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I. INTRODUCTION 

Electric power systems with two or more generating stations supplying 

power at different costs require analysis to determine the operating sched­

ule which will result in the least total cost of power supplied to the 

system. In the early days of the electric industry a typical system con­

sisted of a single generator feeding its load distribution system radially. 

In the next phase of development, generators were added in parallel to in­

crease the capacity of the plant, thereby posing the problem of finding the 

most economic loading combination of boilers and generators connected to a 

plant bus. In general, newer units would be more efficient and probably 

should be loaded before the older units were placed in service. The prob­

lem is dynamic, in that the system load would vary throughout the day re­

quiring a continuing check that the combination of generator loadings at 

any moment is the most economic combination. 

Modern systems consist of several plants connected by long trans­

mission lines or networks of lines. It is possible that a relatively new 

plant of high efficiency is more remote from a load area than an older, 

less efficient plant. The problem of most economic loading now involves 

not only the efficiency of the plants themselves, but also the cost of the 

losses associated with transmitting power through the network of lines to 

the load centers. A high-efficiency plant might be so remote that the cost 

of losses would make it impossible for it to compete economically with a 

low-efficiency plant near the load center." 

The problem is further complicated by the integration of hydro-elec-

tric generation into the power system. The cost of hydro generation cannot 
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be assessed in the same manner as the costs of fuel-burning plants. In the 

case of hydro plants there is a certain amount of energy in the stored 

water of the stream or reservoir which must either be utilized in the elec­

tric system or else lost altogether. The amount of energy available in a 

unit of time must be converted to a value of available power output 

throughout that interval, and if necessary a value of power cost must be 

assigned to make that plant competitive with the fuel-burning plants in the 

system. The output of the hydro plant must be assigned on the basis of 

available water and that value of output held in the solution for the most 

economic combination of the remaining fuel-burning plants in the system. 

The purpose of this thesis is to demonstrate an iterative method for 

determining the most economic operating condition of a system of plants 

connected by a network. Each trial solution will be analyzed to determine 

the direction each plant should be moved in order to approach a minimum 

value of the total cost input to the system. The method includes a criter­

ion for recognizing that this minimum value has been achieved in the final 

solution. 

A direct solution of the economic loading criteria seems practically 

impossible. It will be shown that these criteria are trigonometric in 

nature, and that the solution requires two operations: the solution of the 

electrical network to determine the loading of each of the plants, and then 

the insertion of the plant loading conditions into the criteria. 

To describe the network, it is necessary to know the transfer imped­

ances among all pairs of generators. These may be obvious in simple sys­

tems with only a few generators. In complex systems it will be necessary 

r.o make use of a network analyzer to measure these transfer impedances. 
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They should be measured with the system loads trimmed to the proper values 

at a practical profile of voltages, and a network analyzer is appropriate 

for this type of work. Having trimmed the loads, they will thereafter be 

represented by constant shunt impedances, and if they were originally 

placed at points in the network other than the generator terminals they 

will affect the values of the transfer impedances. Thus good engineering 

judgment is necessary in trimming the system, and the schedule of system 

generation should be selected after considering the fuel rates of the vari­

ous plants and assigning power outputs that will approximate the economic 

schedule sought. This can be done by assuming, as a first approximation, 

that all generators will operate at the same incremental rate. The incre­

mental rate of a plant is defined as the slope of its fuel input vs. output 

characteristic. 

It is also necessary to know the shunt impedances which represent 

those loads not originally located at the generator terminals. These values 

may be determined at the same time that the transfer impedances are meas­

ured, and they will become constant values applied at each of the genera­

tor terminals. They may be combined with the original generator local 

loads, so that the resulting network representation will be a system of 

transfer impedances among n generators together with n equivalent local 

loads at the terminals. 

In applying the economic loading criteria, the network analyzer is not 

capable of measuring either power or voltage phase angles to the degree of 

precision required. Hence it is necessary to resort to digital computa­

tions. This digital technique will be illustrated by means of examples 

calculated with a desk calculator. For more extensive systems the tech-
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nique may be used to program an automatic digital computer. 

The only restriction placed on the operation of the system is that a 

schedule of voltages about the system be chosen and adhered to. This may 

appear to be idealistic, but it must be considered a goal to be achieved by 

those responsible for system planning and development. If experience 

proves that some point in a system has less than a satisfactory level of 

voltage, then it is necessary to make some correction in the system to pro­

vide adequate voltage. Sometimes this is done by building new lines into 

that load area, sometimes by increasing the conductor size of present con­

struction, or perhaps by installing capacitors at that point. Such reme­

dies are justified either by reducing the losses associated with transmis­

sion into that area or by improved service and better customer satisfac­

tion. Having selected a voltage profile, the criteria for economic loading 

may be applied with the assurance that the system operating schedule obtain­

ed will be the most economic under the assumption of voltages chosen. A 

schedule of var generation may be obtained as a secondary consideration 

from the solution, and it is possible that the required generation of some 

generators will be relatively few watts and a large output of vars. The 

criteria do not look at vars explicitly, but the effect of var flows 

throughout the system is accounted for by virtue of the fact that they are 

functions of the same independent variables as the real power flows. Any 

additional loss incurred by var flow through a line element is accounted 

for in the calculations for real power flows through the line. Certain un­

desirable operating conditions can be avoided only by studying the prelimi­

nary representation on a network analyzer and making appropriate correc­

tions before proceeding to measure transfer and shunt impedances. Vars 
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circulating around a loop might be removed by making tap changer adjust­

ments. Unsatisfactory watt/var ratios at certain generators might be cor­

rected by revising the voltage profile of the system, or the heavy flow of 

vars to a load center might be corrected by installing capacitors near that 

load. 
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II. REVIEW OF LITERATURE 

In 1943, Steinberg and Smith (29) published a book on the division of 

load among plants or units of different fuel economies. This work included 

considerable material on the performance of the boilers and turbines them­

selves. The concept of equal incremental rates was used as a criterion for 

the most economical performance of two or more units. The incremental rate 

of a unit is defined as the derivative of the input with respect to the 

output, and is given the connotation of the increment of input required to 

supply an increment of output. It was assumed that most units would have 

continuous input-output characteristics and that their incremental rate 

values would increase with output. The combined input to two or more 

machines whose individual characteristic curves have these properties would 

be a minimum when the individual machine outputs correspond to the same in­

cremental rate value. 

For any combined output there can be only one combination of machine 

outputs for which the incremental rates of the individual machines are 

equal, with the exception that if, for two or more machines, there are 

ranges of output for which the incremental rates of the individual machines 

are equal and constant, then there may be an indefinite number of combina­

tions of machine outputs for which the combined input will remain constant 

and be at a minimum value. The method fails if one or more of the incre­

mental rate curves corresponding to continuous input-output curves have de­

creasing incremental values with increase in output, or decreasing values 

at one or more points of discontinuity. Under these conditions, operation 

at outputs corresponding to equal incremental values does not necessarily 

result in the best overall efficiency, and incremental loading is not the 
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sole criterion for proper load division. 

Economical division of load between two or more interconnected gener­

ating stations, when tie-line losses are negligible, becomes merely a prob­

lem of operating the stations at loads which correspond to the same incre­

mental rate value. This is the prevailing condition for metropolitan areas 

served by stations located near the load centers. For stations intercon­

nected through long lines, the losses are appreciable and the load-division 

procedure should be modified to take them into account. Steinberg and 

Smith considered the case of two stations connected by a single line. They 

defined the incremental efficiency of the transmission line as the deriva­

tive of the received power with respect to the power at the sending end of 

the line. This concept has the connotation of the efficiency with which an 

increment of power can be transmitted over the line. The criterion for 

minimum input under these conditions is that the incremental rate at the 

sending end of the line must be equal to the product of the receiving end 

incremental rate and the incremental efficiency of the line. This criteri­

on can be applied to all the possible combinations of system loads by 

plotting curves of incremental rates and adjusting them to obtain combined 

station rate curves as functions of total system load. This method, how­

ever, is prohibitively complicated for more than two machines. In addi­

tion, this method fails to consider the effect on losses of var flows on 

the line. It is implied that vars have a negligible effect which would be 

true only if the power factor of the line were very close to unity. 

George (12) described a method of calculating transmission losses 

within power systems. The method is based on the principle of superim­

posing the load distribution from each source, determining the current in 
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each line as the algebraic sum of the individual load flows, and setting up 

an equation for losses in terms of the power generation at the various 

plants and of power flows at each interchange point. This procedure re­

sults in deriving a special loss formula for a given power system. The 

method assumes that all the loads ir. the system vary throughout the load 

cycle in the same manner, with the exception that any load whose variations 

differ from the daily load cycle must be considered a special case and 

treated as if it were an interchange point. George implied that the method 

could be applied without the aid of a network analyzer, for he suggested 

that lines be represented in the solution for power flows by the magnitude 

of their impedances. This requires that the impedance angles of the lines 

of the network have similar values in order to minimize errors in speci­

fying the power flows caused by each generator. Having determined the 

power flows due to each generator or interconnection, the loss equation for 

the system can be expressed as a function of these terminal power flows 

with constant coefficients. This loss equation is of second order in these 

power flows, and the equation will contain n^Ug+ ̂  terms for an n-terminal 

system. 

The method is recommended for any combination of generator or inter­

change loadings, but any change in the network such as the loss or addition 

of a line element requires the application of a new loss formula. George 

estimated the accuracy of the loss equation to be within ten percent for 

single readings, or within five percent for daily totals. The possible 

sources of error include variations in the power factor of line flows, or 

the distribution of vars throughout the network. On systems with large 

charging currents, the uncorrected calculated losses would be too high at 
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times of light generation and low interchange. Also, the principle of 

superposition applies to a-c load flows only if the line power factor is 

uniform and constant. Losses are neglected in applying superposition to 

determine the individual generator contributions to the load flows. Less 

serious causes of error include variations in the distribution of loads 

among the substations during the daily load cycle, the combining of small 

substations with larger ones to simplify the network, and the assumption 

that the current through a line element is uniform. 

Prampton and Floyd (10) enumerated the factors which affect the econ­

omy of energy generation in the hydro system. These are factors in the de­

sign and operation of the plant, and in the characteristics of the load. 

Included in the first are storage problems, efficiency of plant arrange­

ment, unit efficiency, and the design of the new plant to combine most ef­

fectively with existing resources. Factors in operation include operation 

of units in a plant to obtain maximum energy delivery, economic operation 

of plants in parallel, effect of maintenance, and of load and frequency 

control. The factors in the load include the effect of seasonal variation 

of energy demand, provision of peak reserve capacity, development of off-

peak consumption, and the effect of surplus energy in reducing the cost of 

primary generation. 

