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INTRODUCTION

In the last few decades, mathematicians have become in-
creasingly interested in the behavior of solutions of partial
differential equations in which the coefficient of the highest
ordered term depends on a parameter. The study of such param-
eter dependent solutions seems to be important for the follow-
ing reasons:

1) it may justify the construction of solutions in terms
of solutions of lower ordered equations;

2) it may justify the construction of "generalized solu-
tions" (that is, solutions with lower class properties) in
terms of limits of regular solutions of higher ordered equa-
tions; and

3) it may shed some light on the general question of the
nature of the dependence of the solutions on the coefficients
of the equation.

Linear partial differential equations in two independent
variables have been rather completely analysed. Levinson [8]
has considered the boundary problem for the linear elliptic
partial differential equation
(1.1) Su

+ 6uyy + Auy + Bu,, + Cu = D,

XX Y

where A, B, C, and D are functions of x and y. He has shown,
under fairly general conditions, that in the region interior
to the prescribed boundary the solution u(x,y,8) approaches

the solution of the first order part of the equation, as &



goes to zero through positive values. Aronson [1] studied the
first boundary value problem for the linear parabolic partial
differential equation

(1.2) duxx + Aux + Buy + Cu = D,

and has obtained results analogous to those of Ievinson.
Blondel [3] has announced complete results for the linear hy-
perbolic equation

(1.3) ©lAuyy, + Buyy + Cuyy] + auy + buy + cu =0,

where A, B, C, a, b, and c are functions of x and vy.

The results for nonlinear partial differential equations
are not nearly so complete. Due to the absence of a general
theory concerning the behavior of solutions of nonlinear prob-
lems, we agree with Hopf [5] in the opinion that continued
study of special problems is a commendable way to approach the
subject. Hopf himself has studied the behavior of the solu-
tion of the initial value problem for the nonlinear parabolic
equation
(1.4) HUyy = uu, + uy
as W goes to zero, and has shown that in general the solution
approaches a discontinuous function; but except for these dis-
continuities, the limit function satisfies the reduced equa-
tion
(1.5) uuy + ug = 0,

In two later papers, Lax [6,7] considered generalizations of

this equation of the form



(1.6) HUyy = af(u) uy, + ug

in his studies of hyperbolic systems of "conservation laws".
Both Lax and Hopf were interested in the parameterized equa-
tion from the standpoint of finding generalized solutions to
the first order equation as limits of regular solutions to the
seccnd order equations, Hopf's analysis was greatly facili-
tated by his observation that the equation 1.4 can be trans-
formed into the linear heat equation

(1.7) e = ubxx,

about which a great deal is known.

It is the purpose of this paper to study the behavior of
the solution of the Goursat problem for the nonlinear hyper-
bolic equation
(1.8) 6uxy - Auuy, - Buxuy - Cuy =0
where 5 is a small parameter and A, B, and C are functions of
y only.

We first prove, in the next section, a special case for
one of Blondel's theorems [3] in order to give the reader some
feeling for the hyperbolic problem, as well as to illustrate
certain differences which arise between the linear and nonlin-
ear problems. Since Blondel's results were published without
proofs, the arguments given are necessarily original, and so
may be quite divergent from the methods employed by Blondel.
In the third section we establish sufficient conditions that

the solution of equation 1.8 which takes on prescribed values



on the coordinate axes converge to the solution of the reduced
equation
(1.9) Auux + BU.XU.Y + Cux = O,

as b goes to zero,.



A THEOREM OF BLONDEL

In this section we prove the following special case of

Blondel's results [3] . We consider the linear hyperbolic
problem:
6uxy ~ Auy, - Buy = 0,
u(x,0) = alx),
I
u(0,y) =gy,
a (0) =p(0),

where A and B are constants and 8 is a parameter, and the as-

sociated linear first order problem:

]

Av. + Bv
X
II Y

v(x,0)

0,

i

Then we establish the following theorem.
Theorem.
Let
(1) R be the closed triangle
0<xl§xSxT
OSyg%x_%xl,

for some positive constants

(2) A > 0,
(3) B > 0,
(4) 6 < 0,

(5) a(x) be of class Cz,
(6) pB(y) be of class Cl,

(7) u(x,v,5) be the solution to

a(x).

X, and Xo, X1 % X

problem I in R,



and

(8) v(x,y) be the solution to problem II in R,
Then u(x,y,d) converges uniformly to v(x,y) for all (x,y) in
R as O goes tc zero through negative values.
Proof.

As in the works of Hopf [5] and Lax [6], this proof re-~
lies heavily on the explicit solution of I. Let (x,y) be in
R, and let conditions (1) through (8) be satisfied. Then
u(x,y,8) is given by
(2.1) u(x,y,5) =

Y X
a(x)+p (y) -a(C) + % exp {gx——;ﬂ}fo fo [Aa’ (s)

+ BB' (t) Jexp {-— Bs_g-_@_t_} I %j/él—g‘g- (x-~s) (y—t)} dsdt,

where Io(x) is the modified Bessel function. Through the

change of variables of integration from s and t to

o= %(s—x)

A
T = Flt-y)
we may write equation 2.1 as
(2.2) u(x,y,8) = a(x)+B(y)-a(0)
— Ay _ Bx

