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INTRODUCTION 

In the last few decades, mathematicians have become in

creasingly interested in the behavior of solutions of partial 

differential equations in which the coefficient of the highest 

ordered term depends on a parameter. The study of such param

eter dependent solutions seems to be important for the follow

ing reasons: 

1) it may justify the construction of solutions in terms 

of solutions of lower ordered equations ; 

2) it may justify the construction of "generalized solu

tions" (that is, solutions with lower class properties) in 

terms of limits of regular solutions of higher ordered equa

tions; and 

3) it may shed some light on the general question of the 

nature of the dependence of the solutions on the coefficients 

of the equation. 

Linear partial differential equations in two independent 

variables have been rather completely analysed. Levinson [8] 

has considered the boundary problem for the linear elliptic 

partial differential equation 

(1.1) ÔUxX + 5Uyy + AUX + BUy + Cu = D, 

where A, B, C, and D are functions of x and y. He has shown, 

under fairly general conditions, that in the region interior 

to the prescribed boundary the solution u(x,y,5) approaches 

the solution of the first order part of the equation, as 6 
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goes to zero through positive values. Aronson [1] studied the 

first boundary value problem for the linear parabolic partial 

differential equation 

(1.2) 5u%x + Aux + Buy + Cu = D, 

and has obtained results analogous to those of Levinson. 

Blonde1 [3] has announced complete results for the linear hy

perbolic equation 

(1.3) 6 tAuxx + Buxy + Cuyy] + aux + buy + cu = 0, 

where A, B, C, a, b, and c are functions of x and y. 

The results for nonlinear partial differential equations 

are not nearly so complete. Due to the absence of a general 

theory concerning the behavior of solutions of nonlinear prob

lems, we agree with Hopf [5] in the opinion that continued 

study of special problems is a commendable way to approach the 

subject. Hopf himself has studied the behavior of the solu

tion of the initial value problem for the nonlinear parabolic 

equation 

(1-4) |±uxx = uux + ut 

as ii goes to zero, and has shown that in general the solution 

approaches a discontinuous function; but except for these dis

continuities, the limit function satisfies the reduced equa

tion 

(1.5) uux + ut = 0. 

In two later papers, Lax [6,7] considered generalizations of 

this equation of the form 
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(1.6) M-Uxx = a(u) ux + ut 

in his studies of hyperbolic systems of "conservation laws". 

Both Lax and Hopf were interested in the parameterized equa

tion from the standpoint of finding generalized solutions to 

the first order equation as limits of regular solutions to the 

second order equations. Hopf1 s analysis was greatly facili

tated by his observation that the equation 1.4 can be trans

formed into the linear heat equation 

(1.7) 0t = M-^xx' 

about which a great deal is known. 

It is the purpose of this paper to study the behavior of 

the solution of the Goursat problem for the nonlinear hyper

bolic equation 

(1.8) 5uxy ~ Auux ~ Buxuy ~ Cux = 0 

where 6 is a small parameter and A, B, and C are functions of 

y only. 

We first prove, in the next section, a special case for 

one of Blondel's theorems [3] in order to give the reader some 

feeling for the hyperbolic problem, as well as to illustrate 

certain differences which arise between the linear and nonlin

ear problems. Since Blondel's results were published without 

proofs, the arguments given are necessarily original, and so 

may be quite divergent from the methods employed by Blonde1. 

In the third section we establish sufficient conditions that 

the solution of equation 1.8 which takes on prescribed values 
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on the coordinate axes converge to the solution of the reduced 

equation 

( 1 • 9 ) Auu.j£ + Buj^iiy + CUj£ = 0, 
as 6 goes to zero. 
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A THEOREM OF BLONDEL 

In this section we prove the following special case of 

Blondel's results [3] . We consider the linear hyperbolic 

problem: 

5uxy - Aux - Buy = 0, 

u (x, 0) = a (x) , 
I 

u(o,y) = p (y), 

a (0) = p (0), 

where A and B are constants and 5 is a parameter, and the as

sociated linear first order problem: 

Avx + Bv = 0, 
II 

v (x, 0) = a(x) . 

Then we establish the following theorem. 

Theorem. 

Let 

(1) R be the closed triangle 

0 < xj_ < x x2, 

03 y< B x _ B % 
A T?T x 

for some positive constants x^ and x2, x-^ x2, 

(2) A > 0, 

(3) B > 0, 

(4) 5 < 0, 

(5) a(x) be of class C2, 

(6) p (y) be of class C1, 

(7) u(x,y,5) be the solution to problem I in R, 
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and 

(8) v(x,y) be the solution to problem II in R. 

Then u(x,y,6) converges uniformly to v(x,y) for all (x,y) in 

R as 5 goes to zero through negative values. 

Proof. 

As in the works of Hopf [5] and Lax [6], this proof re

lies heavily on the explicit solution of I. Let (x,y) be in 

R, and let conditions (1) through (8) be satisfied. Then 

u(x,y,6) is given by 

(2.1) u(x,y,6) = 

a (x) +(3 (y) -a (G) + ̂  exp B̂x*Ay|^ jf [Aa1 (s) 

+ BP' (t) ]exp Bs + A t j  I0 (x-s) (y-t) j  dsdt, 

where IQ(X) is the modified Bessel function. Through the 

change of variables of integration from s and t to 

a = |-(s-x) 

and 

t = f(t-y) 

we may write equation 2.1 as 

(2.2) u (x,y, 6) = a(x)+P (y)-a(0) 

_ Ay; _ Bx 
+ § / f IQ (2VÔT) a ' (x + É.CT) exp | - (CT+T) j  dadx 

Jq Jq B J 

+ Â J J 5 IQ (2Vax) Ç> ' (y+ ̂ t) exp (a+r) j  dadT. 
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If we recall that the Laplace transform of IQ(2 lAkt) is ek at 

s= 1 [4 ], we may write 

_ AY _ Bx 

(2.3) J I Q  (2I/OT) P ' (y+ |R) exp [ - (O+T) J dadT 

Ay 

i  f 5  P' (y+ 5-t )dT 

% * 

oo 

f f I In (2VÔT) p'(y + |-T) exp J-(0'+T)] dadT 
J0 _ m 

6 

_ Ay. oo 

= (3(0)-p(y)- r 5 r IQ (2Vax) ̂' (y+ |T) exp ̂ -(a+T)j dadT. 

