
A penalty function method for constrained molecular dynamics

by

Ajith Gunaratne

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Applied Mathematics

Program of Study Committee:
Zhjun Wu, Major Professor

Robert Jernigan
Glenn Luecke
Scott Hansen

Sunder Sethuraman

Iowa State University

Ames, Iowa

2006

Copyright © Ajith Gunaratne, 2006. All rights reserved.

UMI Number: 3229080

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3229080

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ii

Graduate College
Iowa State University

This is to certify that the doctoral dissertation of

Ajith Gunaratne

has met the dissertation requirements of Iowa State University

Major Professor

F the Major P ogram

Signature was redacted for privacy.

Signature was redacted for privacy.

iii

DEDICATION

To my parents Mr. & Mrs. Gunaratne, loving wife Nilanthi, my energetic, bright, boundless

son Chamara, two sisters Chandrika, Jeevani and only brother Lalith without whose support,

encouragement and trust I would not have been able to complete this work.

iv

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

ABSTRACT xii

CHAPTER 1. Introduction and background 1

1.1 Introduction 1

1.2 Background 3

1.2.1 Protein 6

1.3 Empirical force field 6

1.3.1 Introduction 6

1.3.2 Bond stretching potential - ipb 8

1.3.3 Angle bending potential - ipg 9

1.3.4 Torsion potential - ipT 9

1.3.5 Potential of non-bonding interactions - ipnb 10

1.4 Molecular dynamic simulations 12

1.4.1 Introduction 12

1.4.2 History 13

1.4.3 Limitations 14

1.5 Unconstrained molecular dynamic simulations 15

1.5.1 Verlet algorithm 15

1.5.2 Leap-Frog algorithm 17

1.5.3 Predictor-Corrector algorithm 18

1.5.4 Velocity version of Verlet algorithm 19

V

1.5.5 Beemans algorithm 20

1.5.6 Symplectic integrators 21

1.6 Constrained molecular dynamic simulations 21

1.6.1 Shake algorithm 21

1.6.2 Rattle algorithm 22

1.6.3 Stochastic method 24

1.6.4 Velocity rescaling 25

1.7 Review 25

CHAPTER 2. Lagrange multiplier method 26

2.0.1 Lagrange multiplier method 26

2.0.2 Time dependent Lagrange multiplier method for molecular dynamics . . 27

2.1 Review 30

CHAPTER 3. Penalty and barrier methods 31

3.0.1 History 31

3.0.2 Constraints 32

3.0.3 Penalty function method 32

3.0.4 Karush-Kuhn-Tucker multipliers 36

3.0.5 Exact penalty function 37

3.0.6 Barrier method 38

3.1 Review 41

CHAPTER 4. Molecular dynamics, penalty function method and its prop­

erties 42

4.0.1 Constrained molecular dynamics and penalty function method 42

4.1 Analysis of molecular dynamics 49

4.1.1 Root Mean Square Deviation (RMSD) 49

4.1.2 Velocity Autocorrelation Function (VAF) 50

4.1.3 Ramachandran Plots 52

4.2 Review 53

VI

CHAPTER 5. Implementation procedure 54

5.1 Introduction 54

5.1.1 Penalty function implementation on Argon clusters 55

5.2 CHARMM settings 62

5.2.1 CHARMM minimization energy process 66

5.2.2 Minimization methods 68

5.2.3 CHARMM force field 70

5.2.4 Convergence criteria 71

5.3 Penalty method implementation 71

5.4 Review 78

CHAPTER 6. Results, summary and discussion 79

6.0.1 Analysis of dynamics 79

6.1 Review 82

CHAPTER 7. Evaluation/conclusion 84

APPENDIX A. Fortran Program for Penalty function method for Argon

clusters 86

A.0.1 Main program 86

A.0.2 Sub program Verlet 89

A.0.3 Sub program Init_velocity 91

A.0.4 Sub program readjiles 93

A.0.5 Sub program distance 97

APPENDIX B. High performance Fortran program for Penalty function

method for Argon clusters 98

B.0.6 Sub program - Verlet 103

B.0.7 Sub program - PositionJnit 106

B.0.8 Sub program - Init-velocity 110

B.0.9 Sub program - bubble.sort Ill

BIBLIOGRAPHY .

ACKNOWLEDGEMENTS

viii

LIST OF TABLES

Table 5.1 Final steps of energy minimization 74

Table 5.2 Computing time of VL, SH and PL run. * Computing time for the 25ps

simulation after equilibrium 77

Table 5.3 Root mean square deviation (RMSD) of backbone atoms 77

IX

LIST OF FIGURES

Figure 1.1 The chemical formulas of 20 amino acids (47). Plot is created by Chems-

ketch software. (Advanced Chemistry Development Lab - www.acdlabs.com). 4

Figure 1.2 The space filling model of 20 amino acids. VMD visualization software

is used. Color is based on ResID 5

Figure 1.3 Three dimensional structure of Bovine Pancreatic Trypsin Inhibitor

(BPTI) protein with 58 residuals. Data are downloaded from protein

data bank (PDB) which released on 18-Jan-1983 (7). VMD visualiza­

tion software is used. Color is based on ResID 7

Figure 1.4 Bond stretching potential energy 8

Figure 1.5 Angle bending potential energy 9

Figure 1.6 Torsion potential energy 10

Figure 1.7 Lennard Johnes potential of single pair of atoms 11

Figure 5.1 The figure is illustrated potential energy changes when penalty term

change 57

Figure 5.2 The flow chart of the penalty function algorithm for Argon cluster sim­

ulation 58

http://www.acdlabs.com

X

Figure 5.3 Changes in potential energy of the trajectory for argon cluster 13 pro­

duced by the penalty function method. Here, randomly selected 60%

of all distances were constrained to their distances in the global en­

ergy minimum configuration. The trajectory already approached to

the global energy minimum (-44.3) of the cluster in 3000 time steps

while the trajectory generated by the Verlet remained in high energy.

The time step is 0.032ps and penalty term updated every 500 iteration

by 1 59

Figure 5.4 Changes in potential energy of the trajectory for argon cluster 13 pro­

duced by the penalty function method. Randomly selected 60% of all

distances were constrained to their distances in the global energy mini­

mum configuration. The time step is 0.032ps and penalty term updated

every 1000 iteration by 5 60

Figure 5.5 Changes in potential energy of argon cluster 24. Solid and dotted lines

show the potential energy of the trajectory produced by the Verlet

(VL) and penalty function (PL) methods, respectively. Here, randomly

selected 50% of all distances were constrained to their distances in the

global energy minimum configuration (-97.349) 61

Figure 5.6 CHARMM simulation procedure 63

Figure 5.7 Basic steps of molecular dynamic simulation procedure 65

Figure 5.8 Initial BPTI structure downloaded from PDB data bank. Picture uses

display style cartoon, coloring is based on RESID and use VMD software. 67

Figure 5.9 BPTI with four water molecules. Picture uses display style CPK. VMD

software is used to create picture. Color is based on RESID 68

Figure 5.10 The figure is showed sequence of BPTI (9) 72

Figure 5.11 This picture shows BPTI with all hydrogen atoms. There are 904 atoms

in total. Picture uses display style CPK and coloring is based on RESID. 73

xi

Figure 5.12 This picture shows minimized BPTI stricture with all hydrogen atoms.

Display style is CPK and coloring is based on RESID. VMD is used. . 75

Figure 5.13 Average of 25ps structure of equilibrium period of BPTI structure in­

cluding all hydrogen atoms. CPK display style and color is based on

RESID. The picture is created by using VMD software 76

Figure 5.14 Simulation time for VL, SH and PL. * Heating - bring the system to

normal temperature; § Equilibrium - the time for the system to reach

the equilibrium; ^Production - stable dynamic results for analysis. ... 77

Figure 6.1 Temperature distribution of Shake and Penalty run 79

Figure 6.2 Temperature distribution of Verlet run 80

Figure 6.3 The average backbone RMS fluctuations of the residues in the 25ps

production simulations 80

Figure 6.4 The average Ca RMS fluctuations in the 25ps production simulations. 81

Figure 6.5 The average RMS fluctuations of the HN atoms in the 25ps production

simulations 81

Figure 6.6 The average RMS fluctuations of the non-backbone atoms in the 25ps

production simulations 82

Figure 6.7 The velocity auto correlations of the Ca atom of 51 CYS based on the

trajectories produced by VL, SH, and PL in a time period of O.lps. . . 83

xii

ABSTRACT

We propose a penalty-function method for constrained molecular dynamic simulation by

defining a quadratic penalty function for the constraints. The simulation with such a method

can be done by using a conventional, unconstrained solver only with the penalty parameter

increased in an appropriate manner as the simulation proceeds. More specifically, we scale

the constraints with their force constants when forming the penalty terms. The resulting

force function can then be viewed as a smooth continuation of the original force field as the

penalty parameter increases. The penalty function method is easy to implement and costs

less than a Lagrange multiplier method, which requires the solution of a nonlinear system

of equations in every time step. We have first implemented a penalty function method in

CHARMM and applied it to protein Bovine Pancreatic Trypsin Inhibitor (BPTI). We compared

the simulation results with Verlet and Shake, and found that the penalty function method had

high correlations with Shake and outperformed Verlet. In particular, the RMSD fluctuations

of backbone and non-backbone atoms and the velocity auto correlations of Ca atoms of the

protein calculated by the penalty function method agreed well with those by Shake. We have

also tested the method on a group of argon clusters constrained with a set of inter-atomic

distances in their global energy minimum states. The results showed that the method was

able to impose the constraints effectively and the clusters tended to converge to their energy

minima more rapidly than not confined by the constraints.

1

CHAPTER 1. Introduction and background

1.1 Introduction

Molecular dynamics simulation can be used to study many different dynamic properties of

proteins, but a long sequence of iterations has to be carried out even for small protein motions

due to the small time step (1.0e-15sec) required (47). The bonding forces are among those

causing fast protein vibrations that require small time steps to integrate, but they may be

replaced by a set of bond length constraints, to increase the step size and hence the simulation

speed (23). Several Lagrange multiplier types of methods have been developed for constrained

molecular dynamics simulation. However, in all these methods, the multipliers have to be

determined in every time step by solving a nonlinear system of equations so that the new

iterate can satisfy the constraints (3). Depending on the number of constraints, the additional

computational cost can be large, given the fact that the force field calculation in every time

step is at most 0(n2), while the solution of the nonlinear system of equations may require

0(m3), where n is the number of particles in the system and m the number of constraints.

In this thesis, we propose a so-called penalty function (34) method for constrained molecular

dynamics. In this method, a special function is defined so that the function is minimized if

the constraints are satisfied. By adding such a function in the potential energy function, the

constraints can then be removed from the system, and the simulation can be carried out in

a conventional, unconstrained manner. The advantage of using a penalty function method is

that it is easy to implement, and does not require solving a nonlinear system of equations

in every time step. The disadvantage of the method is that the penalty parameter, i.e., the

parameter used to scale the penalty function, is hard to control and in principle, needs to be

large enough for the penalty function to be truly effective, which on the other hand, may cause

2

numerical instabilities when used in simulation (16). It may also arguably be a disadvantage

that the penalty function method only forces the constraints to be satisfied approximately

but not completely. The method could be used as an alternatively and computationally more

efficient approach for constrained molecular dynamics simulation than the Lagrange multiplier

types of methods. We have first implemented a penalty function method in CHARMM (9)

and tested it on protein Bovine Pancreatic Trypsin Inhibitor (BPTI) by following a similar

experiment done by Gunsteren and Karplus in (23) for the Shake algorithm (38). In this

implementation, we removed the bond length potentials from the potential energy function and

introduced the corresponding bond length constraints. For each of the bond length constraints,

we constructed a quadratic penalty function and inserted it into the potential energy function.

For each different type of bond, we also scaled the corresponding penalty function with the

force constant of the bond so that the resulting function had the same form as the original

bond length potential if without multiplied by the penalty parameter. The resulting force field

becomes simply a continuation of the original force field as the penalty parameter changes

continuously from 1 to a value > 1. We conducted a simulation on BPTI with the penalty

function method, and compared the results with Verlet and Shake, and found that the penalty

function method had a high correlation with the Shake and outperformed the Verlet. In

particular, the root-mean-square-deviations (RMSD) of the backbone and non-backbone atoms

and the velocity auto correlations of the Ca atoms of the protein calculated by the penalty

function method agreed well with those by Shake. Note again that the penalty function method

requires no more than just applying a conventional, unconstrained simulation algorithm such

as the Verlet algorithm to the potential energy function expanded with additional penalty

terms for the bond length constraints. We have also tested the penalty function method

on a group of argon clusters with the equilibrium distances for a selected set of molecular

pairs as the constraints. The equilibrium distances mean that distances for the pairs of argon

molecules when the clusters are in their global energy minimal states. We generated these

distances by using the global energy minimal configuration of the clusters published in previous

studies (36). A penalty function was constructed for each of the constraints and incorporated

3

into the potential energy function of the cluster. The simulation was then conducted by

using a conventional, unconstrained simulation method, i.e., the Verlet algorithm (49), with

the extended potential energy function. There were no substantial algorithmic changes or

computational overheads required due to the addition of the constraints. The simulation

results showed that the penalty function method was able to impose the constraints effectively

and the clusters tended to converge to their lowest energy equilibrium states more rapidly than

not confined by the constraints.

We introduce protein, empirical force field, history of molecular dynamics, unconstrained

and constrained dynamics in chapter 1. In chapter 2, we present time independent and depen­

dent Lagrange multipliers. Theory of penalty and barrier methods are described in chapter

3 (as a optimization problem). We introduce theory of penalty function methods and statis­

tical properties in chapter 4. Then, in chapter 5, we present Argon simulation and summery

of CHARMM program basics followed by penalty function implementation on CHARMM. In

chapter 6, we present the results on BPTI and their comparisons with the Verlet and the Shake.

We conclude the research in chapter 7. Serial and parallel code of algorithm is presented in

appendix A and B.

1.2 Background

One of the simplest ways to describe problems in computational chemistry, yet most difficult

to solve is the determination of molecular conformation. A molecular conformation problem

can be described as finding the global minimum of a suitable potential energy function, which

depends on relative atom positions. Progress toward solution techniques will facilitate drug

design, synthesis and utilization of pharmaceutical and material products. The success of com­

putational methods to solve such kind of problems hinges on two factors: a suitable potential

energy function to predict the native states of the system as the global minimizer of the po­

tential energy function and the available minimization algorithms that can be used to locate

efficiently the global minimizer of the potential energy function. The methods of quantum

chemistry are quite suited to predict the geometric, electronic and energy features of known

4

and unknown molecules. However, it remains too expensive in terms of computer time and

nearly intractable, even at the simplest, semi-empirical level, for many organic molecules or

biological macromolecular structures. Therefore, increased interest has focused on models that

are able to give quickly an energy favorable conformation for large systems.

coo- coo-
I

coo-
H 3 N—C —H + H 3 N—C —CH 3 H 3 N — Ç— CH ^ I

H

Glycine (Gly) Alanine (Ala)

H

Valine (Val)

^ch 3

"CH ,

T
H 3 N—C—CH 2 —CH

H C H 3

Leucine (Leu)

C O O - CH 3 COO- y 0 0 " /

+ H 3 N—c—c-—CHn—CHi + H 3 N Ç —C H 2 —O H + H 3 N—C —Ç -

H

H H

Isoleucine (Lie)

COO- O I ^
H 3 N—C—CH 2 —C^

H O-

As partie Acid (Asp)

A
Serine (Ser)

COO

H 3 N—C—CH 2 —C^

H

Asparagine (Asn)

P

Nh U

H OH

Threonline (Thr)

-CH,

M Q — H t I
ch 2 ch 2

COO- o

h 3 n— c — c h 2 — c h 2 — c

H V
Glutamic (Glu)

Proline (Pre)

C O O -

//
COO- COO-

HoN—C—CHp—CHp—C

\
H NH 2

Glutamine (Gin)

H 3 N—c—ch 2 —ch 2 —s—CH 3 H 3 N—c—CH 2 —SH

H H

Methionine (Met) Cysteine (Cys)

C O O - coo -

H 3 N—C—CH 2 —CH 2 —CH 2 —NH 3
+ H 3 N C—CH 2 —CH 2 —NH—C^

H H

Lyslin (Lys)

î°° z^°~~nh

H NH*

Histidine (His)

NH 2

NHo

Arginine (Arg)

coo-
H3N—C—CHp—C

H

CH—CH C >
CH=CH

CH

Phenylalanine (Phe)

C00- CH—CH

+ H 3 N — C — C H 2 — ^ c — O H

H CH=CH/

Tyrosine (Tyr)

^ /"-OH

"i'-ZV"
Tryptophan (Trp)

HoN—C —C Hp—C — J I * 1 1
H

Figure 1.1 The chemical formulas of 20 amino acids (47). Plot is created
by Chemsketch software. (Advanced Chemistry Development
Lab - www.acdlabs.com).

Molecular mechanics or empirical force field methods are techniques that play an important

role in the research of molecular conformation (47).

In a molecular dynamics simulation, the classical equations of motion for the positions,

velocities, and accelerations of all the atoms and molecules are integrated forward in time

http://www.acdlabs.com

Alanine

Arginine

Asparagine

Aspartate

Cvsteine

Glutamine

Glutamate

Glycine

Histidine

Isoleucme

Leucine Threonine

Tryptophan

Tyrosine
Methionine

Valine
Phenylalanine

Proline

Serine

Figure 1.2 The space filling model of 20 amino acids. VMD visualization
software is used. Color is based on ResID.

using finite-difference algorithms. The dynamical trajectories given by Newton's equations of

motion are approximately calculated (43).

In simulations, we assume that the forces on particles are nearly constant over very short

periods of times (femtosecond = 10~15 seconds). During that time, we move the particles

along simple parabolic trajectories while recalculating the forces. Then, repeat this process.

Most experimental work is done under conditions of constant temperature, constant volume or

constant pressure. The main strengths of molecular dynamics are that they efficiently sample

the given ensemble, and that they provide dynamical quantities, such as velocity autocor-

6

relation functions, dynamic scattering factors, and diffusion constants. The main weakness

of molecular dynamics is an inability to access very long time scales, on the order of one

microsecond (10~6 seconds) or greater (31).

1.2.1 Protein

Proteins (figure 1.3) are large, complex molecules made from different amino (figure (1.1),

(1.2)) acids bonded together sequentially such that they form a long string of a molecule. And

like a string, these long molecules can twist and turn and bunch up to have a final shape that

is round. These strings actually fold up into distinct structures that usually end up looking

overall like a globular structure which are very complex. There are 20 (figure (1.1), (1.2))

amino acids, 9 have sidechains capable of forming hydrogen bonds with each other. There are

2 amino acids with sidechains that can form covalent bonds with each other. The remaining

9 amino acids are water-fearing, and cannot form any kind of bond with each other, but their

desire to be away from the external environment of water is a strong force that pushes them

towards the inside of the protein [(12), (13), (14)].

1.3 Empirical force field

Empirical forces are played major part of the classical molecular dynamics. The accurate

force field is very important for accuracy of the dynamics. First empirical force field functions

are discussed in details. Then history of molecular dynamic simulations are presented followed

by unconstraint and constraints methods.

1.3.1 Introduction

The goal of molecular modelling is to predict the energy associated with a given confor­

mation of a molecule. The energy of a target molecule depends on the relative positions of its

atoms (29). This energy can be approximately estimated by the sum of several contributions.

The deformation (23) due to interaction between two non-bonded atoms represents the action

of Van der Waals attraction, steric repulsion and electrostatic attraction-repulsion on these

7

Figure 1.3 Three dimensional structure of Bovine Pancreatic Trypsin In­
hibitor (BPTI) protein with 58 residuals. Data are downloaded
from protein data bank (PDB) which released on 18-Jan-1983
(7). VMD visualization software is used. Color is based on
ResID.

two atoms the potential energy function can be studied as a sum of different type of potential

term that can be written as (28):

(p = <pb + <Pe + + Vnb + (specific terms) (1.1)

where ip is often referred to as the steric energy or potential energy. It corresponds to the energy

difference between the real molecule and a hypothetical molecule in which all structural values,

such as bond lengths and bond angles are exactly equilibrium values. In equation (1.1):

• <Pb ~ bond energy, describing the compression or the extension of a bond from its equi­

librium length.