+%/O~ afo 5 Io(zm)a.(x+§g)exp {—(0+T)} dodt

_Ay _ Bx

Jf o ° 10(245¥)B'(y+~gr)exp {-(o+¢)} dodt.
0 0 A

o

+



. k
If we recall that the Laplace transform of IO(Z'th) is e at

s=1 [4], we may write

(2.3) & JP J[ I, (2407)B" (y+-—T)exp { (O+T)} dodt

o
°’|3

B'(y+2T)ar
A

(&}

I,(2/67)B" (y+ %T) exp {-(o-w)} dodt

-
d;\jl
ol
uf\\jk

— =X
0
Ay oo
b -5 [ ° [ 1,@s v+ Boexe { -(o+0)} acar.
0 Ex

Hence the solution may be written as

(204) u(X)YJ6)=

& [ O 0 5
a(x)+ E;é JQ IO(2 JE?)Q'(x-kﬁwjexp {~(c+¢)§ dodt

_Ay
5 QO
8] 0
- = I (2 A ' - - dodT.
-Adg ‘1;5 O( oT) P (y+—AT)exp { (0+T)} odt
o)

If we change the order of integration in the first of the

double integrals in equation 2.4, we may write



8X
S IO(2 Aot)at (x +-§-0) exp {—(0-1—':)} dodt

[

—

(2.5) %V[

o\

— %Y_ oo}
/(; L I,(2 '\/'E‘C)Ov'(x+-g- g) exp {—(0—{-'{,‘)?(31(16

wijo

5 Jé% 00 }
"B I,(24 ot)a’ (X+§ o)exp 1 ~(o+1){ dtdo
fO _féx ° B {
5

_Bx _ Ay
0 )
+ % f IO(Z AJot)a! (x+% 0) exp {-(G+T)} dtdo,
_ Ay "0
0

We again make use of our knowledge of the Laplace transform of

10(2 AN Ot) to obtain

— AY o
(2.6) %fo ° O Io(2 400 ar (x+ 2 o) exp {_(o+~r)} dtdo
- Ay
D
=%j; a'(x+—g- 0)d0=a(x—%y)—a(x).

The second double integral on the right in equation 2.5 we

resolve as follows:



_.%loo )
(2.7) _.g.f Iy (267) o (x+§o)exp {-(o+0)§ arao
0 Ay
o]
- Ay _ Bx
= _%f 5 f I, (24o7)a’ (x+—0)exp% (O‘H)} dtdo
0 _ Ay
5}
—AY o
——%j(; o Io(2+07)a (x+%c)eXPg‘(U‘H')} drdg.
- Bx
B

If we make the change of variable o=71 in the first double
integral on the right of equation 2.7 and then change the

order of integration on that integral, we get

?%X &
(2.8) _%% Io (245 a* (x+ 8 o) exp {-(o+ 7)1 arao
_ Ay
5
_ _éX
%f f I, (24 ot)a' (x+ 28 T)exp{ (0+T)§ atdo
— Ay
)
Ay ®

wkm

= 6f To (25 o (x4 o)exp {~(or 1)} ara.
0

~r
D

3
We may combine the results of equations 2.6 and 2.8 with equa-

tion 2.5 to obtain
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(2.9) & [
=)

Ay
_§F 5[ 10(2«/?1)a'(x+§o)expi"("”)§deO

e} \gﬁ

5

s}
]
o

and then use equation 2.9 with 2.4 to get

(2.10) u(x,y,6) = (x- %y)

—_ Ay o
- %\g s 10(241’6‘1)a-(x+-g- )expi—(o+'r)g dtdo
— Bx
o)
6 — Ay o
- A—f o I, (2 W)B'(y+% T)exp{—(0+'r)§ dodt
0 _Bx
o}
- BxX _ Ay
9] 0] 0
+ 'gf f Ip(2 ~ot) [a' (x +% ora' (x+%1) Jexp {—(o-i-'r)}d'rdc.
- Ay 70
o

The first two integrals on the right in equation 2.10 may be

combined to yield
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(2.11) u(x,y,d) = a(x—%y)
_%100
- Q_f f I, (2450 [Ac! (x+2 0)
AR B
0 _ Bx
5

+ BB‘(y+~%o)]exp{ -(0+7)} dtdg

tw
x
|

ol

T
* —S-f f I,(2467) [a* (x+ 2 o)

. 5 _ )
- a'(x +§T)] exp{ (c+r)5 dtdo.

Now the function a(x - % y) is the solution to problem II.
Thus i1f we can show that the integrals in eduation 2.11 go to
zero uniformly as & goes to zero through negative values, for
(x,y) in R, we will have proved the theorem. We shall estab-
lish that each of the integrals of equation 2.1l has the limit
zero as © goes to zero, the convergence being uniform in R.

Since we have assumed that g(x) is of class C2, we may use the

identity
S g
a'(x+g0) ~a'x+81) =8 (o-1) o"(2)
where
0¢ z< x.,
Let
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‘Then it follows that

_Bx _ Ay
o} 5 s) ' ]
(2.12) | 2 f I,(20G7) [o! (x+ 2 0)
_ Ay 70
0 - a'(x+—%1)]exp§:—(o+1)} dtdo
_Bx _ Ay
0 o) .
< 62M¥/‘ JF IO(ZJEE)exp {—(0+1)} drdo.
_ Ay 0
)
Next we recall that
0o k _k
(2.13) 10(2»/57:) = 5 O 12
k=0 (k!)

If we use edquation 2.13 and perform the integration term by

term, we may write

Ay -
(2.14)f 6 Ig(2vor)e " (o-t)dr
0

_ Ay o X - Ay
o0 X+ . 0 -
. % o +1 Jf 8 Ke~Tdy - g Jf O Lkl ~Tar
k=0 (x!)2 Jj k=0 (x!)2 Y0
n
©  k+l ay k(L 2y)
= 2 — [l - e z 5 ]
k=0 k. n=0 n!
e AY x4 ay ¢
- Z 951¥ill [1 - ® 5 (= ) ) 1.
k=0 ki n=0 n.