George, Page, and Ward (13) described a technique for combining the 

loss equation of George with plant fuel cost data to determine the most 

economical division of plant loadings from the standpoint of minimum total 

cost. Ward was credited with developing a procedure for using the network 

analyzer to replace the trial and error determinations of power flows from 

each generating plant and interconnection previously needed in setting up 
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the loss coefficients. These analyzer data were required to determine the 

total system loss equation. This equation was partially differentiated 

with respect to each of the plant power outputs to obtain a set of equa­

tions for incremental transmission loss. Each of these equations was com­

bined with the incremental costs for each plant, resulting in a set of 

simultaneous equations equal in number to the number of plants to be coor­

dinated. These equations were linear. Since the loss equation of George 

was of second order, and since the coefficients were constant, the partial 

derivatives were of first order and with constant coefficients. It was 

recommended that the cost data for the various plants be linearized, either 

graphically or arithmetically. The resulting equations were then applied 

to the network analyzer where an electric analog technique was used to pro­

duce solutions for minimum total cost. If X is the incremental delivered 

cost of power, then each of the plant equations is of the form, 

Station Incremental ^ Incremental _ ^ ,^x 

Production Cost Transmission Loss 

Ward, Eaton, and Hale (32) reported their development of George's 

transmission loss formula, together with their technique for using a net­

work analyzer to obtain the data necessary to evaluate the loss formula co­

efficients. The loss formula was derived by applying the principle of 

superposition, and by application of two approximations : each substation 

load is represented as a certain current which has a constant magnitude and 

fixed relative angular position with respect to other load currents, and 

each substation load varies proportionately and maintains its fixed rela­

tive angular position with respect to other load currents as the total sys­

tem load changes. The loss formula developed expresses the total system 
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loss in terms of four variables for each source : P, power; Q, var output; 

V, voltage; and 0, voltage phase angle. It was recommended, however, that 

this formula was too complicated for practical applications, and a set of 

simplifying assumptions was applied to obtain a more practical expression. 

The simplifying assumptions were : 

1. 0 values remain fixed 

2. V values remain fixed 

3. Load power factors are uniform throughout the network 

4. Line R/X ratios are uniform throughout the network 

5. No loop has an excess transformer turns ratio 

6. Each source operates at a constant ratio Q/P. 

The resulting simplified formula for total system loss was then of the 

form, 

PL " * = , Wmn <2> 
m=l n= 1 

where the coefficients B are constants, and m and n refer to two of the s 
mn 

sources. 

Kirchmayer and Stagg (23) reported a similar loss formula, except they 

recommended a different derivation of the method based on concepts of ten­

sor analysis as presented by Kron (24). Glimn, Kirchmayer, and Stagg (16) 

reported application of this loss formula to determine the losses associ­

ated with interconnecting power systems, and presented graphical evidence 

of the accuracy of loss determination by means of the formula as compared 

with calculated losses from network analyzer data. A theoretical develop­

ment of their method was given in a companion paper by Kron (25). 

Glimn, Habermann, Kirchmayer, and Stagg (15) presented further simpli-
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fieations of the loss formula by proposing improvements in the calculation 

of constants from analyzer data. The method described does not require the 

measurement of generator or load currents, and it results in an exact check 

between the actual base case losses and the losses obtained from the loss 

formula. The method is recommended for application to automatic digital 

computing machines. In the discussion accompanying this paper, Bills, 

Smith, and Wilgus of the Bonneville Power Administration point out that this 

simplified loss formula cannot be applied to their system because of the 

large spread in generator angles (as much as 60 degrees) and the fact that 

the load voltage profile is not flat. 

Ward (31) described how incremental transmission loss characteristics 

and Incremental plant characteristics must be considered together in 

achieving optimum system economy. Considerations of equipment ratings, 

voltage limitations, reactive power limitations, and stability limitations 

were omitted. The reactive power component of loads and generation need 

not be dealt with explicitly. It was assumed that as the customers' de­

mands are satisfied by some particular generating schedule, the reactive 

power generation at plants and synchronous condensers, and also the trans­

former taps, are adjusted as a matter of course to obtain desired voltage 

levels. The problem of dispatching reactive power in such a way as to re­

duce losses and thus reduce fuel costs was not considered. Rather, the re­

active flow around the network was assumed to depend on the power flow, and 

only the problem of dispatching power to achieve optimum fuel economy was 

studied. 

Ward defined P^, Pg,•••Pn as the power output of the n generators 
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of the system and C^, C^,...C^ as the fuel input to these plants. The 

loads were assumed to remain constant, and the total system loss was desig­

nated L. To determine the effect of exchanging generation between two 

plants, it was assumed that a small increment AP) was added to the output 

of generator 1, and a correspondingly small amount APg was dropped from 

generator 2 so as to keep all the remaining generators at the values they 

originally produced. Corresponding to these incremental changes there 

would be changes and ACg. If the transfer produces no change in total 

fuel cost, then the original division of power between these two plants 

must have been satisfactory within the limits of the method. Either a de­

crease or an increase in the total cost input would have indicated whether 

the increment to generator 1 was desirable or not. To determine the best 

system operating condition, it is necessary to evaluate all the possible 

interchanges between pairs of generators. At the optimum condition, all 

possible interchanges will yield no change in the total fuel cost. 

If generators 1 and 2 are at the optimum condition, then 

ACi + ACg = 0 (3) 

and it must follow that 

AP1 " aiy ' ' 

For a system without losses, an interchange between generators 1 and 

2 would result in 

+ APg = 0 (5) 

or 
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It then follows that 

ÛPt " ÛP2 APj ÛP2' ( ' 

If the increments £P^ and APg are allowed to approach vanishingly 

small values these terms become derivatives, and the expression becomes the 

criterion of Steinberg and Smith that the optimum operating condition 

exists when the incremental rates of the various pairs of generators are 

equal. 

For a system in which the losses are appreciable, an interchange be­

tween generators 1 and 2 would result in a change in the losses given by 

+ APg = (8) 

From this equation it follows that 

Ï-T^ 
If the value ùC^/&is replaced by R^, the incremental rate of gener­

ator 1, and ZWCg/APg is replaced by then these incremental rates may be 

equated 

ri - X, • -  ( i°> 

Expansion of this criterion to all pairs of machines leads to the 

interpretation that optimum loading of plants is obtained when suitably 

penalized plant incremental rates are all equal. The penalty factor is 

the multiplier on Rg in this equation. If the ratio g/APg is positive, 

transfer of increment generation from plant 2 to plant 1 causes a decrease 
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in loss, then this weighting or penalty factor will be a number greater 

than unity. Thus plant 2 is placed at a disadvantage by loss characteris­

tics relative to plant 1 and any other plants with smaller penalty factors. 

As a result, plant 2 will receive a smaller share of generation than it 

would if transmission losses were neglected. 

Criteria for optimum allocation of generation can also be based on in­

cremental loss characteristics which are determined by small changes initi­

ated in the loads. A general expression may be written in which n denotes 

any one of the generators and is the incremental cost of supplying in­

creasing load at load point b. 

n 

If optimum allocation of generation exists, then this incremental cost of 

power delivered to load b is the same regardless of which plant produces 

the additional power. This equation may be rewritten 

+ (12) 

n 

This equation is similar to equation 1 published by George, Page, and Ward 

in which they used the derivative form for incremental transmission losses 

and the incremental cost of power was denoted X. 

Marker, Jacobs, Ferguson, and Harder (18, 17) reported in two papers 

their results of a study of loss evaluation methods sponsored jointly by 

the Westinghouse Electric Corporation, Consumers Power Company, and 

Commonwealth Associates. They described three methods which they desig­

nated the in-phase method, the current-form method, and the power-form 
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method. The in-phase method had been used for a number of years by the 

Consumers Power Company and has the advantages that no computer is required 

either in the development of the formula or in the construction and use of 

the loss charts. The method is extremely flexible and provides direct 

chart reading of the losses for a wide variety of system load and sale con­

ditions. It is applicable to many systems which can be represented by a 

simplified network. It has the disadvantage that it cannot be applied to a 

network which has internal loops, nor is it applicable to economic dispatch 

studies. The method is based on four assumptions: the system can be rep­

resented as a transmission system without loops and without mutual imped­

ances between branches, the currents in all branches are in-phase and pro­

portional to the power, the distribution of sale power through the ties is 

fixed for sale from a given generating station, and generation dispatches 

for various system loads are known and fixed. The accuracy of the method 

depends on the validity of these assumptions. The method ignores the flow 

of vars and consequently the results are always lower than the actual 

losses in the system. As long as the operation of the system is near unity 

power factor this method provides the easiest evaluation of the total sys­

tem loss. 

The current-form and power-form methods are more accurate because they 

are capable of including the effect of out-of-phase components of load cur­

rent. The current-form loss formula does not require the assumption of 

fixed var/watt ratios and has made it possible to study the effect of vars 

transferred over interconnections on system transmission loss. In eco­

nomic dispatch studies, transmission loss is best expressed in terms of the 

same variable as the incremental production cost to which it must be added. 
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Thus both are expressed in terms of station output power. This facilitates 

the operation of minimizing total cost. However, if the loss formula is to 

be used to determine the losses associated with the sale of power, for ex­

ample, it is more desirable to divide the calculation into two steps: 

first, the conversion from generator and tie line watt and var values to 

currents, and then the determination of the losses from a loss formula. 

This current-form method has at least three advantages : it does not re­

quire fixing the var/watt ratio of either generators or ties, the loss 

formula is simpler to determine, and the total computation on an automatic 

computer is shorter. 

The assumptions on which the current-form loss formula is based are : 

1. All load currents are fixed vector fractions of the total load 

current. These fractions are determined in an a-c calculating board study 

for a "base case" well centered in the contemplated field of applicability 

of the formula. The load current components out-of-phase with the total 

load current are not neglected in this approximation. 

2. The voltage magnitudes and angles at all generator and tie points 

are the same as for the base case. The spread in generator angles across 

the system is less than 25 or 30 degrees. 

3. All line-charging and synchronous-condenser loads are lumped with 

the system loads. 

4. Transformation ratios are unity around each closed loop of the 

network. 

5. The generator and tie line var/watt ratios can be kept the same 

as the base case or changed in any desired manner. 

Two loss formulas were reported for the Consumers Power system, one 
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using 85 percent load as the base case and the other using 55 percent. 