• tpe - angle bending energy, and is the function of bond curve with respect to its equilib­

rium value.

8

• ifiT - torsion energy.

• (pnb - interaction energy between two non-bonded atoms.

• specific terms - could be out of plane bending, electrostatic interactions and possible

hydrogen bonding, mean force potential.

1.3.2 Bond stretching potential - <pb

The bond stretching contribution (figure 1.4) is represented by Hookes law. It measures the

energy due to the variation of bond length after extension or compression from their equilibrium

values [(28), (23)]:

atom -1

atom-2

Figure 1.4 Bond stretching potential energy.

<Pb = - ry7]2 (1.2)
i=i

where

I - total number of bonds in the molecule

ki - bond force constant

ri - bond length

r^q - is the bond length at equilibrium position

The parameters ki and r^q are invariant, depending only on the type of each pair of connected

atoms. Equation (1.2) is a rough approximation of bond energy. Alternatively, a Morse

potential can be used to describe more precisely (29) the bond stretching energy due to the

variation of a bond length:

= I>((1.3)
1=1

9

where D and a are parameters characterizing the bond. The use of such a potential seems to

be useful for elongated hydrogen bonds, which otherwise tend to dissociate.

1.3.3 Angle bending potential - ipg

Angle bending potential (figure 1.5) determines the energy quantity resulted by [(29), (23)]

the angle variation between two adjacent bonds based on an equilibrium bond angle. In the

case of harmonic approximation, this is equally derived from Hooks law:

i n

%% - (1-4)
i , j=1

where

kij - force constant

6ij - bond angle between 3 atoms

9^q- - bond angle at equilibrium position between 3 atoms

n - is number of atoms

atom-1

atom-2 atom-3

Figure 1.5 Angle bending potential energy.

1.3.4 Torsion potential - ipT

Torsion energy (figure 1.6) represents the energy modification of the rotation of the molecule

around a bond. The most common expression which permits to (28) describe the evaluation

of the molecule energy as the function of torsion angle is the Fourier series (9):

1 n

tpT = ~ As[l + COs(sTi - $)] (1.5)
i=l

where

Ai>s - force constant which controls the curve amplitude

10

Ti - torsion angle

<£> - phase

s - periodicity of Ai iS

Torsion energy is in fact a correction of different energy terms rather than a physical process.

It represents the energy quantity that should be added to or subtracted from the summation

of (fib + pe + <Pnb- Torsion energy is used to obtain the (9) geometry in good agreement with

an experiment or with the geometry that is deduced from quantum chemical calculations.

atom-2 atom-4

atom-1 atom-3

Figure 1.6 Torsion potential energy.

1.3.5 Potential of non-bonding interactions - ipn\j

Interaction between two non-bonding atoms is the principal cause of steric hindrance, which

play an important role in the molecular geometry. The energy of non-bonding interactions is

the sum of energies of all non-bonding atoms acting between them (9). It includes the energy

of Van der Waals interaction, electrostatic energy and induction energy terms. The term Van

der Waals interaction is generally described by the Lennard Johnes potential (figure 1.7):

Pvdw — ^ ^

Aj,j _ Bj, j
(1.6)

where

Aij and Bij - are Van der Waals constants

rij - is distance between two non-bonding atoms i and j

The summation is taken over all non-bonded pairs of atoms (i , j). These expressions involve

two terms:

1. An attractive part, corresponding to induced dipole-induced dipole interaction, propor­

t i o n a l t o r f j , w h e r e r ^ - i s t h e d i s t a n c e b e t w e e n t h e t w o a t o m s i a n d j .

11

2. A repulsive part r}2- , rapidly growing as the distance is getting shorter.

2.0 -
Repulsion region

>-

P 0) c <D
15

0.5-

I
o

CL

Attraction region

-0.5 -

1.75 2.75 1.00 1.25 1.50 2.00 2.25 2.50
Distance

Figure 1.7 Lennard Johnes potential of single pair of atoms.

For a given geometrical arrangement of the atoms in a molecule system, the steric energy,

due to distortions of bond lengths and angles with respect to the reference values and Van

der Waals interaction (9), can be calculated according to the potential energy function. To

determine the actual equilibrium geometry, this steric energy with respect to all internal degrees

of freedom must be minimized.

Electrostatic energy increases with the polarity of chemical bonds. It can be expressed

using Coulomb potential. Induction energy is the consequence of the distortion of electronic

distribution, which depends on the electric field created by other molecules, and generates

induced electric moments.

Bond lengths and bond angles are usually available from existing structural information

(i.e., from X-ray crystallography). Bond stretching parameters can be directly derived from

vibrational force constants. The coefficients of the torsion barriers can be estimated from bar­

rier heights obtained through microwave spectroscopy, thermodynamic studies, or far infrared

and Raman spectroscopy. More challenging is the evaluation of the Van der Waals interaction,

a crucial point since these interactions are important in determining the stability of crowded

or highly branched molecules such as peptides [(9), (29), (28), (47)].

12

1.4 Molecular dynamic simulations

1.4.1 Introduction

Molecular dynamics has been used for decades to investigate dynamical properties of mole­

cules, solids, and liquids by numerical simulations. In the classical (or conventional) molecular

dynamics approach, a model of interatomic interactions must be provided as input before a

simulation can be carried out. Such models, or interatomic potentials, are based on a previous

knowledge of the physical system studied. Ionic forces can be derived from such model poten­

tials, and atomic trajectories are computed by integrating the Newtonian equations of motion

(33).

Due to the vast improvements in computer power, speed, and availability over the past

decades the Molecular Dynamics methods are becoming increasingly common technique of

simulating molecular scale models of matter. It is now reasonable and possible to simulate

realistic (37), large scale blocks of atoms (21) and observe macroscopic (20) effects from these

simulations using a desktop computer. In simple terms, a molecular dynamics simulation

amounts to finding a numerical solution to the n-body problem. Given a function describing

the potential energy the equations of motion can be iteratively solved in order to dynamically

simulate the motions of the particles within the system. Next, we save average values for

physical, thermodynamic over long time periods. Higher order numerical approximations have

always been available. However, they have frequently been passed over in favor of lower order

techniques in order to save on computing time. With the massive increases in computational

power becoming readily available in smaller and smaller machines one must begin to reevaluate

these decisions and begin to bring higher numerical accuracy back into the picture. Whereas

before, in order to simulate realistically sized blocks of atoms it was necessary to use a second

or third order accurate method (18).

In molecular dynamics, we follow the laws of classical mechanics, and most notably New­

ton's law (47):

— fi (1 '7)

13

for each atom i in a system constituted by n atoms. Here, mi is the mass of the atom, a* =

its acceleration, and fi the force acting upon it, due to the interactions with other atoms and

Xi = {xii,x2i,x3i) £ R3. This concludes that molecular dynamics is a deterministic technique.

For example, given an initial set of positions and velocities, the subsequent time evaluation is

completely determined.

1.4.2 History

There are some of the key papers that appeared in the 50s and 60s which can be regarded as

milestones in molecular dynamics. The first paper reporting a molecular dynamics simulation

was written by (1). The purpose of the paper was to investigate the phase diagram of a

hard sphere system, and in particular the solid and liquid regions. In a hard sphere system,

particles interact via instantaneous collisions, and travel as free particles between collisions.

The calculations were performed on a UNIVAC and on an IBM 704. The (19) are probably the

first example of a molecular dynamics calculation with a continuous potential based on a finite

difference time integration method. The calculation for a 500-atoms system was performed on

an IBM 704, and spent about a minute per time step. Aneesur Rahman at Argonne National

Laboratory has been a well known pioneer of molecular dynamics. In his paper (39), he

studies a number of properties of liquid Argon, using the Lennard-Jones potential on a system

containing 864 atoms on a CDC 3600 computer. The legacy of Rahman's computer codes is

still carried by many molecular dynamics programs in operation around the world.

Loup Verlet calculated (49) the phase diagram of argon using the Lennard-Jones potential,

and computed correlation functions to test theories of the liquid state. The bookkeeping

device which became known as Verlet neighbor list was introduced in his paper. This method

is still popular in unconstrained molecular dynamics. This schema is called Verlet algorithm.

Phase transitions in the same system were investigated by Hansen and Verlet in 1969 (25).

The velocity version of Verlet is introduced in 1982 (46). Later constraints algorithms are

introduced. Shake and Rattle algorithms are widely used constrained algorithms in literature.

14

1.4.3 Limitations

Molecular dynamics is a powerful technique but has limitations. One weakness is the

complication of how we can use Newton's law to move atoms, when the systems at the atomistic

level obey, quantum laws rather than classical laws. It has been shown (24) that the classical

approximation is poor for very light systems such as H2, He and Ne.

In molecular dynamics, atoms interact with each other. These interactions originate forces

which act upon atoms, and atoms move under the action of these instantaneous forces. As the

atoms move, their relative positions change and forces change as well. The essential ingredient

containing the physics is therefore constituted by the forces. A simulation is realistic only

to the extent that interatomic forces are similar to those that real atoms would experience

when arranged in the same configuration. Forces are usually obtained as the gradient of a

potential energy function, depending on the positions of the particles. The realism of the

simulation therefore depends on the ability of the potential chosen to reproduce the behavior

of the material under the conditions at which the simulation is run (50).

Typical molecular dynamic simulations can be performed on systems containing thousands

or, perhaps, millions of atoms, and for simulation times ranging from a few picoseconds (10~12

seconds) to hundreds of nanoseconds (10~9 seconds). While these numbers are certainly re­

spectable, it may happen to run into conditions where time and/or size limitations become

important.

The engine of a molecular dynamics program is its time integration algorithm, required to

integrate the equation of motion of the interacting atoms and follow their trajectory. Time

integration algorithms are based on finite difference methods, where time is discretized on a

finite grid, the time step At being the distance between consecutive points on the grid. Knowing

the positions and some of their time derivatives at time t, the integration scheme gives the

same quantities at a later time (t + At). By iterating the procedure, the time evolution of the

system can be followed for long period of times. These schemata are approximate and there

are errors associated with them. In particular, we can have truncation and rounding off errors.

Truncation errors are related to the accuracy of the finite difference method with respect to

15

the true solution. Finite difference methods are usually based on a Taylor expansion truncated

at some term. These errors are independent on the implementation. They are intrinsic to

the algorithm. Round-off errors, related to errors associated to a particular implementation

of the algorithm. It is based on finite number of digits used in computer arithmetics. Both

errors can be reduced by decreasing At. For large At, truncation errors dominate, but they

decrease quickly as At is decreased. Round-off errors decrease more slowly with decreasing

At, and dominate in the small At limit. With 64-bit precision helps to keep round-off errors

at a minimum level.

There are many different type of models that have been developed and tested to perform

molecular dynamic simulations. They can be divided as unconstrained and constrained simu­

lation schemata.

1.5 Unconstrained molecular dynamic simulations

In this section, we discussed some of the popular algorithms which do not use constraints.

These include Verlet, Leap-Frog, Predictor-Corrector, Velocity Verlet.

1.5.1 Verlet algorithm

The verlet algorithm was introduced by (49). Even this simple finite difference scheme is

widely used in molecular dynamic simulations. A differential equation of the form (1.7) is a

second order strongly non linear ordinary differential equation. We assume x(t) represent 3

dimension position vector and consider Tayler expansion as follows (47):

X i (t + A t) = X i (t) + A t ± i + ̂ y A t 2 X i + ̂ j A i 3 X i + 0 (A t A) (1.8)

X i (t — A t) = X i (t) — A t i i + ̂ j -At2 X i — ^ j -At3 X i + 0 (A t 4) (1.9)

Adding (1.8) and (1.9) give:

X i (t + A t) — X i (t) - X i (t — A t) + A t 2 X i + 0(A£4) (1.10)

16

This is the basic form of the Verlet algorithm. Since, we integrate Newton's equation, by (1.7),

we have:

Xi = —fi = Vipi(x{t)) (1-11)
77% 771,

where i p i (x (t)) is a potential function. In beginning of this Chapter, we discuss potential

functions in details.

Xi{t + Ai) = Xi (t) — Xi(t — At) — At2 —V <pi(x(t)) + 0(At4) (1.12)
Tïl i

We need initial values Zj(0) and Xj(At) to calculate preceding position. By throwing out 0(At4)

term, we obtain recursive explicit formula to compute X{ (t + At), x j(t + 2 A t) X i (t + n A t)

successively. The scheme in equation (1.12) is called Verlet algorithm (49). The velocities

do not participate in the recursive iteration but are needed for property calculations. This

makes it difficult to implement stochastic collisions for the equilibration of the temperature

and impossible to use this method to solve differential equation, such as those arising in the

constant pressure method, in which the acceleration depend upon the velocities as well as the

position. However, the velocity can be calculated by:

Vi(t) = Xi(t) = ^-^[xiit + At) - Xi(t - A t) } + 0 (A t 2) (1.13)

The computed a%(t + At) would be off from the real Xi(t + At) by 0(At4). We called this as

a local truncation error which is intrinsic property of the algorithm. Clearly, as At —» 0, then

local truncation error —> 0, but that does not guarantee the algorithm works, because what we

need is {xn(t+T)} for a given finite T, not a%(t +At). To obtain {xn(t+T)}, we must integrate

tit (= 5^) steps. The difference between computed {xn(t + T)} and the real {xn(t + T)} is

called the global error. An algorithm can be useful only when At —> 0 the global error —> 0.

A careful analysis of the error propagation in equation (1.10) indicates that the global error is

0((At)2) as At —> 0. The Verlet algorithm is thus a second order method. This implies only

part of the analysis because the order of an algorithm only characterizes its performance when

At 0. To save computational cost, most often we must adopt a quite large At. Higher order

algorithms do not necessarily perform better than lower order algorithms at practical At. In

17

fact, they could be much worse by diverging spuriously at a certain At, while a more robust

method would just give a finite but manageable error for the same At. This is the concept of

the stability of an numerical algorithm.

In addition to local truncation error, there is round off error due to the computers finite

precision. The effect of round off error can be better understood in the stability domain.

In most applications, the (round off error) <C (local truncation error). Some applications,

especially those involving high order algorithms, do push the machine precision limit. In those

cases, equating (local truncation error) 3> e where e is the machines relative accuracy, provides

a practical lower bound to At, since by reducing At would no longer reduce the global error

2. Calculate a%(t + At) using equation (1.12)

3. Calculate V i (t) if desired

4. Replace a\(t — At) with a%(t) and z*(t) with a%(t + At)

5. Stop if it converges otherwise repeat step 1

Verlet algorithm is computed the advancement of positions all in one step using equation

(1.12). It is simple to program since it is simple straight forward algorithm. Verlet scheme is

time reversible and conserves energy well even with relatively long time steps. The velocities at

t can be calculated only after z,(t +At) are known. One must know initial Xi(t) and Xi(t — At)

to start trajectory, rather than z,(t) and V{(t) (2).

1.5.2 Leap-Frog algorithm

Leaf-frog (47) method is a modified version of the Verlet algorithm. As we describe in

previous section, the Verlet algorithm uses the positions and force at the time t and the

(47).

Algorithm:

Start with x,(t) and x,(t — At)

Repeat following steps:

1. Calculate

18

positions at the time (t — A t) to predict the positions at the time (t + A t) , where A t is the

integration step. The error in the atomic positions is of the order of 0(At4). The velocities

are calculated from the basic definition of differentiation of equation (1.13) with an error of

the order of 0(At2). To obtain more accurate velocities, the leapfrog algorithm which uses

velocities at half time step can be used:

vi(t + i t) — ——) + At— + 0((At)3) (1-14)
l I rrii

Atomic position calculate:

X i i t + A t) = X i (t) + At Viit -\——) + 0((At)3) (1.15)

Velocity at time t approximated:

v i { t) = v , (t - ») + „ , (« + f) + Q ((A t) 2) (1 .16 ,

This method is useful when the kinetic energy is needed at time t. The leapfrog algorithm is

computationally less expensive and requires less storage which could be an important advantage

in the case of large scale calculations. Moreover, the conservation of energy is respected, even

at large time steps. Therefore, the computation time could be greatly decreased when this

algorithm is used. However, when more accurate velocities and positions are needed, another

algorithm should be implemented, such as Predictor-Corrector algorithm.

1.5.3 Predictor-Corrector algorithm

Here, we solve the second order differential equation (1.7). That can be written in normal

form:

x = f (x , x , t) (1.17)

where x G M3. First step of this algorithm consists in evaluating the atomic positions and

velocities at time (t + At) from the positions and the velocities at time (t — iAt), where

i = 0,..., k — 2. k is the order of the predictor part. The extrapolation is given by:

k- l

X i (t + At) = X i (t) + At X i (t) + A t 2 ̂ dif{t + At (1 — i)) (1.18)
i=1

19

which compute atomic position and:

k-1
At X i (t) = X i (t + A t) - X i { t) + At2 ^ + At (1 - i)) (1.19)

i=i

for the velocities. The coefficient /?; satisfy the following equation:

k — 1 ,
= g = 0,1, ...A:-2 (1.20)

i=1 ^

The algorithm constitutes another commonly used class of method to integrate the equation

of motion. Algorithm is contained three computational steps. They are:

1. Predictor : Prom the positions and their time derivatives up to a certain order q, all

known at time t, one predict the same quantities at time (t + At) by means of Taylor

expansion.

2. Force evaluation: Force is computed taking the gradient of the potential at the pre­

dicted positions. Resulting acceleration will be in general different from the predicted

acceleration. The difference between the two constitutes an error.

3. Corrector : Define an error used to correct positions and their derivatives. All the

corrections are proportional to error. The coefficient of proportionality being a magic

number determined to maximize the stability of the algorithm (47).

The Predictor Corrector algorithm gives more accurate positions and velocities than the

leapfrog algorithm, and is therefore suitable in very delicate calculations. However, it is com­

putationally expensive because it include additional step and needs significant storage.

1.5.4 Velocity version of Verlet algorithm

In the Verlet algorithm the velocities are not calculated explicitly and leads to difficulties in

some applications. Because, the velocity of time t can be calculated only after the position at

time (t + At) has been obtained. Making it difficult to implement simulations such as constant

pressure since it is depends on velocities as well as positions. The velocity Verlet algorithm

(46) overcomes this difficulty:

X i (t + At) = X i (t) + At ± i (t) + + 0 (A t 3) (1.21)
Z TTi-j

20

Xi(t + At) = X i (t) + — [f i (x (t)) + f (x (t + At))] + 0(At2) (1.22)

Algorithm:

Start with T*(t), j%(t) and calculate f i { x (t)) . Repeat the following steps:

1. Calculate X i (t + A x) using equation (1.21)

2. Calculate velocities at mid-step using ij(t + ^) = ± j (t) + ̂ f i (x (t))

3. Calculate /j(t + At)

4. Compute the velocity using ± i (t + A t) = X i { t + - ^) + f i (t + At)

5. Stop if converge otherwise repeat step 1

This version of algorithm does calculate position and velocity simultaneously. Local and global

errors are in order of 0((At)3) and 0((At)2) respectively. Since, Velocity version of Verlet

algorithm calculate velocities and positions simultaneously, it enable us to compute kinetic

energy at time (t + At). Velocity version of Verlet algorithm is numerically stable, and can

start with positions and velocities at time t. Studies have shown that the scheme conserves

energy well even with relatively long time steps and simple to program.

