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I. INTRODUCTION 

Preaeration is not a nev idea in sewage treatmentj its origins ex­

tend back more than 2$ years. Nevertheless, it remains one of our least 

understood and more controversial approaches to better waste treatment* 

The place of preaeration can best be appreciated in terms of a capsule 

outline of current practice. 

The first major step in the sewage treatment process is generally 

one of quiescent settling to drop out all possible settleable solids » 

The equipment used generally permits removal of much floating material 

as well. This first step is strictly physical; it constitutes prinary 

treatment, and may suffice where the receiving stream provides adequate 

dilution. 

Additional or secondary treatment is of a biological and bio­

chemical nature. In it, primary effluent is brought in contact with 

microbiological masses which convert, colloidal and dissolved materials 

to more stable forms with greatly reduced pollutional strength. This 

biological process is followed by final settling, which is the last step 

in conventional complete treatment. 

Preaeration precedes the waste treatment process outlined above. 

As defined in the Glossary — Water and Sewage Control Engineering (l6, 

p. l66), preaeration is "a preparatory treatment of sewage comprising 

aeration to remove gases, add oxygen, or promote flotation of grease, 

and aid coagulation". For the purpose of this investigation, the term 
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preaeration was fiirther restricted to pretreatment for s. period of 30 to 

minutes without either the addition of chemic ale required for true 

coagulation or the return of final settling sludge, digester supernatant, 

or any other material which might serve as a physical or biological aid 

to flocculation. As the term is used here, preaeration does not include 

the interesting variations appearing in practice and in the literature 

which approach modified activated sludge treatment or which are inter­

spersed at points beyond the primary settling step. 

The value of preaeration, even after years of practice, remains open 

to argument. The most fitting comment, on present knowledge of preaeration 

is the following quotation from a survey of current research problems 

(23, p. 1159) 

Plant operation personnel are also urged to review the 
problems that are listed, for some of the answers may be 
attainable through analysis of plant-scale data, or from 
special studies in operating plants. For example, preaera­
tion facilities are provided in many modern plants, yet 
there are almost no data on the true advantages and 
limitations of the process. 

The purpose of this investigation has been, therefore, to evaluate 

the influence of preaeration on primary settling efficiency; to study 

the factors affecting this influence; and to evaluate the economic 

worth of the preaeration process. 
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II. THE PREAERATION PROCESS; DEVELOPMENT 

A, Early Uses 

The development of preaeration is neither very recent nor very clear. 

In 1931 a unique grease removal procedure was used at Los Angeles' 

Hyperion screening plant (38). The process consisted of brief aeration 

in an open channel by means of high "elocity jets of screened sewage 

discharging downward about. 2 in above the surface, followed by a flow 

section permitting 2 to 3 min detention at reduced velocities. Re­

movals of over half the free grease and oil were achieved, relieving a 

severe screen blinding problem. 

As early as 1933» nine plants in the Midwest and two in California 

used preaeration; benefits cited were odor control, some addition of 

oxygen, substantial grease removal and improved settling (li5) ° Pre­

aeration detention times at design flow were given for the Dodge City, 

Kansas, and Whittler, California, plants as 13 and 19 min, 

respectively. 

In 1935, laboratory experiments were carried out at Ft, Worth, 

Texas on preaeration of raw sewage to remove hydrogen sulfide (31)• 

Mild improvement was noted in the first 15 min of preaeration and none 

thereafter. 

In 1937, work was done by the City of San Francisco in an experi­

mental 0.15 mgd treatment plant to effect both grease and grit removal 
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by preaeration at the rate of 0.0$ cu ft/gal during a 1$ min period (26). 

The results were sufficiently encouraging to merit incorporation of a 

preaeration step in the 1$ mgd plant then in the design stage. 

B. Rutgers Studies on Chemical Coagulation 

The 1930's saw increased interest in chemical treatment as a basic 

sewage treatment process. Concepts and coagulants transplanted from 

water treatment technology were adapted to the design of waste treatment 

plants aimed at results in the range between primary and complete treat­

ment, but with minimum first cost. Operating results and costs were 

flexible, in response to stream requirements, through variations in 

coagulant dosage. 

The 1930's also saw the earliest and essentially the only basic 

research studies in areas which might be considered related to preaera­

tion development. The first of these was an extended study entitled 

"Chemical Coagulation of Sewage". This work was published (1936-19U1) 

as a series of fifteen Journal Series Papers of the New Jersey Agri­

cultural Experiment Station, Department of Water and Sewage Research, 

Rutgers University. The result was a conclusive review of coagulants 

and factors affecting their economical use® The work was done on strong 

and somewhat stale domestic sewages from nearby communities. 

1. Plain flocculation versus chemlc al coagulation 

Three of these papers are of particular interest here. In the 

first (U6), experimental laboratory results were reported on 
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flocculation alone, without chemicals, both by mechanical stirring and by 

air diffusion. It was found that air and mechanical flocculation pro­

duced like removals in the absence of coagulants. With light coagulant 

dosage, paddle flocculation gave better results; with a heavy coagulant 

feed, air flocculation gave much better removals. It was theorized by 

the authors that the more turbulent air flocculation, even though only 

vigorous enough to prevent settling, acted to break up the weak floe 

structure of inadequate coagulation but had no such effect on the strong 

floe produced by adequate chemical dosage. In any case, the use of co­

agulants gave substantially better removals than plain flocculation. It 

was also found that mechanical stirring, even in the presence of coagu­

lants, could be too vigorous, resulting in poorer ultimate removals with 

excessive paddle speeds. 

The few experimental trials with plain flocculation gave surprising 

removals, although always less than with coagulants. The flocculation 

period was found to be of major importance. With 20 mg/l ferric chloride 

as the coagulant, for example, roughly 80 percent of the ultimate 

turbidity removal was accomplished with only 15 min flocculation, and 

more than 90 percent in 30 min. With plain flocculation, on the other 

hand, only 15 percent of the ultimate turbidity removal was accomplished 

in the first l£ min, $0 percent in 30 min and 90 percent in 60 min. 

Flocculation for more than 90 min did not appear to accomplish addi­

tional removals in either case. 
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2• Use of various gases 

In the second of the Rutgers papers (U7), results of laboratory-

scale flocculation experiments conducted in atmospheres of air, ozone, 

oxygen, carbon dioxide and nitrogen were reported. The test runs were 

designed with gentle mixing for periods of 0.5, 2 and 5 hrs, followed by 

2 hr settling in each case. Where 2 hr settling alone resulted in a $6 

percent SS removal, 0.5 hr preflocculation without coagulants boosted 

this to an average removal of 7U percent, 2 hr preflocculation produced 

77 percent removal and 5 hr preflocculation produced 82 percent removal. 

The gas employed made little difference. 

In a subsequent run the above gases, along with hydrogen peroxide, 

were diffused directly into sewage samples in what was apparently the 

first considered observation of the effect of preaeration on primary 

settling. The authors indicate that this method gave even greater im­

provement over settling alone than did plain stirring, but the data pre­

sented are simply not adequate to support any sort of conclusion. 

For the 0.5 hr diffusion period, the gas used seamed to have no 

effect; after 2 hrs and even more so after 5 hrs of such treatment, the 

oxygen-bearing gases did produce substantially greater BOD reductions, 

although this did not seem to be true with turbidity removal. 

The conclusion was that flocculation without chemicals could improve 

primary BOD and SS removals considerably and that both mechanical 

stirring and air diffusion could accomplish this goal. The theory was 

that the effect was physical, involving primarily the suspended and semi-

colloidal fractions of sewage. 
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3. Plain flocculation on plant scale 

In the third Rutgers paper (lU), plant-scale observations at New 

Brunswick, New Jersey are reported. Here it was possible to split the 

raw sewage flow so that half received mechanical flocculation, then 

settling, while the other half received equal settling without pre-

treaiment. Very early in the study it was found necessary to operate the 

paddle-type flocculators at a peripheral speed of at least 1.8 fpsj lower 

rates permitted considerable settling in the flocculation tanks. 

Mechanical flocculation was found to produce improved settling at 

this plant, even with a fairly weak sewage containing 125 to 175 mg/l SS. 

Settling time provided in normal plant operation was U hrs; flocculation 

periods ranged from 20 mins to hrs. SS removal by settling alone 

averaged about 65 percent. It was indicated that the effect of 20 min 

flocculation was quite nominal, but that the same pre-treatment for a 

period of iv| hrs was capable of boosting primary SS removal to around 80 

percent or higher. Supporting data were lacking, however. 

In commenting on the earlier (I4.6) laboratory finding that most of 

the benefit to be derived from flocculation was achieved in the first 

hour, and that nothing was to be gained beyond 90 min flocculation, 

Gehm theorized (lb., p. 107U) that the difference here was "due to the 

character of the weak New Brunswick sewage, which contains no great 

amount of pseudo-colloidal matter which readily floes out." 
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C. Early Gas Diffusion Studies 

In their work with gas diffusion, Rudolfs and Gehm acknowledged 

earlier published research by Williams (57) at University College in 

London . Williams studied the flocculation effect of bubbling oxygen, 

air, nitrogen, and hydrogen through 1 1 samples of sewage for 6 hr and 

2h hr periods. Based on the reduction in organic carbon and total 

nitrogen, no material difference was found between gases in the 6 hr 

period, but oxygen and air gave best results over the longer period. 

A test was also conducted to compare oxygen diffusion with 

mechanical stirring by glass paddles under air-free conditions. Analysis 

after a 2 hr period indicated a close comparison between the two, although 

oxygen diffusion produced twice the reduction in strength at 6 hrs. 

"These results might be taken as evidence for the view that the main 

effect of gas bubbling on sewage liquors is of a physical nature." ($7, 

P. 3S7) 

D. Dorr Company* Research on Mechanical Flocculation 

1. Laboratory studies at nine plants 

During the mid-1930 ' s, the Dorr Company embarked on a study of 

mechanical flocculation which culminated in the only ccmparative plant-

scale work on pre-flocculation reported (13) . The study began with the 

*Now Dorr-Oliver, Incorporated 
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development of a rectangular jar and paddle arrangement designed for 

flocculation of sewage samples of about 1 gal in volume. After it was 

learned that transfer to another container would break up much of the 

delicate floe formed, the sewage was allowed to settle in the flocculation 

test jar. Samples of supernatant were drawn off for analysis after 

specified settling periods. 

With equipment and technique refined, the Dorr Company research 

staff visited nine sewage treatment plants from Connecticut to the 

Dakotas. At each plant, laboratory runs were made with combinations of 

flocculation times of 0, 10, 20, and 30 mins and settling times of 20, 

ItO, and 60 mins. SS results for these runs are reproduced in table 1. 

These data are unusually valuable because they represent a number of 

plants, a wide range of sewage characteristics, yet were derived by what 

surely must have been closely standardized technique. With this in 

mind, simple statistical analyses were carried out on data from seven of 

the nine plants. Coney Island, New York, was dropped because of in­

complete data and Aurora, Illinois, was emitted because the raw waste 

was unusually low in strength, 89 mg/l SS, and appeared to yield 

erratic results. 

Data for the remaining plants were analyzed to determine the effect 

of varying flocculation time, table 2a, and the effect of varying 

settling time following flocculation, table 2b. At all seven plants, 

flocculation served to improve primary settling efficiencies in these 

laboratory-scale tests; in fact, the longer the flocculation, the better 

the results. Flocculation was also found to accelerate settling; that 



Table 1.* Laboratory results on mechanical flocculation of raw sewage, Dorr Company data 

Plant Coney Island, Norwalk, Lima, Aurora, Cedar Rapids 
N. Y. Conn . Ohio 111. 13,0 

SS mg/1 : i Rem. mg/l $> Kem. mg/l % Rem. mg/l $ Rem. mg/l % 6em. 

Influent 186 197 171 89 313 
Effluent 
After No Floe• 
Settled 20 min 125 36.S 157 8.2 hi hi .2 195 1*3.1 
Settled 1*0 min 7l* 62.lt 89 1*8.0 h$ Wl.5 180 17.6 
Settled 60 rain 183 1.6 68 65 A 81 52.7 38 57.3 110* 58.0 

After 10 min Floe. 
Settled 20 min 125 36.5 76 55.6 37 1*8.1* 193 13.7 
Settled UO min 72 63.5 68 60.3 19 78.6 190 14* .6 
Settled 60 min 102 1*3.9 60 69.5 62 63.7 52 1*1.5 103 70.0 

After 20 min Floe» 
Settled 20 min 63 68.0 69 59.6 51 12.7 137 60.T 
Settled 1*0 min 63 68.0 58 66.0 67 2U.7 81* 75.6 
Settled 60 min 89 50.5 1*8 75.6 1*8 72.0 25 72.0 9h 72.6 

After 30 min Floe. 
Settled 20 min # 72.6 58 66.0 33 # . 3  10i* 69.7 
Settled 1*0 min hi 76.2 52 69.5 22 75.3 Ih 78.5 
Settled 60 min 69 63.0 1*5 77.0 52 69.5 27 69.7 73 78.8 

*This table reproduced from Fischer and Hillman (13, p, 285)• 



Table 1. (Continued) 

Plant Ortonville, Morehead, Fargo, Sioux Falls, 
Minn0 Minn. N. Dak. S. Dak. 

SS mg/l % Riem, mg/l % Rem. mg/l % Rem. mg/l % Rem. 

Influent 696 666 1302 688 
Effluent 
After No Floe. 
Settled 20 min 260 71.0 332 50.1 66L 19.0 212 69.3 
Settled UO min 2li8 72 .u 220 66.9 518 60.2 171 75.2 
Settled 60 min 210 76.6 186 72.0 U32 66.8 159 76.9 

After 10 min Floe. 
Settled 20 min 133 81.5 112 83.1 502 61.5 119 82.7 
Settled U0 min 176 80 .U 90 86.5 32li 75.1 108 8J4.J4 
Settled 60 min 165 81.2 97 85 ù 316 75.3 95 86.3 

After 20 min Floe. 
Settled 20 min 192 78.5 98 85.3 3Uo 73.9 110 8U.0 
Settled LiO min lUo 8u.n 93 86.2 326 75.0 102 85.3 
Settled 60 min 177 80.2 82 87.6 296 77.2 81 88.3 

After 30 min Floe. 
Settled 20 min 167 81.3 86 87.0 317 75.6 83 88.0 
Settled I4.0 min 1U2 81; .0 81 87.8 293 77.lt 75 89.2 
Settled 60 min 13S 85.0 77 88 .U 280 78 .It 60 91.2 
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Table 2a. Effect of varying flocculation time on SS removals, Dorr 
Company data 

Flocculation time SS removal Degree of improvement by 
min percent flocculation 

•Settling* Flocculation Percentage Increased re-
only and settling points moval, percent 

10 6U ?U 10 16 

20 6k 78 22 

30 6I4 81 17 27 

*Average of data for U0 min and 60 min settling. 

Table 2b. Effect of varying settling time, following flocculation, on SS 
removal, Dorr Company data 

Settling time 
min 

SS removal 
percent 

Settling Flocculation# 
only and settling 

Degree of improvement by 
flocculation^ 

Percentage Increased re-
points moval, percent 

20 

Uo 

60 

52 

63 

65 

76 

79 

80 

2k 

16 

15 

U6 

25 

23 

it-
Average of data for 20 min and 30 min flocculation. 

is, considerably more of the ultimately settleable material was removed 

in early time increments than was the case with plain settling. Cor­

respondingly, the margin of improvement shown by flocculation was greatest 

with short settling time and decreased with extended settling. 

The opinion is widely held that any sort of preflocculation will pay 

dividends with stronger wastes, but that the effort is wasted on weak or 
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normal sewage o These data do not indicate this. With three plants re­

ceiving fairly normal wastes, 171-3^3 mg/l SS, three receiving strong 

wastes, 666-896 mg/l SS, and one receiving unusually strong waste, 1302 

mg/l SS, there was no significant difference between them in the degree 

of improvement effected by plain flocculation. The strong wastes showed 

excellent results with flocculation but, as a group, they a]so responded 

well to plain settling alone. 

This interesting facet did appear; the better the job done by plain 

settling only on a particular waste, the less was accomplished by pre­

flocculation, either in terms of added percentage points removal or in­

creased degree of removal in percent. To repeat, these are laboratory-

scale data representing wastes from seven different plants, but they are 

considered unusually helpful to this study. 

2. Plant-scale work at Cedar Rapids, Iowa (19) 

The Dorr Company next concentrated its efforts on a packinghouse 

waste pretreatment plant at Cedar Rapids, Iowa. This plant, located on 

the municipal treatment plant site, comprised a holding tank and rate-of-

flow controller to balance the waste load, a flash mixer, a flocculator 

and two 3>0 ft diam clarifiers. After pretreatment, the packinghouse 

wastes were added to the raw domestic sewage and the combined waste was 

given complete treatment, in the municipal trickling filter plant. 

The pretreatment plant was arranged in the study to split the flow to 

subject one portion to flocculation and settling while the remainder re­

ceived settling alone. This plant was designed for chemical treatment, 

and a series of experimental runs was conducted with varying chemical 
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dosage and without any chemicals. These runs were made prior to the work 

on mechanical flocculation. described herein. Their conclusions were that, 

while chemical tr"r„tner.t was highly effective, the results by plain 

flocculation were sufficiently attractive to render the cost of chemicals 

unjustified at that time. 

For the runs made by the Dorr Cunipar.y, the flow path was altered so 

that the flew through the pretreatment plant consisted of 10 to 20 percent 

packinghouse waste and the balance domestic sewage. Generally, these 

tCto+.E were intended to provide a comparison of plain settling wi th 

mechanical profleeculation followed by settling. Sampling and analyses 

were performed daily. 

In the first set of runp extending about a month, the proportion of 

flow was varied in an attempt to achieve equal SS removal by each of the 

two bayc of the test plant. The few data in the published report indicate 

that substantially nore flow was handled through the floeculation-

settling combination than through settling alone, with equal or better 

results achieved following preflocculation. 

The second set of runs, also lasting about one month, provided a 

direct comparison at equal flows of 1.0 to 1,6 mgd through each side of 

the test plant. For the runs discussed here, settling detention time 

varied from 1.5 to 2.5 hrs, flocculation time from 30 to 5U mins, and 

the BOD and SS strengths of the waste treated were both in the general 

range of 2$0 to U00 mg/l, 

SS removal averaged 5U percent by plain settling and 6It percent by 

flocculation and settling; a gain of 10 percentage points or roughly an 18 



percent Improvement. BOD removals were poor and erratic, but were improved 

from about 13 percent to about 20 percent by flocculation. The general 

relationships indicated in tables 2a and 2b from laboratory-scale work 

were also evident here* The improvement by flocculation was no greater 

for the stronger wastes, but was, if anything, less because these wastes 

responded so well to plain settling, leaving less room for improvement by 

any means. As expected, increased flocculation time added to the degree 

of improvement. 

The importance of careful handling of the delicate floe formed was 

emphasised by laboratory settling tests on the flocculator effluent before 

and after passing through a lit in siphon feed line to the clarifier. 

Above flow velocities of l.< fps through this line, settling results were 

diminished by 10 to 12 mg/l SS. This represented a less of 3 to it per­

centage points in primary removals because of floe destruction= 

3. Plant-scale work at Ypsilanti, Michigan 

The next phase of the Dorr Company study was conducted at the 

Ypsilanti, Michigan municipal sewage treatment plant. A full-scale 

experimental unit was constructed embodying a circular, concentric 

mechanical flocculation chamber within a conventional clarifier struc­

ture . The unit was designed for continuous passage of the flocculated 

flow downward into the settling area, then outward and upward toward the 

overflow weirs. This unit was the pilot model of the Clariflocculator 

which is now manufactured and sold by the Dorr Company. 

The test unit was operated in parallel with a conventional ItO ft diam 
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clarifier which provided settling detention time equal to the combined 

flocculation and settling time in the Glariflocculator. The physical 

arrangement of the Glariflocculator provided one-sixth of total capacity 

for flocculation and the remaining five-sixths for settling. 

One series of runs compared the operation of the two units for a 

period of fourteen weeks at detention times of from 2 to 2-| hrs. The SS 

strength of the war,tes treated during this period averaged about 150 mg/l. 

With equal flew to each unit, SS removals averaged h$ percent by plain 

settling and 57 percent in the Glariflocculator, an improvement of 21 per­

cent. Runs with the flow unequally divided indicated that the Glari­

flocculator could handle 35 percent more flow than the conventional clari­

fier of equal overall dimensions with equal or slightly better results. 

Additional plant runs with detention times of more than 5 hrs indi­

cated average SS removals of 66 percent by plain settling and 75 percent 

in the Glariflocculator. It will be noted that, while the Glarifloccu­

lator still maintained an advantage of 9 percentage points, its relative 

margin of improvement had dropped to lit percent as a consequence of the 

high SS removal by plain settling at very long detention periods. 

The need for a means of obtaining an undisturbed sample of the flow 

leaving the flocculation chamber led to the development of a special 

sampling device. With it, a wide-mouth bottle was lowered to the sampling 

point upside down, then filled slowly by the controlled release of its en­

trapped air through a tube to the surface. It was then turned upright by 

a swivel arrangement and brought to the surface with the floe undisturbed. 

This ingenious device was the model for a somewhat similar sampler used in 

studies reported in later sections herein. 
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E. European Experiences with Flocculation 

Mechanical flocculation also received its share of attention abroad. 

In 19U2 preflocculation was said to have given excellent results in 

England (2U). In 19h3t laboratory experience in Germany with mechanical 

flocculation and operating data for a plant installation were reported 

(39) » The floe formed were very fragile and tended to break up at flow 

velocities exceeding O.lt mps (1.31 fps) „ In 19h9, seven years of full-

scale operation at Wolverhampton, England were reported in which a Glari­

flocculator showed 20 percent better removals than a conventional clari­

fier of the same overall dimensions (25)• 

F. Aerochlorination and Grease Removal 

Although not directly involved in the development of preaeration, 

some >:ork supported by the Chlorine Institute, Inc., New York City, is of 

interest. In 1937 plant-scale use of mg/l of chlorine was reported at 

Woonsocket, Rhode Island to improve grease removal by as little as 6 rains 

of very vigorous preaeration (12). The amount of air was not measured. 

The raw sewage had a high grease content from wool scouring and other 

textile process steps. Grease removal by aerochlorination, as this pro­

cedure was teimed, was more than double the removal by aeration alone, in 

tenns of wet weight of drained scum per mil gal of sewage. The scum was 

removed manually from baffled areas of the preaeration tank. 

Further work was done in 1938 on domestic sewage at Baltimore (28) in 

800 gal pilot test tanks. Runs were made with 5, 10 and 15 min preaeration 

periods, using 0 to 10 mg/l of chlorine. Generally, with 1 or 2 mg/l of 
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chlorine, 2 to 3 times as much grease was removed on a dry weight basis as 

compared with preaeration only. With more chlorine, removals were as much 

as 5 to 7 times higher. Air use was essentially constant at about 0.07 cu 

ft/gal per 5 min increment of time. 

In 1938, plant-scale aerochlorination results? at Lancaster, Pennsyl­

vania were reported (56). With only 3 to It mins of preaeration at air 

flows of 0.10-0 .lit cu ft/gal, removals of drained wet scum ranged from 3 

to It lb/mil gal with aeration only or chlorination only, to 12 or 11; 

lb/mil gal by aeration coupled with 2.0 mg/l of chlorine. Without either 

air or chlorine, grease removal was about 1-| lb/mil gal. At this plant, 

grease was skimmed from the effluent end of primary clarifier s providing 

an average of 1.75 hrs settling time. 

At Lancaster, grease removal was also determined by the analysis of 

raw sewage and primary effluent for the mg/l grease content. The results 

indicated roughly ItO percent grease removal following either no pretreat­

ment or chlorination only, 50 to 60 percent removal with preaeration only, 

and 80 percent removal following preaeration supplemented by chlorination. 

The degree of improvement over plain settling was still very significant 

but only about half as great in these terms as for wet scum weightj 

apparently a bulking factor of some sort was taking effect. SS and BOD 

data were lacking for the aerochlorination studies described. 

In 19U2 some laboratory-scale work was conducted at Rutgers on grease 

removal from a number of sewages (15)• Comparative test series indicated 

an appreciable improvement over plain settling by preaeration and settling 

combined. The amount of air was not given. When mechanical flocculation 
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was substituted for preaeration in identical runs, the removal of grease 

was considerably better» This comparison is open to question because the 

sewage samples used in the second series had much higher grease content. 

Suspended solids results were also given for both test series. With 

raw sewage strength averaging 300-325 mg/l of SS, plain settling achieved 

60 to 65 percent SS removal. The 1 hr pretreatment improved these re­

movals by 6 to 9 percentage points, or by 10 to lit percent • 

Plant-scale data were also reported from South River, New Jersey, 

where a 30 min preaeration period was provided ahead of primary settling 

(15)• The rate of air supply was 0,02 cu ft/gal. Scum was removed at the 

outlet end of the preaeration tank. Weekday sew removals over a 30 day 

period of plain preaeration averaged 39 lb/mil gal on a dry grease basis. 

With the aid of 8 mg/l of chlorine, this removal increased to 55 lb/mil 

gal over a UO day period of similar dry-weather flows. 

Following these successes, detailed studies which yielded consistent 

results — consistently contradictory to previous experience — were made 

at three military camp treatment plants* At plant A, experimental work on 

20 gal samples showed no improvement in grease removal over plain settling 

by 10 min preaeration at a rate of 0.15 cu ft/gal, even when reinforced by 

5 to 10 mg/l of chlorine. At plant B, mechanical preaeration for 15 

minutes resulted in only the slightest improvement over plain settling, and 

that only with fairly high grease content. No improvement in SS removal 

resulted from pretreatment at either plant. 

At plant C, a vacuum flotation unit was observed. Here, the combina­

tion of flotation and settling performed sligitly better than either 
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settling or flotation alone. The addition of chlorine up to 2$  mg/l, 

however, was of no help whatever# All -that was actually accompli died by 

pretreatment at these installations was the removal of some grease, 

especially slugs and chunks, and some reduction of the grease-removal bur­

den on primary settling. The conclusion was (11, p. 313) that "plain 

settling is one of the most effective means of removing grease from raw 

sewage". Whether or not these results are peculiar to military canp wastes 

can only be conjectured. 

G. Literature Review by Heukelekian 

A superb literature review was published in 19Ul covering forty-five 

references pertaining to the theory and practice of mechanical floccula­

tion at that time (22). This review included this thoughtful definition 

(22, p. 507): 

Flocculation — Coalescence of finely divided suspended matter 
in sewage in the absence of biologically active slime, pri­
marily under the influence of physical forces. The term is 
applied to short period mechanical or air diffusion processes 
where biological action is at a minimum. 

With this review, an era ended. The studies at Rutgers and the work 

done by the Dorr Company stand out in this period of development. 

Two things are important at this juncture. First, the chemical 

treatment process, partly through higi cost and scarcity of chemicals 

during World War II, partly through the success of plain flocculation 

without chemicals, fell into disuse and has not since been a factor in 

waste treatment, with a few exceptions. Second, the first sparse ground­

work had been laid for the use of air as an alternate method of physical 
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stirring or mixing to induce flocculation. 

Such was the development of the preaeration process. 
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III. THE PREAERATION PROCESS; PRESENT STATUS 

Preaeration, defined earlier as the air floeculation pretreatment of 

plain raw sewage for a period of 30 to k5 mins, remains controversial in 

the waste treatment field. Mechanical preflocculation has been accepted, 

as evidenced by the hundreds of Clariflccculators now in service, and by 

the similar treatment units developed by competing manufacturers. That 

preaeration provides several or all of such extra dividends as gas scrub­

bing for odor control, grease flotation, grit washing, the addition of 

DO and improved treatability is acknowledged. However, there is wide 

disagreement on whether or not preaeration also improves primary settling 

removals as seems quite well established for mechanical preflocculation. 

The popularity of preaeration in view of the meager data on either 

development or operating experience with this process was noted in 19U9 

(58). At that time comparative plant-scale studies were urged to furnish 

information on the merits of preaeration. At least thirty plants were 

using this process according to a survey conducted in 19U5 by the United 

States Public Health Service. 

A. Recent Pxtolished Reports 

1. Favorable operating experiences 

In 1915 preaeration was claimed to have materially improved primary 

settling efficiency in several California plants (9) • Actual operating 
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results were not given. It was further stated that the DO content of the 

sewage was improved prior to secondary treatment and that odors formerly 

released by trickling filter spray were eliminated. 

In 19U8, probably the most enthusiastic discussion of preaeration was 

published (5U). After an experience with a hopelessly septic, untreatable 

sewage which defied all efforts to establish an activated sludge culture, 

only to become completely amenable to treatment following 1.5 hrs of pre­

aeration, the investigator became interested in a number of other pre­

aeration installations. He cited 8 plants employing this pretreatment 

step; all with success and some with phenomenal primary removals. No 

direct comparative operating data with and without preaeration were 

available, however. 

This interesting postulate was offered ($U, p« 116); 

Preaeration is practiced only when sufficient oxygen has been 
added to the sewage to permit a sample, properly taken, to show 
at least 0.2 ppa DO upon standing in a DO bottle (submerged) 
for 60 minutes. This means that it may take 10 minutes or 10 
hours of aeration depending upon how much oxygenation and agi­
tation the waste requires, the intensity and efficiency of 
oxygenation, and other factors. 

This concept is certainly an interesting one, although modern design prac­

tice would lean toward a modified or short-period activated sludge process 

if more than nominal air capacity and detention time were required. 

Improved treatability resulting from preaeration was noted. This 

term defies specific definition except that it connotes a waste flow 

leaving primary treatment with biochemical characteristics which make it 

more amenable to aerobic secondary treatment, in contrast with a waste 

which might be septic upon arrival at the plant and would normally become 
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still more so during its slow passage through the primary settling step. 

As still farther dividends to be received, odor and corrosion control 

by removal of hydrogen sulfide, and the addition of dissolved oxygen were 

cited (5U, p. 118)t 

It is time that considerable effort should be made to collect 
comprehensive data showing the effect of preaeration on pri­
mary settling and secondary treatment operation. There is 
little or none of this data available in the literature or in 
plant operation reports. 

In recent operating experience with preaeration of a stale, septic 

raw sewage at Wichita, Kansas, the normal preaeration period is 1*8 hre, 

with air provided at the rate of 0.17 ou ft/gal (29) • A considerable 

accumulation of grease balls occurs, and is removed from the preaeration 

basin periodically. 

A comparison of primary removal with and without pretreatment was 

made by operating without preaeration for the five week period April 16 

through May 20, 1958. Raw sewage strength and volume far the period and 

for several weeks both before and after it were quite uniform? raw sewage 

strength averaged 225 mg/l of BOD and 260 mg/l of SS. BOD removal 

averaged only 3h percent during the 5 week test period, while averaging UO 

percent for three weeks prior and U2 percent for the two weeks following. 

SS removal averaged 6U percent without preaeration and 67 and 69 percent, 

respectively, before and after the test period. Sampling and analyses 

were performed at approximately three day intervals throughout the ten 

weeks. 
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2, Unfavorable operating experiences 

It is human to report successes and to mention failures only in 

passing, if at all. This is true regarding preaeration, although several 

writers tell of disappointing applications. 

The Denver, Colorado plant was built with both a preaeration tank de­

signed for a 15 min detention period with a 0.02 cu ft/gal air rate, and a 

pre floe culation tank of identical capacity (21). It was reported (21, p. 

1121) that in 1939 and 19U0, 

several experimental efforts were made to employ the preaeration, 
flocculation and sedimentation units so as to secure improved 
results over those normally expected from primary treatment. 
These experiments were to no avail, however, • • • 

until primary sludge was returned in a sort of activated pretreatment with 

a very higi aeration rate, which was strikingly successful. 

In 191*6, the preaeration facilities at the ley Creek plant, Syracuse, 

N. T., which were designed to provide approximately 15 min detention with 

an aeration rate of 0.20 cu ft/gal were reported (32). Experimental work 

there in the mid-19U0's indicated that preaeration was beneficial in 

leveling off shock loads which tended to upset the activated sludge 

secondary treatment, but that it did not produce any change in the DO of 

the raw sewage (3U). Scree solids which normally settled out by primary 

settling were broken up so that they did not settle following preaeration. 

Preaeration at the Ley Creek plant, while intended for grease removal, 

could not justify its cost in terms of the other benefits claimed for this 

process. 

In 1957» a five year struggle with what must surely rank among the 
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most difficult wastes in this country or anywhere else was reported (It). 

The sewage reached the Hyperion Plant in Los Angeles, after many miles and 

hours of flow, higi in temperature, high in sulfides, high in Immediate 

oxygen demand and strongly anaerobic • Here, the 0.5 hr preaeration pro­

vided ahead of primary settling has been of no value other than for cor­

rosion control# 

Valuable work has been done at Hyperion in correlating OEP with 

sewage characteristics and particularly with microbiological conditions in 

terms of aerobic, facultative, or anaerobic environment. The degradation 

of the sewage has progressed so far that, while preaeration raises it to a 

facultative state, the sewage is again anaerobic on leaving primary 

settling* Despite a large air supply rate to the aeration tanks, the 

sewage does not even remain aerobic during final settling. This would 

appear to be a valuable new insight into the concept of treatability » The 

authors' comments (U, P • 778) on preaeration follows 

A careful and detailed study of the preaeration system was 
made as it affected the primary sedimentation effluent# One-
half of the sewage flow was given preaeration, while the other 
half received none. The primary sedimentation effluent from 
the preaerated half was the same as the effluent received from 
the unpreaerated half insofar as BOD, suspended solids, 
settle able solids, and chlorine demand reduction were con­
cerned. Preaeration did reduce the sulfide content somewhat, 
thus reducing the oxygen demand of the aerator influent a 
small degree. It is doubtful that the slight reduction in 
oxygen demand justifies the use of air for preaeration, and 
it is felt that the air would be used to better purposes in 
the aerators# In contradiction to this, preaeration has 
apparently been of value in other installations. 