We treat the double integral on the right side of inequality
2.12 as an iterated integral and perform repeated term by term

integration, utilizing the results of equation 2.14, to get
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_Bx _ Ay
5 5 (ot
(2.15)JF IO(ZJBE)e (o )(U—T) dtdo
Say "o
9]
n — BX
o A k Ay 5
1 (— ) -
= 2 L - e_% s 5 ]f ok+1,7%g
k=0 n=0 n: ’_ Ay
5]
Ay  k+1 Ay B - &
@ + (— ) 0
-z kil oy L e_%: = 5 ] ¥e%0
k=0 k. n= n! ~Aay
5
A
S 1 &3 (— 2" o Kl
=z (1 -e 2 5 " [ e (k+1)! 3
k=0 n=0 n' m=0
Ay om Bx Bx m
(~ 2% ) K+l (= 2%
6" - e® (k+t1)! 3 "
mi m=0 mi
A n A
w Y k41 _ Ay ay X _ Ay \m
oz Edy 0y Ty 0y 5 EF)
k=0 *- n=0 n' m=0 m!
= koo Bx )T
-e " k! 3 N ]
m=0 m!

We may simplify equation 2,15 to obtain
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_Bx _ Ay
9] B -(0+ 71
(2.16) 0< Jf JF IO(ZJE%)e ( ) (c- t)drdo
_—ay 0
8}
k
Bs o (-2 = o
= e (- &) = - e (—Bx) =
0 *=0 k! 5 k=0
Av+Bx k+1 , n
S (— BX ) k(- 2Y)
5 g 5 . 5
-+ e s N -
k=0 (k+l): n=0 n.
Av+Bx K+1 n
5 o (- 5% ) ko (- BE)
- e Z . Z n
k=0  (k+1)! n=0 n!
< - &y - Bx 4 2
5} o)
< - 2Bxy L.
5]
It follows that
_ Bx _ Ay
B
0 < limit 62.M- f IO(Z\/BTr)e‘(OH) (O—T)d’fdo
6__)0— z__\i 0
3}
< limit 2, . 2BxX
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uniformly for every (x,y) in R. By inequality 2.12, this im-

plies that the expression

Bx -

’1[ \f I QW—H'WX+—G%ﬂWx+§TH -9+ ard0

goes to zero uniformly in R as O goes to zero.

Next, let K be given by

K = 2 max ﬂaB(xl |ﬁ'(yl |

for (x%,y) in R. Then it is clear that

- Ay
(2.17) 0 ¢ -5 ° I (2457) [Aa' (x+ 2 o)
B 0] B
0 _Bx
5
o) c
+ BB'(x+ 3 0) Jexp 1—(0+¢)} dtdo
— Ay o
B
< -0K J[ I_(2VoT)exp {—(0+¢)} drdo.
ex ©
We recall that o

(2.18)  0< Iy(2V07)

~
n

= # [ 2 [exp(2VG%T sin 6)+ exp(-2V37 sin ©)] de
0
< —;‘- [exp(2 NOT) +1 .

Therefore
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_AY o
8}
(2.19) o0« Jf 10(246?)exp{‘—(0+¢)§ dodTt
o)
— Ay 4
1 6[‘
< Ek/‘ J exp {-( T - J6)2} dtdo
0o Bx
o}
_ Ay
1[ 5 Bx
+ = exp {——-— }do
2“0 3]
— %¥ @ ,
= % [ JF (9+'J5)exp(—92)dedo
J
0 p

+_;—_exp(-B?X) [1 - exp (A_ﬁz) I,

Now,
_ %? @
(2.20) O <f / (6+V3) exp (-62) dedo

0 o)

— Ay _ Ay oo)
0 5

= uf exp(-pz)do %—JF Vﬁ;u[ exp (-92)d9d0
0 0 o)

Ay Ay
5 2 1 5
exp (-p“)do + 5

29 exp(-p2)ac
0 P
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1
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o
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fof
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e
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o
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o
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o
>
D
{;

, 2
=1 VABXy , | exp {}’VBX - /ay] } - exp (%?)
[ VBx - VAy) °

Since for (x,y) in R, we have
Ay < Bx - Bxl < Bx,
we may conclude from inequality 2.20 that

y
0 € limit =~ 6KL/‘ u[ I (24 07)exp {—(U+T)} dodr
50" 0

=0,

uniformly for (x,y) in R. Therefore it follows from inequali-



18

ty 2.17 that the expression

- &Y o
6 .
-2 I, (2 45 Aot (xt 8 )
v IBx
8}

+ BB' (y+ -E-o)] exp i—(oﬂ)\g dtdo

converges to zero uniformly in R as © goes to zero through
negative values. The proof of the theorem is complete,

A similar theorem holds in a closed triangle in the first
duadrant above the line

Ay = BX,

provided the class properties ascribed to a(x) and g(y) are
interchanged. 1In this case, the solution of I approaches
the solution of the problem

Avy + Bv o,

[}

Y
IIT

v(0,v)

i

B (y),
as b goes to zero through negative values. Analogous results
may clearly be obtained in the third quadrant,
It should be noted that the line

Ay = Bx

is the characteristic of the first order equation
Auy, + Buy = 0

which passes through the origin. Since by hypothesis

A >0,

and
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B > 0,

this line divides the first and third quadrants each into two
sections. The results of Blondel [3] then assert that in any
closed region contained in one of these four sections, the so-
lution of problem I for negative ® tends uniformly to the so-
lution of the first order edquation which takes on the values
prescribed by problem I on the axis adjacent to the section.
Blondel further reports that under the same conditions on A,
B, and J, these results will in general not hold in quadrants

two and four.
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A NONLINEAR PROBLEM
We consider the Goursat problem

du - Auu

Xy % — Buju,, - Cu, =0,

Yy X
u(x,0) = a(x),

B(y),
B(0),

iv

U(O:Y)

a (0)

where A, B, and C are functions of y only and ® is a real-
valued parameter. We restrict A, B, and C to be continuous
functions and both a(x) and B(y) to be of class Cl, The ex-
istence and uniqueness of the solution of IV, in a neighbor-
hood of the origin, is assured [2]. The object of this sec-
tion is to study the behavior of the solution, u(x,y,d) of

IV as b goes to zero. Let us note that the reduced differ-
ential equation in IV, that is,

{(3.1) Auu, + Bu,u,, + Cu, = 0,

N4

may be factored and written as the two differential equations

(3.2) Au + Buy + cC =0,
and
(3.3) uy, = 0.

