscopic level, there is some subunit 

of the muscle that is performing work to modulate the energy transforma­

tion and to maintain the series of isometric contractions. The muscle 

cross-bridges may be the subunits that function in this way. Therefore, 

some energy consumption is always necessary and the oxygen consumption of 
*  » -

lowering the weight will be greater than that at rest. However, this 

value will be lower than that in a macroscopic isometric or isotonic 

contraction in which the weight is held or lifted, respectively. 

Asmussen and Bonde-Petersen (4) have provided data on the effects of 

negative work on the subsequent amount of positive work performed. Sub­

jects Jumped from a squatting position without preparatory movements in 

which work could be done on the muscles of the subject. They were then 

allowed to jump using a) a preparatory counter-movement or b) after 

jumping down from a specified height. Situations a) and b) were designed 

to stretch the muscles used in jumping to allow them to take advantage of 

stored elastic energy. 

The results showed that the subjects were actually able to jump 

higher with some preparatory motion except when jumping from the highest 

height of 0.690 m. The situation may be analyzed by considering, again, 

the leg segment as the system. The effect of jumping down onto the legs 
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or of the counter-movement Is to convert potential energy of the torso 

into stored elastic energy in the leg muscles. 

The energy balance for the torso for this step is 

Aé • - W 
* torso 

and the torso does work on the legs so that W, - - W 
legs corso 

The balance for the legs before the Jump upwards is 

"S" + -1,) - q - «1,,. - q + «t.,.. - Q+ -A*,,,.. 

If we further assume that the metabolic energy consumed in each jump 

upward is the same regardless of previous events, the efficacy between 

the conditions with and without negative work may be compared. The 

increase in apparent efficacy due to negative work will result in the 

achievement of a greater height in jumping. If the differences between 

the thermal energy changes and heat losses between both conditions are 

negligible, the stored elastic energy is assumed to account for the 

difference. 

Energy balances on the leg segments are: 

without elastic energy: 

(mCpAT)^ + 

with elastic energy: 

fg(A - Ag) + (mCpAT)^ + AMg - Qg - W, 
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If 

(mCpAT)^ : (mCpAT)2, AM^ : AMg, and i 

- "l - *2 

The use of a preparatory counter-movement allowed the recovery of 

the greatest amount of negative work as stored elastic energy, 23%. 

Jumping from Increasing heights gave conversion efficiencies of 13%, 

10.5%, and 3.3% In order of Increasing height. This suggests that more 

energy Is dissipated when the conversion occurs more abruptly and the 

legs act as shock absorbers. The counter-movement Is a smoother motion 

and less energy Is dissipated. 

The counter-movement and each of the successive preparatory jumps 

Increased the overall efficacy of the jumping movement by 5%, 8%, 12%, 

and 6% of the original value, respectively. 

Cavagna et al. (28) have done studies of negative work on the 

efficiencies of Isolated muscle. They stretched Initially relaxed muscle 

and then stimulated It to allow It to shorten with 3.94 g«cm of work done 

by the muscle. The same muscle was stretched during an Isometric contrac­

tion by performing 40 g« cm of work on the muscle. The tension was allowed 

to subside slightly before the muscle shortened to perform 4.65 g» cm of 

work. Lastly, the conditions were the same as just described, except that 

the tension was not allowed to subside completely. The amount of work 

done then was 13.04 g*cm. 
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The efficiencies of elastic energy conversion In the latter two 

experiments were 11.6% and 32.6%. If the first experiment Is used as a 

baseline with minimal preparatory work, the original overall efficiency 

Is Increased by 18% and 331% by the negative work done. The first value 

Is In reasonable proximity to the results from the Asmussen and Bonde-

Petersen data (4). The magnitude of the second efficiency Is anomalous. 

The tension achieved In the muscle Is much greater than In the first two 

experiments and therefore the positive work performed should not be com? 

pared to the first experiment as a baseline. 

Asmussen and Bonde-Petersen (5) and Hargarla (71) have studied the 

negative work performed In exercises such as running and walking and have 

shown that the use of stored elastic energy Increases the apparent over­

all efficiency. Asmussen and Bonde-Petersen also conducted running, 

walking, and bicycling experiments on a treadmill. The subject performed 

these exercises while trying to overcome a constant horizontal resistance. 

The power output (W) was the product of the resistance and the velocity. 

The power output was compared to the Increase In metabolic rate (AM) 

measured at the exercising steady state above the basal rate. The 

efficiencies were found to be 53.8% for running, 32.3% for walking, and 

25.1% for cycling. Since overall efficiencies are typically 25%, the 

mechanics of running seems to enable the muscles to take the most 

advantage of stored elastic energy, while the mechanics of walking 

apparently are such that less work is done on the muscles or the effi­

ciency of conversion is in itself lower. Bicycling does not seem to 

Involve negative work. 
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The decrease In apparent efficiency for walking as compared to 

running can be explained by the work done by Cavagna £t al. (26, 27). 

The transformation of work done on the legs to stored elastic energy 

occurs more readily in running because the fall of the potential energy 

of the torso occurs Just prior to the acceleration and lift phase of the 

stride. The stored elastic energy is immediately utilized to do work. 