It is believed that the concept of treatability can help 
to explain why preaeration works at some locations and fails 
at others# Preaeration of sewage which is only slightly sep­
tic and has a lew to moderate oxygen demand might keep the 
sewage in the higi facultative to low aerobic range, 
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preventing anaerobic breakdown, and thus decrease the load on 
the aerators. However, where the septicity is far advanced and 
the oxygen demand is high, a short preaeration period cannot 
meet the oxygen demand, and the little good accomplished by 
preaeration is quickly nullified by further anaerobic dégrada» 
tion in the primary sedimentation tanks» 

This paper was supplemented by a thougrbful discussion of the OHP 

studies carried out prior to the design of preaeration facilities for the 

then-proposed San Jose, California, sewage treatment plant (1*0) • This 

work indicated that preaeration of the waste in question for 30 mine would 

result in an OBP that was relatively stable, apparently in the facultative-

aerobic range. Preaeration for 60 rains appeared to yield an even more 

stable OHP level which would not decline for several hours. 

B. Operating Data Survey by Roe 

The first solid survey and discussion of preaeration practice was re­

ported in 1951 (kh). The survey failed to turn up any set of comparative 

plant data in which plain settling was operated in parallel with the 

combination of preaeration and settling. Nevertheless, it was a valuable 

review of the art as then known. 

Design and operating questionnaires were sent to 91 plants known to 

employ preaeration in early 19$0. Of these, 38 replied. Data were also 

obtained from 13 other plants not originally listed, indicating that the 

total number of plants using preaeration then was more than 100. It was 

noted that the term preaeration meant something different to almost every­

one using it, from detention times of a few minutes to several hours, and 

with negligible to noteworthy aeration rates. The term has even been used 
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for long aeration of primary effluent prior to secondary treatment, as at 

Syracuse, N. T. and Decatur, 111., but this is more properly referred to 

as plain aeration and is not to be confused with preaeration of raw sewage, 

to which this study is limited. 

It was stated that diffusion of air into the average raw sewage al­

most immediately sweeps out entrained COg and HgS, enhances the separation 

of grease and reverses the OEP of the sewage from negative to positive, 

thereby stopping reduction and markedly Improving the treatability of the 

sewage. Further, continued aeration beyond the first few moments serves 

to provide additional available DO and to stimulate agglomeration and 

flocculation of solids. 

The survey returns were unanimous in reporting odor control and at 

least seme attack on septicity by preaeration. Of the $1 plants re­

porting, 18 indicated that grease removal was considered in the design of 

the preaeration unit, but only six gave data on actual grease removal. In 

addition, five plants reported grit removal by preaeration, although only 

three were so designed. 

With regard to the important factor of improved primary treatment, SS 

removal by preaeration and 2 hr settling fell in the pattern shown in 

figure 1. Although some of the data were inconsistent, the relationships 

shown were generally valid* Settling time was a factor, in that data from 

plants with shorter or longer settling times fell below or above the 

curves, respectively. BOD removal reported by 26 of the plants showed no 

correlation whatever. It can only be theorized that, if preaeration does 

result in improved SS removal, the BOD must also be affected, simply by 
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reduction of the amount of solids in the primary effluent. The survey 

data on air supply was also reviewed and the rate of aeration was found to 

vary in generally a straight-line relationship from about 0.07 cu ft/gal 

for 10 min preaeration to about 0.16 cu ft/gal for 60 min preaeration. 

These rates represent, of course, actual practice rather than design cri­

teria. 

In discussing this paper (33, p. 139), 

It is quite evident that most older preaeration units are using 
far more air than shown on Mr. Roe's curve of air requirements. 

The discussion also suggested that air floe culation and preaeration are 

two different processes, each with its definite purpose. 

The survey concluded that preaeration can be relied on to improve 

treatment results at almost any sewage treatment plant (lilt, p. 137): 

• • • preaeration accomplishes more in actual performance or 
analytical results per total dollar expended than any other 
step of primary or secondary treatment. Beyond this is the 
intangible benefit of conditioning sewage so that it is more 
treatable, thereby increasing the success and/or decreasing 
the cost of secondary oxidation processes. 

C. Preaeration Equipment 

1. Separate units 

The physical arrangement of air diffusion devices in some of the 

proprietary preaeration systems then available were given (Wt). The 

primary function of the air is mechanical, to properly agitate and main­

tain all solids in suspension. The air required varies from 1 cfm/lin ft 

far a small, shallow channel to as high as U cfm/lin ft of conventional 
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aeration tank comparable in design to that employed in the activated 

sludge process. Additional equipment systems available for preaeration 

and several industrial waste applications are discussed in a later paper 

(13). 

2. Integral with settling 

In an analysis of sedimentation, preflocculation was identified as an 

adjunct to primary settling which has been badly neglected (6). Designers 

take special care to transport the flow from the flocculation step to the 

settling tank without exceeding velocities of 2 to 3 fps, depending on 

pipe size, above which the rather delicate floe may be broken up. Better 

still, consideration should be given to the design of a flocculation area 

as an integral part of the settling basin. 

Christy (7) also discussed this latter design feature, listing among 

its advantages the elimination of floe break-up by avoiding the travel 

which may cause it, and the excellent distribution of both flow and solids 

to the settling area. A further major advantage is the simple, positive 

removal of solids which tend to settle or float in the preaeration area by 

the same removal equipment serving the settling area proper. Several de­

signs of such integral preaeration-settling tanks by the Link-Belt Company 

are described. 
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D. Other Applications 

1. Grit removal 

The use of a very short preaeration period solely for grit removal is 

one of the most interesting recent developments. This involves the appli­

cation of a spiral-flow aeration tank modified to include a grit trough 

directly beneath air diffuser s mounted along one wall, at the point where 

trouble seme grit accumulations sometimes occur without encouragement. 

The design basis and construction of the first such major installation 

by the Chicago Pump Company at Columbus, Ohio, consisting of four tanks 

with 13 ft operating depth has been given (18). One feature of the "Aer-

DegrLtter" is that the velocity of the roll can be controlled by the 

amount of air used, and is essentially unaffected by flow variations in 

the incoming raw sewage. 

At Columbus, surprisingly clean, fine grit was removed with a deten­

tion time of only l.Jjt) to 1.7$ mins (27) • Air use was a fraction of 0.01 

cu ft/gal. Generally, an aeration rate of 3 cflm/lin ft of conventional 

aeration tank length is said to develop a spiral flow velocity of 2.0 fps 

which is more than sufficient to keep organic particles in suspension. It 

has also been determined that 0.2 nm sand particles will be rolled along 

the tank bottom by a velocity of 0.75 fps. Between these velocities, 

then, is the proper operating range of this process, which does not fall 

within the definition of preaeration but is one of its most interesting 

offshoots. 



33 

2. Long-period preaeration 

Test runs at Philadelphia, in which l.S> hrs of preaeration was used, 

gave improved results over plain settling (27) • The plant-scale operation 

at Fort McClellan, Ala., in which a still longer preaeration period pre­

ceded primary settling was also discussed# The latter plant was apparently 

handling a difficult waste, since without preaeration primary removals 

were only about 30 percent and even the trickling filter effluent lacked 

DO. After the plant had adjusted to preaeration averaging 2.1| hrs on a 2k 

hr basis, primary removals of BOD and SS increased to 66 percent and 78 

percent, respectively. Further, the trickling filter effluent contained 

3*0 mg/l of DO although the preaeration tank itself was normally without 

DO except in the early morning hours of minimum flow. 

Possibly the most interesting facet of the study at Fort McClellan 

was that, while the first month of preaeration was discouraging, the 

second month showed improvement, and treatment during succeeding months 

produced excellent results. Even without benefit of return sludge or 

effluent, a culture was apparently e établi died in the preaeration tank 

which took some time to develop, then accomplished a good deal more than 

physical flocculation. This is unquestionably a worthwhile treatment 

variation, but it is beyond the scope of preaeration as defined for this 

study. 
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E. Design Criteria 

1. "Ten-State" design standards 

A manual of design criteria for sewer systems and sewage treatment 

has been issued by the ten state a* of the Upper Mississippi River and 

Great Lakes area* This is a joint product of their combined sanitary 

engineering staffs (53)* The standards are not rigid, but are rather in­

tended as general guideposts to good practice under normal circumstances • 

The complete statement on preaeration in the Ten-States Manual is 

reproduced as Appendix A. However, the following excerpt (53> P* 20) 

indicates the loose fraaework by which design engineers and regulatory 

agencies alike are guided in the use of preaeration* Note that nothing is 

said concerning the effect on primary treatment • 

C* Detention Period: 

(1) Coagulation: When air or mechanical agitation with 
chemicals is used to coagulate or flocculate the 
sewage, the detention period should be about 30 
minutes but never less than 20 minutes at the design 
flow. 

(2) BOD Reduction: When air or mechanical agitation 
(either witli or without the use of chemicals) is 
for the additional purpose of obtaining increased 
reduction in BOD, the detention period should be 
at least Î+5 minutes at design flow. 

2 • State Health Department policies 

To determine current policies on preaeration in the Ten-State area 

^Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, New York, 
Ohio, Pennsylvania and Wisconsin* 
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and for five additional midland states, all fifteen Departments were can­

vassed. Survey foras are included as Appendix B. 

Of the fifteen states, fourteen indicated a willingness to give some 

credit for increased primary removal following preaeration under certain 

conditions . The restrictions and qualifications outlined varied from mild 

to rigorous; no two states approached this with the same viewpoint. 

The allowance for increased BOD removal beyond a suggested 35 percent 

for plain settling varied from 0 to 15 additional percentage points, or a 

range of 35 to 50 percent BOD removal by preaeration followed by settling. 

Several replies suggested that 60 percent SS removal was a reasonable 

allowance for preaeration combined with primary settling. Detailed sur­

vey results are presented in table 3* 

F. Summary of Present Status 

Preaeration as discussed here comprises air flocculation of raw 

sewage for 30 to 1*5 minutes prior to primary settling; no recirculated or 

biologically active material is added to the process; the effect is 

primarily physical. 

First, it is apparent that one can take any position whatever on pre­

aeration and find company. Just as operating reports conflict, comments 

and opinions of those in the field vary from enthusiasm to disillusion­

ment. Some believe that preaeration will achieve results with strong 

sewage and/or with certain industrial wastes, but not with sewage of nor­

mal strength. For others preaeration is wasted effort under any conditions. 

Sane consulting engineering firms include preaeration in all or most 
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T a b l e  3 .  S u m m a r y  o f  c u r r e n t  d e s i g n  r e v i e w  p o l i c i e s  o n  p r e a e r a t i o n  

C r e d i t  G i v e n  f o r  
I m p r o v e d  P r i m a r y  R e m o v a l s ?  

I f  s o ,  u p  t o  w h a t  B O D  R e m o v a l ?  

C o n s i d e r e d  i n d i v i d u a l l y ;  i n  s o m e  
c a s e s  a l l o w a n c e  a s  h i g h  a s  4 5  p e r ­
c e n t  i s  m a d e .  

M u n i c i p a l i t i e s  m u s t  c o m p l y  w i t h  e s ­
t a b l i s h e d  e f f l u e n t  s t a n d a r d s .  R e ­
v i e w  o f  p l a n s  d o e s  n o t  p r e j u d i c e  o u r  
e n f o r c e m e n t  o f  c o m p l i a n c e  w i t h  
s u c h  s t a n d a r d # .  

P r e f e r  n o t  t o  g i v e  c r e d i t  u n l e s s  I n  s o m e  i n s t a n c e s  1 0  t o  1 5  p e r c e n t  P r e a e r a t i o n  n o r m a l l y  i s  n o t  r e -
p i l o t  t e s t s  i n d i c a t e  i m p r o v e m e n t  b y  c r e d i t  m a y  b e  g i v e n  ( u p  t o  a b o u t  4 5  g a r d e d  a s  a n  e f f i c i e n t  u s e  o f  a i r  
p r e a e r a t i o n .  p e r c e n t  B O D  a n d  p e r h a p s  5 0  o r  6 0  w h e n  c o m p a r e d  w i t h  a c t i v a t e d  

p e r c e n t  S S ) ,  w h e r e  s t r o n g  s e w a g e  s l u d g e .  W e  b e l i e v e  a e r a t e d  g r i t  
i s  t r e a t e d ,  p a r t i c u l a r l y  i f  i n d u s t r i a l  c h a m b e r  p r o d u c e s  b é n é f i c i a i  e f f e c t s ,  
w a s t e s  a m e n a b l e  t o  t r e a t m e n t  a r e  F l e x i b i l i t y  i n  p r e a e r a t i o n  I F  e n -
i n c l u d e d .  c o u r a g e d  t o  i n c l u d e  r e t u r n  o f  s i u d g e  

a n d  v a r i a b l e  a i r  s u p p l y .  

P r e a e r a t i o n  i s  e n c o u r a g e d ,  p a r ­
t i c u l a r l y  i f  t h e  s e w a g e  i s  s t r o n g  o r  

I f  p r e a e r a t i o n  p e r i o d  i s  a t  l e a s t  o n e  A p p r o x i m a t e l y  5  p e r c e n t ,  
h o u r ,  s o m e  c r e d i t  m a y  b e  g i v e n .  

K a n s a s  

M i c h i g a n  

Y e s  f o r  B O D ;  n o  i n c r e a s e  f o r  S S  4 0 - 4 5  p e r c e n t  r e m o v a l  o f  B O D .  L i t t l e  o p e r a t i n g  d a t a  a v a i l a b l e .  

Y e s ,  f o r  B O D  r e m o v a l ,  i f  m i n i m u m  4 0 - 4 5  p e r c e n t  B O D  r e m o v a l  i s  
a e r a t i o n  p e r i o d  o f  3 0  m i n  i s  p r o -  a l l o w e d  i n  p r i m a r y  s e d i m e n t a t i o n  
v i d e d .  w i t h  p r e a e r a t i o n ;  o n l y  3 0  p e r c e n t  

B O D  r e m o v a l  i s  a l l o w e d  f o r  p r i m a r y  
s e d i m e n t a t i o n  a l o n e .  

O k l a h o m a  

P e n n s y l v a n i a  

N o .  

Y e s .  

U p  t o  1 5  p e r c e n t .  

A l l o w a n c e  o f  a b o u t  4 0  p e r c e n t  B O D  
r e m o v a l  a n d  6 0  p e r c e n t  S S  r e m o v a l  
w o u l d  b e  c o n s i d e r e d  r e a s o n a b l e  f o r  
t h i s  t r e a t m e n t  w h e r e  f r e s h  d o m e s t i c  
s e w a g e  i s  t r e a t e d  f o l l o w e d  b y  c o n ­
v e n t i o n a l  s e d i m e n t a t i o n  t a n k s  w i t h ­
o u t  a p p r e c i a b l e  a m o u n t s  o f  i n d u s ­
t r i a l  w a s t e s .  

1  0  p e r c e n t .  

N o n e  b e y o n d  t h e  3 : > - 4 5  p e r c e n t  B O D  
r e m o v a l .  I f  p r e a e r a t i o n  i s  n o t  g i v e n  
d o u b t  t h a t  3 5 - 4 5  p e r c e n t  i s  a t t a i n e d .  

F o r  4 5 - m i n  p r e a e r a t i o n  p l u s  p r i ­
m a r y  s e t t l i n g ,  w e  w o u l d  c o n s i d e r  
4 5  p e r c e n t  B O D  r e m o v a l  a n d  6 0  
p e r c e n t  S S  r e m o v a l .  

F o r  4 5 - m i n  p r e a e r a t i o n  p l u s  p r i ­
m a r y  s e t t l i n g ,  w e  g i v e  c r e d i t  f o r  
4 5  p e r c e n t  B O D  r e m o v a l  a n o  6 0  
p e r c e n t  S S  r e m o v a l .  

1 0  t o  1 5  p e r c e n t .  

F o r  d o m e s t i c  s e w a g e  a b o u t  1 5  p e r ­
c e n t .  F o r  i n d u s t r i a l  w a s t e s  5  t o  
1 0  p e r c e n t ,  d e p e n d i n g  u p o n  t h e  
c h a r a c t e r  o f  t h e  w a s t e .  

N o  o p e r a t i n g  e x p e r i e n c e  a »  y e t  i n  
M i c h i g a n  p l a n t s  f o r  t h i s  t y p e  o f  
e q u i p m e n t .  

N o  u n i t s  o f  t h i s  t y p e  a r e  i n  o p e r ­
a t i o n  i n  t h i s  S t a t e .  S e v e r a l  p l a c e s  
u s e  a i r  f o r  f l o c c u l a t i o n  o r  f o r  m i x ­
i n g  w i t h  s h o r t e r  p e r i o d s  o f  d e t e n t i o n .  
T h e  R O D  r e m o v a l  a l l o w e d  f o r  
p r a e r a t i o n  i s  t i e d  i n  w i t h  t h e  d e s i g n  
o f  t h e  p r i m a r y  s e t t l i n g  u n i t s  a n d  
d e p e n d s  l a r g e l y  u p o n  t h e  i n d i v i d u a l  
c a s e ,  i n c l u d i n g  t h e  p h y s i c a l  a n d  
c h e m i c a l  c h a r a c t e r i s t i c s  o f  t h e  
s e w a g e  t o  b e  t r e a t e d ,  

W e  h a v e  a l l o w e d  1 0  p e r c e n t  i n  s e v ­
e r a l  c a s e s  w h e r e  s t r o n g  i n d u s t r i a l  
o r g a n i c  w a s t e s  w e r e  c o n c e r n e d .  
N o n e  o f  t h e s e  p l a n t s  h a v e  o p e r a t e d  
a s  v e t ;  t h e r e f o r e ,  w e  h a v e  n o  f a c t u a l  
d i t  '  o n  a c t u a l  o p e r a t i n g  e x p e r i e n c e .  

C a n n o t  g i v e  b l a n k e t  a p p r o v a l ;  s o m e  
s e w a g e  i s  b e n e f i t e d  b y  p r e a e r a t i o n ,  
o n  t h e  o t h e r  h a n d ,  d o n ' t  b e l i e v e  
f r e s h  s e w a g e  f r o m  a  s m a l l  c o m m u n ­
i t y  w o u l d  b e  h e l p e d  a t  a l l .  O v e r a l l ,  
b e l i e v e  t h a t  a  1 0  p e r c e n t  ( a d d i t i o n a l )  
J 3 0 D  r e m o v a l  c o u l d  b e  r e a s o n a b l y  
e x p e c t e d  i n  s e w a g e  t h a t  n e e d s  p r e ­
a e r a t i o n  f o r  e i t h e r  g r e a s e  r e m o v a l  
o r  f o r  o v e r c o m i n g  s e p t i c  c o n d i t i o n s  
c a u s e d  b y  l o n g  s e w e r  l i n e .  

T h e  p e r c e n t a g e  r e m o v a l  o f  e i t h e r  
H O D  o r  S S  d e p e n d s  g r e a t l y  o n  t h e  
c h a r a c t e r  o f  t h e  r a w  s e w a g e .  W e  
h a v e  v e r y  l i t t l e  a c t u a l  d a t a  i n  N e w  
Y o r k  t o  s u b s t a n t i a t e  t h e s e  f i g u r e s .  

A c t u a l  o p e r a t i n g  r e s u l t s  t t  O h i o  
p l a n t s  s u b s t a n t i a t e  t h e s e  a l l o w a n c e s .  
S e v e r , i l  p l a n t s  p r o d u c e  5 0  p e r c e n t  
B O D  r e m o v a l  a n d  6 5  t o  7 0  p e r c e n t  
S S  r e m o v a l .  T h e  p e r c e n t a g e  r e ­
m o v a l  o f  e i t h e r  U O D  o r  S S  d e p e n d s  
g r e a t l y  o n  t h e  c h a r a c t c r  o f  t h e  r a w  
s e w a g e .  

N o  p r e a e r a t i o n  u n i t s  p e r  y o u r  d e f i ­
n i t i o n  i n  s t a t e .  

W e  l i k e  t o  h a v e  a t  l e a s t  1 - h r  p r e ­
a e r a t i o n  a n d  p r o v i s i o n  f o r  r e t u r n  o f  
s l u d g e  o r  c h e m i c a l  a d d i t i o n s  i n  c a s e  
n e e d e d .  L e s s  a l l o w a n c e ,  i f  s e w a g e  

U s u a l l y  p r e a e r a t i o n  i s  p r o p o s e d  f o r  
g r e a s e  r e m o v a l ,  i n c o r p o r a t e d  w i t h  
g r i t  r e m o v a l ,  o r  t o  h e l p  a  s e p t i c  
s e w a g e  p r o b l e m .  S h o u l d  a  c i t y  b e  
a b l e  t o  p r o v i d e  l a b o r a t o r y  p r o o f  
t h a t  p r e a e r a t i o n  o f  t h e i r  s e w a g e  w i l l  
g i v e  a d d i t i o n a l  B O D  r e d u c t i o n ,  t h e n  
c r e d i t  w o u l d  b e  g i v e n  i n  t h e i r  d e ­
s i g n  o f  p l a n t  a d d i t i o n s .  

T h e  r e d u c t i o n  f o r  d o m e s t i c  s e w a g e  
a n d  i n d u s t r i a l  w a s t e  i s  c a l c u l a t e d  
s e p a r a t e l y .  T h e  t o t a l  o v e r a l l  
a l l o w a b l e  r e d u c t i o n  i s  d e t e r m i n e d  
f r o m  s u c h  s e p a r a t e  c a l c u l a t i o n s .  
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of their plant designs; others ignore it. Equipment firms report that 

interest in preaeration is high but that for no other treatment step does 

design practice vary so widely. 

Second, the statement can still be repeated today with authority (23, 

p. 1159)t 

preaeration facilities are provided in many modern plants, yet 
there are almost no data on the true advantages and limitations 
of the process. 

Over 200 plants in this country are now equipped for this process; 

yet comparative, parallel operating data with and without preaeration are 

still lacking. 

To this end, the present study is inclined; not with the thought that 

all questions regarding preaeration will be resolved, but rather that at 

least one intensive, continuing evaluation of the process be carried out 

and its findings made available. 
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17. PURPOSE AND SCOPE OF THIS STUDY 

The objectives of this study are as followst 

a. to evaluate the effect of preaeration on primary settling of 

sewage; 

b. to evaluate the factors, such as the amount of air and de­

tention time, which affect the results achieved; and 

c. to evaluate the economics of preaeration as a sewage treat­

ment process. 

It has been noted that published reports of parallel plant operation 

with and without preaeration are lacking, although such data seem vital to 

any conclusions about the process. The Ames plant is particularly well 

suited for such a study since its primary stage could easily be arranged 

for operation as two parallel units with the flow split accurately between 

them. 

It was recognized that the results of this stucfcr would be conclusive 

not for the process, but only for the Ames plant. However, Ames sewage is 

strictly domestic and of normal strength, providing a challenge to a 

process which some feel has little or no application with such a waste. 

During preliminary work at the Ames plant and particularly after dis­

cussing preaeration informally with many others at technical meetings, the 

emphasis of this study shifted rather heavily to the first of the objectives 

listed above. The real challenge was the opportunity to establish whether 

the preaeration process actually benefited primary settling or whether 
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this was only imagined by its enthusiastic supporters. 

A very brief chronology of the course of this study is outlined as 

follows$ 

1. Spring and summer, 1956 

2. September, 1956 through 
May, 1957 

3. July, 19# 

U* August and September, 1957 

5. Fall, 1957 through Winter, 
1958 

6. March-August, 1958 

7• August, 1958 

8» November and December, 1958 

9. January through March, 1959 

Preliminary work; physical plant 
changes; detention tests. 

Plant-scale operating runs, con­
tinuously without inspection or 
changes, using original downdraft 
aerator• 

Plant-scale runs with provision 
for overcoming grit problem; 
downdraft aerators used alter­
nately. 

Lab or at Ory- scale experimental runs 
with various aeration and settling 
times. 

Work on developing and refining 
laboratory methods; installation 
and testing of air equipment. 

Plant-scale operating runs at Ames 
plant, with varied air rates and 
varied equipment, for one-week 
intervals; intensive sampling and 
laboratory analyses. 

Plant-scale operating runs at 
Grlnnell, Des Moines, and Cedar 
Rapids, Iowa; with total flow re­
ceiving preaeration — no parallel 
comparison possible. 

Oxidation-reduction potential data 
gathered; cleanup of experimental 
work. 

Plant-scale operating runs at Ames, 
with equal split flow but unequal 
settling times. 

Discussion of this study and of the results achieved follow generally 

the chronological outline above. 
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V. PREPARATORY WORK AT THE MES PLANT 

A. Plant Arrangement and Operation 

This plant is somewhat unusual in that it serves both the City of 

Ames and Iowa State University. Fixed and operating costs of the plant 

are shared by each in proportion to sewage volume contributed. 

The flow diagram and normal operating procedures have been given in a 

Progress Report (5) covering the first period of this study. The flow 

diagram is included here in figure 2, and a general view of the preaera­

tion and primary settling area is presented in figure 3. 

The Ames plant is designed to treat an average flow of 3.0 mgd. The 

present population served is approximately 27,000. Actual volume load on 

the plant during the period of this project ranged generally from 2.1 to 

2*8 mgd. Sewage strength in terms of both BOD and SS normally averages 

from 200 to 250 mg/l; overall plant removals range from 75 to 80 percent 

in winter to about 90 percent in summer. Float tests indicate that day­

time sewage flow from the main business district reaches the plant in 

roughly l£ hrs, while the flaw time from the University is approximately 2 

hrs. 

1# Treatment units 

Major plant units, in order of flow through the plant, includes 

a. A consminutor pit, with Par shall flume to measure total raw 

sewage flow. 
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b. A control building, housing raw sewage pumps, engine-

generator unit, shop, office and laboratory. 

Ce Two aeration-grit removal tanks for preaeration and grit 

removal. 

d. Four rectangular primary clarifiera for settleable solids 

removal« 

e. Three standard-rate trickling filters to provide biological 

treatment • 

f • Three circular final clarifiera to provide final settleable 

solids removal. 

g. A chlorine-contact tank, which has never been in service, 

for chlorination of final plant effluent. 

h. Two sludge digestion tanks, operated as a two-stage system; 

primary unit equipped with a floating cover, secondary 

digester with a gas holder. 

i. Sludge drying beds for dewatering digested sludge in the 

summer. 

j. A sludge lagoon to which sludge or supernatant can be 

diverted. 

Unit sizes and design details for the units are summarized in table It. Hy­

draulic loadings are shown for both a 2.0 mgd rate, which approximates dry-

weather 2U hr average flow, and a 3.0 mgd rate which is in the range of 

normal daytime flow. It is apparent that loads on this plant are still 

moderate. 
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Table li. Unit sizes and loadings; Ames sewage treatment plant 

Design factors 
Per At 2.0 mgd At 3.0 mgd 
unit flow rate flow rate 

Aeration-grit removal tanks (2 units) 
(preaeration) 
Surface area, aq ft (22.5 ft % 22.5 ft) 506 
Majdmum depth (hopper), ft 20.0 
Volume, gal U0,000 

Detention, hi* 0.96 0»6lt 
Surface overflow rate, gpd/sq ft 1,970 2,960 

Primary clarifiera (It units) 
Surface area, sq ft (59 ft x 20 ft) 1,180 
Average depth, ft 6.35 
Volume, gal 56,000 
VIeir length, ft 15U 

Detention, hr* 2.69 1.80 
Surface overflow rate, gpd/sq ft U2U 636 
Weir overflow rate, gpd/lin ft 3,250 It,870 

Trickling filters (3 units) 
Diameter, ft 135 
Average depth, ft 8.0 
Surface area, acre 0.33 
Volume, acre-ft 2.63 

Hydraulic loading, mgd/acre 2.03 3.05 
BOD loading, lb/day/acre-ft 26U — 
(assuming 125 mg/l applied) 

Final clarifiers (3 units) 
Surface area, sq ft (Itl ft diara) 1,320 
Average depth, ft 8.25 
Volume, gal 81,500 
Weir length, ft 129 

Detention, hr* 2.9U 1.96 
Surface overflow rate, gpd/sq ft 505 757 
Weir overflow rate, gpd/lin ft 5,170 7,750 

^Theoretical displacement time. 
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2. Normal operation 

Flow from both City and University reaches the plant through a common 

trunk sewer and passes through comminutors and a Par shall flume before 

reaching the raw sewage wet well. From here, it is pumped to the aeration-

grit removal units at rates of approximately 2 or 3 mgd, the rate being 

governed by automatic programming of the float-controlled pumps to keep 

pace with the incoming flow. 

At the aeration-grit removal units, the flow is split for parallel 

treatment in the two tanks, then recombined in a channel which provides 

distribution to the four rectangular primary clarifiera. Primary settling 

effluent is again recombined far flow through an underground conduit to 

the three trickling filters. 

Filter effluent is transported similarly to the three final clari­

fiera, the effluent from which is discharged to the Skunk River approxi­

mately one-half mile from the plant. Gravity flow is provided throughout 

these treatment steps and to the river. All units are normally in opera­

tion except that one filter is taken out of service during the winter 

months to provide increased flow to the other two to minimize icing 

problems. 

Primary settled sludge is drawn off at 6 hr intervals to a sludge 

well where it is concentrated for approximately $ hrs. Shortly before the 

next scheduled draw, the heavy sludge is pumped from the bottom of this 

sludge well to the first-stage digester. The thin top liquor or super­

natant remaining in the sludge well is drained back to the raw sewage wet 

well to be recycled through the plant. The sludge well is then momentarily 
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empty before receiving the next raw sludge withdrawal* 

Final settled sludge is recycled to the raw sewage wet well through a 

return line throttled by a float-actuated butterfly valve at the wet well* 

It is thus resettled in the primary clarifiers* The float is set to re­

turn little or no flow during the daytime, but opens late at night to 

bring back all final sludge along with a good deal of final effluent. In 

this way, a minimum night flow rate of 1*5 mgd is maintained, compared to 

the 0.8-0.9 mgd normal night flow arriving at the plant. 

All raw sludge goes to the first-stage digester, whose contents are 

actively recirculated through an external heat exchanger. Regular sludge 

transfers are made to the second-stage digester which functions as a 

storage and concentration unit. Supernatant is normally returned to the 

raw sewage wet well for recycling through the plant. Digested sludge is 

drawn off to sand beds for drying when weather conditions permit. A large 

lagoon is also available as a safety valve for the sludge handling phase 

of the treatment process. 

It is important to point out both now and later that the sludge and 

supernatant returns described were diverted from the raw sewage wet well 

when preaeration plant runs were in progress, since the object of the 

study was to evaluate preaeration in its simplest terms, i.e., without 

return material of any kind. Supernatant from the digesters and from the 

sludge well could be and were readily diverted to the sludge lagoon. 

Final settled sludge was held in the final clarifier s for varying periods, 

usually without serious detrimental treatment effects. During winter 

operation without return night flew from the finals, it was found advisable 
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to operate only one trickling filter. 

B. Preliminary Studies 

The preliminary work pertaining to plant load patterns and actual de­

tention times will be mentioned in passing because it was a necessary fore­

runner of an intelligent sampling program. 

1. Sewage strength and volume patterns 

In February and March of 195U, an intensive series of sampling runs 

was conducted jointly by sanitary engineering graduate students and plant 

personnel. Raw sewage samples were picked up hourly for one 2U hr period 

in each of five consecutive weeks and analyzed for BOD, SS and TS. The 

results, as shown in figures U and 5, were surprisingly consistent patterns 

of incoming raw sewage strength, representing essentially dry-weather flow. 

Later, an analysis was made of flow records for the full year 1956, a 

severely dry year following several years of less than normal precipitation. 

Here again, the patterns were considered to be unusually free of abnormal 

influences. The 21* hr flow patterns were generally unaffected by the 

season (figure 6), or by a comparison of maximum and minimum weeks with the 

mean for the entire year (figure 7). 

2. Primary clarifier detention tests 

In a series of tests in February and March of 1956 actual detention 

times in the primary clarifier s were determined. This work has been re­

ported in detail (l). Rock salt, fluorescein dye and rubidium^ were 
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used as tracers In separate runs» The rock salt proved to be the least 

reliable, consistently giving mean detention times longer than calculated 

theoretical displacement times. It was theorized that the problem here 

was at least partly one of density currents» Additional difficulties were 

encountered because of the variable chloride content of the raw sewage » 

The rubidium®^ radiotracer gave mean detention times considerably 

less than theoretical, but not particularly consistent» Even with its ad­

vantages, the use of a radiotracer involves counting equipment and safety 

precautions which salt or dyes do not. 

Fluorescein dye, the old reliable, not only proved the simplest to 

use and to read photometrically in the laboratory, but gave the most con­

sistent and reasonable results. Actual mean detention times, as deter­

mined with fluorescein, ranged from 70 to 87 percent of theoretical in 

five of the six runs. In the sixth, this figure was 99 percent, which is 

not realistic. A value of 80 percent is probably most reasonable as a 

basis for sampling (figure 8) . Calculated dye recovery averaged about 

75 percent. Results of the detention tests on the primary clarifier s are 

summarized in table 5» 

Table 5» Dye detention tests on Ames primary clarifiera 

Test Clarifier Flow rate Theoretical Actual mean Mean as percent 
no»* no. mgd det. time det. time of theoretical 

mine mins 

2 1 •75 108 76 70 
2 .55 1U7 121 82 
3 .1*5 179 130 72 
U .85 95 77 81 

3 h .85 95 9k 99 
k k .85 95 83 87 

^Designation in (l) 
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3. Preaeration detention tests 

Following these detailed experimental runs with several tracers, 

fluorescein was used to check actual detention times in the south pre­

aeration tank. The procedure used, calibration curves, and typical data 

are in Appendix C. 

Two runs were made at similar flow rates, one with the original Walker 

downdraft aerator in operation, the other with a blower delivering 150 cfln 

of free air to the tank through 8 spargers. In each of the two runs, 500 

g of fluorescein dye was used; sewage flow through the unit was maintained 

at a steady rate for the 2^ hours required to complete the test runs. 

The results were quite consistent, with actual mean detention times 

determined to be 90 and 88 percent of theoretical in the two tests 

(figure 9 and table 6) . This work provided a valid basis for planned 

sampling of the preaeration step. 