Hence there would appear to be more possibilities for the
limit u(x,y,0) as 5 goes to zero ithan in the linear case.

In the proof of the theorem given in the second section
for the linear hyperbolic problem, we used the explicit so-
lution for fixed ® as the basis for the analysis. In Hopf's

work [5] with the nonlinear parabolic problem, he relied on a
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linearizing transformation to facilitate his studies, Lacking
both of these tools, we resort to the construction of a prob-
lem which is equivalent te IV, but which appears in the form
of a nonlinear integral equation. The edquivalence is estab-
lished in the following lemma,
Lemma.

When B(y) # 0 and & # 0, problem IV is equivalent to the

integral eduation

u(x,y,0) = exp 9 - /wY Als) 4 a(x)+JFY [; da(t) _ c(t)
0

Jo B(s) B2(t) B(t)
\% ' t
B(t) _ A(s) :
+ P(t,6)¢xp . [u(xét,ﬁ) B(t)]) |exp JQ 5 (s) ds}dt

where

(3.4) P(t,5) = 2LE pro)4pr (v)+ SALE) 4 C(¥)

Prqof of lemma.

It is clear from the statement of problem V that every
function u(x,y,%) which satisfies V is such that u(x,0,8) =
a(x). Let us éuppose that uy(x,y,0) and u, (x,y,0) are two.
functions which satisfy V, and further that
(3.5) uz(d,y,ﬁ) = B(y).

Then we define the function w(x,y,08) by the relation

(3.6) w(x,y,0) = ul(x,y,ﬁ) - u2(x,y,6).

From V, it follows that
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(3.7) w(x,y,0) =

y R (
A(s) s) B(t)
exp{L/C; E_((E)dsff p(t,§)exp{ . E{E)dsk exp{ 5 [ul(x,t,ﬁ)

-B8(t) ]} -exp {g‘%y [u2 (x,t,8)-p(t) ]}] dt.

Combining equation 3.5 and 3.6, we see that
(3.8) w(0,y,d) = ul(O,y,é) - P,
and thus we may write - '

(3.9) w(0,y,0d) =

| y (B
exp{z/;) %(ngds} fP(t 6)expif§*_§§ } [exp ( 5 w(O,_y,._S)} '

| '—1] dt. o
We define the function v(y,8) by | |
(3.10) v(y,8) = w(0,y,8). .

Then from equations 3.9 andj3‘.lO,' we get

(3.11) v(y,d) =

exP{f %%z-)ds}\/(;?(t,ﬁ.)‘exp{/(;?]s

0

N .
Am:.<

s; ds} : [exp{gis—t)\}(y,é)}

~

-1] dt,

and

(3.12) vy(y,ﬁ)— (Sz) v(y,d)+P(y,0d) [exp {——(X)V(Y,B)} -
B(y)
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Since both ul(x,y,ﬁ) and u2(x,y,6) are solutions of V, we have

that
ul(x,O,B) = a(x),
and
u2(x,0,6) = a(X).-
Then we obtain .
= w(Q,O,b)

(3.13). v(0,08)

i

uy(0,0,6):- uy(0;0,8)

a(0) - a (0)
= o.
Now the identicaily zero fﬁnction satisfies équation 3.12 and
3;13 and since the solution of equation 3.12 which satisfies
equaﬁion 3.13 is unique [2] , we must have
(3.14) . - t v(y,d) = 0.
From equatioﬁs 3.14, 3.10, and 3.8, we see that
| ul(o,y;6) - B(y) =0, |
from Which'We conclude that if problem V has a solution
u(k,i;S) such that - | |

| w(0,y,0) = Bly), |
then every.sclution of V assﬁﬁesLthe‘value-B(y)'When_x =0,
The fact that there is”a solution u(x,y,?%) such that u(0,y,05)
= B(y) will be clear when we show that every solution of<iV
satisfies V, since the existence and uniqueness of the solu-
tion of IV is known [2] . To see that the solution of V

satisfies the differential equation of IV, we solve V for
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N

Y
u(x,y,&)exp{f s;dsé
0

and differentiate with respect to y to obtain

55
Am

3. A(y) | Y a

Y ) : ’
exp {f A(s) ds} _ ba(y) _ c(y) -
(Yo B(s) B2(y)  B(y)

+ P(y,b)exp {Eﬂ)'[‘u(x,y,ﬁ)'—ﬁ(y) ]} Is
a’na hence.'

(3.16) y(x,y,6)+ éﬁl) u(x,y, )

B-’-(y) B(y) ‘

If we differentiate equatlon 3.16-w1th respect_-to- X, we get

(3.17) uxy(X,y, 0) Uy (X")Y:é)

B(y)

< B uy(e,v,0) {ayGy,0 s B utny,0)

+ 0A(y) . C(y)}
B2(y) Bl(y)

Equation 3.17 may be written in the form
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(3.18)  DBuyxy(x,y,8) = A(y)ux(x,y,8)u(x,y,d)

+ B(y)ux(x,y,B)uy(x,y,a)

+ C(y)ux(x,v,0),
and this is precisely the differential equation of IV, There-
fore evefy solution of problem V satisfies problem IV, pro-
vided there exists one solution of problem V which assumes the
value B (y) when x is zero.