In walking, the sequence of events is not as favorable for the reuse of 

elastic energy because the transfer of the potential energy of the torso 

to the legs is out of phase with the eventual increase in kinetic energy 

of the torso. The progression of the body forward comes during the fall 

of the torso downward. 

The efficiencies of the Âsmussen and Bonde-Petersen locomotion 

experiments are much higher than those given in their jumping experiments. 

This is probably due to the abrupt change in direction experienced by the 

Jumpers that may dissipate much of the energy of the work done on the 

muscles. The runner goes through a smooth transition from the negative 

to the positive work phases, while the abruptness of transition for a 

walking subject lies somewhere between the two. 

In summary, it has been shown that the first law can be successfully 

applied in the analysis of many systems in a variety of energy states. 

The first law allows the calculation of the minimum changes in energy 

necessary for changes in the energetic state of the system. It cannot 

be used to theoretically calculate the absolute values of these terms at 

a particular energy state nor can it predict the apportionment of energy 
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among the terms when changes do occur. These changes must be experi­

mentally determined. However, In such cases, the first law remains the 

ultimate test of data consistency. 
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V. CONCLUSIONS 

This work has resulted in several conclusions which may be divided 

into general and specific categories. 

A. General 

1. Comprehensive forms of material and energy balances for open, 

periodically supplied, growing systems operating far from equilibrium have 

been developed and successfully applied in the analysis of energy flows of 

living systems. 

2. Physiological Interpretation of the thermodynamic terms of the 

energy balance has lead to the development of an entropy account which 

facilitates the rigorous calculation of the entropy production rate and 

minimal total system entropy. 

3. The corrected interpretation of oxygen consumption and water loss 

data from avian egg experiments has lead to the development of a relation­

ship between oxygen constooption and heat loss and the understanding of 

changing energy flows and energy storage during periods of growth and 

development. 

4. The rate of specific system entropy production has been shown to 

be positive but decreasing during periods of growth and development. The 

minimal system entropy Is Increasingly positive during this period. 

5. The results of the calculation of entropy production rates have 

been in general agreement with Prigoglne's hypothesis. 

6. Generalized expressions for physiological efficiency and efficacy 

have been developed and have been shown to be conducive to the reinterpre-

tation of previously used anomalous efficiency definitions. 
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B. Specific 

1. The minimal entropy production rate of a living system may be more 

properly determined by comparing the system's heat loss and metabolic 

energy conversion levels, as opposed to reaching conclusions based on 

either quantity alone. 

2. The entropy production due to changing the molecular organization 

of living systems may be estimated and shown to contribute negligibly to 

total system entropy change. 

3. Material balances, generalized reaction stolchlometrles, and 

system respiratory quotients may be used as Indirect measures of internal 

system processes and in analyzing the patterns of reactant consumption and 

product formation. 

4. Muscle contraction may be described as a cyclic operation both at 

the cross-bridge level and the macroscopic level. These cyclic representa­

tions are a useful guide in the design of muscle contraction experiments 

and in the design of muscle testing apparatus. 

5. Oxygen uptake requirements for muscle may be expressed as a state 

function dependent upon muscle length, tension, and the amount of work 

performed. This model produces a direct physiological interpretation of 

nonequllibrlum phenomenological expressions for muscle contraction and 

serves as a classification device for muscle experiments. 

6. Characterization of physiological work performed by muscles and 

muscle systems can be Improved by classification into three categories; 

work in a gravitational field, work of propulsion, and work against drag. 
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VI. RECOMMENDATIONS 

1. The methods of energy and entropy flow analysis developed In this 

work should be extended to the study of living systems which may be experi­

mentally monitored over the natural lifespan of the system to permit 

comparative Investigation of the entropy production during growth and 

development, maturity, and ageing. Expanded studies of microbial cultures 

seem promising as systems of study for this purpose. 

2. The changes In the rates of processes occurring within a living 

system under stressed and unstressed conditions should be Investigated in 

order to determine what significance entropy production patterns and the 

principle of maxima at equilibrium may have on lifespan. 

3. The approaches described above may be used specifically in the 

study of entropy production changes caused by malignant growths. 

4. The generalized first law expressions, the efficiency and efficacy 

definitions, and the classification of work developed in this research 

should be used as guides In the design of apparatus and experiments in the 

study of bloenergetlcs. 

5. Further experimentation should be performed to study the energy 

conversion patterns during growth and development In a variety of species 

of living systems. This should Include a more accurate determination of 

the efficiencies of metabolic energy transformation into blomass, products, 

and heat. 

6. Additional work should be done in order to further substantiate 

the proportionality between oxygen uptake and heat loss. 
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7. Investigation Into the water transport phenomena of incubating 

avian eggs is desirable, possibly accomplished by radioactive labelling 

of the oxygen consumed by the egg system and the subsequent analysis of 

the constituents of the embryo mass and of the gases released by the 

embryo during incubation. 

8. Further muscle experimentation should be done to more precisely 

determine the relationships between energy consumption, muscle length, 

muscle tension, and work performed. This Investigation should also 

evaluate the mechanlcochemlcal similarities or differences between iso­

metric and Isotonic contractions. 
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