Table 6. Dye detention tests on Ames south preaeration tank 

Test Flow rate Theoretical Actual mean Mean as percent of 
no. mgd det. time det. time theoretical 

mine mins 

1 1.8 32 29 90 

2 1.7 3U 30 88 
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G. Plant Changes and Adjustments 

1. Downdraft aerator rebuilt 

The original equipment in each of the two preaeration units was a 

downdraft mechanical aerator driven by a 5 hp motor. This equipment was 

furnished by Walker Process Equipment Co. of Aurora, Illinois. This 

unit (figure 10) is basically a submerged impeller operating within the 

upper end of a submerged downdraft tube which extends to a depth of four­

teen ft below the sewage surface. Air-inlet tubes extend from the 

atmosphere at the pump base to an area of reduced pressure just above the 

impeller. Rotation of the impeller forces a mixture of liquid and air 

downward through the draft tube, recirculating the tank contents. The air 

contributes only slightly to the energy involved in recirculation. 

The amount of air added to the sewage by the downdraft aerator is 

small by usual aeration standards, but its distribution is excellent and 

it appears at the surface in very fine bubbles. According to the manu­

facturer, the rate of air intake is at a maximum when the impeller clears 

the air tube openings by only £ in and when the submergence is such that 

gentle vortering occurs on the surface. Either more or less submergence 

will hinder the natural air suction. Later attempts to force additional 

air down the draft tube with this unit in operation succeeded only in 

badly hampering pumping action and in producing an area of boils as the 

air rose in masses next to the downdraft tube. 

Grit removal, which at first was not considered to be a serious prob­

lem at the Ames plant, is accomplished in a somewhat unique manner. The 
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grit-washing action of preaeration appears to be successful in permitting 

the grit to settle below the draft tube while keeping the organic material 

in suspension. However, an accumulation of about cne week's grit is 

necessary, lodged along the lower slopes of the hopper bottom, before any 

grit is removed by the bucket elevator. This inactive grit storage does 

not appear to increase appreciably, nor is there any evidence that it 

affects the characteristics of the sewage passing through these units. In 

normal operation, grit is elevated out of the unit once each operation 

shift. 

In the summer of 1956, the mechanical aerator in the south preaera­

tion tank was rebuilt and provided with a new impeller and larger air 

lines. The air lines were collected in a manifold at the pump base so 

that the total draft could be measured. Automatic reversing switch-gear 

was installed to reverse the impeller direction for two mine every hr. 

This served to clear the impeller blades and shaft of rags and other 

materials which would otherwise seriously reduce the effectiveness of the 

aerator within a few hours after manual reversing, 

2. Primary effluent weirs 

The rectangular primary clarifier s are equipped with endless chain 

collector flights which move surface sew to the effluent end of the tank 

and bring settled sludge back to hoppers beneath the influent ports 

(figure 11). All primaries are served by a common influent channel. Two 

large inlet ports are provided from the influent channel into each clari­

fier. A solid baffle wall 2 ft from the inlet openings is provided to 

dissipate the entrance energy and direct the flow downward. 
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It has always been apparent that the distribution of flow to the four 

primary clarifier s was unequal with all influent ports fully open. As a 

first step in better flow control, Cippoletti weirs were so installed in 

the primary effluent channel that the flow through each clarifier could be 

measured, either directly or by difference. 

Considerable effort was expended in the calibration of these weirs as 

actually installed. Raw sewage was pumped directly to the primary clari­

fier s, bypassing the preaeration units, at a known rate until the flow 

over the weirs was stabilized and readings were taken. Then, the procedure 

was repeated at a different flow rate. Pumping rates were established by 

measurements at the Par shall flume, which had earlier been calibrated 

volumetrically. 

Early runs following calibration of the Cippolletti weirs indicated 

just how poor the natural distribution was. The data in table 7 are 

typical of these runs. 

Table 7 • Unbalanced flow to primary clarifier s before adjustment 

Clarifier Flow, mgd 

1 •75 

2 .55 

3 .45 

k .85 

Total 2.60 mgd 
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3. Primary influent shear gates 

The unequal flew distribution was overcome with the easily adjustable 

shear gate (figure 12). With a moderate amount of juggling, the flow to 

ail four clarifiers was balanced and remained so for months without 

attention. 

This arrangement did create a new problem of scum accumulation in the 

influent channel. The scum problem was in turn solved by cutting an 

opening in the two shear gates at the extrane ends of the channel and pro­

viding a sliding panel which was raised once a shift for a few moments to 

flush out the scum without tampering with the shear gate setting. 

I4, Installation of flow splitters 

For comparison of primary treatment with and without preaeration, 

splitters were installed in the channel serving the preaeration tanks. 

The splitters (figure 13) consisted of redwood boards held in place by 

angle iron frames. A galvanized metal rudder on the inlet side split the 

nappe of the raw sewage flow entering this channel. This arrangement pro­

vided a high degree of accuracy in dividing the flow between the two pri­

mary treatment bays. Once set, this device was found to be stable for 

months without attention. The splitters and supplementary gates were used 

to direct half the flow through the south preaeration tank, then to pri­

maries 3 and U, while the other half passed directly to primaries 1 and 2. 

This was the basis of operation for many months of plant-scale comparative 

runs. 
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D. Trial Plant Runs; July 26-September lii, 1956 

1# Operating sequence 

The object of these runs was to initiate a sampling and laboratory 

program even though all mechanical and plant changes were not yet complete# 

Sampling for 2h hr composites was begun in late July with all raw 

sewage flow receiving rather brief preaeration in the north unit, then 

passing to the four primary clarifiers. The original Walker downdraft 

aerator was in place in the north unit. Two trickling filters and all 

three final clarifiers were in operation. Plant operation was normal, in­

cluding nightly return of final effluent to the raw sewage wet well to 

supplement low night flows. Total plant flow during this trial run ranged 

from 1.42 to 1.87 mgd, averaging 1.70 mgd. 

Sewage samples were collected at 2 hr intervals at the following five 

locations: plant influent, preaeration effluent, primary effluent, filter 

effluent and final effluent. The 2 hr sampling frequency was based on 

earlier studies which indicated that a shorter interval would accomplish 

little in terms of more representative sampling. 

On August 15 the flow was split with half passing through the north 

preaeration tank as before then to the north pair of primary clarifiers, 

while the other half of the raw sewage flow bypassed preaeration and went 

directly to the south pair of primaries. This required sampling of two 

primary effluents, bringing total sampling points to six. At this time, 

procedures were initiated to hold sludge and supernatant out of the in­

fluent to the primary stage of treatment. 
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2. Plant results 

Operating results for this period are summarized in table 8* Taken at 

face value, these results present preaeration in a very attractive light. 

Primary BOD and SS removals appear to be about 15 percentage points better 

than for plain settling, and overall plant efficiency was better \iien the 

Tabid 8« Results of trial Ames plant runs, July-September 1956 

Sampling Trial run A* Trial run B** 
point BOD, mg/l SS, mg/l BOD, mg/l SS, mg/l 

Raw, or preaeration influent 269 169 185 168 

Preaeration effluent 273 190 197 202 

Preaerated primary effluent 193 67 106 57 

Plain primary effluent 132 84 

Filter effluent (insufficient data) 58 38 

Final effluent ho 18 38 27 

Removals BOD 
percent 

SS 
percent 

BOD 
percent 

SS 
percent 

Preaerated primary treatment 28 60 43 66 

Plain primary treatment 29 50 

Complete treatment 85 89 80 84 

*A11 flow through north preaeration unit; 9 composites, July 26-
August 15. 

**Half of flow through north preaeration unit and half direct to 
primaries; 7 composites, August 23-September lit. 
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total sewage flow was preaerated. However, these results do not deserve 

this interpretation ; the north aerator and several primaries were down for 

repairs during this period, and the division of flow was known to be 

approximate • 

Most important, the local corn cannery was operating from. August 2nd 

through 19th, with an organic load alone roughly equal to that from the 

rest of the community* This load at times came in heavy slugs, in addition 

to a fairly steady discharge from normal processing. The effect of this 

waste was apparent for a number of days after canning operations had 

ceased. Finally, these trial runs covered too short a period to be con­

clusive, as later runs were to emphasize all too sharply. Complete 

laboratory data for these trial runs are included in a project Progress 

Report (5). 

On September 17, 1956, an accurate split of the raw sewage flow was 

achieved; the north preaeration unit was shut down and half the flow was 

bypassed directly to the north primaries. The south preaeration unit was 

placed in operation, with this half of the flew then channeled to the 

south primaries • This was the operating procedure until late spring of 

1957, for the duration of the first intensive series of full-scale plant 

runs* 
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VI. FULL-SCALE PLANT RUNS, SEPTEMBER 1956-MAÏ 1957 

A. Plant Arrangement and Operation 

For the next eight months, tiie incoming raw sewage flow was split 

accurately, half passing through the south preaeration unit and the south 

primary clarifiers, the other half bypassing directly to the north primary 

clarifiers without pretreatment • The Walker downdraft aerator was in con­

tinuous operation in the south preaeration unit with hourly reversing. 

All primary clarifiers were in continuous service. Settled sludge 

was drawn off at 6 hr intervals. An important change during this period 

was the diversion of supernatant from the raw sludge well to the sludge 

lagoon, preventing any return of material from this point to the incoming 

raw sewage. Another change in plant operation involved the trickling 

filters; on September 28 one filter was taken out of service, leaving only 

filter No. 1 in operation. On November 23 it became necessary to remove 

this filter from service and substitute filter No. 2, which then operated 

alone until late in May, 1957 * Only one filter was used throughout the 

winter season to avoid icing problems aggravated by lack of the usual 

nighttime return flow from the final clarifiers. 

The final clarifiers were all in service. However, final sludge re­

turn was restricted to the hours of 1 AM to 4 AM on nights following the 

conclusion of 2k hr sampling. During these hours, the preaeration control 

gates were shifted to bypass the south preaeration tank entirely, diverting 
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all raw sewage together with its supplement of final settled sludge directly 

to the primary clarifiers* In this way final sludge was re-settled in the 

primaries as usual, while bypassing preaeration. 

Digester supernatant was lagaooned during this period. Only raw 

sewage passed through the south preaeration tank; the north preaeration 

unit was never in service. Thus, the key objective of direct comparative 

operation with and without preaeration was satisfied. 

B * Sampling Schedule 

Six samples were collected at 2 hr intervals $ 

A Preaeration influent (raw) 
B Preaeration effluent 
C Plain primary effluent 
D Preaerated primary effluent 
£ Filter effluent 
F Final effluent 

On sampling days, an initial sample was taken at each point at 10 AM; 

sampling then proceeded until 8 AM the following morning, comprising the 

24 hr sampling period. The samples, picked up in 250 ml square, wide-

mouth bottles, were stored in a 4° C water-bath cooler. 

This sequence ignored the time for passage of the sewage through the 

plant, but it was assumed that over the months involved, sampling errors 

from this source would largely cancel out» The schedule used did have the 

advantage of permitting laboratory work to begin on all samples promptly 

following 8 AM. Sampling was carried out routinely on Sundays, Tuesdays 

and Thursdays, permitting laboratory work to be concentrated on Mondays, 

Wednesdays and Fridays. 
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Considerable attention was given to the technique of sampling at each 

point to insure that the small quantity brought into the laboratory was as 

representative as possible of the flow at that point. Operating personnel 

who performed, the sampling were carefully instructed, in technique to insure 

that their efforts would be as uniform as possible. 

C, Laboratory Procedures 

On removal from the cooler, the individual samples were first com­

posited in proportion to flow. The first two composites, preaeration in­

fluent and effluent, were homogenized for 30 sees in a food blender to 

break down the larger particles. This procedure yielded considerably more 

reproducible analytical results than were otherwise possible. Primary, 

filter and final effluent composites were not blended. The composite 

samples were used for all laboratory determinations. 

After much hard and often frustrating work, the Gooch crucible method 

for determining SS was abandoned in favor of the following adaptation of 

the standard evaporation procedure described in the section on Residue of 

Part II of Standard Methods (£2). First, approximately 250 ml of the com­

posite was filtered through Whatman No. 12 folded filter paper. Next, 

duplicate 100 ml portions of the original, unfiltered composite and dupli­

cate 100 ml portions of its filtrate were evaporated to dryness. The 

residues constituted TS and DS, respectively; SS were calculated by sub­

traction of dissolved residue from total residue. This method was found 

to provide excellent reproducibility and was particularly adaptable to a 

laboratory situation in which many SS determinations were made by a number 
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of people. 

BOD determinations were made according to the azide modification of 

Standard. Methods. An important short-cut here was the use of a Bausch and. 

Lomb Spectronic 20 colorimeter to read the DO content of a sample after 

color development, thereby eliminating the titration step, the preparation 

of standard sodium thiosulfate and starch solutions, and saving a good deal 

of time. The development of this colorimetric procedure and its use with 

both clear and turbid samples has been discussed in an earlier publication 

(37) .  

During this run, some preliminary work was conducted with the Bausch 

and Lomb colorimeter toward the development of a photometric method for 

the determination of SS as evidenced by turbidity. This procedure will be 

described later. 

D. Results 

This lengthy plant-scale run was conducted to provide a direct com­

parison of primary settling removals with and without preaeration, all 

else being equal. It was further desired to learn the length of test run 

required for the primary units and for the plant as a whole to achieve a 

steady state following a major operational change and to observe the effect 

of marked seasonal change on treatment results. 

The results of this plant-scale run were quite enlightening in a 

frustrating, obstructive, challenging way — certainly unlike anything 

anticipated. As cold statistics, the primary removals are summarized in 

table 9 and plotted in figure 14. Detailed daily laboratory results for 
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Table 9* Summary of results for full-scale Ames plant runs, September 1956-
May 1957 

Month No* of Average BOD 
composites weekday Raw Plain primary Preaerated primary 

flow, mgd effluent effluent 
mg/l mg/l Removal mg/l Removal 

percent percent 

Sept. U 1.8 220 164 25 107 51 
Oct. 2 2.0 256 174 32 128 50 
Nov. 6 2.0 233 179 23 150 36 
Dec* 10 2.0 244 238 2 164 33 
Jan. 11 2.1 268 234 13 177 34 
Feb. 9 2.15 268 237 12 170 37 
Mar. 9 2.1 268 252 6 216 20 
Apr. 13 2.3 222 190 15 143 36 
May 7 2.5 251 175 30 147 41 

SS 

Sept. 4 1.8 192 148 23 6o 69 
Oct. 4 2.0 240 122 49 71 70 
Nov. 6 2.0 211 81 62 60 72 
Dec. 10 2.0 209 138 34 76 64 
Jan. 11 2.1 212 191 26 87 59 
Feb. 9 2.15 224 363 27 82 63 
Mar. 9 2.1 214 173 19 84 61 
Apr. 13 2.3 202 148 27 84 58 
May 7 2.5 215 83 61 73 66 

the entire period are tabulated in the first Progress Report (5) • 

Generally, primary BOD and SS removals in winter were poorer than for 

either fall or spring • It also appeared that a steady state was reached 

in primary treatment, at least, in much less than one month. Beyond these 

general observations, it can only be reported that, while preaeration and 

settling produced BOD and SS removals in the 35 percent and 65 percent 

range, respectively, plain settlingremovals went from poor to bad, then 
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became still worse and remained so as long as the operating procedure re­

mained unchanged. 

The run was permitted to continue, possibly far beyond practical 

limits, to see what the final outcome would be, even after the cause of 

the trouble had been theorized. The cause was GRIT, as later established 

positively by inspection, sampling and further runs in May, 1957 * 

Without the grit removal usually afforded by the preaeration unit, a 

certain fraction of rather coarse grit succeeded in building really 

impressive and unbelievably solid banks of grit in the sludge hopper area 

of the north primary clarifiers. These grit banks contained a high con­

tent of putrescible material. This digesting mass apparently was suf­

ficiently active to literally poison the entire clarifier to an extent 

which knocked SS removals down to a level of 15 to 25 percent for many 

weeks. At times, primary effluent BOD strength exceeded that of the 

incoming raw sewage. 

This phenomenon became rather predictable after some work with Imhoff 

cones. If effluent samples from the plain settling primaries contained 

3a—U ml/l of settleabls solids, compared to 51-7 ml/l in the raw sewage, 

BOD removal would be little or nothing. If, on the other hand, Imhoff 

cone tests indicated 0.1-0.2 ml/l of sett le able solids in the effluent 

from these primaries, as was uniformly the case with the preaerated pri­

mary effluent, it could be expected that BOD and SS removals by plain 

settling would, for that day, be fairly respectable. Not once, however, 

did plain settling results equal parallel removals by preaeration and 

settling combined. Figure 15 presents the day-by-day pattern of SS 
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results during these months of plant-scale operation. 

In summary of this first major, albeit abortive, phase of the project, 

preaeration appeared to benefit primaiy settling at this plant consistently* 

This run was certainly not a quantitative indication of benefit; it is hard 

to characterize it as a quantitative indication of anything at all* More 

p o s i t i v e  w a s  t h e  l e s s o n  t a u g h t  o n  " G r i t ,  c a r e  a n d  h a n d l i n g  o f *  *  * "  
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VII. FULL-SCAIE PLANT RUNS, JULY 1957 

A* Plant Arrangement and Operation 

With the cause of the extremely poor plain primary settling results 

known and under control, further plant runs were made to evaluate the 

benefits of preaeration, if any, under normal conditions. These runs were 

also planned to provide a check on the flow and treatment balance between 

the four primary clarifiers* 

In most respects, the arrangement was unchanged from the long test 

run of the preceding winter and spring. The incoming raw sewage flow was 

accurately split; half received preaeration, then primary settling, while 

the other half was bypassed directly to identical plain primary settling. 

The two Walker downdraft aerators were still in place and were operated 

alternately as described below. 

The July test run involved 2k hr sampling each Tuesday and Wednesday 

for four weeks. In preparation for the sampling period, the following 

routine was observed. On Monday morning, the sludge hoppers in all four 

primaries were jetted free of grit and sludge while the primaries remained 

in service. On Monday afternoon, digester and sludge well supernatant s 

were diverted to the sludge lagoon, and final sludge recirculation was 

shut down. One preaeration unit was bypassed, and the plant received no 

return flow of any kind until conclusion of the two-day sampling period. 

During the first and third weeks' runs, the south preaeration unit 
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was operated with the south primary clarifiers while the other half of the 

flow was bypassed directly to the north primaries. During the second and 

fourth week, this arrangement was reversed to provide preaeration ahead of 

the north primaries and plain settling only in the south primaries. 

In other respects, primary clarifier operation and sludge withdrawal 

was unchanged from the previous run. Two trickling filters were in service 

throughout the July run, as were all three final clarifiers. Final 

settled sludge was held in the final clarifiers during sampling. 

B. Sampling Schedule 

Sampling began at IX) AM Tuesday and extended through 8 AM Wednesday, 

constituting a 24 hr set of samples for compositing. Sampling then con­

tinued from 10 AM Wednesday through 8 AM Thursday to provide a second 24 

hr composite. 

Six samples were taken: 

A Preaeration influent (raw) 
B Preaeration effluent 
D-l No. 1 primary clarifier effluent 
D-2 No. 2 primary clarifier effluent 
D-3 No. 3 primary clarifier effluent 
D-4 No# 4 primary clarifier effluent 

Samples were collected in 250 ml square, wide-mouth bottles and stored 

in a 4° C water-bath cooler. In addition, grab samples were brought in as 

time permitted for immediate DO analysis and for determination of 

settle able solids. 
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C. Laboratory Procedures 

Laboratory procedures used in compositing the samples and in carrying 

out BOD and SS determinations were unchanged from those previously de­

scribed. For determining settle able solids, Imhoff cones were used in 

accordance with Standard Methods (52) • 

Since the incoming raw sewage was often deplete of DO during the day­

time, the following procedure was used to arrive at a value for negative 

DO. A 305-ml BOD bottle was filled quietly with dilution water. A second 

BOD bottle was just as quietly filled to half capacity with dilution 

water. Upon arrival of the sewage sample in the laboratory, the remaining 

half of the second bottle was immediately filled by siphon from the sewage 

sample, and DO reagents were promptly introduced into both bottles. A 

negative DO value for the sewage sample was obtained as in this sample 

calculation: 

Dilution water DO* 7.0 mg/l 

50:50 mixture DO: 3.0 mg/l 

Multiply DO mixture x 2, yielding 6.0 mg/l 

then, 2 x mixture DO - dilution water DO 

* 6.0 - 7.0 * -1.0 mg/l. 

It is recognized that this procedure lacked refinement, yet it did provide 

helpful information not available by any other means. 

In connection with these runs, further effort was expended on the 

photometric method for determining SS. The results of the July test runs 

are reported, however, on the evaporation basis only for consistency. 
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D. Results 

This short run went smoothly, marred only by the unexpected startup 

of the local corn cannery during the fourth week* This resulted in fitful 

discharges to the sewage treatment plant of heavy loads of corn waste, 

clean water, and corn waste in unpredictable sequence. 

The plant-scale comparative data indicated consistent and significant 

improvement in primary removals following preaeration* Detailed BOD and SS 

results are given in table 10j these results are summarized in table 11 and 

in figures 16 and 17* For the first three weeks, average primary BOD re­

movals were 35 percent without preaeration and U3 percent with preaera­

tion* Comparable SS removals were 6l and 69 percent, respectively* Re­

movals were much lower the fourth week, but the improvement due to pre­

aeration was still significant in spite of the abnormal waste flow* 

Settle able solids results were of little or no help in evaluating the 

difference in primary removals* When there was any difference, it was in 

the range of a reading of 0*1 ml/l following plain settling, contrasted 

with a trace reading in the preaerated primary effluent* 

As indicated by individual composites for the four primary clari­

fiers, the balance between them was excellent* No one unit showed even 

mildly better removal than the others* It would also appear that both 

preaeration units were achieving reasonably like results* 

The DO work proved valuable, less so in interpretation of the July 

results than as a background for later work with oxygen values* The DO 

results are summarized rather simply in table 12* These values, typical 
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Table 10. Detailed results of July 1957 full-scale Ames plant runs 

Date Preaeration Preaeration Primary clarifier 
influent effluent effluent* 

No. 1 No. 2 No. 3 No.U 

9 BOD 
strength, mg/l 12*6 151* 101 106 83 92 
removal, percent 30.8 27.L 1*3.2 3?.Q 

SS 
strength, mg/l 
removal, percent 

10 BOD 
strength, mg/l ll*l* 11*0 109 101 86 95 
removal, percent 2l*.3 29.8 I*<5.3 5u.O 

SS 
strength, mg/l 
removal, percent 

16 BOD 

12*6 15U 101 
30.8 

106 
27.U & 

216 155 60 
72.2 

77 
61* .3 W.2 

12*1* U4.0 109 
2U.3 

101 
29.8 

86 
1^.3 

156 1L7 6U 
59.0 

61 
60.9 5?.2 

strength, mg/l 
removal, percent 

SS 
strength, mg/l 
removal, percent 

167 132 
ff.i 

102 
38.9 

113 
32.3 

strength, mg/l 
removal, percent 

SS 
strength, mg/l 
removal, percent 

11*6 153 

iîâ â° 
63 
56.8 

1*1 
71.9 

BOD 
strength, mg/l 
removal, percent 

SS 
strength, mg/l 
removal, percent 

11*6 131 80 

Eil & 81* 
1*2.5 

89 
39.1 

BOD 
strength, mg/l 
removal, percent 

SS 
strength, mg/l 
removal, percent 

122 15U 
55.6 

5L 
55.7 

60 
50.8 

23 BOD 
strength, mg/l 160 166 110 107 106 96 
removal, percent 31*2 33.1 33.7 H^.O 

SS 
strength, mg/l 158 162 70 61* 53 1*9 
removal, percent 55.6 59.5 o6.5 Q9.0 

2k BOD 
strength, mg/l 168 150 93 90 79 76 
removal, percent lût.6 L6.li 5>3.0 3E.7 

SS 
strength, mg/l 160 ll*7 55 56 1*8 1*3 
removal, percent 65.6 65.0 To.P 73.1 

^Underlined data indicate preaerated primary effluent; data not 
underlined indicate plain primary effluent. 
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Table 10 • (Continued) 

Date Preaeration Preaeration Primary clarifier 
influent effluent effluent 

No. 1 No. 2 No. 3 too. k 

30** BOD 
strength, mg/l 
removal, percent 

SS 
strength, mg/l 
removal, percent 

3Ï ,** BOD 
strength, mg/l 
removal, percent 

SS 
strength, mg/l 
removal, percent 

26U 

129 

127 

98 

22k 

127 

Hl2 

101 

182 18U 176 160 
31.1 30.3 33.3 39.3 

82 78 83 89 
35 .L 1?.6 35.6 31.0 

60 
SLl 

99 78 
.0 22.1 38.5 

5? 52 67 63 
51.8 53.9 31.6 35.i 

**Local corn cannery in operation. 

Table 11. Summary of July 1957 Ames plant results 

Date Flow 
and 

Mean sewage 
temperature 

Average primary BOD 
removal, percent 

Average primary SS 
removal, percent 

day mgd °F Plain Preaerated Plain Preaerated 

9 Tu 2.92 
10 W 2.88 

70 
70 

29.1 
27.1 

U0.1 
37.2 

68.2 
60.0 

77.5 
70.5 

16 Tu 2.76 
17 W 2.70 

71 
70 

35.6 
U0.8 

là.3 
U6.2 

6U.U 
53.3 

65.8 
59.8 

23 Tu 2.65 
2k W 2.hk 

70 
71 

32.2 
15.5 

36.9 
53.9 

27.6 
65.3 

67.8 
71.6 • 

30 Tu* 2.96 
31 Vr 2.65 

72 
72 

36.3 
30.3 

30.7 
U6.9 

33.3 
33.7 

38.0 
1*2.9 

*Local corn cannery in operation 
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BOD 200 

£• Plain Primary Effluent ^ 

L Preoerated Primary Effluent 

300 

250 

S S 200 

"«'I 150 

; 10 16 17 23 24 30 31 

July, 1957 

F i g .  1 6 .  P r i m a r y  B O D  r e m o v a l s  f o r  
J u l y  1 9 5 7  A m e s  p l a n t  r u n s  

SS 

Plom Primary Effluent 

-Preaeroted Primary Effluent 
_J I L_ 

10 16 17 23 24 30 31 

July , 1957 

F i g .  1 7 .  P r i m a r y  S S  r e m o v a l s  f o r  J u l y  
1 9 5 7  A m e s  p l a n t  r u n s  

Pinch clamp for 

balancing flow 

Rubber tubing 

Glass tees 

Glass stem 

-Sintered glass diffuser 

Rotameter 

Gallon bottles-' No. I —plain settling 

Nos. 2-5 —preaeration fallowed 
by settling 

No. 6 —blank for receiving 

idled diffusera 
Needle Needle 

valve 
Compressed 

air 

F i g .  1 8 .  S k e t c h  o f  a r r a n g e m e n t  f o r  
l a b o r a t o r y - s c a l e  p r e a e r a t i o n  t e s t s  
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Table 12. Typical afternoon DO values during July 1957 Ames plant runs 

Operating Range of average DO values, mg/l» ~~ 
arrangement Preaeration Preaeration Primary clarifier effluent 

influent effluent No. 1 and 2 No* 3 and U 

North preaeration 
unit operated in con- «•§• to -1 -1 to -2 -1 to -2 -1 to -3 
junction with pri­
maries 1 and 2; South (slight loss) (held even) (drop) 
preaeration unit 
bypassed. 

Reverse of above; South 
preaeration unit in to -1 0 to -1 -1 to -2^ 0 to -2 
operation preceding 
primaries 3 and U. (held even or slight (drop) (held even or 

gain) slight drop) 

* 
These results are representative of fairly stable afternoon 

conditions, determined by hourly sampling. 

of fairly stable afternoon conditions, indicate that preaeration with 

downdraft aerators was maintaining the DO level reasonably constant as 

raw sewage passed through the unit. However, the DO level in the primary 

clarifiera seemed to drop more slowly following preaeration than it did 

in the plain settling primaries# The rebuilt south aerator somewhat out­

performed the north aerator by this criterion, which is not surprising. 

Again in general terms, the DO content of the incoming raw sewage 

dropped swiftly from as high as U to 6 mg/l in the early morning hours to 

zero by 10:15 or 10$30 AM, the height of the morning flush. The DO level 

continued down to as low as -3 mg/l in the late forenoon; recovered to the 

fairly stable afternoon plateau of -0.5 to -1.0 mg/l and usually did not 

reoccur as a plus figure until a short interval around the supper hour. 

In the late evening the DO level of the raw sewage became definitely 
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positive and remained so until the following forenoon» 

For this waste at this plant during this month, preaeration produced, 

significantly better primary removals than did. plain settling. The way was 

cleared for work on the factors affecting successful use of the 

preaeration process. 
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V3U. IABORATOBY-SCAIE TESTS, AUGUST-SEPTEMBER 1957 

A. Laboratory Facilities 

1. Objectives 

Among the factors affecting preaeration, these would appear to be 

most critical: 

a« aeration rate, 

b. length of preaeration period, and 

c. length of settling time following preaeration. 

It is important that any one variable be analyzed independently of all 

others insofar as possible. It would be most helpful to study each of 

these factors at length in plant scale, but this is simply not practical 

in any existing installation. 

At the Ames plant, equipment was installed to vary the aeration rate 

over wide limits, making it possible to study this factor in full-plant 

scale# It would have been awkward to vary either the length of preaera­

tion or the settling time follovingp re aeration while keeping all other 

conditions constant# These two factors, therefore, were studied by an 

extensive series of test runs in the laboratory. 

2. Experimental arrangement 

Wide-mouth gallon bottles served as the test containers for these 

runs. The experimental arrangement shown in figure 18 consisted 



76 

of the test containers, a compressed air source, a needle valve and rota­

meter to insure constant air flow, and a set of four sintered diffusers 

for introducing air into the sewage samples* Following preaeration, the 

samples were permitted to settle undisturbed in the bottles to avoid the 

risk of floe break-up by transfer to other containers. Air flow to 

individual diffusers was balanced visually by pinch clamps to give 

approximately the same intensity of turnover in each bottle. A fifth 

bottle was provided for plain settling, and a sixth for receiving dif­

fusers when individual preaeration periods were concluded. In this way, 

a balanced, constant air supply was maintained to all four diffusers 

throughout the run. 

The aeration rate was established at lUO cu cm/min to each gallon 

bottle, or a total of Ç&0 cu cm/min. This rate was derived as the 

arithmetic equivalent of a 200 cfln aeration rate in one of the Ames pre­

aeration tanks. The 200 cfln rate was the capacity of the blower secured 

for project use. The UbO cu cm/min rate to each gallon bottle was 

equivalent to the following aeration rates for the times shown* 

Table 13. Preaeration rates during laboratory-scale tests 

Preaeration period, mins Aeration rate, cu ft/gal 

1$ 0.07U 

30 0.11*8 

0.223 

60 0.297 



77 

3. Procedure 

After several trial runs, the test procedure was standardized as 

follows* Five of the gallon containers were filled quickly with raw 

sewage and brought to the laboratory. This constituted a grab rather than 

a composite sample, collected most commonly at 10*30 or 10*1*5 AM or at 

1:30 or 1$U5 PM. An aliquot of the sample was drawn for BOD and SS 

analysis. Preaeration was initiated immediately in four of the containers; 

the fifth was permitted to settle quietly. The sixth bottle was filled 

with tap water. According to a predetermined schedule, preaeration time 

would vary, followed by uniform settling time, or settling time would 

vary, preceded by uniform preaeration. 

As the preaeration period for each bottle was concluded, its dif­

fuser was moved to the bottle of tap water and permitted to continue 

aerating; this involved no adjustment of air supply to the other 

bottles. At the conclusion of preaeration and settling for each bottle, 

a sufficient aliquot was immediately drawn by siphon from just below the 

surface, and determinations of BOD and SS were made. 

Two sets of laboratory-scale runs were projected in line with the 

objectives described above. In the first group, comprising test series 

A and B, four 1 gal samples were preaerated far 15, 30, U5 and 60 min, 

respectively. Preaeration was followed by a settling period which was 

identical for these four samples and for the fifth sample receiving plain 

settling only. In series A, separate runs were made with settling times 

of 1, 2, 3 and U hr. In series B, the sequence of settling times was 

changed to 0, 1 and 2 hr. With replicates, a total of eighteen 
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separate runs was made in this group, designed to determine in the 

laboratory the effect of length of the preaeration period. 

The second group of laboratory-scale runs was intended to show the 

effect of varied settling time following preaeration, all else being 

equal* In each run, four samples were preaerated for an equal length of 

time, then given settling periods of 1, 2, 3 or U hr in series C, or 0, 

I, 1 or 2 hr in series D* A total of twenty-four separate runs was made 

in this second group of tests* The preaeration periods used were 15, 30, 

U5 and 60 min. 

The local corn cannery operated sporadically during most of the six 

weeks of these laboratory test runs. This had the nuisance effect of 

doubling normal sewage strength with little notice, but it did provide a 

variety of waste flows for this phase of the project. Although an 

attempt was made to carry out each specific test combination both with 

and without cannery waste, it did not appear that there was a significant 

difference in the results obtained. 

B. Test Results 

1. Varied preaeration time 

Individual analytical results far the eighteen test runs in Series A 

and B are plotted for comparison in figures 19 and 20. The most per­

functory glance at these data indicates that some preaeration seemed to be 

better than none, and that where some was good, more appeared to be still 

better* 
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In analyzing these results, the improvement in primary settling due 

to preaeration is defined in terns of percentage points. This is more 

meaningful than an expression of percent improvement• Suppose, for 

example, that primary BOD removal on Monday was boosted from 10 percent by 

plain settling to 20 percent by preaeration and settling combined. Assume 

further a corresponding Improvement on Tuesday from U0 to 50 percent re­

moval. The degree of improvement might be cited as 100 percent on Monday 

and only 25 percent on Tuesday; yet the actual level of improvement was 

10 percentage points each day, a much more realistic appraisal of the 

benefit accruing from preaeration. 

