

02
d

ce
02

0

1 Corresponding Auth
Proceedings of DETC�
 ASME 2002 Design Engineering Technical Conferences and Computers an

Information in Engineering Conferen
 Montreal, Canada, September 29-October 2, 20

DETC2002/CIE-3439

IMPLEMENTING SPEECH RECOGNITION IN VIRTUAL REALITY

Denis V. Dorozhkin
Judy M. Vance1

Department of Mechanical Engineering
Virtual Reality Applications Center

Iowa State University
Ames, Iowa 50011

dorodv@vrac.iastate.edu
jmvance@vrac.iastate.edu

Proceedings of DETC�02
ASME 2002 Design Engineering Technical Conferences

and Computer and Information in Engineering Conference
Montreal, Canada, September 29-October 2, 2002

 DETC2002/CIE-34390

ABSTRACT

Virtual Reality (VR) is becoming an important tool in the
engineering product development process. The virtual
environment provides the user with the ability to interact with
three-dimensional digital representations of products using
natural head and hand motions. While interacting with digital
objects in VR seems natural, the use of traditional two-
dimensional menu systems does not always provide a
convenient interface to controlling task specifications in the
three-dimensional space. New human-computer-interfaces are
needed for this emerging VR design tool. This paper will
present the details of implementing a speaker-independent,
command and control, speech recognition menuing system for
a virtual reality application. The menuing system will be
described as it is incorporated into a virtual environment for the
design of spatial mechanisms. Design and technical issues
involved in the interface creation process are discussed and the
resulting interaction system is described.

Keywords: speech interface, virtual reality, immersive
environments, spatial mechanisms.

BACKGROUND

With advances in computer technology, Virtual Reality is
becoming an important tool in the engineering product
development process. It is used in a wide variety of
engineering disciplines, encompassing the whole range of the
product development cycle from modeling and evaluation of
the first product prototypes, to providing training opportunities
for end-product users [1-3]. VR technology provides a human-
computer interface (HCI) that allows users to interact with

or
digital objects as they appear in a simulated three-dimensional
environment.

Spatial Mechanism Design

Application areas which are candidates for the use of VR
technology are areas where understanding spatial relationships
is key to completing a task. One such application area is motion
synthesis of spatial mechanisms. The design objectives of
spatial mechanism design are specified in three-dimensional
space and the final mechanism is evaluated by viewing the
mechanism motion in three-dimensional space. The designer�s
ability to correctly specify desired locations of an object and to
effectively evaluate the motion of the resulting mechanism is
essential for creation of a successful mechanism design.
Currently, spatial mechanisms are designed using the
traditional two-dimensional HCI of a computer monitor,
keyboard and mouse. VR systems provide the ability to
operate in third dimension, which allows users to manipulate
objects in a more intuitive way with a variety of instrumented
gloves and wands using natural hand motions. Also, the overall
spatial layout of the problem as well as the correct dimensions
of the objects are easily perceived in the VR environments,
improving the efficiency of the design process.

Kihonge, et al. [4] developed VRSpatial as the first VR
application for the design of 4C spatial mechanisms. Spatial
4C mechanisms are two degree-of-freedom closed chain
linkages consisting of four rigid links connected by cylindrical,
C, joints, which provide both translational and rotational
movement. The mechanism synthesis algorithms that underpin
the VRSpatial application are based on work detailed in
Larochelle, et al. [5]. In VRSpatial, users define four design
1 Copyright © 2002 by ASME

positions using geometrical models of objects by placing them
in the VR environment. These objects are used by the
application to generate a set of solutions for the spatial motion
generation task. After one solution is selected from the
solution set, the mechanism can be animated to verify the
mechanism motion. During the entire process, the designer can
move around in the VR environment in order to observe the
mechanism from any arbitrary viewpoint. The primary
operating environment for this application is the C6 virtual
environment at Iowa State University (Fig. 1). The C6
environment consists of six rear-projection screens which form
the sides and walls of a 10-foot by 10-foot room. The C6 is
powered by a Silicon Graphics Onyx2 computer with six
InfiniteReality2 graphics display generators. Stereo computer
images are projected on each screen and magnetic position
trackers are used to provide location information to the
computer system. Multiple users can interact in the
environment. Users wear active stereo glasses and one user has
position trackers to track head and hand positions.

Figure 1. VRSpatial in C6 facility.

