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ABSTRACT 

We propose a penalty-function method for constrained molecular dynamic simulation by 

defining a quadratic penalty function for the constraints. The simulation with such a method 

can be done by using a conventional, unconstrained solver only with the penalty parameter 

increased in an appropriate manner as the simulation proceeds. More specifically, we scale 

the constraints with their force constants when forming the penalty terms. The resulting 

force function can then be viewed as a smooth continuation of the original force field as the 

penalty parameter increases. The penalty function method is easy to implement and costs 

less than a Lagrange multiplier method, which requires the solution of a nonlinear system 

of equations in every time step. We have first implemented a penalty function method in 

CHARMM and applied it to protein Bovine Pancreatic Trypsin Inhibitor (BPTI). We compared 

the simulation results with Verlet and Shake, and found that the penalty function method had 

high correlations with Shake and outperformed Verlet. In particular, the RMSD fluctuations 

of backbone and non-backbone atoms and the velocity auto correlations of Ca atoms of the 

protein calculated by the penalty function method agreed well with those by Shake. We have 

also tested the method on a group of argon clusters constrained with a set of inter-atomic 

distances in their global energy minimum states. The results showed that the method was 

able to impose the constraints effectively and the clusters tended to converge to their energy 

minima more rapidly than not confined by the constraints. 
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CHAPTER 1. Introduction and background 

1.1 Introduction 

Molecular dynamics simulation can be used to study many different dynamic properties of 

proteins, but a long sequence of iterations has to be carried out even for small protein motions 

due to the small time step (1.0e-15sec) required (47). The bonding forces are among those 

causing fast protein vibrations that require small time steps to integrate, but they may be 

replaced by a set of bond length constraints, to increase the step size and hence the simulation 

speed (23). Several Lagrange multiplier types of methods have been developed for constrained 

molecular dynamics simulation. However, in all these methods, the multipliers have to be 

determined in every time step by solving a nonlinear system of equations so that the new 

iterate can satisfy the constraints (3). Depending on the number of constraints, the additional 

computational cost can be large, given the fact that the force field calculation in every time 

step is at most 0(n2), while the solution of the nonlinear system of equations may require 

0(m3), where n is the number of particles in the system and m the number of constraints. 

In this thesis, we propose a so-called penalty function (34) method for constrained molecular 

dynamics. In this method, a special function is defined so that the function is minimized if 

the constraints are satisfied. By adding such a function in the potential energy function, the 

constraints can then be removed from the system, and the simulation can be carried out in 

a conventional, unconstrained manner. The advantage of using a penalty function method is 

that it is easy to implement, and does not require solving a nonlinear system of equations 

in every time step. The disadvantage of the method is that the penalty parameter, i.e., the 

parameter used to scale the penalty function, is hard to control and in principle, needs to be 

large enough for the penalty function to be truly effective, which on the other hand, may cause 
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numerical instabilities when used in simulation (16). It may also arguably be a disadvantage 

that the penalty function method only forces the constraints to be satisfied approximately 

but not completely. The method could be used as an alternatively and computationally more 

efficient approach for constrained molecular dynamics simulation than the Lagrange multiplier 

types of methods. We have first implemented a penalty function method in CHARMM (9) 

and tested it on protein Bovine Pancreatic Trypsin Inhibitor (BPTI) by following a similar 

experiment done by Gunsteren and Karplus in (23) for the Shake algorithm (38). In this 

implementation, we removed the bond length potentials from the potential energy function and 

introduced the corresponding bond length constraints. For each of the bond length constraints, 

we constructed a quadratic penalty function and inserted it into the potential energy function. 

For each different type of bond, we also scaled the corresponding penalty function with the 

force constant of the bond so that the resulting function had the same form as the original 

bond length potential if without multiplied by the penalty parameter. The resulting force field 

becomes simply a continuation of the original force field as the penalty parameter changes 

continuously from 1 to a value > 1. We conducted a simulation on BPTI with the penalty 

function method, and compared the results with Verlet and Shake, and found that the penalty 

function method had a high correlation with the Shake and outperformed the Verlet. In 

particular, the root-mean-square-deviations (RMSD) of the backbone and non-backbone atoms 

and the velocity auto correlations of the Ca atoms of the protein calculated by the penalty 

function method agreed well with those by Shake. Note again that the penalty function method 

requires no more than just applying a conventional, unconstrained simulation algorithm such 

as the Verlet algorithm to the potential energy function expanded with additional penalty 

terms for the bond length constraints. We have also tested the penalty function method 

on a group of argon clusters with the equilibrium distances for a selected set of molecular 

pairs as the constraints. The equilibrium distances mean that distances for the pairs of argon 

molecules when the clusters are in their global energy minimal states. We generated these 

distances by using the global energy minimal configuration of the clusters published in previous 

studies (36). A penalty function was constructed for each of the constraints and incorporated 
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into the potential energy function of the cluster. The simulation was then conducted by 

using a conventional, unconstrained simulation method, i.e., the Verlet algorithm (49), with 

the extended potential energy function. There were no substantial algorithmic changes or 

computational overheads required due to the addition of the constraints. The simulation 

results showed that the penalty function method was able to impose the constraints effectively 

and the clusters tended to converge to their lowest energy equilibrium states more rapidly than 

not confined by the constraints. 

We introduce protein, empirical force field, history of molecular dynamics, unconstrained 

and constrained dynamics in chapter 1. In chapter 2, we present time independent and depen­

dent Lagrange multipliers. Theory of penalty and barrier methods are described in chapter 

3 (as a optimization problem). We introduce theory of penalty function methods and statis­

tical properties in chapter 4. Then, in chapter 5, we present Argon simulation and summery 

of CHARMM program basics followed by penalty function implementation on CHARMM. In 

chapter 6, we present the results on BPTI and their comparisons with the Verlet and the Shake. 

We conclude the research in chapter 7. Serial and parallel code of algorithm is presented in 

appendix A and B. 

1.2 Background 

One of the simplest ways to describe problems in computational chemistry, yet most difficult 

to solve is the determination of molecular conformation. A molecular conformation problem 

can be described as finding the global minimum of a suitable potential energy function, which 

depends on relative atom positions. Progress toward solution techniques will facilitate drug 

design, synthesis and utilization of pharmaceutical and material products. The success of com­

putational methods to solve such kind of problems hinges on two factors: a suitable potential 

energy function to predict the native states of the system as the global minimizer of the po­

tential energy function and the available minimization algorithms that can be used to locate 

efficiently the global minimizer of the potential energy function. The methods of quantum 

chemistry are quite suited to predict the geometric, electronic and energy features of known 
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and unknown molecules. However, it remains too expensive in terms of computer time and 

nearly intractable, even at the simplest, semi-empirical level, for many organic molecules or 

biological macromolecular structures. Therefore, increased interest has focused on models that 

are able to give quickly an energy favorable conformation for large systems. 
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Figure 1.1 The chemical formulas of 20 amino acids (47). Plot is created 
by Chemsketch software. (Advanced Chemistry Development 
Lab - www.acdlabs.com). 

Molecular mechanics or empirical force field methods are techniques that play an important 

role in the research of molecular conformation (47). 

In a molecular dynamics simulation, the classical equations of motion for the positions, 

velocities, and accelerations of all the atoms and molecules are integrated forward in time 

http://www.acdlabs.com
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Figure 1.2 The space filling model of 20 amino acids. VMD visualization 
software is used. Color is based on ResID. 

using finite-difference algorithms. The dynamical trajectories given by Newton's equations of 

motion are approximately calculated (43). 

In simulations, we assume that the forces on particles are nearly constant over very short 

periods of times (femtosecond = 10~15 seconds). During that time, we move the particles 

along simple parabolic trajectories while recalculating the forces. Then, repeat this process. 

Most experimental work is done under conditions of constant temperature, constant volume or 

constant pressure. The main strengths of molecular dynamics are that they efficiently sample 

the given ensemble, and that they provide dynamical quantities, such as velocity autocor-
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relation functions, dynamic scattering factors, and diffusion constants. The main weakness 

of molecular dynamics is an inability to access very long time scales, on the order of one 

microsecond (10~6 seconds) or greater (31). 

1.2.1 Protein 

Proteins (figure 1.3) are large, complex molecules made from different amino (figure (1.1), 

(1.2)) acids bonded together sequentially such that they form a long string of a molecule. And 

like a string, these long molecules can twist and turn and bunch up to have a final shape that 

is round. These strings actually fold up into distinct structures that usually end up looking 

overall like a globular structure which are very complex. There are 20 (figure (1.1), (1.2)) 

amino acids, 9 have sidechains capable of forming hydrogen bonds with each other. There are 

2 amino acids with sidechains that can form covalent bonds with each other. The remaining 

9 amino acids are water-fearing, and cannot form any kind of bond with each other, but their 

desire to be away from the external environment of water is a strong force that pushes them 

towards the inside of the protein [(12), (13), (14)]. 

1.3 Empirical force field 

Empirical forces are played major part of the classical molecular dynamics. The accurate 

force field is very important for accuracy of the dynamics. First empirical force field functions 

are discussed in details. Then history of molecular dynamic simulations are presented followed 

by unconstraint and constraints methods. 

1.3.1 Introduction 

The goal of molecular modelling is to predict the energy associated with a given confor­

mation of a molecule. The energy of a target molecule depends on the relative positions of its 

atoms (29). This energy can be approximately estimated by the sum of several contributions. 

The deformation (23) due to interaction between two non-bonded atoms represents the action 

of Van der Waals attraction, steric repulsion and electrostatic attraction-repulsion on these 
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Figure 1.3 Three dimensional structure of Bovine Pancreatic Trypsin In­
hibitor (BPTI) protein with 58 residuals. Data are downloaded 
from protein data bank (PDB) which released on 18-Jan-1983 
(7). VMD visualization software is used. Color is based on 
ResID. 

two atoms the potential energy function can be studied as a sum of different type of potential 

term that can be written as (28): 

(p = <pb + <Pe + + Vnb + (specific terms) (1.1) 

where ip is often referred to as the steric energy or potential energy. It corresponds to the energy 

difference between the real molecule and a hypothetical molecule in which all structural values, 

such as bond lengths and bond angles are exactly equilibrium values. In equation (1.1): 

• <Pb ~ bond energy, describing the compression or the extension of a bond from its equi­

librium length. 

• tpe - angle bending energy, and is the function of bond curve with respect to its equilib­

rium value. 
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• ifiT - torsion energy. 

• (pnb - interaction energy between two non-bonded atoms. 

• specific terms - could be out of plane bending, electrostatic interactions and possible 

hydrogen bonding, mean force potential. 

1.3.2 Bond stretching potential - <pb 

The bond stretching contribution (figure 1.4) is represented by Hookes law. It measures the 

energy due to the variation of bond length after extension or compression from their equilibrium 

values [(28), (23)]: 

atom -1 

atom-2 

Figure 1.4 Bond stretching potential energy. 

<Pb = - ry7]2 (1.2) 
i=i  

where 

I - total number of bonds in the molecule 

ki - bond force constant 

ri - bond length 

r^q - is the bond length at equilibrium position 

The parameters ki and r^q are invariant, depending only on the type of each pair of connected 

atoms. Equation (1.2) is a rough approximation of bond energy. Alternatively, a Morse 

potential can be used to describe more precisely (29) the bond stretching energy due to the 

variation of a bond length: 

= I>( (1.3) 
1=1 
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where D and a are parameters characterizing the bond. The use of such a potential seems to 

be useful for elongated hydrogen bonds, which otherwise tend to dissociate. 

1.3.3 Angle bending potential - ipg 

Angle bending potential (figure 1.5) determines the energy quantity resulted by [(29), (23)] 

the angle variation between two adjacent bonds based on an equilibrium bond angle. In the 

case of harmonic approximation, this is equally derived from Hooks law: 

i n 

%% - (1-4) 
i , j=1 

where 

kij - force constant 

6ij - bond angle between 3 atoms 

9^q- - bond angle at equilibrium position between 3 atoms 

n - is number of atoms 

atom-1 

atom-2 atom-3 

Figure 1.5 Angle bending potential energy. 

1.3.4 Torsion potential - ipT  

Torsion energy (figure 1.6) represents the energy modification of the rotation of the molecule 

around a bond. The most common expression which permits to (28) describe the evaluation 

of the molecule energy as the function of torsion angle is the Fourier series (9): 

1 n 

tpT  = ~ As[l + COs(sTi -  $)] (1.5) 
i=l  

where 

Ai>s - force constant which controls the curve amplitude 
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Ti - torsion angle 

<£> - phase 

s - periodicity of Ai iS 

Torsion energy is in fact a correction of different energy terms rather than a physical process. 

It represents the energy quantity that should be added to or subtracted from the summation 

of (fib + pe + <Pnb- Torsion energy is used to obtain the (9) geometry in good agreement with 

an experiment or with the geometry that is deduced from quantum chemical calculations. 

atom-2 atom-4 

atom-1 atom-3 

Figure 1.6 Torsion potential energy. 

1.3.5 Potential of non-bonding interactions - ipn\j 

Interaction between two non-bonding atoms is the principal cause of steric hindrance, which 

play an important role in the molecular geometry. The energy of non-bonding interactions is 

the sum of energies of all non-bonding atoms acting between them (9). It includes the energy 

of Van der Waals interaction, electrostatic energy and induction energy terms. The term Van 

der Waals interaction is generally described by the Lennard Johnes potential (figure 1.7): 

Pvdw — ^ ^ 

Aj,j  _  Bj, j  
(1.6) 

where 

Aij and Bij - are Van der Waals constants 

rij - is distance between two non-bonding atoms i  and j  

The summation is taken over all non-bonded pairs of atoms (i ,  j). These expressions involve 

two terms: 

1. An attractive part, corresponding to induced dipole-induced dipole interaction, propor­

t i o n a l  t o  r f j  ,  w h e r e  r ^ -  i s  t h e  d i s t a n c e  b e t w e e n  t h e  t w o  a t o m s  i  a n d  j .  
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2. A repulsive part r}2- ,  rapidly growing as the distance is getting shorter. 

2.0 -
Repulsion region 

>-

P 0) c <D 
15 

0.5-

I 
o 

CL 

Attraction region 

-0.5 -

1.75 2.75 1.00 1.25 1.50 2.00 2.25 2.50 
Distance 

Figure 1.7 Lennard Johnes potential of single pair of atoms. 

For a given geometrical arrangement of the atoms in a molecule system, the steric energy, 

due to distortions of bond lengths and angles with respect to the reference values and Van 

der Waals interaction (9), can be calculated according to the potential energy function. To 

determine the actual equilibrium geometry, this steric energy with respect to all internal degrees 

of freedom must be minimized. 

Electrostatic energy increases with the polarity of chemical bonds. It can be expressed 

using Coulomb potential. Induction energy is the consequence of the distortion of electronic 

distribution, which depends on the electric field created by other molecules, and generates 

induced electric moments. 

Bond lengths and bond angles are usually available from existing structural information 

(i.e., from X-ray crystallography). Bond stretching parameters can be directly derived from 

vibrational force constants. The coefficients of the torsion barriers can be estimated from bar­

rier heights obtained through microwave spectroscopy, thermodynamic studies, or far infrared 

and Raman spectroscopy. More challenging is the evaluation of the Van der Waals interaction, 

a crucial point since these interactions are important in determining the stability of crowded 

or highly branched molecules such as peptides [(9), (29), (28), (47)]. 
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1.4 Molecular dynamic simulations 

1.4.1 Introduction 

Molecular dynamics has been used for decades to investigate dynamical properties of mole­

cules, solids, and liquids by numerical simulations. In the classical (or conventional) molecular 

dynamics approach, a model of interatomic interactions must be provided as input before a 

simulation can be carried out. Such models, or interatomic potentials, are based on a previous 

knowledge of the physical system studied. Ionic forces can be derived from such model poten­

tials, and atomic trajectories are computed by integrating the Newtonian equations of motion 

(33). 

Due to the vast improvements in computer power, speed, and availability over the past 

decades the Molecular Dynamics methods are becoming increasingly common technique of 

simulating molecular scale models of matter. It is now reasonable and possible to simulate 

realistic (37), large scale blocks of atoms (21) and observe macroscopic (20) effects from these 

simulations using a desktop computer. In simple terms, a molecular dynamics simulation 

amounts to finding a numerical solution to the n-body problem. Given a function describing 

the potential energy the equations of motion can be iteratively solved in order to dynamically 

simulate the motions of the particles within the system. Next, we save average values for 

physical, thermodynamic over long time periods. Higher order numerical approximations have 

always been available. However, they have frequently been passed over in favor of lower order 

techniques in order to save on computing time. With the massive increases in computational 

power becoming readily available in smaller and smaller machines one must begin to reevaluate 

these decisions and begin to bring higher numerical accuracy back into the picture. Whereas 

before, in order to simulate realistically sized blocks of atoms it was necessary to use a second 

or third order accurate method (18). 

In molecular dynamics, we follow the laws of classical mechanics, and most notably New­

ton's law (47): 

— fi  (1 '7) 
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for each atom i  in a system constituted by n atoms. Here, mi is the mass of the atom, a* = 

its acceleration, and fi the force acting upon it, due to the interactions with other atoms and 

Xi = {xii,x2i,x3i) £ R3. This concludes that molecular dynamics is a deterministic technique. 

For example, given an initial set of positions and velocities, the subsequent time evaluation is 

completely determined. 

1.4.2 History 

There are some of the key papers that appeared in the 50s and 60s which can be regarded as 

milestones in molecular dynamics. The first paper reporting a molecular dynamics simulation 

was written by (1). The purpose of the paper was to investigate the phase diagram of a 

hard sphere system, and in particular the solid and liquid regions. In a hard sphere system, 

particles interact via instantaneous collisions, and travel as free particles between collisions. 

The calculations were performed on a UNIVAC and on an IBM 704. The (19) are probably the 

first example of a molecular dynamics calculation with a continuous potential based on a finite 

difference time integration method. The calculation for a 500-atoms system was performed on 

an IBM 704, and spent about a minute per time step. Aneesur Rahman at Argonne National 

Laboratory has been a well known pioneer of molecular dynamics. In his paper (39), he 

studies a number of properties of liquid Argon, using the Lennard-Jones potential on a system 

containing 864 atoms on a CDC 3600 computer. The legacy of Rahman's computer codes is 

still carried by many molecular dynamics programs in operation around the world. 