From table lU it is apparent that preaeration always improved SS re­

moval, and that longer aeration increased the benefit. The improvement 

was most marked with short settling time, decreasing in relative im­

portance as the settling time lengthened. Table lit also indicates that 

BOD removal was benefited by preaeration, to a degree corresponding 

generally with length of the aeration period. In the BOD there is no 

clear indication that the benefit of preaeration was proportionately 

greater with short settling time. However, it would seem that BOD and SS 

removals must parallel, at least generally, and in this case the SS 

analytical results were more reliable. 

It was observed that removals of both BOD and SS were indicated by 

preaeration without settling in these laboratory test runs. This was 

never indicated in plait-scale results. No explanation of this phenomenon 

is offered. 

The summary of proportional improvement (table 15 and figure 23) was 
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Table Ik. Effect of varied preaeration time on removals ; summary of 
laboratory results, Series A and B 

No. of Settling Preaeration time, mins Overall improvement 
runs* time 0 l£ 30 h5 60 by preaeration, in 

hrs percentage-points 

SS removal, percent 

2 0 0 12 lit Ht 18 18 
2 * 3U 51 52 57 58 2it 
h 1 39i Wi 53 55 60 21* 
h 2 ltfl 56 59i 6l| 63 15$ 
3 3 U8§ 60 62# 6U$ 65& 17 
2 h 57 631 6U 66g 691 12£ 

BOD removal, percent 

2 0 0 U U 6 8 8 _ 
2 i 27 36% Loi (Ul)** (Ht)** 
h i 37 U2§ U3i Ulil U9f 12f 
5 2 Wi 51 5U| 56* 60 16 
3 3 U5i 50 5Uf 57 57i 12 
2 U L8§ $2i (55) (57i) (60) (ni) 

*Each run comprises five 1 gal samples, all receiving same settling 
as shown, following varied preaeration as shown. 

**Data in part extrapolated. 

Table 1$. Proportional Improvement by increments of laboratory preaeration 

Preaeration time, mins 
0 15 30 U5 60 

percent of ultimate improvement over plain settling 

SS 55 73 87 100 

BOD U7 68 78 100 

^Arbitrarily assuming for calculation purposes that full ultimate 
improvement over plain settling is achieved by 60 rain preaeration « 
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based on an arbitrary calculation assuming that complete or ultimate bene­

fit over plain settling was attained in 60 mins of preaeration. On this 

basis, about half the expected improvement was achieved in the first 15 

mins of aeration; some 70 percent in 30 mins and over 80 percent in 

mins. This, of course, was in the laboratory under ideal conditions, with 

treatment of the total sample for the full period without short circuiting 

or similar difficulties encountered in plant operation. 

Further analysis of the test data from Series A and B indicated that 

neither the benefit of preaeration, nor the time element just discussed, 

seemed to be affected by the strength or character of the raw sewage. 

Strong sewage was benefited no more than the weak. In contrast, the cor­

relation shown in figure 2k between the improvement in percentage points 

credited to preaeration and the removal by plain settling was particularly 

interesting. The poorer the job done by settling alone, the greater was 

the benefit resulting from preaeration. If this were valid in actual 

plant operation, the preaeration process would be unusually useful. 

2. Varied settling time 

Series c and D runs consisted of 21* individual tests with settling 

times of 1, 2, 3 or It hrs and of 0, 1 or 2 hrs for the four 1 gallon 

samples* Detailed analytical results are plotted for comparison in 

figures 21 and 22. 

SS and BOD data for this group of runs are summarized in table 16. 

The results of these runs were somewhat erratic and are open to a variety 

of interpretations. As expected, removals improved with additional 
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Table l6« Effect of varied settling time on removals; summary of 
laboratory results, Series C and D 

No» of 
runs* 

Preaeration time 
mins 

Settling time, hrs No» of 
runs* 

Preaeration time 
mins 0 i 1 2 3 U 

SS removal, percent 

2-it 0 0 39 U9 52i 
2-lt 15 I3i Uit 5li : 58$ 65à 66 
2-6 30 25§ 58 63I r 6U| 62 63 
2-5 U5 27 5U 62| ; 65 65 66% 
2-5 60 35 66 68 7ii 77i 78 

BOD removal, percent 

2-U 0 0 39 37 39 3U& 39 
2-U 15 7i # U3 U7 53 5li 
2-5 30 18 U5i U9 55 5d 50? 
2-5 2*5 8& 3Uf U 9 $0 53è 5U 
2-5 60 51 5U 6U$ 65 

* 
Each run comprises five 1 gal samples, all receiving the same pre­

aeration followed by varied settling as shown* 

settling. These data also appeared to confirm the results of the first 

group of runs in that the removal, scanning the columns from top to 

bottom, improved with increased preaeration time. Although reasonable, 

this is not a valid inference, since every preaeration value tabulated 

represents a different sample. These runs were designed to evaluate only 

the effect of varied settling time. 

As with the first group, it appeared that preaeration alone was 

responsible for removal of BOD and SS. Again, this was contradicted in 

later plant-scale runs. 

Table 17, the data for which are also shown in figure 23, summarizes 

the effect of varied settling time, arbitrarily assuming ultimate benefit 
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Table 17 • Proportional improvement by increments of laboratory settling 

Settling time, hrs 
_ | I 2 3 H 
percent of ultimate* improvement over preaeration only 

SS - 73 85 92 97 100 

BOB - 7U 86 91 99 100 

^Arbitrarily assuming for calculation purposes that full ultimate 
improvement over preaeration only (no settling) is achieved by Ij. hr 
settling. 

from k hr settling. In these terms, over 90 percent of ultimate benefit 

was achieved in 2 hrs, and 80 percent of that was attained in the first 

half hour of settling. It appears that preaeration strongly enhances the 

efficiency of the early moments of settling. 

3. Composite results 

Tabulated in composite form, analytical results of all h2 laboratory-

scale runs are summarized in table 18. These composite results, in them­

selves, are more interesting than weighty. They support the beneficial 

effect of preaeration; they also provide in contour form a general indica­

tion of different combinations of preaeration and settling which, in the 

laboratory, produced equivalent results. 

For example, 30 min preaeration followed by § hr settling out­

performed plain settling of 2 or even 3 hr duration. Similarly, 60 min 

preaeration with % hr settling was roughly equivalent to 15 min preaeration 

and 3 hr settling, and quite superior to plain settling of U hr duration 

or longer. 
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Table 18. Composite results of all laboratory tests 

No. of 
runs 

Settling time 
hrs % 

Preaeration time, mins 
nr— 30 <5o" 

SS removal, percent 

U-6 
U-6 
8-10 
8-10 
5-6 
U-5 

U-5 
1» 
8-9 
9-10 
5-6 
U-5 

1 
2 

U 

1 
2 
3 
U 

0 
35 
39 
U6 
U8| 
55 

13 
U6 
50 

621 
65 

? % 
62Ï 
63$ 

0 
33 
37 
U1& 
Ul 
UU 

6 
39 
U3 
U9 

f  

BOD removal, percent 

20 
551 
$9, 

6? 
66| 

55% 
(56)* 

28 
63 

671 
70 
7U 

62** 

Data in part extrapolated. 

In these terms, preaeration appears very attractive. It also 

appears that the key to its optimum use may be in the judicious substitu­

tion of preaeration detention time for settling detention time. Finally, 

it must be cautioned that there are wide and numerous gaps between what 

can be done in the laboratory and what can be done in full-scale plant 

operation. 
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IX. FINAL LABORATORY AND TEST PROCEDURES 

Prior to the discussion of the plant-scale runs carried out during 

the spring and summer of 1958, this section will be devoted to a detailed 

description of the laboratory procedures standardized during the preceding 

winter, and of the aeration equipment and control facilities at the Ames 

plant. 

A. Oxygen Values 

1. Dissolved oxygen (DO) 

The DO deteimination was carried out in accordance with the Winkler 

method, azide modification, as described in Standard Methods (52). The 

only variation from this procedure was the direct photometric determina­

tion of DO with a Bausch and Lamb Spectronic 20 Colorimeter after color 

development (figure 25) rather than by titration with sodium thiosulfate. 

This photometric procedure was developed in the early months of this 

project and its use for both clear and turbid samples has been described 

earlier (37). 

For a clear sample, the transmittance was observed and the corre­

sponding DO read directly from a plot (figure 26). This calibration in 

tabular form, together with detailed procedure, is included in Appendix 

D. The calibration table was prepared by titration of numerous DO samples 

for which the transmittance was also determined. 
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Fig .  26 .  DO ca l ib ra t ion  fo r  u se  wi th  Spec t ron ic  
20  Co lo r ime te r  

F ig .  27 .  Var i ed  co lo r  deve lop ­
men t  i n  s e r i e s  o f  s ample  
bo t t l e s  fo r  DO dep le t ion  r a t e  
t e s t  
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The procedure for a turbid sample is of special interest because it 

provided the key to an approximate photometric method for SS* A photo­

metric reading merely indicates the amount of light reaching the photocell0 

The interference caused by color and by turbidity are cumulative, and can 

only be separated by an indirect method* In the procedure followed for a 

turbid sample, color was developed and the transmittance read; then the 

iodine color was destroyed by oxidation with sodium thiosulfate and the 

transmittance read again. From the combined Lambert-Beer law (37) the 

interference credited to the color alone is expressed by the ratio of the 

two readings. This ratio is equivalent to the t ran suit tance for the 

iodine color alone, and the DO of the sample can be determined with this 

calculated transmittance ratio directly from figure 26 as before. 

2. Negative dissolved oxygen 

Raw sewage arriving at the treatment plant may have free DO present, 

or may be totally deplete, or may have deteriorated to the point where 

some chemically combined oxygen has been consumed and aeration would be 

necessary to restore the presence of DO in solution. 

For lack of a better definition, this may be termed a state of nega­

tive DO. To obtain some measure of this condition, equal volumes of dilu­

tion water and of the sewage sample were combined. With the DO of the 

dilution water and of the mixture determined, the DO of the original 

sewage sample was readily calculated. The procedure and sample calcula­

tions are detailed in Appendix D. 
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3* Biochemical oaygen demand (BOD) 

a. Procedure » In determining the BOD of raw sewage and preaeration 

effluent, an aliquot portion of the composite sample was homogenized for 

30 sees in a food blender* Several trial series indicated that blending 

improved the repeatability without significantly changing the numerical 

result of the 5 day BOD test* All other laboratory determinations were 

made on the unblended composite sample* Blending was emitted entirely for 

primary effluent samples, since it appeared to contribute nothing to 

laboratory technique in their case* 

Standard Methods procedure was followed, including the use of dilution 

water supplemented with phosphate buffer, magnesium sulfate, calcium 

chloride and ferric chloride solutions* Plunging the sample while 

pipetting off portions far seeding the dilution bottles was religiously 

observed* The dilution bottles were incubated at 20° C for 5 days* 

Following iodine color development, DO determinations were made photo­

metrically as described above* 

The photometric shortcut eliminated the preparation and frequent 

standardization of sodium thiosulfate and saved many hours of laboratory 

work* This modification has since been adopted for routine plant control 

at several Iowa sewage treatment plants* A sample BOD data and calculation 

sheet is included in Appendix D* 

b* limitations * Intensive work with the BOD test serves to make one 

aware of its limitations and vagaries* Even with great care, the numerical 

results of a single set of dilutions may not fall within a 10 percent 

spread* This is certainly discouraging in a research effort far which a 
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10 percent variation may indicate whether or not a trial operating change 

is worthy of further study. 

On several occasions, inhibitors were apparently present either in 

the sewage reaching the plant or in the dilution water • The results were 

either sharply depressed oxygen demand or highly erratic numerical re­

sults, or both; and the first hint of this did not appear until five days 

later. When the dilution water was at fault, chances were good that some 

or all of the work of the intervening five days was equally faulty. In 

spite of its limitations, however, the 5 day BOD determination remains the 

standard laboratory approach to oxygen demand evaluation, 

U» DO depletion rate 

In an effort to learn something about the rate of short-term oxygen 

demand of raw sewage upon its arrival at the plant, several simple 

experimental methods were tested. The result was a procedure which con­

sisted of violently agitating a sewage sample to a DO level of 6 or 8 

mg/l, then observing the rate of DO depletion over a period of U5 mins to 

an hour. After agitation, a series of small bottles was filled Immediately 

by siphon from the sewage sample, The DO level was then determined in one 

bottle at a time at $ or 10 min intervals# The result (figure 27) was a 

series exhibiting decreasing color intensity, and thus DO content, with 

time. Detailed procedures and sample calculations are described in 

Appendix D, 

For normal daytime raw sewage, the rate of DO depletion was in the 

range of $ to 10 mg/l per hr. With strong cannery waste, this rate was 

recorded as high as 17 mg/l per hr. A sample of raw sewage taken at 7 $10 
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AM, still clear night flow in appearance, was found to have a depletion 

rate of about 0.1 mg/l per hr. The normal rate for primary effluent was 

found to be in the range of 2 to U mg/l per hr# 

This determination was helpful in evaluating the rate of oxygen ac­

ceptance during the preaeration step. If the raw sewage neither gained 

nor lost DO during preaeration, its oxygen demand rate was just being met, 

and the depletion test then provided a numerical measure of the rate of 

both demand and supply. If the DO level rose or dropped enroute through 

preaeration, the rate of acceptance could be approximated by taking into 

account probable detention time. Although not particularly scientific, 

this test contributed an understanding of the aeration phase of preaera­

tion which would not have been possible otherwise# 

5# Oxygen acceptance rate during aeration 

Knowing the DO depletion rate and the DO levels entering and leaving 

the preaeration step, it was possible to approximate the oxygen acceptance 

rate in terms of mg/l per hr. This rate was found to vary with the equip­

ment used and with the rate of aeration. 

The procedure involved sampling both the preaeration influent and 

effluent at 10 min intervals for at least an hour# The sampling periods 

were staggered to reflect the approximately half-hour actual mean deten­

tion time in the preaeration unit at normal daytime flow# Reagents for 

the DO determination were added to these samples within less than a minute. 

A typical DO sampling run is reproduced in Appendix D. 

During this period, DO depletion tests on preaeration influent were 
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being run in the laboratory. With the data on DO levels and depletion 

rates, the oxygen acceptance rate was calculated as shown in Appendix D. 

6. Oxygen-reduction potential (ORP) 

OEP determinations were made for a limited time only, near the conclu­

sion of plant-scale work late in 1958* In the waste treatment field, OEP 

remains a research tool rather than a routine laboratory procedure. Grune 

and Ghueh (20) have discussed the meaning of OEP in sewage treatment work. 

Its potential value has been summarized as follows (U8, p. 93): 

I would just like to add one comment. Fundamentally, the ORP 
is a measuring stick that can be used to measure the intensity 
of anaerobic conditions. For example, consider the dissolved 
oxygen test « you might run a DO and find no dissolved oxygen. 
That is worth knowing, but it doesn't tell how bad off you 
really are. The ORP measurements allow you to go way down on 
the scale and measure degrees of oxygen deficiency indicating: 
when all nitrates are exhausted; when all sulfates are ex­
hausted and so forth. It has real value there. 

I don't mean to say the ORP is limited to these very things but 
I think it will find its greatest application in sensing an­
aerobic conditions and how bad they are. It possibly can be 
used also for sensing the degree of aerobic conditions but my 
experience with it under aerobic conditions is that after the 
DO gets above 1 ppm it doesn't tell you very much. 

The ORP data collected in this project were of interest, but a much 

broader foundation would be necessary before these data would be pertinent 

to either experimental or plant control work. The instrument used in 

determining ORP is shown in figure 28. The procedure and a sample calcu­

lation are included in Appendix D. 
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B• Solids Determinations 

1. Suspended solids by evaporation 

As discussed earlier, project personnel finished a poor second in a 

bout with the Gooch crucible procedure far SS. An alternate procedure was 

adopted in which TS were determined by evaporation as described in Standard 

Methods (52)• A sufficient quantity of the same sample was also filtered 

through Whatman No. 12 folded filter paper to permit a parallel determina­

tion of DS by evaporation of this filtrate • SS were then calculated as the 

difference between TS and DS. The procedure and sample calculations are 

presented in Appendix E. 

This method is simple but time-consuming. With filter paper of 

satisfactory quality, its results are highly reproducible. The only edge 

held by the Gooch crucible method over this procedure would appear to be 

the weight of tradition. 

2. Photometric determination of SS 

a. Development. Several descriptions of photometric approaches to 

the measurement of SS in sewage have appeared in the literature. Those 

described have been confined to single measurements of the interference to 

light transmission. This is essentially the turbidity determination. As 

long as the waste characteristics and weather remained the same, the results 

were fairly consistent. An important change in either, however, usually 

resulted in broad changes in the relationship of transmittance to SS 

content. 
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The major problem with sewage in this regard is that sewage is quite 

strong and quite variable in color. After some work with the photometric 

technique for determining DO of turbid samples, it appeared that the same 

general approach might apply here* 

In the DO procedure for turbid samples, the transmit tance is read 

both before and after decolorizing to cancel out the effect of turbidity. 

These readings provide a ratio which is equivalent to the transmit tance of 

the color alone. In the photometric procedure for SS, transmittance of 

the sewage sample is read both before and after filtration, thus can­

celling out color j the resulting ratio is the transmittance for SS alone» 

In two years1 use for both project and plant control work, this pro­

cedure has demonstrated its merit. Project personnel have learned to 

respect its limitations bub remain enthusiastic over its advantages. 

Part of the laboratory arrangement is shown in figure 29• Procedures, 

sample calculations and calibration tables are presented in Appendix E. 

b. Limitations. The chief limitation of this photometric procedure 

for SS is that it simply lacks the potential precision which could make 

it a primary standard. However, in spite of its hallowed standing, the 

Gooch crucible method is notorious for scatter gun reproducibility; any­

thing would be an improvement. 

The characteristics of sewage are constantly changing; the color 

varies; the DS content varies with time of day, season, amount of ground­

water infiltration and type of waste. For equal SS content as determined 

by evaporation, photometric response is significantly different at each 

major step of the sewage treatment process. 



99 

For this procedure, the Bausch and Lonfo Spectronic 20 Colorimeter was 

also found to be a source of some variation# Both the light source and the 

photocell gradually weaken or expire and must be replaced. With a change 

in light components, the sewage sample may give mildly different readings, 

indicating a corresponding drift in calibration. 

The SS calibration curves prepared and used during the 1958 plant-

scale runs are shown in solid lines in figure 30. Further calibration 

work during January 1959, following several changes of light components, 

provided the dotted lines shown. Note that although the difference is 

quite strong, the curves are essentially parallel. It is not known at 

this writing whether this shift was primarily seasonal, or due to lack of 

photometric refinement. 

c. Advantages. VJhatever the cause of the variance described, the 

photometric method has the advantage of consistency. For example, if SS 

results by the evaporation method were found to be appreciably higher than 

by this method, this was observed for all samples of the group, much as if 

the calibration curve had been displaced to a new, parallel position. 

Since all results appeared to have been affected proportionally, calcu­

lated removals and comparisons of efficiency were virtually unaffected by 

such a shift in calibration. 

The rapidity of this method is particularly valuable. SS determina­

tions can be completed for a dozen samples in 30 mins. For the Ames plant 

studies in which four points were sampled every half hour for 12 to 21^ hrs 

a day, SS determinations for each individual sample would have been 

physically impossible by any other method. 
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The photometric method described is one which the small plant operator 

can use. The likelihood of the small sewage treatment plant being provided 

with an analytical balance is as remote as the operator's familiarity with 

it. As a result, no SS determination of any kind is performed in nine out 

of ten of the smaller plants, nor in a surprising number of the larger 

ones. With any type of photometric equipment, preferably simple, the 

snail plant operator could learn to perform BOD and SS analyses. The re­

sults might not be highly refined, but they would be valuable nevertheless. 

C, Settling Rate, Oulman Settlimeter 

Early in this project it was theorized that if preaeration were of 

benefit to primary treatment, it would accentuate physical flocculation of 

the raw sewage solids and thereby accelerate settling. Several experi­

mental photometric arrangements were tested for observing the settling 

rate; the result was a device which was subsequently termed a settlimeter. 

Its functional design is shown in figure 31; a detailed description and 

test procedures describing its use appear in Appendix F. 

In practice, a sample of sewage was collected in the 2 in diam 

settling cell and placed in the cell holder. As settling progressed, 

light transmission through the cell increased. This was measured by the 

photocell and indicated by the galvanometer. More rapid settling was 

readily apparent by more rapid change in galvanometer readings. Several 

trial runs with the light source placed at the 50 percent depth indicated 

no important change in settling patterns from tests made at the 20 percent 

depth. The settlimeter in its final form is shown in figure 33* Four 
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cell positions were provided. A selection knob permitted galvanometer 

readings to be made for each in turn as rapidly as necessary. 

It was apparent that for valid settling results, samples should be 

brought into the laboratory in as nearly an undisturbed state as possible 

to avoid damaging the floe particles* For this purpose, a special sampler 

was designed by Mike Sampson, chief mechanic at the Ames plant. Its use 

is demonstrated in figure 32. With this device an inverted sampling cell 

was slowly filled with sewage by controlling the release of its entrapped 

air, then righted and removed from the sample holder. 

Comparative settling rates were observed by sampling preaeration in­

fluent and preaeration effluent, spaced by a time interval representing 

probable mean detention time in the preaeration tank. A method was 

developed for conversion of galvanometer readings to mg/l of SS, by means 

of supplemental SS determinations with the Spectronic 20 Colorimeter. The 

settlimeter proved to be quite reliable in predicting and checking actual 

plant performance in full-scale runs at the Ames plant. It was particularly 

valuable in pointing up the effect of preaeration on the early moments of 

settling. 

The settlimeter was of key importance in plant-scale preaeration 

studies at three other Iowa plants. At none of the three was it possible 

to split the flow for comparison of results with and without preaeration. 

Consequently, the primary criterion on which the benefit of preaeration to 

primary removal at these plants was based was the laboratory determination 

of settling characteristics of the wastes before and after preaeration. 
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D, Aeration Devices and Control 

le Sutorbilt blower 

To undertake plant-scale studies with varied aeration rates, two 

things were needed: a source of air, and a means for measuring air flow0 

The first was provided by the loan of a Sutorbilt blower through the 

courtesy of Zimmer and France scon, manufacturer's representatives of 

Mollne, Illinoise Name-plate data for this blower were as follows: 

Size 7H 
#35 displacement 
Serial 12?U 
Date 8-57 

This blower was rated nominally at 200 cfto against 7 psi pressure, 

varying somewhat with speede The blower and a 10 hp Ui*0 v motor were 

mounted on a skide The drive was with 3 V-belts, geared to a blower speed 

of 800 rpm, which produced somewhat more than 200 cfto at normal operating 

pressures e Clean air was assured by intake through oil-bath air cleaners 

requisitioned from an abandoned mobile air compressor e 

2e Orifice calibration 

Air flow was measured by careful calibration of two orifice plates in 

a length of U in diam cast iron pipe. Following calibration, this pipe 

section, with manometers, was moved to a permanent location in the building 

over the preaeration tanks. 

The orifice holding arrangement was rather simple, a flanged connec­

tion near the outlet end of the length of h in pipe. The holder was de­

signed for insertion of an orifice plate with flange holes drilled to 
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match. Steel plate 5/6U in in thickness was used in fabricating the orifice 

plates; 3/32 in vellumoid gaskets were placed, on either side. After some 

preliminary work, the two plates calibrated were 1 1/8 in and 1 7/8 in in 

orifice diameter. 

Air flow was metered through two large factory-rebuilt and calibrated 

gas meters. At high rates both were used, while at lower rates one was 

bypassed (figures 3U and 35) « Air flow was controlled by combined use of 

the bypass valve at the blower and the throttling valve at the outlet of 

the orifice section. Replicate runs were made at various pressures at the 

orifice. Air flow data were calculated to standard conditions at 

atmospheric pressure (figure 36)• Normal operating pressure proved to be 

about 7 psi. 

3. Aeration devices 

a. Walk-pr Process down draft aerators. This is the original equip­

ment installed in the Ames preaeration tanks. Each aerator has a 5 hp 

motor driving a turbine impeller operating at a shallow liquid depth; as 

the impeller revolves, atmospheric air is drawn through suction tubes to 

the impeller area and this air-sewage mixture is pumped down through a 

draft tube to the lower tank area. Both recirculation and some aeration 

of the tank contents are achieved. The major source of energy far tank 

recirculation is, however, pumping. This equipment was, of course, 

operated without the blower. 

By manifolding the air suction tubes and connecting this manifold 

through a large hose to the orifice line, the intake draft of the original 
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Walker Process aeration equipment could be measured with reasonable 

accuracy. Under ideal conditions, just after reversing the normal direc­

tion of rotation of the pump impeller to clear the impeller and air tubes 

of fouling materials, air intake was at a maximum of 15 cfm. A more 

normal average of 12 cfto was observed at random many times. The general 

tank circulation pattern at full natural draft was upward near the center, 

then out toward the corners and down again. This was in addition to the 

downdraft at the center of the tank evidenced by near-vortexing around the 

impeller shaft. 

Test runs were made at reduced natural draft, with air intake 

throttled to about 8 cfm. The tank surface was then somewhat quieter, but 

fine bubble emergence was still widespread. The really surprising thing 

was that the pattern of general tank circulation was reversed; flow was 

upward in the corners, then moved inward toward the center of the tank» 

This is an interesting reflection on tank geometry. 

Several plant runs were also made with the Walker Process downdraft 

unit completely starved of air, with the suction tubes capped. This was 

an approach to mechanical flocculation without the usual equipment for it. 

Virtually no air was carried down to reappear as surface bubbled. The 

pattern of tank circulation was as described above for reduced draft but 

even less active. It was apparent that the impeller design is based on 

optimum efficiency with the air-sewage mixture obtained at full natural 

draft (figure 37)• 

On one occasion, an effort was made to force-feed air to this unit by 

connecting the blower to the air suction manifold. Natural draft was 
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recorded at 15 cfm» As additional air was gently supplied, there was some 

evidence of interference at 18 cfm; larger bubbles were rising near the 

outside of the downdraft tube and the sewage surface appearance was not 

normal. At just past 30 cfm, all semblance of normal circulation and 

aeration disappeared, to be replaced by violent eruption of air pockets 

directly above the downdraft tube. Force-feeding air to the Walker 

Process aerators was abandoned. 

b. Walker Process SPARJERS. As an aeration device, the SPARJER is a 

small cast piece mounted over a tapped pipe opening (figure 39) • The 

casting is designed with an orifice in each of its U lateral arms. 

Spargers furnished for this project were 7/32 in orifice size. Sixteen 

were mounted in a square grid pattern in the south preaeration tank at a 

depth equal to the outlet of the downdraft tube (figure Itl). The down-

draft aerator was not disturbed. 

A number of runs were made with all sixteen spargers in service. 

Runs were also made with alternate spargers sealed, leaving only eight in 

service. The difference in operating pressure was negligible for the 

aeration rates used (figure 38). 

It is important to point out that all the energy for tank recircula­

tion was provided by the air alone. It appeared that an air rate of I4.0 to 

50 cfln was the minimum required for maintaining recirculation of the tank 

contents. 

c. General Filter Company diffusion tubes. The diffusion tubes pro­

vided for this study were stock units manufactured by General Filter 

Company of Ames, Iowa, for use in diatcmite filtration of water. Each 
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diffusion tube (figure Uo) is of a high-impact styrene core3  ̂in OD and 3 

ft in length, with a sock-type covering of Dialon, a monofilament poly­

ethylene material. 

Four of these tubes were assembled (figure 1|2) around a welded cross 

served by a vertical air header. This assembly was placed at a depth 

equal to the outlet of the downdraft tube, without disturbing the aerator. 

The diffusion tubes were used only a short time but gave highly satis­

factory service. 

d. Comparison. The primary objective in using various aeration de­

vices was to determine if the preaeration process was responsive to such 

changes. Evaluation of these devices in terms of aeration efficiency was 

a secondary consideration. 
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X. PIANT-SCALE STUDIES, MARCH-AUGUST 1958 

A. Plant Arrangement and Operation 

With trial plant runs completed and with sampling and laboratory pro­

cedures standardized, the stage was set for a lengthy series of full-scale 

plant runs. The objectives of these runs were to establidi whether or not 

preaeration was of benefit to primary settling in actual plant operation, 

and to determine whether the aeration rate was an important factor. 

1. Plant operation 

Arrangement of the plant units was substantially the same as for the 

July 1957 test series. Incoming raw sewage flow was split accurately, 

half bypassing directly to the north primary clarifiers, while the other 

half was directed to the south preaeration unit and then to the south pri­

maries. All four primaries were operated in a normal manner, with sludge 

withdrawal at 6 hr intervals. 

The three trickling filters and three final clarifiera were in opera­

tion throughout the 1958 test series. Final settling sludge was held in 

the final clarifiera during the week and run back to the raw sewage wet 

well only on weekends. Digester and sludge-veil supernatant s were drained 

to the sludge lagoon throughout these runs. These arrangements were de­

signed to provide for the operation of the primary treatment units without 

recirculation or return of material of any kind to the raw sewage. 
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To avoid a recurrence of the grit problem which so thoroughly dis­

rupted the first plant runs, the primary sludge hoppers were jetted free 

of sludge and grit each Monday morning. At the sane time, the south pre­

aeration unit was completely emptied and flushed down. These precautions 

were successful in eliminating any accumulation of grit or septic sludge 

during these runs. 

2. Preaeration arrangements 

Plant studies were begun with the original downdraft aerator in place 

in the south preaeration tank. A number of replicate runs were made with 

this aerator operated at natural draft of about 12 cfm, with the air in­

take throttled to about 8 cfm, and with the draft tubes capped to exclude 

any aeration in the normal manner. With the draft tubes capped, the only 

aeration accomplished was through surface agitation. This condition was 

intended to simulate mechanical flocculation insofar as possible at this 

plant. 

Following installation of the spargers and diffusion tubes in the 

preaeration units as previously described, plant studies were conducted 

with these devices at aeration rates from 65 to 200 cfm. Air for these 

runs was provided by the Sutorbilt blower and measured through a calibrated 

orifice. For the spargers and diffusion tubes, all energy required for 

recirculation of the tank contents must be provided through aeration, 

while most of this energy is furnished by a turbine pump in the downdraft 

aerator. 

Raw sewage flow to the plant during the 1958 studies varied from 2.05 
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to 2*81 mgd, averaging roughly 2oh mgd. This does not include a short 

period in July following extreme rains and unusual groundwater conditions 

when the flow to the plant exceeded 3 mgd. 

The south preaeration tank, with a capacity of ij.0,000 gals, provided 

a theoretical displacement time of U8 mins at the 2»U mgd average flow 

rate. This corresponds closely to the lt5 mins usually recommended in de­

sign. Ajr rates, based on the 2,k mgd average flow, ranged from 0.08 cu 

ft/gal at 65 cfln to 0.2U cu ft/gal at 200 cfm. Details on aeration rates 

and sewage flows appear in the tabulation of operating results. 

B. Sampling and Laboratory Procedures 

1. Sampling schedule 

During much of the 1958 plant studies, sampling began at four points 

at 10:30 AM andcontinued through 9:30 FM. The samples were composited 

generally in step with flow-through times, as shown. The result was a 

reasonably faithful record of the sane 10 hr flow as it received primary 

treatment. 

SampT ing point Composite period 

Preaeration influent (raw) 10:30 AM - 8:00 PM 
Preaeration effluent 11:00 AM - 8:30 PM 
Plain primary effluent 11:30 AM - 9:00 PM 
Preaerated primary effluent 12 Noon - 9$30 PM 

For some of the runs, stapling continued on an hourly basis through 

10 AM the following morning. All samples were collected in 250 ml square, 

wide-mouth bottles and stored in a U° C water bath cooler. After com­

positing in proportion to flow, photometric SS determinations were made on 
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each individual sample. 

Sampling for DO levels and oxygen depletion rates was confined to mid-

afternoon when sewage flow and strength were reasonably constant. After 

the procedure became standardized, DO samples were taken at ten minute in­

tervals for an hour, and samples for depletion tests were taken near the 

start, middle and end of that hour. 

Determinations of OEP were not made during the March-August period, 

but were confined to a short period of special DO and OEP studies near the 

end of 1958. For OEP, samples were taken at intervals of forty minutes to 

an hour, as time permitted. 

For settling rate studies with the Oulman settlimeter, samples of 

preaeration influent and effluent were collected with a time lag re­

flecting the probable mean detention time in the preaeration tank. This 

procedure was intended to determine the settling characteristics of 

essentially the same increment of flow as it arrived at the plant and 

again as it left the preaeration tank# Most of the settlimeter work was 

also done in the afternoon. 

2. Laboratory work 

Reference is made to Section IX, Final Laboratory and Test Procedures, 

for details of the laboratory procedures followed during the 1958 plant 

studies. 
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C. Results 

1. Primary removals; data summary only 

The results of all the 1958 Ames plant runs are plotted in figure k3 

in chronological order, showing the SS strength of each individual sample 

of preaeration influent and effluent and plain and preaerated primary 

effluent. Also indicated on the daily plot are the preaeration system in 

use and the aeration rate* 

Data on composite samples for these runs are summarized in table 19a, 

also arranged chronologically. This tabulation includes the flow rate, 

the preaeration arrangement, BOD and SS analyses on composites from the 

four sampling points, and calculated BOD and SS removals based on the 

average of preaeration influent and effluent strengths. 

Following several weeks1 work with the original downdraft aeration 

equipment, spargers were installed. Plant tests were conducted first with 

sixteen, then with only eight spargers in operation. The tests were dis­

rupted for two weeks by heavy rains and sewer flooding which necessitated 

bypassing the plant completely for a few days. The plant runs made with 

General Filter Company diffusion tubes following this interruption were 

influenced somewhat by the high flows and reduced sewage strength re­

flecting heavy groundwater infiltration. 

The spargers were then used again for a short series of tests, 

followed by a final two weeks' study of the downdraft aeration system. The 

reason for repeating the same types of runs over and over, sometimes under 

.similar conditions, was that the results would indicate a trend of sorts 
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T a b ) «  1 9 * .  S u m m a r y  o f  1 9 5 8  f u l l - s c a l e  A m e a  p l a n t  r u n s  

D a t e  D a y  m g d  
P r e a e r a t i o n  

a r r a n g e m e n t  

A i r  C o m p o s i t e  
s a m p l i n g  

A n a l y s e * . - a l l  i n  m g / 1  P r i m a r y  R e m o v a l s * * ,  a l l  i n  %  
P r i m a r y  P r i m a r y  

P r e a e r a t o r  1  +  2  e f f l u e n t  3 + 4  e f f l u e n t  B O D  S S  
I n f l u e n t  E f f l u e n t  ( p l a i n  s e t t l i n g )  ( p r e a e r a t i o n )  1  +  2  e f f l u e n t  3 + 4  e f f l u e n t  1  +  2  e f f l u e n t  3  +  4  e f f l u e n t  
B O D  S S  B O D  S S  B O D  S S  B O D  S S  ( p l a i n  s e t t l i n g )  ( p r e a e r a t i o n )  ( p l a i n  s e t t l i n g )  ( p r e a e r a t i o n )  

3 / 2  S  d o w n d r a f t  1 2  2 5 1  1 3 5  1 1 5  2 7 .  1  3 7 . 8  5 2 . 7  6 1 . 9  
( 1 0  h r )  ( P )  3 1 2  5 9 .  1  6 4 .  1  

4 / 3  d o w n d r a f t  1 2  2 4  h r  2 9 5  2 3 9  2 1 0  1 9 0  9 5  2 9 . 4  3 6 . 2  6 0 . 2  6 0 . 2  
( 1 0  h r )  ( P )  2 8 2  9 4  6 0 . 8  6 6 . 8  

4 / 4  d o w n d r a f t  1 2  2 4  h r  2 2 2  2 2 5  1 4 0  7 3  2 0 . 0  6 5 .  1  6 7 .  3  
( 1 0  h r )  ( P )  2 6 4  1 0 3  6 0 . 7  6 4 . 9  

4 / 1 1  d o w n d r a f t  2 4  h r  1 8 7  2 0 5  2 2 0  1 3 5  1 0 5  3 0 . 2  2 7 . 7  5 0 . 6  5 3 . 9  
( 1 0  h r )  ( P )  3 1 7  1 3 2  5 6 . 5  5 9 . 8  

4 / 1 2  d o w n d r a f t  ( 1 0  h r )  ( P )  2 5  0  2 6 5  1 1 2  5 6 .  5  5 7 . 2  
4 / 1 8  2 .  5 3  d o w n d r a f t  2 4  h r  1 5 0  2 0 1  1 9 3  1 4 5  9 3  7 8  3 . 3  1 2 .  0  5 2 . 8  

( 1 0  h r )  ( P )  2 3 2  1 0 1  9 8  5 8 .  9  
4 / 1 9  2 . 3 4  d o w n d r a f t  ( 1 0  h r )  ( P )  1 0 8  6 2 . 2  
4 / 2 5  2 .  4 9  d o w n d r a f t  2 4  h r  2 4 8  5 6 .  1  6 0 .  5  

( 1 0  h r )  ( P )  3 4 8  6 5 .  2  6 6 . 7  

5 / 9  1 6  s p a r g e r s  1 0  h r  2 8 7  2 2 0  1 0 5  6 2 .  5  6 7 .  5  
5 / 1 0  1 6  s p a r g e r s  2 0 0  1 0  h r  2 6 5  2 3 5  9 7  U O  6 3 .  5  6 9 . 9  
5 / 1 2  d o w n d r a f t  2 1 6  1 6 0  1 4 1  6 4 . 4  6 8 . 6  
5 / 1 3  2 . 7 3  d o w n d r a f t  1 0  h r  2 8 5  1 5 5  1 5 1  2 7 .  0  6 2 . 8  

1 0  h r  2 8 1  1 4 6  4 9 . 2  6 3 .  1  
5 / 1 4  2 . 6 9  d o w n d r a f t  1 2  1 0  h r  2 8 9  1 1 6  1 6 3  3 4 . 8  5 8 .  5  6 4 .  5  
5 / 1 5  2 . 5 5  d o w n d r a f t  1 0  h r  1 5 1  1 0 1  1 4 5  6 1 .  5  6 4 .  5  

5 1 .  3  6 5 .  3  
5 / 1 6  2 . 6 1  d o w n d r a f t  2 7 8  1 6 0  1  1 0  6 2 . 7  

1 0  h r  2 3 2  5 4 .  3  7 0 . 7  
5 / 1 7  2  4 3  d o w n d r a f t  1 0  h r  2 9 5  1 5 0  
5 / 2 7  2 . 4 4  1 6  s p a r g e r s  1 2 5  1 0  h r  2 5 0  1 0 5  2 7 5  5 9 . 7  1 6  s p a r g e r s  

1 0  h r  2 2 5  1 0 4  
5 / 2 8  2 . 4 0  1 6  s p a r g e r s  1 2 5  1 0  h r  2 4 3  1 0 6  1 7 4  1 6  s p a r g e r s  

1 0  h r  2 2 8  I  1 4  5 2 .  0  6 7 .  1  
5 / 2 9  2 . 4 3  1 6  s p a r g e r s  1 2 5  2 5 6  3 1 5  n s  1 7 7  6 5 . 8  1 6  s p a r g e r s  

2 9 5  

6 / 1 6  2 . 4 J  1 6  s p a r g e r s  6 5  1 9 6  2 2 3  1 6 2  1 2 4  6 2 . 7  6 8 . 6  
1 9 6  2 3 8  5 9 .  5  7 1 . 0  

6 / 1 7  2 . 2 6  1 6  s p a r g e r s  6 5  1 0  h r  2 1 4  1 3 0  1 2 8  

6 / 1 8  
1 0  h r  2 1 6  6 3 . 4  6 8 .  1  

6 / 1 8  t .  3 0  1 6  s p a r g e r s  10 h r  2 4 7  2 2 1  3 2 .  4  6 4 . 9  6 9 . 2  

6 / 1 9  
1 0  h r  2 2 1  2 3 5  5 5 .  3  6 2 .  3  

6 / 1 9  2 . 3 7  1 6  s p a r g e r s  1 0  h r  2 0 5  1 8 1  1 8 9  1 3 .  3  6 2 . 7  7 0 .  5  

6 / 2 0  
1 0  h r  4 5 . 0  6 5 .  0  

6 / 2 0  2 . 2 1  1 6  s p a r g e r s  1 0  h r  2 3 4  2 2 2  1 4 0  1 5 .  3  4 4 .  5  6 4 .  5  7 6 .  3  
1 0  h r  2 4 2  8 2  6 6 .  5  7 4 . 4  

6 / 2 1  2 . 0 5  1 6  s p a r g e r s  1 0  h r  2 3 3  1 4 0  9 1  6 7  4 0 . 4  4 2 .  5  6 1 . 4  7 1 . 6  
1 0  h r  2 4 9  9 3  5 6  6 1 . 2  7 6 . 7  

6 / 2 4  2 .  1 7  8  s p a r g e r s  1 0  h r  J 9 1  1 3 6  5 6  3 3 . 7  4 1 .  5  6 0 .  1  6 9 . 8  8  s p a r g e r s  
1 0  h r  2 1 4  6 0  6 0 . 7  7 1 . 5  

6 / 2 5  8  s p a r g e r s  2 0 8  2 2 8  1 5 6  4 3 . 6  6 1 . 7  6 9 .  1  
2 1 9  7 1  6 6 .  0  6 7 . 7  

6 / 2 6  2. i 5  8  s p a r g e r s  2 2 5  1 9 5  1 5 9  6 9  2 5 . 9  5 8 .  5  6 8 .  2  
5 0  7 7 .  3  

6 / 2 7  2 .  2 0  8  s p a r g e r s  1 7 0  1 1 8  8 0  3 6 .  5  6 3 .  4  7 2 .  1  8  s p a r g e r s  
8 6  7 1 . 5  

6 / 2 8  8  s p a r g e r s  1 0  h r  2 5 4  9 7  6 1 . 7  7 2 .  3  8  s p a r g e r s  
1 0  h r  2 6 9  6 6 . 9  7 3 .  0  

7 / 1 1  3 . 2 1  4  d i f f u s i o n  t u b e s  1 0  h r  1 2 b  1 4 0  1 2 7  1 3 8  4 5  6 7 . 6  7 4 . 8  
7 / 1 2  2 . 8 9  4  d i f f u s i o n  t u b e s  1 3 6  1 2 8  1 4 6  9 b  5 6  2 ? ]  3  6 3 . 4  6 8 . 6  
7 / 1 4  3 . 0 0  4  d i f f u s i o n  t u b e s  8  h r  1 5 3  1 5 5  1 4 5  1 4 7  no 5 8  2 6 . 2  7 0 .  Q  
7 / 1 5  T u  2 . 7 6  4  d i f f u s i o n  t u b e s  1 0  h r  1 4 3  1 5 0  1 5 3  9 0  3 6 .  7  4 5 .  1 U:t 
7 / 1 7  T h  2 . 5 5  4  d i f f u s i o n  t u b e s  1 0  h r  1 5 5  1 5 6  8 5  4 4 .  3  5 0 . 8  6 7 .  1  7°:» 
7 / 1 8  F  2 . 6 9  4  d i f f u s i o n  t u b e s  1 0  h r  1 9 5  1 5 0  1 8 4  9 5  4 5 .  0  6 7 . 8  

1 0  h r  2 0 4  6 2 . 4  
7 / 1 9  S a  4  d i f f u s i o n  t u b e s  1 5 0  8  h r  1 6 7  1 5 2  1 3 5  1 8 . 2  3 0 .  3  6 9 .  3  7 6 ^ 8  
7 / 2 3  8  s p a r g e r s  1 5 0  1 0  h r  1 8 6  1 1 3  3 4 .  3  4 8 .  3  6 4 . 2  7 3 . 8  8  s p a r g e r s  

2 4  h r  1 4 7  1 3 3  8 2  3 4 . 4  6 5 .  7  7 3 . 6  
7 / 2 4  T h  2 . 7 9  8  s p a r g e r s  2 9 2  2 4 6  1 2 0  2 0 .  5  7 5 .  1  8 1 . 4  8  s p a r g e r s  

2 4  h r  1 2 1  1 8 6  8 6  2 8 . 6  6 8 .  5  7 8 . 2  
7 / 2 5  F  2 . 6 7  8  s p a r g e r s  6 5  1 0  h r  1 5 6  1 9 5  1 9 7  9 4  7 0  3 7 .  5  5 3 .  5  6 5 ,  R  7 3 .  0  8  s p a r g e r s  

2 4  h r  1  1 7  1 3 7  8 5  7 2  2 6 .  7  3 7 . 9  6 2 .  1  7 0 . 8  
7 / 2 *  d o w n d r a f t  1 0  h r  1 6 0  1 7 9  8 8  6 8  4 5 .  0  4 5 .  0  7 0 . 2  7 5 . 8  
7 / 3 0  2 . 7 5  d o w n d r a f t  1 0  h r  1 4 7  7 0  7 0  4 2 . 9  6 9 . 4  
7 / 3 1  2 . 8 0  d o w n d r a f t  1 0  h r  1 8 4  1 8 5  9 9  8 7  3 1 . 7  6 1 . 0  6 8 . 0  

8/1 d o w n d r a f t  0 1 0  h r  1 6 8  1 7 4  9 0  9 0  3 8 .  0  3 8 .  0  6 3 .  1  6 8 . 4  
8 / 5  d o w n d r a f t  1 2  1 7 6  1 7 2  9 9  8 2  3 1 . 3  4 3 .  0  6 4 .  3  7 0 .  1  
8 / 6  W  d o w n d r a f t  1 2  1 9 6  1 8 2  9 6  3 1 . 9  4 0 . 4  6 5 .  1 7 1 . 4  
8 / 7  T h  d o w n d r a f t  1 2  1 9 6  2 0 4  1 4 0  7 6  2 5 . 6  6 2 .  0  7 1 . 0  
8 / 8  F  d o w n d r a f t  1 2  1 7 1  9 0  6 1  3 4 . 6  6 6 . 2  7 3 . 4  
8 / 9  d o w n d r a f t  1 2  1 9 2  7 9  2 6 .  1  6 0 .  5  7 0 .  5  

* . P  3  p h o t o m e t r i c .  ( P )  «  p h o t o m e t r i c ;  c a l c u l a t e d  v o m v u . U c ,  E  =  e v a p o r a t i o n .  
C a l c u l a t e d  r e m o v a l s  b a s e d  o n  a v e r a g e  o f  P r e a e r a t o r  i n f l u e n t  a n d  e f f l u e n t  s t r e n g t h s .  
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Table 19b. Notes to summary of 1958 plant runs 

Date Remarks 

3/25 Reduced flow; between quarters at Iowa State University. 

U/3, h Flow again reduced; Easter weekend. Wind and some showers. 

5/9, 10 First plant-scale operation with Sutorbilt blower and Walker 
Process SPARGERS. 

5/16, 17 Veishea weekend at Iowa State University, with some effect on 
load patterns. 

5/27-29 For this 3 day run, SS determinations were not made on the 
individual samples; therefore, the daily plots were emitted. 

5/29 Last day of public school system year. 

6/13 Last day of spring quarter at Iowa State University. 

7A, 3 Very heavy rains, flooding sewer system, sending creek out of 
its banks and causing shutdown of sewage treatment plant 
until July 6. 

7/10 Preliminary test with General Filter Company diffusion tubes 
in place. 

7/11, , 12 Sewage flow and strength still influenced strongly by ground­
water infiltration. 

7/2U Heavy rain at 6:15 PM. 

8/9 Conclusion of 1958 plant-scale runs at Ames plant. 

one week, then a contrary trend the following week. The primary variable 

throughout these plant runs was the rate of air supplied, and every effort 

was made to arrive at a valid conclusion as to its effect on the process. 

A comment may be in order on the effect of the preaeration step it­

self on the raw sewage strength. There appeared to be none. Over the 

weeks of tests, preaeration effluent would sometimes be higher in BOD and 
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SS than the influent, sometimes lower • There was no pattern to these 

variations, however, and their overall result was in balance. Grit re­

moval was effectively accomplished by preaeration, and this was earlier 

determined to be of vital importance to primary settling, but it did not 

amount to as much as 1 percent removal of SS, 

The preaeration step did provide a mild buffering effect on the raw 

sewage flow, in that peak SS strength of the preaeration effluent was 

often noticeably less than that of the influent. However, the peaks and 

valleys in preaeration effluent SS patterns coincided fairly well with in­

fluent patterns, separated by the expected time lag reflecting detention 

time. In the early morning hours, both preaeration influent and effluent 

noraally dropped to a SS level of $ to 20 mg/l. There was no evidence of 

a solids accumulation or inventory in the preaeration tank. The most 

casual scanning of the plotted results will indicate that preaeration 

almost always proved an aid to primary settling. 

2. Oxygen values 

a. Tabulation. After procedures were standardised, sampling for 

oxygen values was confined to the midafternoon, when DO levels and deple­

tion rates were found to be most consistent (table 20). 

The depletion rate procedure, described in detail earlier, was a 

rather arbitrary test intended to give a measure of the short-teim oxygen 

demand of the raw sewage. By violent shaking, a DO level of 6 to 8 mg/l 

was induced in the sample. Analysis for DO at $ or 10 min intervals 

thereafter indicated the rate of demand or depletion. Under normal 
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T a b l e  2 0 .  S u m m a r y  o f  o x y g e n  v a l u e s  f o r  A m e s  p l a n t  

A i r  I n f l o w  I n f l o w  D i s s o l v e d  o x y g e n  l e v e l s  O b s e r v e d  C a l c u l a t e d  O x y g e n  
P r e a e r a t i o n  f l o w ,  s a m p l i n g  r a t e ,  i n  p r e a e r a t o r  m g / l  d e p l e t i o n  a c c e p t a n c e  t r a n s t e r  

D a t e ,  1 9 5 8  D a y  a r r a n g e m e n t  c f m  t i m e ,  P M  m g d  I n f l u e n t  E f f l u e n t  r a t e ,  m g / l / h r  r a t e ,  m g / l / h r  e f l i c i c n c y ,  

3 / 2 4  M  d o w n d r a f t  1 2  2 : 1 0 - 3 : 3 0  3 .  0  - 0 . 2  1 . 2  6  V  2 0  
3 / 2 5  T u  d o w n d r a f t  1 2  1 : 0 0 - 3 : 0 0  3 .  1  1  2 .  5  6 .  5  9 .  3  2 1  

4 / 4  F  d o w n d r a f t  1 2  2 : 3 0 - 3 : 3 0  2 . 8  1  2  
4 / 5  S a  d o w n d r a f t  1 2  1 : 3 0 - 3 : 0 0  2 .  7  1  3  
4 / 1 2  S a  d o w n d r a f t  0  2 : 0 0 - 3 : 2 0  3 .  2  1  - 2  
4 / 1 9  S a  d o w n d r a f t  8  3 : 0 0 - 4 : 3 0  3 .  1  0 .  0  0 .  8  5 .  5  7 .  1  2 4  
4 / 2 6  S a  d o w n d r a f t  8  1 : 4 0 - 2 : 4 0  3 .  3  0 . 4  1 . 8  5 .  0  7 . 8  2 6  

5 / 9  F  1 6  b p a r g e r t :  1 2 5  2 : 2 0 - 2 : 5 0  3 . 4  0 .  1 1 . 9  6 .  8  1 0 .  6  2 .  3  
5 / 1 0  S a  1 6  s p a r g e r s  2 0 0  2 : 2 0 - 3 : 4 0  3 . 2  0 . 2  2 .  8  6 .  2  1 2 .  2  1 .  b  

6 / 1 6  M  1 6  s p a r g e r s  6 5  2 : 2 0 - 3 : 2 0  3 .  1  0 . 6  - 0 . 2  6 .  5  4 .  6  1 .  9  
6 / 1 7  T u  1 6  s p a r g e r s  6 5  2 : 4 0 - 3 : 4 0  3 .  0  0 .  6  0 . 2  6 .  8  b .  0  2 .  5  
6 / 1 8  W  1 6  s p a r g e r s  1 0 0  3 : 0 0 - 4 : 0 0  3 .  1  0 .  0  0 .  0  6 .  1  6 .  1  1 .  6  
6 / 1 9  T h  1 6  s p a r g e r s  1 0 0  2 : 4 0 - 3 : 4 0  3 . 2  0 . 4  0 . 4  6 .  3  6 .  3  1 .  7  
6 / 2 0  F  1 6  s p a r g e r s  1 5 0  2 : 4 0 - 3 : 4 0  2 .  9  0 .  2  2 .  3  6 .  3  1 0 .  1  1 .  8  
6 / 2  J  S a  1 6  s p a r g e r s  2 0 0  2 : 4 0 - 3 : 4 0  2 . 7  0 .  2  1 . 8  7  1 0 .  0  1 .  3  
6 / 2 4  T u  8  s p a r g e r s  6 5  2 : 3 0 - 3 : 3 0  2 . 9  0 . 2  -0. 1  5 .  2  4 .  7  1 .  9  
6 / 2 5  W  8  s p a r g e r s  6  5  2 : 2 0 - 3 : 2 0  3 .  0  0 .  3  0 .  2  6 .  2  .  5  
6 / 2 6  T h  8  s p a r g e r s  1 0 0  2 : 2 0 - 3 : 2 0  2 .  9  0 .  2  0 .  8  3  7 .  S 1 .  .  9  
6 / 2 7  F  o  s p a r g e r s  1 5 0  2 : 2 0 - 3 : 2 0  2 . 9  0 .  6  2 .  1  6 .  7  9 . 4  I .  ,  7  
6 / 2 8  S a  8  s p a r g e r s  2 0 0  2 : 2 0 - 3 : 2 0  2 . 8  0. 1  2 .  4  6 .  7  1 0 .  7  1 .  .  4  
6 / 3 0  M  d o w n d r a f t  1 2  2 : 0 0 - 3 : 0 0  3 .  2  0. 0 - O .  2  7 .  5  7 .  1  1 6  

7 / 1  T u  d o w n d r a f t  8  2 : 2 0 - 3 : 2 0  3 .  1  0 .  4  0 .  2  6 .  9  6. 6 2 2  
7 / 1 1  F  4  d i f f u s i o n  t u b e s  1 5 0  2 : 2 0 - 3 : 2 0  4 .  0  0 .  6  2 . 9  3 .  8  9. 4  ! .  ,  7  
7 / 1 2  S a  4  d i f f u s i o n  t u b e s  1 0 0  2 : 0 0 - 3 : 0 0  3 . 6  0 .  5  0 .  2  4 .  3  3 .  7  1 .  . 0 
7 / 1 4  M  4  d i f f u s i o n  t u b e s  2 0 0  2 : 2 0 - 3 : 2 0  3 . 8  0. 0 2 .  4  4 .  5  1 0 .  0  1 .  .  3  
7 / 1 9  S a  4  d i f f u s i o n  t u b e s  1 5 0  2 : 0 0 - 3 : 0 0  3 .  8  0 .  5  2 . 4  3 .  6  8 .  0  1  .  4  
7 / 2 9  T u  d o w n d r a f t  0 2 : 1 0 - 3 : 1 0  3 .  3  0 .  6  - 0 .  3  4 .  9  3 .  0  

1 2 / 2 2  M  d o w n d r a f t  1 2  2 : 2 0 - 3 : 2 0  2 .  6  0 .  5  0 .  3  b .  7  0. 4  1 4  
1 2 / 2 3  T u  8  s p a r g e r s  2 0 0  1 : 4 5 - 2 : 5 5  2 .  4  2 . 5  4 .  5  8 .  0 1 1 . 0  1 .  .  5  
1 2 / 2 4  W  d o w n d r a f t  0 2 : 0 0 - 3 : 2 0  2 .  2  0 .  5  0. 0 b .  5  5 . 8  

* A s s u m i n g  n o  s u r f a c e  a e r a t i o n  
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afternoon conditions, this rate was consistently in the range of 6 to 7 

mg/l/hr. 

Raw sewage reaching the plant in midafternoon was always low in DO, 

usually \ mg/l or less, but rarely past the point of depletion to a state 

of negative DO. After preaeration, the DO level was less, sometimes nega­

tive, at low aeration rates; roughly the same at moderate aeration rates, 

and 2 to 2§ mg/l higher at maximum aeration capacity of 200 cfla. 

From observations on preaeration influent and effluent DO levels and 

on DO depletion rates, it was possible to calculate the rate at which DO 

was being accepted by the sewage during preaeration. Even under the maxi­

mum air rate of 200 cfta, this rate of acceptance did not exceed 10 to 11 

mg/l hr, or roughly twice the usual depletion rate. Finally, the aeration 

or oxygen transfer efficiency was calculated in terms of the percent of 

oxygen supplied mechanically which was accepted by the sewage during 

preaeration. 

b. Analysis. Aeration or oxygen transfer efficiencies of k to 6 

percent are considered excellent performance in activated sludge practice 

with conventional air diffusion equipment. In the activated sludge 

process, however, both the biological population and the food supply are 

maintained at high levels by recirculation of active material. Despite 

aeration rates of 1 to 1^ cu ft/gal or more, DO levels usually hover at 

1 mg/l or less, and the rate of air supply, or more accurately the rate of 

oxygen transfer, emerges as the limiting factor in the process. 

Analysis of the calculated oxygen transfer efficiencies for the 1958 

Ames plant studies proved interesting. Assuming first that all the oxygen 
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accepted by the sewage was introduced by the aeration equipment, effi­

ciencies for the downdraft aerator ranged from 20 to 25 percent, but for 

the spargers only about 1§ to 2 percent. The calculated efficiency in 

each fell as the aeration rate was increased. 

Close inspection of the data revealed that oxygen acceptance did not 

increase proportionally with aeration rates. This implied that oxygen was 

also being absorbed by the sewage simply through surface agitation. 

Actually, this has long been known to occur, and was further confirmed by 

data from downdraft aeration runs with the air draft tubes completely 

capped. 

Even at full natural draft, surface aeration apparently accounted for 

about half the oxygen transfer achieved by the downdraft equipment. The 

same relationship was indicated for the spargers and diffusion tubes at 

the 100 cfln aeration rate. At lower aeration rates, surface transfer was 

of more benefit than sub-surface diffusion. Table 21 presents a summary 

of aeration rates and calculated oxygen transfer efficiencies, with and 

Table 21. Ames plant oxygen transfer efficiencies 

Preaeration Aeration rate Average oxygen transfer efficiency 
system cfln cu ft/gal* percent 

Assuming no Deducting effect of** 
surface aeration surface aeration 

Downdraft 8 .00? 25 10 
12 .011 20 10 

Spargers 65 .05k 2.2 1.2 
200 .18 1.U 1.1 

^Calculated for 3.2 mgd daytime flow. 

**Surface aeration estimated to contribute U-5 mg/l/hr during down-
draft operation; 2-3 mg/l/hr during sparger operation. 
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without allowance for surface aeration. It is particularly interesting to 

note that, when surface aeration is evaluated separately, calculated trans­

fer efficiencies are essentially constant regardless of aeration rate* In 

a physical rather than biological process step such as this, such a 

finding appears reasonable• 

The important lesson from this work on oxygen values may be that it 

is not possible to transfer DO in more than token amounts to the sewage at 

this point because the oxygen demand, in the form of active biological 

life and a corresponding food supply, simply does not exist. To maintain 

the incoming DO level during preaeration, an aeration rate of about 0.1 

cu ft/gal is indicated for the Ames plant. Regardless of the preaeration 

method, surface agitation appears to be an important source of oxygen 

transfer. 

3* Settling characteristics» Oulman settlimeter 

a. Purpose. The settlimeter was not developed to establish the 

benefit of preaeration to primary settling at the Ames plant. This was 

determined conclusively by parallel operation with and without preaera­

tion. Rather, the objective was a device to reflect in the laboratory 

actual settling performance in the plant. Without such a procedure there 

was little to be gained by studying preaeration at other Iowa sewage 

treatment plants where the flow could not be divided as at Ames* The 

Oulman settlimeter met this objective* 

b. Typical data plots. A dozen typical plots of paired settlimeter 

data are shown in figure UU. Each consists of the settling curve for a 
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preaeration influent sample and a similar curve for a preaeration effluent 

sample collected following a time interval considered to be the probable 

aerator mean detention time. These plots span the most active period of 

plant tests and include results showing preaeration to be a good, bad and 

indifferent influence on primary settling. All represent midafternoon 

conditions of reasonably consistent sewage strength and flow. 

A detailed discussion of the use of the settlimeter and the calcula­

tion of results appears in Appendix F. One interesting but very awkward 

problem arises here. The photometric SS determination by the Spectronic 

20 Colorimeter is used in converting settlimeter readings in ua to SS 

content in mg/l. However, the photometric calibrations for raw and for 

settled sewage differ considerably. This means that the conversions must 

be based on a flexible calibration which will represent both the raw 

sewage sample at the outset of the settlimeter test and the well-settled 

sample at its conclusion, as well as the sample1 s changing character in 

the intervening period. Such a hybrid calibration will serve some tests 

faithfully, others not as well. Fortunately, this is of minor importance 

because the relative settling patterns of a data pair are only slightly 

affected by a change in calibration; the indication of benefit or lack of 

it is not easily masked. 

c. Analysis. A general review of the paired data plots (figure Wi) 

was made to determine how well these tests confirmed actual plant results 

(table 22). 

For the first group of five tests, during which plant SS removals 

were consistently being boosted ten percentage points by preaeration, the 
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Table 22. Summary of settling characteristics as indicated by Oulman 
settlimeter* 

Group of 1958 Indication from settlimeter Results from plant-
tests data plots scale runs 

June 21-July 23 
5 tests 

Strong benefit; average 
about 10 percentage points 
SS improvement 

Average about 10 per­
centage points Improvement; 
from 60 to 70 percaxt 
actual SS removal 

August 1,2 
3 tests 

August 5,8 
il tests 

Little or no benefit ; 
average a few percentage 
points SS improvement 

Moderate benefit; from 8 
percentage points to 
negative effect. 

Erratic; removals improved 
from nothing to about 5 
percentage points SS 

Average about 5 percentage 
points improvement; from 
65 to 70 percent actual 
SS removal. 

For which settlimeter data are plotted in figure UU. 

settlimeter plots also indicated from eight to twelve percentage points 

higher SS removal. On August 1 and 2, plant removals were being very 

little improved by preaeration, and this was sharply reflected by 

settlimeter test patterns which were much alike before and after preaera­

tion. During August 5 to 8, removals were only moderately improved by 

preaeration, possibly because plain settling was doing such an excellent 

job* This too was reflected in overall settlimeter results, although 

several of the tests for these days exhibited abnormal settling patterns. 

It appears that the Oulman settlimeter provides a generally valid indica­

tion of settling characteristics* 

In the paired data plots where preaeration markedly improved settling, 

most of the advantage, sometimes all of it, was gained in the first fifteen 

to twenty minutes of settling. If this is also true in plant scale, its 
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implications for both design and operation are of vital importance. 

it. Cbd.dation-reduction potential 

a. Representative data. Determination of ORP was not done during 

the main series of plant tests but was limited to a few days' work late 

in 1958. The purpose of this very limited study was to gain an indication 

of ORP levels and their response to preaeration. 

During several days of operation with all raw sewage flow receiving 

preaeration, grab samples were collected and the rate of change of ORP was 

observed. Then, with the flow split as for the plant test series, samples 

from the usxial four points were collected hourly or oftener and analyzed 

for both DO and ORP. Data for December 1, with total flow preaeration, 

and for December 22-2k with split flow, are plotted in figure U5» During 

the 3 day run with split flow, preaeration rates were 12 cflm, 200 cfln and 

0 cfln respectively in that order. 

b. Analysis. ORP is a measure of the tendency of a physical or 

chemical system to yield electrons (oxidation) or to gain them (reduc­

tion) » Since most bacterial cultures are reducing systems due to the 

metabolism of their organisms, raw sewage is either negative in potential 

or becomes so rapidly upon depletion of its original DO content. The 

more highly reducing a system, the greater will be its negative potential. 

Correspondingly, a rapid change in potential indicates a high rate of 

bacterial metabolism. 

At the Ames plant, the daytime raw sewage ORP ranged 20 to 30 mv on 

either side of neutral. Its rate of change in the negative direction was 
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30 to 50 mv/hr and this rate of change was essentially unaffected by pre­

aeration or by primary settling. Following secondary treatment, however, 

the ORP level was found to be in the range of plus 200 mv, and its rate of 

change only 1$ to 20 mv/hr, although still in the negative direction. 

These results, along with a DO level of 6 to 8 mg/l, confirm the character 

of the final plant effluent as a fairly stable, highly oxidized system. 

Preaeration was found to boost ORP levels slightly in the positive 

direction even when failing to maintain DO constant. When a high aeration 

rate increased the DO, it raised the ORP to a sufficiently positive level 

to survive primary settling without reverting to a negative potential. 

Whether or not this is economic all y justified in terms of improved 

secondary stage treatability is beyond the scope of this report. 

D. Analysis of Primary Removals 

Whether properly or not, Will Rogers is credited with the remark 

that: "A batch of statistics is a lot like garbage; after you collect it 

you have to do something with it". This section is devoted to simple 

statistical treatment of the primary removal results for the 1958 Ames 

plant runs. 

1. Plain primary settling removals 

a. Effect of detention time. Before analysis of the benefit of pre­

aeration, the results of plain settling were reviewed. Figure 1*6 is a 

plot of plain primary BOD and SS removals against mgd raw sewage flow, 

used as a parameter of detention time in the primary clarifier s. The 
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scattering shown did not indicate any sort of trend. However, virtually 

all the data fall within limits of 1§ to 2 hr settling detention time, a 

nominal variation in its effect on settling efficiency. 

Median SS removal by plain settling was 62 percent. The overall 

range of SS results was from £6 to 70 percent removal, a surprisingly con­

sistent grouping. BOD results, on the other hand, showed an extreme 

scatter of from less than 10 to more than 1*0 percent removal by plain 

settling. Some of the BOD data are more than slightly suspect because 

they conflict grossly with SS results for the same day. Comment was made 

earlier on the difficulties experienced with the BOD determination. Median 

BOD removal by plain primary settling was 31 percent. 

b. Effect of sewage strength. Plain primary removals were further 

analyzed with relation to the strength of "the raw sewage, using here for 

consistency the average of preaeration influent and preaeration effluent 

values. Plotted in these terms in figure hi, the data indicate a mild 

tendency toward improved plain settling removals with weaker sewage. 

Since the weaker strengths generally reflect higher flows and shorter de­

tention times, this tendency is improbable. Close review of the data 

shows that inordinately high removals in the middle and last week of July, 

even in the face of reduced sewage strength, are responsible for this 

apparent trend. Disregarding the data of these two weeks, plain settling 

removals were essentially unaffected by raw sewage strength. 

All data shown in figures L6 and hi represent 10 hr composite 

sampling. From corresponding 2U hr results available, it appears that 2h 

hr SS removals averaged some three percentage points less than the 10 hr 
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results. Insufficient comparative BOD data were available from which to 

draw conclusions. 

2. Improvement by preaeration 

a. Effect of method or rate of aeration. The degree of benefit 

attributed to preaeration is discussed here in terms of percentage points 

improvement in BOD or SS removals over that by plain primary settling. 

First, a comparison was made of the benefit achieved by downdraft aeration, 

by spargers and by diffusion tubes, at various aeration rates, disregarding 

other factors for the moment (figure U8). 

In general, benefit from downdraft operation with air intake lines 

capped, at 0 cfm, was quite modest with regard to SS removal and appeared 

to be nil for BOD removal. With downdraft aeration at 8 cfm, improvement 

was good, and at 12 cfta it was better. 

For blower aeration, neither the air diffusion arrangement nor the 

amount of air seemed to influence the results. For SS, the improvement 

ranged generally from U to 12 percentage points; the median value was 8 

points. For BOD, the benefit varied more widely, from 0 to lL percentage 

points, with a median value of 7& points. It is interesting to note that, 

while plain settling shows a 2:1 ratio of SS to BOD removal, the benefit 

by preaeration is essentially the same for both. 

Indications are that downdraft aeration may not be on a par with the 

more conventional diffusion methods (figure U8), bub careful study of the 

data refutes this impression. The final week of operation at 12 cfm, 

corresponding closely in time and operating conditions to the blower runs, 
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produced, equally good results# Since operation in the spring at 8 cfhi and 

at 12 cfta appeared to be comparable, it can be inferred that downdraft 

operation either at full or at reduced air intake is as beneficial, at 

least to primary removals, as the other methods tested. 

Downdraft aeration with air intake lines capped, simulating 

mechanical flocculation, was of little benefit, but, tank recirculation 

under these conditions was sharply reduced. This particular operating 

situation cannot be considered indicative of either preaeration or 

flocculation. 

b« Effect of preaeration detention time. Having established that 

that aeration method or rate appeared to have no effect on the results, 

the next approach was that of detention time, via mgd flow to the plant. 

Figure U9 is a plot of improvement by preaeration against mgd flow, with 

preaeration displacement time also shown. For this analysis, and for the 

two following it, data from all 12 cfm downdraft runs were included; data 

for 8 cfm and 0 cfm runs were eliminated. Data from all blower runs were 

included except for the July 11 and 12 diffusion tube tests, which were 

unduly distorted by high flows and weak sewage strength from receding 

flood waters. 

Within probable mean detention time limits of roughly 35 to 50 mins, 

no valid trend of benefit with varying preaeration detention time was 

apparent. 

c. Effect of sewage strength* An analysis was next made of the re­

lationship of preaeration benefit to strength of the incoming raw sewage. 

Raw sewage strength was again taken as the average of preaeration influent 
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and effluent strength (figure $0). While there appears to be a slight 

tendency toward greater benefit with weaker sewage, this impression is 

probably due to the location of a few extreme values on the plot. This 

can be tested rather easily by covering single data points or small groups 

and observing the completely different appearance resulting. These data 

do not indicate a correlation of benefit with sewage strength. 

d. Correlation with plain primary removal. The final analysis con­

cerns the correlation of benefit with the removal accomplished by plain 

primary settling alone. A trend is apparent, and one which is confirmed 

by prior laboratory and plant-scale results (figure £l). The amission of 

a few well-chosen data can change the visual impression of the plot, but 

not sufficiently to destroy the ruling trend. Improvement by preaeration 

of roughly 10 percentage points is indicated over the poorer plain 

settling removals, to only $ or 6 points improvement when plain settling 

was doing unusually well. 

When plain settling is at its best, preaeration has less margin in 

which to produce results# Far more important is the implication that 

preaeration is of greatest benefit when for some reason plain settling is 

at a disadvantage — and when primary treatment, and total plant 

performance, is most in need of help. 
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XI. AMES PLANT RUNS WITH VARIED SETTLING TIME; JANUARY-MARCH, 1959 

A. The Tests 

As careful evaluation of plant results at Ames and the three other 

plants progressed, it became increasingly apparent that preaeration 

strongly influenced the early stages of settling. T^e and resources were 

lacking for extended further study of this phenomenon. However, two weeks 

were spent in January and several days in March 1959 in a preliminary 

study of what might be achieved in plant operation with reduced settling 

time following preaeration. 

The plant arrangement was as given earlier for full-scale runs. The 

flow was accurately split, half passing directly to the north bay of pri­

mary clarifiers; the other half was directed first to the south preaeration 

tank, then to only one of the south primaries. All return flows were held 

or diverted to again provide an operating comparison with raw sewage only. 

The vital precaution of de-gritting all primary units was observed. Pre­

aeration was at the rate of 100 cfm throughout the two weeks in January, 

then 12 cfln by downdraft aeration in March. 

Sampling was conducted and composites prepared for 2k hr periods. 

Samples were collected every half hour during the daytime when practical 

and hourly otherwise. Laboratory procedures were as previously described. 

BOD and SS determinations were made on the composite samples, and the SS 

content of each individual sample was determined as well. Time did not 
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Table 23. Outline of comparative plant runs with unequal settling time 

Date and days Preaeration and settling Plain settling 
(l959) (south bay) (north bay) 

Jan. 13-15 Preaeration plus 1 hr Plain 2 hr settling; Nos. 1 & 
3 days settling; No. It primary vs 2 primaries 

Jan. 16, 17 Plain 1 hr settling Plain 2 hr settling; Nos. 1 & 
2 days alone ; No. Lt primary vs 2 primaries 

Jan. 20-23 Preaeration plus 1 hr Plain 1 hr settling; No. 1 
U days settling; No. U primary vs primary 

March 2-It Preaeration plus 1 hr Plain 1 hr or 2 hr settling; 
3 days settling; No. U primary vs No. 1 or Nos. 1 & 2 primaries 

permit laboratory work on oxygen values or settleability (table 23) • 

The primary objective of these runs was a direct operating comparison 

of plain primary settling with a parallel plant comprising preaeration 

followed by only half the settling capacity. Plant sewage flows during 

these runs were such as to provide nominal 2 hr displacement time through 

the two (north) plain primary clarifiers, and 1 hr displacement through 

the one (south) primary clarifier preceded by preaeration. 

5. Results 

Detailed composite BOD and SS results are presented in table 2U, and 

individual SS strength patterns for raw sewage and for the two primary 

effluents are shown in figure 52. The SS results are quite interesting. 

During the first three days, it was a pleasant surprise to find pre­

aeration and 1 hr settling outperforming 2 hr plain settling. In BOD 
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removal, the difference was negligible, averaging a mere one percentage 

point. In SS removal, however, the margin ranged from about two to five 

points and appeared fairly consistent throughout the day, except for the 

forenoon period of peak raw sewage strength and flow volume. 

Primarily to determine whether the success of this combination was in 

fact due to pretreatment, the south preaeration unit was bypassed the 

following two days. No. U primary clarifier promptly confirmed its ex­

pected limitations by dropping five to ten percentage points below No. 1 

and 2 clarifiers in both BOD and SS removal. No. U clarifier, when 

operating without the help of preaeration, was at most serious disad­

vantage in handling forenoon peak loads and daytime loads generally, al­

though holding its own at times of reduced volume and strength when 

settling time was longer on both sides. These results also indicate 

that the buffering effect of the preaeration step may be more substantial 

than assumed originally. 

The following week, the plant arrangement was adjusted for parallel 

operation with 1 hr settling on both sides, but with preaeration again 

preceding No. U primary clarifier. The improvement by preaeration here 

was consistent and strong, ranging from five to ten percentage points in 

SS removal and holding steady at about seven points in BOD removal for 

three of the four days. 

Later, an operating sequence was begun in which it was intended to 

pit preaeration followed by 1 hr settling against 1 hr or 2 hr plain 

settling on alternate days. After only three days this test series was 

brought to a rude halt by the worst snowstorm in eight years. However, 
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the results again indicated a strong advantage for preaeration and 1 hr 

settling over 1 hr settling alone, and confirmed the merit of the former 

in competition with 2 hr plain settling* This would appear to be a major 

consideration in the intelligent application of the preaeration process in 

sewage treatment practice. 
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XII. STUDIES AT OTHER IOWA PLANTS 

In August, 1958, brief plant-scale studies were made at the GrinneU, 

Des Moines, and Cedar Rapids sewage treatment plants. All use preaeration 

as a first step in the treatment process. A major difference from the 

Ames plant is that in none of the three was it possible to split the flow 

for comparative operation with and without preaeration. Consequently, the 

only indication of benefit from preaeration at these plants was obtained 

through intensive laboratory use of the Oulman settlimeter. In addition, 

as full a background of supporting data on oxygen values, SS and BOD was 

gathered as time permitted. In December, an additional day was spent at 

both the GrinneU and Cedar Rapids plants to gain a general idea of ORP 

values. 

A,. GrinneU 

1. Plant arrangement 

This plant, built in 1951, serves a residential community of 8,000 

population, including Grinnell College (51)• The plant is located in a 

rural area about two miles from the city proper. The treated effluent 

enters a small creek affording limited dilution. 

Complete treatment is provided (figure 53) • Following grit removal 

and comminution, the incoming sewage is preaerated and settled before 

being pumped to a trickling filter. Final settling completes the flow 
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diagram, except for continuous recirculation of final sludge and subnatant 

back to a point ahead of primary settling. Table 25 summarizes the size 

of the primary treatment units and their loading at the 0.9 mgd rate 

representing typical daytime flow during these operating runs. 

Table 25. Sizes and loadings of primary units5 Grinnell, Iowa sewage 
treatment plant 

Capacity 
per unit 

Loading at 0.9 mgd 
daytime flow rate 

Preaeration tank (1) 
Surface area, sq ft (30 ft x Hi ft) 
Maximum depth (hopper), ft 
Volume, gals 
Detention, hrs* 

U20 
11.5 

25,000 
0.67 

Air supply (1) 
Blower rating, cfm 
Aeration rate, cu ft/gal 

85 
0.1U 

Primaiy clarifier (l) 
Surface area, sq ft (U5 ft diam) 
Side-water depth, ft 
Volume, gals 
Weir length, ft 
Detention, hrs* 
Surface overflow rate, gpd/sq ft 
Weir overflow rate, gpd/lin ft 

1,590 
6.0 

71,500 
iia 

1.91 
565 

6,380 

^Theoretical displacement time. 

Preaeration is provided in a single rectangular, hopper-bottom tank 

fitted with a single full-length row of carborundum diffuser plates. Two 

full-length baffles provide stilling areas for collection of grease which 

is removed periodically by tilting scum troughs (figures 5k and 5$). Air 

is supplied to the diffuser plates by a blower of 85 cfln rated capacity 

driven by a 5 hp motor. No attempt was made to gage the actual air 
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delivery. Grit does not settle out in this tank, nor has there been a 

problem with clogging of the diffuser plates. 

2. Operating studies 

Plant-scale studies made on August 12, 13 and Hi proceeded generally 

without incident. The weather was warm and humid, but the lack of 

appreciable rainfall far several weeks insured operation under normal dry-

weather conditions. Total 2k hr flow reaching the plant averaged roughly 

0.70 mgd. 

Recirculation from the final clarifier was shut down Monday afternoon, 

August 11, to provide for primary treatment of incoming raw sewage only. 

No supernatant or other return material entered the primary units through­

out these plant studies. On Tuesday, August 12, the actual detention time 

of the preaeration step, and indirectly for the primary clarifier also, 

was determined with fluorescein dye. The results of this work (figure 

56) indicate that actual mean detention times for both units are close to 

theoretical displacement periods. 

Preaeration influent and effluent and primary effluent were samples 

at half-hour intervals during the daytime and composited proportional to 

flow. The composite periods were staggered to compensate for probable de­

tention times. DO and SS were determined on the half-hour samples; oxygen 

depletion rates were run hourly and as many settlimeter runs were made as 

practical. It was found necessary to establish new calibrations for the 

photometric SS method specifically for GrinneU Sewage. 

On Tuesday, December 30, a return trip was made to the GrinneU 

plant. The weather was mild, around 20° F, and calm. The noon sewage 
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temperature was 5>7° F. The flow level was quite like that in August but 

the sewage strength was about half again as great. The objective of this 

visit was to gain a general indication of ORP levels in the raw sewage and 

in the preaeration and primary effluents. Other than the substitution of 

ORP determinations for settlimeter runs, sampling and laboratory work were 

essentially the same as in August. The composite period was limited to 

four hours. 

3» Results 

a. Primary removals. The analytical data for these four days 

(figure 56 and table 26) show that primary removals were excellent, 

averaging over $0 percent of influent BOD and over 70 percent of influent 

SS strength. 

b. Oxygen values. Preaeration boosted the DO level from little or 

nothing in the raw sewage to a level of 1 to 2 mg/l during most of the day. 

In August, this was insufficient to maintain DO through primary settling, 

but in the December test the primary effluent was found to carry a small 

amount of DO consistently. 

Oxygen transfer efficiencies (table 27) were just under 2 percent. 

The oxygen transfer efficiency and the oxygen depletion and acceptance 

rates compare closely with results at the Ames plant. Both plants are 

treating a domestic waste of very ordinary composition. ORP values 

proved to be consistently positive despite the long flow time to the 

plant. Preaeration appeared to be able to maintain the ORP level even at 

peak load and to raise it by some 50 mv in the afternoon. The data on ORP 

are too limited for other than the most general comments. 
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Table 26» Sewage characteristics and primary removalsj Grinnell, Iowa 

Aug, 12 Aug. 13 Aug. 1U Dec. 30 
Tuesday Wednesday Thursday Tuesday 

Preaeration influent 
Composite period 12 Noon -

7:30 PMj 
8 hrs 

9:30 AM -
7:00 FM; 
10 hrs 

9:30 AM -
7:00 PMj 
10 hrs 

10:30 AM -
2:00 PMj 
U hrs 

TS, mg/l 
DS, mg/l 
SS, mg/l 

1197 
1051 
11*6 

1185 
1021 

I6I1 

1252 
1066 
186 265 

BOD, mg/l 107 101 131 101 

Preaeration 
Composite 

effluent 
period not 

sampled 
10:00 AM -
7:30 PMj 
10 hrs 

10:00 AM -
7:30 FM? 
10 hrs 

11:00 AM -
2:30 HI5 
U hrs 

TS, mg/l 
DS, mg/l 
SS, mg/l 

1186 
1012 
17U 

1236 
1079 
157 270 

BOD, mg/l 115 135 181 

Primary effluent 
Composite period not 

sampled 
12 Noon -
9:30 PMj 
10 hrs 

11:30 AM -
7:30 FM; 
8| hrs 

12:30 PM -
U:00 PMj 
U hrs 

TS, mg/l 
DS, mg/l 
SS, mg/l 

1057 
1012 

U5 

1073 
1032 

111 69 

BOD, mg/l 51 60 95 

Primary removals 
BOD, percent 
SS, percent 

53 
73 

55 
76 

1*9 
7U 
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Table 27 • Summary of oxygen values; Grinnell, Iowa 

Auge 13 Aug. lit Dec. 30 
Wednesday Thursday Tuesday 

Time 2-1* FM 24*. FM 2-3 FM 

Aeration rate, cfm 
Aeration rate, cu ft/gal 

85 
O.ll* 

85 
0.11* 

85 
0.11* 

Flow rate, mgd 0.89 0.90 0.89 

Average DO levels, mg/l 
Preaeration influent 
Preaeration effluent 

—0*3 
+1.0 

-0.3 
+1.2 

+1.2 
+3.0 

Observed depletion rate, mg/l/hr 5.9 6.5 1*.9 

Calculated acceptance rate, mg/l/hr 8.1 9.0 7.9 

Oxygen transfer efficiency, percent 
(assuming no surface aeration) 

1.7 1.9 1.6 

c« Settling characteristics. Results with the Oulman settlimeter are 

more easily judged in graphical form than described. The sample pairs 

collected 30 to 35 mins apart appeared to show much more rapid settling 

following preaeration. Sometimes the preaeration influent sample fell 

short of the settling ultimately achieved by the preaeration effluent 

sample, often it eventually did as well. 

The important difference was the very striking advantage shown by the 

preaerated samples in the early moments of settling. For nine of the 

twelve pairs run, preaeration effluent samples averaged 17 and 22 per­

centage points advantage, respectively, over the matching influent samples 

after 10 m in and 20 min settling. For the other three pairs, all collected 

around 5 to 6 FM, the early advantage was only five to ten percentage 
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points, and it was not sustained throughout the test. The explanation for 

this is not readily apparent. 

These results are highly favorable to preaeration; they are confirmed 

to some extent by the unusually high primary removals actually being 

achieved at the Grinnell plant. Nevertheless, it must be cautioned again 

that there are important gaps between laboratory results and plant 

practice. 

B. Des Moines 

1. Plant arrangement 

This plant, completed in 1939 and expanded in 1955# now serves a 

metropolitan Des Moines area of approximately 225,000 population. Added 

to this domestic load is a heavy charge of packinghouse waste. The result 

is a raw sewage loaded with fine grit, grease, paunch manure and 

occasionally blood, but deceptively low in BOD and SS strength in spite of 

its appearance. The hydraulic capacity of the plant is limited, and there 

are times when the incoming flow must be backed up or partly bypassed 

without full treatment. The plant is located in an industrial area some 

four to five miles from the main business district. Plant effluent dis­

charges to the Des Moines River. 

The schematic flow diagram of the plan appears in figure 57 • 

Following mechanical screening and the first stage grit removal, the raw 

sewage is pumped to second stage grit removal from which it flows by 

gravity through the rest of the plant. Preaeration is followed by con­

ventional complete treatment on trickling filters• Final sludge is 
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recirculated back to the raw sewage wet well during the early morning hours 

only for re-settling in the primary clarifiera. Digester supernatant can 

either be returned to the raw sewage wet well or discharged to lagoons. 

As completed in 1939, the plant included a prefloc culation step 

ahead of primary settling. As part of the 1955 expansion, the mechanical 

flocculators were removed from this unit and air diffusion equipment was 

installed instead, along with new scum troughs. This unit is now the 

south, or smaller, preaeration tank. The north tank and the blower 

building were also constructed in 1955. Air is provided by two blowers of 

1,000 cfta capacity and by a third blower of 2,000 cfm capacity. The 

blowers are powered by 50 hp and 100 hp motors, respectively. Actual air 

capacity tests were not run. The air is distributed by swing diffuser s 

placed in bays across the direction of flow through the tanks. In normal 

operation either of the two smaller blowers is operated; occasionally the 

2,000 cfm blower is run for a short time to force open partially clogged 

diffuser pores and thus improve air distribution. Gradual clogging of the 

diffusers has proved to be an operating problem. Figures 58 and 59 pic­

ture the surface of the south preaeration unit at aeration rates of 1,000 

and 2,000 cfta. Table 28 summarizes sizes and load factors for the primary 

treatment units. 

Grease and grit are serious operating problems. If it accomplished 

nothing else, preaeration at Des Moines would probably be justified on the 

basis of grease removal alone. During 1958, grease was collected for 

rendering by a firm which paid the city $10 per ton in addition to all 

work of loading and hauling. For one recent peak month, the grease 
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Table 28. Sizes and loadings of primary units5 Des Moines, Iowa sewage 
treatment plant 

Capacity Loading at 32 mgd 
per unit daytime flow rate 

Preaeration tanks (2) 
North unit 
Surface area, sq ft (U2 ft x 11$ ft) U,830 
Depth, ft 15 .0 
Volume, gals 5U3#000 

South unit 
Surface area, sq ft (U2 ft x 0I4 ft) 2,688 
Depth, ft 1$.0 
Volume, gals 302,000 

Detention, hrs (both units combined)* 0.6U 

Air supply (3) 
Blower No* 1 rating, cfln 1,000 
Blower No. 2 rating, cfta 1,000 
Blower No, 3 rating, cfln 2,000 

Aeration rate, No. 1 only; cu ft/gal 0.0li5 
Aeration rate, Nos. 1 and 2; cu ft/gal 0.09 
Aeration rate, Nos. 1, 2, 3j cu ft/gal 0.18 

Primary clarifiera (LQ 
Surface area, sq ft (90 ft diam) 6,360 
Side-water depth, ft 11.17 
Volume, gals 530,000 
Weir length, ft 283 

Detention, hrs (four units combined)* 1.60 
Surface overflow rate, gpd/sq ft 1,260 
Weir overflow rate, gpd/lin ft 28,300 

^Theoretical displacement time. 
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salvage totalled 96 tons. According to the operators, much of this 

material formerly passed through primary settling and accumulated on the 

trickling filters in such quantity that severe ponding and clogging re­

sulted. Figure 60 shows the operator just beginning to skim and indicates 

the extent of grease removal by preaeration. 

Even following two grit removal stages which remove many yards of 

material daily, fine grit settles in the preaeration tanks and accumulates 

to such an extent that it tends to bury the air diffusion units. This is 

relieved partially by blow down of the tanks, but it eventually becomes 

necessary to empty them for cleaning. 

2. Operating studies 

The first series of plant-scale studies extended over the period 

August 19 to 21. It was not practical to halt the return of final sludge 

for this long a time; however, the sludge return was stopped at 6 AM or 

shortly thereafter each morning to allow several hours for purging of the 

preaeration tanks before sampling began. No supernatant was returned to 

the sewage flow during these studies. Thus, the preaeration step was 

limited to treatment of raw sewage only, as far as practical. 

Sampling for individual SS determinations and for compositing was 

done at 20 min intervals. The DO levels of preaeration influent and 

effluent were checked at approximately half-hour intervals and oxygen de­

pletion runs were made hourly when practical. Settlimeter tests were run 

as often as possible. As at Grinnell, it was found necessary to prepare 

new calibrations for the photometric SS determination on this waste. 

On Tuesday, August 19, the weather was warm and humid. Wednesday was 
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the same until noon when the temperature dropped sharply, and a thunder­

storm began to form, A heavy storm passed through the heart of town, 

reaching the plant area at 2:25 PM. Within the hour, the incoming raw 

sewage also changed sharply, bringing with it a heavy load of grit and 

similar solids. The rain was recorded as 1.6 in. As this flow reached 

the primary plant units, sampling and compositing were necessarily con­

cluded for the day. 

On Thursday the weather remained cool and the flow was still in­

fluenced, though very mildly, by the previous day's rain. Sampling was 

suspended from noon to 1:1*0 PM due to an unexpected plant shutdown. The 

composites were extended around this interruption as realistically as 

possible# At 3 PM a second blower was started, providing 2,000 cfta for 

preaeration as compared with the 1,000 cfm rate maintained previously. 

On Monday, December 29 an additional day was spent at the Des Moines 

plant. The operation was comparable with that in August, and the sampling 

was also similar except that ORP determinations were substituted for 

settlimeter runs. The weather was calm and mild, about 15° F. The sewage 

was noticeably stronger in packinghouse waste. A single 1,000 cfta blower 

was operated until 2:1*5 îM, when the second small blower was started, pro­

viding a total aeration rate of 2,000 cfta. 

3. Results 

a. Primary removals. Primary removals far the four days averaged 

roughly 1*0 percent BOD and 70 percent SS (table 29 and figure 61). 

b. Oxygen values. During the August plant studies, the DO of the 
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Table 29. Sewage characteristics and primary removals; Des Moines, Iowa 

Aug. 19 Aug. 20 Aug. 21 Dec. 29 
Tuesday Wednesday Thursday Monday 

Preaeration 
Composite 

influent 
period 11:00 AM -

5 PMj 
6 1/3 hrs 

9:20 AM -
3:00 PMj 
6 hrs 

10:00 AM -
1*:1*0 FM j 
7 hrs* 

11:30 AM -
1*:00 PMj 
5 hrs 

TS, mg/l 
DS, mg/l 
SS, mg/l 

1105 
690 
1*15 

1031* 
631* 
1*00 

1128 
677 
1*51 630 

BOD, mg/l 300 320 350 580 

Preaeration 
Composite 

effluent 
period 11:1+0 AM -

5»Uo m; 
6 1/3 hrs 

9:1*0 AM -
3:20 FMj 
6 hrs 

10:20 AM -
5:00 PMj 
7 hrs* 

12 Noon -
l*s30 PMj 
5 hrs 

TS, mg/l 
DS, mg/l 
SS, mg/l 

101+6 
650 
396 

1055 
637 
1*18 

1125(e) 
681* 
l*l*l(e) 525 

BOD, mg/l 295 300 360 680 

Primary effluent 
Composite period 1:00 PM -

7:00 PMj 
6 1/3 hrs 

11:30 AM -
5:00 EM5 
6 hrs 

10:1*0 AM -
5:20 PMj 
7 hrs* 

1:00 PM -
5*30 FMj 
5 hrs 

TS, mg/l 
DS, mg/l 
SS, mg/l 

781* 
6 55 
129 

736 
600 
136 

7U7 
63I* 
113 160 

BOD, mg/l 185 175 1U5 1*00 

Primary removals 
BOD, percent 
SS, percent 

38 
68 

U3 
67 

59 
75 

37 
72 

^Interrupted by plant shutdown 12:00 Noon to 1:30 PM. 
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Moines ,  Iowa,  sewage t rea tment  p lant  



159 

preaeration influent was rarely positive, and ranged more commonly 1 to 2, 

and as low as U mg/l on the negative side» With the stronger sewage flows, 

the preaeration effluent was usually still lower in DO; at times of more 

moderate oxygen demand, such as midafternoon, the DO level was raised 

slightly by preaeration. 

Table 30 summarizes the DO levels, depletion rates and transfer 

efficiencies observed in the Des Moines studies• The oxygen transfer 

efficiency with only one blower operating was calculated to be in the 

Table 30* Summary of oxygen values5 Des Moines, Iowa 

Time 

Aeration rate, cfta 
Aeration rate, cu ft/gal 

Flow rate, mgd 

Average DO levels, mg/l 
Preaeration influent 
Preaeration effluent 

Observed depletion rate, mg/l/hr 

Calculated acceptance rate, mg/l/hr 

Oxygen transfer efficiency, percent 
(assuming no surface aeration) 

Aug. 19 Aug. 20 Aug. 21 
Tuesday Wednesday Thursday 

1-2 FM 1-3 FM 2-3 FM 

1,000 1,000 1,000 
o.oU5 o.oU5 o.oU5 

32| 32 32| 

—1.7 —1.0 —2 .0 
—1*5 —0*5 —0.9 

5.5 5.2 ii.5 

5.8 6.1 6.U 

3.5 3.6 3.8 
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range of 3 to U percent• This was considerably higher than for Ames or 

Grinnell, but represents a low aeration rate of 0.0ii5 cu ft/gal. The few 

hours of operation on Thursday at 2,000 cfta. did not appear to affect the 

preaeration effluent significantly, bub time was too short for a fair 

evaluation* 

The oxygen data of December 29 were highly erratic and contradictory. 

The DO determinations yielded nothing of value except that both preaeration 

influent and effluent were deplete throughout the day. The daytime ORP 

levels were in the range of zero. Although here again the time was 

limited, it appeared that the 1,000 cfm aeration rate was able to maintain 

the ORP level generally constant, while the 2,000 cfm rate boosted it some 

£0 mv. 

c. Settling characteristicso The influence of preaeration on settle-

ability, as indicated by the settlimeter, varied over rather wide limits. 

On Tuesday, August 19» four of the six runs showed substantial improvement 

following preaeration, most of it occurring in the first ten to twenty 

minutes. On Wednesday, the improvement shown in several of the runs was 

very good, while in the others it was modest. On Thursday, the settli­

meter tests indicated little or no benefit from preaeration. This was at 

least partly because the settleability of the preaeration influent was 

unusually good, as confirmed by plant primary removals substantially 

better than during the first two days. In general terms, preaeration at 

the Des Moines plant appeared, on the basis of laboratory tests, to benefit 

primary removal# 
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C. Cedar Rapids 

1. Plant arrangement 

This plant, when placed in operation in 1935, won national attention 

for its joint treatment of both domestic and packinghouse wastes and for 

the cooperative financing arrangement between city and industry. It was 

the first plant to employ several treatment procedures (30). An expansion 

program completed in 1958 more than doubled the plant capacity. The 

present waste load from a population of some 90,000, and from a vigorously 

expanding industrial sector, constitutes a population equivalent approaching 

1*00,000. Wastes from cereal and grain processing and from meat packing are 

among the major contributors» The plant is located about two miles from 

the downtown business district and plant effluent discharges to the Cedar 

River. 

The incoming raw sewage passes through mechanical screens, then is 

pumped to grit removal units (figure 62). Preaeration and settling in 

long rectangular clarifier s complete the primary phase of treatment. The 

primary effluent flows by gravity to a wet well from which it is pumped to 

high-rate roughing filters, then settled in intermediate clarifiers# Part 

of the intermediate effluent is diverted back for recirculation to the 

roughing filters while the remainder goes to standard rate trickling fil­

ters and final settling. Digester supernatant is returned to the raw 

sewage wet well in the evenings. No other return flow is mixed with the 

raw sewage ahead of primary treatment. 

As part of the recent expansion program, four tanks which had 
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F ig .  64 .  View of  Cedar  Rapids  preaera­
t ion  fac i l i t ies  
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previously served as primary clarifiers were adapted for preaeration. 

This consisted almost entirely of simple structural changes to accommodate 

the increased flows and the installation of air diffusion equipment. The 

sludge removal equipment in the tanks was not disturbed. Air is provided 

by a battery of three 1,000 cfm blowers, each driven by a ItO hp motor. 

Any one or two, or all three, may be operated. No check was made on 

actual air delivery. Air distribution is by special orifice castings 

mounted at 16 in spacing on cast iron pipe headers around the lower 

periphery of the octagonal tank and lengthwise along the four rectangular 

preaeration bays (figure 62). 

At the time of these plant studies, work had not been completed on 

the octagonal tank, and the full flow was routed through the rectangular 

units (figures 63 and 6U). The operators reported no grit accumulation in 

these tanks. A sparse accumulation of grease balls was evident, but the 

total grease problem here and on the primary clarifiers appeared to be 

moderate. Operating experience was not yet sufficient to determine if 

clogging of the air orifices would be a problem. Sizes and unit loadings 

for the primary treatment units are summarized in table 31* 

2 e Operating studies 

Plant studies were conducted at Cedar Rapids on Monday and Tuesday, 

August 25 and 26. Both the weather and the flow volume were normal for 

late summer; there had been no recent heavy rains. The rate of flow was 

approximated by occasional checks on the operating cycles of the raw 

sewage pumps, whose capacities were known, since the total flow meter was 
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Table 31» Sizes and loadings of primary units; Cedar Rapids, Iowa sewage 
treatment plant 

Capacity Loading at 17 mgd 
per unit daytime flow rate 

Preaeration tanks (2) 
West unit (U rectangular bays) 
Surface area, sq ft (65 ft x 68 ft) U,l|20 
Depth, ft 13.5 
Volume, gals ll50,000 

East unit (octagonal) 
Surface area, sq ft (70 ft diam) U,060 
Depth, ft 12.5 
Volume, gals 380,000 

Detention, hrs* 
Flow through west unit only O.63 
Flow through both units 1.17 

Air supply (3) 
Blower rating, cfta (each of 3) 1,000 

Aeration rate, one blower only, cu ft/gal 0.085 
Aeration rate, all three blowers, cu ft/gal 0.25 

Primary clarifiers (12) 
Surface area, sq ft (20.25 ft x 125 ft) 2,531 
Depth, ft 7.75 
Volume, gals Ili7,000 
Weir length, ft 198 

Detention, hrs (twelve units combined)* 2<,k9 
Surface overflew rate, gpd/sq ft 560 
Weir overflow rate, gpd/lin ft 7,150 

^Theoretical displacement time 
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inoperative• Supernatant return on these days was limited to the evening 

hours following sampling, thus providing for preaeration of raw sewage 

only. 

Sampling for composites and for individual SS determinations was at 

20 min intervals for preaeration influent and effluent, and at 30 min 

intervals for primary effluent. DO determinations were made each 20 mins, 

and oxygen depletion tests were made approximately once an hour. Settli­

meter tests were made as often as time and facilities permitted. As at 

Grinnell and Des Moines, it was found necessary to establish new calibra­

tions for the photometric SS method to permit its use on this waste. 

On Monday, a single 1,000 cfm blower was operated. On Tuesday, a 

second blower was started, providing 2,000 cfm for preaeration until 1:U5 

HI when the rate was cut back to 1,000 cfm for the remainder of the day. 

Several incidents demonstrated the variable nature of this waste. On 

Monday a heavy charge of blood was apparent in the raw sewage reaching 

the plant from 6:15 to 6:30 FM. On Tuesday after h H4, the raw sewage 

began to develop a peculiar color and odor which the operators 

characterized as a starch waste frem cereal processing. By L:30 FM this 

was so strong that the acidification of DO samples for the oxygen deple­

tion test produced a vivid purple coloration instead of the orange 

characteristic of iodine. 

3. Results 

a. Primary removals. For the two days, primary removals averaged 

1*2 percent BOD and 75 percent SS. The SS removal seems unusually high but 

may have been influenced favorably by rather lengthy primary settling. 
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Sewage characteristics and removals are presented in table 32 and figure 

65 presents graphically the detailed analytical data from the Cedar Rapids 

plant studies. 

be Oxygen values* Generally, the DO level of the preaeration in­

fluent was 1 mg/l or better, while the preaeration effluent was deplete 

with 1,000 cfta aeration and just positive with an aeration rate of 2,000 

cfta* Sampling of the detritor effluent just ahead of preaeration indi­

cated a lack of DO at this point. The only possible, and certainly an 

interesting, implication here is that the DO present in the sewage flow a 

few feet beyond the detritors is gained in the course of a free fall of 

several feet between the two points. The DO found in the preaeration 

influent is definitely dissolved rather than merely entrained* 

Oxygen depletion tests were particularly erratic, yielding some 

improbably low test results and others which defied interpretation. As a 

result, the summary of oxygen values in table 33 must be discounted 

accordingly. Oxygen transfer efficiency is shown to be only about one-

half percent; this may properly reflect characteristics of this 

particular waste which hinder its acceptance of oxygen by aeration. 

c. Settling characteristics. Judging from laboratory tests with the 

settlimeter, preaeration was of substantial and fairly consistent benefit 

to primary settling<, The settlimeter runs indicated an advantage of ten 

to fifteen percentage points in removal after only 10 min settling, and 

from fifteen to twenty points after 20 mins (figure 65) • This advantage 

was usually sustained throughout the settling test. For only one of the 

sample pairs was no advantage shown for preaeration* These results were 
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Table 32» Sewage characteristics and primary removals; Cedar Rapids, Iowa 

Aug. 25 
Monday 

Aug. 26 
Tuesday 

Preaeration influent 
Composite period IsljO PM -

7:00 PM; 
5 2/3 hrs 

9:20 AM -
5:00 FM; 
8 hrs 

TS, mg/l 
DS, mg/l 
SS, mg/l 

1660 
1250 
Uio 

1750 
1280 
U70 

BOD, mg/l 600 U60 

Preaeration effluent 
Composite period 2:00 m -

7:20 PM; 
5 2/3 hrs 

9$U0 AM -
5:20 PM; 
8 hrs 

TS. mg/l 
DS, mg/l 
SS, mg/l 

sample lost 1725 
1275 
U50 

BOD, mg/l U75 

Primary effluent 
Composite period 3:30 PM -

8:30 PM; 
51 hrs 

11:30 AM -
7:00 Hi; 
8 hrs 

TS, mg/l 
DS, mg/l 
SS, mg/l 

13l|0 
12U0 
100 

1315 
1235 
no 

BOD, mg/l 360 260 

Primary removals 
BOD, percent 
SS, percent 

Uo 
75 

b h  
76 
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Table 33o Summary of oxygen values; Cedar Rapids, Iowa 

Aug. 25 Aug. 26 
Monday Tuesday 

Time 3-5 PM 10 AM-i m 

Aeration rate, cfm 
Aeration rate, cu ft/gal 

1,000 
0.09 

2,000 
0.16 

Flow rate, mgd 16 18 

Average DO levels, mg/l 
Preaeration influent 
Preaeration effluent 

1.5 
0.0 

CO 
0 . 
0
 0
 

Observed depletion rate, mg/l/hr a.5 U.o 

Calculated acceptance rate, mg/l/hr 2.0 3.0 

Oxygen transfer efficiency, percent 
(assuming no surface aeration) 

0.6 0.5 

confirmed to some extent by the excellent SS removals achieved in plant 

scale during these studies. However, it cannot be re-emphasized too 

strongly that the settlimeter test is at best a laboratory approach to a 

question which can only be answered in full-plant scale. 
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XIII. ECONOMIC EVALUATION 

A. Approach; Annual Cost Method 

Engineering economy is defined succinctly by Grant (17) when he asks 

simply "Will it pay?" Somewhere in the development of every project or 

proposal this question must be injected if costs are of any concern. 

Such a question involves first the outlining of possible alternatives• 

The next step is the analysis of prospective differences between these 

alternatives. Only the items that differ are relevant in such a comparison 

because the others cancel out. Finally, the physical differences are 

evaluated on a dollar basis. This answers the question, "Will it pay'', on 

a strictly monetary basis. In practice, the choice between alternatives 

must also give weight to those factors, minor or major, which cannot be 

reduced to money terms. 

The Annual Cost method is well suited to an evaluation of alternatives 

such as several tentative plant designs producing the same result. A 

simple example of the method follows, involving one plan with higher first 

cost and a second plan with higher operating cost. Amortization or 

capital recovery is based on a 20 yr life, with interest at 32 percent, 

for which the annual payment factor is 0.070U. 
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Alternative A - first cost, $10,000 

Annual fixed charge = #10,000 x 0,0701; = $ 7Oh. 

Annual operating and maintenance charge * 1,000 

Total annual cost = $l,70h 

Alternative B - first cost, $7,000 

Annual fixed charge « $7,000 x 0.070b = U93 

Annual operating and maintenance charge = 2,000 

Total annual cost • $2,U93 

Barring same overpowering argument alternative A would be the logical 

choice, at an annual cost advantage of $789* 

In sewage preaeration, cost comparisons can be made between plants 

designed for equivalent treatment results with and without preaeration. 

B, Treatment Plant Designs 

Tentative plant designs were prepared following the Ten States 

standards (53) and conventional design practice. The design basis used 

was a population of 25,000, an average daily sewage flow of 3 «0 mgd, and 

BOD and SS strength of 200 mg/l. Complete treatment was provided, with 

trickling filters comprising the secondary stage of treatment. 

1. Standard-rate trickling filters 

In the conventional plant design without preaeration, figure 66, 2 hr 

primary settling was provided. Assuming 35 percent BOD removal in this 

step, 3,250 lb of BOD passed to the filters, where 5*0 acre-ft satisfy 
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loading limits for standard-rate filters. Treatment was concluded by 2 hr 

final settling. Sludge handling facilities, not shown, were arbitrarily 

established as li.O cu ft/cap for digestion capacity and 1.3 sq ft/cap for 

sludge drying beds. The sludge handling facilities were identical for all 

plant designs. Overall BOD removal for this design would be 88 percent, 

yielding an effluent of 2U mg/l BOD. 

2. Standard-rate plantj preaeration alternative 

An alternative design was prepared, figure 66, including a U5 min 

preaeration step. Primary and final settling were both held at 2 hr de­

tentions as in the basic design above. The only other change was in 

trickling filter capacity. 

Assuming that preaeration and primary settling combined will 

accomplish BOD removal of U2 percent, seven percentage points improvement 

over plain settling, the BOD load to the filters was reduced to 2,900 lb. 

This permitted a reduction of trickling filter capacity to U.U6 acre-ft 

while maintaining loadings exactly like those in the basic design without 

preaeration. The final effluent BOD would also be the sane, 2U mg/l. 

3. High-rate trickling filters 

The basic high-rate filter design, figure 67, comprised 2 hr primary 

settling, 1:1 recirculation of plant effluent back to the filter influent, 

and doubled final settling capacity to provide 2 hr detention for the 

total flow receiving secondary treatment. As before, 35 percent BOD re­

moval was assumed for plain primary settling, leaving a BOD load of 3t2$0 
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lb in the primary effluent. Following the NRG design formula (36), this 

load can be handled by 1.U7 acre-ft of high-rate filter, resulting in a 

final settled effluent strength of 30 mg/l BOD. The overall plant BOD re­

moval efficiency would be 8ï> percent. 

U» High-rate plant; preaeration alternative 

The alternative design, including hS min preaeration, is shown in 

figure 67. Primary and final settling were identical to that in the basic 

high-rate design. The only other change was in the filter capacity 

provided. 

Assuming again a h2 percent BOD removal by preaeration and primary 

settling combined, the load to the filters is reduced to 2,900 lb of BOD. 

With 1:1 recirculation, 1.31 acre-ft of filter capacity are sufficient to 

handle this load with a final settled effluent BOD of 30 mg/l. 

5. Design criteria 

It is recognized that some features of these designs, such as rigid 

adherence to 2 hr detention time for both primary and final settling in 

all cases, are open to argument. However, since these elements, as well 

as the sludge handling facilities, are identical for both the basic and 

alternative designs, they do not affect the cost comparisons between the 

two. The preaeration time of min is generally accepted, and the 

filter designs follow well-defined requirements. Only these two plant 

elements affect the cost comparisons. 
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C. Estimated Costs 

1. Construction 

Overall plant construction costs were approximated with the aid of 

recent studies (35>j 10, Itl). Adjusted to an ENR construction cost index 

level of 785 (April 1959), a cost of $3l/caP is indicated (10) for a 3*0 

mgd complete treatment plant in the midwestern area. A similarly ad­

justed plot (bl) indicates a cost of $35/cap for complete treatment for a 

design population of 25,000. Total cost estimates for this study fall 

generally within these limits. 

For a breakdown of costs by functional plant units, "Economics of 

Sewage Treatment" (2*9) was followed closely. The costs in this treatise 

were collected when the ENR construction cost index was around the 200 

level. However, the original work was so fundamentally sound that 

appropriate adjustment of those unit costs to current index levels 

yielded overall plant cost figures which confirm today's $31 to $35/cap 

range. Detailed construction cost estimates appear in tables 3h and 35. 

In estimating the cost of the preaeration units, it was assumed that 

these structures with piping and equipment would be reasonably similar in 

cost to settling tanks complete with piping and equipment; the same unit 

price of $2elt0/cu ft was therefore applied. A lump sum of $2,000 was 

allowed for purchase, installation and wiring of a 200 cfm blower; an 

additional lump sum of $2,000 was allowed for the additional building 

space required and for air piping. 

The additional first cost of preaeration would be offset somewhat by 
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Table 3U. Construction cost estimates for standard-rate filter plant 
designs (ENR index - 785) 

A. Standard-rate filter plant 

Primary settling - 33,U00 cu ft @ $2.lt0 $ 80,000 
Trickling filters - 5*0 acre-ft @ $60,000 300,000 
Final settling - 33,1*00 cu ft 9 $2.^0 80,000 
Digestion system - 100,000 cu ft @ $1.55 155,000 
Sludge drying beds - 32,500 sq ft @ $2.60 85,000 
Auxiliaries, land, building, etc. 90,000 
Engineering and contingencies 85,000 

Plant A Total $875,000 

B. Standard-rate filter plant with preaeration alternative 

Add: 
Preaeration tanks with 

air diffusion equipment 12,500 cu ft @ $2.1*0 $ 30,000 
200 cfto blower with 10 hp motor, installed 2,000 
Building space and piping 2,000 

Total add « $ 3k,000 

Deduct: 
Decrease in trickling filter capacity from 5*0 
to L.I46 acre-ft, or 0.5U acre-ft. 

Pro-rata difference would be 0.5U acre-ft @ 
$60,000, or $32,bOO. However, because this 
represents a rather nominal reduction in size 
of these filters, the actual saving would 
hardly be more than 60 percent of this amount, 
or about $19,000. 

Total deduct • $ 19,000 

Net add « $3U,000 - 19,000 » $ 15,000 

Plant B Total $890,000 
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Table 35» Construction cost estimates for high-rate filter plant designs 
(ENR index - 785) 

C. High-rate filter plant 

Primary settling - 33,WO cu ft @ $2.1*0 $ 80,000 
Trickling filters - 1.U7 acre-ft © $80,000 118,000 
Final settling - 66,800 cu ft @ $2.25 150,000 
Digestion system - 100,000 cu ft @ $1.55 155#000 
Sludge drying beds - 32,500 sq ft @ $2.60 85,000 
Auxiliaries, land, building, etc. 107,000 
Engineering and contingencies 80,000 

Plant C Total $775,000 

D, High-rate filter plant with preaeration alternative 

Add: 
Preaeration tanks with 
air diffusion equipment 12,500 cu ft @ $2.1*0 $ 30,000 
200 cfm. blower with 10 hp motor, installed 2,000 
Building space and piping 2,000 

Total add - $ 3b,000 

Deduct: 
Decrease in trickling filter capacity from 1.1*7 to 
1.31 acre-ft, or 0.16 acre-ft. 

Pro-rata difference would be 0.16 acre-ft @ 
$80,000, or $12,800. However, because this 
represents a rather nominal reduction in size 
of these filters, the actual saving would 
hardly be more than 70 percent of this amount, 
or about $9,000. 

Total deduct • $ 9,000 

Net add = $3U,000 - 9,000 $ 25,000 

Plant D Total $800,000 
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a saving in filter construction costs. This was approached somewhat 

arbitrarily by calculating the apparent cost difference on a pro-rata unit 

cost basis for the difference in acre-ft required, then assuming that only 

a portion of this saving would be realized. This assumption is an attempt 

to recognize that a difference of some 11 percent in diameter definitely 

would not result in an 11 percent cost difference. The assumptions made 

here are open to argument; however, only extreme adjustments would 

materially affect the final cost comparisons. 

2e Operation and maintenance 

Operating cost data are not generally available except from 

individual plant reports. Based on one compilation (8) of such data, a 

basic annual operation and maintenance cost of $2/cap was considered 

reasonable for conventional standard-rate trickling filter treatment. The 

other plants described differ in operation and maintenance requirements 

from this conventional treatment, and their additional costs are estimated 

as reasonably as possible in table 36* 

It is almost certain that all of the four plants would be staffed 

alike. There would thus be no major difference in labor costs. The 

difference in trickling filter sizes between the basic and alternative 

designs is not sufficient in either case to involve any significant dif­

ference in operating duties or maintenance expense « 

The cost of power for preaeration and for recirculation is assumed 

as 1.2 c/kwhr. For annual maintenance of the blower and air diffusion 

system, a lump sum of $1*10 was allowed. For annual maintenance of the 
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Table 36. Plant operation and maintenance cost estimates 

A. Standard-rate filter plant 
Basic assumption: use $2/cap for annual cost for this, 
the simplest of complete treatment flow diagrams. 

Annual operating and maintenance cost: 
25,000 pop. x $2/cap B  $50,000 

B. Standard-rate; preaeration alternative*" 
Added costs would be for operating and maintenance 
of preaeration units. Power: 10 hp = 7.5 kwhr 
x2l4.hr0 180 kwhr/day 
Power cost = 180 kwhr x 1.2# x 365 days = $ 790 
Maintenance on entire air system, est. at lj.10 

Annual added cost for preaeration 3 
Annual base cost (above) 

* 1,200 
50,000 

Annual operating and maintenance cost $51,200 

C. High-rate filter plant 
Added costs here would be for recirculation. 
Pumping: 5 kwhr/mgd/ft; 3.0 mgd pumped 18 ft 
Power • 5 kwhr x 3 mgd x 18 ft » 270 kwhr/day 
Power cost e 270 kwhr x 1.2# x 365 days » \ 
Maintenance on recirculation system, est. at 

t 1,180 
620 

Annual added cost for recirculation i 
Annual base cost (above) 

& 1,800 
50,000 

Annual operating and maintenance cost $51,800 

D. High-rate; preaeration alternative* 
Added costs here would be for both preaeration 
and recirculation. 

For preaeration as above, added cost » \ 
For recirculation as above, added cost » 

t 1,200 
1,800 

Annual base cost (above) 50,000 

Annual operating and maintenance cost $53,000 

Cost savings through reduced filter size would be negligible. 



180 

recirculation pumps and control system, $620 was estimated. Total annual 

operation and maintenance costs were computed as the sum of the basic 

$2/cap figure plus the appropriate additional costs. 

Do. Cost Comparisons 

Comparisons may now be made between equivalent treatment plans de­

signed with and without preaeration. Amortization or capital recovery is 

based on a 20 yr life, with interest at percent, for which the annual 

payment factor is 0.070lu 

1, Standard-rate trickling filter treatment 

A. Basic design - first cost, $875*000 

Annual dixed charge ° $875,000 x 0.070b = $6l,600 
Annual operating and maintenance charge = 50,000 

Total annual cost $111,600 

B. Preaeration alternative - first cost, $890,000 

Annual fixed charge = $890,000 x 0.070b * $62,660 
Annual operating and maintenance charge • 51,200 

Total annual cost $113,860 

Cost difference $2,260/yr, or 2.0 percent. 

2. High-rate trickling filter treatment 

C. Basic design - first cost, $775,000 

Annual fixed charge = $775,000 x 0.070I4. 0 $5U,560 
Annual operating and maintenance charge = 51,800 

Total annual cost $106,360 
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D. Preaeration alternative - first cost, $800,000 

Annual fixed charge = $800,000 x 0.070b «= $56,320 
Annual operating and maintenance charge = 53,000 

Total annual cost $109,320 

Cost difference $2,960/yr or 2.8 percent. 

3. Economic choice 

The preaeration process, in its role of challenger, appears to be at 

a disadvantage both in first cost and in annual operating cost. This 

disadvantage is around 2 to 3 percent in total annual cost. Therefore, 

based on conventional design criteria and giving weight to dollar dif­

ferences only, preaeration apparently fails to measure up to the question 

"Will it pay?" 

Two other considerations are important here, however. The first is 

the demonstrated effect of preaeration on the early moments of settling. 

If U5 min preaeration followed by only 1 hr settling would be accepted as 

the equal of plain 2 hr settling, the preaeration alternative would be 

substantially on a par with conventional design in first cost. 

The second consideration is the proven effectiveness of preaeration 

in separating grit from the raw sewage flow. Where preaeration could 

eliminate the need for a separate grit removal unit, an additional saving 

in both first and operating costs would be realized. 

Where the above considerations are given credit, it appears that the 

preaeration alternative will enjoy an advantage in terms of dollar 

differences. 
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XIV. SUMMARY AND CONCLUSIONS 

A. Origin and Present Status 

The development of the preaeration process in sewage treatment ex­

tends over a period of around 2$ years. At least l£0 and probably more 

than 200 waste treatment plants in this country now employ preaeration 

ahead of primary settling, with the number increasing monthly. Yet,a 

thorough evaluation of the process has not previously been made. 

As studied and discussed here, preaeration is limited to an air-

agitation pre treatment of raw sewage ahead of primary settling; 30 to U5 

min detention; no chemicals added, nor return of supernatant, sludge or 

any other material which might serve as a physical or biological aid to 

flocculation. 

The origin of preaeration can be credited partly to early efforts at 

de-greasing with air flotation, partly to early work with mechanical 

flocculation which was in itself a modification of chemical treatment as 

practiced in the 19301 s. Laboratory and plant-scale development work done 

on mechanical flocculation prior to World War II led the way to acceptance 

of the concept of flocculation as a pretreatment aid to primary settling. 

Its proponents assert that preaeration accomplishes flocculation 

which significantly benefits primary settling and thus increases primary 

BOD and SB removal. Other advantages claimed for the process are: 

grease flotation, 
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grit separation, 
freshening or improved treatability in biological secondary 
treatment, 

addition of DO, 
scrubbing of noxious gases and odor, 
nominal BOD satisfaction, 
mixing and dispersal of waste "slugs". 

Increased BOD and SS removal is a tangible benefit capable of being 

measured in the laboratory and evaluated in dollars. Grease and grit 

separation are also tangible, although their value lies more in reducing 

or eliminating operating headaches. The other factors tend toward the 

intangible and their evaluation is beyond the scope of this study. 

Design practice varies widely. Preaeration is credited with sub­

stantial improvement in primary settling efficiency in some states. In 

other states no such credit is allowed. Regulatory policies range the 

full spectrum between these limits. Opinions and convictions of con­

sulting engineers and plant operating personnel range over equally wide 

bounds. 

The need for actual operating data to help resolve this confusion is 

widely acknowledged. To meet that need, this study was initiated to 

evaluate: 

(a) the effect of preaeration on primary settling, 

(b) the factors influencing its use, and 

(c) the economic worth of preaeration as a sewage treatment 

process. 
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B„ Ames Plant Investigations 

The Ames plant is of conventional standard rate trickling filter de­

sign, treating almost exclusively domestic wastes from a combined city and 

university population of approximately 27,000. For purposes of this study, 

the primary treatment stage was separated into two physically identical 

bays, each having one hopper-bottomed preaeration tank and two rectangular 

primary clarifiers. Incoming raw sewage flow was split accurately between 

these two bays. During the test runs, half the flow was bypassed directly 

to the north primary flarifiers. The other half was preaerated, then 

routed to the south primaries. All recirculation, supernatant and other 

return flows were either diverted or held during these runs to permit an 

evaluation of preaeration with raw sewage only, in direct parallel 

comparative operation. 

1. September, 1956-May, 1957 plant runs 

This long, uninterrupted test series was carried out with the plant 

arrangement just described. The original downdraft aeration equipment was 

in service in the south preaeration unit. During the early weeks of this 

run the combination of preaeration and primary settling was found to have 

an advantage over plain settling. Soon this advantage increased to sur­

prising proportions, but only because the efficiency of plain primary 

settling deteriorated almost to the vanishing point. This was purposely 

permitted to continue for some months to observe its ultimate outcome. In 

the Spring of 1957, it was established by tests and by observation that the 

cause of the trouble was grit. Grit was passing directly to the north 
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primary clarifiers and accumulating in putrescible banks of such mass that 

these primaries were literally poisoned. The south primaries, preceded by 

preaeration, were free of this condition and performed consistently and 

well. 

2. July, 1957 plant runs 

A short series of runs was made in July, 1957, with the flow split as 

described, but alternating the north and south preaeratidn units in opera­

tion. The original downdraft equipment was in service in both units. For 

these runs, the primary clarifiers were flushed free of grit each Monday. 

At the same time, the preaeration tank to be used was also emptied and 

flushed. 

The results for the first three weeks were quite consistent, indi­

cating an average of 8 percentage points improvement in both BOD and SS 

removal due to preaeration. During the fourth week the local corn cannery 

began operations, upsetting the pattern of normal removal for both plain 

and preaerated primary settling. 

3 « August-September, 1957 laboratory studies 

Laboratory preaeration and settling studies were made with gallon 

samples of raw sewage. A number of replicate runs were made with varied 

preaeration times and with varied settling time following uniform preaera­

tion periods. Throughout these tests, the aeration rate was maintained at 

0.22 cu ft/gal based on U5 min preaeration time. Preaeration consistently 

benefited settling in these laboratory-scale tests. 
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a. Varied preaeration time * It was apparent that longer preaeration 

provided increased benefit. However, the increment of benefit decreased 

sharply as preaeration continued. For example, half the ultimate benefit 

achieved by 60 min preaeration was accomplished in the first 15 mins, and 

70 percent of this amount in the first 30 mins. The strength of the 

sewage sample did not appear to be a factor in the results obtained. On 

the other hand, preaeration seemed to be of greater benefit to those 

sewage samples which responded least well to plain settling. 

b. Varied settling time. The effect of preaeration on the early 

moments of settling was very evident. For example, 30 min preaeration and 

\ hr settling was found to outperform 2 or even 3 hr plain settling. It 

must be cautioned that these results were obtained in the laboratory under 

ideal conditions, without short-circuiting or other such problems found in 

actual plant operation. 

It. March-August, 1958 plant studies 

The operating arrangement during this series of plant studies was as 

previously stated, with split flow for parallel operation with and without 

preaeration on raw sewage flow alone. The first operating chore of the 

week was always a thorou^x flushing and de-gritting of primary clarifier 

sludge hoppers and of the south preaeration tank, used exclusively during 

the 1958 runs. In addition to the original downdraft equipment, operated 

with 12, 8 or 0 cfm air intake, the south preaeration unit was also 

operated with spargers and diffusion tubes at aeration rates varying from 

65 to 200 cfm, representing air flows of 0.08 to 0.2U cu ft/gal. 
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a.o Benefit to primary removals. Preaeration was found to benefit 

primary settling almost without exception. The average improvement for 

all the plant runs in this series was 7\ percentage points of BOB removal 

and 8 points SS removal. Neither the method nor rate of aeration, within 

the limits cited, appeared to have any effect on these results. Also 

within the limits of plant-scale tests, the preaeration detention time did 

not seem to affect the results. Neither was any variation with sewage 

strength observed. The only definite correlation was with the efficiency 

of plain settling; preaeration seemed more beneficial when plain settling 

removal was poor, and of less benefit when plain settling was at peak 

efficiency. This could be quite helpful in actual plant operation. 

b. Settleability. As determined by the Oulman settlimeter, the 

effect of preaeration was of prime importance in the first moments of 

settling. Often in these laboratory settling determinations the full 

margin of improvement in the pre aerated sample was in the first ten to 

fifteen min of settling. The settlimeter is not presumed to be a precise 

instrument, but it gave a reasonable indication of primary settling 

efficiency and of the improvement resulting from preaeration. 

c. Dissolved oxygen transfer. From frequent sampling of preaeration 

influent and effluent DO levels and from laboratory measurement of short-

term DO depletion or demand, the oxygen transfer efficiency was calculated 

for various aeration conditions. For the downdraft equipment, the calcu­

lated transfer efficiency was more than 20 percent, with half or more due 

to surface agitation rather than sub-surface diffusion. For spargers or 

diffusion tubes, calculated transfer efficiencies ranged from 1 to 2 
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percent, the major portion of which was through diffusion. 

At the Ames plant, an aeration rate of approximately 0.1 cu ft/gal 

was necessary to maintain a constant DO level in the preaeration tank 

during relatively stable afternoon conditions. During the forenoon period 

of peak flow and strength, not even the maximum aeration rate of 0.2U cu 

ft/gal could meet the short-term DO demand rate, 

d. Oxidation-reduction potential. Based on very limited data 

collected late in 1958, a low aeration rate insufficient to maintain the 

influent DO level raised the ORP slightly. On the other hand, aeration 

rates high enough to raise the DO level also boosted the ORP level 

appreciably. Since ORP no doubt has a bearing on treatability in secondary 

stage biological processes, this aspect of preaeration would bear further 

study. 

e. Miscellaneous. Preaeration did not appear to have any effect on 

the mg/l of SS in the sewage passing through it, despite its influence on 

settling characteristics. No doubt a few mg/l of oxygen demand, as BOD, 

are satisfied during preaeration, but this was not apparent within the 

limits of accuracy of the BOD test. 

Preaeration provides a mild buffering action, reducing slightly the 

intensity of peak strength loads and 'slugs' on their way to primary 

settling. There was no evidence of a solids inventory in the preaeration 

tank sufficient to carry through the night. Preaeration proved its merit 

in grit separation; provision for grit removal should be included in the 

design of preaeration facilities. An aeration rate of roughly 0.1 cu 

ft/gal appeared to provide adequate turnover of preaeration tank contents. 
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5. January-March, 1959 'unequal settling time runs 

As a postscript of sorts to this project, several weeks were spent in 

split-flow, parallel operation of preaeration followed by only 1 hr 

settling against plain 2 hr settling. The results were impressive but 

probably not surprising in the light of earlier work on settling 

characteristics. The combination of kS min preaeration followed by only 1 

hr settling always produced better removals than did plain settling for 

the conventional 2 hr period. This points up the possibility of sub­

stantial aid to overloaded primary clarifiers by providing preaeration 

ahead of them, 

C. Other Plants 

Preaeration studies were carried out for several days each at the 

Grinnell, Cedar Rapids, and Des Moines, Iowa, waste treatment plants. In 

none of the three was it possible to split the flow for parallel operation 

with and without preaeration. The only indication of benefit was by 

laboratory work with the settlimeter. In each of the plants, this instru­

ment indicated definite improvement in settleability following preaera­

tion. Whether or not this improvement was fully reflected in actual plant 

results is not known, although primary removals were very good in each 

case. 

At Grinnell, preaeration increased the DO content of the raw sewage 

and maintained a positive DO level in the preaeration effluent throughout 

the day. At Cedar Rapids the reverse was true, with the preaeration 
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effluent usually deplete or negative with respect to DO. At Des Moines 

the raw sewage was strongly negative, and despite some improvement, left 

the preaeration tank still with a negative DO level. The grease separa­

tion and removal achieved at Des Moines was particularly impressive and 

was a key factor in successful operation of secondary treatment facilities. 

The following observation is made from a background of experience at the 

Minneapalis-St. Paul Sanitary District (1*2) ï 

It is my opinion that many sewage particles which should 
ordinarily settle out in the settling tanks during the normal 
detention periods are prevented from so doing because of the 
buoyant effect of grease, oils, and fats adhering to the par­
ticles. Preaeration of such raw sewages it, in my opinion, 
an action whereby the air bubbles diffuse through the sewage 
flow causing the sewage particles to bounce against one 
another effecting: (l) release of some of the grease, oils, 
and fats adhering to the particles; (2) agglomeration of the 
sewage particles causing their improved settling in the sedi­
mentation tanks. The grease, oils, and fats released float 
to the surface to be removed in the skimming operations. 

D. Economic Evaluation 

Preliminary designs were prepared for standard rate and high-rate 

trickling filter plants with and without preaeration, adhering strictly to 

conventional design standards . For plain 2 hr settling, 35 percent BOD re­

moval was assumed. Where preaeration preceded primary settling, credit 

of 7 percentage points was given, bringing primary BOD removal up to 1:2 

percent for purposes of this evaluation. A corresponding reduction in 

filter size was permitted for the preaeration alternative designs. 

Preliminary cost estimates indicated that the reduction in filter 

cost would not quite balance the added cost of preaeration facilities. 
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Further, the power necessary for aeration would mean an added operating 

cost. On a total annual cost basis, the preaeration process appeared to 

be at a disadvantage of 2 to 3 percent. However, a design alternative of 

only 1 hr settling following preaeration would probably provide a small 

advantage in first cost and might be roughly equal to conventional 2 hr 

primary settling on the basis of total annual cost. 

It must be emphasized that this economic comparison was concerned 

only with a specified improvement in primary settling efficiency, and does 

not attempt to give credit in any way for other possible operating benefits 

of preaeration. 

E. Conclusions 

Preaeration proved to be of consistent benefit to primary settling. 

As a result of this study, the following conclusions are cited: 

1. Intensive plant studies at Ames indicated an average improvement 

of 7 to 8 percentage points in both primary BOD and S*3 removals following 

preaeration. 

2. The degree of improvement or benefit seemed not to be affected by 

a. the aeration method, 

b. the aeration rate, or 

c. the strength of the raw sewage. 

3. The degree of improvement or benefit did show a correlation with 

the efficiency of plain settling. Preaeration was of most help when plain 

settling was least effective, and of least benefit when removals by plain 

settling were excellent. 
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U. The effect of preaeration on the early moments of settling 

appeared to be of prime importance. In laboratory settling tests, the 

full margin of improvement in the preaerated sample was often achieved in 

the first 10 or 15 mins of settling. 

5. In laboratory tests with 1 gal samples under ideal conditions, 

the combination of 30 min preaeration and § hr settling was found to out­

perform 2 or even 3 hr plain settling. 

6. In brief plant-scale runs, the combination of U5 min preaeration 

and 1 hr settling consistently outperformed 2 hr plain settling, confirming 

the importance of preaeration on the early moments of settling. 

7. At the Ames plant, an aeration rate of about 0.1 cu ft/gal was 

found necessary to match the short-term oxygen demand and thus maintain a 

constant DO level in the preaeration tank during relatively stable 

afternoon conditions. 

8. An aeration rate of 0.1 cu ft/gal appeared to provide adequate 

turnover of the preaeration tank contents. 

9. The oxygen transfer efficiencies achieved with conventional air 

diffusion equipment were fairly low, probably due largely to the absence 

of an active biological culture in the preaeration tank. 

10. The preaeration process appeared to have no effect on the mg/l SS 

content of the sewage passing through it, despite its influence on 

settling characteristics Tf the BOD strength was affected, the amount 

was too slight to be observed in the BOD test. 

11. Preaeration was found to provide a mild buffering action on peak 

loads reaching the plant. However, there was no evidence of a solids 

% 
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inventory established in the preaeration tank. 

12. The effectiveness of preaeration in grit and grease removal were 

•underscored by operating experiences at Ames and at the other Iowa plants 

visited. Provision for at least grit removal should be included in the 

design of preaeration facilities. 

13. An alternative plant design including preaeration will permit an 

appropriate reduction in the secondary treatment facilities provided. How­

ever, if conventional design standards are followed strictly, this will 

result in a slight increase in both construction and operating costs, 

placing the preaeration alternative at a 2 to 3 percent disadvantage in 

total annual treatment cost. If primary settling capacity can be sharply 

reduced following preaeration, this cost disadvantage will be overcome. 

This cost comparison does not take into account any of the other benefits 

of preaeration, some tangible, some not. 

lit. Because of its striking effect on the early moments of settling, 

preaeration could provide economical relief to seriously overloaded plants 

by restoring primary settling to normal efficiency. The settlimeter would 

be of value in deteimining the effectiveness of preaeration on the waste 

being treated. 

15. The applicability of the preaeration process can best be judged 

on its merits for each specific waste treatment. Construction and 

operating costs are nearly the same whether or not preaeration is provided. 

Therefore, the engineer's judgment is particularly important with respect 

to such secondary considerations as grit, grease and treatability, and 

with respect to preaeration1s effectiveness in coping with them. 
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XVII. APPENDIX A. STATEMENT ON PREAERATION FRCM 

TEN-STATES MANUAL OF DESIGN STANDARDS* 

U. PRE-AERATION AND FLXCULATION 

A* General» Flocculation of sewage by air or mechanical agitation, 
with or without chemicals, is worthy of consideration when the raw 
sewage is strong or when it is desired to reduce the strength of 
sewage to such a degree that sub sequent treatment units can pro­
duce a satisfactory plant effluent# 

B. Arrangement: A unit should be designed so that it may be removed 
from service without affecting any settling unit. 

C. Detention Period: 

(1) Coagulation! When air or mechanical agitation with chemicals 
is used to coagulate or flocculate the sewage, the detention 
period should be about 30 minutes but never less than 20 
minutes at the design flow. 

(2) BOD Reduction: When air or mechanical agitation (either with 
or without the use of chemicals) is for the additional pur­
pose of obtaining increased reduction in BOO, the detention 
period should be at least minutes at design flow* 

D. Stirring Devices: 

(1) Paddles: Paddles should have a peripheral speed of 1§ to 2\ 
fps to prevent deposition of solids* 

(2) Mechanical Aerators: Mechanical aerators should provide 
self-cïeansing velocities across floor of tank* 

(3) Air: Diffused air mix may utilize any of the types of equip­
ment used for activated sludge aeration tanks* The quantity 
of air should be sufficient to provide self-cleansing 
velocities* The rate of application of air should be 
adjustable* 

E. Details: Inlet and outlet devices should be designed to insure 
proper distribution and to prevent shortcircuiting• Convenient 
means should be provided for removing grit* 

^Reproduced from (53# P* 20, 21). 
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F. Quick Mix: At plants where there are two or more flocculation 
basins utilizing chemicals, provision shall be made for a quick 
mix of the sewage with the chemical so that the sewage passing to 
the several flocculation basins will be of the same composition. 
The detention period provided in the quick-mix chamber should be 
very short — f to 3 minutes. 
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XVIII. APPENDIX B. SURVEY FORMS FOR 

PREAERATION DESIGN POLICIES IN 15 STATES 

To: State Sanitary Engineer: Colorado, Illinois, Indiana, Iowa, Kansas, 
Michigan, Minnesota, Missouri, Nebraska, 
New York, Ohio, Oklahoma, Pennsylvania, 
Texas, Wisconsin 

Attention: Sewage Treatment Plan Review Section. 

Subject: Sewage Preaeration 

Gentlemen: 

Iowa State College and the City of Ames have been cooperating on 
intensive plant-scale research on sewage preaeration. This work is being 
supported by a USPHS grant. 

The original incentives for this study were first, the contradic­
tory claims for (and against) the process in the literature and in conver­
sation, and second, the lack of valid plant-scale operating data on 
preaeration. 

We are now at a point where your help is urgently requested. We 
wish to determine present practice of the regulatory agencies in the ten-
states and midwest areas with regard to preaeration. 

Thus far, we are limiting ourselves to the simplest definition of 
the process, as follows: an air agitation pretreatreenb of raw sewage, 
ahead of primary settling; U5-einute detention; no chemicals added, nor 
return of supernatant, sludge or any other material which might serve as a 
coagulant or as a biological 1 activator1. 

Only a few minutes are needed to fill out the attached question­
naire. As soon as the replies are in, you will receive a tabulation of 
results. 

A fairly complete summary of our plant-scale results to date will 
also be available soon. 

Thank you most sincerely far your help# 

Harris F. Seidel, Sup't. 
ce Paul Houser Water & Sewage Treatment 

Iowa S. D. H., Des Moines City of Ames, Iowa 
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State 

By 

Definition: Preaeration: An air agitation pretreatment of raw sewage, 
ahead of primary settling; U5 minute detention; no chemicals 
added, nor return of supernatant, sludge or any other 
material which might serve as a coagulant or 'activator* • 

1. In design review, is credit given for increased BOD and SS removal by 
primary settling if preaeration is provided? 

2» If credit is given, how much is allowed beyond, for example, 35 per­
cent BOD removal by primary settling alone? 

3» Your comments will be appreciated. 

Thank you. As soon as the survey replies are in, you will receive a 
tabulation of results* 

Harris F. Seidel, Sup*t* 
Water & Sewage Treatment 
City of Ames, Iowa 
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XIX. APPENDIX C. USE OF FLUORESCEIN ME IN DETENTION TESTS 

Discussion: 

Fluorescein is a dye material with the characteristic of imparting a 
brilliant green color to liquids. The color is readily visible in clear 
water if present in concentrations of less than 0.1 mg/1. In sewage, a 
green tinge is quite noticeable with as little as 0.5 mg/l present. Be­
cause of this characteristic, it is an excellent, economical tracer 
material. 

A photometric laboratory method for determining the concentration of 
fluorescein in sewage was developed using a Bausch and Lamb Spectronic 20 
Colorimeter. The method is based on the interference to light transmis­
sion by the fluorescein color over and above the interference by natural 
color and colloidal matter in the sewage. In accordance with the 
Lambert-Beer Law, the amount of interference due to the added color is 
determined following calculation of the ratio of transmittance with and 
without the added color. A calibration curve in these terms is presented 
as figure 68. 

Materials needed: 

Colorimeter, with necessary test cells or tubes. 
Calibration curve for fluorescein dye in sewage. 
Fluorescein dye: $Q0 g is sufficient for a flew of 1200 gpm. 
Whatman No. 12 folded filter paper, 18.5 cm size. 
Funnels, racks, flasks, etc. for filtering step* 
Sample bottles of 200 ml capacity or more. 

Procedure: 

(a) Set **ausch and Lomb Spectronic 20 Colorimeter for operation at a 
wave length of U85 nrn. Switch on about 30 min before using to 
provide a wara-up period. 

(b) Before adding dye to the sewage, take several grab samples of 
the sewage far photometric base-line readings. Pass these 
samples through Whatman No. 12 folded filter paper, and deter­
mine the transmittance of their filtrates. If a parallel 
treatment unit is in operation during the dye-test run, it is 
helpful to sample it at 15 min intervals for continuing base­
line data. Barring this, the Influent to the treatment unit 
should be sampled at intervals far this purpose. 
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(c) Dissolve 500 g of fluorescein in a gallon of warm water; intro­
duce the dye solution at the inlet to the treatment unit at a 
predetermined time. 

(d) Sampling of the effluent of the treatment unit should begin 5 to 
10 min before the dye is introduced. As soon as dye begins to 
appear in the effluent, sampling should be stepped up to once 
every minute, if not oftener. Ag time goes on, this can be 
drawn out every 2 min, then 3, then 5, etc., in the judgment of 
the sampler and depending on the accuracy desired. 

(e) In the laboratory, pour about 75 and not over 100 ml of the 
sample into a Whatman No. 12 folded filter paper. Collect 
roughly the first 30 ml In a 1 in test tube and read the trans­
mittance of this filtrate in the colorimeter. Consistency in 
procedure is important; the samples should be run as soon as 
possible. 

Calculation: 

Divide the transmittance of the colored filtrate by the transmittance 
accepted as the base-line value far plain sewage filtrate. With the 
decimal ratio of transmitt ancle s resulting, determine the corresponding 
dye concentration from the calibration curve. 

Example: 

Time, 
FM 

3*09 
3:12 
3*15 (dump) 
3*16 
3*16:30 
3*17 
3*17*30 

Comment: 

Colored sewage Plain sewage Ratio of Dye concen­
filtrate, Trc filtrate, Tr^ transmittancies tration, 

mg/1 

70.5 
71.5 
69.5 

U3.5 71.5* .61 1.25 
20 71.5 .28 3.25 
13.5 71.5 .19 U.2 
9.5 71.5 .133 5.2 

It is recognized that this method does not give highly quantitative 
results. An important source of error is & possible poor assumption of, 
or a change In, base-line transmittancy far plain sewage filtrate. How­
ever, such an error is likely to have a consistent effect on calculated 
and plotted results but no important effect on their general trend. 

^Average plain sewage filtrate trananittance, accepted as base-line 
value. 



206 

Concentration 
of fluorescein 

dye in sewage 

mg/ l  

B ft L Spectronic 20 colorimeter 

wove length 4 8 5 m>i. 

x%0 ; 

90 80 70 60 SO 40 30 

Calculated tronsmiffoncy (dye only) 

percent 

F i g .  6 8 .  P h o t o m e t r i c  c a l i b r a t i o n  
c u r v e  f o r  f l u o r e s c e i n  d v c  u i  
s e w a g e  

Pftoeroiion mlluent 

Pnoerot'on «Mlutnt 

Ploin primary eltluenl 

Prcoirotad primary effluent 

10 AM 12 N 2 P M  4 PM 6 PM 8PW lOPU 

Time 

F i g .  7  0 .  T y p i c a l  
p a t t e r n  o f  r a w  a n : !  
p r i m a r y  e f f l u e n t  S S  
r e s u l t s  

S S. mg/l 

SS remevol, 4  

percent 

» 10 20 50 40 60 
Sett l ing l ime ,  min 

1 1 1—n—i— 

Pieoe'otion elllutnl 

Pftoeietion influent 

3 10 20 5040 60 
Sett l ing t ime ,  min 

F i g .  7 3 .  T y p i c a l  s e t t l i n g  
p a t t e r n s  f o r  p r e a e r a ­
t i o n  i n f l u e n t  a n d  e f f l u ­
e n t  s h o w n  o n  s e m i l o g  
scale 

F i g .  b  V  .  '  i  r . L p n i  v a  1  
d e t e r m  m a t i o i .  u :  D O  
duplet! or. r i U-

©  ©  © ©  
32. 

pnCllOCRlll 1 
lOOOil nhnovfolt (Sow. 

< 

©  © © ©  

! 0 ! r r 
lOU Û lilcuttOH wSw wXkvi «Av-Wt >m«m I 

Control box Wiring dlogrom 

F i g .  7  1 .  W  2  r i n g  d i a g r i m  f o r  
O u i  m a n  s e l t l i m e t t - r  c o n t r o l  b o s  

Bausch 6 tomb 
s p e c i r o n - c  2 0  " 0  
Ifontmiiiqnc*, 
p»rc«nt T,e 

Sv toO J  u tiu 4-j 
SeMhmeter tionsmiitonci,micro omoi 

F j g .  1 1 .  C o n v e r s i o n  o f  
s e t t l i m c t e r  r e a d i n g  s  t o  
T r . . .  t r a n s m i t t a n c e  

P'eoerotien mfluint 

PreoeroiiC" •'Mueni 

Sett l ing t ime ,  min 

Preoeiction efflueni 

SS removal, 
^ PreaeiOtiO" influent 

10 20 10 40 50 60 
S et l l ing t ime ,  min 

F i g .  7 4 .  T y p i c a l  s e t t l i n g  
p a t t e r n s  f o r  p r e a e r a ­
t i o n  i n f l u e n t  a n d  e f f l u ­
e n t  s h o w n  o n  r e c t a n g u ­
l a r  s c a l e  



207 

XX, APPENDIX D. LABORATORY PROCEDURES USED IN 

THE DETERMINATION OF OXYGEN VALUES 

A# Photometric Determination of DO in Clear Samples 

Materials needed* 

Chemicals and glassware for Standard Methods DO procedure, through 
color development. 

Bausch and Lomb Spectronic 20 Colorimeter. 

Matched ̂  in test tubes for Spectronic 20* 

Procedure: 

Follow Standard Methods througi development of iodine color in BOD 
bottle* 

Plug in Spectronic 20; set at U50 mu and allow wara-up period; then 
adjust for 0 percent reading without test tube in holder, and for 
100 percent reading with distilled water blank. 

Invert BOD bottle fcr thorough mixing of sample; rinse test tube with 
sample several times; then place in holder; read and record percent 
transmittance; from graph or tabulation, determine corresponding 
mg/l DO. See table 37* 

Example: 

61 percent transmittance • 2*50 mg/l of DO* (Table 37) 



208 

Table 37. DO calibration for use with Bansch and Lamb Spectronic 20 
Colorimeter; h$0 ma 

brans- 0 

Lttance) 
1 2 3 It 5 6 7 8 9 

0 

10 8.1)0 

20 8.16 7.92 7.69 7.k7 7.3U 7.06 6.87 6.68 6.50 6.32 

30 6.15 5.98 5.82 5.66 5.51 5.36 5.22 5.08 U.9U U.81 

Uo U*68 U.55 UUt2 U.30 U.1B U.06 3.95 3.8U 3.73 3.62 

50 3.52 3^2 3.32 3.22 3.12 3.02 2.93 2.8U 2.75 2.66 

60 2.58 2.50 2.1*2 2.3U 2.26 2.18 2.11 2.OU 1.96 1.89 

70 1.62 1.75 1.68 1.61 1.5k 1.U7 1.U0 1.3U 1.27 1.20 

80 1.13 1.07 1.00 .91* . C
O

 
C

O
 

.82 .76 .70 .65 .59 

90 .53 •ltd J*2 .37 .31 .25 
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B. Photometric Determination of DO in Turbid Samples 

Materials needed* 

Chemicals and glassware for Standard Methods DO procedure, through 
color development» 

Spectronic 20 Colorimeter and matched i in test tubes# 

0*1N sodium thiosulfate* 

Procedure* 

Develop Iodine color» 

Adjust colorimeter* 

Invert BOD bottle for thorough mixing of sample; rinse test tube with 
sample several times; then place in holder; read and record percent 
transmittance* 

Remove test tube from holder; add two drops 0*1N sodium thiosulfate 
to sample in the test tube; invert several times to mix thoroughly, 
destroying the iodine color; then insert tube in holder and again 
read and record the percent transmittance. 

Calculate the ratio of the two readings; with this as the calculated 
transmittance for the iodine color alone, determine the 
corresponding mg/l of DO* 

Example: 

tSmI SSw&nLwU ! BS - percent calculated tranmlttance. 

30 percent transmittance • 6.1$ mg/l of DO* (table 37) 
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C. Procedure for Determining Negative DO 

Materials needed: 

Chemicals and glassware for Standard Methods DO procedure, through 
color development. 

Spectronic 20 Colorimeter and matched \ in test tubes* 

BOD dilution water. 

Extra BOD bottles. 

Rubber tubing for siphons. 

Procedure: 

Fill one BOD bottle quietly with dilution water. Fill a second BOD 
bottle equally quietly to the half-full mark with dilution water. 

Collect the sewage sample without aeration; immediately siphon, 
without aeration, sample to the second BOD bottle until full. 

Immediately add reagents, and proceed to develop the iodine color in 
both bottles; determine DO colorimetrically. 

Sample calculation: 

Dilution water DO » 7.0 mg/l 
Sewage-dilution mixture DO • 3.0 mg/l. 
Multiply mixture DO x 2; product » 6.0 mg/l. 

Then, 2 x mixture DO - dilution water DO 

- 6.0 - 7.0 * -1.0 mg/l of DO. 

Check: 

50:50 mixture of dilution water (7.0 mg/l) and sewage sample 
(-1.0 mg/l) would result in DO of 3.0 mg/l as determined above. 
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Eo Procedure for Determining DO Depletion Rate 

Materials needed: 

Chemicals and glassware for Standard Methods DO procedure, through 
color development. 

Spectronic 20 Colorimeter with matched % in test tubes. 

0.1N sodium thiosulfate. 

ID quart sampling pail. 

k liter flask. 

Rubber tubing for si#ion. 

Several dozen k oe round, narrow-mouth, screw-cap bottles. 

Procedure: 

Collect sewage sample in 10 quart pall. 

After brief plunging, pour about 2 liters into U liter flask. 

With violent shaking, raise the DO level in this sample to 6 or 6 
mg/l; this will require not more than 1 or 2 minutes, depending on 
the sample. 

After allowing a moment for entrained air to escape, siphon from the 
flask into a series of 8 to 12 small bottles; fill the bottles 
full, including some overflow for mild purging; cap carefully to 
exclude air bubbles. 

After all bottles are filled and capped, introduce DO reagents into 
the first of the series, noting the time ; after a specified 
interval (5 to 10 minutes) add reagents to the second; repeat this 
procedure with the others at intervals* 

Determine DO colorimetrically. 

Calculate DO and plot DO vs time to determine depletion rate, as in 
figure 69. 
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Example: 

Time reagents Transmittance : Transmittance DO 
added. FM color/decolored ratio, percent mg/l 

Sample picked up 2:# FM 

3*00 20/57* 35 5.35 

*05 22/56* 39 1.8 

*15 281/56 51 3.U 

*20 31/59 52* 3.25 

*30 W5UI 67 2.05 

*35 U0/56 71* 1.7 

*2*5 W53 90* 0.5 

*50 5li/52| 98 
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Table 38. Intensive sampling and analysis of DO levels before and after 
preaeration 

Time Preaeration influent Preaeration effluent 
FM Transmittance DÔ Transmittance DO 

Color/decolored Katio 
percent 

mg/l dolor/decolored Ratio 
percent 

mg/l 

2:20 66/72 92 .1* 

2:30 60/72* 83 .95 

2:1*0 63/75 81* .9 

2:1*8 1*7/72 65* 2.15 

2:50 591/66* 89* .55 

2:58 58/79 73* 1.55 

3*00 63/67 9k .3 

3:08 5U/78 69 1.9 

3*10 60*/68 89 .6 

3*18 5U*/79 69 1.9 

3:30 61/67* 90* .5 

3*28 V?*/7l*| 61* 2.25 

3*38 1*5/72 62* 2.1* 

3*U8 

Sum It .20 

U5/72* 62 2.1* 

ll*.55 

Mean 0.6 mg/l 2.1 
mg/l 
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F. Procedure for Calculating Bate of Oxygen Acceptance During Preaeration 

Dates June 27, 1958 

Sample calculation: 

DO levels: 

Average preaeration influent : 
Average preaeration effluent t 

Gain : 

DO depletion rates: 

2:30 Hi $ 

2:50 FM : 

3:10 FM : 

Average DO depletion rate 

Sewage flow rate: 3*0 mgd 

Probable mean detention time • 0.5U hr 

0.6 mg/l 
2.1 mg/l 

6.5 mg/l/hr 

7.0 mg/l/hr 

6.6 mg/l/hr 

6.7 mg/l/hr 

Rate of DO gain • 1.5 mg/l in 0.5b hr, equivalent to a rate of 
2.8 mg/l/hr 

Oxygen acceptance rate 

= measured depletion rate or 

plus calculated rate of gain or 

• oxygen acceptance rate of 

6.7 mg/l/hr 

2.8 mg/l/hr 

9.5 mg/l/hr 
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G. Laboratory Determination of OEP 

Materials needed: 

Beckman Model G pH meter (battery-operated) • 

Platinum and calomel electrodes* 

Sample beakers* 

Procedure: 

Follow manufacturer1s instructions in adjusting instrument for use* 
Change connections as directed for determining OEP* 

Place beaker with sample in position? lower electrodes* 

The original reading in millivolts is not particularly significant 
since it takes some time for the system to become poised. The 
procedure followed was to take a reading approximately 1 min after 
the electrodes were immersed in the sample; then, depending on the 
rate of drift, to continue checking the reading until the drift was 
negligible. This required from 2 to 5 min depending on the 
character of the sample and on the final ORP reading. 

Sample calculation: 

^calomel " "• 

Adjusting for calomel-hydrogen correction of +21*5 mv. 

EMFhydrogen " -210 + 21*5 • *35 mv. • ORP, millivolts. 
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XXI. APPENDIX E. LABORATORY PROCEDURES USED IN 

THE DETERMINATION OF SEWAGE SOLIDS 

A. Evaporation Method for SS Determination 

Materials needed: (far single sample, duplicate determinations) 

Analytical balance* 

103* G drying oven* 

Steam bath* 

U 100 ml porcelain evaporating dishes* 

Dessicator* 

100 ml pipet* 

Funnels, flasks, beakers for preparing composite and for filtering. 

Whatman No. 12 folder filter paper. 

Procedure: 

Dry h clean evaporating dishes in 103® C oven for one hour. 

Place them in dessicator to cool; allow at least 30 mina • 

Weigh the dishes and place on steam bath. 

While plunging continuously, pipet from unblended composite and then 
discharge into each of two dishes exactly 100 ml of the whole 
(unfiltered) sample. 

Pass 250-300 ml of whole sample through Whatman No* 12 folded filter 
paper; collect this filtrate. 

Pipet enough from this filtrate to rinse the pipet; waste this portion* 

Pipet from the filtrate and discharge into each of two dishes exactly 
100 ml of this filtrate. 

After evaporation is complete, place the dishes in the oven; dry for 
s full hour after the 103° C temperature is readied* 
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Place in dessicator to cool; then weigh* 

For sample calculation: 

See next page. Note that this method also provides TS and DS 
results» 



B« Sample of Data Sheet Used in Evaporation Method 

City of Ames 
Sewage Treatment Plant 

SOLIDS IN SEWAGE 
Date 6/26/58 

Sample Preaeration influent Sample Preaeration effluent 
WHOLE 

Dish No. 66.80 61u70 66*17 66.8g Dish No. 
66.8568 SuTJOT 2 Dried solids in dish 2 66.2241 66.9301 
66.7507 6U.6929 1 Initial wt. of dish 1 66.1259 66.8; 

Total Solids 

(2) Dried solids in dish(2) 
3 Agh left on ignition 3 

Total Vol. Solids 

FILTERED 
Dish No. 65.63 58.88 65.79 65.87 

b>.700^ 2 Dried solids in dish 2 65»oll5 65.9160 
65.6223 58.8718 1 Initial wt. of dish 1 65.7365 65.6UO' 

7^2 7^ Dissolved Solids 

(2) Dried solids in dish(2) 
______ 3 Ash left on ignition 3 

• Dissolved Vol. Sol. 
Av«g. TS: 995 Av*g. TS: 980 
Av'g. DS: 782 Av«g. DS: 

SS: mg/l SS: 227 ag/1 

Dish No. 



Be (Continued) 

Date 
Sample Primary 1+2 Effluent Sample Primary 3 • U Effluent 

moia 
Dish No. 62.6ft 62Jig 62.38 62.70 Dish No. 

62.70&1 62".1752 2 Dried solids in dish 2 62.1|D00 62.7799 
62.6232 62.0933 1 Initial wt, of dish 1 62.320$ 62.701D 

829 819 Total Solids 795 789 

(2) Dried solids in dish (2) 
3 Aril left on ignition 3 ______ ________ 

"  " " " * " " " " T o t a l  V o l .  S o l i d s  

FILTERED 

0l8hN°-& 2 Dried eollds In dlab 2 Ê&T È& 
61.6U08 61.9509 1 Initial wt. of dieh 1 61.532U 61.1277 

720 726 Dissolved Solids 723 719 

(2) Dried solids in dish (2) 
3 Agfa left on ignition 3 . _______ 

" Dissolved Vol. Sol. 

Av'g. TS* 82U Av'g. TS* 792 
Av'g. DS* 222 Av'g. DS: J21 

SS* 101 mg/l SS* 71 mg/l 
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C» Photometric Determination of SS 

Materials needed* 

Bausch and Lamb Spectronic 20 Colorimeter. 

Matched 1 in test tubes for Spectronic 20* 

Whatman No. 12 folded filter paper. 

Funnels, flasks, etc. for filtering. 

Procedure* 

Plug in Spectronic 20, set at U$0 au and allow waraup period; then 
adjust for 0 percent reading without test tube in holder and for 
100 percent reading with distilled water sample. 

Agitate the sample thoroughly; pour quickly, almost filling 1 in test 
tube; wipe dry, shake and place in holder; read transmittance 
quickly before settling can occur in the test tube. 

Pour this sample from the test tube into a filter paper; collect the 
filtrate to predetermined volume, such as 1/3 or & the capacity of 
the test tube. Consistency here will improve accuracy of résultée 

Place filtrate in sane test tube in the holder and read the 
transmittance again. 

Calculate the ratio of the two readings; with this ratio, determine 
the SS content from the calibration curve or tablée 

Example for raw sewage* 

Whole sample transmittance, Tr„ 21 _ 
• »  •  ••• •  __ «35 percent calculated ratio. 

Filtrate transmittance, Trf 60 

35 percent * 195 mg/l SS content from calibration table 39. 
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Table 39* SS calibrations for use with Bausch and Lamb Spectronic 20 
Colorimeter; U50 nni 

Calculated ratio: Tr._Ar~ 
I SS, mg/l 

0 1 2 3 U 5 6 7 8 9 

Raw sewage 

0 600 560 530 
10 500 U80 U6o UUo U20 Uoo 385 370 355 3U0 
20 325 310 298 287 276 266 256 2U7 239 232 
30 225 219 213 207 201 195 190 18U 179 17U 
Uo 170 165 160 155 150 1U5 lUl 136 132 127 
50 123 119 115 111 108 10U 100 96 93 90 
60 87 83 80 76 73 70 68 65 62 59 
70 56 53 51 U8 U6 U3 Ul 38 36 3U 
80 32 28 2U 21 18 
90 15 

Primary effluent 

C 
10 
20 175 170 165 160 155 
30 150 11*5 UUo 135 131 127 123 119 115 111 
UO 107 103 100 97 93 90 87 8U 81 78 
50 75 72 69 67 65 62 60 58 56 5U 
60 52 50 U8 U6 UU U3 Ul 39 38 36 
70 35 32 28 26 
80 22 20 16 1U 
90 10 
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D. Tabulation and Plotting of SS Data 

For daytime sampling runs, four points were sampled, usually beginning 
at 10*30 AMi 

Preaeration influent 
Pre aeration effluent 
Plain primary effluent 
Pre aerated primary effluent 

Sampling continued at all four points through 9*30 HI# Using ̂  hr 
and 1 hr as generally representative of pre aeration and settling 
detention times, respectively, samples were composited in propor­
tion to flow for these 10 hr periods* 

Preaeration influent: 10*30 AM - 8*00 PM inclusive 
Pre aeration effluent* 11*00 AM « 8*30 PM * 
Plain primary effluent* 11*30 AM - 9*00 PM " 
Preaerated primary effluent* 12*00 Noon - 9*30 HI " 

Duplicate photometric SS determinations, or more if indicated, were 
made on each composite sample* 

The SS strength of each individual sample was determined photo­
metrically, and the results tabulated as shown in table LO* This 
data was used for plotting tie patterns of raw and primary effluent 
SS strengths as shown in figure 70. 
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Table UO. Typical SS results for individual samples, June 26, 1956 

Time Preaeration influent Pre&eration effluent 
Tr /Tr<>* Calculated 35 Tr_/?r. " Calculated 55 
w/ f ratio mg/1 * f ratio mg/1 

10 AM 

10 HI 

23, 
22* 
22# 
20 
28 
25, 
2Ui 
23 
28| 
36 

291 

& 
26 
U& 
35. 
U3 
35 
u; 
Uî 
U6 
10» 

290 20/68 228 
292 18/68 251 
292 16/6U 25 266 
325 I5t/6l 25& 261 
239 16/61* 25 266 
266 18&/68 27 2U7 
271 l8/6Uè 28 239 
287 15/62# 21» 276 
235 16/60# 26| 251 
190 1-9/63 30 225 
213 20/6Ui 31 219 
229 21/61*| 32& 210 
213 20/71 30 22U 
176 221/75 30 225 
25U 223/75 30 225 
1U3 26/76 3U 200 
m 28/8<£ 35 196 
152 28|/78 365 187 
193 32£/78 1*1$ 162 
11*3 33/76 U3Ï 152 
157 35/77 U5i 1U3 
114 324/76 U3 156 
150 31Ï/79 Uo 170 

10 hr proportional composite, 
10*30 AM - 8 Hi, inclusive. 
(duplicate det'n») 

22/7U 
22/73% 

29.8 
30.0 

Composite* 226 mg/l 

10 hr proportional composite, 
11 AM - 8*30 FM, inclusive. 

23/71 T 
23&/71& 

32 .U 
32.9 

Composite* 209 mg/l 

Transmittance (whole) Aran omittance (filtrate). 
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Table UO. (Continued) 

Time Plain primary effluent Preaerated primary effluent 

Tr/Trf Calculated SS Tr^Ar- Calculated SS 
ratio mg/l ratio mg/1 

10 AM 
*30 W79 55 62 

11 35/75 , 1*64 86 
*30 37i/75& 1*9$ 76 

12 K 32/72$ U* 92 
*30 28/68$ 1*1 103 
1 294/71 UlJ 102 
*30 3CW73& i*i§ 102 
2 30/72& iat 102 
*30 31&/71& 1*1* 93 

3 234/68 3Ui 129 
*30 26/68 38 115 
U 30/691 U3 96 
«30 294/70 1*2 100 
5 30/69 1*3$ 95 
*30 314/71 10*# 91 

6 32/71 1*5 90 
*30 35/7U U7i 83 

7 36/73 U9Ï 76 
*30 384/75 5ll 70 

8 374/77, 80 
*30 W/77& 55 63 
9 1*24/77 55 61 

*30 1*34/76* 57 58 
10 PM U3Ï/76} 57 58 

10 hr proportional composite, 
11*30 AM - 9 PM, inclusive • 
(duplicate deVn.) 

33/73 
32&/73 

Composite* 

1*5.2 
1*1*.6 

&5&/66i 
5l|/82 
U6/78Ï 
52/80 
38/71* 
35/72 
38i/72 
35/71& 
37/73 
36/70 

r& 

35/68* 
37/70 
381/70 
39/72 
1*2/72 
1*1*4/71* 
UW75 
U6/76J 
1*6/76# 

10 hr proportional composite, 
12 N - 9*30 PM, inclusive. 

75 29 
63 1*6 
58& 5U 
65 1*3 
5l& 70 
m 80 
53* 66 
1*9 78 
504 73 
51# 70 
U5f 88 
l*7i 83 
51 73 
52 69 
50 75 
51 72 
53 67 
55 62 
5U 65 
58| 5U 
60 52 
60 52 
60 52 
60 52 

39/7L& 
39/75 

52.1* 
52.0 

90 ng/1 Composite* 69 mg/1 
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XXII. APPENDIX P, LABORATORY AMD CALCULATION PROCEDURES FOR 

THE OUIMAN SETTLIMETER 

Materials needed* 

Bausch and Lomb Spectronic 20 Colorimeter, with matched 1 In test 
tubes. 

Filter paper, funnels, flasks, etc» as described far photometric SS 
determination. 

Oulman Settlimeter. comprising ligit source, photocells and galvano­
meter (figure 71;. 

Matched pairs of 2 in cylindrical glass settling cells* 

Sampson sampler for undisturbed filling and withdrawal of sample cell. 

Sampling bottle, 250 ml, as used for individual SS samples. 

Stop watch. 

Procedure: 

Plug in Spectronic 20, set at 1*50 mu and allow warmup period; then 
adjust far 0 percent reading without tube in holder and far 100 
percent reading with distilled water sample. 

Plug in Oulm&n Settlimeter and allow warmup period; adjust for 100 
percent reading with distilled water sample in cell positions 1 and 
2; leave these cells In place for the time being* 

Take the matched 2 in cell for position 1, a 250 ml bottle and the 
Sampson Sampler to the point of inflow to the pre aeration tank. 

Place the cell in inverted position in the sampler; submerge it com­
pletely; slowly release entrapped air from within the cell by con­
trolling its exhaust through the air tube. 

While this cell, is being filled, take a grab sample at the same place 
with the 250 ml bottle. 

When the 2 in cell is filled, rotate the hinged sampling assembly to 
turn the cell nprightj then brlcg it to the surface and disengage 
the settling cell. 
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Bring both samples into the laboratory promptly. First shake the 250 
ml sample vigorously, then add an aliquot portion to fill the 2 in 
cell to overflowing. 

Then gently invert the 2 in cell several times to get optimum uni­
formity of its contents} conclude this by flipping out approxi­
mately the top 3/U in of its contents, to bring the level down to a 
uniform depth mark. Invert gently once more; then remove distilled 
water sample from cell position 1, insert the sample cell, place 
the fitted lid over the cell holder and read the galvanometer 
immediately. Every second is importent at this point since 
settling occurs very rapidly at first, as reflected by transmit-
tance (galvanometer) readings. 

Read the galvanometer at 1 min intervals for 10 mins, then at longer 
intervals for 1*5 mins to an hr or longer if desired. 

As soon as possible, determine the SS content of the remainder of the 
250 ml grab sample photometrically. 

At a later time which reflects probable detention time in the pre-
aeration tank, collect a sample of preaeration effluent in an 
identical manner and determine its settling rate in cell position 2# 
Since individual readings take but a few sees, it is not im­
practical to have all four positions in use. However, it is wise 
to have an extra pair of hands available in this case, for 
sampling, for cleaning glassware between runs and for companion 
determinations with the Spectronic 20 Colorimeter# 

Calculation: 

Determining the SS content of a sewage sample theoretically identical 
with that used in the settling rate test makes possible an evalua­
tion of settling results in terms of SS. The steps are illustrated 
with data from a pair of actual tests. 

As shown in table 1*1, the settlimeter reading at time zero for the 
preaeration influent sample was 52 ua. The B and L transmit tac ce 
readings for the companion sample were* Tr , 19 percent and Tr„, 
56 percent. Calculated ratio, 19/56 • 3U, which indicates (table 
Ul) a SS content of 153 mg/1. 

In the semilog plot, figure 72, locate point A at 52 ua and 19 per­
cent transmittance. Connect point A with the intersection repre­
senting 100 percent transmittance for both instruments; this is 
identified as line A. 

At time 5 mins, the settlimeter reading was 55 ua* In figure 72, 
55 ua is intersected by line A at 21 percent transmittance. This 
provides a new calculation Tr^/Tr^ of 21/56 • 37&, equivalent to 
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165 mg/1 of SS. Thus, as settling continues, settlimeter (galvano­
meter) readings Increase; they can be expressed in terms of de­
creasing SS content, and the percent removal calculated, as In the 
last column of table Ul. 

For the preaeration effluent sample, point B is established from the 
settlimeter reading of 58& ua at time aero, and the Spectronic 20 
reading of 22 percent transmit tance. 

This method may appear arbitrary because Unes A and B are drawn to 
points of 100 percent transmittance established for distilled 
water. However, samples drawn from the settling cells at various 
times during a run and analyzed photometrically for SS content will 
fall on these lines, within the limits of experimental and human 
error. 

Plotting results: 

For the pair of samples used in the illustration above, the settling 
rate following preaeration showed significant Improvement over that 
for raw sewage. This can be shown by plotting either mg/l of SS or 
percent removal against time, either on semilog scale as in figure 
73 or on rectangular coordinates as shown in figure ?U. 

The semilog relationship serves to made the difference in settling 
characteristics, although it does demonstrate the straight-line 
function which obtains after approximately 5 mins of settling. 
Extended tests for as long as 2 or 2* hrs Indicated this straight-
line function to hold, making the results of such long laboratory 
runs reasonably predictable. 

By contrast, the rectangular plot indicates hew sharply the settling 
rates diverge in the first 3D to 15 mins. Often in 20 mins almost 
all the potential margin of Improvement by preaeration has occurred 
and the settling rates beyond this point are generally comparable. 
This is of prime significance. 



Table 1*1» Typical data tabulation for determining settling characteristics by Oulman Settlimeter 

Samplet Preaeration influent picked up 3*20 PM, June 26 
Spectronic 20 readings on this sample* Tr^/Tr^* 19/56$ calc. ratio • 3U 

Time 
PM 

Increment 
win 

Settlimeter 
reading, ua 

Corresponding 
Trw by B & 1 

Calc. ratio 
Tr^/Tr^** 

Calc. mg/1 SS 
(B & L calib) 

Calc. percent 
removal of SS 
by settling 

3*25 0 52 19* 31* 193 
30 5 55 21 37* 165 H** 
35 20 56* 22 39* 150 22* 
ho 15 57Î 23 la 12*0 27$ 
1*5 20 21* 1*3, 126 3l*| 
50 25 60 25 W** 117 

1**02 37 62 27 1*8 95 51 
05 UO 62 27, 1*8 95 51 
10 2*5 63 27* 1*9 89 51*, 
20 55 63* 28 50 81* 56* 

Sample: Preaeration effluent picked up 3:50 PM, June 26 
Spectronic 20 readings on this sample* TrwAr^( 22/62*; calc. ratio 35 

3*55 0 58* 22* 35 185 
1**02 7 62$ 25* 1*1 11*0 
05 10 65 28 1*5 ill* 
10 15 66* 29* ltf 101 
20 25 68* 31* 81 
25 30 70 5% 68 

35 1*0 71 3UÎ 55 62 
1*0 1*5 71* 57, 56 
1*5 50 72 36 57* 55 

*Read directly in Bausch and Lorob Spectronic 20* all succeeding values in this column are 
read fron semilog conversion plot figure 72. 

**In calculating this ratio, Tr^ is constant at 56 for the preaeration influent sample and 
constant at 62* for the preaeration effluent sample. 
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Fig .  28 .  Beckman  Mode l  
G  pH me te r  u sed  in  ORP 
de t e rmina t ion  

F ig .  29 .  F i l t r a t i on  o f  s ew­
age  samples  fo r  pho tome t r i c  
S  S  de te rmina t ion  

4 0 0  

3 0 0  

SS, mg/l  
2 0 0  

I  00  

0.0 
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

Tr (who le) /Tr (f i l trate) 

Fig .  30 .  SS  ca l ib ra t ions  fo r  u se  wi th  Spec t ron ic  20  Co lo r ime te r  

o-Moy - June, 1959 
• -Jan., 1959 

Row sewage 

Primary effluent 