Whereas the first predicted a loss of 15.8 raw. at the low load compared 

with 14.8 mw. calculated by summing the I R losses of the elements of the 

system, the second predicted a loss of 28.8 mw. at the high load compared 

p 
with 22.2 mw. by I R. These results reveal the danger of extending appli­

cation of these loss formulae too far from the base case. The first check 

was deemed satisfactory, the second was not. To guard against errors in 

the use of the formulae it is necessary to check each step of the work in 

obtaining network analyzer data and in converting these data into loss con­

stants, and to run check cases diverging from the base case. 

The power-form loss formula reported is similar to that of George and 

others, and is based on the sauie assumptions as the current-form equation 

except that the var/watt ratio of the generators and ties is fixed at the 

values of the base case. The total loss is given in terms of only the 

generator P values in order to be compatible with expressions for station 

outputs in economic dispatch studies. Two choices are offered in evalu­

ating the loss coefficients: either to consider the out-of-phase components 

of load currents or to neglect them. The effort in preparing the coeffi­

cients to consider these out-of-phase components is approximately twice 

that involved in neglecting them, and it is recommended that they be neg­

lected if it is possible to forecast that the loss formula will be suffi­

ciently accurate throughout the range of application anticipated. In 

either case, the formula is made to give exactly the correct system loss 

for the base case. 

Travers, Marker, Long, and Harder (30) published a third paper on loss 

evaluation in which they reported the results of an economic dispatch study 



for the Ohio Edison Company. The basis of the study was a set of economic 

dispatch equations such as those reported by George, Page and Ward. The 

loss coefficients were prepared neglecting out-of-phase load currents, and 

the base case was taken as 80 percent of normal system load. It was re­

ported that the first attempt to establish a power-form loss formula failed 

due to the fact that at light system loads the smaller generators in the 

system were acting practically as synchronous condensers, thereby having 

digressed from the values of var/watt ratios they would have when operating 

near normal power. In order to correct this fault it was necessary to re­

vise the loss formula to correlate with the var/watt ratios of these small 

machines at light system load. It was recommended that, if in the base 

case certain small plants are unloaded and the reactive power being sup­

plied is similar to that of a synchronous condenser, it should be so 

treated and the reactive power lumped with the load. The var/watt ratio 

associated with the unit should correspond to the average incremental ratio 

as the unit loads up. To verify the procedure used, at least one of the 

check cases should be at maximum load when the small, inefficient plants 

are loaded up. 

Eleven plants were included in this study. The station incremental 

cost curve of each of these plants was approximated by straight line seg­

ments, and the slope and intercept of each segment was evaluated in order 

that the resulting dispatch equations might be linear in the power outputs 

of the various plants. These simultaneous equations were solved by an 

iterative process by means of an International Business Machine card-pro-

grammed calculator. Values were chosen for the incremental cost of de-
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livered power X and the resulting power output of each plant determined. 

The sum of these powers is the total system generation, and the complete 

study consisted of choosing values of X to determine a corresponding range 

of system generation values. The results of the study were summarized by 

plotting each plant output as a function of total system generation. By 

placing these curves on a single sheet the system dispatcher can assign 

generation in the most economic combination for any value of total system 

load. This dispatch was based on the simplification of zero power flow in 

the five tie lines to neighboring companies. It was shown that the dis­

patch thus obtained applied very closely for the normal power flows in the 

ties. It was found that the system losses changed considerably, but the 

dispatch of generation over the system changed very little and could be ig­

nored. It was concluded that the cost of transferring power depended on 

whether or not the total system loss was increased, and the value assigned 

was determined by plotting the incremental cost vs. power flow at the 

interconnection point with X as a parameter. 

It was also found that if a dispatch which is obtained for all units 

in service is arbitrarily altered by eliminating from a given station's 

dispatch the output of a unit which is down, the resulting dispatch among 

the other stations will check very closely with an exact solution for that 

particular condition. The temporary solution is found by moving upward on 

the total generation scale from the original total load by an amount equal 

to the output the unit out of service should have supplied. The errors in 

this temporary solution are comparable with the errors in the telemetering 

system with which the dispatcher operates the system. 

Brownlee (2) approached the economic dispatch problem from the view-
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point that incremental transmission losses can be expressed as functions of 

voltage phase angles. He started with the following expressions for the 

sending-end and receiving-end power flows of a short transmission line: 

E 2R EE 
P = (R cos e - X sin 6) (13) 
3 z zd 

E 2R E E 
PD = - -£=- + (R cos e + X sin 6) (14) 
R zd zd 

where Pg and PR are the sending-end and receiving-end powers; E^ and ER are 

the sending-end and receiving-end voltages; R, X, and Z are the resistance, 

reactance, and impedance of the line; and Q is the phase angle between E^ 

and E^. He observed that the power loss L on this line is the difference 

between these two expressions, and he proceeded to derive the incremental 

loss on this line as 

dL 2 t8n *12 ,15x 
dP12 " K + tan 012 V ' 

dP^g is the limit of a small increase of generation at plant 1 with a re­

duction of the proper amount of generation at plant 2 to retain constant 

loads, and 6^ *s the angle by which the bus voltage at plant 1 leads that 

of plant 2. K is the ratio of the reactance to the resistance of the line. 

The incremental loss is independent of the magnitude of the transfer imped­

ance between plants, of the magnitudes of bus voltages, and of the var/watt 

ratio of the respective generators. This incremental loss expression was 

used to derive the condition for economic balance between two plants whose 

fuel costs are and F^. The resulting expression is 

dF2/dp2 _ K + tan e12 ,16> 
dFj^/dP^ K - tan 
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A series of curves relating fuel cost ratios to the angle 6^ ̂ or various 

values of K was presented for the rapid adjustment of network analyzer gen­

erating values. It was recommended that this method would be applicable to 

analyzer studies in which it might be desirable to investigate the econom­

ics of proposed generation while still in the board planning stages. 

To determine the economic dispatch for a whole system, it was recom­

mended that the fuel cost ratios of pairs of plants be compared until all 

the plants of the system were in balance. This requires for n plants that 

(n - 1) comparisons be made. 

Brownlee compared the results of calculations of incremental losses by 

his angular functions with results obtained by the B-constant power-form 

loss formula of George and others. He also checked these results by calcu-

2 
lating I R losses, and concluded that his formula was giving much closer 

correlation than the B-constant method. He advised caution in the use of 

these constants, arguing that the forcing adjustments used to make the con­

stants yield the correct total system loss for the base case may make a 

substantial distortion in the incremental losses. 

This paper drew considerable discussion. Early investigated the dis­

crepancy in incremental losses obtained by Brownlee's method and by B-con-

stants and compared results with what he purported to be a more exact al­

though more laborious method. He concluded that Brownlee was justified in 

questioning the accuracy of the B-constant method, and he commended 

Brownlee's method for its ability to determine incremental losses directly 

from the network analyzer study. Glimn and Kirchmayer questioned the ade­

quacy of Brownlee1 s development to represent incremental losses for the 

case of either loads or generators located between two machines under con­



sideration, and they also commented on refinements of the B-constant loss 

formula by including out-of-phase load currents and correcting for digres­

sions of generator reactive flow from base case values. Stagg reported he 

had studied the ability of Brownlee's method to schedule generation for 

most economic dispatch and found that the B-constant method showed addi­

tional savings over Brownlee's method. Watson reported that he also found 

better agreement between Brownlee 's calculations for incremental losses 

and a basic formula than for the B-constant method. Ward and Hale ques­

tioned one of Brownlee*s two basic assumptions, namely that multiple 

transmission paths between any two generating plants may be represented by 

a single transfer impedance. This apparently had led Brownlee to consider 

only systems without loops and with all generators tapped along a line, 

and this was objected to on the grounds that a load or another generator 

located between a pair of generators under consideration is not properly 

represented. 

Cahn (4) gave further consideration to the work of Brownlee for the 

purpose of providing a more solid foundation for the results he believed 

Brownlee had obtained by heuristic reasoning. He concluded that the 

Brownlee theory and the new loss formulas are applicable to practical sys­

tems, and they appear to be about as accurate in most cases as the B-con-

stant method. 

Calvert and Sze (5, 6) reported in two papers the first results of 

their project to study the minimization of losses in power systems. 

Feeling that the methods based on B-constants introduce errors in the mag­

nitude of losses which are difficult to bound, they chose to approach the 

problem by defining the power inputs to the network in terms of the vector 
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voltages and currents at every load and generator terminal. Most of these 

voltages and currents are fixed by the operating conditions imposed on the 

network, but either the voltage or the current at the generators to be con­

trolled is variable. The method of solution is to set partial derivatives 

of the total system input with respect to the variable generator currents 

(or voltages) equal to zero and to solve simultaneously the resulting 

linear equations. These equations include terras expressing restrictions on 

the watt and var flows of the loads and fixed generators inserted by means 

of Lagrange multipliers. Evaluation of this work depends on further appli­

cation of the method to practical examples. The method is subject to some 

of the same criticisms as other methods, in that the behavior of the ma­

chines must be linearized and it is assumed that the phase angle position 

of the various buses remains fixed. Calvert and Sze offer a three-machine 

example with comparison of results previously obtained by Dandeno, but no 

other investigators have used or commented on this method. 
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III. THEORETICAL CONSIDERATIONS 

A. Development of Criteria for Minimum Power Input 

To develop criteria for minimum system input, consider the system to 

be a network of constant impedances with generators applied to each of n 

terminals. At each of these terminals the magnitude of voltage will be 

specified by considerations of the voltages required at the loads, or by 

adjustments from these values to compensate for the inability of certain 

generators to supply enough vars to maintain the desired voltage levels. 

Assume that the fuel input to each generator unit or plant can be expressed 

as a function of the generator power output, and this relationship is not a 

function of the var output. This will be necessary to permit scheduling 

the var output of a generator to meet system voltage requirements, and it 

2 
will be tenable if it may be assumed that the I % losses in the generator 

are small in comparison with the losses in the mechanical portion of the 

plant. 

Among the n terminals of the network there are n^n^~ ̂  transfer im­

pedances which may be represented as shown in Figure 1. The transfer im­

pedance is the element Z, and the elements and Y^ are the shunt admit­

tances resulting from a reduction of the original network shunt capacitors, 

line-charging capacitances, and loads. These two elements will, in gener­

al, not be equal. 