To see that the converse is true, we suppose that u =

u(x,y,8) is a solution of problem IV. We define
(3.19) w = Au + Bu,, + C.
Then wy is given by
(3.20) Wy = Auy + Buyy,

and the differential equation in IV may be written as

- uyw = 0,

(3.21) -g—wx --E——ux

whose solution is

w(x,y,0) + 8A(y)
(3.22) - log B(y)
w(0,y,6) + A

=B :
B (u(x,y,8)- u(0,y,08)] .
From equation 3.19 and the fact that u(x,y,8) satisfies IV,

we obtain

(3.23) w(0,y,8) = A(Y)B(Y)+B(¥)B' (Y)+C(y).

Using equation 3,23 we may write equation 3.22 as
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(3.24) w(x,y,0) = — BB 4+ [A(y)B(9)+B(¥)B" (¥)
B(y)

+ B 4 cy) Jexpd B [uge,y,8)- 5 ()] -
B(y) o

Next, we solve equation 3.19 for u as a function of w to get

| Y
(3.25) u(x,y,d) = exp jp als) ds} a(x)

0 B(s)

+ fy exp t é_(g) ds [W(X,t,a) ~C(t) ]dt—l
0 o Bs) B(t) B

Elimination of the function w between equations 3.25 and 3.24
yields V, and the proof of the lemma is complete,
We define the problem:

Av + Bv,, + C = 0,

Y
VI
v(x,0) = a(x).
In the next theorem we establish sufficient conditions that
the limit of the solution of problem IV as 6 goes to zero be
the solution of VI.
Theorem. 1.

Let' (1) R be the closed rectangle:

0< x. ¢ x £ X5

1
0sy gy,
for some positive constants X1, X5, and Yo,

Xl % X2,'
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(2) B(y) > 0;
(3) © > 0;
(4 B (Y % 0;
(5) a'(x) < 0;
(6) P(y,8) > 0, where p(y,b) is defined by equation
3.4;

(7) T be. the transformation defined by

Tf(x,y,0) = exp i -jp A(s) ds} [ alx)+ y—— ba(t) _ c(x)
_ o

o B(s) B2(¢) B(t)

t
+ P(t,d) exp {I—jéy[f(x,t,b)—ﬁ(t) ]}) expif %ﬁ(_:.; ds}dt
0

for & # 0, and

Q

= exp ~/ﬁy§i§)ds a(x)t/\ixp téiél _iE)dg] ,
: Yo B(s) 0 o B(s) \ B(t)
for b = 0;
and
(8) ﬁhe sequence - £, (x,y,0) Dbe defined by
£1(x,y,8) = B(y),
fn(x,y,ﬁ) = Tfnﬁl(xyy,ﬁ), for n=2,3,4,...
' Then-thefe-e#ists a positive humber 99 sudh‘that |
(a) the sequence f£f,(x,y,5) éonverges uniformly

for all (x,y) in R and all & such that 0< 56 €84,

(b) the function £(x,y,8) = limit f,(x,y,B8) is the
nN-—» GO
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solution of IV for (x,y) in R and 0< 6 g&o,
and -
(c) the limit £(x,y,0) converges uniformly in R
5 —0+
to the function v(x,y) which satisfies problem
VI.
Proof.

Let conditions (1) through (8) be sa;tisfied, and let (x.,y)
be in R, We first note that, for & # 0, _ |
(3.26) ﬁz(x,y,6)=. T8 (y) | o ‘ o
| = -exp-{t/\y —L—)ds} [j (x)
0. B(s)

f é_(_)a(t)+s () exp{ 'é’x_@ds} dt

B(s)
_0
= B(y)- [B(O)—a(x) exp{ f E%gg—ds}
< B(y).

Further, if 8 % 0, and
| L f(x%,v,8) < B(y),
then it foli.ows that |
(3.27)
n+l(x,y,ﬁ) Tf (x,y,B)

B(s) B?-(t) B(t)

(t)

+ P(t, 6)6X9{6

[£,(x,t, 6)-6(1:)} exp A(s)ds%dt
0 B(S)
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< exp{ %%3 } a(x)

t
+fy[ é.(f;)b(t)+6'(t)]exp{ a(s) st at
o  B(t) B(s)
_=-'f2(x,y,6)

< B(y).

Thus by mathematical -induction, we have that when © # O,
(3.28).'. j'A'1<fn(x,y,6) < £,(x,y,8)
B | < B(y), for n=2,3,4,...
Then there exiéts7a positivé éonstant K such that
(3.29) £, (x,y,8) B (y) € -K < 0,
for all (x,y) in R énd.all 5 # 0. -
. | 3 . |
Next, let us.consider‘thg series nil Sn(x,y,é), where
8, (x,y,8)= £1(x,y,6)
and |
Sn(x,y,é) = fn(x;y,ﬁ)— fn_l(x,y,ﬁ),
for n > 2. Then we.have
" k
,(3,30) 2 8,(x,y,0) = fk(x,y,é).
n=1
We propose to show that this series converges uniformly and
absolutely in R, Let a positive number 61 be chosen and let

M be defined by
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Y

Y
(3.31) M= max(expgtfo %Egds} f
- 0

for all (x,y) in R and all & such that

t
P(t,8)exp éii)ds} dt
uo B(s)

For & = 0, condition (2) and the continuity of B(y) imply that
B(y) is bounded away from zero. Therefdre, we have that
(3.32) limit M - ELXL exp‘ifK‘EiX)Zi=HO.

5~—>0t 5 : e ,
This implies that there exists a positive-nhmber 80 with_SOS
.61; such that for_all (g,Y)'in R and all & satisfying the'con—

~dition

it is true that
(3.33) 0< M- B(Y) exp {—K;Eéz)} < @ <1,
. | 5 _ | ,
for some positive constant 6, Then for
0< b € B,
and for some t' satisfying
0< t' <y,
we use a mean value theorem to get
(3.34) )Sn(x,y,ﬁ)
= |Entx,v,8) = £,_; (x,7,0)]

= |Tfn_l (x,7,8) ~T£,_, (x,7,0)|
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Y Y t .B_S_t.)
=expi-/c; g_(iz)d% Vg exp i]; %_(L:;d% P(t,b)%xp{ 6 [fn_l(x,t,a)

"b(t)]} -eXP {B—é’E) [fn_2 (X:ts 6)_i5(t) ]E]

M ciexp QB 6t')‘.[fn-l(x:t':6)“j(t')v]} -exp {Eﬁg—.) [fn-—ZA(t}_{.’t"b.)y. :

“ﬁ(t'l]g
Again using a mean value . theorem, we see that

(3.35) éxp { 3%—7;’.[’1‘?5;1(& £',6) =B (t*) ]}

' (B(t") ) - |
—exPi' B [fn_2 (‘X:f—":a)—ﬁ (t.) ]}

1 ’ | o ) . ‘ B(t')
= ELE_)[fn_l(x,tf,ﬁ)—fﬁ;zjx,t‘,ﬁ)]exp {‘ﬁ;—'z(x,t',ﬁ)} s
.0 : o o :
where z(x,t',%) is séme value: intermediate to

[fn_l(x,t',S)—B(tf)j and [fn_z(x,tf,6)-8(t?)] 3 both of which

are negative for n > 4. Ih‘fact,_for n P 4;-we have by equa-

tion 3,29

(3.36) z(x,t',0) € =K <0,

Combining equations 3.34, 3.35, and 3.36, we get

(3.37)

Sn(XJY:s) 5 fn_l (x:tl k) 6)

M Eizl)exp i—K Eji:)z
o) o}

-fn_z(x,t',é)
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< o - \fn_l(x,t',ﬁ)-fn_z(x,t',ﬁ)

= e ls 6,0,
for n 2 4 and O < p < 60,‘ From the definition of T for b= 0,
we n0te-that | '
£,(%,¥,0) = £, (x,y,0)
for n > .2, énd th@s;wevsee that '
| | Sn(x,y,o) =0

for n > 2. Therefore, for 0 < 0 < 50:'

co .
(3.38) b \Sn(x,ygS) <lSl(x,y,6)\ + \Sz(x,y,é)l
n=1 ’ .
. oo .
+ max \83(x,y,5) s e
(x,y) in R n=0
= }Sl(XJY’ 6)\ 'i'lsz(x:Y:@)\
+ max ‘83(x,y,6)l_;L_ .
(x,y) in R 1-e

We conclude that the series ?; Sn(x;y,é) is absolutely con-
S 120 . .

Vergent, and since the Coﬁtraction constant Gisuffices fdt all
(¥,y) in R and all & such that | |

| | 0< 5 < B
it follows that'tﬁé_series converges uniformly for these val-
ues of x, y; and . Since the series converges uniformly, the
sequence of partial sums must also converge uniforﬁiy; that is,

by equation 3.30, the sequence £ (x,y,d) converges uniformly

for all (x,y) in R and all & such that



Now because of the class properties ascribed to A, B, C, q,
and P, it is cleaxr that for each n, f,(x,y,08) is a continuous
function in R for each & # 0. For n > 2,

(3.39) llmlt fn(x,y,0)= limit  TE,_;({x,y,0)
§— 0t ' - 6—>O'i_'

= expi f —%—)ds}(}z(*{) fié—%gg exp{ %_((Ezdsi t]

A(s) g % a(t) .t__(_) :
s - A(s
%ll‘l(% ° eXp% /; B(s) jc; B(t) eXp{ /;B(s)ds} dt_

Yy Yy
+ limit exp -f A(s)gas f P(t,0)
5— 0t o B Jo

t
(times) exp{f %&; dS} exp igéi) [£,_1(x,t,8) B (t) ]} dt
0

Using equation 3.29, we see that for n > 2,

y
)
S)ds}fP(t.,ﬁ)

O .

s N
-

W

(3.40) 0« llmlt exp —f
6-—*0 0

t o '
(times) exp{ Jf %%%; ds} exp {ﬂa&) [£h-1(x,t,0) - (t) ]} dt
0 - » ' .

»

. v v
< llmlt exp ¢ -/ A(s) ds} J P(t,0)
5— 0t o B(s) 0

{times) exp{f _g_%_s_; ds} exp {-K B_s(_t—.)} dt
0



34

Y
LR - A S) 1
= %3__m:.§+ y expg L —(—B(s)dS}P(t ,0)

t.
(times) exp%k/\ s} exP-{_K Eé%L{}

for O'S t* € y. Since P(y,8) is bounded and B(y) is bounded
.away from zero for all (x,y) in R and all & such that 006 < -

60, we deduce that

(3.41) limit é-(-s—)ds}P(t'ﬁ)
aiT:O Yy er{ h/‘ B(s) _ I
(times) exp%fl éﬁ % exp {—K g—%t—')z= 0.
‘ 0 B(s) '

Using eguation 3.41 in inequality 3.40, and this result in

equation 3.39, we get

(3.42) limit+ £,(x,y,8) =

5 —0 o B -
-/~ A(s) C(t) A(s)
expi /; B(s)g a(x)f (t)exp {/; B(S_)ng dtl

= £, (x,¥,0),
for n > 2. Thus the functioné fn(x,y,ﬁ) are continuous from
the right at §~= 0 for n > 2. We conclude that for n > 2, the
functions £,(x,y,%) form a sequence of continuous, uniformly

convergent functions for (X,y) in R and all & such that
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0 € 0 ¢ dy. The proof of part (a) is complete.
let us now define

(3.43) f(x,y,0)= limit fp(x,y,0).
n-» oo

Because the convergence is uniform in R, then for & # 0, we
may write

(3.44) f(x,y,0) = limit £,(x,y,0)
. n-—»co

= limit Tfn_l(x,y,ﬁ)
n-—-» Qo

= T limit £__;(x,y,8)
n— o )

= TE(x,y,6).