0 Bx 
5 

Hence the solution may be written as 

(2.4) u(x,y,5)= 

&X. _ Bx 

a (x) + ̂  J J Iq(2 ̂far) a1 (x + |-o)exp j^-(a+r)^ dadT 
'0 u0 

A 

5 oo 
5 [ f In (2 Var) p1 (y + —T) exp [ - (a-fr)} dadT. 
0 J bx A L J 

5 

If we change the order of integration in the first of the 

double integrals in equation 2.4, we may write 
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_ Ay; _ Bx 

(2.5) | T 5 T 6 I
0 (2 V~0T)a' (x + 5.CT) exp |-(G+T) j dadT 

^0 ^0 

_ ÈY. co 

^ BX 

oo 

'A ^  
5 

Iq (2 V5t) a1 (x + a) exp -^-(o+t)| dTda 

Iq (2 tTot)a' (x + ̂  a) exp £-(a+T)| dTda 

Bx _ A% 

+ | f r IQ (2 V~âr) a1 (x + — a) exp £- (ct+T) j- dTda. 
_ Ay 0 B 

5 

We again make use of our knowledge of the Laplace transform of 

IQ (2 Vôr) to obtain 

_ àZ oo 
(2.6) 6 r 5 r 

B ̂ 0 ^0 

_ 

Iq (2 Varja' (x + j| a) exp £-(a+T) | dTda 

= B r a ' (X + B a) da ~ a (x - B y) - a (x) . 

The second double integral on the right in equation 2.5 we 

resolve as follows: 
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— oo 

|  f f IQ (2^ô~R) a'(x + — a ) exp (G+T) ̂ dxda 
^0 j/ Ay B 

5 

_ âZ _ Bx 
= " B f 5 f 5 IQ (2 Var) a' (x+ |<J) exp £-( o+r)} d-rda 

0 JAY 
5 

_ Ay oo 

~ f" J 5 jf Iq (2 W~cr) a' (x + |a) exp ^ - (a+r)] drda. 

~ ~6~ 

If we make the change of variable CT = T in the first double 

integral on the right of equation 2.7 and then change the 

order of integration on that integral, we get 

— ̂  oo 
2'Q^ ~bI f Iq (2-Vot) a'(x +a) exp ^-(cr+ t drda 

^ _ Ay 
5 

_ Bx _ Ay 

= ~ f f 5 / xo a' (x+5. x) exp [-(a+T ) } drda 
-M 0 B 

5 

_ Ay oo 

~b [ f IQ (2 -TTÔX) a' (x + — a) exp [-(cr+ T drda. 

° B; 
B 

5" 

We may combine the results of equations 2.6 and 2.8 with equa

tion 2.5 to obtain 
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- M. _ Bx 

2.9 | f 5 r 5 iQ (2 sj~âx) a' (x+ a ) exp | -(œ+T) | dadT 

0 0 

= a(x- | y) -a(x) 

Ay ce 

~ I" f~ 5 r Iq (2 Vâr) a' (x+ —a ) exp [ - ( crt- T) | drd a 
v0 J Bx B 

- Sx _ Ay; 

+ B f r Iq (2 'vTÔT) [a1 (x + |-a ) -a' (x+ T) ] exp j- ( a+ T)] drda, 

5 

and then use equation 2.9 with 2.4 to get 

(2.10) u(x,y,5) = (x- g y) 

_ Ay co 

Iq (2 Vôr) a' (x + |- ) exp [-(a+ T) ] dTda 

5 

- ̂  co 

' % ' 4 
5 

Iq (2 -V^T) p ' (y + 1 T) exp •[ - (a+T)] dadT 

Bx Ay 

+ B f f IQ (2 -XTÔT) [a1 (x +|- a)-a' (x +|. T) ]exp { - ( O+T)} dTda. 
_ - Ay; J0 

5 

The first two integrals on the right in equation 2.10 may be 

combined to yield 
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(2.11) u (x,y, 6) = a(x- y) 

— CD 
-5 F r In ( 2 Afœr) [ A a1 (x + a ) 
ÂBJ J ° B 

0 - Bx 
5 

+ BP' (y+ |-a) ]exp | - (CT+T) } d%da 

_ Bx _ A% 

/ Io(2VÔ^)[a'(x+§a) 
_ Ay. 0 D 

6 

- a1 (x +|"T ) ] exp - (a+f) j  dTda. 

Now the function a(x - ̂  y) is the solution to problem II. 

Thus if we can show that the integrals in equation 2.11 go to 

zero uniformly as 5 goes to zero through negative values, for 

(x,y) in R, we will have proved the theorem. We shall estab

lish that each of the integrals of equation 2.11 has the limit 

zero as 6 goes to zero, the convergence being uniform in R. 

Since we have assumed that a (x) is of class Q?-, we may use the 

identity 

a' (x + a) - a ' (x + |- T) = ( a - T) a" (z) 

where 

0 $ z < x. 

Let 

M = max ta—CslJ 
B 
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for 0 ̂  z < x2. Then it follows that 

(2.12) 

_Bx _ A% 

6 T 6 ^ 6 1^(2^) [a' (x+# a) 
B B 

_ 0 
6 

£ 62M I 5 

_ Ay o 
5 

Next we recall that 

- a' (x+ |-T) ]exp £ -(O+T)] d?do 

_ Bx _ Ay 

I (2 tfâr) exp [ - (cr+-r) j d%do. 