The expressions for transmitted watts and vars are conveniently ex­

pressed in terms of the ABCD constants for the equivalent line section of 

Figure 1. The conversion from the constants shown to ABCD values is given 

by the following equations: 



A = 1 + 2Y2 = A [a (17) 

B = 2 = B /9 (18) 

c = (Yx + Y2) + ZYlY2 = C (Y (19) 

D = 1 + ZY, = D /A. (20) 
1 

If Eg and E^ designate the voltages at the sending end and receiving 

end of the line, then the expressions for sending-end and receiving-end 

power and reactive power may be written in terms of these voltages, the 

ABCD constants, and the angle 5 representing the voltage phase angle by 

which E0 leads E,,. 
o 

EgE DE 2 

Pg = - —— cos (3 + 6) + —— cos (8 - A) (21) 

AE % 

PR = -p— COS (s - 5) cos (s - cc) (22) 

DE 2 

Qs ^ sin (6 + ,9) + —— sin (d - A) (23) 

EsEn AE 2 

0R = - sin (5 - 3) - sin (3 - a). (24) 

The signs in the expressions for Q<, and Q are such that lagging vars 

are positive. 

The power flows at terminal i may be designated as shown in Figure 2. 

P is the equivalent local load at station i, and this load may be defined 

in such a way that the handling of the shunt admittances shown in Figure 1 

may be simplified. It will be seen that the significant information a-

rising from the equivalent circuit of Figure 1 is the amount of power ac­

tually transferred between pairs of terminals, and the sending-end shunt 
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elements of all the lines terminating at i may be combined with the admit­

tance of the actual local load, giving an equivalent local load which 

includes the local shunt admittances of the lines terminating at i. 

This definition of P is consistent with the obvious method of 

measuring transfer and shunt impedances on a network analyzer. If all 

foreign terminals are short-circuited and a voltage applied to terminal i, 

then each of the transfer impedances is given by measuring the ratio of 

this test voltage to the short-circuit currents at each of the foreign 

terminals. At the same time, the amount by which the current drawn from 

the test generator exceeds the sum of the short-circuit currents divided by 

the test voltage is the admittance of the equivalent local load P^. 

The generator output of station i is P . The cost of operating this 

plant consists of fixed charges for overhead, maintenance, and depreciation 

plus variable charges for fuel depending upon the type of fuel, the cost of 

this fuel, and the efficiency with which the plant utilizes its fuel at 

varying loads. Only the variable fuel costs affect the economic loading 

problem. The rate at which money is spent for fuel input is denoted 

(P )i* The units of this fuel input are monetary units per unit of time. 

The relationship between this quantity and the generator output is 

(PIf,)i = CiPgl (25) 

where (X is a cost function in monetary units per unit of power per unit of 

time. 

The symbol for fuel input has been given capital subscripts and has 

been placed in parenthesis to distinguish it from the power flow P^. P 

is the power transmitted through the transfer impedance B^n from plant i to 

plant n. This may be written from the general formulae given above as 
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Pin = " C0S (3in + 6in) + "ST^" COS (f3in " Ain> (26) 

in in 

where 5. is defined as 5, - 6 . It follows that 
in in 

5ni = "Sin' (27) 

but ;3 is the impedance angle of and 

^ni = 3in' (28) 

Let 

Pi ' PU + Pi2 + + Fin (29) 

represent the sum of all line flows away from station i. Note that there 

are (n - 1) terms since P^ is not defined. P is the local load at 

station i, hence 

Pgi " PL1 " ?1 (30> 

and 

< PlN>i = Cl< PLi t Pi>- ( 3 1 )  

The total input to the system is the sum of these or 

= A (PIN>t= .Vi(?Li + Pl»- (32> 
1=1 1=1 

To find a minimum value of Pfc, it is necessary that the partial deriv­

atives of P with respect to each of the variables on which it depends be 

equal to zero. Pfc can be expressed in terms of and 6^, hence it i is 

necessary that 

ÔP 

5T = 0 (35) 

j 

a?. 

5Ô™ = °- (34) 
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The values of E , however, are usually held within narrow limits. Un­

less there are system losses that vary with E^, it seems reasonable that 

would have a minimum value for very high values of E^. This assumes the 

loads demand constant power. Since Ej is restricted, it will not generally 

be possible to find a true minimum for P , but only a relative minimum with 

respect to 5 . This will, in general, be the most practical approach to 

the problem, since the variations of power depend on angular variations to 

the first degree for small changes in angle when the levels of voltage have 

been determined. It is true, within the range of angles permitted, that 

the power flow between two units will be increased by increasing their 

angular separation. Thus an inspection of the value and sign of the par­

tial derivatives of P with respect to each angle will indicate an approxi­

mate amount and the direction of change to be made in the angle for a bet­

ter relative minimum for P . Should this partial derivative be negative, 

for example, an increase in the value of angle is indicated. 

The desired partial derivatives may be developed by expanding the 

following expression: 

dP„ 

3T " 5b7 ci(pLi + pi> 
J J 1 = 1 

n _ dp. dC. -i 

= % [ci 3T + (PLi + pi) 5E7-1* (35) 

1=1 j J 

C., however, is not a function of 5., but it is a function of P . i* ' J gi 
which is in turn a function of 5^. Hence it is necessary to write 

BC, dC, dP , 

but 
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ap-i 5pi 

6j -asj 

since PT, does not depend on 5. . 
LI J 

The partial derivatives of P may now be written: 

n - èPt dC. 5P 

« T iïi L ci56- + p
3idP^5TJ 

n dpi r dci -, 

• iïi ̂  + P81 35-1 

(37) 

j gi 

dPi 

i ôô, 

n dP. 
- L § (38) 

i=l 

where % ̂ is the sum in the brackets. This Ç ̂  is the incremental produc­

tion rate of station i as defined in the literature. That this is so can 

be shown by differentiating the relationship between (P\^)^ and P^: 

< Vi - °ip8i . (39) 

d(P,,.)t dC 

(40) 
gi 

dPt 
Expansion of the derivatives, gg—, will reveal the technique to be 

recommended for analyzing the system and detecting the desired minimum 

condition. This can be done first for a three-machine system, and later 

generalities can be drawn for more than three machines. As an example of 

dPj, 
the expansion of , let i = 1, 2, 3 in turn and let j = 1. The expan­

sion is : 

ÔP1 E1E? EE 

= bJ7~ Sin ^12 + 512^ + B^~ Sin ^13 + 613* 

dPp EE 

= " sin ^21+ 021 ) (42) 
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3P, EE 

56^ = ' B^~ Sin ^31 + &31}* (43) 

A similar set of derivatives may be obtained for j =2, 3. Note that 

when i = j all the terms in the expansion are positive, and there is a term 

relating plant i to each of the others. When i 4 j the terms are negative 

as a result of the definition 5 = -5 . Also, there is only one term 
ni in 

relating each plant j to the reference plant i. 

3p
t The set of derivatives, , for j = 1, 2, 3 may now be written out 

and each equated to zero : 

&P, rS.Ep EE 

= 0 = ^iLB^T Sin ^12 + 512^ + B^7~ Sin ^13 + 513^-l 

_ EE 

" ?2^T 3 i n  < P21 +  62l' 

- *3 rrSi" tesi + 531> 
31 

ÔP EE 

^ = ° = " ̂ 8in (012 + &12) 

r EPE1 E E -7 

^2 L 3in ^21 + &21^ + Sin ^23 + 523U 

- % B^f Sln (932 + 532> (45) 

ÔP E-E_ 

^3 = ° = ~ %l hT Sln (^13 + &ls) 

EPE 

" ®23~ Sin 2̂3 + ^23) 

+ ^3 f Sin ^31 + Ô31) + B^~ Sin ^32 + 832^6) 
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Simultaneous solution of these three equations will yield the critical 

point or desired minimum value of P . These are the criteria for economic 

loading of the system. 

R. Method of Solution for Critical Point 

For the purpose of analyzing equations 44, 45, and 46, let 

X12 = ^1 B^~ Sin ^912 + 512^ 

X15 = ^1 B^7~ SLn ^13 + 513^ 

X21 = ^2 B^~ Sin ^21 + 621^ 

X23 = **2 B^~ Sin ^23 + &23^ ^0) 

X31 = ^3 Sin (031 + hl] (5l) 

X32 ^3 B^~™ Sin ^32 + 632^* (52^ 

This set of substitutions will permit rewriting the minimum conditions 

in this form: 

X12 + X13 " X21 ~ X31 = 0 (53) 

-*12 + %21 + X23 - *32 = ° (54) 

~ X13 + X31 ' X23 + X32 = °* 

Note that there are six terms to be dealt with, and each of them ap­

pears in each of two equations. These terms may be paired in a particular 
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way on the basis of the interpretation that may be placed on them. Terms 

X^2 and for example, refer to the relationship existing between ma­

chines 1 and 2, and refer to a similar relationship between 1 and 

3, and X^ and X^2 to 2 and 3. The next step is to write these equations 

in this form: 

(Xl2 . X21) - (X31 - X13) - 0 (56) 

-(x12 - x21) + (:;23 - x32) = o (57) 

(X31 " X13> ' <X23 " *32» = °- <5S> 

The original equations 44, 45, and 46, are now represented as a set of 

three linear homogeneous equations in three unknowns. The rank of the 

matrix of the coefficients of these unknowns is one less than the number of 

equations, indicating that there are an infinity of solutions of these e-

quations other than the trivial one. Further, any two of the unknowns may 

be expressed in terms of the third. Explicitly, 

(X12 - X21) = (X31 - Xl3) = (x23 " X32^' (59) 

If the trivial solution were the correct choice, then each of the un­

knowns would be zero and the criteria for a minimum of P could be simpli­

fied by cancelling out the system voltages and transfer impedance magni­

tudes , giving the following set of conditions to be met : 

sin (012 + 612) = <5 g sin (^2l + ô21^ (60) 

^2 sin (P23 + 523^ = ^3 Sin (^32 + ô32^ 

^ 3 8in (&31 + 53l^ = ^1 sin (^13 + &13^ ' (62^ 

These criteria are similar to the results obtained by Brownlee for a 

two-machine system. For two machines, only the first expression would have 
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any significance and the other two would not exist. The equivalence of the 

first criterion with Brownlee's formula, equation 16, may be demonstrated 

by means of trigonometric identities. 

If these criteria were valid for a three-machine system, then applica­

nt f 2 
tion of the first and second would give economic ratios -g— and —— without 

= 53 3 

any consideration of the third criterion. The third ratio -=—, however, 
5 1 

has been fixed by the first two criteria, but this will not necessarily 

satisfy the third criterion since it contains the impedance angle (3^ while 

the first two criteria do not. 

Ç1 s^n (^21 + ̂ 21^ 
Table I shows calculated values of —— = —: tz r—r for various 

$2 sin ^12 + 612^ 

values of 6^^ with 3^ as a parameter. These values are plotted in Figure 

3. Each of the curves becomes zero when 3^ = which is the condition 

for maximum received power through 3^ • The curve for = 90° is a hori­

zontal line since this condition implies a lossless line and the two plants 

should operate at the same incremental rate for any angle 5^2* ^11 the 

S l 
curves pass through = 1, S = 0, implying the special case that the 

two plants should operate at the same incremental rate if there is no tie-

line flow regardless of the value 3^ the line. 