From the definition of T, we see that equation 3.44 implies
that f(x;y,ﬁ) satisfies problem V. By the preceding lemma;
f(x,y,0) satisfies prdbiemllv for (x,y) in R and all © such
that | | |

| 0< 5 <5,
4which.is assertion (b) .~

 We haQe established that for n > 2, the functions
{ fn(x,y,S)E form a sequence of continuous, uniformly con-
vergent functions for (x,y) in R and 0 € & < 55. Thus the
limit function £(x,y,0) is continuous for these values of x,
Y, and d. 1In particular for & = 0, f£(x,y,0) has the value
given by

(3.45) f(x,y,0) = limit £(x,y,5)
5— 0t
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= 1limit limit £,(x,y,0)
b—0 n-—» 00

= limit £,(x,y,0)
n—>co

Y Y t
- A(s) _ T c(t) A(s)
exp /; E—E;) ds a(x) L/(; 5 (t) exp %\/; 55) ds% at | .

By direct computation,

v(x,y) = £(x,y,0)
is shown to satisfy problem VI. This completes the proof of
theorem 1.

The natural question that one asks after reading theorem
1 is: Are all of the conditions imposed by the hypothesis
neéessary? We attempt to answer this dquestion, at least in
part, by the remaining theorem and two examples. We note that
(7) and (8) of theorem 1 are definitions rather than restric-
tions on the generality of problem IV, We concentrate then on
the conditions (1) through (6), and first look at condition
(1), which restricts the region R.

It is quite clear from the proof of theorem 1 that the
line X = 0 represents a natural boundary, for the function
f(x,y,0) satisfies the condition

£(0,y,8) =p(y),
when b # 0; yet the function f(x,y,0) was shown to satisfy
problem VI in R, The function £(x,y,0) which satisfies VI
will not in general take on the value B (y) when x = 0, as is

well known.
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One might suspect that theorem 1 would be true for (x,y)
in the second quadrant, so long as conditions (2) through (6)
of theorem 1 were true. The following example illustrates the
difficulty there.
Example 1.

We consider the following problem:

du o,

xy; Uxly =
u(x,0) =a(x),
Vil u(0,y) = B(y),
a(x) =-x + a(0),
B(y) =y + ai0),.
a(0)> 0,
and
5 > 0.
Comparing this problem with IV, we see that it corresponds to
the case
A(y) =C(y) =0,
and
B(y) = 1.
Further, we note that conditions (2) through (€) of theorem 1
are satisfied. The solution of problem VII, when it exists,

is given by

(3.46) u(x,y,d) = =-bln eXPi—g%(&z + exp _E(X)_g

l.

-expil_gémz
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We notice that the function u(x,y,08) defined by equation 3.46
does not have derivatives with respect to x and y when the
expression
(3.47) exp i_ giEL} + exp {_ ﬁin} - exp %_ giglg
5 b )
is zero, and thus at points (x,y) such that e#pressionA3f47
vanishes, the solution to problem VII does not eXis#. We pro-
pose to show that for each negative x, and for eéchVPOSitiQe
b less than some positive 50 there'exiéts a positive y 'such i
that expression 3.47 is zerb, and that_fof'fixed x these
‘values of y tend to zero as b Qdes to zero. |
Let x = =K < 0. Then
 a(-K) = K+ a(0)
> 0.
Inserting the explicit Qaides for a(x) and B(y) at x = =K,

we may write expression‘3.47lasv

(3.48) [exp %_ @égi%)[exp &f _%§ -(1l-exp {_ %Z )].
We see thatvexpression 3.48 wiil.be zero provided that
(3.49) y = -8ln [ l-exp {— %E ]5

Since — % < 0, there exists a Oy such that for all © satisfy-

ing the condition

0 < 8 < By,
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it is true that
0 < l-exp%_%% < 1.

Therefore, for each 5; such that 0 < b, < By, we have a posi-
tive number y; defined by equation 3.49, such that the partial
derivatives of_u(x,y,ﬁ) as given by equation 3.46 do not exist
at the point (JK,y1,61). It is clear from equation 3.49 that
as 0 goes toiZero; £hé vy defined by equation 3.49 also goes to
zero. This implies”that for each negative x, the point (x,0)
is a limit point'éffpoints where the solution of VII fails to
exist. We see then ﬁhat the region adjoining the x-axis in
the second quadrant in which the solution to problem VII ex-
ists shrinks t@liﬁciude only points on the x-axis as 8 goes to
zero._-This}exémple illustrates that the conclusions of
theorem'i may:ﬁé£ be valid when conditions (2) through (6) are
satisfied éhéffgé'fégioh'R is replaced by a similar reétangle
in the second quadrant.

We note that‘thébrém 1 placed conditions on the signs of
the derivatives of the prescribed functions, a(x) and B(y).
To see that some such condition is necessary we cite the
folldwing example.
Example 2.