Loup Verlet calculated (49) the phase diagram of argon using the Lennard-Jones potential, 

and computed correlation functions to test theories of the liquid state. The bookkeeping 

device which became known as Verlet neighbor list was introduced in his paper. This method 

is still popular in unconstrained molecular dynamics. This schema is called Verlet algorithm. 

Phase transitions in the same system were investigated by Hansen and Verlet in 1969 (25). 

The velocity version of Verlet is introduced in 1982 (46). Later constraints algorithms are 

introduced. Shake and Rattle algorithms are widely used constrained algorithms in literature. 
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1.4.3 Limitations 

Molecular dynamics is a powerful technique but has limitations. One weakness is the 

complication of how we can use Newton's law to move atoms, when the systems at the atomistic 

level obey, quantum laws rather than classical laws. It has been shown (24) that the classical 

approximation is poor for very light systems such as H2, He and Ne. 

In molecular dynamics, atoms interact with each other. These interactions originate forces 

which act upon atoms, and atoms move under the action of these instantaneous forces. As the 

atoms move, their relative positions change and forces change as well. The essential ingredient 

containing the physics is therefore constituted by the forces. A simulation is realistic only 

to the extent that interatomic forces are similar to those that real atoms would experience 

when arranged in the same configuration. Forces are usually obtained as the gradient of a 

potential energy function, depending on the positions of the particles. The realism of the 

simulation therefore depends on the ability of the potential chosen to reproduce the behavior 

of the material under the conditions at which the simulation is run (50). 

Typical molecular dynamic simulations can be performed on systems containing thousands 

or, perhaps, millions of atoms, and for simulation times ranging from a few picoseconds (10~12 

seconds) to hundreds of nanoseconds (10~9 seconds). While these numbers are certainly re­

spectable, it may happen to run into conditions where time and/or size limitations become 

important. 

The engine of a molecular dynamics program is its time integration algorithm, required to 

integrate the equation of motion of the interacting atoms and follow their trajectory. Time 

integration algorithms are based on finite difference methods, where time is discretized on a 

finite grid, the time step At being the distance between consecutive points on the grid. Knowing 

the positions and some of their time derivatives at time t, the integration scheme gives the 

same quantities at a later time (t + At). By iterating the procedure, the time evolution of the 

system can be followed for long period of times. These schemata are approximate and there 

are errors associated with them. In particular, we can have truncation and rounding off errors. 

Truncation errors are related to the accuracy of the finite difference method with respect to 
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the true solution. Finite difference methods are usually based on a Taylor expansion truncated 

at some term. These errors are independent on the implementation. They are intrinsic to 

the algorithm. Round-off errors, related to errors associated to a particular implementation 

of the algorithm. It is based on finite number of digits used in computer arithmetics. Both 

errors can be reduced by decreasing At. For large At, truncation errors dominate, but they 

decrease quickly as At is decreased. Round-off errors decrease more slowly with decreasing 

At, and dominate in the small At limit. With 64-bit precision helps to keep round-off errors 

at a minimum level. 

There are many different type of models that have been developed and tested to perform 

molecular dynamic simulations. They can be divided as unconstrained and constrained simu­

lation schemata. 

1.5 Unconstrained molecular dynamic simulations 

In this section, we discussed some of the popular algorithms which do not use constraints. 

These include Verlet, Leap-Frog, Predictor-Corrector, Velocity Verlet. 

1.5.1 Verlet algorithm 

The verlet algorithm was introduced by (49). Even this simple finite difference scheme is 

widely used in molecular dynamic simulations. A differential equation of the form (1.7) is a 

second order strongly non linear ordinary differential equation. We assume x(t) represent 3 

dimension position vector and consider Tayler expansion as follows (47): 

X i ( t  +  A t )  =  X i ( t )  +  A t  ± i  +  ̂ y A t 2  X i  +  ̂ j A i 3  X i  +  0 ( A t A )  (1.8) 

X i ( t  —  A t )  =  X i ( t )  —  A t i i  +  ̂ j -At2 X i  —  ^ j -At3 X i  +  0 ( A t 4 )  (1.9) 

Adding (1.8) and (1.9) give: 

X i ( t  +  A t )  —  X i ( t )  -  X i ( t  —  A t )  +  A t 2  X i  + 0(A£4) (1.10) 
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This is the basic form of the Verlet algorithm. Since, we integrate Newton's equation, by (1.7), 

we have: 

Xi = —fi = Vipi(x{t)) (1-11) 
77% 771, 

where i p i ( x ( t ) )  is a potential function. In beginning of this Chapter, we discuss potential 

functions in details. 

Xi{t + Ai) = Xi (t) — Xi(t — At) — At2 —V <pi(x( t ) )  + 0(At4) (1.12) 
Tïl i  

We need initial values Zj(0) and Xj(At) to calculate preceding position. By throwing out 0(At4) 

term, we obtain recursive explicit formula to compute X{ ( t  + At), x j(t + 2 A t )  X i ( t  +  n A t )  

successively. The scheme in equation (1.12) is called Verlet algorithm (49). The velocities 

do not participate in the recursive iteration but are needed for property calculations. This 

makes it difficult to implement stochastic collisions for the equilibration of the temperature 

and impossible to use this method to solve differential equation, such as those arising in the 

constant pressure method, in which the acceleration depend upon the velocities as well as the 

position. However, the velocity can be calculated by: 

Vi( t )  =  Xi(t) = ^-^[xiit + At) - Xi( t  -  A t ) }  +  0 ( A t 2 )  (1.13) 

The computed a%(t + At) would be off from the real Xi(t + At) by 0(At4). We called this as 

a local truncation error which is intrinsic property of the algorithm. Clearly, as At —» 0, then 

local truncation error —> 0, but that does not guarantee the algorithm works, because what we 

need is {xn(t+T)} for a given finite T, not a%(t +At). To obtain {xn(t+T)}, we must integrate 

tit (= 5^) steps. The difference between computed {xn(t + T)} and the real {xn(t + T)} is 

called the global error. An algorithm can be useful only when At —> 0 the global error —> 0. 

A careful analysis of the error propagation in equation (1.10) indicates that the global error is 

0((At)2) as At —> 0. The Verlet algorithm is thus a second order method. This implies only 

part of the analysis because the order of an algorithm only characterizes its performance when 

At 0. To save computational cost, most often we must adopt a quite large At. Higher order 

algorithms do not necessarily perform better than lower order algorithms at practical At. In 
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fact, they could be much worse by diverging spuriously at a certain At, while a more robust 

method would just give a finite but manageable error for the same At. This is the concept of 

the stability of an numerical algorithm. 

In addition to local truncation error, there is round off error due to the computers finite 

precision. The effect of round off error can be better understood in the stability domain. 

In most applications, the (round off error) <C (local truncation error). Some applications, 

especially those involving high order algorithms, do push the machine precision limit. In those 

cases, equating (local truncation error) 3> e where e is the machines relative accuracy, provides 

a practical lower bound to At, since by reducing At would no longer reduce the global error 

2. Calculate a%(t + At) using equation (1.12) 

3. Calculate V i ( t )  if desired 

4. Replace a\(t — At) with a%(t) and z*(t) with a%(t + At) 

5. Stop if it converges otherwise repeat step 1 

Verlet algorithm is computed the advancement of positions all in one step using equation 

(1.12). It is simple to program since it is simple straight forward algorithm. Verlet scheme is 

time reversible and conserves energy well even with relatively long time steps. The velocities at 

t can be calculated only after z,(t +At) are known. One must know initial Xi(t) and Xi(t — At) 

to start trajectory, rather than z,(t) and V{(t) (2). 

1.5.2 Leap-Frog algorithm 

Leaf-frog (47) method is a modified version of the Verlet algorithm. As we describe in 

previous section, the Verlet algorithm uses the positions and force at the time t and the 

(47). 

Algorithm: 

Start with x,(t) and x,(t — At) 

Repeat following steps: 

1. Calculate 
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positions at the time (t —  A t )  to predict the positions at the time (t + A t ) ,  where A t  is the 

integration step. The error in the atomic positions is of the order of 0(At4). The velocities 

are calculated from the basic definition of differentiation of equation (1.13) with an error of 

the order of 0(At2). To obtain more accurate velocities, the leapfrog algorithm which uses 

velocities at half time step can be used: 

vi( t  + i t ) — ——) + At— + 0((At)3) (1-14) 
l I rrii 

Atomic position calculate: 

X i i t  +  A t )  = X i ( t )  + At Viit -\——) + 0((At)3) (1.15) 

Velocity at time t approximated: 

v i { t )  =  v , ( t  - » ) + „ , ( «  +  f ) + Q ( ( A t ) 2 )  (1 .16 ,  

This method is useful when the kinetic energy is needed at time t. The leapfrog algorithm is 

computationally less expensive and requires less storage which could be an important advantage 

in the case of large scale calculations. Moreover, the conservation of energy is respected, even 

at large time steps. Therefore, the computation time could be greatly decreased when this 

algorithm is used. However, when more accurate velocities and positions are needed, another 

algorithm should be implemented, such as Predictor-Corrector algorithm. 

1.5.3 Predictor-Corrector algorithm 

Here, we solve the second order differential equation (1.7). That can be written in normal 

form: 

x  =  f ( x , x , t )  (1.17) 

where x G M3. First step of this algorithm consists in evaluating the atomic positions and 

velocities at time (t + At) from the positions and the velocities at time (t — iAt), where 

i = 0,..., k — 2. k is the order of the predictor part. The extrapolation is given by: 

k- l  

X i ( t  + At) = X i ( t )  + At X i ( t )  +  A t 2  ̂  dif{t + At (1 — i ) )  (1.18) 
i=1 
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which compute atomic position and: 

k-1 
At  X i ( t )  =  X i ( t  +  A t )  - X i { t )  + At2 ^ + At (1 - i ) )  (1.19) 

i=i 

for the velocities. The coefficient /?; satisfy the following equation: 

k — 1  ,  
= g = 0,1, ...A:-2 (1.20) 

i=1 ^ 

The algorithm constitutes another commonly used class of method to integrate the equation 

of motion. Algorithm is contained three computational steps. They are: 

1. Predictor : Prom the positions and their time derivatives up to a certain order q, all 

known at time t, one predict the same quantities at time (t + At) by means of Taylor 

expansion. 

2. Force evaluation: Force is computed taking the gradient of the potential at the pre­

dicted positions. Resulting acceleration will be in general different from the predicted 

acceleration. The difference between the two constitutes an error. 

3. Corrector : Define an error used to correct positions and their derivatives. All the 

corrections are proportional to error. The coefficient of proportionality being a magic 

number determined to maximize the stability of the algorithm (47). 

The Predictor Corrector algorithm gives more accurate positions and velocities than the 

leapfrog algorithm, and is therefore suitable in very delicate calculations. However, it is com­

putationally expensive because it include additional step and needs significant storage. 

1.5.4 Velocity version of Verlet algorithm 

In the Verlet algorithm the velocities are not calculated explicitly and leads to difficulties in 

some applications. Because, the velocity of time t can be calculated only after the position at 

time (t + At) has been obtained. Making it difficult to implement simulations such as constant 

pressure since it is depends on velocities as well as positions. The velocity Verlet algorithm 

(46) overcomes this difficulty: 

X i ( t  + At) = X i ( t )  + At ± i ( t )  +  +  0 ( A t 3 )  (1.21) 
Z TTi-j 
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Xi( t  + At) = X i ( t )  + — [ f i ( x ( t ) )  +  f ( x ( t  + At))] + 0(At2) (1.22) 

Algorithm: 

Start with T*(t), j%(t) and calculate f i { x ( t ) ) .  Repeat the following steps: 

1. Calculate X i ( t  + A x )  using equation (1.21) 

2. Calculate velocities at mid-step using ij(t + ^ )  =  ± j (t) +  ̂ f i ( x ( t ) )  

3. Calculate /j(t + At) 

4. Compute the velocity using ± i ( t  +  A t )  =  X i { t  +  - ^ )  +  f i ( t  + At) 

5. Stop if converge otherwise repeat step 1 

This version of algorithm does calculate position and velocity simultaneously. Local and global 

errors are in order of 0((At)3) and 0((At)2) respectively. Since, Velocity version of Verlet 

algorithm calculate velocities and positions simultaneously, it enable us to compute kinetic 

energy at time (t + At). Velocity version of Verlet algorithm is numerically stable, and can 

start with positions and velocities at time t. Studies have shown that the scheme conserves 

energy well even with relatively long time steps and simple to program. 

1.5.5 Beemans algorithm 

Beeman's model (6) is similar to the velocity Verlet algorithm. We start out with x,(t), 

fi(t — At), fi(t) and i;(t). Then: 

At2 

X i (t + At) = X i ( t )  +  A t  X i ( t )  +  g ^[4f i ( t )  -  f i ( t  - At)] + 0 ( A t 4 )  (1.23) 

evaluate f i ( t  + At) and then: 

ii(t + At) = ± i ( t )  + :j^[5/i(i + At) + 8f i ( t )  -  f i ( t  -  At)] + 0(At4) (1.24) 

This is a third order method. 
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1.5.6 Symplectic integrators 

Symplectic integrators preserve the property of phase space volume conservation (Liouvilles 

theorem) of Hamiltonian dynamics. They tend to have much better energy conservation in 

the long run. The velocity Verlet algorithm is, in fact, symplectic [(52), (44)]. As with 

the predictor-corrector algorithm, symplectic integrators tend to perform better at higher 

order, even on a per cost basis. The high-order predictor-corrector and high-order symplectic 

integrators are the real competitors for high accuracy integrators. It has been understood 

that the long term performance of a symplectic integrator is always superior to that of a 

non-symplectic integrator (47). 

1.6 Constrained molecular dynamic simulations 

A common modeling (4) strategy in molecular dynamics is to maintain atoms at fixed 

separations by the use of constraint relations in cartesian coordinates. This approach can 

be generalized to freeze other relationships among the other variables, as well. Constrained 

molecular dynamic methods are popular, especially to fixed intramolecular bond lengths and/or 

angles during a simulation. Intramolecular bond vibrations are typically the highest frequencies 

in the system and therefore determine the largest time step that can be used. If bonds are 

constrained, then a larger time step can be used, which speeds up the computation (23). 

1.6.1 Shake algorithm 

The Shake algorithm is introduce by (38). This is the procedure to integrate the equation 

of motion with internal constraints. It has been shown that when internal constraints are 

present, then the equation of motion can be written as: 

77%(Z) = /i(ZiM) + C(%i(Z),ïi) (1-25) 

where C ( x )  represents forces associated with the constraints. The force function C  describes 

the mechanical state of the system. The nature of the constraints is dependent on the functional 
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form of state of mechanical system as well. The Shake model can be formed as: 

Ay-2 

X i ( t  +  A t )  =  2X i ( t )  - X i ( t  -  A t )  H [ f i ( x i ( t ) )  + Cj(xj(i),ii(t))] (1.26) 
7 7 1 2  

where aij 6 M3. The major difficulty associated with equation (1.26) is that, even if we use 

exact function C, the intramolecular constraints would be violated due to the fact that the 

Shake algorithm is not exact. In 1977, Rychaert was shown that this can be overcome by not 

using exact function C but by using the approximation for C. The method requires x(t+At) to 

satisfy constraints within a desired accuracy. This method can be derived by time dependent 

Lagrange multiplier method (Chapter 2). The important fact of this algorithm is that it has 

local error of order 0((Ai)4). x(t + At) can be computed by following iterative schemata (38): 

At2 

X i ( t  +  A t )  —  2X { ( t )  —  X i ( t  —  A t )  H [ f i { r i { t ) )  + G i ( t ) \  (1-27) 
TTli 

where Gi is a approximation to Q. Iteration can not proceed unless we know Xi(t) and 

Xi(t — At). The Shake scheme has the same advantages and disadvantages like Verlet. To 

eliminate disadvantages of the schemata, the Rattle algorithm was introduced. The Rattle 

algorithm is also called the Velocity Version of the Shake algorithm. 

1.6.2 Rattle algorithm 

Anderson (2) was introduced following constraints schemata to calculate velocity and po­

sition simultaneously. 

At2 

a\(Z-|-Af) = a%(f) + AZ:Ci(Z) + -—[/;(%;(;))+ C(%i(t),±i(Z))] (128) 
ÀTYli 

C ( x i ( t  +  A t ) , X i ( t  +  A t ) ) \  (1.29) 

where x  G M3. Like the Velocity Version of the Verlet, the position X i ( t )  and velocity i i ( t )  

of initial structure are required to start simulation. Then, we can calculate Xi(t + At) by 

replacing C{xi(t),±i{t)) by an approximation that made Xi(t + At) satisfy the constraints. 

In the equation (1.29) the term ±i(t + At) appears in the both side of the equation. This 
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is inconsistent with a simple iterative schema and can be eliminated by using two different 

approximation function for equations (1.28) and (1.29). Thus, we have: 

The Rattle algorithm makes two different approximations G i ( t )  and H i ( t )  for the forces asso­

ciate with the constraints. It is possible to obtain both positions and velocities simultaneously 

which satisfy the constraints. It has been proved that (2), Rattle has a local error of order 

((At)3) and global error of order ((At)2) which is same as in the velocity form of the Verlet 

algorithm for unconstrained dynamics. 

Liouville equation is used especially for simulations with constant pressure and constant 

temperature ensembles. It describes the evolution of the phase space distribution function for 

the conservative (4) Hamiltonian system which continuity equation for the flux. Therefore, we 

derived Liouville equation in following section. 

1.6.2.1 Liouville equation 

Construct a cartesian space in which each of the 6n coordinates and momenta is assigned 

to one of 6n mutually orthogonal axes. Phase space is a 6n dimensional space (47). A point in 

this space is specified by giving a particular set of values for the 6n coordinates and momenta. 

Denote such a point by x  =  ( p i ,  . . . . , p n ,  q i ,  gn)- x  is a 6n dimensional vector. Thus, the 

time evolution or trajectory of a system as specified by Hamilton's equations of motion, can 

be expressed by giving the phase space vector, as a function of time. The law of conservation 

of energy, expressed as a condition on the phase space vector H(x(t)) = ip = constant defines 

a (6ra — 1) dimensional hyper-surface in phase space on which the trajectory must remain. 