1.5.5 Beemans algorithm

Beeman's model (6) is similar to the velocity Verlet algorithm. We start out with x,(t),

fi(t — At), fi(t) and i;(t). Then:

At2

X i (t + At) = X i (t) + A t X i (t) + g ^[4f i (t) - f i (t - At)] + 0 (A t 4) (1.23)

evaluate f i (t + At) and then:

ii(t + At) = ± i (t) + :j^[5/i(i + At) + 8f i (t) - f i (t - At)] + 0(At4) (1.24)

This is a third order method.

21

1.5.6 Symplectic integrators

Symplectic integrators preserve the property of phase space volume conservation (Liouvilles

theorem) of Hamiltonian dynamics. They tend to have much better energy conservation in

the long run. The velocity Verlet algorithm is, in fact, symplectic [(52), (44)]. As with

the predictor-corrector algorithm, symplectic integrators tend to perform better at higher

order, even on a per cost basis. The high-order predictor-corrector and high-order symplectic

integrators are the real competitors for high accuracy integrators. It has been understood

that the long term performance of a symplectic integrator is always superior to that of a

non-symplectic integrator (47).

1.6 Constrained molecular dynamic simulations

A common modeling (4) strategy in molecular dynamics is to maintain atoms at fixed

separations by the use of constraint relations in cartesian coordinates. This approach can

be generalized to freeze other relationships among the other variables, as well. Constrained

molecular dynamic methods are popular, especially to fixed intramolecular bond lengths and/or

angles during a simulation. Intramolecular bond vibrations are typically the highest frequencies

in the system and therefore determine the largest time step that can be used. If bonds are

constrained, then a larger time step can be used, which speeds up the computation (23).

1.6.1 Shake algorithm

The Shake algorithm is introduce by (38). This is the procedure to integrate the equation

of motion with internal constraints. It has been shown that when internal constraints are

present, then the equation of motion can be written as:

77%(Z) = /i(ZiM) + C(%i(Z),ïi) (1-25)

where C (x) represents forces associated with the constraints. The force function C describes

the mechanical state of the system. The nature of the constraints is dependent on the functional

22

form of state of mechanical system as well. The Shake model can be formed as:

Ay-2

X i (t + A t) = 2X i (t) - X i (t - A t) H [f i (x i (t)) + Cj(xj(i),ii(t))] (1.26)
7 7 1 2

where aij 6 M3. The major difficulty associated with equation (1.26) is that, even if we use

exact function C, the intramolecular constraints would be violated due to the fact that the

Shake algorithm is not exact. In 1977, Rychaert was shown that this can be overcome by not

using exact function C but by using the approximation for C. The method requires x(t+At) to

satisfy constraints within a desired accuracy. This method can be derived by time dependent

Lagrange multiplier method (Chapter 2). The important fact of this algorithm is that it has

local error of order 0((Ai)4). x(t + At) can be computed by following iterative schemata (38):

At2

X i (t + A t) — 2X { (t) — X i (t — A t) H [f i { r i { t)) + G i (t) \ (1-27)
TTli

where Gi is a approximation to Q. Iteration can not proceed unless we know Xi(t) and

Xi(t — At). The Shake scheme has the same advantages and disadvantages like Verlet. To

eliminate disadvantages of the schemata, the Rattle algorithm was introduced. The Rattle

algorithm is also called the Velocity Version of the Shake algorithm.

1.6.2 Rattle algorithm

Anderson (2) was introduced following constraints schemata to calculate velocity and po­

sition simultaneously.

At2

a\(Z-|-Af) = a%(f) + AZ:Ci(Z) + -—[/;(%;(;))+ C(%i(t),±i(Z))] (128)
ÀTYli

C (x i (t + A t) , X i (t + A t)) \ (1.29)

where x G M3. Like the Velocity Version of the Verlet, the position X i (t) and velocity i i (t)

of initial structure are required to start simulation. Then, we can calculate Xi(t + At) by

replacing C{xi(t),±i{t)) by an approximation that made Xi(t + At) satisfy the constraints.

In the equation (1.29) the term ±i(t + At) appears in the both side of the equation. This

23

is inconsistent with a simple iterative schema and can be eliminated by using two different

approximation function for equations (1.28) and (1.29). Thus, we have:

The Rattle algorithm makes two different approximations G i (t) and H i (t) for the forces asso­

ciate with the constraints. It is possible to obtain both positions and velocities simultaneously

which satisfy the constraints. It has been proved that (2), Rattle has a local error of order

((At)3) and global error of order ((At)2) which is same as in the velocity form of the Verlet

algorithm for unconstrained dynamics.

Liouville equation is used especially for simulations with constant pressure and constant

temperature ensembles. It describes the evolution of the phase space distribution function for

the conservative (4) Hamiltonian system which continuity equation for the flux. Therefore, we

derived Liouville equation in following section.

1.6.2.1 Liouville equation

Construct a cartesian space in which each of the 6n coordinates and momenta is assigned

to one of 6n mutually orthogonal axes. Phase space is a 6n dimensional space (47). A point in

this space is specified by giving a particular set of values for the 6n coordinates and momenta.

Denote such a point by x = (p i , , p n , q i , gn)- x is a 6n dimensional vector. Thus, the

time evolution or trajectory of a system as specified by Hamilton's equations of motion, can

be expressed by giving the phase space vector, as a function of time. The law of conservation

of energy, expressed as a condition on the phase space vector H(x(t)) = ip = constant defines

a (6ra — 1) dimensional hyper-surface in phase space on which the trajectory must remain.

Consider phase space for the ensemble of the n-particle systems. The number of systems in the

ensemble is constant. We can write the continuity equation for density p (p i , ,...,pn, q \ , q n)

in phase space:

X i (t + A t) a%(f) + Aùci(f) + + G'M]

X i (t) + + Gi(t) + f i (X i (t + A t)) + H i (t) }

(1.30)

± i (t + A t) (1.31)

(1.32)

24

For the flux in phase space, coordinates are p's and q's and velocities are p's and q's:

d t + E
1=1

<9#
= 0

Applying chain rule, we obtain:

n

+E d t
i= 1 % % + « E

i=1

Using Hamilton equations of motion:

a#

%

O H

= 0

" Bp, V ' - dq ,

Thus:

% %

Thus the second sum in equation (1.34) is zero, and:

n n

i=1

= 0

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)
%

The equation (1.37) is called Liouville equation. The left hand side of equation (1.37) is actually

the full derivative of the distribution function, describing its change along the trajectories (47).

In conservative systems the distribution function is constant along the trajectories, being an

integral of motion.

1.6.3 Stochastic method

Coupling to the environment is simulated by random collisions with imaginary heat bath

particles. These collisions lead to instantaneous momentum changes. The particle momenta

are reset to new values, taken from the Maxwell distribution. This way the average kinetic

energy is always correct. The natural variation on this theme is resetting velocities of all

particles at the same time after certain interval. Then the dynamics during this interval is

truly microcanonical, and time correlation functions can be calculated inside this interval.

After the new velocities are assigned, the new configuration is accepted or rejected based on

Metropolis-like criteria for Monte Carlo simulations.

25

This technique was first suggested by Heyes in 1980, and then reinvented by D. Heermann

et. al. in 1990. Hybrid Monte Carlo. D. Heermann et. al. showed, that this acceptance

critérium is needed to account for the numerical integration errors. Otherwise this technique

reproduces canonical ensemble only approximately.

1.6.4 Velocity rescaling

An alternative way to simulate constant temperature is to re-scale all the velocities to keep

kinetic energy constant. It is a very unrealistic approach used in the early days. If done on

every step, it alters the system dynamics, which does not even correspond to the canonical

ensemble. If done at certain intervals, it adds some periodic perturbation to the system, which

is in general undesirable, but sometimes can serve as a tool to study system dynamics. This

was used for simulations of glasses by Rahman et. al. in early 1980's. It is also often used to

equilibrate the system during the the first few hundred MD steps before the production run

starts and data are collected.

A more gentle and more practical way, known as Van Gunstern-Berendsen thermostat is

to use a factor, that depends on the deviation of the instantaneous kinetic energy from the

average value, corresponding to desired temperature. At each time step velocities are scaled

by the some factor is the molecular dynamic time step, and is a parameter, that defines, how

strong is the thermostat influence.

1.7 Review

In this section, constrained and unconstrained molecular dynamic simulation methods are

described. Previous studies (4) have proved that the freezing high vibration frequency motions

of atoms not badly effect on physical characteristics of the atomic systems. However, It enables

to increase size of the time step without altering the system properties. Furthermore, some of

the methods have been modified to run on parallel computers with many processors which can

speed up computation as well as without introducing significant round off errors.

26

CHAPTER 2. Lagrange multiplier method

Lagrange multiplier method is used to solve a system of equations with constrains. This

method is widely used and very popular in many research fields. In this chapter, the Lagrange

multiplier method and time dependent Lagrange multiplier method are discussed in details.

This technique has applied to molecular dynamic simulation in 1988 (48). When used to solve

non linear system, this method is computationally expensive. The Lagrange multiplier method

is used when we need to find the extreme values of a function whose domain is constrained to

lie within a particular subset of the domain. The Lagrange multiplier rule was introduced in

1762 (27). In 1788, Lagrange proved that it can be used for minimizing a function subject to

equality constraints.

2.0.1 Lagrange multiplier method

In physics and engineering problems (8) we may be called upon to find the maxima or

minima of a function of several variables:

where x is a multi-variable function. f (x) and C (x) are objective and constraints functions

r e s p e c t i v e l y . L a g r a n g e m e t h o d c o n s i s t s o f i n t r o d u c i n g a n e w f u n c t i o n w h i c h i n c o r p o r a t e s f (x)

together with all the constraints. The new function is called a Lagrangian. Therefore, the

Lagrangian is written as:

min { f (x) } (2.1)

subject to C (x) — 0

L = /(z)-AC(z) (2.2)

27

where A is a constant called a Lagrange multiplier. The conditions are defined:

VL = V(/(z)-AC(z)) = 0

C(z) - 0 (2.3)

Here, we need to determine;

• Lagrange multiplier constant A

• Extremal values of x

• The value min { f { x) \

The advantage in this approach is that it treats all variables and constraints in a symmetric

fashion so that problems involving many variables and constraints can be neatly organized.

Depend on f(x) and C(x), it is necessary to solve linear or non-linear system of equations to

determine unknowns (34).

2.0.2 Time dependent Lagrange multiplier method for molecular dynamics

The system represent in equation (2.3) is called time dependent Lagrange multiplier method

if parameter A is a function of time t. Assume that a molecular system with n atoms and they

are interacting via a potential energy <p(r). Thus, one could introduce constraints (48):

C k (x j (t)) = 0 fc = 1, . . . m a n d j = 1, ..n (2.4)

We define Lagrange equation of motion:

= /i + Q (2.5)

where Q represents total constraints force acting on atom i . Therefore, we have:

m

= -Vp(a%(t)) - y]/\k(t)VC&(%i(2)) (2.6)
k=1

where the m represents number of constraints in the system. The A& Lagrange multipliers

are time dependent and determined by requiring that, the constraints in equation (2.4) are

28

satisfied exactly. The equation (2.6) and (2.4) generate (3n) and (m) number of equations

respectively. The system has (3n + m) number of equations to find (3n + m) number of

unknowns. Therefore, we can uniquely determine the unknowns provided it is consistent. In

general, the numerical integration methods are used to obtain the trajectory. It has been

shown that, it is not convenient to find A^'s in terms of positions and velocities. Without

loss of accuracy, we assume that A^'s are parameters. Finite difference schema can be used to

calculate next position as follows:

X i (t + A t) = 2 x i (t) — X i (t — A t) \ V < p (x i (t)) + Afc(i)VCfc(xj(i))] (2.7)
^ k=i

This generates positions at time (t + At) satisfy constraints in (2.4). That can be written

formally as:

Ck{xj(t + At)) = 0 fc = l,...m and j — 1, ..n (2.8)

Let's divide equation (2.4) into two so that they represent constraint and unconstraint motion.

xi(t + At) = p i (t + At) + q i (t + A t) (2.9)

where:

At2

P i i t + At) = 2xi(t) — X i (t — A t) Vy(xi(t)) (2.10)
mi

At2 m

Q i (t + At) = Ak(t)VCk(r«(t)) (2.11)
k=i

Solutions to the motion (48) given by equations (2.9) to (2.11) are exact third order in the

time step (At). It is obvious to see that the schema has same accuracy (38) that of Verlet

(equation 1.12). To keep the arbitrary internal degree of freedom fixed during the simulation,

the following form of harmonic constraints has been chosen:

Ck(zj(Z)) = <Mt = (4,(t + At)-dt(t) (2.12)

where d&(t+At) and c4(t) are arbitrary internal coordinates at time (t +At) and t respectively.

The 8dk represents internal coordinates variations over time steps At. We need equation

(2.12) to be zero in order to get constraints satisfied. For our convenient, we introduce =

29

d k { x \ , x n) where n is the number of atoms defining the The small changes of cartesian

coordinates produces changes of (total differential) :

àdk = 53
3 = 1

' l + 3 + ~̂ ~k

o x j y j j
[x j (t + At) - X j (t)] (2.13)

where i , j and k are unit vectors along the usual x, y and z axis. Define d k j such that:

n

Sdk = 53 akj[xj{t + At) - X j (t) }
j=i

Oikj —
9 d f ; - d d f c - d d k -

i + —— j + —— k

If all the constraints are satisfied then Ck(xj(t)) = 0. Therefore:

n

^Wzj(Z + At)-3%(Z)] = 0
3 = 1

substituting X j (t + At) by equation (2.9);

n

53 ® k j [P j (t + At) + q j (t + At) - X j (t) \ = 0
3 = 1

The equation (2.11) gives:

53 (XkjQjit + At) = 53 akj[xj(t) - Qj(t + At)]
3=1 3=1

A*2 "I
Q i (t + At) = 53 ̂ k{t)^[Sdk]

k=l

At^
qi(t + At) = 53

k=i

replacing %(t + At) in equation (2.18):

77i n ^ i n

53 52 -^akj asj^k{t) = ^ 53 - qj(.t+At)]
S = 1 j = l J j = 1

This could be written in matrix form for non singular D:

D A
-1
At2

n

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

30

Here D , A and Q are (m x m),(m x m) and (m x m) matrices. It has been shown (48) that

the matrix D is a Wilson matrix and therefore it is non-singular. The equation (2.20) might

be rewritten in matrix form (38):

T = (2.24)

Then by substituting equation (2.23) with (2.22):

T = M-iQD-in (2.25)

where M is a (d i a g (m i , m 2 , , m n)) diagonal matrix of particle masses with d e t (M) ^ 0. The

m a t r i x Q i s a (3 n x m) o f t h e c o m p o n e n t s o f t h e a ^ j -

2.1 Review

The implementation of method begins by calculating p,(t+At) using equation (2.9). There­

after, the equation (2.11) can be used to compute constraints part of the simulation to calculate

Lagrange multipliers Afc's. By using the previous two facts one can calculate the next position

on the molecular atoms. This process can be iterated until it achieves desired accuracy. This

procedure has the qualities to be used in any constrained molecular dynamic algorithm. The

Lagrange multiplier algorithm is straightforward to implement. The technically difficult and

time consuming part of the algorithm is solving non-linear constraints equations. This work

has been presented in (48) paper.

31

CHAPTER 3. Penalty and barrier methods

Penalty function methods are developed to eliminate some or all of the constraints and add

to the objective function a penalty term which prescribes a high cost to infeasible points. In

theory, penalty function method uses unconstraint optimization methods to solve constraints

optimization problems. Discrete iterative setup can be started with infeasible or feasible start­

ing point and guide system to feasibility and ultimately obtained optimal solution.

3.0.1 History

In 1943, Courant introduced the quadratic penalty method where the penalty term is the

squared Euclidean norm of the constraint violations (11). In 1970, Fletcher is studied the La­

grange function depending only on the variables (17), then, gave the theoretical justification of

a class of exact penalty methods for solving smooth equality constrained nonlinear optimiza­

tion problems. Exact penalty methods (15) were intensively investigated and a well-prepared

survey was published by Di Pillo (1994). A new smooth exact penalty (10) function was sug­

gested by Christiansen (1995). The Lagrange multiplier rule was further developed by Rapcsak

[(40), (41)] who combined the optimization theory with Riemannian geometry in order to de­

scribe the geometric structure of smooth nonlinear optimization problems by tensors and to

extend the local results of Lagrange to global ones. In (42), the idea of Fletcher (1970) to

define smooth exact penalty functions and that of Courant (1943) to use a quadratic penalty

term were reconsidered and developed further by the global version of the global Lagrange

multiplier method clarifying the geometric meaning as well.

32

3.0.2 Constraints

Most optimization problems have constraints. The solution or set of solutions which are

obtained as the final result of an evolutionary search must necessarily be feasible, that is,

satisfy all constraints. A taxonomy of constraints can be considered and composed of a number,

metric, criticality and difficulty. A first aspect is number of constraints, ranging upwards from

one. Sometimes problems with multiple objectives are reformulated with some of the objectives

acting as constraints. Difficulty in satisfying constraints will increase with the number of

constraints. A second aspect of constraints is their metric, either continuous or discrete, so

that a violation of the constraint can be assessed in distance from satisfaction using that metric.

A third consideration is the criticality of the constraint, in terms of absolute satisfaction. A

constraint is generally formulated as hard when in fact, it is often somewhat soft. That is,

small violations would be considered for the final solution if the solution is superior to other

solutions. Evolutionary algorithms are especially capable of handling soft constraints since a

population of solutions is returned at each point in the search. This allows the user to select

a solution which violates a soft constraint (infeasible) over a solution which would be the

best, technically feasible solution found. A final aspect of constraints to be considered is the

difficulty of satisfying the constraints. This difficulty can be characterized by the size of the

feasible region compared to the size of the sample space. The difficulty may not be known a

priori, but can be gauged in two ways. The first way is how simple it is to change a solution

which violates the constraint to a solution but does not violate the constraint. The second

way is the probability of violating the constraint during search. For example, a constraint may

be frequently violated but the solution can be easily made feasible. Conversely, a constraint

violation may be very difficult to resolve, but occur rarely in the search.

3.0.3 Penalty function method

Penalty functions have been a part of the literature on constrained optimization for decades

(34). Three type of penalty functions are exist (5). They are called Barrier methods, partial

penalty functions and global penalty functions (45). In general, a penalty function approach

33

is as follows, consider the constrained optimization problem:

min (/(»)

such that g i { x) < 0 i =

h i { x) = 0 i — (3.1)

where ï éR™

whose feasible region we denote by fi = {i G I" | 9 i (x) < 0 i — 1,..., m, h i (x) = 0 i =

1,..., 1} and write g(x) = (gi(x), ...,gm(x))T and h(x) = (h\(x),..., hi(x))T for convenience.

Penalty methods are designed to solve (3.1) by, instead, solving a sequence of specially

constructed unconstrained optimization problems (34). The feasible region of equation (3.1)

is expanded from fî to all of Rn, but a penalty is added to the objective function for points

that lie outside of the original feasible region fî.

Definition 3.0.1. A function C (x) : R™ —> R is called a penalty function for equation (3.1)

if C(x) satisfies: {C(x) — 0 if g(x) < 0 h(x) — 0} and {C(x) > 0 if g(x) > 0 or h(x) ^ 0} (5).

Penalty functions are typically defined by:

m I

1=1 1=1

where

{^(giW) = 0 if gi(a;) < 0} and {<^(gi(a;)) > 0 if #(z) > 0},

{ ip (h i (x)) — 0 if h i — 0} and { i p (h i (x)) > 0 if h i ^ 0 }

In theory, more general functions satisfying the definition can conceptually be used. We

then consider solving the following penalty program:

m i n (f (x) + f j , C (x))

where i£l" (3.3)

for an increasing sequence of constants /i as f j , —• oo. In problem (3.3), we are assigning a

penalty to the violated constraints. The scalar quantity n is called the penalty parameter.

34

Let {[J>k}'kLi be a increasing sequence of penalty parameters that satisfies /J-k+i > Mk for

V k and lim (/i*.) —>• +00. Let F(x) — f(x) + i±C(x) and let xk be the exact solution to the
k — >00

problem (3.3), and let x * denote any optimal solution of (3.1). The following Lemma presents

some basic properties of penalty methods.

Lemma 3.0.1. Properties of penalty methods (5)

j. F(^,z*=) <F(^+i,%^)

2. C(a/3 > C(z/=+i)

3. /(%&) < /(%t+i)

j. /(%*)>f(^,%&)>/(%&)

proof:

1.

f(W:+l,Z^) = /(^)+^+lC(^)

> Z(r^)+//kC'(^+^) since

> /(^) + ̂ C(^)

= %,^)

2.

/(%t) + WkC(zt) < /(^)+//tC(^)

and /(a;^^) + //t+iC(%^) < /(^) + ̂ +iC(^)

Thus (/it+i - ̂ k) C(a/=) > (//t+i - /^t) C(z^)

whereby C (x k) > C (x k + 1)

3. From the proof of part (1):

/(z^)+^C(%t+i) > /(^) + ̂ C(^)

ButC(^) > C(^+^)

which implies that f (x k + 1) > f (x k)

35

4.

/(^) < /(^)+^C(^)

= /(a;*)

The convergence of the penalty method can be discussed with the following theorem:

Theorem 3.0.2. (Penalty Convergence Theorem) Suppose that fi ^ 0 and f(x), g(x), h(x),

and C(x) are continuous functions. Let be a sequence of solutions to equation (3.3),

and suppose the sequence is contained in a compact set. Then any limit point x of

proof:

Let x be a limit point of {xfc}^=1. From the continuity of the functions involved, lim x k = f (x) .
A:—too

Also, from the Lemma 3.1.1:

F* = (3.4)
k — »oo

Thus

lim f i k C (x k) = lim [F (f i k , x k) - f { x k) } (3.5)
k —•oo /c—»oo

- (3.6)

But (p, —> oo), which implies from the above that:

lim C(z^) 0 (3.7)

Therefore, from the continuity of C (x) , g (x) and h (x) , C (x) = 0, and so g (x) < 0 and h (x) = 0,

that is, x is a feasible solution of (3.1). Finally, from the Lemma 3.1.1, f(xk) < f(x*) for all

k, and so f(x) < f(x*), which implies that x is an optimal solution of (3.1).

An often used class of penalty functions is:

mi m 2
C (x) = y ^max[0,gi(x)]c + ̂ \ h j (x) \ c w h e r e c > 1, m — mi + rri2 (3.8)

i=1 i=1

36

If c = 1, C(x) in equation (3.8) is called the linear penalty function. This function may not

be differentiable at points where Qi(x) — 0 or hi(x) = 0 for some i. Setting c = 2 is the most

common form of (3.8) that is used in practice, and is called the quadratic penalty function.

3.0.4 Karush-Kuhn-Tucker multipliers

Suppose the penalty function C(x) is defined as (3.2). C (x) might not be continuously

d i f f erentiable, since the functions gi(x) are not differentiable at points x where §i(x) = 0.

However, if we assume that the functions <f>(y) and tp(y) are continuously differentiable and

<f>'(0) = 0 then C(x) is differentiable whenever the functions g(x), and h(x) are differentiable,

and we can write:

VC(z) = 53^(gi(T))Vgi(a;) + ̂]^(/it(a;))V^(T)
2=1 1=1

Let x k solve (3.3). Then x k will satisfy:

that is:

V/(z%)+Wk

V/(^)+^VC(^) = 0

Li=l i=1

(3.9)

(3.10)

= 0 (3.11)

Define:

m I
= 0

(3.12)

(3.13)
i=i i=1

The u k and v k are called Karush-Kuhn-Tucker multipliers.

Lemma 3.0.3. Suppose 4>(y) and tp(y) are continuously differentiable and satisfy 0(0) = 0,

and that f(x), g(x), and h(x) are differentiable. Let uk, vk be defined by equation (3.12).

Then if xk —> x, and x satisfies the linear independence condition for gradient vectors of active

constraints, then uk —> û and vk —> v where û and v are a vector of Karush-Kuhn-Tucker

multipliers for the optimal solution x of (3.1) (5).

37

proof:

From the Penalty Convergence Theorem (3.1.2), x is an optimal solution of (3.1). Let I =

{i | gi{x) = 0} and N = {i \ gt(x) < 0} . For i G N, gi(xk) < 0 for all k sufficiently large, so

uk = 0 for all k sufficiently large, whereby ûi = 0 for i G N. From equation (3.12) and the

definition of a penalty function, it follows that uk > 0 for i G /, for all k sufficiently large.

Suppose uk —> û and vk —> v as k —> oo. Then ûj = 0 for i G Ar. From the continuity of all

functions involved:

771 £

V/(^) + g^Vgi(^) + 5]^V^(^) - 0 (3.14)
i=1 i=l

implies:

m Z

V/(x) + 53^iVgi(x) + 53^iV/ii(z) = 0 (3.15)
2=1 1=1

We also have u > 0 and û j = 0 for all i G N. Thus u and v are Karush-Kuhn-Tucker multipliers.

It therefore remains to show that uk —> û and vk —• v for some unique u and v.

3.0.5 Exact penalty function

The idea in an exact penalty method is to choose a penalty function C (x) and constant /j

so that the optimal solution x of (3.3) is also an optimal solution of the original problem in

equation (3.1).

Theorem 3.0.4. Suppose 3.1 is a convex program for which the Karush-Kuhn-Tucker condi­

tions are necessary. Suppose that

m

CM =
i=i

Then as long as n is chosen sufficiently large, the sets of optimal solutions of F(fï) and 3.1

coincide. In fact, it suffices to choose /i > maxi{u*}, where u* is a vector of Karush-Kuhn-

Tucker multipliers.

Proof: Suppose x solves 3.1. For any x G Mn we have:

38

i—1 i=1

m

> /(^) + '"i (gi(^ + Vg(^(i - a))
1=1

m

= it* Vg(^)^(z - ï)
i=l

= /N - v/(z)^(z - ̂)

> /(̂)
m

= /(®) + ^5Z^i(®)
i=1

= F (n , x)

Thus F { n , x) < F (n , x) for all x , and therefore x solves 3.3. Next suppose that x solves 3.3.

Then if x solves 3.1, we have:

m m

< /(z) + ̂ ^]gi(z)-/(z)and
%— 1 i= 1

m

/(&) < (316)
%— 1

However, if x is not feasible for 3.1, then:

/(&) > /(a) + V/(a)^(î-ï)
m

% — 1
m

> /(^) + - 2#)
i~l
m m

1=1 1=1

which contradicts 3.16. Thus x is feasible for 3.1 and so x solves 3.1.

3.0.6 Barrier method

The idea in a barrier method is to dissuade points x from ever approaching the boundary

of the feasible region (22).

39

Definition 3.0.2. A barrier function for 3.1 is any function b(x): Mn —> R that satisfies,

b(x) = 0 for all x that satisfy g(x) < 0, and b(x) —> oo as lim max gi(x) = 0
x i

Define barrier minimization problem:

min (f (x) + i u b (x))

s.t. g { x) < 0, for i El™ (3.17)

for a sequence of /!& —> oo. The following Lemma presents some basic properties of barrier

methods.

Lemma 3.0.5. Let F(n,x) — f(x) + HkKx) • Let the sequence {/^} satisfy > Hk,

Hk —> oo as k —> oo. Let xk denote the exact solution to 3.17.

• F (n k , x k) > F (f i k + 1 , x k + 1)

. 6(^) < 6(^^+1)

. /(%&) > /(^)

. /M</(^)<F(^,^)

Proof:

F(/4t,a^) - /(^) + /it&(^)

> /(^) + ̂ k+lb^'')

> /

= F { V k + i , x k + 1)

/(%*:)+/it6(a^)) < /(z^)+^6(z^+^)

and /(%k+i) + ̂ t+i6(a:^^)) < /(^) + m=+ib(a^)

we have (^t - /4t+i) &(^) < - Wk+i) 6(a:^^)

(3.18)

40

since ^ < ^t+i, -» > 6(^)

• From above proof, we have:

+ /4:+i6(%*3 > /(^^) + Wû+i6(%*^) and

6(^+^) > 6(a/=)

Therefore, f (x k) > f (x k + 1)

* /(%*) ^ /(^) = /(a/=) +/it 6(^) =

Theorem 3.0.6. Suppose f(x), g(x), and b(x) are continuous functions. Let xk, k —1,..., be

a sequence of solutions of B{^). Suppose there exists an optimal solution x* of 3.1 for which

N(e, x*) P|{x|y(x) < 0} ̂ 0 for every e > 0. Then any limit point x of {xk} solves 3.1.

proof: Let x be any limit point of the sequence { x k } . From the continuity f { x) and g (x) ,

lim f{xk) — f{x) and lim g(xk) — g(x) < 0. Thus x is feasible for 3.1.
k—>oo k—>00

For any e > 0, there exists x such that g { x) < 0 and f (x) < f (x *) + e. For each k,

/(%*) + e + > /(^) +

Therefore for k sufficiently large, f (x *) + 2e > F(fik,xk), and since F (/ j , k , x k) > f { x *) from

Lemma 3.1.4, then;

/(%*) + 2e > lim > /(a;*)
/c—> OO

This implies that,

lim = /(%*)
k—>oo

We also have,

/(%*) < /(^) < /(^) + + 2e > lim f (^, > /(a;*)
k—*oo

Taking the limits we obtained,

/(%*) < < /(z*)

41

whereby x is an optimal solution of 3.1. Typical class of barrier functions are:

m

b (x) = ^ 2 (g i (x)) ~ a where a > 0
i= l

3.1 Review

The details of Barrier and Penalty methods are discussed in this section as a optimiza­

tion problem. In the Penalty method one can start with infeasibility and can ultimately be

obtained feasible optimal solution. Meantime, The Barrier method uses a barrier so that the

solution never becomes infeasible. These methods can be implemented without compromising

computational cost. The penalty function algorithm is simple and easy to implement.

42

CHAPTER 4. Molecular dynamics, penalty function method and its

properties

4.0.1 Constrained molecular dynamics and penalty function method

Based on the theory of classical mechanics, the trajectory of molecular motion between two

molecular states minimizes the total action of the motion (30). Let x(t) be the configuration

of the molecule at time t, x = {xi : Xi = (xi:\, Xit2, Xi$)T, i = 1,, n}, where X{ is the position

vector of atom i and n the total number of atoms in the molecule. Given beginning and ending

t ime to and t e , x (t) G [to , t e] def ines a t ra jec to ry connec t ing two molecu la r s t a tes x q = x(to)

and xe — x(te). Let h(x,x',t) be the difference of the kinetic and potential energy of the

molecule at time t. The functional L is called the Lagrangian of the molecule. Let S be the

ac t ion of the molecu le in [to , t e \ . Then , S i s de f ined as the in tegra l o f the Lagrangian in [to , t e] ,

and according to the least action principle, the trajectory x minimizes the action S of the

molecu la r mot ion in [to , t e \ :

Theorem 4.0.1. Let L be a continuously differentiable functional. Let x be a solution of

problem 4-1- Then, x satisfies the following Euler-Lagrange Equation:

Proof: Let 5 x be a small variation of x and S x (t o) = S x (t e) = 0. By the principle of variation,

the necessary condition for x to be a solution of problem 4.1 is that:

mm (4.1)

d h (x , x ' , t)
dh(x, x', t) dx

dx' dt
(4.2)

(4.3)

43

dcc ôx
Since ôx' = ô— = d-— , we obtain, after integrating the second term of 4.3 by parts:

dt dt

/ j d h j x , x ' , t) \

' t o dt
Sxdt = 0 (4.4)

V
Since ÔS should be zero for all ôx, the integrand of 4.4 must be zero and 4.2 follows.

x'T M x'
Corollary 4.0.2. Let L = y?(x), where M is the mass matrix of a molecule and ip

the potential energy. Then, a necessary condition for x to minimize an action S is that:

Mz" = -V(f(z) (4-5)

Proof: It follows from Theorem 4.1.1 and the facts that ——— — Mx" and —- = - Vw.
dt ox

Equation 4.5 is well known as the equation of motion for a molecule of n atoms. It can be

equivalently stated as:

n%a4' = /i(zi,..-,z,i), = ^ (4.6)

where 77% and fi are the mass and force for atom i, respectively and M — diag[m\,,mn}.

Note that Theorem 4.1.1 and Corollary 4.1.2 imply that a trajectory that minimizes the mole­

cular action between two system states necessarily satisfies the classical mechanical equation

of motion. In other words, the solution of the equation of motion can be considered as an

attempt for the minimization of the molecular action of motion.

Let C = Cj : j = 1,, m be a vector of functions that can be used to define the constraints

on the molecule. The constrained simulation problem can then be considered as a constrained

least action problem.

rte
m i n (S (x) = / L(x, x!, t)dt)

J t 0

subject to C (x) = 0 (4.7)

44

Then, by the theory of constrained optimization, a necessary condition for a molecular trajec­

tory x between x$ and xe to be a solution of problem 4.7 is that:

m

= 0

j=i

C(z) = 0 (4.8)

where A is a vector of Lagrange multipliers.

x'T Mx'
Theorem 4.0.3. Let L = y(x), where M is the mass matrix of a molecule and

<p the potential energy. Then, a necessary condition for x to minimize an action S subject to

C(x) = 0 is that:

Mz" - -V(p(z)-C*(%)^A

C(z) - 0 (4.9)

where X is a vector of Lagrange multipliers and C*(x) the Jacobian of C(x).

]\d
Proof: For L — y(x), condition 4.8 translates to:

m

Mi" - -V(Xz)-^AjVCj(a;)
i=i

C(z) = 0 (4.10)

and hence to 4.8 with C* — [VCi, , VCm]T.

For each atom, equation 4.9 can be written as:

m

77%%^ = -Vp(z) -y^AjQj(Zi,....,Zn)
j=l

C j (x \ , , x n) — 0, j = 1,..., m, i = 1,...., n (4.11)

where:

fi — i Ci,j — Qx , J — ! , • • • , r n , i — 1 ,, n (4.12)

Note that in (4.11), the right-hand side of the first equation can be treated as a single force

function (with the original force function plus a combination of the derivatives of the constraint

45

functions), and therefore, the equation can be integrated in the same way as equation (1.10) by

the Verlet algorithm, except that in every step, the Lagrange multipliers Aj, j — 1,...., m have

to be determined so that the new positions X{,i — 1,...., n for the atoms satisfy the constraints

C j (x 1 , , X ^ i) — 0 , j — 1 , , T Ï I .

Let / be the objective function and C — { C j : j — 1,...., m } be a set of constraint

functions. Consider a general equality constrained optimization problem:

min(/(xi,x2,

subject to C j (x i , X 2 , • • • • , x n) = 0, j — 1,..., m (4.13)

The unconstrained optimization problem with a quadratic penalty function for (4.13) can be

defined as follows:

m
m m (f(x i , x 2 , , x n)) + ̂ ^ 2 \ C j (x i , . . . , x n) \ 2 (4.14)

i=i

where /i is a parameter called the penalty parameter. In principle, the solution for problem

(4.13) can be recovered by solving problem (4.14) with the parameter ji gradually increasing

to oo. A so-called exact penalty function can also be defined, such as using the Zi-norm. Then,

problem 4.14 becomes:

(m f(x 1 , X 2 , • • • • x n) + 2 X! • • •> X n) |
3 = 1

and the solution for problem (4.13) can be recovered by solving problem (4.15) with the

parameter /i only raised to a sufficiently large value.

If the constraints are inequalities, i.e., C j (x \ , , x n) > 0 , j = 1,...., m, the penalty

functions in 4.14 and 4.15 can still be used in the same way as for equality constraints, only

with Cj replaced by C~ for all j, where C~ = min(Cj,0) gives the amount of violation for

constraint j. Another approach is to introduce a barrier function for each constraint. Then,

the problem becomes minimizing the combination of the objective function and the barrier

functions such as the following:

(m f (x i , x 2 , X n) - T ^2 lo g(C j (x i , . . . , £ „))

J=1

(4.15)

(4.16)

46

where log(C j (x i , x n)) is called the log barrier function for C j (x i , x n) as the function is

not defined when Cj(x\,xn) < 0 and is infinity when Cj(xi,xn) = 0. The parameter

T is used to control the barrier term. In principle, the solution of the original constrained

optimization problem can be asymptotically approached by solving problem (4.16) as r is

gradually decrease to zero.

In this work, we will only use the formulation in (4.14) for the development of the penalty

function method for constrained molecular dynamics simulation. The primary reasons are that

in this work, we only consider the equality constraints, and the squared Euclidean norm used

in (4.14) also provides smoother properties than the l\ — norm in (4.15) for optimization. By

using the formulation in (4.14), the constrained least action problem as given in (4.7) can be

transformed to:

min (S(:r) + |||C(x)||2) (4.17)

where ||.|j is the Euclidean norm and C — (C \ , . . . , C m) T . In principle, a solution for the

constrained least action problem (4.7) can be obtained by solving a sequence of problems in

(4.17) with n selected from an increasing sequence of parameters {,%}.

Theorem 4.0.4. Let /i = ̂ and jik —> oo as k —> oo. Let xk be a global solution to (4-17)

with fi = /ifc, and xk —> x* as k —» oo. Then, C(xk) —» 0 as xk —> x*, and x* is a global

solution to the constrained least action problem (4-7).

Proof: Let <p(x, ji) — S(x) + ̂ \\g(x)\\2. Then:

m) < wJ ^ Wc+i) (4.18)

showing that the sequence of global minima 4>(xk,Hk) of (4.18) is non-decreasing. By using

the facts that cf>(:rfc,/ifc) < 4*(xk, fik+i) and 4>(xk+1, Hk) < 4>(xk+1, /ifc+i), we have

- <6(T^+\z^t+i) < (6(^, z^k+i) - ̂ (^+\//t) (4.19)

and

(WW - ̂)(||C(^)||2 _ ||C(z^)||2) > 0 (4.20)

47

It follows that {||C(z^)||2} is non-increasing. Since 4>(xk < 4>(xk+1, Hk), is also

non-decreasing. Let S * be the global minimum of (4.7). Then, 4 > (x k , ^ k) < <f>(x, Hk) = S*,

{S'(x'c)} , where x = global argmin{S(x) : g(x) = 0}. Then:

S(^) + ̂ ||C(^)f (4.21)

Since {S(xfc)} is non-decreasing and {^} is increasing, C (x k) —> 0, and it follows that if

xk —> x*, C(x*) — 0 and S(x*) < S*. By the definition of S*, S(x*) > S*, and therefore,

S(x*) — S*. We now define an extended Lagrangian

L(a, x', t) = L(g, x1, t) + , (4.22)
^ ve t0j

Then, problem (4.17) can be written in the following form:

m i n ^ S (x) = L(x, x', t)dt^ (4.23)

By applying Theorem 4.1.1 and Corollary 4.1.2 to (4.23), we obtain the extended equation of

motion as the necessary condition for any x to be a solution to problem (4.17),

Mz" = -Vy(z) - PC* (z)^C(z) (4.24)

where C* is the Jacobian of C. The following theorem shows that a solution to problem (4.7)

that satisfies the necessary condition (4.9) for the problem can be obtained by solving the

extended equation of motion (4.24) with /i increasing to oo. The solution is equivalent to the

one that can be obtained by using a Lagrange multiplier type method.

Theorem 4.0.5. Let n — / j^ and ^ —> oo as k —• oo. Let xk be a solution to problem (4-17)

with /i = Hk, and xk —> x* as k —> oo. Let C* be the Jacobian of C and C*(x*) be of full rank.

Then, x* satisfies the necessary condition (4-7) for x* to be a solution to the constrained least

action problem (4-6).

Proof: Based on (4.24), for each pair of (xk,/ik), necessarily:

- -Vp(^) - /itC*(z^C(a;t) (4.25)

48

Let Afc = HkC{xk). Then:

M[%T = -Vy,(^) - C*(%t)?At (4.26)

and:

At - -(C*(ztf)+(M(%y + Vy(^)) ̂ -(C*(^f + Vp(z*)) - A* (4.27)

where (C * (x k) T) + is the pseudo-inverse of C * (x k) T . Then, C (x k) = ^A& —> ^ X * — > 0. It

follows that:

M(zy = -Vy,(z*)-C*(i*)A* andC(z*) = 0 (4.28)

In the atomic form, equation (4.24) can be written as:

ITliX^ = f {x\,—, Xn) + f l C i j (x \ , —) X n) C j (x \ , . . . X n) , f i — , C { j — (4.29)
j - 1 1 l

i = 1,...., n. By treating the entire right-hand side of each equation in (4.28) as a force function,

we can then apply standard Verlet algorithms to obtain our numerical formulas for the solution

of the equations in (4.28):

Penalty Position Verlet

1 m
z^ = 2^-T^ + A^(^ + —^TC^Cj=)% = l,....,m, & = (4.30)

^ j=i

Penalty Velocity Verlet

4+1 = 4 + Atof + Ai2 + J-,, £ cj:, CM

t,f+1 = t,* + At f/* + ./*+> + E c*. Cj + C*+1 j

z = 1,...., n, & = 1,.... (4.31)

Note that formulas (4.30) and (4.31) do not involve solving nonlinear systems and can

therefore be updated much more efficiently than Shake and Rattle. However, the parameter fi

needs to be selected appropriately and required to be sufficiently large. There is also an issue

49

that for different penalty terms, different scales may need to be used for the parameters. We

discuss these issues in greater details in the specific implementations of the algorithms in the

next sections.

4.1 Analysis of molecular dynamics

When carrying out molecular dynamic simulations, coordinates and velocities of the system

are saved. These are then used for the analysis. Time dependent properties can be displayed

graphically, where one of the axis corresponds to time and other to the quantity of interest,

such as energy, RMSD, etc. Other approaches have been developed for representing the time

dépendance of angle rotation (dihedral). Average structures can be calculated and compared

to experimental structures. Molecular dynamic simulations can help visualize and understand

conformational changes at an atomic level when combined with molecular graphics programs

which can be display the structural parameters of interest in a time dependent way. Some

quantities that are routinely calculated from a molecular dynamics simulation.

4.1.1 Root Mean Square Deviation (RMSD)

Root Mean Square deviation has been implemented as a protocol for pairwise structural

superposition, with atomic Euclidean distances between aligned residues being calculated along

the pairwise alignment and the RMSD for the structural pair being calculated by summing the

squares of these distances, dividing by the number of distances involved and calculating the

root. This results in a single value with which to assess the quality of the structural alignment,

and is limited in its pairwise nature.
z \

%1,1 %1,2 3-1,3

Define two coordinate structure matrices, X =

%2,1 %2,2 3:2,3

and,

y X n t i X n t 2 % n , 3 J

50

/ \
yi,i 2/1,2 yi,3

3/2,1 3/2,2 1/2,3

y =

y Un, 1 Un,2 Un,3 y
where n is number of atoms. Define:

u % - n i
\

n 3

i=i j=i

(\
^1,1 ^1,2 ^1,3

Z2,i 3:2,2 a:2_3

translation can be calculated by; X —

3-t, 1 %t,2 %t, 3

3-t, 1 ^t,2 2-4,3

where
y £n,l 2-n,2 ^«,3 y y ^t,l ^t,2 ^*,3 y

3-tj — ^ 1 -^i,j; j — 1,2,3
2=1

/ \
9i l 912 913

Then using rotation matrix Q — 921 922 923

y 931 932 933 y

, we can calculate RMSD,

R M S D (X , F) = rmn
n

4.1.2 Velocity Autocorrelation Function (VAF)

(4.32)

(4.33)

(4.34)

The velocity autocorrelation function is a prime example of a time dependent correlation

function, and is important because it reveals the underlying nature of the dynamical processes

operating in a molecular system. It is constructed as follows. At a chosen origin in time we

store all three components of the velocity Vi, where

%i,w) y

(4.35)

51

for every atom i in the system. We can calculate the first contribution to the velocity auto­

correlation function, corresponding to time zero. This is average of the scalar products Vi.Vi

for all atoms:

1 n

VAF(t 0) = - ̂2(v i (t 0) .V i (ta)) (4.36)
n »=i

At the next time step in the simulation t — to + At and the corresponding velocity for each

atom is:

^ %i=(to +At) ^

vj (4.37) (to + At)

^(^o + At) y

and we can calculate the next point of the VAF as:

1 n

V AF(to + At) — — ^^(vi(to) .Vi(to + At)) (4.38)
n i=l

We can repeat this procedure at each subsequent time step and so obtain a sequence of points

in the VAF, as follows:

1 n

VAF(kAt) = - ̂ (fi(to).Vi(to + A:At)) (4.39)
i=1

VAF(kAt) = < Vi(to) ,V i (to + kAt) > (4.40)

Consider a single atom at time zero. At that instant the atom i will have a specific velocity

vf. If the atoms in the system did not interact with each other, the Newton's Laws of motion

tell that the atom would retain this velocity for all time. This of course means that all our

points VAF would have the same value, and if all the atoms behaved like this, the plot would

be a horizontal line. It follows that a VAF plot that is almost horizontal, implies very weak

forces are acting in the system.

On the other hand, if the forces are small but not negligible then we would expect both

its magnitude and direction to change gradually under the influence of these weak forces. In

this case we expect the scalar product of u,(to) with V{(to + kAt) to decrease on average, as

the velocity is changed. In statistical mechanics it is called the velocity decorrelates with

52

time, which is the same as saying the atom 'forgets' what its initial velocity was. In such a

system, the VAF plot is a simple exponential decay, revealing the presence of weak forces

slowly destroying the velocity correlation.

Strong forces are most evident in high density systems, such as solids and liquids, where

atoms are packed closely together. In these circumstances the atoms tend to seek out locations

where there is a near balance between repulsive forces and attractive forces, since this is where

the atoms are most energetically stable. In solids these locations are extremely stable, and the

atoms cannot escape easily from their positions. Their motion is therefore an oscillation the

atom vibrate backwards and forwards, reversing their velocity at the end of each oscillation. If

we now calculate the VAF, we will obtain a function that oscillates strongly from positive to

negative values and back again. The oscillations will not be of equal magnitude however, but

will decay in time, because there are still perturbation forces acting on the atoms to disrupt

the perfection of their oscillatory motion. So what we see is a function resembling a damped

harmonic motion.

Liquids behave similarly to solids, but now the atoms do not have fixed regular positions.

A diffusive motion is present to destroy rapidly any oscillatory motion. The VAF therefore

may perhaps show one very damped oscillation before decaying to zero. In simple terms this

may be considered a collision between two atoms before they rebound from one another and

diffuse away.

4.1.3 Ramachandran Plots

During the last stages of structure determination of proteins by any method for example x-

ray crystallography, NMR, or homology modeling, structural biologists use a variety of tools,

including Ramachandran plots, to call their attention to unrealistic conformations in their

models. A Ramachandran plot plainly signals residues that need further work before the

entire model can be declared chemically realistic.

The Ramachandran plot displays the psi and phi backbone conformational angles for each

residue in a protein. The distance between two succession alpha carbon atoms in the backbone

53

chain of a protein is approximately constant, as are the angles between the two bonds of such

atoms. The proteins have only conformational freedom to rotate around the bonds in the

backbone and in the side chain. The conformational angles show preferences for values that

are expected based on simple energy considerations, and deviations from these angles may be

used as indicators of potential error in crystallographic projects. Phi and psi angles are also

used in the classification of some secondary structure elements such as beta turns.

In a Ramachandran plot, the core or allowed regions are the areas in the plot show the

preferred regions for psi/phi angle pairs for residues in a protein. Presumably, if the determi­

nation of protein structure is reliable, most pairs will be in the favored regions of the plot and

only a few will be in "disallowed" regions.

There are multiple definitions of the so-called core or allowed areas in Ramachandran plots.

The results of analysis can heavily depend on the definition used.

4.2 Review

In this chapter, the penalty function method is discussed. We presented theory of penalty

function method. We have shown that the equation of motion can be integrated with con­

straints that satisfies necessary condition to have minimum for least action principle. Data

that can used to analyze trajectories are also discussed such as velocity autocorrelation, RMSD

and etc.

54

CHAPTER 5. Implementation procedure

5.1 Introduction

This chapter introduces the penalty term method that we used in molecular dynamic

simulations. The research work has been carried out in Department of Mathematics, Iowa

State University. Simulations were performed on a 64 bit Alpha workstation with processor

speed of 500Mhz, RAM 1GB and 64 bit Intel workstation of 3.60Mhz processor, RAM 1.5GB.

Initial research has tested on Argon molecular system and equation of motion was simulated

with Lennard-Jones potential. The details description of results of the model is discussed

here. Then, the structure of Chemistry at Harvard Macromolecular Mechanics (CHARMM)

program and penalty method implementation for all atom simulations are discussed.

Molecular dynamics are popular and used to calculate dynamic and equilibrium properties

of complex protein system or cluster of atoms that might not able to estimate analytically. It

represents interface between experiments and theory of trajectory or motion of the system with

classical mechanics and statistics theory. To obtain more complete understanding of protein,

it is essential to have detailed knowledge of their dynamics. The motivation for using classical

mechanics with penalty function method is the dreadful exponential scaling of the computa­

tional resources needed (CPU time and memory) with the size of the system. Yet it can be

shown that for many thermodynamic systems at reasonable temperatures classical mechanics

make a fairly good approximation. The penalty function method is an optimization method

that we used to find minimum/maximum of the system by converting constraints optimization

problem into sequence of unconstraint optimization problems. The method of penalty func­

tions is simple and effective, provided that suitable values for the parameters can be chosen and

some numerical trail and error is often necessary. One of the main advantage of this method is

55

that simulation can be started with infeasible solution set. Most practical applications have an

infeasible starting point. The dynamics are carried out with the penalty function method as

an initial value problem since it satisfies necessary conditions for minimization problem. These

types of problems are called least action problems.

In next section, We present penalty function method and it's implementation on Argon

clusters. Distance constraints are used. Results are shown that we can increase size of the

time step by introducing constraints. It also spend significantly less computing time in dynamic

simulations compare to other typical dynamic simulation methods to reach equilibrium.

5.1.1 Penalty function implementation on Argon clusters

As described in chapter 1, the Van der Waals potential characterizes the contribution of

the non-bonded pairwise interactions between atoms. It is generally described by the Lennard-

Jones potential function. The Lennard-Jones potential is a key part of many empirical energy

models, including all commonly used energy functions for proteins. A system containing more

than one atom, whose Van der Waals interaction can be described by Lennard-Jones potential

is called a Lennard-Jones cluster:

where a = 0.405A and e = 165.4e~23 J . The Lennard-Jones potential function for a single pair

of neutral atoms is a simple uni-modal function. This is illustrated by Figure (1.7). It is easy

to find the overall minimum of this function that is assumed at 1 with energy -1. In a complex

system, many atoms interact and we need to sum up the Lennard Jones potential functions

for each pair of atoms in a cluster. The result is a complex energy landscape with many local

minima. The Lennard Jones potential can be written as:

If one uses i ̂ j, the total energy must be divided by two. The Lennard Jones potential func­

tion is partially separable (A function that is the sum of functions, each of which only involves

a disjoint subset of the variables, is called partially separable.). The partially separability of

(5.1)

(5.2)

56

the Lennard Jones potential implies that, if a single atom or molecule in a cluster is moved,
f 2 \ t h

the potential energy can be re-evaluated cheaply at a cost that is only — of the cost of
\n J

a total function evaluation, where n is the total number of atoms or molecules in the cluster.

This is due to the fact that the potential function composed as the sum of pairwise interactions

between atoms or molecules. Given a cluster of n atoms, the Lennard Jones cluster problem is

to find the relative position of atoms in the three-dimensional Euclidean space that represent

a potential energy minimum.

Let Xi — (xj1, Xi2,Xi3)T represent the coordinates of atom i in the three-dimensional Euclid­

ean space. Let S — ((xi)T, , (xn)T)T , where n is the number of atoms in the cluster. The

Lennard Jones potential of a pair of atoms (i , j) is:

where = \\xi — Xj ||. The Lennard Jones cluster problem described in the previous section

can be formulated in the coordinate space as follows:

where x^ and xj represent the coordinates of the ith and the jth atoms, respectively. As it

is illustrated by Figure (1.7), for a single pair of neutral atoms, the overall potential energy

minimum is reached when the distance between two atoms is one. When this distance ap­

proaches zero, the potential tends to infinity. When an atom is far away from the system,

its contribution to the total potential becomes almost zero. Due to these observations, it is

reasonable to expect that at the optimal solution of the Lennard Jones cluster problem all

atoms in R3 are close to unit distance to each other. However, complexity of determining the

global minimum energy of the Lennard Jones cluster belongs to the class of NP-hard problem

(51). In other words, there is no known algorithm that can solve this problem in polynomial

time. The main difficulty in solving the Lennard Jones minimization problem arises from the

fact that the objective function is a non-convex function of many variables with a large number

(5.3)

v { S) = ^ i p d l x i - X j \ \) (5.4)

(5.5)

57

of local minima. This non-convexity makes it very difficult to find global optimal solutions.

The potential function in (5.5) can be used to describe Argon molecule cluster with equation

of motion since Argon molecules have only non-bond interactions.

rriiXij = -Vtp(S) (5.6)

20

18

16

14
>,
P 12
CD

ui io

8

S 6
o

4

2

0

-2

-4

1.2 1.3 1.4 1.5 1.6 1.7
Distance

Figure 5.1 The figure is illustrated potential energy changes when penalty
term change.

The Argon molecules have only non-bond interactions. Therefore, in implementation, the

bond lengths are used as a constraints. Define:

C = W r l j ~ d l j W 2 (5 - 7)
some i

where is distance between ith and jth atoms in R3 and ditj is the target (optimal) distance

between ith and jth atoms. The number of constrained included in simulation need to deter­

mined in the beginning. If one choose all the constraints then, the system is more rigid while

less constrained allowed flexibility of the system. The figure (5.2) shows iterative procedure of

1.2 1.3 1.4 1.5 1.6 1.
Distance

58

algorithm. The constraints optimization problem could be defined as:

mm (y(zw))

such that C — 0 (5.8)

Start

Initial coordinates & velocities

Production

Calculate forces Calculate forces

Forces on atoms

*
Solve equations Solve equations

Equation of motion

Move atoms Move atoms

Update coordinates & velocities

Repeat and
increase
penalty
parameter

Calculate system properties

no If converge

yes

Stop

Save trajectories

Figure 5.2 The flow chart of the penalty function algorithm for Argon clus­
ter simulation.

Then, the constrained optimization problem can be converted into unconstrained optimiza­

tion by:

-F(zu) = y(nj) + //C(z) (5.9)

F i x i , j) = (~ V 2 - \ \ r h ~ d h \ \ 2 (5 - 1 0)

\ i - > 3 h 3 J s o m e i

where fj, is Penalty parameter. The negative gradient of equation (5.10) is used as a force in

the equation of motion. In figure (5.1) generated by assuming that there are only two atoms

59

in the system and have constraints distance between them is 1. It shows how potential energy

changes with different (increase) penalty term.

-43.7

-43.8

-43.9

&
g -44.0

LU

~ -44.1 c 0)
o
0_ -44.2

-44.3

-44.4
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of iterations

Figure 5.3 Changes in potential energy of the trajectory for argon cluster
13 produced by the penalty function method. Here, randomly
selected 60% of all distances were constrained to their distances
in the global energy minimum configuration. The trajectory
already approached to the global energy minimum (-44.3) of
the cluster in 3000 time steps while the trajectory generated by
the Verlet remained in high energy. The time step is 0.032ps
and penalty term updated every 500 iteration by 1.

VL
PL

The algorithm has been developed in high performance Fortran 90 (Appendix B). Sim­

ulations are performed in high performance computer with 48 processors. A serial code is

used for verification (Appendix A) purpose. The Message Passing Interface (MPI) used for

communications between nodes. The simulations are focused on trajectory around the global

minimum of Argon atom clusters. The initial structure and velocity of clusters are generated

by perturbing the global minimum structure and using Gaussian distribution function respec­

tively. The algorithm is developed in such a way that it can use all the bond-length constraints

or part of them.

Each processor is asked to perform an independent simulation with different initial structure

60

and velocities. The penalty parameter is increased gradually once the simulation is in progress.

After every iteration, we investigate potential energy changes with the previous step. If there

is no improvement in the potential energy, even after increasing the penalty term, then the

program is terminated. Computing time mainly depends on number of atoms in the cluster if

uses same time step. The simulations were performed on most of the structures where global

minimum was known (35). The simulation procedure is best described in figure (5.2). The

selected number of atom cluster simulation results are presented in this section, specially 13,

24 Argon atoms.

-43.7

-43.8

-43.9
>.
E>
« -44.0

HI

•S -44.1 c
£
(L -44.2

-44.3

-44.4
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of iterations

Figure 5.4 Changes in potential energy of the trajectory for argon cluster
13 produced by the penalty function method. Randomly se­
lected 60% of all distances were constrained to their distances
in the global energy minimum configuration. The time step is
0.032ps and penalty term updated every 1000 iteration by 5.

In figure (5.3) and (5.4) shows potential energy changes when simulation proceed with

increase of penalty term. In both simulations 13 Argon atoms are selected with common

time step At = 0.032ps. 60% of bond length constrained are selected. Even though dynamic

simulations are carried out for longer time, the 9000 (9000 x 0.032ps) iterations results are

presented. The simulation describe in figure (5.3) - simulation A - changes penalty term by 1

61

in every 500 iterations while figure (5.4) - simulation B - simulation changes penalty term by 5

in every 1000 iterations. The both A and B are shown rapid decrease of potential energy over

time. But A run, the potential energy drop gradually compare to simulation B. There is small

but significant variation of potential energy in simulation A. During testing, we recognized

that system need to run for a sufficient time between increase of penalty term. This time is

enable energy to convert kinetic to potential and vise versa.

-96.6 -

s>
CD c
LU

-96.8

.g -97.0 -
c
B
o
CL

-97.2 -

-97.4
1000 2000 3000 4000 5000 6000

Number of iterations

7000 8000 9000

Figure 5.5 Changes in potential energy of argon cluster 24. Solid and
dotted lines show the potential energy of the trajectory pro­
duced by the Verlet (VL) and penalty function (PL) methods,
respectively. Here, randomly selected 50% of all distances were
constrained to their distances in the global energy minimum
configuration (-97.349).

In figure (5.5), potential energy of Verlet run and Penalty run are plotted for a system

with 24 Argon atoms. They have the same starting structure and initial velocities. The bold

and light lines are represented Penalty and Verlet runs respectively. The Penalty term is

increased in every 500 iterations by 1. Freezing bond length constraints, the Argon molecules

approximately reach it known global potential energy level while Verlet does not reach lower

energy configuration even for long enough simulation.

We implemented penalty function method on popular molecular dynamic simulation called

62

CHARMM and tested for BPTI (4PTI) protein. The detailed analysis of the simulation is dis­

cussed. The Verlet and Shake schemes are performed parallel to Penalty scheme for comparison

purposes.

5.2 CHARMM settings

Chemistry at Harvard Macromolecular Mechanics (CHARMM) is a highly flexible molecu­

lar mechanics and dynamics program originally developed by Dr. Martin Karplus at Harvard

University (9). A variety of systems, from isolated small molecules to solvated complexes of

large biological macromolecules, can be simulated using CHARMM. It uses empirical energy

functions to describe the forces on atoms in molecules. These functions, plus the parameters

for the functions, constitute the CHARMM force field. Well-validated energy and force cal­

culations form the core of a broad range of calculation and simulation capabilities, including

calculation of interaction and conformational energies, local minima, barriers to rotation, time-

dependent dynamic behavior, free energy, and vibrational frequencies. The CHARMM process

including penalty function can be summarized in figure (5.6). The steps can be described in

following ways:

Read model definitions: Information about residues, the basic chemical units that comprise

all models, is stored in residue topology files (.RTF). The atoms, atomic properties,

bonds, bond angles, torsion angles, improper torsion angles, hydrogen bond donors,

acceptors, and antecedents, and non-bonded exclusions are all specified on a per residue

basis.

Read sequence: Sequence information must be supplied from sequence (.seq) files or include

in input file before a model can be simulated.

Read parameters: After a structure has been generated, its energy can be evaluated only if

parameters exist for all internal, external, and special energy terms. Parameter files con­

tain parameters that specify force constants, equilibrium geometries, Van der Waals radii,

and other data needed for calculating energies. The values are derived from experimental

63

Repeat and
increase
penalty
parameter

no
If converge

yes

Save trajectories

Stop

Read Cartesian coordinates for all atoms in the
model

Read parameters from parameter file

Read sequences from sequence file Read model definitions from residue topology file

Solve equation of motion

Update coordinates, calculate system properties

Calculate energy, forces

Generate protein structure file containing model information

Figure 5.6 CHARMM simulation procedure.

data and quantum mechanical calculations. Refinement and extension of parameters are

continuing process.

Generate .PSF file: The protein structure file (.PSF) is the concatenation of information

in the .RTF file. It specifies the information for the entire structure. The .PSF file has

a hierarchical organization with atoms collected into groups, groups into residues, and

residues into segments that comprise the structure. Each atom is uniquely identified

within a residue by its IUPAC name, residue identifier, and segment identifier.

Read or generate Cartesian coordinates: Cartesian coordinates can be read into the co­

ordinate file or generated from internal coordinates and parameter files. Internal coor­

dinate files contain information about the relative positions of atoms within a structure.

Two sets of Cartesian coordinates are provided. The main set is the default used for all

64

operations involving the positions of atoms. A comparison or reference set is used for a

variety of purposes, such as a reference for rotation or for operations that involve differ­

ences between coordinates for a particular molecule. Associated with each coordinate is

a general purpose weighting array.

Calculate energy: The main purpose of CHARMM is the evaluation and manipulation of

potential energy of a macromolecular system. Before the energy of a structure can be

evaluated and manipulated, the .PSF file for the structure generated from the appropriate

.RTF file, All parameters required by the .PSF file and Cartesian coordinates for every

atom in the structure must be available.

Iteratively perform calculations and simulations: Using information in the .PSF, para­

meters file, and the energy data, any of a number of things can be done at this point

including molecular dynamics, free energy perturbation, and imposing periodic bound­

aries. If convergence criteria is not satisfied then repeat the procedure while increasing

penalty term.

A typical molecular dynamics run involves six basic steps (figure (5.7)) described as followed:

Preliminary preparation: A molecular structure with all Cartesian coordinates defined is

required for a dynamics simulation. After determining the internal coordinate values of

the molecule, total energy as a function of the Cartesian coordinates is computed by

evaluating the individual terms of the energy equation.

Minimization: All dynamics simulations begin with an initial structure that may be derived

from experimental data. Energy minimization is performed on structures prior to dynam­

ics to relax the conformation and remove steric overlap that can produce bad contacts.

In the absence of an experimental structure, a minimized ideal geometry can be used as

a starting point.

Heating: A minimized structure represents the molecule at a temperature close to absolute

zero. Heating is accomplished by initially assigning random velocities according to a

65

Preliminary preparation

Minimization

5
Heating

Equilibration

Production

3
Quenching

Figure 5.7 Basic steps of molecular dynamic simulation procedure.

Gaussian distribution appropriate low temperature and then running dynamics. The

temperature is gradually increased by assigning greater random velocities to each atom

at predetermined time intervals.

Equilibration: Equilibration is achieved by allowing the system to evolve spontaneously for

a period of time and integrating the equations of motion until the average temperature

and structure remain stable. This is facilitated by periodically reassigning velocities

appropriate to the desired temperature. Generally, the procedure is continued until

various statistical properties of the system become independent of time.

Production: In the final molecular dynamics simulation, CHARMM takes the equilibrated

structure as its starting point. In a typical simulation, the trajectory traces the mo­

tions of the molecule through a period of at least 10 picoseconds. Just as with energy

66

minimization, provision is made to update the non-bonded and hydrogen bonded lists

periodically. Additional options are available, making the dynamics facility quite flexible.

Quenching: The logical opposite of heating, this optional step takes the molecule from the

equilibrated temperature to zero. Quenching is a form of minimization, utilizing molec­

ular dynamics to slowly remove all kinetic energy from the system.

Sometimes, minimization and heating are not necessary, provided the equilibration process

is long enough. However, these steps can serve as a means to arrive at an equilibrated structure

in an effective way. A molecular dynamics run generates a dynamics trajectory consisting of

a set of frames of coordinates and velocities that represent the trajectory of the atoms over

time. Using trajectory data, we can compute the average structure and analyze fluctuations

of geometric parameters, thermodynamics properties, and time-dependent processes of the

molecule. Preliminary analysis is possible using commands provided in the coordinate manip­

ulation facility. Gross changes, as well as more detailed perturbations, can be monitored using

correlation functions. Because molecular dynamics runs often require considerable amounts of

computer time, a restart facility is available that allows to suspend the simulation and resume

the calculation.

5.2.1 CHARMM minimization energy process

The goal of energy minimization is to find a set of coordinates representing a molecular

conformation such that the potential energy of the system is at a minimum. As a consequence

of many degrees of freedom for even the simplest of macromolecules, this task can be compu­

tationally quite difficult. CHARMM (9) has five different minimization methods. These four

methods are provided a flexible array of iterative methods to facilitate energy minimization.

Although the resulting conformation may only represent a local minimum, even macromole­

cules can be energy minimized efficiently using a number of these techniques. All of the

minimization methods take a molecular structure to a local minimum in the potential energy

surface. There is no guarantee that this will be a global minimum. Small molecular systems

can be minimized to a global minimum, but multiple runs from different starting points should

67

- i *

*
yr~x

'N,— *

Figure 5.8 Initial BPTI structure downloaded from PDB data bank. Pic­
ture uses display style cartoon, coloring is based on RESID and
use VMD software.

be done to confirm that a global minimum has indeed been found. With macromolecules, a

very low probability exists that a local minimum will be the global minimum. In fact, a global

minimum may never be found because of the complexity of the potential energy surface. Min­

imization is an important tool in analyzing proteins that are generated through site-directed

mutagenesis. After substituting, inserting, or deleting residues in a sequence, minimization,

along with side-chain conformation scanning, can be used to determine whether the resulting

mutuant structure is very much perturbed with respect to the wild type. If the perturbation

is minimal, it is possible to model the structure of the mutant protein without resorting to

X-ray diffraction studies.

68

Figure 5.9 BPTI with four water molecules. Picture uses display style
CPK. VMD software is used to create picture. Color is based
on RESID.

5.2.2 Minimization methods

Each of the minimization methods available in CHARMM, together with implementation

considerations are listed below:

1. Steepest Descents:

This is a very simple method. Uses only first derivative information and saves only

the current location of the coordinates from iteration to iteration. In general, steepest

descents converges very slowly to a local minimum in a complex potential energy surface.

This method is very useful for small changes, such as the removal of unfavorable steric

contacts.

2. Conjugate Gradient:

69

Exhibits better convergence than the steepest descents method. It is iterative and makes

use of the previous history of minimization steps and the current gradient to determine

the next step.

3. Powell:

A variation of the conjugate gradient method with improved efficiency. This is use­

ful whenever the Adopted Basis-set Newton-Raphson method (described below) is not

possible.

4. Newton-Raphson:

Implementation in CHARMM involves diagonalization of the second derivative matrix,

then finding the optimal step size along each eigenvector. When one or more negative

eigenvalues exist, a blind application of the equations will find a saddle point in the po­

tential. To overcome this problem, a single additional energy and gradient determination

is performed along the eigenvector displacement for each small or negative eigenvalue.

From this additional data, the energy function is approximated by a cubic potential and

the step size that minimizes this function is adopted. The advantages of this algorithm

are that it avoids saddle points in the potential energy surface and converges rapidly

when the potential is nearly quadratic. The major disadvantage is that large computa­

tional requirements makes this technique time consuming and memory demanding for

large molecules.

5. Adopted Basis-Set Newton-Raphson:

Similar to conjugate gradients, but fewer energy evaluations are usually necessary because

the linear interpolation phase of conjugate gradients is avoided. This method performs

energy minimization using a Newton-Raphson algorithm applied to a subspace of the

coordinate vector spanned by the displacement coordinates of the last positions. The

second derivative matrix is constructed numerically from the change in the gradient

vectors, and is inverted by an eigenvector analysis that allows the routine to recognize

and avoid saddle points in the energy surface. At each step, the residual gradient vector

70

is calculated and used to add a steepest descent step, incorporating new direction into

the basis set. This method is the method of choice for most applications. Because it

avoids the large storage requirements.

6. Truncated-Newton (TN) Minimization Package:

This method was developed by T. Schlick and A. Fogelson. TNPACK is based on the

preconditioned linear conjugate-gradient technique for solving the Newton equations.

The structure of the problem (sparsity of the Hessian) is exploited for preconditioning.

TNPACK can converge more rapidly than ABNR for small and medium systems (up to

400 atoms) as well as large molecules that have reasonably good starting conformations.

5.2.3 CHARMM force field

The CHARMM potential energy function is defined as follows;

ip = y ^ ki,(b — bo)2 + k$(9 — <?o)2 + ^] &</>(! + cos{n<j) — <5)) +
bonds angles Dihedrals

ku{u> — uiq)2 + ku{u — Uq)2 +
improper s Urey—Bradley

There are several versions of the CHARMM force field. We used CHARMM22 (released in

1991). The first term in the energy function accounts for the bond stretches where is the

bond force constant and (b — bo) is the distance from equilibrium that the atoms have moved.

The second term in the equation accounts for the bond angles where k$ is the angle force

constant and (0 — 6q) is the angle from equilibrium between three bonded atoms. The third

term is for the dihedrals where k^ is the dihedral force constant and n is the multiplicity of

the function, is the dihedral angle and is the phase shift. The fourth term accounts for the

improper angles, that are out of plane bending, where k^ is the force constant and (cv — CVQ)

is the out of plane angle. The Urey-Bradley component comprises the fifth term, where ku

is the respective force constant and u is the distance between the first and third atoms in

the harmonic potential. Non-bonded interactions between (i,j) pairs of atoms are represented

71

by the last two terms. By definition, the non-bonded forces are only applied to atom pairs

separated by at least three bonds. The van Der Waals energy is calculated with a standard

12-6 Lennard-Jones potential and the electrostatic energy with a Coulomb potential. In the

Lennard-Jones potential above, the Rmin term is not the minimum of the potential, but rather

where the Lennard-Jones potential crosses the x-axis.

5.2.4 Convergence criteria

As minimization is proceeding, CHARMM computes the values of several terms that can

be monitored for energy convergence. These are:

• Root mean square (RMS) gradient

• Step size

• Energy change

If any of these terms is smaller than the default or the user-defined tolerance, minimization

will stop. Although a zero RMS gradient is a necessary condition for a minimum, it is not a

satisfying condition.

All energy minimizations are involved calculating the potential energy of the system. One

must have a .PSF, coordinates, and a parameter file available prior to minimization. Hydro­

gen bonded and non-bonded lists must also be created prior to any energy evaluation and

subsequent minimization.

5.3 Penalty method implementation

The CHARMM (9) program is modified to implement Penalty function method. The three

different molecular dynamic simulations have been performed. One with Verlet (VL) scheme,

other two with Shake (SH) scheme and Penalty (PL) scheme and they all use bond length as

a constraints. There are no external solvent molecules are included. The bovine pancreatic

trypsin inhibitor (BPTI) (figure (1.3)) is selected to investigate efficiency of those methods.

This molecule was chosen for study because in literature there have been number of previous

72

Title: The Geometry of the Reactive Site and of the Peptide Groups in Trypsin, Trypsinogen and its
Complexes with Inhibitors
Compound: Trypsin Inhibitor
Authors: R. Huber, D. Kukla, A. Ruehlmann, O. Epp, H. Formanek, J. Deisenhofer, W. Steigemann
Exp. Method: X-ray Diffraction
Classification: Proteinase Inhibitor (Trypsin)
Source: Bos taurus
Common name:domestic cattle, domestic cow, cattle
Deposition Date: 27-Sep-1982
Release Date: 18-Jan-1983
Resolution [A]: 1.50
R-Value: 0.162
Residues: 58
Atoms: 514 (454 + water molecules)
Sequence:
ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO CYS LYS ALA ARG ILE ILE ARG
TYR PHE TYR ASN ALA LYS ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS ARG
ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET ARG THR CYS GLY GLY ALA

RPDFCLEPPY7GPCKAR IYRYFYNAKAGL'CQ'TFVYGGCRAKRNNFKSAEDCMRTCGGA

* ' h ^ ^

Figure 5.10 The figure is showed sequence of BPTI (9).

simulations of its dynamic properties [(32), (23), (26), (31)]. To compare the three molecular

dynamic simulations and determine whether or not they sample approximately the same part

of phase space, a verity of statistical properties are analyzed. They included the averages,

fluctuations and correlation functions for various physical quantities. Following units are used

in this thesis:

Time: Pico seconds (ps) [1 second = 10~12ps]

Temperature: Kelvin (K)

Mass: Atomic mass units (u)

Length: Angstrom (A)

Energy: Kilocalorie per molecules (kcal mol-1)

73

Figure 5.11 This picture shows BPTI with all hydrogen atoms. There are
904 atoms in total. Picture uses display style CPK and color­
ing is based on RESID.

We used (equation 5.12) in the implementation of the penalty function method in CHARMM.

The penalized energy function becomes the following:

t p = H y] k f , (b — &o)2 + ^] k$(6 — Qq)2 + ^ ' k(j)(1 + cos{n<j) — 5)) +
bonds angles Dihedrals

y] koj(uj — uiq)2 + ^2 ku(u — Uof +
impropers Urey—Bradley

(Er-E/H -
where the original bond-length energy (the first term) is replaced by a penalty function for

the bond length constraints. Note that the penalty term for each bond-length is multiplied by

a constant The term can then be scaled by using an appropriate value for kij. In our

implementation, we simply used the corresponding force constant for each fcy. Coincidental!^

74

the penalized energy function then becomes exactly the original energy function when /i = 1

and is a continuation from the original energy function for any fi > 1. In our implementation,

the penalty parameter was changed gradually from value (0.7) less than 1 to a value (1.7)

beyond 1 during the simulation.

Protein BPTI (figure (1.3)) is contained 58 amino acid residues. It consists of 454 atoms.

In addition, four internally hydrogen bonded water molecule are included in the simulations,

making total number of atoms equal to 458 (without hydrogen) (7). When bond-length con­

straints are applied, the bond stretching potential term is omitted and all bond lengths except

hydrogen bonds of the protein are kept fixed. The VL, SH and PL runs, an integrating time

step At = 10~3ps have been chosen. Moreover, the At = 2 x 10~3ps and other larger time

steps are used in VL run (23). In SH and PL run the relative accuracy tolerance to which the

constraints are to satisfied geometrically must be specified. However, dynamical accuracy of

SH and PL depend not only tolerance but also At. SH runs, the tolerance has been chosen as

small as 10-5.

The initial BPTI protein system obtained from X-ray structure. The data is downloaded

from Protein Data Bank (7), PDB - http://www.rcsb.org/pdb/, figure (5.10)) which contained

454 atoms and 60 water molecules (figure (5.8)). Out of 60 water molecules, carefully selected

internal four molecules added to protein. This has been done with program called gOpenMol

(http://www.csc.fi/gopenmol/). Then, hydrogen bonds are added to the system and build a

three dimension structure using CHARMM.

The potential energy of the the system minimized by applying steepest descent method.

Before minimize BPTI has 44906.75 kcal mol_1 of potential energy. The energy is minimized

until decrease less than 10-3 kcalmol-1. This occurred after 2999 steps and spent elapsed

time 11.97 minutes and cpu time 3.28 minutes on Alpha SOOMhz 64 bit processor.

Table 5.1 Final steps of energy minimization

Cycle Energy Step-size
2998 -1137.46888 0.00034
2999 -1137.46900 0.00041

http://www.rcsb.org/pdb/
http://www.csc.fi/gopenmol/

75

Figure 5.12 This picture shows minimized BPTI stricture with all hydro­
gen atoms. Display style is CPK and coloring is based on
RESID. VMD is used.

In 2999 step, the time step is less than 1 x 10~3 and total energy is —1137.49 kcal mol-1

(table (5.1)). This part is carried out to eliminate the strain present in X-ray structure.

Heating was accomplished by initially assigning random velocities to atoms according to a

Gaussian distribution appropriate for that low temperature and then running dynamics sim­

ulation with VL. The temperature was then increased gradually by assigning greater random

velocities to atoms at every 0.05ps from absolute zero (3.42K) to 300K. The entire heating

process used 5000 simulation steps with O.OOlps time step, which is corresponded to total

5ps simulation time (figure 5.14). When simulation started, the temperature rose rapidly. The

conversion of kinetic energy to potential energy was fast. However, the increase in temperature

decreased when the system aged.

76

Figure 5.13 Average of 25ps structure of equilibrium period of BPTI struc­
ture including all hydrogen atoms. CPK display style and color
is based on RESID. The picture is created by using VMD soft­
ware.

To achieve the equilibrium state for SH and PL, we first performed 15ps and 20ps simu­

lations with VL and then started SH and PL with initial positions and velocities taken from

the final step of VL respectively (figure 5.14). We then ran SH and PL for 25ps for analysis

(figure 5.14). The computing time for each simulation is presented in Table 1. VL, SH and PL

are required 2.44, 3.00 and 2.44 minutes of computing time per picosecond simulation on an

Alpha workstation. We recorded the coordinates of the trajectories every O.Olps. The results

in the final 25ps of the simulations were used to calculate dynamical and statistical properties

of the system.

The bond length constraints are read from .PARM file in CHARMM. In .PARM file, the

standard optimal distances are defined for each types of molecular bonds.

77

VL

<-

b
5 ps

Heating*

-X- 30 ps

Equilibrium8

-X- 25 ps

Production1

SH

t
Heating*

•VL--

15 ps

Equilibtum Production1

d

PL

VL SH-

10ps

| Heating* Equilibrium8 | | Production1 |

I VL A 1 P f l J
Figure 5.14 Simulation time for VL, SH and PL. * Heating - bring the sys­

tem to normal temperature; § Equilibrium - the time for the
system to reach the equilibrium; ^Production - stable dynamic
results for analysis.

Average root mean square deviation of 25ps three simulations (VL, SH and PL) of Backbone

atoms is shown in table (5.3. Two constraints methods SH and PL are showed lowest RMSD

while PL and VL has lowest RMSD compare to SH and VL.

Table 5.2 Computing time of VL, SH and PL run. * Computing time for
the 25ps simulation after equilibrium.

Scheme * Computing time
VL 1.14 hours
SH 1.25 hours
PL 1.14 hours

All the averages and correlation functions are presented in the next chapter are from final

25ps of simulations period. The coordinates of trajectory are saved every O.Olps and carefully

studied.

Table 5.3 Root mean square deviation (RMSD) of backbone atoms

X-ray VL SH PL
X-ray 0 1.786 1.726 1.673
VL 0 1.156 0.962
SH 0 0.611
PL 0

78

5.4 Review

In this chapter, implementation of penalty function method is discussed. In addition, the

standard molecular dynamic simulation procedures are presented. A test case of Argon is

presented. Part of CHARMM program is highlighted and Argon and BPTI simulation results

are discussed.

79

CHAPTER 6. Results, summary and discussion

6.0.1 Analysis

500

450

5- 400

s
3 350
5 0)

1300

250

200
0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Number of iterations

Figure 6.1 Temperature distribution of Shake and Penalty run.