The possibility of satisfying the criteria for three machines can be 

further explored by noting that 

and 

mus 

&12 + &23 + G31 = ° (64) 

t hold for any selected values of (3^, and (3^ • Suppose, for 
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^ 1 
Table I. Economic incremental fuel rate ratios ^— for 

a two-machine system ^ 2 

P12 
12 

30° 40° 50° 60° 70° 

o
 

00 

85° 90" 

0° l 1 1 1 1 1 1 1 

2° 0.885 0.920 0.945 0.960 0.975 0.990 0.995 1 

4° 0.785 0.845 0.890 0.922 0.950 0.975 0.990 1 

6° 0.692 0.779 0.838 0.885 0.927 0.965 0.982 1 

8" 0.608 0.712 0.738 0.850 0.903 0.950 0.976 1 

10" 0.532 0.653 0.742 0.815 0.880 0.940 0.970 1 

15° 0.366 0.515 0.633 0.732 0.822 0.910 0.955 1 

20° 0.201 0.395 0.532 0.652 0.765 0.880 0.936 1 

25° 0.096 0.285 0.437 0.575 0.710 0.848 0.922 1 

30° 0 0.185 0.347 0.500 0.652 0.315 0.905 1 

40° 0 0.174 0.348 0.532 0.742 0.855 1 

50° 0 0.185 0.395 0.653 0.811 1 

60° 0 0.227 0.532 0.737 1 

70° 0 0.348 0.612 1 

80° 0 0.336 1 
e
 in CO 

0 1 

CD
 

°
o
 

1 

example, that 

f312 = 50" 612 = 8° 

@23 = 60° 623 = U' 

P31 = 70° S3l , -19*. 

From the curves, 
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Figure 3. Eczonomic incremental fuel rate ratio for a two - machine system. 
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f 1 >52 

*2 = %3 

= 0.80 

It would follow from these values that 
gl 
—— should be 0.64, but the 

%3 
curve for the assumed value of (3^ at the value 6^ = 1.90 gives 0.78, 

which is a contradiction. 

It must be concluded that the criteria given by equations 60, 61, and 

62 will not hold in general, but they will give the conditions for minimum 

P in special cases. If all of the elements have the same value 

then these criteria will hold for small angles 6^. Inspection of the data 

in Table I will show that they will hold for values of 5^n less than 10 

degrees for any value of For increasing values of the range of 

values of B^n increases until at the limit = 90° any value of may 

be used. 

In general, the desired solution of equations 56, 57, and 58 is non-

trivial, and each of the terms of equation 59 has a value not equal to 

zero. Therefore equations 44, 45, and 46 must be used to determine whether 

a minimum value of Pfc has been achieved, or to indicate the direction of 

change of each 6^ to move toward the minimum. Equation 59 gives assurance 

that all three of the derivatives can be set equal to zero at the minimum. 

C. Nature of the Critical Point 

Evidence that the condition obtained is a minimum can be obtained by 

examining the second derivatives of Pfc. By differentiating equation 38, 
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d2P ^ 
5  pt "  r* à pi 5?i à pi -] 
zs ' E, IA zs * SâT sr: J 
ds 2 i=l 1 âS 

<2  ; r? àpi + 
d?i!!Siâ?i • tîiL§i s/ ^ < «j 

" ]• < 6 5 )  

The second term in the brackets will always be positive since % ̂ 

always increases with P^. To determine the nature of the first term, per­

form the indicated operations for j = 1 and n = 3: 

n d2P fE E E E 

t^^i ̂ ~2 = flLB^~ COS ^12 + 512* + B^~ COS (013 + &13^ i 

EpE 

+ 52B^COS (%21 + *21 ) 

•  53^T C O S  ( 931 + 831>- < 6 6> 

The expressions for j = 2 or 3 will be similar. The first and third 

and the second and fourth terms should be compared to show that 

E, E, 

B — [%! cos (912 + B12) + 
cos #21 + 52l0 > 0 (67) 

12 

Ejh 
B13 
[ ̂1 cos Ol3 + 613) + COS (P31 + hl]l > °* (68) 

Power will be transmitted from the plant with the lowest value of Ç 

toward those with higher values, and this requires that the angular posi­

tion of the most efficient plant be ahead of the others. Thus, if is 
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Figure 4. Permissible angles and 
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less than Ç2, then 6^ is a positive angle and power flows toward plant 2. 

The limiting value of 5^ is equal to (3^, giving maximum received power at 

plant 2. 

Figure 4 shows the permissible values of the cosine functions in equa­

tion 71. If the circle has unit radius, the projections of OB and OD on OE 

are the required cosine terms. Ok is the limit for increasing values of 

and if (3^ approaches 90 degrees the angle (9^ + 6^2) may approach 

180 degrees as a limit. Even though OB might lie in the second quadrant it 

is obvious that 

|cos (012 + 612)|< j cos (321 + &21)| (69) 

for all permissible angles, 8^2« It follows that 

|?1 cos (912 + &12)|< | f 2 cos (921 + &21)| (70) 

since it was assumed that 

§ ! < ? 2- (71) 

As a consequence of equation 70, equation 67 must be true, and by 

similar reasoning all such pairs of terms in 65 are always positive. Thus 

the second partial derivatives of Pfc are always positive for all permissi­

ble angles. This is a necessary condition that the function P^ be at a 

minimum at the critical point, although it is not sufficient except for a 

two-machine system. For more machines it will be necessary, in a practi­

cal sense, to demonstrate that any digression from the critical point al­

ways gives higher values of Pfc, regardless of the direction of the digres­

sion. This can be seen in the examples of the experimental work. 
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D. Generalization for More than Three Machines 

The economic loading criteria as give;, by equations 44, 45, and 46 for 

three machines may be extended to apply to any number of machines. If 

there are n machines, there will be n partial derivatives of Pfc, one with 

respect to each of the n voltage phase angles 6^. All of the terms in 

these derivatives are of the general form 

Ejf. 
']! 

with the restriction that j can never be equal to i. Equations 47 through 

52 are expansions of this form for three machines, and equations 56 through 

58 demonstrate the manner in which each of these terms appears twice in a 

set of criteria. Furthermore, they may always be gathered together in such 

a way as to permit the generalization : 

dP n 
= S (xu - X4< ) = 0» (73) 

j i=l J1 ij 

i4j 
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IV. EXPERIMENTAL RESULTS 

A. Preparation of Network Data 

The literature contains several references to the question of the dis­

position of the loads in the network in determining transfer impedances or 

admittances. It has been suggested that these impedances be measured with 

all loads and shunt line elements removed from ground, but it can be shown 

that this is not correct. The discussion of Brownlee's work included crit­

icism that his method did not properly account for loads between genera­

tors, or in the middle of line sections. The question of how loads should 

be represented has also been raised, since it is common practice to assume 

that power system loads will demand constant values of watts and vars re­

gardless of the voltage level at which they operate. 

The most practical method of determining transfer impedances is to 

measure them on a network analyzer. This should be done after the system 

has been balanced for a particular load condition and all loads trimmed to 

the desired levels of watts and vars. After this balance has been 

achieved, it must be assumed that the loads will thereafter be represented 

by the board values of admittance. The entire network must be considered 

passive if the transfer impedances are to have any meaning. The transfer 

impedances are the ratios of the various generator voltages applied one at 

a time to the short-circuit currents resulting at all the other generator 

terminals in the network. Successive application of generators to the net­

work will result in every impedance being measured twice which will provide 

a check on the measurements. 

To illustrate the effect of a load at the center of a line, consider 
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a simple system consisting of two short lines of impedance Z with a load of 

admittance Y between them. Refer to Figure 5. 

This system may be considered to be three four-terminal networks in 

cascade, and the ABCD matrix of the combination may be found by multiplying 

the ABCD matrices of the three parts, thus : 

1 z 1 0 1 z 1 + ZY 2Z + z2\ 

X X 
= (74) 

0 1 Y 1 0 1 Y 1 + ZY . 
The transfer impedance of the combination is the element 

B = 2Z + Z2Y (75) 

and this differs from 2Z, the transfer impedance in the absence of Y, by 

the amount Z^Y. Thus not only the amount but also the direction of the 

change in transfer impedance is affected by Y. For the case of a resistive 

load, Y would be real and positive, and the transfer impedance would be 

greater than for no load. Should Z be inductive and Y capacitive, then it 

is possible that the transfer impedance might be less than the value 

without Y connected. Since Y does have an effect the measurement technique 

must encompass the shunt elements, and there can be no doubt that they 

should remain in the network while measurements are being made. 

The effect of a tap changer on transfer impedance is illustrated in 

Figure 6. The tap changer and the line element Z may each be considered a 

four-terminal network element, and they may be connected in cascade in 

either order as shown. The ABCD matrix of each connection is given by 
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Figure 6. Equivalent circuit for a Une and 
tap-changer in <zasc:ad&. 
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i 0 
a 

aZ 

(77) 

0 a 

Thus the transfer Impedance of the combination is either Z/a of aZ, 

depending on the relative location of the two elements. It can be shown, 

however, that a measurement of applied voltage divided by short-circuit 

current will give the correct transfer impedance in every case, including 

the possibility of looking into either end of either combination. This 

leads to the generalization that tap changers should be left in the network 

while measurements are being made, for the results will reflect the ability 

of these units to improve system operation. 

While data are being collected to evaluate the transfer impedances, 

data should be obtained from the same analyzer representation to evaluate 

the shunt impedances (or admittances) to represent the loads on the system. 

The amount by which the current supplied by each generator exceeds the sum 

of the short-circuit currents at all other terminals is a measure of the 

load to be applied at that generator terminal. This excess current divided 

by the test voltage is the admittance of the load, or its reciprocal is the 

shunt impedance to be used to represent the load at that terminal. These 

local loads do not appear explicitly in the economic criteria, but they are 

required to determine the incremental rate of each generator. In gen­

eral, if a plant has a relatively large local load its incremental rate 

will be increased so that it cannot economically transmit as much power 

toward other terminals in the system as it could if the local load were not 

present. 
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If a load were located at the mid-point of a uniform line, then half 

of that load would be placed at each end of the equivalent line. In any 

other case, more of the load will appear at whichever terminal was electri­

cally closer to the load. In simple cases, the determination of both trans­

fer and shunt impedances can be accomplished by means of wye-delta network 

conversions. 