Consider phase space for the ensemble of the n-particle systems. The number of systems in the 

ensemble is constant. We can write the continuity equation for density p ( p i ,  ,...,pn, q \ ,  q n )  

in phase space: 

X i ( t  +  A t )  a%(f) + Aùci(f) + + G'M] 

X i ( t )  + + Gi(t) + f i ( X i ( t  + A t ) )  + H i ( t ) }  

(1.30) 

± i ( t  +  A t )  (1.31) 

(1.32) 
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For the flux in phase space, coordinates are p's and q's and velocities are p's and q's: 

d t  + E  
1=1 

<9# 
= 0 

Applying chain rule, we obtain: 

n  

+E d t  
i= 1 % % + « E  

i=1 

Using Hamilton equations of motion: 

a# 

% 

O H  

= 0 

"  Bp,  V ' -  dq ,  

Thus: 

% % 

Thus the second sum in equation (1.34) is zero, and: 

n  n  

i=1 

= 0 

(1.33) 

(1.34) 

(1.35) 

(1.36) 

(1.37) 
% 

The equation (1.37) is called Liouville equation. The left hand side of equation (1.37) is actually 

the full derivative of the distribution function, describing its change along the trajectories (47). 

In conservative systems the distribution function is constant along the trajectories, being an 

integral of motion. 

1.6.3 Stochastic method 

Coupling to the environment is simulated by random collisions with imaginary heat bath 

particles. These collisions lead to instantaneous momentum changes. The particle momenta 

are reset to new values, taken from the Maxwell distribution. This way the average kinetic 

energy is always correct. The natural variation on this theme is resetting velocities of all 

particles at the same time after certain interval. Then the dynamics during this interval is 

truly microcanonical, and time correlation functions can be calculated inside this interval. 

After the new velocities are assigned, the new configuration is accepted or rejected based on 

Metropolis-like criteria for Monte Carlo simulations. 
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This technique was first suggested by Heyes in 1980, and then reinvented by D. Heermann 

et. al. in 1990. Hybrid Monte Carlo. D. Heermann et. al. showed, that this acceptance 

critérium is needed to account for the numerical integration errors. Otherwise this technique 

reproduces canonical ensemble only approximately. 

1.6.4 Velocity rescaling 

An alternative way to simulate constant temperature is to re-scale all the velocities to keep 

kinetic energy constant. It is a very unrealistic approach used in the early days. If done on 

every step, it alters the system dynamics, which does not even correspond to the canonical 

ensemble. If done at certain intervals, it adds some periodic perturbation to the system, which 

is in general undesirable, but sometimes can serve as a tool to study system dynamics. This 

was used for simulations of glasses by Rahman et. al. in early 1980's. It is also often used to 

equilibrate the system during the the first few hundred MD steps before the production run 

starts and data are collected. 

A more gentle and more practical way, known as Van Gunstern-Berendsen thermostat is 

to use a factor, that depends on the deviation of the instantaneous kinetic energy from the 

average value, corresponding to desired temperature. At each time step velocities are scaled 

by the some factor is the molecular dynamic time step, and is a parameter, that defines, how 

strong is the thermostat influence. 

1.7 Review 

In this section, constrained and unconstrained molecular dynamic simulation methods are 

described. Previous studies (4) have proved that the freezing high vibration frequency motions 

of atoms not badly effect on physical characteristics of the atomic systems. However, It enables 

to increase size of the time step without altering the system properties. Furthermore, some of 

the methods have been modified to run on parallel computers with many processors which can 

speed up computation as well as without introducing significant round off errors. 
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CHAPTER 2. Lagrange multiplier method 

Lagrange multiplier method is used to solve a system of equations with constrains. This 

method is widely used and very popular in many research fields. In this chapter, the Lagrange 

multiplier method and time dependent Lagrange multiplier method are discussed in details. 

This technique has applied to molecular dynamic simulation in 1988 (48). When used to solve 

non linear system, this method is computationally expensive. The Lagrange multiplier method 

is used when we need to find the extreme values of a function whose domain is constrained to 

lie within a particular subset of the domain. The Lagrange multiplier rule was introduced in 

1762 (27). In 1788, Lagrange proved that it can be used for minimizing a function subject to 

equality constraints. 

2.0.1 Lagrange multiplier method 

In physics and engineering problems (8) we may be called upon to find the maxima or 

minima of a function of several variables: 

where x  is a multi-variable function. f ( x )  and C ( x )  are objective and constraints functions 

r e s p e c t i v e l y .  L a g r a n g e  m e t h o d  c o n s i s t s  o f  i n t r o d u c i n g  a  n e w  f u n c t i o n  w h i c h  i n c o r p o r a t e s  f ( x )  

together with all the constraints. The new function is called a Lagrangian. Therefore, the 

Lagrangian is written as: 

min { f ( x ) }  (2.1) 

subject to C ( x )  —  0 

L = /(z)-AC(z) (2.2) 
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where A is a constant called a Lagrange multiplier. The conditions are defined: 

VL = V(/(z)-AC(z)) = 0 

C(z) - 0 (2.3) 

Here, we need to determine; 

• Lagrange multiplier constant A 

• Extremal values of x  

• The value min { f { x ) \  

The advantage in this approach is that it treats all variables and constraints in a symmetric 

fashion so that problems involving many variables and constraints can be neatly organized. 

Depend on f(x) and C(x), it is necessary to solve linear or non-linear system of equations to 

determine unknowns (34). 

2.0.2 Time dependent Lagrange multiplier method for molecular dynamics 

The system represent in equation (2.3) is called time dependent Lagrange multiplier method 

if parameter A is a function of time t. Assume that a molecular system with n atoms and they 

are interacting via a potential energy <p(r). Thus, one could introduce constraints (48): 

C k ( x j ( t ) )  =  0 fc = 1, . . . m  a n d  j  =  1, ..n (2.4) 

We define Lagrange equation of motion: 

= /i + Q (2.5) 

where Q represents total constraints force acting on atom i .  Therefore, we have: 

m  

= -Vp(a%(t)) - y]/\k(t)VC&(%i(2)) (2.6) 
k=1 

where the m  represents number of constraints in the system. The A& Lagrange multipliers 

are time dependent and determined by requiring that, the constraints in equation (2.4) are 
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satisfied exactly. The equation (2.6) and (2.4) generate (3n )  and (m) number of equations 

respectively. The system has (3n + m) number of equations to find (3n + m) number of 

unknowns. Therefore, we can uniquely determine the unknowns provided it is consistent. In 

general, the numerical integration methods are used to obtain the trajectory. It has been 

shown that, it is not convenient to find A^'s in terms of positions and velocities. Without 

loss of accuracy, we assume that A^'s are parameters. Finite difference schema can be used to 

calculate next position as follows: 

X i ( t  +  A t )  =  2 x i ( t )  —  X i ( t  —  A t )  \ V < p ( x i ( t ) )  + Afc(i)VCfc(xj(i))] (2.7) 
^ k=i 

This generates positions at time (t + At) satisfy constraints in (2.4). That can be written 

formally as: 

Ck{xj(t + At)) = 0 fc = l,...m and j — 1, ..n (2.8) 

Let's divide equation (2.4) into two so that they represent constraint and unconstraint motion. 

xi(t + At) = p i ( t  + At) +  q i ( t  +  A t )  (2.9) 

where: 

At2 

P i i t  + At) = 2xi( t )  —  X i ( t  —  A t )  Vy(xi(t)) (2.10) 
mi 

At2 m 

Q i ( t  + At) = Ak(t)VCk(r«(t)) (2.11) 
k=i 

Solutions to the motion (48) given by equations (2.9) to (2.11) are exact third order in the 

time step (At). It is obvious to see that the schema has same accuracy (38) that of Verlet 

(equation 1.12). To keep the arbitrary internal degree of freedom fixed during the simulation, 

the following form of harmonic constraints has been chosen: 

Ck(zj(Z)) = <Mt = (4,(t + At)-dt(t) (2.12) 

where d&(t+At) and c4(t) are arbitrary internal coordinates at time (t +At) and t respectively. 

The 8dk represents internal coordinates variations over time steps At. We need equation 

(2.12) to be zero in order to get constraints satisfied. For our convenient, we introduce = 
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d k { x \ , x n )  where n  is the number of atoms defining the The small changes of cartesian 

coordinates produces changes of (total differential) : 

àdk = 53 
3 = 1  

' l +  3 + ~̂ ~k  

o x j  y j  j  
[ x j  (t + At) - X j  (t)] (2.13) 

where i ,  j  and k  are unit vectors along the usual x, y and z axis. Define d k j  such that: 

n  

Sdk = 53 akj[xj{t + At) - X j ( t ) }  
j=i 

Oikj — 
9 d f ; -  d d f c  -  d d k  -

i  + —— j  + —— k  

If all the constraints are satisfied then Ck(xj(t)) = 0. Therefore: 

n  

^Wzj(Z + At)-3%(Z)] = 0 
3  =  1  

substituting X j (t + At) by equation (2.9); 

n  

53 ® k j  [ P j  ( t  + At) + q j ( t  + At) - X j ( t ) \  = 0 
3  =  1  

The equation (2.11) gives: 

53 (XkjQjit + At) = 53 akj[xj(t) - Qj(t + At)] 
3=1 3=1 

A*2 "I 
Q i (t + At) = 53 ̂ k{t)^[Sdk] 

k=l 

At^ 
qi(t + At) = 53 

k=i 

replacing %(t + At) in equation (2.18): 

77i n ^ i n  

53 52 -^akj asj^k{t) = ^ 53 - qj(.t+At)] 
S  =  1  j  =  l  J  j  =  1  

This could be written in matrix form for non singular D: 

D  A 
-1 
At2 

n 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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Here D ,  A and Q  are ( m  x m),( m  x m )  and (m x m) matrices. It has been shown (48) that 

the matrix D is a Wilson matrix and therefore it is non-singular. The equation (2.20) might 

be rewritten in matrix form (38): 

T = (2.24) 

Then by substituting equation (2.23) with (2.22): 

T = M-iQD-in (2.25) 

where M is a ( d i a g ( m i , m 2 , . . . . ,  m n ) )  diagonal matrix of particle masses with d e t ( M )  ^ 0. The 

m a t r i x  Q  i s  a  ( 3 n  x  m )  o f  t h e  c o m p o n e n t s  o f  t h e  a ^ j -

2.1 Review 

The implementation of method begins by calculating p,(t+At) using equation (2.9). There­

after, the equation (2.11) can be used to compute constraints part of the simulation to calculate 

Lagrange multipliers Afc's. By using the previous two facts one can calculate the next position 

on the molecular atoms. This process can be iterated until it achieves desired accuracy. This 

procedure has the qualities to be used in any constrained molecular dynamic algorithm. The 

Lagrange multiplier algorithm is straightforward to implement. The technically difficult and 

time consuming part of the algorithm is solving non-linear constraints equations. This work 

has been presented in (48) paper. 
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CHAPTER 3. Penalty and barrier methods 

Penalty function methods are developed to eliminate some or all of the constraints and add 

to the objective function a penalty term which prescribes a high cost to infeasible points. In 

theory, penalty function method uses unconstraint optimization methods to solve constraints 

optimization problems. Discrete iterative setup can be started with infeasible or feasible start­

ing point and guide system to feasibility and ultimately obtained optimal solution. 

3.0.1 History 

In 1943, Courant introduced the quadratic penalty method where the penalty term is the 

squared Euclidean norm of the constraint violations (11). In 1970, Fletcher is studied the La­

grange function depending only on the variables (17), then, gave the theoretical justification of 

a class of exact penalty methods for solving smooth equality constrained nonlinear optimiza­

tion problems. Exact penalty methods (15) were intensively investigated and a well-prepared 

survey was published by Di Pillo (1994). A new smooth exact penalty (10) function was sug­

gested by Christiansen (1995). The Lagrange multiplier rule was further developed by Rapcsak 

[(40), (41)] who combined the optimization theory with Riemannian geometry in order to de­

scribe the geometric structure of smooth nonlinear optimization problems by tensors and to 

extend the local results of Lagrange to global ones. In (42), the idea of Fletcher (1970) to 

define smooth exact penalty functions and that of Courant (1943) to use a quadratic penalty 

term were reconsidered and developed further by the global version of the global Lagrange 

multiplier method clarifying the geometric meaning as well. 
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3.0.2 Constraints 

Most optimization problems have constraints. The solution or set of solutions which are 

obtained as the final result of an evolutionary search must necessarily be feasible, that is, 

satisfy all constraints. A taxonomy of constraints can be considered and composed of a number, 

metric, criticality and difficulty. A first aspect is number of constraints, ranging upwards from 

one. Sometimes problems with multiple objectives are reformulated with some of the objectives 

acting as constraints. Difficulty in satisfying constraints will increase with the number of 

constraints. A second aspect of constraints is their metric, either continuous or discrete, so 

that a violation of the constraint can be assessed in distance from satisfaction using that metric. 

A third consideration is the criticality of the constraint, in terms of absolute satisfaction. A 

constraint is generally formulated as hard when in fact, it is often somewhat soft. That is, 

small violations would be considered for the final solution if the solution is superior to other 

solutions. Evolutionary algorithms are especially capable of handling soft constraints since a 

population of solutions is returned at each point in the search. This allows the user to select 

a solution which violates a soft constraint (infeasible) over a solution which would be the 

best, technically feasible solution found. A final aspect of constraints to be considered is the 

difficulty of satisfying the constraints. This difficulty can be characterized by the size of the 

feasible region compared to the size of the sample space. The difficulty may not be known a 

priori, but can be gauged in two ways. The first way is how simple it is to change a solution 

which violates the constraint to a solution but does not violate the constraint. The second 

way is the probability of violating the constraint during search. For example, a constraint may 

be frequently violated but the solution can be easily made feasible. Conversely, a constraint 

violation may be very difficult to resolve, but occur rarely in the search. 

3.0.3 Penalty function method 

Penalty functions have been a part of the literature on constrained optimization for decades 

(34). Three type of penalty functions are exist (5). They are called Barrier methods, partial 

penalty functions and global penalty functions (45). In general, a penalty function approach 
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is as follows, consider the constrained optimization problem: 

min (/(») 

such that g i { x )  <  0 i  =  

h i { x )  = 0 i  —  (3.1) 

where ï éR™ 

whose feasible region we denote by fi = {i G I" | 9 i ( x )  < 0 i  —  1,..., m, h i ( x )  = 0 i  =  

1,..., 1} and write g(x) = (gi(x), ...,gm(x))T and h(x) = (h\(x),..., hi(x))T for convenience. 

Penalty methods are designed to solve (3.1) by, instead, solving a sequence of specially 

constructed unconstrained optimization problems (34). The feasible region of equation (3.1) 

is expanded from fî to all of Rn, but a penalty is added to the objective function for points 

that lie outside of the original feasible region fî. 

Definition 3.0.1. A function C ( x )  : R™ —> R is called a penalty function for equation (3.1) 

if C(x) satisfies: {C(x) — 0 if g(x) < 0 h(x) — 0} and {C(x) > 0 if g(x) > 0 or h(x) ^ 0} (5). 

Penalty functions are typically defined by: 

m  I  

1=1 1=1 

where 

{^(giW) = 0 if gi(a;) < 0} and {<^(gi(a;)) > 0 if #(z) > 0}, 

{ ip (h i ( x ) )  — 0 if h i  — 0} and { i p (h i ( x ) )  >  0 if h i  ^ 0 } 

In theory, more general functions satisfying the definition can conceptually be used. We 

then consider solving the following penalty program: 

m i n ( f ( x )  +  f j ,  C ( x ) )  

where i£l" (3.3) 

for an increasing sequence of constants /i as f j ,  —• oo. In problem (3.3), we are assigning a 

penalty to the violated constraints. The scalar quantity n is called the penalty parameter. 
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Let {[J>k}'kLi be a increasing sequence of penalty parameters that satisfies /J-k+i > Mk for 

V k and lim (/i*.) —>• +00. Let F(x) — f(x) + i±C(x) and let xk be the exact solution to the 
k — >00 

problem (3.3), and let x *  denote any optimal solution of (3.1). The following Lemma presents 

some basic properties of penalty methods. 

Lemma 3.0.1. Properties of penalty methods (5) 

j. F(^,z*=) <F(^+i,%^) 

2. C(a/3 > C(z/=+i) 

3. /(%&) < /(%t+i) 

j. /(%*)>f(^,%&)>/(%&) 

proof: 

1. 

f(W:+l,Z^) = /(^)+^+lC(^) 

> Z(r^)+//kC'(^+^) since 

> /(^) + ̂ C(^) 

= %,^) 

2. 

/(%t) + WkC(zt) < /(^)+//tC(^) 

and /(a;^^) + //t+iC(%^) < /(^) + ̂ +iC(^) 

Thus (/it+i - ̂ k) C(a/=) > (//t+i - /^t) C(z^) 

whereby C ( x k )  >  C ( x k + 1 )  

3. From the proof of part (1): 

/(z^)+^C(%t+i) > /(^) + ̂ C(^) 

ButC(^) > C(^+^) 

which implies that f ( x k + 1 )  >  f ( x k )  
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4. 

/(^) < /(^)+^C(^) 

= /(a;*) 

The convergence of the penalty method can be discussed with the following theorem: 

Theorem 3.0.2. (Penalty Convergence Theorem) Suppose that fi ^ 0 and f(x), g(x), h(x), 

and C(x) are continuous functions. Let be a sequence of solutions to equation (3.3), 

and suppose the sequence is contained in a compact set. Then any limit point x of 

proof: 

Let x  be a limit point of {xfc}^=1. From the continuity of the functions involved, lim x k  =  f ( x ) .  
A:—too 

Also, from the Lemma 3.1.1: 

F* = (3.4) 
k — »oo 

Thus 

lim f i k C ( x k )  = lim [ F ( f i k , x k )  -  f { x k ) }  (3.5) 
k —•oo /c—»oo 

- (3.6) 

But (p, —> oo), which implies from the above that: 

lim C(z^) 0 (3.7) 

Therefore, from the continuity of C ( x ) ,  g ( x )  and h ( x ) ,  C ( x )  = 0, and so g ( x )  <  0 and h ( x )  = 0, 

that is, x is a feasible solution of (3.1). Finally, from the Lemma 3.1.1, f(xk) < f(x*) for all 

k, and so f(x) < f(x*), which implies that x is an optimal solution of (3.1). 