Suppose that all of the conditions of theorem 1 are
satisfied except the condition that a'(x) be negative. In

particular, suppose a'(x) is zero. Then a(x) is the constant
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B(0). In this case, the solution to problem IV is
u(x,y,0) = B(y),
which in general will not satisfy the differential equation of
VI,
The conditions
“B(y)> 0
and o
P(y,8) > 0
both depend on the nonvanishing of B(y), Iet us then consider
the case B(y) = 0.
Theorem 2.
Iet
(1) R be the closed rectangle

0 £ x < X5

0 < yl <y < y2;
(2) B(y)= 0;
(3) a(y)p(y)+C(y) € -K<0;
(4) a'(x) = 0; |
(5) a(y) » 0;
and
(6) © > 0.
Then if u(x,y,d) is the solution of problem IV in R, it is

true that

limit u(x,y,0) = .
5 —> 0+ Y, B (y)
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Proof.
In the case B(v) = 0, the differential equation of prob-
lem IV reduces to

(3.50) éuxy - Auu, - Cux =0,

We find the explicit form of the solution to problem IV for
this case as follows. ‘Integration of equation 3.50 with
respect to x and application of the condition u(0,y) = 5(y)_

to the resulting‘rélation yields

(3t51)~76uyf.65'.= 2 (u2-p?) + c(u-p).

Iet w = u-B. Then we. get

(3.52) - 6wy =A%‘w(w+25)+ cw,
or o
Y1 A
W2 ‘ w 2"
let us define:v = %;; Then we obtain
(3.54)v vyt ST v o= _ A

25
which‘is‘linear>in v; -The solution of equation 3.54 is given

by

(3.55) v(x,y,0d) expiL AIS)BS(S)-FC(S)dS\i

= V(X,O,S)—\/ﬁy A(t) exp ft A(s)B(s)+C(s)as} at.
0 25 0 o

Writing edquation 3.55 in terms of u(x,y,5), we get
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(3.56) u(X,YJa) = 6(Y)

Y a(s)B(s)HC(s), z
S

[ () = (0) ] expif :

0

: Y t
- (2000 M) el [ A(S)BéS)w(s)ds}dt
2§ 0 Yo

We consider (x,y) in R as defined by condition (1) and assume

that conditions (2} through (6) are satisfied. Then we may

write
(3.57) a(x)-p(0) £ 0,
using condition (4). From inequality 3.57 and conditions

(5) and (6), it follows that

. y t
(3.58) 1 - [Q(X)—ﬁ(O)] Jf A(t) exp %‘ [\ A(S)B(S)+Ci§)d;§dt
25 J o)
0 0
< 1.

Using condition (3), we see that

y
(3.59) 0 < limit exp%f A(sm(s)wiﬁ)dsz

< .. A
< limit, ex -K

s gt T il 6 g
= 0.

From equation 3.56 and inequalities 3.58 and 3.59 we conclude

that

(3.60) limit u(x,y,%) = B(y).
5—0t

We note that all of the conditions set forth in the
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hypothesis of theorem 2 are not necessary. For a case in
point, see example 2. Any set of conditions which insure
that the second term on the right in equation 3.56 goes to
zero as O goes to zero suffices. The conditions (1) through
(6) were chosen because they most closely parallel the con-
ditions in theorem 1. In fact, by properly choosing &, B,

C, a, B, and 0, we may satisfy conditions (2), (3), (4), (5),
and (6) of theorem 1 and for the same choice of A, C, a, B,
and 5, but with B=0, we may satisfy (2), (3), (4), (5), and
(6) of theorem 2 in a closed rectangle in the first guadrant.

For example,

A =1,
B =1,
c = -2y,
a = =X,
P = 2y,
and
0 €56 <1,

satisfies (2) through (6) of theorem 1 if 0 € y € 1; and

a=1,
B =0,
C = -2y,
a = -x,
B = 2y,

and
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satisfies (2) through (6) of theorem 2 when 0 £ y < 1. Thus
we see something of the general nature éf the dependence of
the solution on B(y).

We note that the same type of argﬁments used in this
theorem would suffice for the case y<0, provided that the in-
equality restricting A, B, C, and B were reversed. Note also
that among the functions A, B, and C for which A(y)B (y)+C(y)
is not negative are included the functions A(y)= C(y)= 0. For

+his case problem IV reduces to simply

Equ =0
VIII u(x,0) = a(x)
u(0,y) = Bly)
whose solution
(3.61) u(x,y) = al(x)+py)-a(0),

is independent of & and for which the conclusions of theorem 2
do not hold.
We note that the reduced equation, that is, when & = 0,

in problem IV may be written as two equations

(3.62) Au + Buy +C =0
and
(3.63) Uy = 0.

We have given, in theorem 1, sufficient conditions that the
solution to problem IV approach the solution of equation 3.62
which takes on the values prescribed by problem IV along the

¥-axis. In theorem 2, we have given sufficient conditions
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that the solution of problem IV approach the solution of
equation 3.63 which takes on the prescribed conditions along
the y-axis. It would have been quite interesting, but rather
improbable, had we found sufficient conditions of a general
nature which insure that the solution of problem IV approaches
the solution of equation 3.62 which takes on prescribed values
along the y-axis, because the conditions

Au + Buy + C =0

-
P-4

IX '
u(o,y) =p(y),

do not uniquely determine the function u(x,y). This is so
because the line x =0 is a characteristic line for equation
3.62. A similar remark may be made about the problem

u,, = 0,

X X

u(x,0) = a(x),
for which y = 0 is a characteristic line.
Finally, we note that the two characteristic lines

x =0
and

y =0
enter our theorems as boundaries, in a manner similar to that
in which the characteristic line

Ay = Bx

enters the linear hyperbolic problem considered in the second

section of this paper.
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