Nu: Enabling Modularity in Multilingual, Multienvironment,
Distributed Systems

Hridesh Rajan
Dept. of Computer Science
lowa State University
226 Atanasoff Hall
Ames, IA, 50010, USA

hridesh@cs.iastate.edu

ABSTRACT

The contribution of this work is a novel aspect-oriented pro-
gramming model that we call Nu. The Nu programming
model adds only one new concept, join point dispatch, to
the object-oriented programming model. No new program-
ming language constructs are added. The constructs in ex-
isting aspect languages are expressed in terms of join point
dispatch resulting in a significant simplification of aspect
languages. We make two claims about the potential ben-
efits of our approach. First, that it will enable transpar-
ent modularization of even those crosscutting concerns that
transcend the language and environment boundaries. Sec-
ond, that it will simplify the AOP language model resulting
in the ease-of-use, ease-of-learning, and reduced cost to build
supporting tools.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs
and Features —classes and objects; Modules, Packages

General Terms

Design, Languages

Keywords
Bindings, Classpect, Unified Aspect Language Model

1. MOTIVATION

In aspect-oriented programming terminology, a crosscut-
ting concern is a dimension in which a design decision is
made and whose realization in traditional designs leads to
code fragmented across a system and intermingled with
code for other concerns. Security policy enforcement, cross-
module optimization, execution tracing policy, etc, are some
examples of crosscutting concerns. Most software systems

Permission to make digital or hard copies of all or part of this work for

today are implemented as a collection of components that in-
teroperate with each other, but that may execute in separate
address space, may execute on separate software/hardware
platforms, and may be written in separate high-level lan-
guages. In such systems, the realization of a crosscut-
ting concern leads to code that is fragmented across ad-
dress spaces, software/hardware platforms, and high-level
languages.

Aspect-oriented programming (AOP) [6, 11] has shown
the potential to improve the ability of software architects
to devise more effective modularizations for some crosscut-
ting concerns [15, 3]. Current AOP mechanisms can mod-
ularize crosscutting concerns that transcend language and
system boundaries by using a combination of languages and
libraries; however, as Benton et al. argue, such solutions
fail to bring benefits such as better compiler optimization,
code generation, bug analysis, etc. [2]. Ironically, these em-
bedded, pervasive, distributed, system types—coupled with
the internet and the web—are in fact driving the invention,
refinement, and adoption of AOP.

Not too long ago, in response to a similar challenge to
make it easier to write accessible components and applica-
tions in any language and to use them across languages, the
Common Language Infrastructure (CLI) was proposed by
Microsoft, HP, IBM and others [5]. What is needed now is
a similar interoperable approach to AOP in which aspects
written in multiple high-level languages can be executed in
different system environments without the need to rewrite
these aspects to account for the unique characteristics of
those languages and environments.

We are not the first to recognize the need for language
interoperable aspects. Among others, Lafferty and Cabhill
[12] proposed a language independent notion of aspects that
exploits the multi-language support of Common Language
Infrastructure (CLI). Their approach adopts the Aspect]
language model [10] to CLI. Their approach, however, rel-
egates the responsibility of aspect-component composition
to second-class XML scripts. Our approach, like AspectJ,
alms to express these compositions as part of the language.
In addition, they do not provide support for instance-level
advising, first-class aspect instances, and environment inter-
operability.

personal or classroom use is granted without fee provided that copies are ~ T 1est of this paper is organized as follows. The next

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

section describes a motivating example for our work. Sec-

republish, to post on servers or to redistribute to lists, requires prior specific tion 3 describes the proposed language model. Section 4

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

describes the potential impacts of this research and identi-

J L . .
0 5 Binding Registration
£
‘ L 1. Store Reference
L e] 2. Compute fast match
“» o
i
[a]
b . . .
.............. »| £ | Binding Invocation
c 1. Match
=) 2. Prepare parameters
- 3. Invoke
In
e e A
Join point Binding Binding

Dispatch Registration Invocation

(]
0]

N
%| Hio |9| Hu }%l Heo ‘

Figure 1: The Overview of Nu

fies future investigations.

2. MOTIVATING EXAMPLE

To make the problem concrete, let us consider an exam-
ple system. Our example system is a smart-home system,
designed for assisted living, and implemented as a collection
of components executing on sensors, handheld devices, and
web services. The components executing on sensors collect
data about the environment. They are programmed in C
and execute in the TinyOS environment [9]. The compo-
nents executing on handheld devices are used by the clients
to interact with the smart-home system, e.g. to change
the average temperature of the home. These components
are programmed in Java and execute in the JAVA Vir-
tual Machine (JVM). The web services are programmed in
C#/ASP.NET and run in the NET Framework.

Let us consider the implementation of a simple crosscut-
ting concern, execution tracing policy, for this system. In a
traditional design, the realization of execution tracing policy
concern is fragmented across and intermingled with the code
for components written in three different languages (C, Java,
and C#) executing on three different software/hardware
platforms (TinyOS, JVM, and .NET Framework). The im-
plementation of this concern also varies across these compo-
nents. In C#, the System.Console library is used to write
the execution trace, in Java, the System.out library is used,
and in C on TinyOS, the trace is output on a port.

Current aspect-oriented approaches can modularize this
concern using a combination of languages and middleware.
For example, one may use AspectJ [10], Eos [13], and As-
pectC [1] to modularize the execution tracing policy in Java,
C+# and C partitions of the system respectively. The exe-
cution trace generated by these three modularizations can
be accumulated manually or by adding an infrastructure to
gather execution trace across the three environments. This
solution works, however, it is less then adequate. First, we
haven’t yet achieved a complete modularization of the cross-
cutting concern. Instead, the concern is still spread across
n components of the system, where n is the number of dif-
ferent aspect-oriented extensions employed. Second, these
n components implement the same functionality, essentially
requiring duplication of intellectual efforts. Third, using
a combination of languages and libraries makes it unnec-

essarily hard to apply advanced analysis techniques to the
concern as a whole. Instead, only parts can be locally opti-
mized.

3. NU PROGRAMMING MODEL

To address the interoperability problem, in this work we
propose a new approach to aspect-oriented programming
that we call Nu. We hypothesize that to achieve language
interoperability and to build a language interoperable infras-
tructure it is necessary and sufficient to provide a precisely
specified invocation mechanism that allows representation of
crosscutting concerns as modular units of program design.
The aspect-oriented constructs in the high-level languages
can be expressed in terms of these primitives without com-
promising their expressiveness.

Our previous work on unified aspect model emulated by
Eos [7], an aspect-oriented extension of C# for Microsoft
NET Framework, motivates this hypothesis. We showed
that aspect as a syntactic category can be eliminated in favor
of a more expressive notion of class called classpect that has
an additional construct called binding [14]. This single con-
struct allows modularization of crosscutting concerns. We
informally defined binding as a mechanism to select a subset
of join points in the execution of the program and associate
a method to execute at those points. A join point in AOP
terminology is a point in the execution of the program. The
subset of join points selected by the binding are called sub-
jects of the join point. The method that is associated by the
binding to execute at these join points is called the handler
of the binding.

In Nu, we take this idea to the next level. Nu adds only
one new concept to the underlying language semantics (also
called base language). In Nu, all join points invoke a Join
Point Dispatcher (JPD) as shown in Figure 1. A JPD is
similar to event dispatcher used in the modeling of implicit
invocation systems [4]. There is only one instance of the
JPD in one address space. As shown in Figure 1, all join
points in an address space invoke the JPD. We call this
phenomenon join point dispatch, similar to event dispatch in
implicit invocation systems.

The Eos style binding are represented as object-oriented
classes that inherit from Nu.Runtime.IBinding interface. A
binding’s interface provides a function to match the subject

join points, a function to invoke the handlers, and functions
to bind and remove object instances from the binding’s as-
sociation. A binding may optionally also implement the
FastMatch interface (not shown in Figure). The FastMatch
provide a function that returns a unique hash for the bind-
ing to optimize dynamic join point matching. As shown in
Figure 2, the before, after, and around bindings in Eos are
implemented as three object-oriented classes that implement
the IBinding interface.

interface: 1Binding

bool Match()
bool Bind()
bool Remove()
bool Invoke()

I |
class: after class: around class: before

Figure 2: The Binding Hierarchy

As shown in Figure 1, all bindings in an address space reg-
ister with the JPD. On registration, the dispatcher stores a
reference to the binding and computes the FastMatch of the
binding, if the binding provides that interface. On subse-
quent join point dispatch, a match with all the registered
bindings is performed. If the join point matches a given
binding, the join point dispatchers calls the invoke method
of that binding. The binding may in turn invoke it’s han-
dlers.

As of this writing, the Nu compiler is implemented as post
processor for .NET Framework. The post processor takes
a .NET assembly ' and instruments all language-defined
join points in the assembly to construct an object of type
Nu. Runtime. Joinpoint. This object represents the reflective
information about the join point. A call to the Join Point
Dispatcher is also inserted at all join points. Instrument-
ing all join points is inefficient compared to the techniques
used by AspectJ and Eos compilers. These compilers only
instrument the join points that are potentially of interests
to bindings. In future, we will implement optimizations to
reduce this overhead.

Our approach is independent of base languages. This lan-
guage independence comes from expressing aspect-oriented
constructs in terms of join point dispatch. The bindings
in Eos are now represented as object-oriented classes that
implement interfaces to match join points and invoke han-
dlers. The advice in AspectJ-like languages can be imple-
mented as a combination of a binding and a method, as in
Eos. Any combination of .NET languages can be used to
write aspect-oriented programs. For example, in a polyglot
system that uses VB.NET and C#, a programmer can write
bindings in either of these languages or an entirely different
.NET language. This language independence is similar to
what achieved by Weave. NET [12], however, adopting an
improved language model for aspect-oriented programming
brings the additional benefits of environment independence.

4. IMPACTS AND FUTURE WORK

LAn assembly is a .NET equivalent of an executable.

We speculate that the proposed research program will
have significant impacts on both the theory and the prac-
tice of aspect-oriented programming. By abstracting the
enabling mechanism behind the language run-time, we will
be able improve the modularization of crosscutting concerns
across the language and environment boundaries. The ad-
vantages would be similar to those of the remote procedure
call, where the caller is syntactically unaware of the location
of the executing method. By analogy, transparent modular-
ization of crosscutting concerns, which transcend the lan-
guage and environment boundaries, will become possible.

The aspect language models today include several non-
orthogonal, asymmetric and irregular constructs. By elimi-
nating all aspect-oriented constructs, for example, aspect,
pointcut, advice, etc, in favor of a single richer invoca-
tion mechanism and extensible quantification mechanism,
we hope to bring significant simplification and conceptual
unity to the programming model without losing expressive-
ness. This simplification will also bring ease-of-use and ease-
of-learning to aspect-oriented methods. An aspect-oriented
program will look just like an OO program with the excep-
tion of the use of the new implicit invocation mechanism. It
will also make it much easier to build tool support for the
AO languages. By decreasing the size of the core language
and expressing new extensions in terms of a language for
which infrastructure exists, this research will make it possi-
ble to quickly realize production quality tools such that the
benefits of the aspect language designs can be observed in
real software development projects.

We foresee the following directions for future investiga-
tions:

1. Infrastructure Extension: In future, we will implement
a post-processor for Java similar to .NET Framework.
Introducing the Join Point Dispatcher as the medi-
ating component between join points and bindings en-
ables us to modularize crosscutting concerns across en-
vironments. The key challenge in this direction is to
define an interface between two standalone instances
of JPD. For example, to modularize crosscutting con-
cerns across JVM and .NET Framework, an instance
of JPD will be deployed for each environment. This
instance deployment will be transparent. These JPD
instances will interface with each other to dispatch
join points in JVM components to .NET Framework
components and vice-versa. To extend Nu to a new
environment, a post processor for that environment
and an implementation of the JPD for that environ-
ment is needed. A technique similar to Gray and Roy-
choudhury [8]’s approach, to generate aspect-oriented
compilers for various programming languages, could
be used.

2. Binding Semantics: The second objective of this re-
search is to develop a semantics of bindings as well as
a language independent notion of binding in terms of
the language model developed in the first stage of this
research. The key challenges in this dimension is to
develop an extensible as well as interoperable notion
of aspect-oriented quantification, and to account for
compile-time, run-time, instance-level [13], and type-
level associations of bindings with objects.

3. Robust Infrastructure: The third objective of this re-
search is to develop a robust infrastructure to support

5.
1]

2]

3]

[10]

[11]

these ideas. We will collaborate with domain experts
from various fields such as distributed, embedded, and
real-time systems, sensor networks, etc. to understand
the unique characteristics of these environments and to
develop corresponding realizations of the Join Point
Dispatchers for these environments.

Integration with Runtime Environments: We will also
including binding primitives in the intermediate lan-
guage itself, including the dispatch mechanism in
the language runtime, and providing high-level lan-
guage compilers that translate aspect-oriented con-
structs into the modified intermediate language.

REFERENCES
AspectC web page. http://www.cs.ubc.ca/

labs/spl/projects/aspectc.html.

N. Benton, L. Cardelli, and C. Fournet. Modern
concurrency abstractions for c#. ACM Trans.
Program. Lang. Syst., 26(5):769-804, 2004.

A. Colyer and A. Clement. Large-scale aosd for
middleware. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software
development, pages 56—65, New York, NY, USA, 2004.
ACM Press.

J. Dingel, D. Garlan, S. Jha, and D. Notkin.
Reasoning about implicit invocation. SIGSOFT
Software Engineering Notes, 23(6):209-21, Nov. 1998.
ECMA. Standard-335: Common Language
Infrastructure (CLI) Specification, Third Edition, June
2005.

T. Elrad, R. E. Filman, and A. Bader.
Aspect-oriented programming: Introduction.
Commun. ACM, 44(10):29-32, 2001.

Eos web site.

http://www.cs.virginia.edu/ eos.

J. Gray and S. Roychoudhury. A technique for
constructing aspect weavers using a program
transformation engine. In AOSD ’04: Proceedings of
the 3rd international conference on Aspect-oriented
software development, pages 36—45, New York, NY,
USA, 2004. ACM Press.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for
networked sensors. In ASPLOS-IX: Proceedings of the
ninth international conference on Architectural support
for programming languages and operating systems,
pages 93—-104, New York, NY, USA, 2000. ACM Press.
G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, ECOOP 2001 —
Object-Oriented Programming 15th European
Conference, volume 2072 of Lecture Notes in
Computer Science, pages 327-353. Springer-Verlag,
Budapest, Hungary, June 2001.

G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda,

A. Mendhekar, and G. Murphy. Open implementation
design guidelines. In Proceedings of the 19th
International Conference on Software Engineering,
pages 481-90, Boston, Massachusetts, 17-23 May
1997. IEEE.

D. Lafferty and V. Cahill. Language-independent
aspect-oriented programming. In OOPSLA ’03:

(14]

(15]

Proceedings of the 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems,
languages, and applications, pages 1-12, New York,
NY, USA, 2003. ACM Press.

H. Rajan and K. Sullivan. Eos: instance-level aspects
for integrated system design. In ESEC/FSE-11:
Proceedings of the 9th Furopean software engineering
conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 297-306, New York, NY, USA,
2003. ACM Press.

H. Rajan and K. J. Sullivan. Classpects: unifying
aspect- and object-oriented language design. In ICSE
’05: Proceedings of the 27th international conference
on Software engineering, pages 59-68, New York, NY,
USA, 2005. ACM Press.

D. Sabbah. Aspects: from promise to reality. In AOSD
’04: Proceedings of the 3rd international conference on
Aspect-oriented software development, pages 1-2, New
York, NY, USA, 2004. ACM Press.