An often used class of penalty functions is: 

mi m 2 
C ( x )  =  y ^max[0,gi(x)]c +  ̂  \ h j ( x ) \ c  w h e r e  c  >  1, m — mi + rri2 (3.8) 

i=1 i=1 
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If c = 1, C(x )  in equation (3.8) is called the linear penalty function. This function may not 

be differentiable at points where Qi(x) — 0 or hi(x) = 0 for some i. Setting c = 2 is the most 

common form of (3.8) that is used in practice, and is called the quadratic penalty function. 

3.0.4 Karush-Kuhn-Tucker multipliers 

Suppose the penalty function C(x) is defined as (3.2). C ( x )  might not be continuously 

d i f f erentiable, since the functions gi(x) are not differentiable at points x where §i(x) = 0. 

However, if we assume that the functions <f>(y) and tp(y) are continuously differentiable and 

<f>'(0) = 0 then C(x) is differentiable whenever the functions g(x), and h(x) are differentiable, 

and we can write: 

VC(z) = 53^(gi(T))Vgi(a;) + ̂ ]^(/it(a;))V^(T) 
2=1 1=1 

Let x k  solve (3.3). Then x k  will satisfy: 

that is: 

V/(z%)+Wk 

V/(^)+^VC(^) = 0 

Li=l i=1 

(3.9) 

(3.10) 

= 0 (3.11) 

Define: 

m I 
= 0 

(3.12) 

(3.13) 
i=i i=1 

The u k  and v k  are called Karush-Kuhn-Tucker multipliers. 

Lemma 3.0.3. Suppose 4>(y) and tp(y) are continuously differentiable and satisfy 0(0) = 0, 

and that f(x), g(x), and h(x) are differentiable. Let uk, vk be defined by equation (3.12). 

Then if xk —> x, and x satisfies the linear independence condition for gradient vectors of active 

constraints, then uk —> û and vk —> v where û and v are a vector of Karush-Kuhn-Tucker 

multipliers for the optimal solution x of (3.1) (5). 
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proof: 

From the Penalty Convergence Theorem (3.1.2), x  is an optimal solution of (3.1). Let I  =  

{i | gi{x) = 0} and N = {i \ gt(x) < 0} . For i G N, gi(xk) < 0 for all k sufficiently large, so 

uk = 0 for all k sufficiently large, whereby ûi = 0 for i G N. From equation (3.12) and the 

definition of a penalty function, it follows that uk > 0 for i G /, for all k sufficiently large. 

Suppose uk —> û and vk —> v as k —> oo. Then ûj = 0 for i G Ar. From the continuity of all 

functions involved: 

771 £ 

V/(^) + g^Vgi(^) + 5]^V^(^) - 0 (3.14) 
i=1 i=l 

implies: 

m Z 

V/(x) + 53^iVgi(x) + 53^iV/ii(z) = 0 (3.15) 
2=1 1=1 

We also have u > 0 and û j  = 0 for all i G  N. Thus u and v are Karush-Kuhn-Tucker multipliers. 

It therefore remains to show that uk —> û and vk —• v for some unique u and v. 

3.0.5 Exact penalty function 

The idea in an exact penalty method is to choose a penalty function C ( x )  and constant /j 

so that the optimal solution x of (3.3) is also an optimal solution of the original problem in 

equation (3.1). 

Theorem 3.0.4. Suppose 3.1 is a convex program for which the Karush-Kuhn-Tucker condi­

tions are necessary. Suppose that 

m  

CM = 
i=i 

Then as long as n is chosen sufficiently large, the sets of optimal solutions of F(fï) and 3.1 

coincide. In fact, it suffices to choose /i > maxi{u*}, where u* is a vector of Karush-Kuhn-

Tucker multipliers. 

Proof: Suppose x  solves 3.1. For any x  G  Mn we have: 
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i—1 i=1 

m  

> /(^) + '"i (gi(^ + Vg(^(i - a)) 
1=1 

m  

= it* Vg(^)^(z - ï) 
i=l 

= /N - v/(z)^(z - ̂) 

> /(̂ ) 
m  

= /(®) + ^5Z^i(®) 
i=1 

=  F ( n ,  x )  

Thus F { n , x )  <  F ( n , x )  for all x ,  and therefore x  solves 3.3. Next suppose that x  solves 3.3. 

Then if x solves 3.1, we have: 

m  m  

< /(z) + ̂ ^]gi(z)-/(z)and 
%— 1 i= 1 

m  

/(&) < (316) 
%— 1 

However, if x is not feasible for 3.1, then: 

/(&) > /(a) + V/(a)^(î-ï) 
m  

%  —  1 
m  

> /(^) + - 2#) 
i~l 
m  m  

1=1 1=1 

which contradicts 3.16. Thus x is feasible for 3.1 and so x solves 3.1. 

3.0.6 Barrier method 

The idea in a barrier method is to dissuade points x from ever approaching the boundary 

of the feasible region (22). 
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Definition 3.0.2. A barrier function for 3.1 is any function b(x): Mn —> R that satisfies, 

b(x) = 0 for all x that satisfy g(x) < 0, and b(x) —> oo as lim max gi(x) = 0 
x  i  

Define barrier minimization problem: 

min ( f ( x )  +  i u b ( x ) )  

s.t. g { x )  <  0, for i El™ (3.17) 

for a sequence of /!& —> oo. The following Lemma presents some basic properties of barrier 

methods. 

Lemma 3.0.5. Let F(n,x) — f(x) + HkKx) • Let the sequence {/^} satisfy > Hk, 

Hk —> oo as k —> oo. Let xk denote the exact solution to 3.17. 

•  F ( n k , x k )  >  F ( f i k + 1 , x k + 1 )  

. 6(^) < 6(^^+1) 

. /(%&) > /(^) 

. /M</(^)<F(^,^) 

Proof: 

F(/4t,a^) - /(^) + /it&(^) 

> /(^) + ̂ k+lb^'') 

> / 

= F { V k + i , x k + 1 )  

/(%*:)+/it6(a^)) < /(z^)+^6(z^+^) 

and /(%k+i) + ̂ t+i6(a:^^)) < /(^) + m=+ib(a^) 

we have (^t - /4t+i) &(^) < - Wk+i) 6(a:^^) 

(3.18) 
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since ^ < ^t+i, -» > 6(^) 

• From above proof, we have: 

+ /4:+i6(%*3 > /(^^) + Wû+i6(%*^) and 

6(^+^) > 6(a/=) 

Therefore, f ( x k )  >  f ( x k + 1 )  

* /(%*) ^ /(^) = /(a/=) +/it 6(^) = 

Theorem 3.0.6. Suppose f(x), g(x), and b(x) are continuous functions. Let xk, k —1,..., be 

a sequence of solutions of B{^). Suppose there exists an optimal solution x* of 3.1 for which 

N(e, x*) P|{x|y(x) < 0} ̂  0 for every e > 0. Then any limit point x of {xk} solves 3.1. 

proof: Let x  be any limit point of the sequence { x k } .  From the continuity f { x )  and g ( x ) ,  

lim f{xk) — f{x) and lim g(xk) — g(x) < 0. Thus x is feasible for 3.1. 
k—>oo k—>00 

For any e > 0, there exists x  such that g { x )  < 0 and f ( x )  <  f ( x * )  + e. For each k, 

/(%*) + e + > /(^) + 

Therefore for k  sufficiently large, f ( x * )  + 2e > F(fik,xk), and since F ( / j , k ,  x k )  >  f { x * )  from 

Lemma 3.1.4, then; 

/(%*) + 2e > lim > /(a;*) 
/c—> OO 

This implies that, 

lim = /(%*) 
k—>oo 

We also have, 

/(%*) < /(^) < /(^) + + 2e > lim f (^, > /(a;*) 
k—*oo 

Taking the limits we obtained, 

/(%*) < < /(z*) 
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whereby x is an optimal solution of 3.1. Typical class of barrier functions are: 

m  

b ( x )  = ^ 2 ( g i ( x ) ) ~ a  where a  >  0 
i= l 

3.1 Review 

The details of Barrier and Penalty methods are discussed in this section as a optimiza­

tion problem. In the Penalty method one can start with infeasibility and can ultimately be 

obtained feasible optimal solution. Meantime, The Barrier method uses a barrier so that the 

solution never becomes infeasible. These methods can be implemented without compromising 

computational cost. The penalty function algorithm is simple and easy to implement. 
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CHAPTER 4. Molecular dynamics, penalty function method and its 

properties 

4.0.1 Constrained molecular dynamics and penalty function method 

Based on the theory of classical mechanics, the trajectory of molecular motion between two 

molecular states minimizes the total action of the motion (30). Let x(t) be the configuration 

of the molecule at time t, x = {xi : Xi = (xi:\, Xit2, Xi$)T, i = 1,, n}, where X{ is the position 

vector of atom i and n the total number of atoms in the molecule. Given beginning and ending 

t ime  to  and  t e ,  x ( t )  G [ to , t e ]  def ines  a  t ra jec to ry  connec t ing  two molecu la r  s t a tes  x q  = x( to )  

and xe — x(te). Let h(x,x',t) be the difference of the kinetic and potential energy of the 

molecule at time t. The functional L is called the Lagrangian of the molecule. Let S be the 

ac t ion  of  the  molecu le  in  [ to ,  t e \ .  Then ,  S  i s  de f ined  as  the  in tegra l  o f  the  Lagrangian  in  [ to ,  t e ] ,  

and according to the least action principle, the trajectory x minimizes the action S of the 

molecu la r  mot ion  in  [ to , t e \ :  

Theorem 4.0.1. Let L be a continuously differentiable functional. Let x be a solution of 

problem 4-1- Then, x satisfies the following Euler-Lagrange Equation: 

Proof: Let 5 x  be a small variation of x  and S x  ( t o )  =  S x ( t e )  = 0. By the principle of variation, 

the necessary condition for x to be a solution of problem 4.1 is that: 

mm (4.1) 

d h  ( x , x ' , t )  
dh(x, x', t) dx 

dx' dt 
(4.2) 

(4.3) 
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dcc ôx 
Since ôx' = ô— = d-— , we obtain, after integrating the second term of 4.3 by parts: 

dt dt 

/  j d h j x , x ' , t )  \  

' t o  dt 
Sxdt = 0 (4.4) 

V 
Since ÔS should be zero for all ôx, the integrand of 4.4 must be zero and 4.2 follows. 

x'T M x' 
Corollary 4.0.2. Let L = y?(x), where M is the mass matrix of a molecule and ip 

the potential energy. Then, a necessary condition for x to minimize an action S is that: 

Mz" = -V(f(z) (4-5) 

Proof: It follows from Theorem 4.1.1 and the facts that ——— — Mx" and —- = - Vw. 
dt ox 

Equation 4.5 is well known as the equation of motion for a molecule of n atoms. It can be 

equivalently stated as: 

n%a4' = /i(zi,..-,z,i), = ^ (4.6) 

where 77% and fi are the mass and force for atom i, respectively and M — diag[m\, ....,mn}. 

Note that Theorem 4.1.1 and Corollary 4.1.2 imply that a trajectory that minimizes the mole­

cular action between two system states necessarily satisfies the classical mechanical equation 

of motion. In other words, the solution of the equation of motion can be considered as an 

attempt for the minimization of the molecular action of motion. 

Let C = Cj : j = 1,, m be a vector of functions that can be used to define the constraints 

on the molecule. The constrained simulation problem can then be considered as a constrained 

least action problem. 

rte 
m i n ( S ( x )  = / L(x, x!, t)dt) 

J  t 0  

subject to C ( x )  = 0 (4.7) 



44 

Then, by the theory of constrained optimization, a necessary condition for a molecular trajec­

tory x between x$ and xe to be a solution of problem 4.7 is that: 

m  

= 0 

j=i 

C(z) = 0 (4.8) 

where A is a vector of Lagrange multipliers. 

x'T Mx' 
Theorem 4.0.3. Let L = y(x), where M is the mass matrix of a molecule and 

<p the potential energy. Then, a necessary condition for x to minimize an action S subject to 

C(x) = 0 is that: 

Mz" - -V(p(z)-C*(%)^A 

C(z) - 0 (4.9) 

where X is a vector of Lagrange multipliers and C*(x) the Jacobian of C(x). 

]\d 
Proof: For L — y(x), condition 4.8 translates to: 

m  

Mi" - -V(Xz)-^AjVCj(a;) 
i=i 

C(z) = 0 (4.10) 

and hence to 4.8 with C* — [VCi, , VCm]T. 

For each atom, equation 4.9 can be written as: 

m  

77%%^ = -Vp(z) -y^AjQj(Zi,....,Zn) 
j=l 

C j ( x \ , . . . . ,  x n )  —  0, j = 1,..., m, i = 1,...., n (4.11) 

where: 

fi — i Ci,j — Qx , J —  ! , • • • ,  r n ,  i  —  1 , ...., n (4.12) 

Note that in (4.11), the right-hand side of the first equation can be treated as a single force 

function (with the original force function plus a combination of the derivatives of the constraint 
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functions), and therefore, the equation can be integrated in the same way as equation (1.10) by 

the Verlet algorithm, except that in every step, the Lagrange multipliers Aj, j — 1,...., m have 

to be determined so that the new positions X{,i — 1,...., n for the atoms satisfy the constraints 

C j ( x  1 ,  . . . . ,  X ^ i )  —  0 ,  j  —  1 ,  . . . . ,  T Ï I .  

Let / be the objective function and C  —  { C j  : j — 1,...., m }  be a set of constraint 

functions. Consider a general equality constrained optimization problem: 

min(/(xi,x2, 

subject to C j ( x i , X 2 ,  • • • • , x n )  =  0, j  —  1,..., m (4.13) 

The unconstrained optimization problem with a quadratic penalty function for (4.13) can be 

defined as follows: 

m 
m m (f( x i , x 2 , . . . . , x n ) )  +  ̂ ^ 2 \ C j ( x i , . . . , x n ) \ 2  (4.14) 

i=i 

where /i is a parameter called the penalty parameter. In principle, the solution for problem 

(4.13) can be recovered by solving problem (4.14) with the parameter ji gradually increasing 

to oo. A so-called exact penalty function can also be defined, such as using the Zi-norm. Then, 

problem 4.14 becomes: 

( m f( x  1 , X 2 ,  • • • • x n )  +  2  X!  • • •> X n ) |  
3 = 1  

and the solution for problem (4.13) can be recovered by solving problem (4.15) with the 

parameter /i only raised to a sufficiently large value. 

If the constraints are inequalities, i.e., C j ( x \ , . . . . ,  x n )  > 0 ,  j = 1,...., m, the penalty 

functions in 4.14 and 4.15 can still be used in the same way as for equality constraints, only 

with Cj replaced by C~ for all j, where C~ = min(Cj,0) gives the amount of violation for 

constraint j. Another approach is to introduce a barrier function for each constraint. Then, 

the problem becomes minimizing the combination of the objective function and the barrier 

functions such as the following: 

(m f ( x i , x 2 ,  . . . .X n )  -  T ^2 lo g( C j ( x i ,  . . . , £ „ ) )  

J=1 

(4.15) 

(4.16) 
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where log( C j ( x i , x n ) )  is called the log barrier function for C j ( x i , x n )  as the function is 

not defined when Cj(x\,xn) < 0 and is infinity when Cj(xi,xn) = 0. The parameter 

T is used to control the barrier term. In principle, the solution of the original constrained 

optimization problem can be asymptotically approached by solving problem (4.16) as r is 

gradually decrease to zero. 

In this work, we will only use the formulation in (4.14) for the development of the penalty 

function method for constrained molecular dynamics simulation. The primary reasons are that 

in this work, we only consider the equality constraints, and the squared Euclidean norm used 

in (4.14) also provides smoother properties than the l\ — norm in (4.15) for optimization. By 

using the formulation in (4.14), the constrained least action problem as given in (4.7) can be 

transformed to: 

min (S(:r) + |||C(x)||2) (4.17) 

where ||.|j is the Euclidean norm and C  —  ( C \ , . . . ,  C m ) T .  In principle, a solution for the 

constrained least action problem (4.7) can be obtained by solving a sequence of problems in 

(4.17) with n selected from an increasing sequence of parameters {,%}. 

Theorem 4.0.4. Let /i = ̂  and jik —> oo as k —> oo. Let xk be a global solution to (4-17) 

with fi = /ifc, and xk —> x* as k —» oo. Then, C(xk) —» 0 as xk —> x*, and x* is a global 

solution to the constrained least action problem (4-7). 

Proof: Let <p(x, ji) — S(x) + ̂ \\g(x)\\2. Then: 

m) < wJ ^ Wc+i) (4.18) 

showing that the sequence of global minima 4>(xk,Hk) of (4.18) is non-decreasing. By using 

the facts that cf>(:rfc,/ifc) < 4*(xk, fik+i) and 4>(xk+1, Hk) < 4>(xk+1, /ifc+i), we have 

- <6(T^+\z^t+i) < (6(^, z^k+i) - ̂ (^+\//t) (4.19) 

and 

(WW - ̂ )(||C(^)||2 _ ||C(z^)||2) > 0 (4.20) 
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It follows that {||C(z^)||2} is non-increasing. Since 4>(xk < 4>(xk+1, Hk), is also 

non-decreasing. Let S *  be the global minimum of (4.7). Then, 4 > ( x k , ^ k )  < <f>(x, Hk) = S*, 

{S'(x'c)} , where x = global argmin{S(x) : g(x) = 0}. Then: 

S(^) + ̂ ||C(^)f (4.21) 

Since {S(xfc)} is non-decreasing and {^} is increasing, C ( x k )  —> 0, and it follows that if 

xk —> x*, C(x*) — 0 and S(x*) < S*. By the definition of S*, S(x*) > S*, and therefore, 

S(x*) — S*. We now define an extended Lagrangian 

L(a, x', t) = L(g, x1, t) + , (4.22) 
^ ve t0j 

Then, problem (4.17) can be written in the following form: 

m i n ^ S ( x ) =  L(x, x', t)dt^ (4.23) 

By applying Theorem 4.1.1 and Corollary 4.1.2 to (4.23), we obtain the extended equation of 

motion as the necessary condition for any x to be a solution to problem (4.17), 

Mz" = -Vy(z) - PC* (z)^C(z) (4.24) 

where C* is the Jacobian of C. The following theorem shows that a solution to problem (4.7) 

that satisfies the necessary condition (4.9) for the problem can be obtained by solving the 

extended equation of motion (4.24) with /i increasing to oo. The solution is equivalent to the 

one that can be obtained by using a Lagrange multiplier type method. 