For the purposes of this thesis, it will be assumed that the impedances 

of the network are known. Figure 7 shows the system assumed for examples 1, 

2, and 3, and Figure 8 shows the additional data assumed for examples 4 

through 7. The data for these examples are all per unit values. 

B. Preparation of Fuel Input Data 

To describe each of the plants, it is necessary to evaluate the cost 

input to the plant as a function of the generator output. This cannot be 

done graphically because of the degree of precision required in applying the 

economic criteria. Although there are errors in the determination of the 

input, it must be assumed that the input data are as accurate as possible. 

Because of the sensitivity of the criteria the input-output function must 

include more significant figures than might be warranted in other problems. 

The best method is to perform a curve-fitting technique to selected data 

points along the input-output curve. Since a typical input-output curve 

increases with output at an increasing rate the best functional relation­

ship to apply ir> a power series. In general, there will be as many terms 

in this power series as there are data points for its determination, in­

cluding a constant term to represent the input at zero output. In prac­

tice, a third-order power series should be adequate for most plants, re-
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P9! 

Pll-tr 

Pj / z  p2, z 
^Z.2 

B,2 = O.IO + j0.20 = Q.2236! /63°26' 

Figure 7. Two-machine system of exam/o/es 
/, 2, and 3. 
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PA f23 

+ PL2 

P3I 

Pg3 

P3. 

PL3 

B,Z - OJO + jO. 20 = O. 2236! /63 °26 ' 
Bz3 = 0./5 + j 0.25 = Q.29J55/59°2' 
83, = 0.20+j0.30 = Q.36Q5bl 56°/9' 

Figure 3. ~Thr&& -machine system of &xamp/&s 
<4, 5&, and Z 
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quiring three carefully-evaluated data points along the curve in addition 

to the intercept at zero output. By the nature of curve-fitting, the power 

series will give exactly the input when the output corresponds to one of 

the data points, and it will give the input to a high degree of precision 

and reasonable accuracy at any intermediate value of output. 

Having expressed the input-output curve by means of a power series, 

the incremental rate of that plant can be determined by differentiating? 

this series with respect to the output. The result will be another power 

series of order one less than the input curve, and of the same degree of 

precision. This technique is much more precise than any graphical method. 

There can be no doubt that the input-output curve and the incremental rate 

curve derived from it correspond. 

Input-output curves and the corresponding incremental rate curves for 

three plants selected for this thesis are shown in Figure 9. Plant 1 has 

the highest no-load input, but it has the lowest incremental rate curve. 

This will serve to accent, in the examples, that the incremental rate is of 

vital importance in predicting how much load a plant should be assigned 

while the input curve itself will not reveal how to apportion the load. 

The expressions for input and incremental rate as functions of output 

for these three plants are : 

(P^)l = 2.28 + 0.520Pgl + 0.380Pgl2 + 0.040Pgl3 (78) 

(PIN)2 = 1.59 + 0.75333Pg2 + 0.440P^ + 0.02667Pg23 (79) 

(PTML = 1.04 + 1.16333P , + 0.84002P ,2 - 0.01333P ,3 (80) 
v IN 3 g3 g3 g3 ' 

£5 ̂  = 0.520 + 0.760Pgl + 0.120Pgl2 (81) 
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^2 = 0.75333 + 0.880Pg2 + 0.080P^ (82) 

= 1.16333 + 1.68003P _ - 0.040P ,2. (83) 
^3 g3 g3 

C. Technique of Digital Computation 

The practical solution of the criteria, equations 44, 45, and 46, is a 

àpt 
series of trial evaluations of the partial derivatives, gg—. The criteria 

are not a set of independent equations. In general, for an n-generator 

system there will be n equations, but only (n - 1) of them will be inde­

pendent. The necessary nth equation is always obtained from the condition 

that the sum of all the angular differences, e.g. 5^ + §23 + ®31* must si-

ways be zero. This condition should be applied first, which follows from 

the fact that the angles 6j are the independent variables in the problem. 

These angles applied to equation 21 will, in effect, solve the electrical 

network for all of the flows, P^n* As a secondary effect of this solution, 

it is possible to determine the electrical loss in the network for each 

trial solution, although this is not necessary in applying the economic 

loading criteria. Having determined P^, it is possible to evaluate Pg^. 

Next it is possible to evaluate by substitution into the appropriate 

incremental rate equation. The next step is to form the combinations 

from the definitions given by equations 47 through 52. Substitution of 

these values into equations 44, 45, and 46 will yield values of the partial 

ôp
t derivatives , which may be investigated to determine whether a better 

solution may be obtained by another trial. 

Theoretically, any choice of angles for the first approximation is 

permissible and will yield derivatives which will point toward the desired 
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solution. Practically, the number of trial solutions can be reduced if the 

first choice of angles is near the true values. A network analyzer study 

can give such a set of angles, provided a schedule of generation approxi­

mating the economic schedule was applied. To do this, schedule the genera­

tors so that they all operate at the same incremental rate. Lacking an an­

alyzer study, the next best choice is to assign angles in proportion to the 

output of each plant if all plants were to operate at the same incremental 

rate. 

The algebraic sum of the partial derivatives will always be zero. 

This can be seen by inspection of equations 56, 57, and 58. Thus at least 

one of the derivatives will be positive and at least one of them negative 

for each trial solution. This implies that if a correction were applied 

whereby one plant output is increased, there is always at least one plant 

available to yield a corresponding decrease and permit the system to ap­

proach the desired minimum. 

Having obtained the partial derivatives, it is necessary to interpret 

them to form a decision for the next trial. The solution will converge 

rapidly enough if only one angle is changed to obtain the new trial, pro­

vided that angle is the one for which the partial derivative of P has the 

largest magnitude. If that derivative is negative, the angle should be in­

creased, and vice versa. The magnitude of such an increase must be based 

on experience with the system, implying that the first change might not be 

satisfactory. If the sign of the derivative should change, then the change 

was too large and another trial can be attempted with an intermediate value 

by assuming that the value of the derivative is a linear function of the 

angle. If the sign should not change, then obviously the amount of the 
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change was too small, and again another trial may be formed by extending 

the angle in proportion to the values of the derivative. In successive 

trials the magnitudes of all the derivatives will decrease, implying that a 

minimum is being approached. When the minimum has been reached the values 

of the derivatives will either all be zero, or else a trial will produce 

values of the derivatives indicating that the next change should be the 

opposite of the change just made. This latter eventuality is the one to be 

expected, and it implies that the succession of trials has approached as 

near to the minimum as possible within the degree of precision allowed by 

the permissible changes of angles. In this thesis, this change of angle is 

one minute. In the examples chosen for this thesis, the largest difference 

between a specified generator output and that of the next best trial one 

minute removed was eight parts in 1280, or 0.625 percent, and this occured 

for the smallest value specified for any generator. In the same case, the 

change in system input was detected in the sixth significant figure, im­

plying that considerable tolerance can be allowed in the schedule of indi­

vidual generators without affecting the system input significantly. P 

changes very slowly for small digressions away from the minimum point. 

D. Solution for Two Machines 

For example 1, generators 1 and 2 were assumed to be located at oppo­

site ends of a single transmission line with 1.0 per unit load applied at 

each end of the line. Reference to Figure 9 reveals that generator 1 would 

carry more of the load than generator 2 on the basis of equal incremental 

rates by approximately the ratio 1.15:0.85. Trial 1 was formulated by as­
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signing 5^ the value 2*0' to yield this ratio. The results of this trial 

and the three succeeding trials are shown in Table II. Since the deriva­

tive of P was positive as a result of the first trial, was decreased 

for the slcond. The second trial indicated a further decrease, but the 

third trial produced a negative derivative implying that the correct angle 

was between those chosen for the second and third trials. The angle for 

the fourth trial was one minute greater than for the third and the deriva­

tive was positive. Thus the correct angle is between 1*50' and 1*51' and 

is probably closer to 1*51 ' because the magnitude of the derivative is less 

for this angle. Interpolation does not seem to be justified since the cal­

culated values of P for these two trials do not differ in six significant 

figures. 

The line loss in this example is 0.0022, or 0.11 percent of the total 

system load. Although this loss is extremely small, it is effective in re­

ducing the output of generator 1 from the value it would have at equal in­

cremental rates. If the system were to be operated without loss, then each 

generator should supply exactly its own local load. This would require a 

total system input of 6.03000 units, but the input for best economy is only 

6.00984, or a saving of 0.334 percent of the no-load case. 

For example 2, 2.0 per unit load was applied at the bus of generator 

2. This required generator 1 to supply its share of the load over the 

transmission line with considerable loss. The loss calculated for the most 

economic condition was 0.1169, or 5.845 percent of the total system load. 

The results of the four trials required to find the minimum input are tabu­

lated in Table III. Comparison of these results with those of example 1 

shows that generator 1 has been penalized more heavily by transmission 
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Trial 
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Trial 
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Table II. Summary of results of example 1 

E1 = 1.0 Eg = 1.0 PL1 « 1-° PL2 = l-° 

'12 gl g2 1 52 

dPt 

357 

2 * 0 '  

1*55' 

1*50' 

1*51' 

1.1408 0.8616 

1.1349 0.3674 

1.1290 0.8731 

1.1302 0.8719 

1.54318 

1.53708 

1.53100 

1.53223 

1.57093 

1.57683 

1.58264 

1.58142 

0.1064 

0.0493 

-0.0073 

0.0044 

Table III. Summary of results of example 2 

E1 = 1.0 Eg = 1.0 PL1 = ° PL2 = 2-° 

'12 'gl "g2 # 1  
dpt 

15*0' 

12*0' 

13*52' 

13*53' 

1.1034 

0.8753 

1.0169 

1.0182 

1.0329 

1.2121 

1.0997 

1.0987 

1.50468 

1.27717 

1.41693 

1.41824 

1.74763 

1.93752 

1.81782 

1.81676 

0.7450 

-1.2468 

-0.0062 

0.0051 

Table IV. Summary of results of example 3 

Er = 1.09 Eg = 1.0 PL1 =° PLg = 2.0 

'12 gl g2 

dPt 

587 

13*53' 

12*0* 

10*48* 

10*47* 

1.3060 

1.1503 

1.0518 

1.0504 

0.8376 

0.9612 

1.0417 

1.0428 

1.71723 

1.55301 

1.45212 

1.45070 

1.54654 

1.67310 

1.75684 

1.75798 

2.2292 

0.8718 

0.0054 

-0.0066 
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losses, and there is a wider discrepancy in the incremental rates of the 

two machines due to these heavy losses. 