Figure (6.1) shows the temperature distribution in the 25ps simulation by SH and PL.

The variation of the temperature showed that there was a difference between SH and PL at

the beginning of the simulation. The temperature for PL started at 300K, the same as VL,

but gradually increased and eventually approached to that for SH. This indicated that the

simulation by PL started with a condition similar to that by VL but then changed to SH later

when the penalty parameter is fully adjusted to an appropriate value. Moreover, figure (6.2)

shows temperature distribution of VL run for 25ps. Fluctuation of temperature is in range of

25K.

The average backbone root mean square (RMS) fluctuations are plotted as a function of

residue number in figure (6.3). The graphs show a great correlation between the fluctuations

by SH and PL. On the other hand, VL simulation produced large fluctuations for 10 TYR, 13

of dynamics

SH

PL

80

500
VL

450

400

350

Q.

E 300

250

200

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Number of iterations

Figure 6.2 Temperature distribution of Verlet run.

PRO, 15 LYS, 27 ALA, 45 PHE and 47 SER residues, which were disagreed with those by SH

and PL.

i i 1 i i i 1 i i i 1 i • i • i • i • i • i • i • i • i • i • i
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

Residue number

Figure 6.3 The average backbone RMS fluctuations of the residues in the
25ps production simulations.

The root mean square fluctuations of Ca atoms in the simulations are plotted in figure

(6.4). Similar to the average backbone root mean square fluctuations, the Ca fluctuations by

PL and SH again had strong correlations.

The average root mean square fluctuations of HN and the non-backbone atoms by SH and

81

PL correlated as well shown in figure (6.5) and (6.6) except for some discrepancies around

residues 54 to 58.

2.0

(/)

O
ra

1.5

o

cn
2 Cd 1.0 "O 0) O)
2 0)
> TO

0.5
E

0.5

o
TO
O

VL
- SH

-

/ \

PL

• "i

\
A / v ' \

i \
i \

/' \ : i

V
V:. - \ X .

, 1 ,

. - / • A Vn

i i i < i i i i i

c. V' \LA

1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 i

J
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

Residue number

Figure 6.4 The average Ca RMS fluctuations in the 25ps production sim­
ulations.

O 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

Residue number

Figure 6.5 The average RMS fluctuations of the HN atoms in the 25ps
production simulations.

Figure (6.7) shows the normalized velocity autocorrelations calculated for 51 CYS using the

trajectories produced by VL, SH, and PL. For demonstration purposes, the correlations over a

lOps time period are shown. The first curve is for VL run with an autocorrelation time equal

to O.Olps. The auto correlation time for the second curve is 0.02ps and is half the resolution of

the first one. The third and fourth curves are for SH and PL runs, respectively, both with the

82

autocorrelation time equal to O.Olps. The curves for SH and PL showed similar correlations

with that for VL in 0.02ps resolution, suggesting that both SH and PL are roughly faster than

VL by two folds.

y 2.0

m 1.0

a) 0.5

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

Residue number

Figure 6.6 The average RMS fluctuations of the non-backbone atoms in
the 25ps production simulations.

6.1 Review

We compare VL SH and PL to determine the effects of freezing the bond length degrees of

freedom. Results are discussed which include RMSD plots and statistics. Results are indicating

strong correlation between SH and PL.

83

-

-

VL-O.Olps

-

VL - 0.02ps

-

V SH-O.Olps

PL-O.Olps

0 1 2 3 4 5 6 7 8 9 1 0

Figure 6.7 The velocity auto correlations of the Ca atom of 51 CY S based
on the trajectories produced by VL, SH, and PL in a time period
of 0.1 ps.

84

CHAPTER 7. Evaluation/conclusion

We have proposed a so-called penalty function method for constrained molecular dynamics.

In this method, a special function is defined so that the function is minimized if the constraints

are satisfied. By adding such a function in the potential energy function, the constraints can

then be removed from the system, and the simulation can be carried out in a conventional,

unconstrained manner. The advantage of using a penalty function method is that it is easy

to implement, and does not require solving a nonlinear system of equations in every time

step. The disadvantage of the method is that the penalty parameter, i.e., the parameter

used to scale the penalty function, is hard to control and in principle, needs to be large

enough for the penalty function to be truly effective, and might cause numerical instabilities

when used in simulation. It may also arguably be a disadvantage that the penalty function

method only force the constraints to be satisfied approximately but not completely. In any

case, the method may possibly be used as an alternatively and computationally more efficient

approach for constrained molecular dynamics simulation than the Lagrange multiplier types

of methods. We first implemented a penalty function method in CHARMM and tested it on

protein Bovine Pancreatic Trypsin Inhibitor (BPTI) by following a similar experiment done

by Gunsteren and Karplus for the Shake algorithm. In this implementation, we removed the

bond length potentials from the potential energy function and introduced the corresponding

bond length constraints. For each of the bond length constraints, we constructed a quadratic

penalty function and inserted it into the potential energy function. For each different type

of bond, we scaled the corresponding penalty function with the force constant of the bond so

that the resulting function had the same form as the original bond length potential if without

multiplied by the penalty parameter. In this way, the resulting force field becomes simply a

85

continuation of the original force field as the penalty parameter changes continuously from

1 to a value > 1. We conducted a simulation on BPTI with the penalty function method,

and compared the results with Verlet and Shake, and found that the penalty function method

had a high correlation with the Shake and outperformed the Verlet. In particular, the root-

mean-square-deviations (RMSD) of the backbone and non-backbone atoms and the velocity

auto correlations of the Ca atoms of the protein calculated by the penalty function method

agreed well with those by Shake. The penalty function method requires no more than just

applying a conventional, unconstrained simulation algorithm such as the Verlet algorithm to

the potential energy function expanded with additional penalty terms for the bond length

constraints as stated before. We have also tested the penalty function method on a group

of argon clusters with the equilibrium distances for a selected set of molecular pairs as the

constraints. Here by the equilibrium distances we mean the distances for the pairs of argon

molecules when the clusters are in their global energy minimal states. We generated these

distances by using the global energy minimal configuration of the clusters published in previous

studies. A penalty function was constructed for each of the constraints and incorporated

into the potential energy function of the cluster. The simulation was then conducted by

using a conventional, unconstrained simulation method, i.e., the Verlet algorithm, with the

extended potential energy function. Here, there were no substantial algorithmic changes or

computational overheads required due to the addition of the constraints. The simulation results

showed that the penalty function method was able to impose the constraints effectively and

the clusters tended to converge to their lowest energy equilibrium states more rapidly than not

confined by the constraints. Even if starting structure is out of feasible region, the PL method

can be used as a guide to the feasible region and ultimately obtain an optimal solution.

86

APPENDIX A. Fortran Program for Penalty function method for Argon

clusters

A.0.1 Main program

implicit none

include "mpif.h"

integer, parameter :: nop=13 ! Number of Particles

real*8, parameter :: velweight=0.5 ! Velocity perturbation

real*8, parameter :: dtt=0.032 ! Time step

real*8, parameter :: time—320.00 ! Total time period

real*8, parameter :: sigma—1 ! STD - to calculate initial velocity

real*8, parameter :: pi—22/7

real*8, parameter :: toi—0.005 ! Tolarence

! Note: if time/dtt divide perfectly is the best choice

real*8, dimension(:),allocatable :: xyz

real*8, dimension(:),allocatable :: xyzout

real*8, dimension(:),allocatable :: velcom

real*8, dimension(:,:),allocatable :: Dis

real*8, dimension(:,:),allocatable :: RDist

real*8, dimension(:,:),allocatable :: Txyz

real*8, dimension (:,:), allocat able :: Txyzout

real*8 :: ttime, T, Potl, Pot2, lbd, sum

integer :: itno, optat, optatl, optat2

integer :: n, i, j, k, il, i2, i3, ter

87

integer :: m ! number of time steps

integer :: p ! Number of processors

integer :: ierror

integer :: rank ! The rank of the processors

integer :: status(mpLstatus_size)

logical :: minpot

character*^ :: fileno

call MPLINIT (ierror)

call MPLCOMMLSIZE (mpi_comm_world, p, ierror)

call MPI_COMM_RANK(mpi_comm_world, rank, ierror)

lbd=0 ! Initial penalty parameter value

n=nop

m=int(time/dtt)+1

print*, "Iteration ", m

Potl=100000000.0

allocate (xyz (n* 3))

allocate(Txyz(n*3,m))

allocate (xyzout (n*3))

allocate(Txyzout(n*3,m))

allocate(velcom(n*3))

allocate(Dis(n,n))

allocate(RDist(n,n))

itno=0

Txyz=0.0

minpot=.t.

ter=0

CALL read_files(nop, Dis, xyz)

88

CALL distance (nop, RDist, xyz)

Txyz(:,l)=xyz(:)

CALL Init_velocity(dtt, n, sigma, pi, xyz, velcom, T, velweight)

Txyz(:,2)=xyz(:)

do while (minpot)

Txyzout—0.0

ttime=mpi_wtime()

open (unit=l,file="Potential.txt",status="new",action="write",iostat=optatl)

open (unit=3,file="Distance.txt" ,status=" new" ,action="write" ,iostat=optat2)

do k=l,m

if (k.gt.2) then

do i=l,n

il—3*(i-l)+l

i2=il+l

i3—il+2

Txyz(il,k)=2*Txyz(il,k-l)-Txyz(il,k-2)+dtt**2*Txyzout(il,k-l)

Txyz(i2,k)=2*Txyz(i2,k-l)-Txyz(i2,k-2)+dtt**2*Txyzout(i2,k-l)

Txyz(i3,k)=2*Txyz(i3,k-l)-Txyz(i3,k-2)+dtt**2*Txyzout(i3,k-l)

enddo

endif

xyz(:)^Txyz(:,k)

call distance(n, RDist, xyz)

call Verlet(n, xyz, xyzout, dtt, k, sum, Pot2, Dis, lbd)

Txyzout (: ,k) —xyzout (:)

if (Pot2.1t.Potl) then

Potl=Pot2

itno=k

89

endif

if (mod(k,100)==0) then

lbd=lbd+0.5 ! increase the Penalty term here

endif

enddo

ttime=mpLwtime()-ttime

ter=ter+l

if (sum.It.toi) then

minpot=.f.

endif

close(3)

close(l)

enddo

print*, ' program end normally

deallocate(Txyz)

deallocate(xyz)

deallocate(xyzout)

deallocate (velcom)

deallocate(Txyzout)

deallocate (Dis)

deallocate(RDist)

call MPLFINALIZE(ierror)

end

A.0.2 Sub program Verlet

subroutine Verlet(n, xyz, xyzout, dtt, k, sum, Pot, Dis, Ibd)

implicit none

90

real*8, dimension (3*n) :: xyz

real*8, dimension (3*n) :: xyzout

real*8, dimension (n,n) :: Dis

integer :: i, k. j, n, ic, je, il, i2, i3, jl, j2, j3, ii, jj

integer :: k, ix, iy, iz, count, casecount

real*8 :: Ibd, rl, r2, r3, r, rr, lbda

real*8 :: rv, dtt, Pot, sum, tot, xxyz

real*8 :: xyzsum, xsum, ysum, zsum, rll, r22, r33

xyzout—0.0

Pot=0.0

sum=0.0

count=1

casecount=l

do i=l,n-l

do j=i+l,n

lbda=lbd

il=3*(i-l)+l

i2=il+l

i3=il+2

jW3*(j-l)+l

j2=jl+l

j3=jl+2

rl=xyz(il)-xyz(jl)

r2^xyz(i2)-xyz(j2)

r3=xyz(i3)-xyz(j3)

r=(rl**2+r2**2+r3**2)

xsum=(r-Dis(i,j))*rl

91

ysum= (r-Dis (i, j)) *r2

zsum=(r-Dis(i,j))*r3

if (Dis(ij).eq.O.O) then

lbda=0.0

endif

xyzout(il)=xyzout(il)+(l/(r**7)-l/(r**4))*rl-lbda*xsum

xyzout(i2)=xyzout(i2)+(l/(r**7)-l/(r**4))*r2-lbda*ysum

xyzout(i3)=xyzout(i3)+(l/(r**7)-l/(r**4))*r3-lbda*zsum

xyzout(jl)=xyzout(jl)-(l/(r**7)-l/(r**4))*rl+lbda*xsum

xyzout(j2)=xyzout(j2)-(l/(r**7)-l/(r**4))*r2+lbda*ysum

xyzout(j3)=xyzout(j3)-(l/(r**7)-l/(r**4))*r3+lbda*zsum

Pot=Pot+(l/(r**6)-2/(r**3))+(l/4)*lbda*(r-Dis(ij))**2

enddo

enddo

return

end

A.0.3 Sub program Init_velocity

subroutine Init_velocity(dtt, n, sigma, pi, xyz, velcom, T, velweight)

implicit none

real*8, dimension (3*n) :: xyz

real*8, dimension (n) :: vel

real*8, dimension (3*n) :: velcom

real*8, dimension (2*n) :: angle

real*8 :: velweight

real*8 :: sigma

real*8 :: pi

real*8 :: T

92

real*8 :: dtt

real*8 :: dist

integer :: i

integer :: n

integer :: count

integer :: ccount

T=0.0

count=1

do i=l,3*n,3

dist-xyz(i)**2+xyz(i+l)**2+xyz(i+2)**2

vel(count)=(l/sqrt(2*pi*sigma**2)*exp(-dist/(2*sigma**2)))*velweight

count=count+l

enddo

call random_number (angle)

do i=l,2*n,2

angle(i)=(angle(i)-0.5)*pi

angle(i+l)—(angle(i+l)-0.5)*pi

enddo

count=1

ccount=1

do i=l,3*n,3

velcom(i)=vel(count)*sin(angle(ccount))*cos(angle(ccount+l))

velcom(i+l)=vel(count)*sin(angle(ccount))*sin(angle(ccount+l))

velcom(i+2)=vel(count)*cos(angle(ccount))

xyz(i)=xyz(i)+dtt*velcom(i)

xyz(i+l)=xyz(i+l)+dtt*velcom(i+l)

xyz(i+2)=xyz(i+2)+dtt*velcom(i+2)

count—count+1

93

ccount=ccount+2

T=T+(velcom(i)**2+velcom(i+l)**2+velcom(i+2)

enddo

T=16*T/n

return

end

A.0.4 Sub program read_files

subroutine read_files(nop, Dis, xyz)

implicit none

real*8, dimension (nop*3) :: xyz

real*8, dimension (nop,nop) :: Dis

real*8, dimension (nop*3) :: pert

integer :: j, i, k, n

integer :: nop, optat, count

integer :: il, i2, i3, jl, j2, j3

integer :: ix, iy, iz

integer :: filecountl, filecount2, filecount3

real*8 :: aa, bb, cc

real*8 :: r, rl, r2, r3

real*8 :: xsum, ysum, zsum

character*3 :: fileno

filecount3=0

filecount2—0

filecountl=l

xyz=0

n=nop

Dis=0.0

94

do k=l,n

if (mod(k,10)==0) then

filecount 2=filecount 2+1

filecountl—0

endif

if (mod(k,100)==0) then

filecount3=filecount3+l

filecount2=0

filecountl—0

endif

filecount 1=filecount 1+1

enddo

filecount 1 ̂ filecountl-1

fileno=char(48+filecount3) //char(48+filecount2)//char(48+filecountl)

open (unit=l, file=" /usr/people/ajith/LJ/LJ" //fileno//" .txt")

j=l

do i=l,n

read (1,*) (xyz(k),k=j,j+2)

j=j+3

enddo

close(l)

! Move center to origin xsum=0.0

ysum=0.0

zsum—0.0

do i=l,n-l

do j—i+l,n

il=3*(i-l)+l

i2=il+l

95

i3=il+2

jl—3*(j-l)+l

j2=jl+l

j3=jl+2

rl=xyz(il)-xyz(jl)

r2=xyz(i2)-xyz(j2)

r3=xyz(i3)-xyz(j3)

r=(rl**2+r2**2+r3**2)

if (i+1—=j) then

Dis(i,j) —r

Dis(j,i)=r

endif

enddo

ix=3*(i-l)+l

iy—ix+1

iz—ix+2

xsum=xsum+xyz(ix)

ysum=ysum+xyz (iy)

zsum=zsum+xyz(iz)

enddo

ix=3*(n-l)+l

iy=ix+l

iz=ix+2

xsum=xsum+xyz(ix)

ysum=ysum+xyz (iy)

zsum—zsum+xyz(iz)

xsum—xsum/n

ysum=ysum/n

96

zsum=zsum/n

do i=l,n

ix=3*(i-l)+l

iy=ix+l

iz—ix+2

xyz(ix) —xyz(ix) -xsum

xyz(iy)=xyz(iy)-ysum

xyz(iz)=xyz(iz)-zsum

enddo

! Perturbation

ix=l

call random_number(pert)

do i—l,3*n

if (xyz(i).lt.O) then

xyz(i)=xyz(i)-pert(ix)*0.3

elseif (xyz(i).gt.O) then

xyz(i)=xyz(i)+pert(ix)*0.3

endif

if (mod(i,3)==0) then

ix=ix+l

endif

enddo

call random_number(pert)

xyz=xyz+(pert-0.5)*.2

return

end

97

A.0.5 Sub program distance

subroutine distance(nop, Dist, xyz)

implicit none

real*8, dimension (nop*3) :: xyz

real*8, dimension (nop,nop) :: Dist

integer :: j, i

integer :: nop

integer :: il, 12, i3, jl, j2, j3

real*8 :: r, rl, r2, r3

do i=l,nop-l

do j=i+l,nop

il=3*(i-l)+l

i2=il+l

i3=il+2

j 1—3*(j-l)+l

j2=jl+l

j3=jl+2

rl=xyz(il)-xyz(jl)

r2=xyz(i2)-xyz(j2)

r3=xyz(i3)-xyz(j3)

r-(rl**2+r2**2+r3**2)**(0.5)

Dist(i,j)=r

Dist (j ,i)—r

enddo

enddo

return

end

98

APPENDIX B. High performance Fortran program for Penalty function

method for Argon clusters

implicit none

include "mpif.h"

integer, parameter :: nopinx=3 ! Number of Particales in axis (Odd Number)

integer, parameter :: nb=16 ! Number of steps to be done (Book keeping)

real*8, parameter :: perturb^O.45 ! Initial position pertubation

real*8, parameter :: rm=3.3 ! root mean Error need to maintained

real*8, parameter :: velweight= 10.0 ! root mean Error need to maintained

real*8, parameter :: dtxyz=1.7 ! lenght of small cube

real*8, parameter :: dtt=0.032 Time step

real*8, parameter :: time=32 ! Total time period

real*8, parameter :: sigma=l ! STD - to calculate initial velocity

real*8, parameter :: pi-22/7

! Note if time/dtt divide perfectly is the best choise

real*8, dimension (:),allocatable :: bookkeep

real*8, dimension(:),allocatable :: xyz

real*8, dimension (:),allocatable :: xyzout

real*8, dimension (:),allocatable :: velcom

real*8, dimension(:),allocatable :: Potcollect

real*8, dimension (:),allocatable :: pert

real*8, dimension(:),allocatable :: vel

real*8, dimension(:,:),allocatable :: Txyz

99

real*8, dimension(:,:),allocatable :: Txyzout

integer, dimension(:),allocatable :: index

real*8 :: Ta, Tb, velb, vela, ttime, T, Potl, Pot2, weight, wweight

integer :: decision, itno, isum, opt at, n, i, il, i2, i3, j, k,ter

integer :: m ! number of time steps

integer :: p ! Number of processors

integer :: ierror

integer :: rank ! The rank of the processors

integer :: status(mpi_status_size)

logical :: minpot

character*4 :: fileno

call MPI/-INIT(ierror)

call MPI/_COMM/_SIZE(mpi_comm_world, p, ierror)

call MPLCOMM_RANK(mpLcomm_world, rank, ierror)

n=(nopinx* * 2) *nopinx+(nopinx-1) * (nopinx-1) *3*nopinx

m=int (time/dtt)+1

Potl=100000000.0

isum=0.0

do i=l,n-l

do j=i+l,n

isum=isum+i

enddo

enddo

allocate(bookkeep(isum))

allocate(pert(n*3))

allocate(xyz(n*3))

allocate(vel(n*3))

allocate(Txyz(n*3,m))