Theorem 4.0.5. Let n — / j^ and ^ —> oo as k —• oo. Let xk be a solution to problem (4-17) 

with /i = Hk, and xk —> x* as k —> oo. Let C* be the Jacobian of C and C*(x*) be of full rank. 

Then, x* satisfies the necessary condition (4-7) for x* to be a solution to the constrained least 

action problem (4-6). 

Proof: Based on (4.24), for each pair of (xk,/ik), necessarily: 

- -Vp(^) - /itC*(z^C(a;t) (4.25) 
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Let Afc = HkC{xk). Then: 

M[%T = -Vy,(^) - C*(%t)?At (4.26) 

and: 

At - -(C*(ztf)+(M(%y + Vy(^)) ̂  -(C*(^f + Vp(z*)) - A* (4.27) 

where ( C * ( x k ) T ) +  is the pseudo-inverse of C * ( x k ) T  .  Then, C ( x k )  = ^A& —> ^ X *  — > 0. It 

follows that: 

M(zy = -Vy,(z*)-C*(i*)A* andC(z*) = 0 (4.28) 

In the atomic form, equation (4.24) can be written as: 

ITliX^ = f {x\,—, Xn) + f l  C i j  ( x \ , — )  X n ) C j  ( x  \  , . . . X n ) ,  f i  —  , C {  j — (4.29) 
j - 1  1  l  

i = 1,...., n. By treating the entire right-hand side of each equation in (4.28) as a force function, 

we can then apply standard Verlet algorithms to obtain our numerical formulas for the solution 

of the equations in (4.28): 

Penalty Position Verlet 

1 m 
z^ = 2^-T^ + A^(^ + —^TC^Cj=)% = l,....,m, & = (4.30) 

^ j=i 

Penalty Velocity Verlet 

4+1 = 4 + Atof + Ai2 + J-,, £ cj:, CM 

t,f+1 = t,* + At f/* + ./*+> + E c*. Cj + C*+1 j 

z = 1,...., n, & = 1,.... (4.31) 

Note that formulas (4.30) and (4.31) do not involve solving nonlinear systems and can 

therefore be updated much more efficiently than Shake and Rattle. However, the parameter fi 

needs to be selected appropriately and required to be sufficiently large. There is also an issue 
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that for different penalty terms, different scales may need to be used for the parameters. We 

discuss these issues in greater details in the specific implementations of the algorithms in the 

next sections. 

4.1 Analysis of molecular dynamics 

When carrying out molecular dynamic simulations, coordinates and velocities of the system 

are saved. These are then used for the analysis. Time dependent properties can be displayed 

graphically, where one of the axis corresponds to time and other to the quantity of interest, 

such as energy, RMSD, etc. Other approaches have been developed for representing the time 

dépendance of angle rotation (dihedral). Average structures can be calculated and compared 

to experimental structures. Molecular dynamic simulations can help visualize and understand 

conformational changes at an atomic level when combined with molecular graphics programs 

which can be display the structural parameters of interest in a time dependent way. Some 

quantities that are routinely calculated from a molecular dynamics simulation. 

4.1.1 Root Mean Square Deviation (RMSD) 

Root Mean Square deviation has been implemented as a protocol for pairwise structural 

superposition, with atomic Euclidean distances between aligned residues being calculated along 

the pairwise alignment and the RMSD for the structural pair being calculated by summing the 

squares of these distances, dividing by the number of distances involved and calculating the 

root. This results in a single value with which to assess the quality of the structural alignment, 

and is limited in its pairwise nature. 
z \ 

%1,1 %1,2 3-1,3 

Define two coordinate structure matrices, X = 

%2,1 %2,2 3:2,3 

and, 

y  X n t i  X n t 2  % n , 3  J 
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/ \ 
yi,i  2/1,2 yi,3 

3/2,1 3/2,2 1/2,3 

y = 

y Un, 1 Un,2 Un,3 y 
where n is number of atoms. Define: 

u % - n i  
\ 

n 3 

i=i j=i 

( \ 
^1,1 ^1,2 ^1,3 

Z2,i 3:2,2 a:2_3 

translation can be calculated by; X  —  

3-t, 1 %t,2 %t, 3 

3-t, 1 ^t,2 2-4,3 

where 
y £n,l 2-n,2 ^«,3 y y ^t,l ^t,2 ^*,3 y 

3-tj — ^ 1 -^i,j; j — 1,2,3 
2=1  

/ \ 
9i l 912 913 

Then using rotation matrix Q  —  921 922 923 

y 931 932 933 y 

, we can calculate RMSD, 

R M S D ( X , F) = rmn 
n 

4.1.2 Velocity Autocorrelation Function (VAF) 

(4.32) 

(4.33) 

(4.34) 

The velocity autocorrelation function is a prime example of a time dependent correlation 

function, and is important because it reveals the underlying nature of the dynamical processes 

operating in a molecular system. It is constructed as follows. At a chosen origin in time we 

store all three components of the velocity Vi, where 

%i,w) y 

(4.35) 
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for every atom i  in the system. We can calculate the first contribution to the velocity auto­

correlation function, corresponding to time zero. This is average of the scalar products Vi.Vi 

for all atoms: 

1 n 

VAF( t 0 ) = - ̂2(v i ( t 0 ) .V i ( ta ) )  (4.36) 
n »=i 

At the next time step in the simulation t  — to  + At and the corresponding velocity for each 

atom is: 

^ %i=(to +At) ^ 

vj (4.37) (to + At) 

^(^o + At) y 

and we can calculate the next point of the VAF as: 

1 n 

V AF( to  + At) — — ^^(vi( to )  .Vi( to  + At)) (4.38) 
n i=l 

We can repeat this procedure at each subsequent time step and so obtain a sequence of points 

in the VAF, as follows: 

1 n 

VAF(kAt ) = - ̂ (fi(to).Vi(to + A:At)) (4.39) 
i=1 

VAF(kAt )  =  < Vi( to ) ,V i ( to  +  kAt )  >  (4.40) 

Consider a single atom at time zero. At that instant the atom i  will have a specific velocity 

vf. If the atoms in the system did not interact with each other, the Newton's Laws of motion 

tell that the atom would retain this velocity for all time. This of course means that all our 

points VAF would have the same value, and if all the atoms behaved like this, the plot would 

be a horizontal line. It follows that a VAF plot that is almost horizontal, implies very weak 

forces are acting in the system. 

On the other hand, if the forces are small but not negligible then we would expect both 

its magnitude and direction to change gradually under the influence of these weak forces. In 

this case we expect the scalar product of u,(to) with V{(to + kAt) to decrease on average, as 

the velocity is changed. In statistical mechanics it is called the velocity decorrelates with 
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time, which is the same as saying the atom 'forgets' what its initial velocity was. In such a 

system, the VAF plot is a simple exponential decay, revealing the presence of weak forces 

slowly destroying the velocity correlation. 

Strong forces are most evident in high density systems, such as solids and liquids, where 

atoms are packed closely together. In these circumstances the atoms tend to seek out locations 

where there is a near balance between repulsive forces and attractive forces, since this is where 

the atoms are most energetically stable. In solids these locations are extremely stable, and the 

atoms cannot escape easily from their positions. Their motion is therefore an oscillation the 

atom vibrate backwards and forwards, reversing their velocity at the end of each oscillation. If 

we now calculate the VAF, we will obtain a function that oscillates strongly from positive to 

negative values and back again. The oscillations will not be of equal magnitude however, but 

will decay in time, because there are still perturbation forces acting on the atoms to disrupt 

the perfection of their oscillatory motion. So what we see is a function resembling a damped 

harmonic motion. 

Liquids behave similarly to solids, but now the atoms do not have fixed regular positions. 

A diffusive motion is present to destroy rapidly any oscillatory motion. The VAF therefore 

may perhaps show one very damped oscillation before decaying to zero. In simple terms this 

may be considered a collision between two atoms before they rebound from one another and 

diffuse away. 

4.1.3 Ramachandran Plots 

During the last stages of structure determination of proteins by any method for example x-

ray crystallography, NMR, or homology modeling, structural biologists use a variety of tools, 

including Ramachandran plots, to call their attention to unrealistic conformations in their 

models. A Ramachandran plot plainly signals residues that need further work before the 

entire model can be declared chemically realistic. 

The Ramachandran plot displays the psi and phi backbone conformational angles for each 

residue in a protein. The distance between two succession alpha carbon atoms in the backbone 
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chain of a protein is approximately constant, as are the angles between the two bonds of such 

atoms. The proteins have only conformational freedom to rotate around the bonds in the 

backbone and in the side chain. The conformational angles show preferences for values that 

are expected based on simple energy considerations, and deviations from these angles may be 

used as indicators of potential error in crystallographic projects. Phi and psi angles are also 

used in the classification of some secondary structure elements such as beta turns. 

In a Ramachandran plot, the core or allowed regions are the areas in the plot show the 

preferred regions for psi/phi angle pairs for residues in a protein. Presumably, if the determi­

nation of protein structure is reliable, most pairs will be in the favored regions of the plot and 

only a few will be in "disallowed" regions. 

There are multiple definitions of the so-called core or allowed areas in Ramachandran plots. 

The results of analysis can heavily depend on the definition used. 

4.2 Review 

In this chapter, the penalty function method is discussed. We presented theory of penalty 

function method. We have shown that the equation of motion can be integrated with con­

straints that satisfies necessary condition to have minimum for least action principle. Data 

that can used to analyze trajectories are also discussed such as velocity autocorrelation, RMSD 

and etc. 
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CHAPTER 5. Implementation procedure 

5.1 Introduction 

This chapter introduces the penalty term method that we used in molecular dynamic 

simulations. The research work has been carried out in Department of Mathematics, Iowa 

State University. Simulations were performed on a 64 bit Alpha workstation with processor 

speed of 500Mhz, RAM 1GB and 64 bit Intel workstation of 3.60Mhz processor, RAM 1.5GB. 

Initial research has tested on Argon molecular system and equation of motion was simulated 

with Lennard-Jones potential. The details description of results of the model is discussed 

here. Then, the structure of Chemistry at Harvard Macromolecular Mechanics (CHARMM) 

program and penalty method implementation for all atom simulations are discussed. 

Molecular dynamics are popular and used to calculate dynamic and equilibrium properties 

of complex protein system or cluster of atoms that might not able to estimate analytically. It 

represents interface between experiments and theory of trajectory or motion of the system with 

classical mechanics and statistics theory. To obtain more complete understanding of protein, 

it is essential to have detailed knowledge of their dynamics. The motivation for using classical 

mechanics with penalty function method is the dreadful exponential scaling of the computa­

tional resources needed (CPU time and memory) with the size of the system. Yet it can be 

shown that for many thermodynamic systems at reasonable temperatures classical mechanics 

make a fairly good approximation. The penalty function method is an optimization method 

that we used to find minimum/maximum of the system by converting constraints optimization 

problem into sequence of unconstraint optimization problems. The method of penalty func­

tions is simple and effective, provided that suitable values for the parameters can be chosen and 

some numerical trail and error is often necessary. One of the main advantage of this method is 
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that simulation can be started with infeasible solution set. Most practical applications have an 

infeasible starting point. The dynamics are carried out with the penalty function method as 

an initial value problem since it satisfies necessary conditions for minimization problem. These 

types of problems are called least action problems. 

In next section, We present penalty function method and it's implementation on Argon 

clusters. Distance constraints are used. Results are shown that we can increase size of the 

time step by introducing constraints. It also spend significantly less computing time in dynamic 

simulations compare to other typical dynamic simulation methods to reach equilibrium. 

5.1.1 Penalty function implementation on Argon clusters 

As described in chapter 1, the Van der Waals potential characterizes the contribution of 

the non-bonded pairwise interactions between atoms. It is generally described by the Lennard-

Jones potential function. The Lennard-Jones potential is a key part of many empirical energy 

models, including all commonly used energy functions for proteins. A system containing more 

than one atom, whose Van der Waals interaction can be described by Lennard-Jones potential 

is called a Lennard-Jones cluster: 

where a  = 0.405A and e = 165.4e~23 J .  The Lennard-Jones potential function for a single pair 

of neutral atoms is a simple uni-modal function. This is illustrated by Figure (1.7). It is easy 

to find the overall minimum of this function that is assumed at 1 with energy -1. In a complex 

system, many atoms interact and we need to sum up the Lennard Jones potential functions 

for each pair of atoms in a cluster. The result is a complex energy landscape with many local 

minima. The Lennard Jones potential can be written as: 

If one uses i ̂  j, the total energy must be divided by two. The Lennard Jones potential func­

tion is partially separable (A function that is the sum of functions, each of which only involves 

a disjoint subset of the variables, is called partially separable.). The partially separability of 

(5.1) 

(5.2) 
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the Lennard Jones potential implies that, if a single atom or molecule in a cluster is moved, 
f  2 \ t h  

the potential energy can be re-evaluated cheaply at a cost that is only — of the cost of 
\n J 

a total function evaluation, where n is the total number of atoms or molecules in the cluster. 

This is due to the fact that the potential function composed as the sum of pairwise interactions 

between atoms or molecules. Given a cluster of n atoms, the Lennard Jones cluster problem is 

to find the relative position of atoms in the three-dimensional Euclidean space that represent 

a potential energy minimum. 

Let Xi — (xj1, Xi2,Xi3)T represent the coordinates of atom i in the three-dimensional Euclid­

ean space. Let S — ((xi)T, , (xn)T)T , where n is the number of atoms in the cluster. The 

Lennard Jones potential of a pair of atoms ( i , j )  is: 

where = \\xi — Xj ||. The Lennard Jones cluster problem described in the previous section 

can be formulated in the coordinate space as follows: 

where x^ and xj represent the coordinates of the ith and the jth atoms, respectively. As it 

is illustrated by Figure (1.7), for a single pair of neutral atoms, the overall potential energy 

minimum is reached when the distance between two atoms is one. When this distance ap­

proaches zero, the potential tends to infinity. When an atom is far away from the system, 

its contribution to the total potential becomes almost zero. Due to these observations, it is 

reasonable to expect that at the optimal solution of the Lennard Jones cluster problem all 

atoms in R3 are close to unit distance to each other. However, complexity of determining the 

global minimum energy of the Lennard Jones cluster belongs to the class of NP-hard problem 

(51). In other words, there is no known algorithm that can solve this problem in polynomial 

time. The main difficulty in solving the Lennard Jones minimization problem arises from the 

fact that the objective function is a non-convex function of many variables with a large number 

(5.3) 

v { S )  =  ^ i p d l x i - X j \ \ )  (5.4) 

(5.5) 
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of local minima. This non-convexity makes it very difficult to find global optimal solutions. 

The potential function in (5.5) can be used to describe Argon molecule cluster with equation 

of motion since Argon molecules have only non-bond interactions. 

rriiXij = -Vtp(S) (5.6) 
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Figure 5.1 The figure is illustrated potential energy changes when penalty 
term change. 

The Argon molecules have only non-bond interactions. Therefore, in implementation, the 

bond lengths are used as a constraints. Define: 

C  =  W r l j ~ d l j W 2  ( 5 - 7 )  
some i 

where is distance between ith and jth atoms in R3 and ditj is the target (optimal) distance 

between ith and jth atoms. The number of constrained included in simulation need to deter­

mined in the beginning. If one choose all the constraints then, the system is more rigid while 

less constrained allowed flexibility of the system. The figure (5.2) shows iterative procedure of 

1.2 1.3 1.4 1.5 1.6 1. 
Distance 
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algorithm. The constraints optimization problem could be defined as: 

mm (y(zw)) 

such that C — 0 (5.8) 

Start 

Initial coordinates & velocities 

Production 

Calculate forces Calculate forces 

Forces on atoms 

* 
Solve equations Solve equations 

Equation of motion 

Move atoms Move atoms 

Update coordinates & velocities 

Repeat and 
increase 
penalty 
parameter 

Calculate system properties 

no If converge 

yes 

Stop 

Save trajectories 

Figure 5.2 The flow chart of the penalty function algorithm for Argon clus­
ter simulation. 

Then, the constrained optimization problem can be converted into unconstrained optimiza­

tion by: 

-F(zu) = y(nj) + //C(z) (5.9) 

F i x i , j )  =  ( ~ V 2  -  \ \ r h  ~ d h \ \ 2  ( 5 - 1 0 )  

\  i - > 3  h 3  J  s o m e  i  

where fj, is Penalty parameter. The negative gradient of equation (5.10) is used as a force in 

the equation of motion. In figure (5.1) generated by assuming that there are only two atoms 
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in the system and have constraints distance between them is 1. It shows how potential energy 

changes with different (increase) penalty term. 
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Figure 5.3 Changes in potential energy of the trajectory for argon cluster 
13 produced by the penalty function method. Here, randomly 
selected 60% of all distances were constrained to their distances 
in the global energy minimum configuration. The trajectory 
already approached to the global energy minimum (-44.3) of 
the cluster in 3000 time steps while the trajectory generated by 
the Verlet remained in high energy. The time step is 0.032ps 
and penalty term updated every 500 iteration by 1. 

VL 
PL 

The algorithm has been developed in high performance Fortran 90 (Appendix B). Sim­

ulations are performed in high performance computer with 48 processors. A serial code is 

used for verification (Appendix A) purpose. The Message Passing Interface (MPI) used for 

communications between nodes. The simulations are focused on trajectory around the global 

minimum of Argon atom clusters. The initial structure and velocity of clusters are generated 

by perturbing the global minimum structure and using Gaussian distribution function respec­

tively. The algorithm is developed in such a way that it can use all the bond-length constraints 

or part of them. 

Each processor is asked to perform an independent simulation with different initial structure 
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and velocities. The penalty parameter is increased gradually once the simulation is in progress. 

After every iteration, we investigate potential energy changes with the previous step. If there 

is no improvement in the potential energy, even after increasing the penalty term, then the 

program is terminated. Computing time mainly depends on number of atoms in the cluster if 

uses same time step. The simulations were performed on most of the structures where global 

minimum was known (35). The simulation procedure is best described in figure (5.2). The 

selected number of atom cluster simulation results are presented in this section, specially 13, 

24 Argon atoms. 
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Figure 5.4 Changes in potential energy of the trajectory for argon cluster 
13 produced by the penalty function method. Randomly se­
lected 60% of all distances were constrained to their distances 
in the global energy minimum configuration. The time step is 
0.032ps and penalty term updated every 1000 iteration by 5. 