Investigation of the no-loss case shows marked savings in the economic 

solution. If it might be assumed that generator 2 supplied all the load, 

and that generator 1 was operating at no load, then the total system input 

would be 7.34002. From Table III, the minimum input is 6.22983, or the 

savings is 15.15 percent of the no-loss case. 

Application of equation 23 revealed that, for trial 4, the var output 

of generator 1 was -0.3632, or this generator was operating at a power fac­

tor of approximately 0.942, lead. This would cause the losses to be ap­

proximately 11 percent higher than they would be if these vars were zero. 

To reduce these vars to zero, the voltage of generator 1 should be raised 

to approximately 1.09 per unit, which would be possible in a practical sys­

tem if there were no local load on the bus to prohibit it. Example 3 was 

formulated on this assumption. 

The results of example 3 are tabulated in Table IV. Again, four 

trials were required to find the minimum input. The loss for this case was 

0.0932, which is less than the loss of the previous example by an amount 

greater than the 11 percent saving due to the removal of the var flow. 

This is true in spite of the fact that the output of generator 1 was 

greater than for example 1. The additional savings are due to the increased 

voltage at generator 1, which follows from the generality that transmission 

may always be accomplished with less loss at higher voltages. The total 

system input for this case is less than for example 2, from which it may be 

generalized that a voltage profile for a system should always be chosen as 

high as possible. 
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E. Solution for Three Machines 

The results of examples 4 and 5 are tabulated in Tables V and VI. In 

both of these examples, equal loads were applied at the three generator 

buses. Six trials were necessary to ascertain the minimum input for each 

example within one minute for each of the three angles. For each trial, 

only one generator angle was changed from the preceding trial, and that the 

one for which the derivative had the largest magnitude. In example 4, 

trial 1 showed that 6, should be increased, but the increment added was too 

àpt 
large as evidenced by the large positive value of gg— resulting from the 

second trial. Interpolation for the third trial reduced this derivative to 

a very low value and indicated that the next change should be an increase 

in 6g. Trial 4 indicated another increase in 6^, and trial 5 an increase 

in 6g. Trial 6 indicated the opposite change in 6^ from trial 5 which sig­

nified that the minimum was between trials 5 and 6. Since the values of 

the derivatives were less for trial 6, it was concluded that the minimum 

was nearer to trial 6, and it was accepted as a solution. 

The results of example 5 were obtained by the same technique. In this 

example, however, the sixth trial demonstrated that the minimum lay between 

trial 5 and trial 6, but trial 5 was considered the solution since the de­

rivatives were smaller for this trial. 

The share of the total load assigned to each generator was not the 

same in these two examples. This is illustrated in Figure 10. Generator 3 

may be assigned an increasing share of the load as the total system load 

increases, while generator 1 received less. This is due partly to the 

differences in the slopes of the incremental rate curves, and partly to the 
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Table V. Summary of results of example 4 

E1 = 1.0 PL1 
= 0.5 

E2 = 1.0 PL2 
= 0.5 

E3 = 1.0 PL3 
= 0.5 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

512 
1*30* 2*0' 1*39' 1*39' 1*41* 1*40' 

Ô23 
3° 30' 3*30' 3*30' 3*25' 3*25' 3*26* 

631 
-5*0' -5*30' -5*9' -5*4' -5*6' -5*6' 

Pgl 

Pg2 

Pg3 

0.8124 0.8691 0.8294 0.8258 0.8297 0.8285 
Pgl 

Pg2 

Pg3 

0.5788 0.5444 0.5685 0.5641 0.5618 0.5638 

Pgl 

Pg2 

Pg3 
0.1284 0.1096 0.1228 0.1300 0.1288 0.1280 

*1 
1.21662 1.27116 1.23289 1.22944 1.23318 1.23203 

22 
1.28947 1.25711 1.27947 1.27520 1.27296 1.27490 

23 
1.37839 1.34698 1.36904 1.38105 1.37906 1.37771 

dPt 

5ô7 
-0.1841 0.4444 0.0048 -0.0326 0.0100 -0.0037 

5sT 
0.0836 -0.2159 0.0640 0.0073 -0.0208 0.0042 

0.1005 -0.2285 -0.0688 0.0253 0.0108 -0.0005 

pt 
6.35649 6.35760 6.36639 6.36074 6.35645 6.35641 

penalty applied to generator 1 for having to encounter increasing network 

losses in supplying power to terminals 2 and 3. The line-segment graphs 

of Figure 10 illustrate the tendencies to be expected in sharing load, but 

for a practical system these curves should be refined by taking intermedi­

ate values of total system load. This would result in smooth curves of the 
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Table VI. Summary of results of example 5 

E1 
= 1.0 

PL1 
= 1.0 

E2 
= 1.0 

?L2 
= 1.0 

E3 
= 1.0 

PL3 
= 1.0 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

512 
2*0' 1*30' 1*30' 1*39' 1*37' 1*36' 

523 
5*0' 5*0' 4*40' 4*31' 4*33' 4*34' 

531 
-7*0' -6*30' -6*10' -6*10' -6*10' -6*10' 

P8l 

Pg2 

Pg3 

1.4335 1.3766 1.3622 1.3728 1.3704 1.3693 
P8l 

Pg2 

Pg3 

1.1246 1.1590 1.1411 1.1227 1.1268 1.1288 

P8l 

Pg2 

Pg3 
0.4806 0.4991 0.5275 0.5348 0.5332 0.5324 

5i 
1.85605 1.79362 1.77794 1.78948 1.78686 1.78567 

^2 
1.84416 1.88071 1.86167 1.84215 1.84648 1.84861 

£3 
1.96151 1.99187 2.03842 2.05037 2.04775 2.04644 

557 
0.7799 0.0488 -0.1112 0.0344 0.0016 -0.0138 

=», 
5SI -0.0643 0.4258 0.1862 -0.0679 -0.0115 0.0160 

». 
^3 

-0.7156 -0.4746 -0.0750 0.0335 0.0099 -0.0022 

Pt 
8.74736 8.74417 8.74219 8.74195 8.74195 8.74204 

general shape indicated. 

Example 6 illustrates a ramification of the technique described to 

permit holding the value of generated power at some terminal at a chosen 

value. This possibility includes either showing that a terminal is an 

interconnection point to a foreign system, or that a generator must have a 
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fixed value as in the case of hydro generation. If the terminal is an 

interconnection, then a load may be applied to represent the interchange 

power and generation there set equal to zero. If the terminal has fixed 

generation, there may also be a load if appropriate. In either case, fixing 

the value of generation imposes a new restriction on the system and requires 

a different method of solution. 

For example 6, 2.0 per unit load was applied at terminal 3 and genera­

tor 3 set at zero. This required that, for all possible solutions, 

P31 + P32 " -2'0- (84> 

This is effectively a restriction among the angles. For example, if 

5^ and 6^ are chosen arbitrarily, then must be given a value to satisfy 

this equation. The choice of is no longer free. 5^ and 6^ will deter­

mine but Pgg can have the correct value for only a certain value of 

V 
Only the inputs to generators 1 and 2 may be varied to find a minimum, 

and the system input becomes 

pt = ciV + caV (85) 

The problem may now be characterized as one in which it is necessary 

to minimize a function in the presence of side conditions. The method of 

solution of such problems is the application of Lagrange multipliers. If 

the function may be denoted by f and the side conditions by g, then a mini­

mum of f occurs when 

g|j (f + Xg) = 0 (86) 

where X is the Lagrange multiplier and is a constant. 
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Applying this method to example d, the criteria for minimum system in­

put are : 

X12 + *15 " X21 + X - 0 «"> 

X21 + X23 " X12 + X it " °- (88> d 

The partial derivatives of g with respect to 8^ and 5g are 

5§7 - " si" (P31 + 531> <89) 

|_ = _Ç s in  (P52 + V (90 )  

If X may be replaced by then the criteria may be given an inter­

pretation which may be rationalized with the method of solution of the pre­

vious examples. should be considered the incremental rate that a fic­

ticious generator at terminal 3 would have to have in order that the solu­

tion require its output to be zero. A generator at this terminal capable 

of supplying power at a lower incremental rate would be allowed to do so, 

and similarly a higher rate would prevent such a generator from competing 

economically. Having found a solution, is the rate which should be 

charged for power supplied at this terminal. In example 6 this rate is 

considerably higher than the rates of either of the generators due to the 

losses associated with transmission of power to terminal 3. 

The technique of solution differs from that of the previous examples. 

The first step is to assume two angles and calculate the power received at 

terminal 3 via one line. The power received via the second line is then 

fixed, and as a result the third angle in the problem may be determined 

from equation 22. It is then possible to calculate Pg^ and Pgg, and from 
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these values calculate ^ and A value of ^ may be determined by 

taking from equation 59 the relationship that 

(*23 ' X32̂  (*31 ~ *13)" 
(91) 

This may be transposed to give 

X31 + X32 ~ X13 + X23* 
(92) 

If this is expanded it may be seen that a value of may be determined by 

solving 

13 + X23" 

(93) 

All the quantities in this expression are known except The result 

this is consistent with the restriction of equation 84 that one angle is 

not independent. 

The results of example 6 are tabulated in Table VII. The first two 

trials resulted in unreasonable values of generator output, but they were 

useful in formulating trial 3. Two more trials were needed to reduce the 

input to its minimum, and trial 5 was considered to be the solution. The 

loss associated with transmission to terminal 3 is very high: 0.7090 per 

unit, or 35.45 percent of the system load. This accounts for the very high 

value assigned to for the load is so far electrically from the genera­

tors that a relatively inefficient plant located at bus 3 can compete 

economically. 