Users interact with VRSpatial using a wireless wand and a
set of virtual menus that can be dynamically reconfigured
during the program�s execution. The menus are accessed using
the wand buttons. While the menu system provides full control
over all of the program�s functions, the user has to make
several selections from consecutive menus in order to access
some options (i.e. �Animation�→�Adjust Speed�→�Go
Faster�). Decreasing the number of consecutive selections by
changing the overall structure of the menu system would lead
to unnecessarily large and cluttered menus and ultimately
decrease the effectiveness of the design process. As an
alternative way to access some of the most frequently used
features of the application, the menuing system functionality
was extended to include speech recognition technology.

Speech Recognition
Weinschenk and Barker [6] define speech recognition as

�the technologies that enable computers or other electronic
systems to identify the sound of a human voice, separate that
sound from noise in the environment, and accept the messages
from the voice as input for controlling the system�. The
combination of a speech interface with the ability to interact
directly with objects in the virtual environment results in a
multimodal interface where users can interact with the VR
environment by issuing either physical (i.e. wand motion) or
speech commands [7].

There are two different approaches to implementing a
speech interface to a virtual environment: fully interactive
speech and �command and control� speech. In addition, there
are two methods of speech recognition: speaker-dependent and
speaker-independent. Fully interactive speech provides the
ability to recognize a wide variety of words and phrases, but
results in the need to provide a speaker-dependent system.
These systems require each user to provide samples of his/her
voice that are used to train the system. This process is called
enrollment [8]. Speaker-dependent software results in high
recognition accuracy and extensive vocabulary, but it lacks
flexibility, since it cannot be easily shared among users.
Command and control systems require only a small set of
predefined commands, which allows for the use of speaker-
independent methods. Speaker-independent systems are
intended to be used by multiple users and do not rely on the
enrollment process to tailor the application to a specific
individual. These systems are suitable for applications, which
require only a relatively small vocabulary of approximately 40
words or less, plus the digits 0-9 [6].

The approach presented here requires only a small
vocabulary so the command and control approach combined
with speaker-independence has been chosen. This paper will
present the details of implementing a speaker-independent
command and control speech recognition menuing system for a
virtual reality application.

VRSPATIAL SPEECH INTERFACE COMPONENTS

Silicon Graphics, Inc. (SGI) computers running the
IRIX operating system are used to control the C6 virtual
environment. Most of the commercially available speech-
recognition software is to be used either on Microsoft
Windows or Linux operating systems. Some versions of
IRIX-based speech recognition applications are available, but
in general they represent experimental work and lack
reliability. Due to these considerations, two main tasks were
identified: creation of a �command and control� speech-
recognition application on a Windows computer and
development of a communication method between the
Windows computer and an SGI system that executes the
main VR application. The former was implemented with IBM
ViaVoice for Windows Release 8 Professional Edition and
Speech for Java from IBM alphaWorks. The omniORB2
version 2.8 of the CORBA standard was used for
communication purposes.
2 Copyright © 2002 by ASME

IBM Speech for Java

Speech for Java is a Java programming tool for
incorporating IBM's ViaVoice speech technology into custom
user interfaces. ViaVoice is a commercial speech recognition
and synthesis program that can be used to control standard
Windows programs such as Microsoft Word and Excel. In
order to use ViaVoice as a speech engine for another
program, an API such as Speech for Java is needed. Speech

for Java is an implementation of version 1.0 of the Java
Speech Application Programming Interface (JSAPI) developed
by Sun Microsystems, Inc. in collaboration with leading speech
technology companies. JSAPI specifies a cross-platform
interface to support command and control recognizers, dictation
systems and speech synthesizers [9]. Figure 2 shows the main
components of a speech application developed with ViaVoice
and Speech for Java.

Speech SynthesizerSpeech Recognizer

javax.speech.synthesisjavax.speech.recognition

Voice OutputVoice Input

VRSpatial Speech Interface

ViaVoice Speech for Java

GRAMMAR

Figure 2. Speech application structure.