(2.13) 
CO V v 

1.(2/^) = Z 
u k=0 (k!) 2 

If we use equation 2.13 and perform the integration term by 

term, we may write 
_A£ 

(2.14) T 5 In (2 /5T) e" (a-r)dx 

oo _k+l 
_ AZ 

5 Tke"TdT -T 0k 

_ M 

k=0 (k:)2 
0 Tk+1e~TdT 

k=0 (k:)2 Jo 

® aK+l 

k=0 k: — [1 - e 
Ay k (_ Ay) 

2 5_ 
n=0 n! 

n 

- S s£lk±il u „ 3 T (-^'n ]. 
k=0 K* n=0 n! 

We treat the double integral on the right side of inequality 

2.12 as an iterated integral and perform repeated term by term 

integration, utilizing the results of equation 2.14, to get 
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Bx Av 
r 5 r 5 -(O+T) 

15) / / In {2 fôx) e ( 0-T) dTda 
0 

5 

^ Bx 
00 Ay k (_ Ax ) f 5 

k: ̂  tl-e"* £ -J-]/ "k+1e-°aa 

n _ Bx 
Go Av k+1 (_ AY. ) n 6 

- 2 Ml. [i - e 2 L_ ] / ake"ada 
k=0 k n=0 n! ^ Ay. 

™ 5 

«I À T 

iiSj".5 T ill'" 
m! m=0 m ! 

1 H±1 u. 3^6 (-4 ) ][ 81; s <- ̂  » 5 
k=0 k: n=0 ni m=0 m! 

-e^,i 2 
m=0 ml 

We may simplify equation 2.15 to obtain 
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_ Bx _ Ay 

/

5  p 5 —(O+ T )  
/ I0(2VÔT)e (a- T)dTda 

_ Ay ^0 
5 

Ay 
5 Ay ) 

5 

oo 
Z 
k=0 

Ay x 
6 ' 

k: 
- e 

Bx 
5 (- 55 ) 

OO 
2 
k=0 

(~ 
Bx 

kl 

CO (- S| )k+1 k ,-èX,n 

+ e v 5 • 2 
k=0 (k+1) ! n=0 n' 

.? i 1̂ . i <jl>" 
k=0 (k+1) 1 n=0 n* 

<: - Ay - Bx + 2 
ô 6 

S - 2B%2 + 2. 
5 

It follows that 

_ Bx _ Ay 

0 ̂  limit 52.m.T j in(2^)e~(a+T) (a-T)dTda 
5->0- ^ Ay J0 

5 

' JÏJÏ b2M •[ _EÎ2_ + 2 j 

- 0, 
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uniformly for every (x,y) in R. By inequality 2.12, this im

plies that the expression 

- Bx 

I- J 5 J IQ (2VCTT) [a1 (x+ a) -a' (x+ g- t) j e~^° rT̂ dxda 

goes to zero uniformly in R as 6 goes to zero. 

Next, let K be given by 

[ la '  (x) l  ,  IP' (v) l  
B 

for (x,y) in R. Then it is clear that 

K = 2 max p_IM , IÈLLLY11 j 
B A 

_ àZ oo 

(2.17) 0 , - | R  5 T I q(2V ôt) [Aa1 (x+ | a) 

1) Bx B 

5 

_ M. 00 

s  - 6 < 5  4  
5 

+ Bj3 1 (x+ ̂  a) ] exp | - (a+r) j ax da 

IQ (2Vâr) exp ̂  -(a-t-r)} dxda, 

We recall that 

(2.18) 0 < Iq(2Vôt) 

= F j [ exp (2 /5t  sin ©)+ exp(-2VÔT sin 9) ] d© 

0 

< ^ [ exp ( 2 VÔT ) +1 j. 

Therefore 
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_ àZ oo 

(2.19) 
Q < [  J  IQ (2 VÔT) exp | - ( a+R)] dadT 

v0 _ Bx 
6 

- ̂  œ 
K 2 J f exp {-( T - Va) 2j dTda 

0 ° Bx 
6 

_ 

+ — f exp I— _ ajda 
2 J0 1 5 J 

_ Ay co 
= 

o" T 5 f (©+ Va) exp(-92) dedo 
% ̂ 

+ I exp (^) [ 1 - exp (&p ] , 

where p =J~ ̂  -^a, 

Now, 

_ AZ oo 

(2.20) 0 < j f (9+i/â) exp (-92) d©da 
0 p 

„ Z^Z Ay oo 

- T exp(-p2) da + f  5 V™5" f  exp (-©2)d©da 
^0 ^0 ^ 

-p ̂  _ Ay 

$2 exp (-p2) da + 21 5 exp(-p2)da 
0 J0 p 
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_ àx 

t Bx 

f ~ ¥ -
exp f - [ 2p. - ̂  a ] 2 (. da 

Az 

0 [V- T"V°)2 V°~ 

vC5 7̂exp{-[vrs_y-a]2L 

Bx 
5 

_ àz 
5 

[iF¥- 7 

exp -exp (^p) 

= 1 VABxy 

.[ V Bx - V Ay] ' 
exp V3x - VÂ^]2j. - exp (^p) 

Since for (x,y) in R, we have 

Ay < Bx - Bx1 < Bx, 

we may conclude from inequality 2.20 that 

_ i£L oo 

0 £ limit - 5K / / I (2 ax ) exp ( - (a+x)l dadx 
5-^0" 0 _ Bx L 

5 

- 0 J 

uniformly for (x,y) in R. Therefore it follows from inequali-
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ty 2.17 that the expression 

_ àZ oo 

~ ar f 5 [ I0 (2 V^r)[ Aa' (x+ ) 
"Ù J Bx 

+ BP' (y+ a ) ] exp ̂  - ( a+r) | dTda 

converges to zero uniformly in R as 6 goes to zero through 

negative values. The proof of the theorem is complete. 

A similar theorem holds in a closed triangle in the first 

quadrant above the line 

Ay = Bx, 

provided the class properties ascribed to a(x) and p(y) are 

interchanged. In this case, the solution of I approaches 

the solution of the problem 

Avx + Bvy = 0, 

III 
v(0,y) = f3 (v) , 

as 6 goes to zero through negative values. Analogous results 

may clearly be obtained in the third quadrant. 

It should be noted that the line 

Ay = Bx 

is the characteristic of the first order equation 

Aux + Buy = 0 

which passes through the origin. Since by hypothesis 

A > 0, 

and 
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B > 0, 

this line divides the first and third quadrants each into two 

sections. The results of Blonde1 [3] then assert that in any 

closed region contained in one of these four sections, the so

lution of problem I for negative 6 tends uniformly to the so

lution of the first order equation which takes on the values 

prescribed by problem I on the axis adjacent to the section. 

Blonde1 further reports that under the same conditions on A, 

B, and 6, these results will in general not hold in quadrants 

two and four. 
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A NONLINEAR PROBLEM 

We consider the Goursat problem 

5uxy - Auux - Buxuy - Cux = 0, 

u (x,0) = a (x), 
IV 

u(0,y) = p(y), 

a(0) = P(0), 

where A, B, and C are functions of y only and 6 is a real-

valued parameter. We restrict A, B, and C to be continuous 

functions and both a (x) and (3 (y) to be of class C1. The ex

istence and uniqueness of the solution of IV, in a neighbor

hood of the origin, is assured [2]. The object of this sec

tion is to study the behavior of the solution, u(x,y,6) of 

IV as 6 goes to zero. Let us note that the reduced differ

ential equation in IV, that is, 

(3.1) Auux + Buxuy + Cux = 

may be factored and written as the two differential equations 

(3.2) Au + Buy + C — 0, 

and 

(3.3) ux = 0. 

Hence there would appear to be more possibilities for the 

limit u(x,y,5) as 5 goes to zero than in the linear case. 

In the proof of the theorem given in the second section 

for the linear hyperbolic problem, we used the explicit so

lution for fixed 5 as the basis for the analysis. In Hopf1 s 

work [5] with the nonlinear parabolic problem, he relied on a 
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linearizing transformation to facilitate his studies. Lacking 

both of these tools, we resort to the construction of a prob

lem which is equivalent to IV, but which appears in the form 

of a nonlinear integral equation. The equivalence is estab

lished in the following lemma. 

Lemma. 

When B(y) f 0 and 6^0, problem IV is equivalent to the 

integral equation 

Proof of lemma. 

It is clear from the statement of problem V that every 

function u(x,y,6) which satisfies V is such that u(x,0,6) = 

a(x). Let us suppose that uj_(x,y,6) and u2 (x, y, 6) are two 

functions which satisfy V, and further that 

where 

(3.4) P (t, 5) = P(t)+P' (t)+ Mit) + -Ç±t) . 
Bvt) r2 /+•) R/fl B2 (t) B (t) 

(3.5) u
2 (0, y, 5) - (3 (y) . 

Then we define the function w(x,y,5) by the relation 

(3.6) w(x,y, 5) = u1(x,y,6) - u2 (x,y, 5) . 

From V, it follows that 
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(3.7) w(x,y,6) = 

Lr yAis)dslr YP(t,5)exp( exp 
Wo B(s) JJo B(s) 

-P (t) ]j -exp ̂ ^"5^ tu2 (XJ t^5) (t) ] 

exp ( ̂̂[ui(x,t,5) 

l )  

Combining equation 3.5 and 3.6, we see that 

(3 . 8) w(0,y,6) = u1(0,y,6). - (3 (y) , 

and thus we may write 

(3.9) w(0,y, 6) = 

exp [fo Ht) dSl ̂  P lt' 6) SXP U ̂ ti dS 1 Uxp ^SSi>WC0'y'B> 

-1] dt. 

We define the function v(y,5) by 

(3.10) v(y,6) = w(0,y, 6) . . 

Then from equations 3.9 and 3.10, we get 

(3.11) v (y, 5.) = 

exp 
•fsH î (t'8,expl t! 4[ v (y*B)! 

-!] dt, 

and 

(3.12) v (y,5)~ A (y) y (y, 5) +P (y. 5) T exp v (v. 5)} -1 ] 
^ B(y) L 0 J 
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Since both u1(x,y,5) and u2(x,y,6) are solutions of V, we have 

that 

u1(x,0,5) = a(x) , 

and 

u2 (x, 0, 6) = a (x) . 

Then we obtain 

(3.13) v (0,6) = w(0,0,&) 

= UX (0,0,6);- U2 (0,0,6) 

- a(0) - a (0) 

=  ° -

Now the identically zero function satisfies equation 3.12 and 

3.13 and since the solution of equation 3.12 which satisfies 

equation 3.13 is unique [2] , we must have 

(3.14) v(y, 6) E 0. 

From equations 3.14, 3.10, and 3.8, we see that 

u1(0,y,6) - p(y) = 0, 

from which we conclude that if problem V has a solution 

u(x,y,5) such that . . 

u (0,y, 6) = p (y) , 

then every solution of V assumes the value P (y) when x =0. 

The fact that there is a solution u(x,y,6) such that u(0,y,6) 

= P (y) will be clear when we show that every solution of IV 

satisfies V, since the existence and uniqueness of the solu

tion of IV is known [2] . To see that the solution of V 

satisfies the differential equation of IV, we solve V for 
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u(x,y,5)exp} f(sjdSj 

and differentiate with respect to y to obtain 

(3.15) [uy(x,y,5)+ u(x,y,5) ] exp.j ̂  M|) ds1 

exp ) f YMij ds I [_ 5A(y) _ C(y) 
^0 B (s) j B2 (y) B(y) 

+ P(y,6) exp < §-Lz).[ u (x,y, 6) -p (y) ] } ], 

and hence 

(3.16) Uy (x,y, 6)4- |^j u (x, y, 5) 

= - 5My) - c (y) + P (y, 5) exp [ B (Y) [u(x,y, 5) -?(y) ]j . 
B (y) B(y) , [ 5 j 

If we differentiate equation 3.16 with respect to x, we get 

(3.1.7) uxy(x,y,6) + ux(x,y,6) 

= ux(x,y,6) ( uv(x,y,6)+ u(x,y, 5) 

+ OA(V) + ÇIX) J 
B2 (y) B(y) ( 

Equation 3.17 may be written in the form 
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(3.18) 5uxy(x,y, ô) = A (y) ux (x, y, 6) u (x, y, 6) 

+ B (y) ux (x, y, 6) uy (x, y, 5) 

+ C(y)ux(x,y,ô) # 

and this is precisely the differential equation of IV. There

fore every solution of problem V satisfies problem IV, pro

vided there exists one solution of problem V which assumes the 

value p(y) when x is zero. 

To see that the converse is true, we suppose that u -

u(x,y, 5) is a solution of problem IV. We define 

(3.19) w = Au + BUy + C. 

Then wx is given by 

(3.20) wx = Aux + BuX y ,  

and the differential equation in IV may be written as 

(3.21) 6 5A 
B Wx - B" Ux - uxw 0, 

whose solution is 

(3.22) log 
w(x,y,6) + 5A(y) 

B(V) 

w(0,y,5) + 
5A(y) 
B (y) 

-  BXYI [ u ( X j y j 6 ) _  u(0, y , 6 ) ]  .  

From equation 3.19 and the fact that u(x,y,5) satisfies IV, 

we obtain 

(3.23) w(0,y, 6) = A (y) (3 (y)+B (y) (3 1 (y)+C(y) . 

Using equation 3.23 we may write equation 3.22 as 
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(3.24) w(x,y, 5) = _ 5a(Y? 4- [ A (y)p (y)+B (y)p ' (y) 
B (y) 

+ ^ [u(x,y, 5) - p (y) ]( . 

Next, we solve equation 3.19 for u as a function of w to get 

Elimination of the function w between equations 3.25 and 3.24 

yields V, and the proof of the lemma is complete. 

We define the problem: 

In the next theorem we establish sufficient conditions that 

the limit of the solution of problem IV as 6 goes to zero be 

the solution of VI. 

Theorem 1. 

Let (1) R be the closed rectangle: 

+ 

A v  +  BV y  + 0 = 0 ,  

VI 
v (x,0) - a (x) . 

0 x^ < . x < x2, 

o s y S y%, 

for some positive constants Xj_, x2, and y2, 

X1 * X2; 
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(2) B (y) > 0; 

(3) 5 > 0; 

(4) p'(y) % 0; 

(5) a1(x) < 0; 

(6) P(y,6) > 0, where p(y,5) is defined by equation 

3.4; 

(7) T be. the transformation defined by 

r y 
Tf(x, y, 6) = exp ̂  -/ Mi) ds 

J0 B(S) . 

+ P (t, 5) exp (x, t, 5)-P(t) ]| ] exp \ f hill} dsfdt 
V l J0 B ( s )  

for 5/0, and 

= exp •< 

for 5=0; 

y ( o t 
a(x)- exp 

0 
Ms) y ç_[t)at 

Jq B (S) 1 B(t) 

and 

(8) the sequence fn(x,y,5) be defined by 

fx(x,y,5) = p(y) , 

fn(x,Y, 5) --= Tf^_^(x,y, 6), for n=2,3,4, . . . 

Then there exists a positive number 5q such that 

(a) the sequence fn(x,y,5) converges uniformly 

for all (x,y) in R and all 5 such that 0 < 6 < 5Q, 

(b) the function f (x,y, 5) = limit fn(x,y, 5) is the 
n-#-co 
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solution of IV for (x,y) in R and 0< 6 < 5^, 

and 

(G) the limit f(x,y,ô) converges uniformly in R 
6  —>0+ 

to the function v(x,y) which satisfies problem 

VI. 

Proof. 

Let conditions (1) through (8) be satisfied, and let (x,y) 

b e  i n  R .  W e  f i r s t  n o t e  t h a t ,  f o r  6 / 0 ,  

(3.26) f 2 (x,y, 5) = T£(y) 

F . R Y  A £ S )  

y 

+ f P (t) +p'(t) ] exp. 
J B(t) 
0 

ct(x) 

j Aj[s.) ds fr dt 
h B (s) 

= p(y) -[p (0)-a(x) ]exp 

< P(y) 

Further, if 5 / 0, and 

then it follows that 

(3.27) 
fn+l(x̂ '5)= Tfn(x,y, 5) 

=. exp ̂ -f ds 
1 b B(s) j 

J0 FIT)"DS' 

FH(X;Y;6) < P(Y), 

a (x) + { — p 
J0 V B2(t) B(t) 

r1 
+ P (t, 6) exp^^ 1̂' [ fn (x, t, 6) -p (t) ] exp) / — Cŝ dsf dt 

J0 B(s) 
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< EXP 

+ f [ Mi) (3 (t)+p ' (t) ]exp 
Jo B(t) 

t 
MsJdsV dt 
B(S) 

= f2 (x,y,5) 

< P(y). 

Thus by mathematical induction, we have that when 6/0, 

(3.28) fn(x,y, 6) < f2(x,y,5) 

< P (y), for' n=2,3,4, .. . 

Then there exists a positive constant K such that 

(3.29) -

for all (x,y) in R and. all 5/0. 

Next, let us consider the series 2 s
n(x,y,6), where 

for n ^ 2. Then we have 

K 
(3.30) 2 Sn(x,y, 5) = f%(x,y,6). 

n=l 

We propose to show that this series converges uniformly and 

absolutely in R. Let a positive number 6^ be chosen and let 

M be defined by 

Sx (x,y, 5)= f x (x, y, 6) 

and 

Sn(x,y,5) - fn(x,y,6) - fn_1(x,y,5), 
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(3.31) M= max expWo' i( t jd S l  /  P(t,6)expjJ|||)ds} dt 
0 I 0 

for all (x,y) in R and all 6 such that 

0 < 6 < 6^. 

For 6=0, condition (2) and the continuity of B(y) imply that 

B(y) is bounded away from zero. Therefore, we have that. 

(3.32) limit M • B(y) exp A -K lix) 7 = 0. 
5 —> 0+ 5 V 6 J 

This implies that there exists a positive number 5q, with 6q$ 

6^, such that for all (x,y) in R and all 5 satisfying the con

dition 

0 < 6. < 6G S 6I 

it is true that 

(3.33) O < M • 3(y) exp (-K < e < 1, 
5 L 5 I 

for some positive constant 9. Then for 

0 < 6 T 5G, 

and for some t' satisfying 

0 < t' < y, 

we use a mean value theorem to get 

(3.34) | Sn(x,y,5) | 

= |^n(x,y,6) - fn_i(x,y, 6)) 

= Tfn_1(x,y,5)-Tfn_2(x,y,5) 
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exp)-/ àlâ) dsl I exp ( f àlâ.) ds P(t,6) exp ̂ ^\fn_1(x,t,6) 
0 B(sj ) wg [ 0 B ̂  J 

-P(t)]j -exp [fn_2 (Xj t, 5)-p (t) ]| 

<M • exp •[fn-.1(x,t,,6) -(5(t')]| -exp [fn_2 (x, t',6). 

-P(t').] 

Again using a mean value.theorem, we see that 

(3.35) exp j [£n-1 (x, t' ,5) -p(t') J 

f B(t') 
-exp | 5 [ fn_2 (x, t ', 5) -j3 (t ' ) ] 

fB(t') 
- B_(tl) [ £n-1 (x, t ' , 5) -f n_2 (x, t ', 5) ]exp Vz (x, t ', 6) j , 

5 

where z(x,t',5) is some value intermediate to 

^n-l(*.»t',5)-p(t')] and [ fn_2(x,t',5)-p(t')] , both of which 

are negative for n % 4. In fact, for n Ï 4, we have by equa

tion 3.29 

(3.36) z (x,t1,6) < -K < 0. 

Combining equations 3.34, 3.35, and 3.36, we get 

(3.37) Sn(x,y,6) FN-L(^,T',6) 

~fn o (x,t',5) n—2 
B(t') M ' exp \ - K  
5 I 5 |-K  ̂1 
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< G • FN_1(XJT,J5)-FN_2(X,T',6) 

= 9 I SN-L(X-'T,'5) 

for n ) 4 and 0 < 5 -6 6Q. From the definition of T for 5= 0, 

we note that 

fn(x,y,0) = fn_!(x,y,0) 

for n. > 2, and thus we see that 

Sn(x,y,0) = 0 

for n > 2. Therefore, for 0 < 6 5- 5g, 

oo 
(3.38) 2 

n=l 
Sn(x,y,6) < S1(x>v, 6) + S2(x,y,ô) 

oo 
+ max so (x,y, 6) 2 9 
(x,y) in R ' ' n=0 

s 2(x,y, 5 )  

n 

s
1(xJy,5)| + 

+ max 
(x,y) in R 

s3 (x,y, 5) 
1-9 

We conclude that the series ^ Sn(x,y,5) is absolutely con-
• n=0 

vergent, and since the contraction constant 9 suffices for all 

(x,y) in R and all 5 such that 

0 < 6 C ÔQ 

it follows that the series converges uniformly for these val

ues of x, y, and 5-. Since the series converges uniformly, the 

sequence of partial sums must also converge uniformly; that is, 

by equation 3.30, the sequence fn(x,y,5) converges uniformly 

for all (x,y) in R and all 6 such that 
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0 ^ 6 6 Ô0. 

Now "because of the class properties ascribed to A, B, C, a, 

and f3, it is clear that for each n, fn(x,y,5) is a continuous 

function in R for each 5/0. For n > 2, 

(3.39) lirait^ fn(x,y,5)= limit Tf
n-i(x,y,5) 

6 —» 0 + 5 —> 0 

exp -, 
'0 I f  

S) 
s) 
ds a (x) -f ̂4-Fx exp | f A(s) ds dt 

B (T) [J0 B(S) 

limit 5 exp 
5 —• 0+ J0 

A (s) 
B (s) 

ds A (t) 
B(t) 

exp 
l(f)ds 

dt 

+ limit exp 
5-^0+ (Y i i f i4u[Y p ( t '6 >  

(times) expj J |jS.j clsj exp ̂ 511) ( £n-1 6) -p (t) ] j dt. 

Using equation 3.29, we see that for n > 2, 

(3.40) 0 < limit exp 
5 —> 0 0 

y 
A_L§) ds 
B (s) 

y 

P(t,5) 

(times) expj^f M|.)ds| exP j^5^ [ fn_i(x,t,6)-P (t) ]j- dt 

< limit exp {-T Ms.)ds| I P(t,5) 
5 _v 0+ I  J 0  B(S) ) J q  

(times) exp| J M§.) ds I exp j -K llï) f dt 
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= limit y exp \ - ds f P ( t ', 5 ) 
5-*0+ I Jq B(s) ] 

(times) exp | J" ds| exp | -K B ^ 

for 0 £ t' è y. Since P(y,5) is bounded and B(y) is bounded 

away from zero for all (x,y) in R and all 5 such that 0 < 5< 

Ôq, we deduce that 

(3.41) limit y exp \ -f dsi P (f 5) 
5 —•> 0 I Jo B(s) V 

(times) expj J MjU ds j exp | -K ^ = 0. 

Using equation 3.41 in inequality 3.40, and this result in 

equation 3.39, we get 

(3.42) limit f (x,y, 5) = 
6 —^ 0 

exp | l(f) ] [°lx) lit)exp [l0 Hî)ds]dt] 

= fn (x,y, o ) ,  

for n > 2. Thus the functions fn(x,y,5) are continuous from 

the right at 6 = 0 for n > 2. We conclude that for n > 2, the 

functions fn(x,y,5) form a sequence of continuous, uniformly 

convergent functions for (x,y) in R and all 5 such that 
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0 •$ 5 < 5Q . The proof of part (a) is complete. 

Let us now define 

(3.43) f(x,y,5) = limit fn(x,y,S). 
n-»co 

Because the convergence is uniform in R, then for 6 / 0, we 

may write 

(3.44) f(x,y,5) = limit fn(x,y,6) 
n-*oo 

= limit Tfn-1(x,y,5) 
n-> oo 

= T limit fn_1(x,y, 5) 
n-> co 

= Tf (x,y, 6) . 

From the definition of T, we see that equation 3.44 implies 

that f(x,y, 5) satisfies problem V. By the preceding lemma, 

f(x,y,5) satisfies problem IV for (x,y) in R and all 5 such 

that 

0 < 6 < 6G, . 

which.is assertion (b). 

We have established that for n > 2, the functions 

fn(x,y, b)\ form a sequence of continuous, uniformly con

vergent functions for (x,y) in R and 0 ̂  5 < 5q. Thus the 

limit function f(x,y,5) is continuous for these values of x, 

y, and 5. In particular for 5=0, f(x,y,5) has the value 

given by 

(3.45) f(x,y,0) = limit f(x,y, 6) 
5 —» 0+ 



36 

= limit limit fR(x,y,6) 
5—• 0 n-> oo 

= limit fn(x,y,0) 
n-> co 

By direct computation, 

v(x,y) = f (x,y,0) 

is shown to satisfy problem VI. This completes the proof of 

theorem 1. 

The natural question that one asks after reading theorem 

1 is : Are all of the conditions imposed by the hypothesis 

necessary? We attempt to answer this question, at least in 

part, by the remaining theorem and two examples. We note that 

(7) and (8) of theorem 1 are definitions rather than restric

tions on the generality of problem IV. We concentrate then on 

the conditions (1) through (6), and first look at condition 

(1), which restricts the region R. 

It is quite clear from the proof of theorem 1 that the 

line x = 0 represents a natural boundary, for the function 

f(x,y,5) satisfies the condition 

£(0,y,5) = p (y) , 

when 5/^0; yet the function f (x,y,0) was shown to satisfy 

problem VI in R. The function f(x,y,0) which satisfies VI 

will not in general take on the value (3 (y) when x = 0, as is 

well known. 
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One might suspect that theorem 1 would be true for (x,y) 

in the second quadrant, so long as conditions (2) through (6) 

of theorem 1 were true. The following example illustrates the 

difficulty there. 

Example 1. 

We consider the following problem: 

Buxy- uxuy = °> 

VII 

u (x, 0) = a(x) , 

u (0, y) = (3 (y) , 

a (x) = -x + a (0), 

P (y) = y + a(o),. 

a(0)> 0, 

and 

6  >  0 .  

Comparing this problem with IV, we see that it corresponds to 

the case 

A(y) = C(y) =0, 

and 

B(y) = 1. 

Further, we note that conditions (2) through (6) of theorem 1 

are satisfied. The solution of problem VII, when it exists, 

is given by 

(3.46) u(x,y,5) = -6 In exp G(X) 
5 

+ exp i-IIXL 
I 5 

- exp Q (0) j 
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We notice that the function u(x,y,6) defined by equation 3.46 

does not have derivatives with respect to x and y when the 

expression 

(3.47) exp o-(y) j + exp -j_ P(y) ̂ - exp a(0) ̂ 

is zero, and thus at points (x,y) such that expression 3.47 

vanishes, the solution to problem VII does not exist. We pro

pose to show that for each negative x, and for each positive 

6 less than some positive 6q, there exists a positive y such 

that expression 3.47 is zero, and that for fixed x these 

values of y tend to zero as 5 goes to zero. 

Let x = -K X 0. Then 

a (-K) = K + a (0) 

> 0 .  

Inserting the explicit values for a (x) and (3 (y) at x = -K, 

we may write expression 3.47 as 

(3.48) [exp a(0)j][exp - (1-exp ^ )]. 

We see that expression 3.48 will be zero provided that 

(3.49) y = -ôln [1-exp ]. 

Since _ £ <* 0, there exists a 6q such that for all 5 satisfy

ing the condition 

0 5 < 50, 
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it is true that 

0 < 1-exp ïS | < 1. 

Therefore, for each 51 such that 0 < 5^ < 6g, we have a posi

tive number y^ defined by equation 3.49, such that the partial 

derivatives of u(x,y,5) as given by equation 3.46 do not exist 

at the point (-K, y^ , 61 ).. It is clear from equation 3 .49 that 

as 5 goes to zero, the y defined by equation 3.49 also goes to 

zero. This implies that for each negative x, the point (x,0) 

is a limit point of points where the solution of VII fails to 

exist. We see then that the region adjoining the x-axis in 

the second quadrant in which the solution to problem VII ex

ists shrinks to include only points on the x-axis as 5 goes to 

zero. This example illustrates that the conclusions of 

theorem 1 may not be valid when conditions (2) through (6) are 

satisfied and the region R is replaced by a similar rectangle 

in the second quadrant. 

We note that theorem 1 placed conditions on the signs of 

the derivatives of the prescribed functions, a (x) and (3 (y) . 

To see that some such condition is necessary we cite the 

following example. 

Example 2. 

Suppose that all of the conditions of theorem 1 are 

satisfied except the condition that a1(x) be negative. In 

particular, suppose a'(x) is zero. Then a(x) is the constant 
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p(0). In this case, the solution to problem IV is 

u(x,y,6) = |3 (y) , 

which in general will not satisfy the differential equation of 

VI. 

The conditions 

B(y) > 0 

and 

P(y,5) > 0 

both depend on the nonvanishing of B(y). Let us then consider 

the case B(y) = 0. 

Theorem 2. 

Let 

(1) R be the closed rectangle 

0 < x < %2 

0 < y < y 5 y2; 

(2) B (y) = 0; 

(3) A (y) |3 (y) +C (y) < -K < 0 ; 

(4) a' (x) -£• 0; 

(5) A (y) >0; 

and 

(6) 5 > 0. 

Then if u(x,y,6) is the solution of problem IV in R, it is 

true that 

limit u (x, y, 5) = P (y) . 
6 —» 0+ 
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Proof. 

In the case B(y) = 0, the differential equation of prob

lem IV reduces to 

(3.50) 5uxy - Auux - Cux =0. 

We find the explicit form of the solution to problem IV for 

this case as follows. Integration of equation 3.50 with 

respect to x and application of the condition u (0,y) = p(y) 

to the resulting relation yields 

(3.51) 6Uy- 6p' = | (u2-(32) + C(u-p) . 

Let w = u-f5. Then we get 

(3.52) 6w = ̂  w(w+2(3) + cw, 

or 

(3.53) 5wy 
—- - i (Ap + c) = â. 
w2 . . " \ 2 " 

1 Let us define v = —. Then we obtain 
w 

(3.54) v + ̂  t'C v = _ A_ 
r 25 

which is linear in v. The solution of equation 3.54 is given 

by 

(3.55) v (x, y, 5) exp A (s) ÉHS) ̂  (s) ds^ 

= v(x,0,6) - r A(t) exp \ f A(s)P (s)+C(s)Hg[ dt. 
J0 25 5 J 

Writing equation 3.55 in terms of u(x,y,5), we get 
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(3.56) u(x,y,5) = p(y) 

C py A(s)g(s)+C(s) 
>1 .a (x) -p (0) ] expl / ds Y 

I J q  J 
+ . 

1- [a(x)-p(0) 3 J A(t) exp^ J" A(s)pjs)+C(s)agjdt 

We consider (x,y) in R as defined by condition (1) and assume 

that conditions (2) through (6) are satisfied. Then we may 

write 

(3.57) a (x) -f3 (0) < 0, 

using condition (4). From inequality 3.57 and conditions 

(5) and (6), it follows that 

(3.58) 1 - ["(x)-P(O) 1 fYA(t) exp î f MslÈlsliSiS.)dsldt 
26 O L J0 8 J 

^ 1. 

Using condition (3), we see that 

(3.59) 0 < limit+ exp j JY ^(s)P^s)+C(s)^^j 

5 exp VK = \ 
= 0. 

From equation 3.56 and inequalities 3.58 and 3.59 we conclude 

that 

(3.60) limit u(x,y, 6) = p(y). 
5 —* 0"*" 

We note that all of the conditions set forth in the 
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hypothesis of theorem 2 are not necessary. For a case in 

point, see example 2. Any set of conditions which insure 

that the second term on the right in equation 3.56 goes to 

zero as 5 goes to zero suffices. The conditions (1) through 

(6) were chosen because they most closely parallel the con

ditions in theorem 1. In fact, by properly choosing A, B, 

C, a, (3, and 5, we may satisfy conditions (2), (3), (4), (5), 

and (6) of theorem 1 and for the same choice of A, C, a, (3, 

and 6, but with B = 0, we may satisfy (2), (3), (4), (5), and 

(6) of theorem 2 in a closed rectangle in the first quadrant. 

For example, 

A = 1, 

B = 1, 

C = -2y, 

a = -x, 

P = 2y, 

and 

0 < 6 < 1, 

satisfies (2) through (6) of theorem 1 if 0 £ y 5 1; and 

A = 1, 

B = 0, 

C = -2y, 

a = -x, 

P = 2y, 

and 
0 c 5 < 1 
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satisfies (2) through (6) of theorem 2 when 0 < y < 1. Thus 

we see something of the general nature of the dependence of 

the solution on B(y). 

We note that the same type of arguments used in this 

theorem would suffice for the case y < 0, provided that the in

equality restricting A, £, C, and 5 were reversed. Note also 

that among the functions A, p, and C for which A(y)(3 (y) +C (y) 

is not negative are included the functions A(y)= C(y)= 0. For 

this case problem IV reduces to simply 

GU^y = 0 

VIII u(x,0) = a(x) 

u(0,y) = P(y) 

whose solution 

(3.61) u (x,y) = a(x) + (3{y) -a(0), 

is independent of 5 and for which the conclusions of theorem 2 

do not hold. 

We note that the reduced equation, that is, when 5=0, 

in problem IV may be written as two equations 

(3.62) Au + BUy + C = 0 

and 

(3.63) ux a 0. 

We have given, in theorem 1, sufficient conditions that the 

solution to problem IV approach the solution of equation 3.62 

which takes on the values prescribed by problem IV along the 

x-axis. In theorem 2, we have given sufficient conditions 



45 

that the solution of problem IV approach the solution of 

equation 3.63 which takes on the prescribed conditions along 

the y-axis. It would have been quite interesting, but rather 

improbable, had we found sufficient conditions of a general 

nature which insure that the solution of problem IV approaches 

the solution of equation 3.62 which takes on prescribed values 

along the y-axis, because the conditions 

Au + Buy + C =0, 
IX 

u(0,y) = [3 (y) , 

do not uniquely determine the function u(x,y). This is so 

because the line x = 0 is a characteristic line for equation 

3.62. A similar remark may be made about the problem 

X 
u (x,0) - a (x) , 

for which y = 0 is a characteristic line. 

Finally, we note that the two characteristic lines 

x = 0 

and 

y = 0 

enter our theorems as boundaries, in a manner similar to that 

in which the characteristic line 

Ay = Bx 

enters the linear hyperbolic problem considered in the second 

section of this paper. 
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