Figure 11 shows the power flows throughout the network from the mini­

mum input solution, and values of var flow were calculated and added to 

will be that will be zero, implying that 6^ is not to be changed, but 
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Table VII. Summary of : results of example 6 

E1 
= 1.0 

PL1 
= 0 

E2 
= 1.0 

PL2 
= 0 

E3 
= 1.0 to 

P
T

3
 

= 2.0 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

612 
-12*29' 20*36' 4*9' 2*26' 2*28' 

623 
32*29' 19*24' 24*51' 25*34' 25*33' 

531 
-20*0' -40*0' -29*0' -28*0' -28*1' 

Pgl 

Pg2 

Pg3 

0.0346 3.3785 1.6064 1.4351 1.4383 Pgl 

Pg2 

Pg3 

2.7675 -0.2023 1.1151 1.2740 1.2707 

Pgl 

Pg2 

Pg3 
0 0 0 0 0 

*1 
2.05052 1.85782 1.86134 

«?2 
1.83410 2.00430 2.00072 

?3 
3.72807 3.73287 3.73185 

dPt 

507 
2.3487 -0.0409 0.0056 

dPt 

a; 
-2.3487 0.0409 -0.0056 

dPt 
0 0 0 

7.27588 7.24612 7.24549 

this figure. This figure reveals that a large block of reactive power must 

be supplied at terminal 3 to meet the voltage schedule demanded, and both 

generators operate at leading power factors. Any correction applied to re­

duce these vars will reduce the losses in the system and produce a better 

minimum condition. As in example 3, the voltages of both generators may be 
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/. 44/0 

{0.452) 

l.O 
0.9038 I.096Z 

(J. 020) 

(0.474) 

(0.384) 

(1.049) 

2.Û 
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Figure II. Power and r eue five, power flows 
throughout the network for example 6. 
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Table VIII. Summary of results of example 7 

E1 = 1*° PL1 = ° 

Eg = i .0 PL2 = 0 

E3 * °*9 PL3 = 2*° 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

CP
 

1—
• 

ro
 9° 58 ' 0° 301 3°5 ' 2*22' 2*27 ' 

523 
19°21 24°30' 23*25' 23*43' 23*41' 

Ô31 
-29°0» -25°0' -26*30' -26*5' -26*8' 

Pgl 

Pg2 

2.0569 1.1964 1.4442 1.3750 1.3830 
Pgl 

Pg2 
0.4644 1.3841 1.1470 1.2118 1.2043 

Pg3 
0 0 0 0 0 

#1 
1.86787 1.79187 1.80060 

#2 
1.86794 1.93719 1.92914 

S3 
3.40329 3.40818 3.40765 

dPt 

587 
0.8482 -0.1061 0.0041 

dPt 
-0.8482 0.1061 -0.0041 

dPt 
0 0 0 

p
t 

7.06188 7.01723 7 .01389 7.01376 

raised. In this case, the voltage at terminal 3 was scheduled at a lower 

value, and example 7 was formulated on this premise. The voltage at termi­

nal 3 was arbitrarily reduced to 0.9 per unit, and a solution for minimum 

input was sought as tabulated in Table VIII. The input at the minimum was, 

in fact, less than for example 6, and Figure 12 illustrates the resulting 
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i.O 
1.3830 0.//J3 

(0.2485J 

1.0 
0.1691 1.2043 

(0.0892) 

1.3734 

(0.1667) 

0.9 
0.9H8 1.0882 

(0.6144) (0.5963) 

(0.1209) 

(0.03/7) 

2.0 
*7-1-2107) 

Figure J2. Power and reactive power flows 
throughout the network for example 7. The 
sustem is the same as for ex&mp/e b except 
É3' O.9. 
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power flows at the minimum as well as the calculated values of vars 

throughout the network. The vars required at terminal 3 have been reduced 

to approximately 60 percent of the amount required for example 6. 
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V. DISCUSSION 

This thesis describes a method for determining the operating condi­

tions which will result in the minimum fuel input to an electrical system 

with plants of various fuel economies. The premise on which the analysis 

was based is that the profile of voltages about the system will be speci­

fied by considerations of customer requirements at the various load points, 

or by limitations imposed by system insulation or lightning arresters, and 

as a result the voltages about the system must be fixed in magnitude and 

cannot be used as independent variables in seeking the conditions for mini­

mum input. The phase angles among these voltages, however, are not fixed, 

and they are the independent variables in solving for minimum input. Since 

the flows of both real and reactive power throughout a network can be 

specified as functions of voltages and angles, the solution for the minimum 

value of input becomes a problem in partial differentiation with respect to 

these phase angles. Equation 73 gives the resulting partial derivatives in 

general form. 

Implied in equation 73 is the criterion that each generating plant in 

the system must be in economic balance with all the other plants in the 

system. This is not a comparison of conditions between only two plants 

taken at random as implied by other investigators, but rather that each 

plant be considered with all the other plants simultaneously. The transfer 

impedance between pairs of plants appears in the denominator of equation 

73, which implies that if two plants are electrically relatively remote 

from each other there will be little effect in the economic criterion for 

the plant under consideration. Similarly, if two plants have a negligibly 
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small transfer impedance between them they would become as one plant and 

would have to operate at identical incremental rates. 

Examples 6 and 7 demonstrate how an incremental rate may be evaluated 

at a transfer or interconnection point. Again, this evaluation must, in 

general, consider all the other plants in the system. The rate determined 

for this point is the rate below which a generator applied at this terminal 

would be able to compete economically and supply power to the system. If a 

generator were applied to this point with the rate calculated for the in­

terchange, then its output would be predicted to be zero by equation 73, 

and for any higher rate such a generator would not be able to compete and 

it would be more economical to buy power from other stations in spite of 

system losses. 

Most of the work done in this field has been predicated on the method 

of George for expressing the losses in the system in terms of the real 

power flows at the terminals. The method of this thesis does not involve 

the losses directly, although they have been taken into account since P^n 

and P ^ both appear in the development and the difference between these 

quantities is the loss in this line. Furthermore, the effect of any var 

flow in such an element is taken into account without making any assump­

tions about the limits within which these vars must lie. 

Other methods assume that the incremental rate characteristics are 

linear, at least in certain regions, but this method assumes that a power 

series gives a better fit for the fuel input curve and as a result the in­

cremental rate curve corresponds exactly to the assumptions made about the 

fuel input curve. 

The data required by the method of this thesis to characterize the 
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electrical network are the set of transfer impedances among machines, to­

gether with values of shunt impedance to be applied at the terminals to 

represent the loads of the system. These data are easily compiled from a 

network analyzer, or they may be apparent without reduction in simple sys­

tems. It is not necessary to reduce analyzer measurements to a set of loss 

formula coefficients as in other methods, and there should be less diffi­

culty in preparing to run special cases such as a certain transmission line 

open or a unit out of service. It is necessary to evaluate the transfer 

impedances in the presence of the loads, for loads intermediate between 

stations will have an effect on these transfer impedances. A set of system 

impedances is necessary for each loading condition, but they need not be 

analyzed by means of a computer to reduce them to coefficients for use in 

the economic loading criteria. The assumption that loads be represented by 

constant impedance is necessary to permit the reduction to transfer imped­

ances, but this may be justified if the reduction is performed from a net­

work analyzer case which has a generation schedule in the neighborhood of 

the economic schedule sought. The loads will then be trimmed to the proper 

impedance values. Loads which were originally located at or near the gen­

erator terminals will not be affected by the reduction. A relatively heavy 

load may be transferred with small error, but if it is felt that a heavy 

load is too remote from any generator it may have its identity preserved by 

calling its bus an interconnection point. 

Brownlee also attempted to find the criteria for economic loading by 

means of voltage phase angles, but his conclusions can be applied only to a 

pair of machines and not to three or more machines or to systems which 

contain loops. Brownlee approached the problem through the concept of in-
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cremental losses and did not attempt to express the total system input or 

to differentiate it to find the economic loading criteria. The method of 

this thesis reduces to the same result found by Brovmlee for just two ma­

chines, but the extension of Brownlee's work will not yield the method of 

this thesis for three or more machines. 

For only two machines, the curves of Figure 3 may be used with rela­

tive ease to determine economic ratios. If more accuracy is desired than 

the curves can yield, then application of equation 60 is recommended. For 

three machines, a desk calculator is adequate from the standpoint of time 

required and of accuracy desired. It is possible to develop skill in han­

dling the criteria so that a change in angle may be estimated with accuracy 

and a minimum number of trials required to find the desired solution. For 

four or more machines, however, the degree of complexity of the problem is 

such that it is not feasible to use desk calculators, and it is recommended 

that the problem be programmed for a digital computer. 

It is not feasible to depend entirely on a network analyzer for the 

solution to this problem because of the precision with which angles must be 

measured. It is possible that a method might be developed for the analyzer 

which obviates this requirement, but equipment would have to be added to an 

analyzer to detect small differences in input due to angular changes with­

out actually providing a visual indication of what these angles might be. 

Analyzer auxiliary equipment to evaluate equation 73 might be the subject 

of further research. 

Another area for further research is the question of the effect of var 

flows on losses and economy as opposed to the cost of providing sources for 

these vars. Considerable work has been done showing the economy of pro­
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viding capacitors for power factor correction on radial lines or feeders, 

but not in network problems where the effect of a specific capacitor appli­

cation is more obscure. 
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VI. SUMMARY 

There are two phases in the determination of the minimum input oper­

ating condition for a system. The first is the preparation of data, and 

the second is the evaluation of several trial solutions which will converge 

to the desired operating condition. 

Phase 1 : 

1. Either by inspection of the system or by setting it up on a net­

work analyzer, determine the transfer impedances among all possible pairs 

of generator terminals, denoting any interconnection points as generator 

terminals. These transfer impedances should be expressed in polar form, 

giving magnitude B^ and angle £3^. 

2. Determine the shunt load impedances to be applied at these genera­

tor terminals. It is less vital to know the values of these impedances 

than to know the amount of power which they will demand from the network. 

3. Determine the input-output fuel characteristic of each plant. By 

a curve-fitting process, reduce this characteristic to a power series with 

the plant generated output as the variable. 

4. Differentiate the input-output characteristic to obtain a power 

series expression for the incremental fuel rate of each plant. 

Phase 2: 

1. Assign values to the voltage phase angles 5^, and form the differ­

ences 512, &23, etc. 

2. Evaluate the sums of the angles (f3.^ + 6^) for all possible val­

ues of j and i. j can never be equal to i. 

3. Evaluate the cosines of the sums formed in step 2 (or look them up 
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in a trigonometric table) and apply them to equation 21 to determine P^n 

throughout the network. 

4. From the values P^n and the local loads at each generator termi­

nal, evaluate the generator output powers P^. 

5. Determine the value ^ of each generator by substitution of the 

appropriate value of P ̂  into the incremental rate expressions. 

6. Evaluate the sines of the sums formed in step 2, and apply them 

together with the appropriate value of to determine the products X^ 

as defined by equation 72. 

7. Combine the products X^ as required by equation 73 to determine 

the various partial derivatives of Pfc with respect to each angle 5^. 

8. For the next trial, move one of the angles 6^ according to which­

ever of the partial derivatives of equation 73 has the largest magnitude, 

and in a direction indicated by the sign of this derivative. If the deriv­

ative is negative, increase the angle, and vice versa. 

9. The steps outlined in Phase 2 should be repeated until a trial 

yields derivatives which indicate that the next change should be the oppo­

site of the change last made. This implies that the solution lies between 

the last two trials, and nearer that one for which the derivatives are less. 
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