The speech synthesizer and the speech recognizer are
instances of the javax.speech.synthesis and
javax.speech.recognition packages. An essential
part of a speech application is the grammar object. Within the
grammar object are definitions of speech patterns and
organization of speech that will be used in the application.
Speech for Java relies on the JavaTM Speech Grammar Format
(JSGF) which is a platform-independent, vendor-independent
textual representation of one type of grammar, a rule grammar
(also known as a command and control grammar or regular
grammar), for use in speech recognition. If speech synthesis is
required in order to provide feedback to the user to confirm
commands, the computer response is defined with the JavaTM
Speech API Markup Language (JSML). JSML is a text format
used to annotate text input to speech synthesizers. It provides
detailed information on how to speak text through definition of
elements that control important speech parameters, such as
pronunciations of words, emphasis and speaking rate [9].
Using the JSML, the quality, naturalness and understandability
of synthesized speech output can be controlled.

OmniORB2

OmniORB2 is an Object Request Broker (ORB) that
implements the 2.3 specifications of the Common Object
Request Broker Architecture or CORBA [10]. It uses Remote
Procedure Calls (RPC) technology that allows an application to
make a remote procedure call with the same amount of effort as
making a local function call. The calling application is
designated as a client and the called application is designated as
a server. The remote operations are grouped in interfaces,
similar to C++ classes and are called CORBA objects, thus
making it an object-oriented technology. One of the most
important benefits of CORBA is the location transparency that
it provides. It means that the operations on the CORBA objects
are always invoked using the same syntax, no matter where the
CORBA object is. CORBA also offers programming language
neutrality � both the client and the server code can be written in
any of the supported programming languages (C, C++, Java,
etc.). The interface to a CORBA object is defined using the
Object Management Group (OMG) interface definition
language (IDL). IDL is a declarative language that is passed
through an IDL compiler to map the IDL file to a specific
language for the client and the server sides [11].

VRSPATIAL SPEECH INTERFACE IMPLEMENTATION

The main purpose of the speech interface implementation
in the VRSpatial application was simplification of the
interaction method. The ability to control the application using
the existing set of menus was preserved, but each menu
selection was evaluated for possible speech interface command.
3 Copyright © 2002 by ASME

Most of the menu system functionality could be effectively
supplied with the speech interface. In fact, speech control gave
the application users the option to access almost any point in
the menu selection sequence with a single sentence. Figure 3
demonstrates two possible menu selection sequences along
with the associated speech commands. For example, in order to

reduce the animation speed the user has to access the
�Animation� menu, select the �Adj. Speed� option and then
select the �Slower� option. The same task can be accomplished
by issuing the �Go slower� voice command. This eliminates
the need to navigate the menu system and streamlines the
interaction process.

Figure 3. Menu commands and voice commands.

Hardware

A dedicated Windows 2000 computer with access to the
local network is used to handle the operation of the speech
recognition interface. Network access is necessary in order to
communicate with the SGI computers that run the main VR
application. Normally a wired headset or a stationary desktop
microphone is used with ViaVoice software, but a wireless
unidirectional microphone was selected for this application to
allow users maximum mobility in the C6 virtual environment.
Currently, only one-way communication is available, but
eventually the computer audio output will be provided to the
users through the sound system of the C6.
Software
The speech recognition interface is written entirely in Java.

It uses Speech for Java routines in order to access ViaVoice�s
speech recognizer and speech synthesizer engines. The
program continuously monitors the audio input by comparing it
to the valid command patterns defined in the grammar file. The
grammar file contains all of the valid action references
(�Open�, �Run�, etc.) as well as many miscellaneous references
that a user could possibly use while addressing the application
(�Computer�, �Please�, etc.). As a way to provide maximum
flexibility in the interaction process and to increase the range of
supported user responses, several wording alternatives are also
provided for a certain task (i.e. �Open Linkage�, �Open
Linkage File�, �Load Linkage�, etc.). A valid command must
4 Copyright © 2002 by ASME

contain at least one action reference and an arbitrary number of
miscellaneous references.

If a valid command pattern is recognized, it is scanned for
the presences of tags, which are associated with each action
reference. Tags were used in order to simplify the processing
of recognition results, since a single tag can be assigned to
several incarnations of the same action reference. For example,
�Load� and �Open� action references are assigned the {open}
tag, and similarly, �Start� and �Begin� are assigned the {start}
tag. The usage of tags is not required by JSGF specifications,
but it was found to be convenient in this particular case. The
combination of tags is analyzed and a decision is made
regarding the particular command that the user has issued. That
command is then relayed to the VR application via the network.
If the interface determines that the user has made an effort to
issue a command, but no matching command patterns were
found then an appropriate message is generated by the speech
synthesizer. The message, along with other possible verbal
computer responses, is defined in a dedicated file that follows
the JSML specifications.