100

allocate (xyzout (n*3))

allocate(Txyzout(n*3,m))

allocate(velcom(n*3))

if (rank==0) then

allocate (Potcollect (p))

allocate (index(p))

endif

decision=99999

itno=0

Txyz=0.0

wweight=perturb/p

do k=l,p

if (rank==k-l) then

weight=(k-1) * wweight

endif

enddo

call Position_Init(n, nopinx, dtxyz, xyz, weight)

Txyz(:,l)=xyz(:)

call Init_velocity(dtt, n, sigma, pi, xyz, velcom, T, velweight)

Txyz(:,2)=xyz(:)

minpot=.t.

ter=0

do while (minpot)

bookkeep=l

Txyzout=0.0

ttime=mpi_wtime()

do k=l,m

if (k.gt.2) then

101

do i=l,n

il=3*(i-l)+l

i2=il+l

i3—il+2

Txyz(il,k)^2*Txyz(il,k-l)-Txyz(il,k-2)+dtt**2*Txyzout(il,k-l)

Txyz(i2,k)=2*Txyz(i2,k-l)-Txyz(i2,k-2)+dtt**2*Txyzout(i2,k-l)

Txyz(i3,k)=2*Txyz(i3,k-l)-Txyz(i3,k-2)+dtt**2*Txyzout(i3,k-l)

enddo

endif

xyz(:)=Txyz(:,k)

call Verlet(n, xyz, xyzout, nb, rm, dtt, k, isum, bookkeep, Pot2)

Txyzout (:,k) =xy zout (:)

if (Pot2.1t.Potl) then

Potl=Pot2

itno=k

endif

enddo

ttime=mpi_wtime()-ttime

call mpi_gather(Potl,l,mpi_real8,Potcollect,l,mpi_real8,0,mpi_comm_world,ierror)

if (rank==0) then

do i=l,p

index(i)=i-l

enddo

call bubble_sort(Potcollect,index, p)

decision=index(l)

endif

call mpLbcast(decision,l,mpi_integer,0,mpi_comm_world,ierror)

if (rank==decision) then

102

Txyz(:,l)=Txyz(:,itno-l)

Txyz(:,2)=Txyz(:,itno)

endif

if (rank.ne.decision) then

Txyz=0.0

endif

call mpi_bcast(Txyz(:,l),3*n,mpi_real8,decision,mpLcomm.world,ierror)

call mpi_bcast(Txyz(:,2),3*n,mpi_real8,decision,mpi_comm_world,ierror)

wweight=1.0/p

do k=l,p

if (rank==k-l) then

weight=(k-1) * wweight

endif

enddo

velb=0.0

vela=0.0

do i=l,3*n

vel(i)=(Txyz(i,2)-Txyz(i,l))/dtt

if (mod(i,3)==0) then

velb=velb+(vel(i)**2+vel(i+l)**2+vel(i+2)**2)

endif

enddo

Txyz(:,l)=Txyz(:,2)

do i=l,3*n

Txyz(i,2)=Txyz(i,l)+dtt*vel(i)*weight**2

enddo

do i=l,3*n

vel(i)—(Txyz(i,2)-Txyz(i,l))/dtt

103

if (mod(i,3)==0) then

vela=vela+(vel(i)**2+vel(i+l)**2+vel(i+2)**2)

endif

enddo

Tb=(16.0/n)*velb

Ta-(16.0/n)*vela

ter=ter+l

if (ter==10) then

minpot=.f.

endif

enddo

deallocate (vel)

deallocate (xyz)

deallocate(pert)

deallocate(xyzout)

deallocate (velcom)

deallocate (bookkeep)

if (rank==0) then

deallocate (Potcollect)

deallocate (index)

endif

call MPLFINALIZE(ierror)

end

B.0.6 Sub program - Verlet

subroutine Verlet(n, xyz, xyzout, nb, rm, dtt, k, isum, bookkeep, Pot)

implicit none

real*8, dimension (3*n) :: xyz

104

real*8, dimension (3*n) :: xyzout

real*8, dimension (isum):: bookkeep

integer :: k, i, ic, je, il, i2, i3, j, jl, j2, j3, n, isum, nb,count, icount

real*8 :: rl, r2, r3, r, rv, rm, dtt, Pot

xyzout=0.0

count=1

if (k.ge.nb) then

if (mod(k,nb)==0) then

icount=l

do ic=l,n-l

do jc=ic+l,n

il=3*(ic-l)+l

i2—il+1

i3—il+2

jl=3*(jc-l)+l

j2=jl+l

j3=jl+2

rl=xyz(il)-xyz(jl)

r2=xyz(i2)-xyz(j2)

r3^xyz(i3)-xyz(j3)

r=(rl**2+r2**2+r3**2)**0.5

if (rm .gt. r) then

bookkeep(icount)=l

else

bookkeep(icount)=0

endif

icount=icount+l

105

enddo

enddo

endif

endif

Pot=0.0

do i=l,n-l

do j=i+l,n

il=3*(i-l)+l

i2=il+l

i3=il+2

jl=3*(j-l)+l

j2=jl+l

j3=jl+2

rl=xyz(il)-xyz(jl)

r2=xyz(i2)-xyz(j2)

r3=xyz(i3)-xyz(j3)

r=(rl**2+r2**2+r3**2)**0.5

if ((bookkeep(count)==l).and.(r.Ie.2.5)) then

xyzout (il)=xyzout(il)+(l/(r**14)-0.5/(r**8))*rl

xyzout(i2)=xyzout(i2)+(l/(r**14)-0.5/(r**8))*r2

xyzout (i3)=xyzout (i3)+(l/(r**14)-0.5/(r**8))*r3

xyzout (jl)=xyzout(jl)-(l/(r**14)-0.5/(r**8))*rl

xyzout(j2)=xyzout(j2)-(l/(r**14)-0.5/(r**8))*r2

xyzout (j3)=xyzout(j3)-(l/(r**14)-0.5/(r**8))*r3

endif

count=count+l

Pot=Pot+(l/(r**12)-2/(r**6))

enddo

106

enddo

return

end

B.0.7 Sub program - Position_Init

subroutine Position_Init(n, nopinx, dtxyz, xyz, weight)

implicit none

real*8, dimension (3*n) :: seed

real*8, dimension (3*n) :: xyz

real*8, dimension (3*n) :: pert

integer :: rank, p, n, i, ix, iy, iz, j, k, nopinx

real*8 :: dtxyz, cx, cy, cz, x, y, z, weight

z=0.0

xyz=0.0

ix=l

iy—2

iz=3

if (mod(nopinx,2) .ne.O) then

cx—(nopinx-l)/2*dtxyz

cy—cx

cz—cx

else

cx=(nopinx-2)/2*dtxyz

cy—cx

cz=cx

endif

do k=l,nopinx

107

y=0.0

do j—1, nopinx

x=0

do i=l,nopinx

xyz(ix)=x

xyz(iy)-y

xyz(iz)=z

x=x+dtxyz

ix=ix+3

iy=iy+3

iz=iz+3

enddo

y=y+dtxyz

enddo

z=z+dtxyz

enddo

z=0.0

do k=l , nopinx

y=dtxyz/2.0

do j=1, nopinx-1

x=dtxyz/2.0

do i=l,nopinx-1

xyz(ix)=x

xyz(iy)=y

xyz(iz)=z

x=x+dtxyz

ix=ix+3

iy=iy+3

108

iz—iz+3

enddo

y=y+dtxyz

enddo

z=z+dtxyz

enddo

z=dtxyz/2.0

do k=l,nopinx-1

y=dtxyz/2.0

do j=1, nopinx-1

x=0.0

do i=l,nopinx

xyz(ix)—x

xyz(iy)=y

xyz(iz)=z

x=x+dtxyz

ix=ix+3

iy=iy+3

iz=iz+3

enddo

y=y+dtxyz

enddo

z=z+dtxyz

enddo

z=dtxyz/2.0

do k—1, nopinx-1

y=0.0

do j=l,nopinx

109

x=dtxyz/2.0

do i=1, nopinx-1

xyz(ix)=x

xyz(iy)=y

xyz(iz)—z

x=x+dtxyz

ix=ix+3

iy=iy+3

iz=iz+3

enddo

y—y+dtxyz

enddo

z=z+dtxyz

enddo

! shifting to all quardrent

do i=l,n

ix=3*(i-l)+l

iy=ix+l

iz=ix+2

xyz(ix)=xyz(ix)-cx

xyz(iy)=xyz(iy)-cy

xyz(iz)=xyz(iz)-cz

enddo

! Perturbation

call random_number(pert)

xyz=xyz+weight*(pert-0.5)

return

end

110

B.0.8 Sub program - Init.velocity

subroutine Init_velocity(dtt, n, sigma, pi, xyz, velcom, T, velweight)

implicit none

real*8, dimension (3*n) :: xyz

real*8, dimension (n) :: vel

real*8, dimension (3*n) :: velcom

real*8, dimension (2*n) :: angle

real*8 :: velweight, sigma, pi, T, dtt, dist

integer :: i, n, count, ccount

T=0.0

count=1

do i=l,3*n,3

dist=xyz(i)**2+xyz(i+l)**2+xyz(i+2)**2

vel(count)=(l/sqrt(2*pi*sigma**2)*exp(-dist/(2*sigma**2)))*velweight

count=count+l

enddo

call random_number (angle)

do i=l,2*n,2

angle(i)=(angle(i)-0.5)*pi

angle(i+l)=(angle(i+l)-0.5)*pi

enddo

count=1

ccount=l

do i=l,3*n,3 velcom(i)=vel(count)*sin(angle(ccount))*cos(angle(ccount+l))

velcom(i+l)=vel(count)*sin(angle(ccount))*sin(angle(ccount+l))

velcom(i+2)=vel(count)*cos(angle(ccount))

I l l

xyz(i) =xyz (i)+dtt *velcom(i)

xyz(i+l)=xyz(i+l)+dtt*velcom(i+l)

xyz(i+2)=xyz(i+2)+dtt*velcom(i+2)

count=count+l

ccount=ccount+2

T=T+(velcom(i)**2+velcom(i+l)**2+velcom(i+2)**2)

enddo

T=16*T/n

return

end

B.0.9 Sub program - bubble_sort

subroutine bubble_sort(A,Index, n)

implicit none

real*8, dimension (n) :: A

integer, dimension (n) :: Index

real*8 :: tempi

integer :: n, i, j, temp2

do j=l,n

do i=l,n-l

if (A(i+l).lt.A(i)) then

templ=A(i)

temp2=index(i)

A(i)=A(i+l)

index(i)=index(i+l)

A(i+l)=templ

index(i+1)=temp2

112

endif

enddo

enddo

return

end

113

BIBLIOGRAPHY

[1] B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. Journal of

Chemical Physics, 27:2:1208-1209, 1957.

[2] H. C. Andersen. Rattle: A velocity verion of shake algorithm for molecular dynamic

calculations. Journal of computational Physics, 52:24-34, 1983.

[3] E. Barth, K. Kuczera, B. Leimkuhler, and R. D. Skeel. Algorithms for constrained mole­

cular dynamics. Journal of Computational Chemistry, 16:1192-1209, 1995.

[4] E. Barth, B. Leimkuhler, and S. Reich. A test set for molecular dynamics. Lecture Notes

in Computational Science and Engineering, 24:73-103, 2003.

[5] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming; Theory and

Algorithms, New York. John Wiley and Sons, 1993.

[6] D. Beeman. Some multistep methods for use in molecular dynamics calculations. Journal

of computational Physics, 20:130-139, 1976.

[7] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.

Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Research, 28:235-242,

2000.

[8] D. P. Bertsekas. Constrained optimization and Lagrange multiplirs methods. Academic

Press, New York, 1982.

[9] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and

M. Karplus. Charmm: A program for macromolecular energy, minmimization, and dy­

namics calculations. Journal of computational chemistry, 4:187-217, 1983.

114

[10] B. Christiansen. Geometric approach to fletchers ideal penalty function. Journal of

Optimization Theory and Applications, 84:433-441, 1995.

[11] R. Courant. Variational methods for the solution of problems of equilibrium and vibra­

tions. Bulletin of the American Mathematical Society, 49:1-23, 1943.

[12] L. Dennis. Advances in Molecular Modeling Volume 1. Jai press inc, London England,

1990.

[13] L. Dennis. Advances in Molecular Modeling Volume 2. Jai press inc, London England,

1994.

[14] L. Dennis. Advances in Molecular Modeling Volume 3. Jai press inc, London England,

1995.

[15] G. Di Pillo. Exact penalty methods in: Algorithms for continuous optimization: the state-

of-the-art, E. Spedicato (ed.). Kluwer Academic Publishers, Boston, 1994.

[16] J. P. Dussault. Numerical stability and efficiency of penalty algorithms. SIAM Journal

on Numerical Analysis, 32:296-317, 1995.

[17] R. Fletcher. A class of methods for nonlinear programming with termination and conver­

gence properties, in: Integer and nonlinear programming, J. Abadie (ed.). North-Holland

Publishing Company, Amsterdam, London, 1970.

[18] D. B. Gert and V. M. Kurt. Introduction to molecular dynamics and chemical kinetics.

John Wiley & sons Inc., Canada, 1996.

[19] J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard. Dynamics of radiation

damage. Physical Review, 120:1229-1253, 1960.

[20] P. Gierycz and K. Nakanishi. Local composition in binary mixtures of lennard-jones fluids

with differing sizes of components. Fluid Phase Equilibria, 16:255-273, 1984.

115

[21] P. Gierycz, H. Tanaka, and K. Nakanishi. Molecular dynamics studies of binary mixtures

of lennard-jones fluids with differing component sizes. Fluid Phase Equilibria, 16:241-253,

1984.

[22] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic press Inc

Ltd., London, 1981.

[23] W. F. Gunsteren and M. Karplus. Effect of constraints on dynamics of macromolecules.

Macromolecules, 15:1528-1544, 1982.

[24] J. P. Hansen and I. R. McDonald. Theory of simple liquids. Academic, 1986.

[25] J. P. Hansen and L. Ver let. Phase transitions of the lennard-jones system. Physical Review,

184:151-161, 1969.

[26] M. Karplus and J. A. McCammon. Protein structural fluctuations during a period of 100

ps. Nature London, 277:578, 1979.

[27] J. L. Lagrange. Essai sur une nouvelle methode pour determiner les maxima et minima

des formules intégrales indéfinies. Miscellanea Taurinensia II, pages 173-195, 1762.

[28] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Eva seek, M. J. Field,

S. Fischer, J. Gao, H. Guo, S. Ha, D. JosephMcCarthy, L. Kuc nir, K. Kuczera, F. T. K.

Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Pro hom, W. E. Reiher, B. Roux,

M. Schlenkrich, J. C. Smith, R. Stote, J. W. Straub, M. tanabe, J. WiorkiewiczKucz-

era, D. Yin, and M. Karplus. All-atom empirical potential for molecular modeling and

dynamics studies of proteins. Journal of Physical Chemistry, B 102:3586-3617, 1998.

[29] A. D. Mackerell, J. Wiorkiewiczkuczera, and M. Karplus. An all-atom empirical energy

function for the simulation of nucleic acids. Journal of the American Chemical society,

Soc. 117:11946-11975, 1995.

[30] J. B. Marion and S. T. Thornton. Classical dynamics of particles and systems. Harcourt

Brace & Company, 1995.

116

[31] J. A. McCammon, B. R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature,

267:585-590, 1977.

[32] J. A. McCammon, P. G. Wolynes, and M. Karplus. Picosecond dynamics of tyrosine side

chains in proteins. Biochemistry, 18:927-942, 1979.

[33] J. Meidanis and J. C. Setubal. Introduction to Computational Molecular Biology. PWS

Publishing Company, 1997.

[34] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.

[35] J. A. Northby. Structure and binding of lennard-jones clusters: 13 - 147. Journal of

Chemical Physics, 87:10:6166-6177, 1987.

[36] J. M. Ortega and W. C. Rheinboldt. Iterative Solutions of Nonlinear Equations in Several

Variables. Academic Press, 1970.

[37] S. Ozgen and O. Adiguzel. Molecular dynamics simulation of diffusionless phase trans­

formation in a quenched niai alloy model. Journal of Physics and Chemistry of Solids,

64:459-464, 2003.

[38] Ryckaert J. P., F. H. Ciccotti, and H. J. C. Berendsen. Numerical-integration of carte­

sian equations of motion of a system with constraints - molecular-dynamics of n-alkanes.

Journal of computational Physics, 23:327-341, 1977.

[39] A. Rahman. Correlations in the motion of atoms in liquid argon. Physics Review,

136:A:405-411, 1964.

[40] T. Rapcsak. Geodesic convexity in nonlinear programming. Journal of Optimization

Theory and Applications, 69:169-183, 1991.

[41] T. Rapcsak. Smooth nonlinear optimization in Rn. Kluwer Academic Publishers, 1997.

[42] T. Rapcsak. Global Lagrange multiplier rule and smooth exact penalty functions for equal­

ity constraints in: Nonlinear optimization and related topics, eds. G. Di Pillo and F.

Giannessi. Kluwer Academic Publishers, 2000.

117

[43] D. R. Ronald. A canonocal integration technique. IEEE transactions on Nuclear Scince,

NS-30 No. 4:2669-2671, 1983.

[44] J.M. Sanz-Serna and Calvo M. P. Numerical Hamiltonian Problems. Chapman and Hall,

London, 1994.

[45] H. P. Schwefel. Evolution and Optimum Seeking. John Wiley and Sons, 1995.

[46] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer simulation

method for the calculation of equilibrium constants for the formation of physical clusters of

molecules: Application to small water clusters. Journal of Chemical Physics, 76:637-649,

1982.

[47] S. Tamar. Molecular Modeling and Simulation. New York: Springer Ver lag, 2002.

[48] D. J. Tobias and Brooks C. L. Molecular dynamics with internal cordinate constraints.

Journal of Chemical Physics, 89(8) :5115 5125, 1988.

[49] L. Verlet. Computer experiments on classical fluids i, thermodynamical properties of

lennared jones molecules. Physical Review, 159:98-103, 1967.

[50] G. Werner, A. Anton, and C. A. B. Jan. Fundamental principles of molecular modeling.

New York : Plenum Press, 1996.

[51] L. T. Wille and J. Vennik. Computational complexity of the ground-state determination

of atomic clusters. Journal of Physics, 18:L:419-422, 1985.

[52] H. Yoshida. Construction of higher order symplectic integrators. Physics Letters, A

150:262-268, 1990.

118

ACKNOWLEDGEMENTS

There are a number of people without whom this thesis might not have been written, and

to whom I am greatly indebted. First, I would like to express my profound gratitude to my

advisor, Professor Zhijun Wu for being a magnificent coach all through my graduate studies.

He provided me with immeasurable academic guidance and financial support and it is to him

the accomplishment of my graduate education at the Iowa State University is highly credited. I

also like to thank other members of my committee, Professors Robert Jernigan, Glenn Luecke,

Scott Hansen and Sunder Sethuraman for their interest in my work.

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. I am glad to acknowledge

the financial support which I received from Department of Mathematics, Iowa State University.

I would like to thanks my wife, Nilanthi Gunaratne and my only son Chamara Gunaratne

for their love, care and making home always pleasant for me. I acknowledge also support I

received from my parents Mr and Mrs Gunaratne, sisters Chandrika and Jeevani and only

brother Lalith for giving me primary and secondary education. I would additionally like to

thank Dr. Lareef Zubair for his guidance throughout the initial stages of my graduate career.