In figure (5.3) and (5.4) shows potential energy changes when simulation proceed with 

increase of penalty term. In both simulations 13 Argon atoms are selected with common 

time step At = 0.032ps. 60% of bond length constrained are selected. Even though dynamic 

simulations are carried out for longer time, the 9000 (9000 x 0.032ps) iterations results are 

presented. The simulation describe in figure (5.3) - simulation A - changes penalty term by 1 
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in every 500 iterations while figure (5.4) - simulation B - simulation changes penalty term by 5 

in every 1000 iterations. The both A and B are shown rapid decrease of potential energy over 

time. But A run, the potential energy drop gradually compare to simulation B. There is small 

but significant variation of potential energy in simulation A. During testing, we recognized 

that system need to run for a sufficient time between increase of penalty term. This time is 

enable energy to convert kinetic to potential and vise versa. 
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Figure 5.5 Changes in potential energy of argon cluster 24. Solid and 
dotted lines show the potential energy of the trajectory pro­
duced by the Verlet (VL) and penalty function (PL) methods, 
respectively. Here, randomly selected 50% of all distances were 
constrained to their distances in the global energy minimum 
configuration (-97.349). 

In figure (5.5), potential energy of Verlet run and Penalty run are plotted for a system 

with 24 Argon atoms. They have the same starting structure and initial velocities. The bold 

and light lines are represented Penalty and Verlet runs respectively. The Penalty term is 

increased in every 500 iterations by 1. Freezing bond length constraints, the Argon molecules 

approximately reach it known global potential energy level while Verlet does not reach lower 

energy configuration even for long enough simulation. 

We implemented penalty function method on popular molecular dynamic simulation called 
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CHARMM and tested for BPTI (4PTI) protein. The detailed analysis of the simulation is dis­

cussed. The Verlet and Shake schemes are performed parallel to Penalty scheme for comparison 

purposes. 

5.2 CHARMM settings 

Chemistry at Harvard Macromolecular Mechanics (CHARMM) is a highly flexible molecu­

lar mechanics and dynamics program originally developed by Dr. Martin Karplus at Harvard 

University (9). A variety of systems, from isolated small molecules to solvated complexes of 

large biological macromolecules, can be simulated using CHARMM. It uses empirical energy 

functions to describe the forces on atoms in molecules. These functions, plus the parameters 

for the functions, constitute the CHARMM force field. Well-validated energy and force cal­

culations form the core of a broad range of calculation and simulation capabilities, including 

calculation of interaction and conformational energies, local minima, barriers to rotation, time-

dependent dynamic behavior, free energy, and vibrational frequencies. The CHARMM process 

including penalty function can be summarized in figure (5.6). The steps can be described in 

following ways: 

Read model definitions: Information about residues, the basic chemical units that comprise 

all models, is stored in residue topology files (.RTF). The atoms, atomic properties, 

bonds, bond angles, torsion angles, improper torsion angles, hydrogen bond donors, 

acceptors, and antecedents, and non-bonded exclusions are all specified on a per residue 

basis. 

Read sequence: Sequence information must be supplied from sequence (.seq) files or include 

in input file before a model can be simulated. 

Read parameters: After a structure has been generated, its energy can be evaluated only if 

parameters exist for all internal, external, and special energy terms. Parameter files con­

tain parameters that specify force constants, equilibrium geometries, Van der Waals radii, 

and other data needed for calculating energies. The values are derived from experimental 
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model 
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Read sequences from sequence file Read model definitions from residue topology file 

Solve equation of motion 

Update coordinates, calculate system properties 

Calculate energy, forces 

Generate protein structure file containing model information 

Figure 5.6 CHARMM simulation procedure. 

data and quantum mechanical calculations. Refinement and extension of parameters are 

continuing process. 

Generate .PSF file: The protein structure file (.PSF) is the concatenation of information 

in the .RTF file. It specifies the information for the entire structure. The .PSF file has 

a hierarchical organization with atoms collected into groups, groups into residues, and 

residues into segments that comprise the structure. Each atom is uniquely identified 

within a residue by its IUPAC name, residue identifier, and segment identifier. 

Read or generate Cartesian coordinates: Cartesian coordinates can be read into the co­

ordinate file or generated from internal coordinates and parameter files. Internal coor­

dinate files contain information about the relative positions of atoms within a structure. 

Two sets of Cartesian coordinates are provided. The main set is the default used for all 
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operations involving the positions of atoms. A comparison or reference set is used for a 

variety of purposes, such as a reference for rotation or for operations that involve differ­

ences between coordinates for a particular molecule. Associated with each coordinate is 

a general purpose weighting array. 

Calculate energy: The main purpose of CHARMM is the evaluation and manipulation of 

potential energy of a macromolecular system. Before the energy of a structure can be 

evaluated and manipulated, the .PSF file for the structure generated from the appropriate 

.RTF file, All parameters required by the .PSF file and Cartesian coordinates for every 

atom in the structure must be available. 

Iteratively perform calculations and simulations: Using information in the .PSF, para­

meters file, and the energy data, any of a number of things can be done at this point 

including molecular dynamics, free energy perturbation, and imposing periodic bound­

aries. If convergence criteria is not satisfied then repeat the procedure while increasing 

penalty term. 

A typical molecular dynamics run involves six basic steps (figure (5.7)) described as followed: 

Preliminary preparation: A molecular structure with all Cartesian coordinates defined is 

required for a dynamics simulation. After determining the internal coordinate values of 

the molecule, total energy as a function of the Cartesian coordinates is computed by 

evaluating the individual terms of the energy equation. 

Minimization: All dynamics simulations begin with an initial structure that may be derived 

from experimental data. Energy minimization is performed on structures prior to dynam­

ics to relax the conformation and remove steric overlap that can produce bad contacts. 

In the absence of an experimental structure, a minimized ideal geometry can be used as 

a starting point. 

Heating: A minimized structure represents the molecule at a temperature close to absolute 

zero. Heating is accomplished by initially assigning random velocities according to a 
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Preliminary preparation 

Minimization 
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Heating 

Equilibration 

Production 

3 
Quenching 

Figure 5.7 Basic steps of molecular dynamic simulation procedure. 

Gaussian distribution appropriate low temperature and then running dynamics. The 

temperature is gradually increased by assigning greater random velocities to each atom 

at predetermined time intervals. 

Equilibration: Equilibration is achieved by allowing the system to evolve spontaneously for 

a period of time and integrating the equations of motion until the average temperature 

and structure remain stable. This is facilitated by periodically reassigning velocities 

appropriate to the desired temperature. Generally, the procedure is continued until 

various statistical properties of the system become independent of time. 

Production: In the final molecular dynamics simulation, CHARMM takes the equilibrated 

structure as its starting point. In a typical simulation, the trajectory traces the mo­

tions of the molecule through a period of at least 10 picoseconds. Just as with energy 
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minimization, provision is made to update the non-bonded and hydrogen bonded lists 

periodically. Additional options are available, making the dynamics facility quite flexible. 

Quenching: The logical opposite of heating, this optional step takes the molecule from the 

equilibrated temperature to zero. Quenching is a form of minimization, utilizing molec­

ular dynamics to slowly remove all kinetic energy from the system. 

Sometimes, minimization and heating are not necessary, provided the equilibration process 

is long enough. However, these steps can serve as a means to arrive at an equilibrated structure 

in an effective way. A molecular dynamics run generates a dynamics trajectory consisting of 

a set of frames of coordinates and velocities that represent the trajectory of the atoms over 

time. Using trajectory data, we can compute the average structure and analyze fluctuations 

of geometric parameters, thermodynamics properties, and time-dependent processes of the 

molecule. Preliminary analysis is possible using commands provided in the coordinate manip­

ulation facility. Gross changes, as well as more detailed perturbations, can be monitored using 

correlation functions. Because molecular dynamics runs often require considerable amounts of 

computer time, a restart facility is available that allows to suspend the simulation and resume 

the calculation. 

5.2.1 CHARMM minimization energy process 

The goal of energy minimization is to find a set of coordinates representing a molecular 

conformation such that the potential energy of the system is at a minimum. As a consequence 

of many degrees of freedom for even the simplest of macromolecules, this task can be compu­

tationally quite difficult. CHARMM (9) has five different minimization methods. These four 

methods are provided a flexible array of iterative methods to facilitate energy minimization. 

Although the resulting conformation may only represent a local minimum, even macromole­

cules can be energy minimized efficiently using a number of these techniques. All of the 

minimization methods take a molecular structure to a local minimum in the potential energy 

surface. There is no guarantee that this will be a global minimum. Small molecular systems 

can be minimized to a global minimum, but multiple runs from different starting points should 
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Figure 5.8 Initial BPTI structure downloaded from PDB data bank. Pic­
ture uses display style cartoon, coloring is based on RESID and 
use VMD software. 

be done to confirm that a global minimum has indeed been found. With macromolecules, a 

very low probability exists that a local minimum will be the global minimum. In fact, a global 

minimum may never be found because of the complexity of the potential energy surface. Min­

imization is an important tool in analyzing proteins that are generated through site-directed 

mutagenesis. After substituting, inserting, or deleting residues in a sequence, minimization, 

along with side-chain conformation scanning, can be used to determine whether the resulting 

mutuant structure is very much perturbed with respect to the wild type. If the perturbation 

is minimal, it is possible to model the structure of the mutant protein without resorting to 

X-ray diffraction studies. 
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Figure 5.9 BPTI with four water molecules. Picture uses display style 
CPK. VMD software is used to create picture. Color is based 
on RESID. 

5.2.2 Minimization methods 

Each of the minimization methods available in CHARMM, together with implementation 

considerations are listed below: 

1. Steepest Descents: 

This is a very simple method. Uses only first derivative information and saves only 

the current location of the coordinates from iteration to iteration. In general, steepest 

descents converges very slowly to a local minimum in a complex potential energy surface. 

This method is very useful for small changes, such as the removal of unfavorable steric 

contacts. 

2. Conjugate Gradient: 
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Exhibits better convergence than the steepest descents method. It is iterative and makes 

use of the previous history of minimization steps and the current gradient to determine 

the next step. 

3. Powell: 

A variation of the conjugate gradient method with improved efficiency. This is use­

ful whenever the Adopted Basis-set Newton-Raphson method (described below) is not 

possible. 

4. Newton-Raphson: 

Implementation in CHARMM involves diagonalization of the second derivative matrix, 

then finding the optimal step size along each eigenvector. When one or more negative 

eigenvalues exist, a blind application of the equations will find a saddle point in the po­

tential. To overcome this problem, a single additional energy and gradient determination 

is performed along the eigenvector displacement for each small or negative eigenvalue. 

From this additional data, the energy function is approximated by a cubic potential and 

the step size that minimizes this function is adopted. The advantages of this algorithm 

are that it avoids saddle points in the potential energy surface and converges rapidly 

when the potential is nearly quadratic. The major disadvantage is that large computa­

tional requirements makes this technique time consuming and memory demanding for 

large molecules. 

5. Adopted Basis-Set Newton-Raphson: 

Similar to conjugate gradients, but fewer energy evaluations are usually necessary because 

the linear interpolation phase of conjugate gradients is avoided. This method performs 

energy minimization using a Newton-Raphson algorithm applied to a subspace of the 

coordinate vector spanned by the displacement coordinates of the last positions. The 

second derivative matrix is constructed numerically from the change in the gradient 

vectors, and is inverted by an eigenvector analysis that allows the routine to recognize 

and avoid saddle points in the energy surface. At each step, the residual gradient vector 
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is calculated and used to add a steepest descent step, incorporating new direction into 

the basis set. This method is the method of choice for most applications. Because it 

avoids the large storage requirements. 

6. Truncated-Newton (TN) Minimization Package: 

This method was developed by T. Schlick and A. Fogelson. TNPACK is based on the 

preconditioned linear conjugate-gradient technique for solving the Newton equations. 

The structure of the problem (sparsity of the Hessian) is exploited for preconditioning. 

TNPACK can converge more rapidly than ABNR for small and medium systems (up to 

400 atoms) as well as large molecules that have reasonably good starting conformations. 

5.2.3 CHARMM force field 

The CHARMM potential energy function is defined as follows; 

ip = y ^ ki,(b — bo)2 + k$(9 — <?o)2 + ^ ] &</>(! + cos{n<j) — <5)) + 
bonds angles Dihedrals 

ku{u> — uiq)2 + ku{u — Uq)2 + 
improper s Urey—Bradley 

There are several versions of the CHARMM force field. We used CHARMM22 (released in 

1991). The first term in the energy function accounts for the bond stretches where is the 

bond force constant and (b — bo) is the distance from equilibrium that the atoms have moved. 

The second term in the equation accounts for the bond angles where k$ is the angle force 

constant and (0 — 6q) is the angle from equilibrium between three bonded atoms. The third 

term is for the dihedrals where k^ is the dihedral force constant and n is the multiplicity of 

the function, is the dihedral angle and is the phase shift. The fourth term accounts for the 

improper angles, that are out of plane bending, where k^ is the force constant and (cv — CVQ) 

is the out of plane angle. The Urey-Bradley component comprises the fifth term, where ku 

is the respective force constant and u is the distance between the first and third atoms in 

the harmonic potential. Non-bonded interactions between (i,j) pairs of atoms are represented 
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by the last two terms. By definition, the non-bonded forces are only applied to atom pairs 

separated by at least three bonds. The van Der Waals energy is calculated with a standard 

12-6 Lennard-Jones potential and the electrostatic energy with a Coulomb potential. In the 

Lennard-Jones potential above, the Rmin term is not the minimum of the potential, but rather 

where the Lennard-Jones potential crosses the x-axis. 

5.2.4 Convergence criteria 

As minimization is proceeding, CHARMM computes the values of several terms that can 

be monitored for energy convergence. These are: 

• Root mean square (RMS) gradient 

• Step size 

• Energy change 

If any of these terms is smaller than the default or the user-defined tolerance, minimization 

will stop. Although a zero RMS gradient is a necessary condition for a minimum, it is not a 

satisfying condition. 

All energy minimizations are involved calculating the potential energy of the system. One 

must have a .PSF, coordinates, and a parameter file available prior to minimization. Hydro­

gen bonded and non-bonded lists must also be created prior to any energy evaluation and 

subsequent minimization. 

5.3 Penalty method implementation 

The CHARMM (9) program is modified to implement Penalty function method. The three 

different molecular dynamic simulations have been performed. One with Verlet (VL) scheme, 

other two with Shake (SH) scheme and Penalty (PL) scheme and they all use bond length as 

a constraints. There are no external solvent molecules are included. The bovine pancreatic 

trypsin inhibitor (BPTI) (figure (1.3)) is selected to investigate efficiency of those methods. 

This molecule was chosen for study because in literature there have been number of previous 
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Title: The Geometry of the Reactive Site and of the Peptide Groups in Trypsin, Trypsinogen and its 
Complexes with Inhibitors 
Compound: Trypsin Inhibitor 
Authors: R. Huber, D. Kukla, A. Ruehlmann, O. Epp, H. Formanek, J. Deisenhofer, W. Steigemann 
Exp. Method: X-ray Diffraction 
Classification: Proteinase Inhibitor (Trypsin) 
Source: Bos taurus 
Common name:domestic cattle, domestic cow, cattle 
Deposition Date: 27-Sep-1982 
Release Date: 18-Jan-1983 
Resolution [A]: 1.50 
R-Value: 0.162 
Residues: 58 
Atoms: 514 (454 + water molecules) 
Sequence: 
ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO CYS LYS ALA ARG ILE ILE ARG 
TYR PHE TYR ASN ALA LYS ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS ARG 
ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET ARG THR CYS GLY GLY ALA 

RPDFCLEPPY7GPCKAR IYRYFYNAKAGL'CQ'TFVYGGCRAKRNNFKSAEDCMRTCGGA 

* ' h  ^  ^  

Figure 5.10 The figure is showed sequence of BPTI (9). 

simulations of its dynamic properties [(32), (23), (26), (31)]. To compare the three molecular 

dynamic simulations and determine whether or not they sample approximately the same part 

of phase space, a verity of statistical properties are analyzed. They included the averages, 

fluctuations and correlation functions for various physical quantities. Following units are used 

in this thesis: 

Time: Pico seconds (ps) [ 1 second = 10~12ps ] 

Temperature: Kelvin (K) 

Mass: Atomic mass units (u) 

Length: Angstrom (A) 

Energy: Kilocalorie per molecules (kcal mol-1) 
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Figure 5.11 This picture shows BPTI with all hydrogen atoms. There are 
904 atoms in total. Picture uses display style CPK and color­
ing is based on RESID. 

We used (equation 5.12) in the implementation of the penalty function method in CHARMM. 

The penalized energy function becomes the following: 

t p  =  H  y ]  k f , ( b  —  &o)2 + ^ ] k$(6 — Qq)2 + ^ ' k(j)( 1 + cos{n<j) — 5)) + 
bonds angles Dihedrals 

y] koj(uj — uiq)2 + ^2 ku(u — Uof + 
impropers Urey—Bradley 

(Er-E/H -
where the original bond-length energy (the first term) is replaced by a penalty function for 

the bond length constraints. Note that the penalty term for each bond-length is multiplied by 

a constant The term can then be scaled by using an appropriate value for kij. In our 

implementation, we simply used the corresponding force constant for each fcy. Coincidental!^ 
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the penalized energy function then becomes exactly the original energy function when /i = 1 

and is a continuation from the original energy function for any fi > 1. In our implementation, 

the penalty parameter was changed gradually from value (0.7) less than 1 to a value (1.7) 

beyond 1 during the simulation. 

Protein BPTI (figure (1.3)) is contained 58 amino acid residues. It consists of 454 atoms. 

In addition, four internally hydrogen bonded water molecule are included in the simulations, 

making total number of atoms equal to 458 (without hydrogen) (7). When bond-length con­

straints are applied, the bond stretching potential term is omitted and all bond lengths except 

hydrogen bonds of the protein are kept fixed. The VL, SH and PL runs, an integrating time 

step At = 10~3ps have been chosen. Moreover, the At = 2 x 10~3ps and other larger time 

steps are used in VL run (23). In SH and PL run the relative accuracy tolerance to which the 

constraints are to satisfied geometrically must be specified. However, dynamical accuracy of 

SH and PL depend not only tolerance but also At. SH runs, the tolerance has been chosen as 

small as 10-5. 

The initial BPTI protein system obtained from X-ray structure. The data is downloaded 

from Protein Data Bank (7), PDB - http://www.rcsb.org/pdb/, figure (5.10)) which contained 

454 atoms and 60 water molecules (figure (5.8)). Out of 60 water molecules, carefully selected 

internal four molecules added to protein. This has been done with program called gOpenMol 

(http://www.csc.fi/gopenmol/). Then, hydrogen bonds are added to the system and build a 

three dimension structure using CHARMM. 

The potential energy of the the system minimized by applying steepest descent method. 

Before minimize BPTI has 44906.75 kcal mol_1 of potential energy. The energy is minimized 

until decrease less than 10-3 kcalmol-1. This occurred after 2999 steps and spent elapsed 

time 11.97 minutes and cpu time 3.28 minutes on Alpha SOOMhz 64 bit processor. 

Table 5.1 Final steps of energy minimization 

Cycle Energy Step-size 
2998 -1137.46888 0.00034 
2999 -1137.46900 0.00041 

http://www.rcsb.org/pdb/
http://www.csc.fi/gopenmol/
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Figure 5.12 This picture shows minimized BPTI stricture with all hydro­
gen atoms. Display style is CPK and coloring is based on 
RESID. VMD is used. 

In 2999 step, the time step is less than 1 x 10~3 and total energy is —1137.49 kcal mol-1 

(table (5.1)). This part is carried out to eliminate the strain present in X-ray structure. 

Heating was accomplished by initially assigning random velocities to atoms according to a 

Gaussian distribution appropriate for that low temperature and then running dynamics sim­

ulation with VL. The temperature was then increased gradually by assigning greater random 

velocities to atoms at every 0.05ps from absolute zero (3.42K) to 300K. The entire heating 

process used 5000 simulation steps with O.OOlps time step, which is corresponded to total 

5ps simulation time (figure 5.14). When simulation started, the temperature rose rapidly. The 

conversion of kinetic energy to potential energy was fast. However, the increase in temperature 

decreased when the system aged. 
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Figure 5.13 Average of 25ps structure of equilibrium period of BPTI struc­
ture including all hydrogen atoms. CPK display style and color 
is based on RESID. The picture is created by using VMD soft­
ware. 

To achieve the equilibrium state for SH and PL, we first performed 15ps and 20ps simu­

lations with VL and then started SH and PL with initial positions and velocities taken from 

the final step of VL respectively (figure 5.14). We then ran SH and PL for 25ps for analysis 

(figure 5.14). The computing time for each simulation is presented in Table 1. VL, SH and PL 

are required 2.44, 3.00 and 2.44 minutes of computing time per picosecond simulation on an 

Alpha workstation. We recorded the coordinates of the trajectories every O.Olps. The results 

in the final 25ps of the simulations were used to calculate dynamical and statistical properties 

of the system. 

The bond length constraints are read from .PARM file in CHARMM. In .PARM file, the 

standard optimal distances are defined for each types of molecular bonds. 
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Figure 5.14 Simulation time for VL, SH and PL. * Heating - bring the sys­

tem to normal temperature; § Equilibrium - the time for the 
system to reach the equilibrium; ^Production - stable dynamic 
results for analysis. 

Average root mean square deviation of 25ps three simulations (VL, SH and PL) of Backbone 

atoms is shown in table (5.3. Two constraints methods SH and PL are showed lowest RMSD 

while PL and VL has lowest RMSD compare to SH and VL. 

Table 5.2 Computing time of VL, SH and PL run. * Computing time for 
the 25ps simulation after equilibrium. 

Scheme * Computing time 
VL 1.14 hours 
SH 1.25 hours 
PL 1.14 hours 

All the averages and correlation functions are presented in the next chapter are from final 

25ps of simulations period. The coordinates of trajectory are saved every O.Olps and carefully 

studied. 

Table 5.3 Root mean square deviation (RMSD) of backbone atoms 

X-ray VL SH PL 
X-ray 0 1.786 1.726 1.673 
VL 0 1.156 0.962 
SH 0 0.611 
PL 0 
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5.4 Review 

In this chapter, implementation of penalty function method is discussed. In addition, the 

standard molecular dynamic simulation procedures are presented. A test case of Argon is 

presented. Part of CHARMM program is highlighted and Argon and BPTI simulation results 

are discussed. 
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CHAPTER 6. Results, summary and discussion 

6.0.1 Analysis 

500 
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5- 400 

s 
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Figure 6.1 Temperature distribution of Shake and Penalty run. 

Figure (6.1) shows the temperature distribution in the 25ps simulation by SH and PL. 

The variation of the temperature showed that there was a difference between SH and PL at 

the beginning of the simulation. The temperature for PL started at 300K, the same as VL, 

but gradually increased and eventually approached to that for SH. This indicated that the 

simulation by PL started with a condition similar to that by VL but then changed to SH later 

when the penalty parameter is fully adjusted to an appropriate value. Moreover, figure (6.2) 

shows temperature distribution of VL run for 25ps. Fluctuation of temperature is in range of 

25K. 

The average backbone root mean square (RMS) fluctuations are plotted as a function of 

residue number in figure (6.3). The graphs show a great correlation between the fluctuations 

by SH and PL. On the other hand, VL simulation produced large fluctuations for 10 TYR, 13 

of dynamics 

SH 

PL 
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Figure 6.2 Temperature distribution of Verlet run. 

PRO, 15 LYS, 27 ALA, 45 PHE and 47 SER residues, which were disagreed with those by SH 

and PL. 

i i 1 i i i 1 i i i 1 i • i • i • i • i • i • i • i • i • i • i 
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 

Residue number 

Figure 6.3 The average backbone RMS fluctuations of the residues in the 
25ps production simulations. 

The root mean square fluctuations of Ca atoms in the simulations are plotted in figure 

(6.4). Similar to the average backbone root mean square fluctuations, the Ca fluctuations by 

PL and SH again had strong correlations. 

The average root mean square fluctuations of HN and the non-backbone atoms by SH and 
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PL correlated as well shown in figure (6.5) and (6.6) except for some discrepancies around 

residues 54 to 58. 
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Figure 6.4 The average Ca RMS fluctuations in the 25ps production sim­
ulations. 
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Figure 6.5 The average RMS fluctuations of the HN atoms in the 25ps 
production simulations. 

Figure (6.7) shows the normalized velocity autocorrelations calculated for 51 CYS using the 

trajectories produced by VL, SH, and PL. For demonstration purposes, the correlations over a 

lOps time period are shown. The first curve is for VL run with an autocorrelation time equal 

to O.Olps. The auto correlation time for the second curve is 0.02ps and is half the resolution of 

the first one. The third and fourth curves are for SH and PL runs, respectively, both with the 
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autocorrelation time equal to O.Olps. The curves for SH and PL showed similar correlations 

with that for VL in 0.02ps resolution, suggesting that both SH and PL are roughly faster than 

VL by two folds. 
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a) 0.5 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 

Residue number 

Figure 6.6 The average RMS fluctuations of the non-backbone atoms in 
the 25ps production simulations. 

6.1 Review 

We compare VL SH and PL to determine the effects of freezing the bond length degrees of 

freedom. Results are discussed which include RMSD plots and statistics. Results are indicating 

strong correlation between SH and PL. 
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Figure 6.7 The velocity auto correlations of the Ca atom of 51 CY S based 
on the trajectories produced by VL, SH, and PL in a time period 
of 0.1 ps. 
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CHAPTER 7. Evaluation/conclusion 

We have proposed a so-called penalty function method for constrained molecular dynamics. 

In this method, a special function is defined so that the function is minimized if the constraints 

are satisfied. By adding such a function in the potential energy function, the constraints can 

then be removed from the system, and the simulation can be carried out in a conventional, 

unconstrained manner. The advantage of using a penalty function method is that it is easy 

to implement, and does not require solving a nonlinear system of equations in every time 

step. The disadvantage of the method is that the penalty parameter, i.e., the parameter 

used to scale the penalty function, is hard to control and in principle, needs to be large 

enough for the penalty function to be truly effective, and might cause numerical instabilities 

when used in simulation. It may also arguably be a disadvantage that the penalty function 

method only force the constraints to be satisfied approximately but not completely. In any 

case, the method may possibly be used as an alternatively and computationally more efficient 

approach for constrained molecular dynamics simulation than the Lagrange multiplier types 

of methods. We first implemented a penalty function method in CHARMM and tested it on 

protein Bovine Pancreatic Trypsin Inhibitor (BPTI) by following a similar experiment done 

by Gunsteren and Karplus for the Shake algorithm. In this implementation, we removed the 

bond length potentials from the potential energy function and introduced the corresponding 

bond length constraints. For each of the bond length constraints, we constructed a quadratic 

penalty function and inserted it into the potential energy function. For each different type 

of bond, we scaled the corresponding penalty function with the force constant of the bond so 

that the resulting function had the same form as the original bond length potential if without 

multiplied by the penalty parameter. In this way, the resulting force field becomes simply a 
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continuation of the original force field as the penalty parameter changes continuously from 

1 to a value > 1. We conducted a simulation on BPTI with the penalty function method, 

and compared the results with Verlet and Shake, and found that the penalty function method 

had a high correlation with the Shake and outperformed the Verlet. In particular, the root-

mean-square-deviations (RMSD) of the backbone and non-backbone atoms and the velocity 

auto correlations of the Ca atoms of the protein calculated by the penalty function method 

agreed well with those by Shake. The penalty function method requires no more than just 

applying a conventional, unconstrained simulation algorithm such as the Verlet algorithm to 

the potential energy function expanded with additional penalty terms for the bond length 

constraints as stated before. We have also tested the penalty function method on a group 

of argon clusters with the equilibrium distances for a selected set of molecular pairs as the 

constraints. Here by the equilibrium distances we mean the distances for the pairs of argon 

molecules when the clusters are in their global energy minimal states. We generated these 

distances by using the global energy minimal configuration of the clusters published in previous 

studies. A penalty function was constructed for each of the constraints and incorporated 

into the potential energy function of the cluster. The simulation was then conducted by 

using a conventional, unconstrained simulation method, i.e., the Verlet algorithm, with the 

extended potential energy function. Here, there were no substantial algorithmic changes or 

computational overheads required due to the addition of the constraints. The simulation results 

showed that the penalty function method was able to impose the constraints effectively and 

the clusters tended to converge to their lowest energy equilibrium states more rapidly than not 

confined by the constraints. Even if starting structure is out of feasible region, the PL method 

can be used as a guide to the feasible region and ultimately obtain an optimal solution. 
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APPENDIX A. Fortran Program for Penalty function method for Argon 

clusters 

A.0.1 Main program 

implicit none 

include "mpif.h" 

integer, parameter :: nop=13 ! Number of Particles 

real*8, parameter :: velweight=0.5 ! Velocity perturbation 

real*8, parameter :: dtt=0.032 ! Time step 

real*8, parameter :: time—320.00 ! Total time period 

real*8, parameter :: sigma—1 ! STD - to calculate initial velocity 

real*8, parameter :: pi—22/7 

real*8, parameter :: toi—0.005 ! Tolarence 

! Note: if time/dtt divide perfectly is the best choice 

real*8, dimension(:),allocatable :: xyz 

real*8, dimension(:),allocatable :: xyzout 

real*8, dimension(:),allocatable :: velcom 

real*8, dimension(:,:),allocatable :: Dis 

real*8, dimension(:,:),allocatable :: RDist 

real*8, dimension(:,:),allocatable :: Txyz 

real*8, dimension (:,:), allocat able :: Txyzout 

real*8 :: ttime, T, Potl, Pot2, lbd, sum 

integer :: itno, optat, optatl, optat2 

integer :: n, i, j, k, il, i2, i3, ter 
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integer :: m ! number of time steps 

integer :: p ! Number of processors 

integer :: ierror 

integer :: rank ! The rank of the processors 

integer :: status(mpLstatus_size) 

logical :: minpot 

character*^ :: fileno 

call MPLINIT (ierror) 

call MPLCOMMLSIZE (mpi_comm_world, p, ierror) 

call MPI_COMM_RANK(mpi_comm_world, rank, ierror) 

lbd=0 ! Initial penalty parameter value 

n=nop 

m=int(time/dtt)+1 

print*, "Iteration ", m 

Potl=100000000.0 

allocate (xyz (n* 3) ) 

allocate(Txyz(n*3,m)) 

allocate (xyzout (n*3) ) 

allocate(Txyzout(n*3,m)) 

allocate(velcom(n*3)) 

allocate(Dis(n,n)) 

allocate(RDist(n,n)) 

itno=0 

Txyz=0.0 

minpot=.t. 

ter=0 

CALL read_files(nop, Dis, xyz) 
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CALL distance (nop, RDist, xyz ) 

Txyz(:,l)=xyz(:) 

CALL Init_velocity(dtt, n, sigma, pi, xyz, velcom, T, velweight) 

Txyz(:,2)=xyz(:) 

do while (minpot) 

Txyzout—0.0 

ttime=mpi_wtime() 

open (unit=l,file="Potential.txt",status="new",action="write",iostat=optatl) 

open (unit=3,file="Distance.txt" ,status=" new" ,action="write" ,iostat=optat2) 

do k=l,m 

if (k.gt.2) then 

do i=l,n 

il—3*(i-l)+l 

i2=il+l 

i3—il+2 

Txyz(il,k)=2*Txyz(il,k-l)-Txyz(il,k-2)+dtt**2*Txyzout(il,k-l) 

Txyz(i2,k)=2*Txyz(i2,k-l)-Txyz(i2,k-2)+dtt**2*Txyzout(i2,k-l) 

Txyz(i3,k)=2*Txyz(i3,k-l)-Txyz(i3,k-2)+dtt**2*Txyzout(i3,k-l) 

enddo 

endif 

xyz(:)^Txyz(:,k) 

call distance(n, RDist, xyz ) 

call Verlet(n, xyz, xyzout, dtt, k, sum, Pot2, Dis, lbd) 

Txyzout ( : ,k) —xyzout ( : ) 

if (Pot2.1t.Potl) then 

Potl=Pot2 

itno=k 
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endif 

if (mod(k,100)==0) then 

lbd=lbd+0.5 ! increase the Penalty term here 

endif 

enddo 

ttime=mpLwtime()-ttime 

ter=ter+l 

if (sum.It.toi) then 

minpot=.f. 

endif 

close(3) 

close(l) 

enddo 

print*, ' program end normally 

deallocate(Txyz) 

deallocate(xyz) 

deallocate(xyzout) 

deallocate (velcom) 

deallocate(Txyzout) 

deallocate (Dis) 

deallocate(RDist) 

call MPLFINALIZE(ierror) 

end 

A.0.2 Sub program Verlet 

subroutine Verlet(n, xyz, xyzout, dtt, k, sum, Pot, Dis, Ibd) 

implicit none 
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real*8, dimension (3*n) :: xyz 

real*8, dimension (3*n) :: xyzout 

real*8, dimension (n,n) :: Dis 

integer :: i, k. j, n, ic, je, il, i2, i3, jl, j2, j3, ii, jj 

integer :: k, ix, iy, iz, count, casecount 

real*8 :: Ibd, rl, r2, r3, r, rr, lbda 

real*8 :: rv, dtt, Pot, sum, tot, xxyz 

real*8 :: xyzsum, xsum, ysum, zsum, rll, r22, r33 

xyzout—0.0 

Pot=0.0 

sum=0.0 

count=1 

casecount=l 

do i=l,n-l 

do j=i+l,n 

lbda=lbd 

il=3*(i-l)+l 

i2=il+l 

i3=il+2 

jW3*(j-l)+l 

j2=jl+l 

j3=jl+2 

rl=xyz(il)-xyz(jl) 

r2^xyz(i2)-xyz(j2) 

r3=xyz(i3)-xyz(j3) 

r=(rl**2+r2**2+r3**2) 

xsum=(r-Dis(i,j))*rl 
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ysum= (r-Dis (i, j ) ) *r2 

zsum=(r-Dis(i,j))*r3 

if (Dis(ij).eq.O.O) then 

lbda=0.0 

endif 

xyzout(il)=xyzout(il)+(l/(r**7)-l/(r**4))*rl-lbda*xsum 

xyzout(i2)=xyzout(i2)+(l/(r**7)-l/(r**4))*r2-lbda*ysum 

xyzout(i3)=xyzout(i3)+(l/(r**7)-l/(r**4))*r3-lbda*zsum 

xyzout(jl)=xyzout(jl)-(l/(r**7)-l/(r**4))*rl+lbda*xsum 

xyzout(j2)=xyzout(j2)-(l/(r**7)-l/(r**4))*r2+lbda*ysum 

xyzout(j3)=xyzout(j3)-(l/(r**7)-l/(r**4))*r3+lbda*zsum 

Pot=Pot+(l/(r**6)-2/(r**3))+(l/4)*lbda*(r-Dis(ij))**2 

enddo 

enddo 

return 

end 

A.0.3 Sub program Init_velocity 

subroutine Init_velocity(dtt, n, sigma, pi, xyz, velcom, T, velweight) 

implicit none 

real*8, dimension (3*n) :: xyz 

real*8, dimension (n) :: vel 

real*8, dimension (3*n) :: velcom 

real*8, dimension (2*n) :: angle 

real*8 :: velweight 

real*8 :: sigma 

real*8 :: pi 

real*8 :: T 



92 

real*8 :: dtt 

real*8 :: dist 

integer :: i 

integer :: n 

integer :: count 

integer :: ccount 

T=0.0 

count=1 

do i=l,3*n,3 

dist-xyz(i)**2+xyz(i+l)**2+xyz(i+2)**2 

vel(count)=(l/sqrt(2*pi*sigma**2)*exp(-dist/(2*sigma**2)))*velweight 

count=count+l 

enddo 

call random_number (angle) 

do i=l,2*n,2 

angle(i)=(angle(i)-0.5)*pi 

angle(i+l)—(angle(i+l)-0.5)*pi 

enddo 

count=1 

ccount=1 

do i=l,3*n,3 

velcom(i)=vel(count)*sin(angle(ccount))*cos(angle(ccount+l)) 

velcom(i+l)=vel(count)*sin(angle(ccount))*sin(angle(ccount+l)) 

velcom(i+2)=vel(count)*cos(angle(ccount)) 

xyz(i)=xyz(i)+dtt*velcom(i) 

xyz(i+l)=xyz(i+l)+dtt*velcom(i+l) 

xyz(i+2)=xyz(i+2)+dtt*velcom(i+2) 

count—count+1 
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ccount=ccount+2 

T=T+(velcom(i)**2+velcom(i+l)**2+velcom(i+2) 

enddo 

T=16*T/n 

return 

end 

A.0.4 Sub program read_files 

subroutine read_files(nop, Dis, xyz ) 

implicit none 

real*8, dimension (nop*3) :: xyz 

real*8, dimension (nop,nop) :: Dis 

real*8, dimension (nop*3) :: pert 

integer :: j, i, k, n 

integer :: nop, optat, count 

integer :: il, i2, i3, jl, j2, j3 

integer :: ix, iy, iz 

integer :: filecountl, filecount2, filecount3 

real*8 :: aa, bb, cc 

real*8 :: r, rl, r2, r3 

real*8 :: xsum, ysum, zsum 

character*3 :: fileno 

filecount3=0 

filecount2—0 

filecountl=l 

xyz=0 

n=nop 

Dis=0.0 
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do k=l,n 

if (mod(k,10)==0) then 

filecount 2=filecount 2+1 

filecountl—0 

endif 

if (mod(k,100)==0) then 

filecount3=filecount3+l 

filecount2=0 

filecountl—0 

endif 

filecount 1=filecount 1+1 

enddo 

filecount 1 ̂ filecountl-1 

fileno=char(48+filecount3) //char(48+filecount2)//char(48+filecountl) 

open (unit=l, file=" /usr/people/ajith/LJ/LJ" //fileno//" .txt" ) 

j=l 

do i=l,n 

read (1,*) (xyz(k),k=j,j+2) 

j=j+3 

enddo 

close(l) 

! Move center to origin xsum=0.0 

ysum=0.0 

zsum—0.0 

do i=l,n-l 

do j—i+l,n 

il=3*(i-l)+l 

i2=il+l 
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i3=il+2 

jl—3*(j-l)+l 

j2=jl+l 

j3=jl+2 

rl=xyz(il)-xyz(jl) 

r2=xyz(i2)-xyz(j2) 

r3=xyz(i3)-xyz(j3) 

r=(rl**2+r2**2+r3**2) 

if (i+1—=j) then 

Dis(i,j) —r 

Dis(j,i)=r 

endif 

enddo 

ix=3*(i-l)+l 

iy—ix+1 

iz—ix+2 

xsum=xsum+xyz(ix) 

ysum=ysum+xyz (iy ) 

zsum=zsum+xyz(iz) 

enddo 

ix=3*(n-l)+l 

iy=ix+l 

iz=ix+2 

xsum=xsum+xyz(ix) 

ysum=ysum+xyz (iy) 

zsum—zsum+xyz(iz) 

xsum—xsum/n 

ysum=ysum/n 
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zsum=zsum/n 

do i=l,n 

ix=3*(i-l)+l 

iy=ix+l 

iz—ix+2 

xyz(ix) —xyz(ix) -xsum 

xyz(iy)=xyz(iy)-ysum 

xyz(iz)=xyz(iz)-zsum 

enddo 

! Perturbation 

ix=l 

call random_number(pert) 

do i—l,3*n 

if (xyz(i).lt.O) then 

xyz(i)=xyz(i)-pert(ix)*0.3 

elseif (xyz(i).gt.O) then 

xyz(i)=xyz(i)+pert(ix)*0.3 

endif 

if (mod(i,3)==0) then 

ix=ix+l 

endif 

enddo 

call random_number(pert) 

xyz=xyz+(pert-0.5)*.2 

return 

end 
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A.0.5 Sub program distance 

subroutine distance(nop, Dist, xyz ) 

implicit none 

real*8, dimension (nop*3) :: xyz 

real*8, dimension (nop,nop) :: Dist 

integer :: j, i 

integer :: nop 

integer :: il, 12, i3, jl, j2, j3 

real*8 :: r, rl, r2, r3 

do i=l,nop-l 

do j=i+l,nop 

il=3*(i-l)+l 

i2=il+l 

i3=il+2 

j 1—3*(j-l)+l 

j2=jl+l 

j3=jl+2 

rl=xyz(il)-xyz(jl) 

r2=xyz(i2)-xyz(j2) 

r3=xyz(i3)-xyz(j3) 

r-(rl**2+r2**2+r3**2)**(0.5) 

Dist(i,j)=r 

Dist (j ,i)—r 

enddo 

enddo 

return 

end 
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APPENDIX B. High performance Fortran program for Penalty function 

method for Argon clusters 

implicit none 

include "mpif.h" 

integer, parameter :: nopinx=3 ! Number of Particales in axis (Odd Number) 

integer, parameter :: nb=16 ! Number of steps to be done (Book keeping) 

real*8, parameter :: perturb^O.45 ! Initial position pertubation 

real*8, parameter :: rm=3.3 ! root mean Error need to maintained 

real*8, parameter :: velweight= 10.0 ! root mean Error need to maintained 

real*8, parameter :: dtxyz=1.7 ! lenght of small cube 

real*8, parameter :: dtt=0.032 Time step 

real*8, parameter :: time=32 ! Total time period 

real*8, parameter :: sigma=l ! STD - to calculate initial velocity 

real*8, parameter :: pi-22/7 

! Note if time/dtt divide perfectly is the best choise 

real*8, dimension ( :),allocatable :: bookkeep 

real*8, dimension( :),allocatable :: xyz 

real*8, dimension ( :),allocatable :: xyzout 

real*8, dimension ( :),allocatable :: velcom 

real*8, dimension( :),allocatable :: Potcollect 

real*8, dimension ( :),allocatable :: pert 

real*8, dimension( :),allocatable :: vel 

real*8, dimension( :,:),allocatable :: Txyz 
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real*8, dimension(:,:),allocatable :: Txyzout 

integer, dimension(:),allocatable :: index 

real*8 :: Ta, Tb, velb, vela, ttime, T, Potl, Pot2, weight, wweight 

integer :: decision, itno, isum, opt at, n, i, il, i2, i3, j, k,ter 

integer :: m ! number of time steps 

integer :: p ! Number of processors 

integer :: ierror 

integer :: rank ! The rank of the processors 

integer :: status(mpi_status_size) 

logical :: minpot 

character*4 :: fileno 

call MPI/-INIT(ierror) 

call MPI/_COMM/_SIZE(mpi_comm_world, p, ierror) 

call MPLCOMM_RANK(mpLcomm_world, rank, ierror) 

n=(nopinx* * 2) *nopinx+(nopinx-1 ) * (nopinx-1 ) *3*nopinx 

m=int (time/dtt )+1 

Potl=100000000.0 

isum=0.0 

do i=l,n-l 

do j=i+l,n 

isum=isum+i 

enddo 

enddo 

allocate(bookkeep(isum)) 

allocate(pert(n*3)) 

allocate(xyz(n*3)) 

allocate(vel(n*3)) 

allocate(Txyz(n*3,m)) 
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allocate (xyzout (n*3) ) 

allocate(Txyzout(n*3,m)) 

allocate(velcom(n*3)) 

if (rank==0) then 

allocate (Potcollect (p) ) 

allocate (index(p) ) 

endif 

decision=99999 

itno=0 

Txyz=0.0 

wweight=perturb/p 

do k=l,p 

if (rank==k-l) then 

weight=( k-1 ) * wweight 

endif 

enddo 

call Position_Init(n, nopinx, dtxyz, xyz, weight) 

Txyz(:,l)=xyz(:) 

call Init_velocity(dtt, n, sigma, pi, xyz, velcom, T, velweight) 

Txyz(:,2)=xyz(:) 

minpot=.t. 

ter=0 

do while (minpot) 

bookkeep=l 

Txyzout=0.0 

ttime=mpi_wtime() 

do k=l,m 

if (k.gt.2) then 
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do i=l,n 

il=3*(i-l)+l 

i2=il+l 

i3—il+2 

Txyz(il,k)^2*Txyz(il,k-l)-Txyz(il,k-2)+dtt**2*Txyzout(il,k-l) 

Txyz(i2,k)=2*Txyz(i2,k-l)-Txyz(i2,k-2)+dtt**2*Txyzout(i2,k-l) 

Txyz(i3,k)=2*Txyz(i3,k-l)-Txyz(i3,k-2)+dtt**2*Txyzout(i3,k-l) 

enddo 

endif 

xyz(:)=Txyz(:,k) 

call Verlet(n, xyz, xyzout, nb, rm, dtt, k, isum, bookkeep, Pot2) 

Txyzout (:,k) =xy zout ( : ) 

if (Pot2.1t.Potl) then 

Potl=Pot2 

itno=k 

endif 

enddo 

ttime=mpi_wtime()-ttime 

call mpi_gather(Potl,l,mpi_real8,Potcollect,l,mpi_real8,0,mpi_comm_world,ierror) 

if (rank==0) then 

do i=l,p 

index(i)=i-l 

enddo 

call bubble_sort( Potcollect,index, p) 

decision=index(l) 

endif 

call mpLbcast(decision,l,mpi_integer,0,mpi_comm_world,ierror) 

if (rank==decision) then 
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Txyz(:,l)=Txyz(:,itno-l) 

Txyz(:,2)=Txyz(:,itno) 

endif 

if (rank.ne.decision) then 

Txyz=0.0 

endif 

call mpi_bcast(Txyz(:,l),3*n,mpi_real8,decision,mpLcomm.world,ierror) 

call mpi_bcast(Txyz(:,2),3*n,mpi_real8,decision,mpi_comm_world,ierror) 

wweight=1.0/p 

do k=l,p 

if (rank==k-l) then 

weight=( k-1 ) * wweight 

endif 

enddo 

velb=0.0 

vela=0.0 

do i=l,3*n 

vel(i)=(Txyz(i,2)-Txyz(i,l))/dtt 

if (mod(i,3)==0) then 

velb=velb+(vel(i)**2+vel(i+l)**2+vel(i+2)**2) 

endif 

enddo 

Txyz(:,l)=Txyz(:,2) 

do i=l,3*n 

Txyz(i,2)=Txyz(i,l)+dtt*vel(i)*weight**2 

enddo 

do i=l,3*n 

vel(i)—(Txyz(i,2)-Txyz(i,l))/dtt 
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if (mod(i,3)==0) then 

vela=vela+(vel(i)**2+vel(i+l)**2+vel(i+2)**2) 

endif 

enddo 

Tb=(16.0/n)*velb 

Ta-(16.0/n)*vela 

ter=ter+l 

if (ter==10) then 

minpot=.f. 

endif 

enddo 

deallocate (vel) 

deallocate (xyz) 

deallocate(pert) 

deallocate(xyzout) 

deallocate (velcom) 

deallocate (bookkeep) 

if (rank==0) then 

deallocate (Potcollect ) 

deallocate (index) 

endif 

call MPLFINALIZE(ierror) 

end 

B.0.6 Sub program - Verlet 

subroutine Verlet(n, xyz, xyzout, nb, rm, dtt, k, isum, bookkeep, Pot) 

implicit none 

real*8, dimension (3*n) :: xyz 
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real*8, dimension (3*n) :: xyzout 

real*8, dimension (isum):: bookkeep 

integer :: k, i, ic, je, il, i2, i3, j, jl, j2, j3, n, isum, nb,count, icount 

real*8 :: rl, r2, r3, r, rv, rm, dtt, Pot 

xyzout=0.0 

count=1 

if (k.ge.nb) then 

if (mod(k,nb)==0) then 

icount=l 

do ic=l,n-l 

do jc=ic+l,n 

il=3*(ic-l)+l 

i2—il+1 

i3—il+2 

jl=3*(jc-l)+l 

j2=jl+l 

j3=jl+2 

rl=xyz(il)-xyz(jl) 

r2=xyz(i2)-xyz(j2) 

r3^xyz(i3)-xyz(j3) 

r=(rl**2+r2**2+r3**2)**0.5 

if (rm .gt. r) then 

bookkeep(icount)=l 

else 

bookkeep(icount)=0 

endif 

icount=icount+l 



105 

enddo 

enddo 

endif 

endif 

Pot=0.0 

do i=l,n-l 

do j=i+l,n 

il=3*(i-l)+l 

i2=il+l 

i3=il+2 

jl=3*(j-l)+l 

j2=jl+l 

j3=jl+2 

rl=xyz(il)-xyz(jl) 

r2=xyz(i2)-xyz(j2) 

r3=xyz(i3)-xyz(j3) 

r=(rl**2+r2**2+r3**2)**0.5 

if ((bookkeep(count)==l).and.(r.Ie.2.5)) then 

xyzout (il)=xyzout(il)+(l/(r**14)-0.5/(r**8))*rl 

xyzout(i2)=xyzout(i2)+(l/(r**14)-0.5/(r**8))*r2 

xyzout (i3)=xyzout (i3)+(l/(r**14)-0.5/(r**8))*r3 

xyzout (jl)=xyzout(jl)-(l/(r**14)-0.5/(r**8))*rl 

xyzout(j2)=xyzout(j2)-(l/(r**14)-0.5/(r**8))*r2 

xyzout (j3)=xyzout(j3)-(l/(r**14)-0.5/(r**8))*r3 

endif 

count=count+l 

Pot=Pot+(l/(r**12)-2/(r**6)) 

enddo 
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enddo 

return 

end 

B.0.7 Sub program - Position_Init 

subroutine Position_Init(n, nopinx, dtxyz, xyz, weight) 

implicit none 

real*8, dimension (3*n) :: seed 

real*8, dimension (3*n) :: xyz 

real*8, dimension (3*n) :: pert 

integer :: rank, p, n, i, ix, iy, iz, j, k, nopinx 

real*8 :: dtxyz, cx, cy, cz, x, y, z, weight 

z=0.0 

xyz=0.0 

ix=l 

iy—2 

iz=3 

if (mod(nopinx,2) .ne.O) then 

cx—(nopinx-l)/2*dtxyz 

cy—cx 

cz—cx 

else 

cx=(nopinx-2)/2*dtxyz 

cy—cx 

cz=cx 

endif 

do k=l,nopinx 
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y=0.0 

do j—1, nopinx 

x=0 

do i=l,nopinx 

xyz(ix)=x 

xyz(iy)-y 

xyz(iz)=z 

x=x+dtxyz 

ix=ix+3 

iy=iy+3 

iz=iz+3 

enddo 

y=y+dtxyz 

enddo 

z=z+dtxyz 

enddo 

z=0.0 

do k=l ,  nopinx 

y=dtxyz/2.0 

do j=1, nopinx-1 

x=dtxyz/2.0 

do i=l,nopinx-1 

xyz(ix)=x 

xyz(iy)=y 

xyz(iz)=z 

x=x+dtxyz 

ix=ix+3 

iy=iy+3 
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iz—iz+3 

enddo 

y=y+dtxyz 

enddo 

z=z+dtxyz 

enddo 

z=dtxyz/2.0 

do k=l,nopinx-1 

y=dtxyz/2.0 

do j=1, nopinx-1 

x=0.0 

do i=l,nopinx 

xyz(ix)—x 

xyz(iy)=y 

xyz(iz)=z 

x=x+dtxyz 

ix=ix+3 

iy=iy+3 

iz=iz+3 

enddo 

y=y+dtxyz 

enddo 

z=z+dtxyz 

enddo 

z=dtxyz/2.0 

do k—1, nopinx-1 

y=0.0 

do j=l,nopinx 
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x=dtxyz/2.0 

do i=1, nopinx-1 

xyz(ix)=x 

xyz(iy)=y 

xyz(iz)—z 

x=x+dtxyz 

ix=ix+3 

iy=iy+3 

iz=iz+3 

enddo 

y—y+dtxyz 

enddo 

z=z+dtxyz 

enddo 

! shifting to all quardrent 

do i=l,n 

ix=3*(i-l)+l 

iy=ix+l 

iz=ix+2 

xyz(ix)=xyz(ix)-cx 

xyz(iy)=xyz(iy)-cy 

xyz(iz)=xyz(iz)-cz 

enddo 

! Perturbation 

call random_number(pert) 

xyz=xyz+weight*(pert-0.5) 

return 

end 
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B.0.8 Sub program - Init.velocity 

subroutine Init_velocity(dtt, n, sigma, pi, xyz, velcom, T, velweight) 

implicit none 

real*8, dimension (3*n) :: xyz 

real*8, dimension (n) :: vel 

real*8, dimension (3*n) :: velcom 

real*8, dimension (2*n) :: angle 

real*8 :: velweight, sigma, pi, T, dtt, dist 

integer :: i, n, count, ccount 

T=0.0 

count=1 

do i=l,3*n,3 

dist=xyz(i)**2+xyz(i+l)**2+xyz(i+2)**2 

vel(count)=(l/sqrt(2*pi*sigma**2)*exp(-dist/(2*sigma**2)))*velweight 

count=count+l 

enddo 

call random_number (angle) 

do i=l,2*n,2 

angle(i)=(angle(i)-0.5)*pi 

angle(i+l)=(angle(i+l)-0.5)*pi 

enddo 

count=1 

ccount=l 

do i=l,3*n,3 velcom(i)=vel(count)*sin(angle(ccount))*cos(angle(ccount+l)) 

velcom(i+l)=vel(count)*sin(angle(ccount))*sin(angle(ccount+l)) 

velcom(i+2)=vel(count)*cos(angle(ccount)) 
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xyz(i) =xyz (i)+dtt *velcom(i) 

xyz(i+l)=xyz(i+l)+dtt*velcom(i+l) 

xyz(i+2)=xyz(i+2)+dtt*velcom(i+2) 

count=count+l 

ccount=ccount+2 

T=T+(velcom(i)**2+velcom(i+l)**2+velcom(i+2)**2) 

enddo 

T=16*T/n 

return 

end 

B.0.9 Sub program - bubble_sort 

subroutine bubble_sort(A,Index, n) 

implicit none 

real*8, dimension (n) :: A 

integer, dimension (n) :: Index 

real*8 :: tempi 

integer :: n, i, j, temp2 

do j=l,n 

do i=l,n-l 

if (A(i+l).lt.A(i)) then 

templ=A(i) 

temp2=index(i) 

A(i)=A(i+l) 

index(i)=index(i+l) 

A(i+l)=templ 

index(i+1 )=temp2 



112 

endif 

enddo 

enddo 

return 

end 
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