To implement the networking capabilities, OMG IDL was
used to define CORBA objects. An IDL compiler for Java was
used to produce Java stub code. The stub code is used by the
client (the speech interface in this case) to make invocations on
the interface defined in the IDL file (VRSpatial in this case).
Similarly, an IDL compiler for C++ was used to produce the
C++ skeleton code, which is used by the server (VRSpatial) for
definition of the CORBA object implementation.

When VRSpatial receives a command from the speech
interface, the appropriate actions are undertaken in order to
fulfill the user�s request. In some cases these actions are the
same that take place when a menu selection is made, while in
others a different combination of actions has to be executed.

RESULTS AND CONCLUSIONS

The speech-enabled VRSpatial application was tested in
the C6 environment. The speech control was found to be an
extremely effective way of controlling the application. The
performance accuracy of the speech interface was found to be
quite satisfactory. No training of ViaVoice software for a
specific individual was performed. Misunderstandings of valid
command combinations were rare and can be contributed to the
communication issues between the wireless microphone and the
speech recognition computer, which is currently located at a
significant distance from the C6 environment. This accuracy
problem decreased drastically when the wired headset was used
in a desktop environment during the programming and
debugging stages, which also suggests the wireless
communication as the source of the problem. The resistance of
the speech interface to the ambient noise, such as sound effects
generated by a VR application during its operation, was not
thoroughly tested due to the absence of sound output in
VRSpatial at this time. The normal conversation between the
users was found to have little influence on the operation of the
speech interface, as long as users directed their voices away
from the microphone.

ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the

National Science Foundation through grants DMI-9872604.
The collaboration of Dr. Pierre Larochelle and his students at

the Florida State University greatly contributed to the
development of the VRSpatial software.

REFERENCES
[1] Bullinger, H.G., Breining, R., Bauer, W., 1999, �Virtual

Prototyping � State of the Art in Product Design,� Proc.,
26th International Conference of Computers & Industrial
Engineering, Melbourn, December 15-17, 1999, pp. 103-
107.

[2] Deisinger, J., Breining R., Rößler, A., Höfle, J., Rückert,

D., 2000, �Immersive Ergonomic Analyses of Console
Elements in a Tractor Cabin,� Proc., 4th Immersive
Projection Technologies Workshop, June 19-20, 2000,
Ames, Iowa.

[3] Oliveira, J.C., Shirmohammadi, S., Hosseini, M., Cordea,

M., Georganas, N.D., Petriu, E., Petriu, D.C., 2000,
�VIRTUAL THEATER for Industrial Training: A
Collaborative Virtual Environment,� Proc., 4th World
Multiconference on Circuits, Systems, Communications &
Computers, (CSCC 2000), Greece, July 2000.

[4] Kihonge J.N., Vance J.M., Larochelle P.M., 2001, �Spatial

Mechanism Design in Virtual Reality with Networking,�
Proc., DETC�01: 2001 ASME Design Engineering
Technical Conference, DETC2001/21136, Pittsburgh, PA,
September 9-12, 2001.

[5] Larochelle, P.M., �SPADES: Software for Synthesizing

Spatial 4C Mechanisms,� Proc., DETC�98: 1998 ASME
Design Engineering Technical Conference,
DETC98/MECH-5889, Atlanta, GA, September 1998.

[6] Weinschenk, S., Barker, D.T., 2000, Designing Effective

Speech Interfaces, John Wiley and Sons, New York, NY,
pp. 98-103.

[7] McGlashan, S., Axling, T., 1996, �A Speech Interface to

Virtual Environments,� Proc., International Workshop on
Speech and Computers, St. Petersburg, Russia.

[8] Noyes J., 1993, �Speech Technology in the Future,� In C.

Baber & J. M. Noyes (eds) Interactive Speech Technology:
Human factors issues in the application of speech
input/output to computers, Taylor & Francis Ltd., London,
pp. 189-208.

[9] http://java.sun.com/products/java-media/speech

[10] Bolton, F., 2002, Pure CORBA, Sams Publishing,

Indianapolis, Indiana, pp. 6-13.

[11] Brose G., Vogel A., Duddy K., 2001, Java Programming

with CORBA. Advanced Techniques for Building
Distributed Applications, Wiley and Sons, New York, NY,
pp. 17-43
5 Copyright © 2002 by ASME

http://java.sun.com/products/java-media/speech

	cietoc:

