
UMI 
MICROFILMED 1994 



INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer. 

The quality of this reproduction Is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 



r* 



Order Number 9424199 

Signal detection using categorical temporal data 

Cannon, Ann C. Russey, Ph.D. 

Iowa State University, 1994 

U M I  
300 N. Zeeb Rd. 
Ann Arbor, MI 48106 



r 



Signal detection using categorical temporal data 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Statistics 
Major: Statistics 

by 

Ann C. Russey Cannon 

In Charge of Major Work 

Approved 

For the Major Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1994 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



11 

TABLE OF CONTENTS 

1. GENERAL INTRODUCTION 1 

1.1 Motivating Experiment 1 

1.2 Most Recent Data Analysis 4 

1.2.1 K functions 5 

1.2.2 Kernan and Meeker (1992) single test statistic 8 

1.3 Dissertation Organization 10 

2. TEMPORAL ANALOGUES TO SPATIAL K FUNCTIONS . . 12 

2.1 Abstract 12 

2.2 Introduction 13 

2.3 Properties of the Temporal K Function 14 

2.3.1 An initial temporal K function estimator 16 

2.3.2 Improving K function estimators using Stein's approach ... 20 

2.3.3 Improving the initial estimator 24 

2.4 An Example of the Use of Temporal K Functions 31 

2.4.1 Preliminary explanation of the data set 31 

2.4.2 Analysis 32 

2.5 Comparing Two Sets of K Functions 37 

2.6 Discussion 43 



Ill 

2.7 Acknowledgments 49 

2.8 Bibliography 49 

2.9 Appendix A. Properties of the Initial Estimator 51 

2.10 Appendix B. Proof of Theorem 1 (Stein, 1993) 55 

2.11 Appendix C. Properties of Temporal Analogue to Ohser and Stoyan's 

{1981) (f){x,y) 59 

2.12 Appendix D. Properties of the Final Estimator 60 

3. STATISTICAL TESTS FOR SIGNALS IN CATEGORICAL 

TEMPORAL DATA 63 

3.1 Abstract 63 

3.2 Introduction 64 

3.2.1 Motivating experiment 64 

3.2.2 History of the analysis from this type of experiment 66 

3.2.3 Analysis of similar experiments 67 

3.3 Recent Developments for Data from this Type of Experiment 69 

3.3.1 K-functions 70 

3.3.2 Kernan and Meeker (1992) approach for obtaining a single test 

statistic 72 

3.4 Alternative Statistical Methods 74 

3.4.1 Background 74 

3.4.2 Test statistics defined 75 

3.4.3 Computation of the test statistics 78 

3.5 Numerical Results Comparing Test Statistics 86 

3.5.1 Test results using Sq 87 



iv 

3.5.2 Test results using Sj- 88 

3.5.3 Test results using 5^ 90 

3.6 Asymptotic Distributions 94 

3.6.1 The asymptotic null distribution of Sg 94 

3.6.2 The asymptotic power of 97 

3.6.3 The asymptotic null distribution of Sj< 97 

3.6.4 The asymptotic power of Srp 100 

3.6.5 The asymptotic distribution of S\y 100 

3.6.6 The asymptotic power of 103 

3.7 Power Study to Compare the 3 Statistics 103 

3.7.1 Computation of simulated power 103 

3.7.2 Comparison of simulated power 104 

3.7.3 Conclusions from the simulated power study 108 

3.8 Discussion and Areas for Future Research 108 

3.9 Acknowledgments 110 

3.10 Bibliography Ill 

3.11 Appendix A. Convergence of a Sample Covariance Matrix 113 

3.12 Appendix B. Asymptotic Distribution of 119 

4. CONCLUSION 123 

BIBLIOGRAPHY 127 

ACKNOWLEDGMENTS 129 



V 

LIST OF FIGURES 

Figure 2.1: Variance of temporal iiT-function estimator, given by (2.11). 

Units of variance are and units of t are seconds 19 

Figure 2.2: Variance of improved temporal %-function estimator, given 

by (2.26). The variance is in units of and units of t are 

seconds 28 

Figure 2.3: Variance of the transformed temporal /^'-function estimator. 

Units of the variance are t, units of t are seconds. . 30 

Figure 2.4: Standardized X-function estimates for 20 control rats. Each 

solid line represents one rat. The dashed horizontal line is the 

L function under CTR. Units on the horizontal axis are in 

seconds and units on the vertical axis are in (seconds) . . 35 

Figure 2.5: Two figures for a sample of 20 control rats. The histogram 

in (a) shows the bootstrapped distribution of the average 

area between the standardized L-function estimates and CTR, 

while the normal probability plot in (b) compares this distri­

bution to the normal distribution 36 



vi 

Figure 2.6: Two pairs of standardized L-function estimates from rat be­

havior data. Plot (a) shows the L-function estimates from 

a typical pair of rats in a control-control experiment. Plot 

(b) shows the L-function estimates from a typical pair of rats 

from an exposed-control experiment. Units on the axes are 

the same as for Figure 2.4 40 

Figure 2.7: Two plots of standardized L-function estimates. Plot (a) 

shows the estimates for 20 control rats; plot (b) shows the 

estimates for 20 exposed rats. Units on the axes are the same 

as for Figure 2.4 41 

Figure 2.8: Four figures comparing 20 pairs of control rats. The histogram 

in (a) shows the bootstrapped distribution of the average dif­

ference in positive area between the standardized L-function 

estimates and CTR's L function, and the histogram in (b) 

shows the bootstrapped distribution of the average difference 

in negative area between the standardized L-function esti­

mates and CTR's L function. Plots (c) and (d) give the cor­

responding normal probability plots 44 



vu 

Figure 2.9: Four figures comparing 20 pairs of rats, one in each pair is 

treated, the other control. The histogram in (a) shows the 

bootstrapped distribution of the average difference in posi­

tive area between the standardized L-function estimates and 

CTR's L function, and the histogram in (b) shows the boot­

strapped distribution of the average difference in negjitive area 

between the standardized L-function estimates and CTR's L 

function. Plots (c) and (d) give the corresponding normal 

probability plots 45 

Figure 3.1: Eigenvalues of EC-1 data set plotted in descending order. . . 81 

Figure 3.2: Histograms of the simulated distributions of the statistic Sg, 

based on data sets (a) CC-1, (b) CC-2, and (c) EC-1 89 

Figure 3.3: Histograms of the simulated distributions of the statistic Sj^, 

based on data sets (a) CC-1, (b) CC-2, and (c) EC-1 91 

Figure 3.4: QQ-plot of the 2000 values of for the two data sets CC-1 

and CC-2 92 

Figure 3.5: QQ-plot of the 2000 values of Sj^ for the two data sets EC-1 

and CC-2 93 

Figure 3.6: QQ-plot of the 2000 values of for the two data sets CC-1 

and CC-2 95 

Figure 3.7: Asymptotic CDF and Simulated CDF for the three data sets: 

(a) CC-1, (b) CC-2, and (c) EC-1 101 

Figure 3.8: Asymptotic CDF (a xfg) and the simulated CDF from CC-1 

and CC-2 102 



vm 

Figure 3.9: Simulated power curve for the model using the covariance ma­

trix estimated from the CC-1 data set 105 

Figure 3.10: Simulated power curve for the model using the covariance ma­

trix estimated from the CC-2 data set 106 

Figure 3.11: Simulated power curve for the model using the covariance ma­

trix estimated from the EC-1 data set 107 



1 

1. GENERAL INTRODUCTION 

1.1 Motivating Experiment 

Over the years, several very effective drugs have been found to have serious 

side effects, often discovered long after the primary cure has been effected. Some of 

these side effects might have been detected by behavioral differences in the patient 

although the side effect is most likely physiological. Researchers have designed exper­

iments using rats as an animal model to try to predict the possibility of a side effect 

measurable by a behavior change for drugs developed for humans. This dissertation 

discusses the analysis for data produced from an experiment designed to detect such 

behavioral differences. 

The specific design of the experiment is as follows (e.g. Kernan, Mullenix, Kent, 

Hopper and Cressie, 1988): pairs of rats were chosen, one in each pair injected with 

a saline solution, the other with the experimental drug. At some later point in time 

these pairs were observed as they explored a novel environment and their act or posi­

tion at the beginning of each of the 900 consecutive seconds was recorded. In earlier 

experiments, the experimenters used 900 still-frame photographs and visual discrim­

ination to code the photographs; more recently, experimenters have used television 

cameras and a computer pattern recognition system to do the coding. Observed 

behavioral differences between the rats provide evidence of physiological change. 
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The data from this experiment were coded as follows. The behavior of the rat at 

each of the 900 time points was categorized into one of five body positions: standing, 

sitting, rearing, walking, and lying down; and one of the eight modifiers: blank (no 

recognized activity), groom, head turn, turn', look, smell, sniff, and washing face. The 

combined set of 5 body positions and 8 modifiers are defined to be the set of 13 regular 

acts. Norton, Mullenix and Culver (1976) reclassified each of the regular acts into 

one of three classes labeled "grooming," "exploratory," and "attention." Since each 

of the 900 seconds consists of two regular acts, both a body position and a modifier, 

Kernan and Meeker (1992) mapped the combination of body position and modifier 

at each second into one of the six combinations of two classes, e.g. "attention-

attention," "attention-explore," "groom-attention." It should be noted that these 

new combinations did not reflect which classification each specific regular act had 

separately, merely the two classes that the two regular acts together represented. 

These six combinations are labeled the combined acts. Kernan and Meeker (1992) 

then used the information from both the regular acts (of which there are two for each 

time period) and the combined acts (of which there is one for each time period) in 

their analysis of the data. 

The experiment described above leads to a raw data set with observations on 2n 

rats, where n denotes the number of pairs observed. Each observation consists of the 

following information: a pair number, a treatment/control indicator variable, and, 

for each of the 900 discrete time periods, the values of the two categorical response 

variables that represent the body position and modifier, respectively, of the act that 

the rat performed. From these data the goal is to detect systematic behavioral 

differences that exist between the treated and the control rats. At this stage the 
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amount of difference is not of primary concern, merely whether a difference, not due 

to usual rat-to-rat variability, exists or not. If a systematic difference is found, the 

researchers would use this as evidence that some physiological change may have taken 

place and more testing would be done to find the particular physiological difference 

in question. At the outset of these experiments, the researchers often do not have an 

idea about what type of systematic behavioral difference might exist, so they look 

for any detectable change. 

Several ways of quantifying data from this type of experiment have evolved. 

Originally, researchers simply counted the number of times that each act was initi­

ated (Kernan et al., 1988). Psychiatrists, however, found that the total time a rat 

performed an act, the average duration of the acts, and the time lapsing between ini­

tiations of an act were also of interest (Pohl, 1976; Baumeister, 1978). Wender (1971) 

also showed that some types of behaviors, such as hyperactivity in children, will not 

be discovered using only the number of initiations, the total time, the average dura­

tion and the time lapsing between initiations. Hyperactivity has been traditionally 

seen as a state of increased motor activity, but this sense of increase comes from the 

behavior occurring in a different pattern than normal rather than a true increase in 

activity level. An unexpected behavior pattern may lead to the appearance of more 

activity while the average amount of time spent doing each act is really the same 

as in a normal child (Pontius, 1973). In order to detect a difference in the pattern 

of the behavior from the expected pattern of behavior, Kernan et al. (1988) looked 

more into the structure of the observations, using a temporal analogue of the spatial 

statistic, the K function, to define what they called the time distribution of the acts 

and the time sequence of pairs of acts. 
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Kernan, Mullenix and Hopper (1989) went one step further by looking at many 

test statistics aimed at describing differences between the groups for various aspects 

of the data, hoping that by looking at many statistics, any possible behavioral dif­

ference might be detected. The researchers then based their conclusions on which 

statistics were found to be significant (Kernan, Mullenix and Hopper, 1989). The 

Kernan, Mullenix and Hopper (1989) method evolved into a new overall test statis­

tic, consisting of the ratio of the number of individual test statistics that were found 

to be significant to the number of tests done (Kernan and Meeker, 1992). By using 

a jackknife-type simulation method with control-control data, Kernan and Meeker 

(1992) computed the null distribution for this overall statistic for experiments con­

sisting of 17 and 20 pairs of rats. 

1.2 Most Recent Data Analysis 

Kernan and Meeker (1992) started by computing four types of individual statis­

tics for both the set of combined acts as well as the set of regular acts. These four 

statistics are: 

1. Number of Initiations. An initiation of an act was defined to be the first frame 

of the one or more consecutive frames where the animal performed the specific 

act. 

2. Total Time. The total number of frames where the act occurred. 

3. Time Distribution. A statistic describing the pattern of where an act occurs 

over time. 
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4. Time Sequence of Pairs of Acts. A statistic describing the pattern of how a 

pair of acts occurs over time. 

These last two types of statistics are based on estimating the temporal analogue to 

the spatial statistic, the K function. Kernan and Meeker (1992) used an estimator 

of the K function derived in Kernan et al. (1988) to define the time distribution and 

an estimator of the cross K funtion to define the time sequence of pairs of acts for 

the two groups of rats. 

1.2.1 K functions 

Both the number of initiations of an act and the total time spent performing an 

act are straightforward to calculate. The time distribution, however, is complicated 

enough that we explain its background, meaning and use. The K function, sometimes 

called the reduced second moment measure, gives a quantification of the spatial 

dependence between different regions of a stationary point process. K functions have 

generally been used on regions that are of two or higher dimensions. They can, 

however, be quite useful in one dimension. With a minor modification in definition, 

the K function can also be used in the (unidirectional) time dimension to characterize 

temporal dependence in a temporal point process. 

The spatial K function, with intensity A, is defined theoretically in rf-dimensional 

space (d > 1) as: 

K(h) = (number of extra events within distance h 

of a randomly chosen event) 

(e.g., Diggle, 1983, p.47). The l-dimensional, unidirectional, temporal K function is 
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defined as: 

K{t) = A"~^£'(number of extra events occurring within time i 

after an arbitrary event.) 

These functions are used to identify a structure in the pattern of initiations of 

an act over time. It is possible to find the same number of initiations and the same 

amount of time spent performing a specific act for treated animals as for control 

animals, but find that the pattern of the initiations of this act to be different. For 

example, one type of animal may have seemingly random initiations of an act where 

the other might display a nonrandom pattern. One use of K functions is in the 

calculation of the time distribution of an act. This statistic is used to find any time 

dependence or differences in time dependence that might exist for the initiations of 

an act. 

The /^-function estimator used by Kernan and Meeker (1992) in the time dis­

tribution was derived in Kernan et al. (1988) and is written as 

T —1 

In this equation n denotes the number of initiations of the act, and T denotes the 

total time over which the analysis is performed. This time, T, is, however, not the 

same as the total time that the rats were observed. The K function analysis is 

performed only on the initiations of the act. The duration of the time that the rats 

performed the act continuously is not of interest here. Thus we reduce the original 

data vector somewhat by eliminating the continuations of the act of interest after 

each of its initiations. T represents the length of this reduced data vector. is 

an edge correction term which accounts for the fact that the observational period is 
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not infinite. If the act occurs near the beginning or the end of the observational time 

period not all ranges of time are available for consideration. The edge correction, W^j, 

is assessed by Kernan et al. (1988) as follows: First, assume that the ith occurrence 

of act a happened before the jth. Next, let 

4; = l4 - = \ ^ j  - ̂il = d j i  

Define Wjj = 1 unless — dj^j < 0. In this case define W^j = .5. Similarly define 

Wj^ = 1 unless tj + dij > T in which case Wji = .5 (Kernan et al., 1988). 

is 1 (or 0) according to whether the pair (z, j) of initiations of the act occurred (did 

not occur) within a time separation t. Mullenix et al. (1989) evaluated this function 

at eight time points (2, 5, 10, 20, 30, 45, 100, 200) for each act, with the resulting 

vector being referred to as the time distribution of the act. 

The cross Jf-function is used by Kernan et al. (1988) to calculate the time 

sequence of a pair of acts. For this purpose call the acts in question 5 and 7. The 

function is 
H «7 

E I: 
Li=ii=i 

The terms of this function have similar definitions to those in the time distribution 

function. Here is corrected for the continuations of both acts 5 and 7. For the 

cross %-function, = 1 if the ith occurrence of act 6 happened within time t 

before the jth occurrence of act 7. Otherwise ItiU^j) = 0. This definition of Ii{Uij) 

is purposefully asymmetrical, in order to allow a causal relationship to exist (Kernan 

and Meeker, 1992). 

Kernan and Meeker (1992) also placed a restriction on the calculation of the K 

functions in general in order to limit consideration to those statistics for which there 
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was sufficient information. Their rule for the calculation of the K functions was to 

use only those acts that had an average number of initiations per animal of ten or 

greater for both the control group and the exposed group separately. They believed 

that acts with less initiations would not bring enough accurate information into the 

function. 

1.2.2 Kernan and Meeker (1992) single test statistic 

First each of the four statistics defined at the beginning of Section 1.2 had to 

be computed for each of the regular and combined acts (or pairs of acts) defined in 

Section 1.1. Because of the restriction on the use of K functions described above, the 

body position "lying down" was never used in the computation of the statistics "time 

distribution" or "time sequence". Therefore there were 13 "total time" statistics, 13 

"number of initiations" statistics, a maximum of 12 "time distribution" statistics and 

a maximum of 68 "time sequence" statistics computed using the 13 regular acts (5 

body positions and 8 modifiers) for a maximum of 106 statistics. There were also 

6 "total time" statistics, 6 "number of initations" statistics, a maximum of 6 "time 

distribution" statistics, and a maximum of 30 "time sequence" statistics using the 6 

combined acts for a maximum of 48 statistics. The resulting maximum number of 

statistics for a data set is 154. Some of these statistics may not be calculated for 

every experiment of this type because of the restrictions mentioned above, but a large 

majority will be used. At this point, then, there were approximately 154 statistics 

to use in answering the question "Is there a difference between the two groups?" 

Kernan and Meeker (1992) suggested two ways of combining the statistics to help 

answer the question. First they created a vector X, of length at most 154, containing 



9 

the statistics that can be used to test for differences between the two groups. Then X 

was mapped into a vector Y of O's and I's where a 1 signified that the corresponding 

element of X showed a statistically significant difference. 

At this point the analysis took into consideration the fact that each observation 

of the animals was used twice, once in the computation of the statistics for the regular 

acts and again for the combined acts. Because of this overlap, Kernan and Meeker 

(1992) divided their vector Y into two parts, Yj based on the regular acts and Y2 

based on the combined acts. They designated Si and S2 as the sums and Tj and 

T2 as the lengths of these two vectors respectively. In their example < 106 and 

T2 < 48. The two statistics that Kernan and Meeker (1992) suggested are 

Because of the structure of the actual data analysis, will always be larger than 

Tg which results in RTOT more heavily weighting the information from the regular 

acts. RSQR weighs each of the subvectors more evenly, possibly a desirable condition 

since each subvector, in some sense, summarizes the data set. 

Kernan and Meeker (1992), using previous control-control and control-treatment 

data and jackknife techniques, explored the distributional characteristics of both 

statistics. They found that there was an extremely high degree of correlation be­

tween RSQR and RTOT, indicating that;either could be used. By using Monte 

Carlo calculations on a data set from a control-treatment experiment where a sys­

tematic behavior difference was known to exist, they showed that these statistics can 

RTOT = Si + S2 
T1+T2 

and 

RSQR 
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be useful in determining whether a systematic behavioral difference exists or not. 

The simulation results presented in Kernan and Meeker (1992), however, only give 

procedures for experiments with 17 or 20 pairs of animals. They suggest that one 

might be able to interpolate, using their results, for 18 or 19 pairs, under a similar 

experimental design, but their work does not directly apply to other numbers of pairs. 

For experiments of other sizes more simulations would have to be run. 

1.3 Dissertation Organization 

This dissertation consists of two papers combined into one document. The first 

paper takes a closer look at the JC-function estimator. The K function is typically 

used in a space which has two or more dimensions. Kernan et. al. (1988) took the 

existing estimator of the K function and brought it down to the unidirectional time 

dimension. Since their work, a better estimator has been developed for two and 

higher dimensions (Stein, 1993). The first paper takes this new estimator for the K 

function, shows that it is appropriate for the time dimension, and applies it to the 

problem described above. Specifically, two test statistics based on the estimate of 

the K function are developed to test for differences between control and treated rats. 

This paper deals only with the K-function estimator for use in the time distribution 

of acts. Similar results should hold for the time sequence of pairs of acts using the 

cross /iT-function, but proof of this result is left to future work. This paper was 

written in collaboration with co-major professor Noel Cressie. 

The second paper uses the new estimator for the temporal K function along with 

the statistics total time, and number of initiations to create two new overall methods 

for analyzing the data from this type of experiment. Kernan and Meeker (1992) in 
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essence counted the number of significant tests among a large group of tests. The 

first new statistic is a sum of the squared individual test statistics. This statistic 

is developed with the idea that it will take into consideration the magnitude of the 

significance of the individual tests as well as the fact that a test is significant. The 

second new statistic uses more information yet, namely the covariance matrix of the 

individual test statistics, to create a Wald-like statistic. It was thought that this 

second new statistic would be superior to both the old statistic and the first new 

statistic because of the use of the covariance matrix. This paper was in collaboration 

with co-major professor William Meeker. 

A general conclusion chapter follows the two papers and all references cited in 

the general introduction and conclusion are listed following the general conclusion. 
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2. TEMPORAL ANALOGUES TO SPATIAL K FUNCTIONS 

A paper submitted to the Biometrical Journal 

Ann Cannon and Noel Cressie^ 

2.1 Abstract 

In this article, the spatial statistic known as the K function is adapted for tem­

poral processes and patterns. The (optimal) /C-function estimator is used in a testing 

procedure to determine whether behavior patterns of exposed rats versus control rats 

are different. Specifically, the temporal analogue to the K function is given and an ap­

proximately optimal estimator is developed. Next, a testing procedure, to determine 

whether a group of point patterns is generated from complete temporal randomness, 

is given. Finally, a testing procedure, to compare pairwise two groups of point pat­

terns, is given. The testing procedures are illustrated with rat-behavior data from 

both a control-control experiment as well as an exposed-control experiment, where 

in the latter case a difference in behavior is known to exist. 

^Principal Author is Ann Cannon. Noel Cressie provided guidance throughout 
the project 
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2.2 Introduction 

The K function, sometimes called the reduced second moment measure, gives 

a quantification of the spatial dependence between different regions of a stationary 

point process. K functions have generally been used on regions that are of two or 

higher dimensions. They can, however, be quite useful in one dimension. With a mi­

nor modification in definition, the K function can also be used in the (unidirectional) 

time dimension to characterize temporal dependence in a temporal point process. 

The spatial K function, with intensity A, is defined theoretically in d-dimensional 

space {d > 1) as; 

K{h)  =  A " ( n u m b e r  o f  e x t r a  e v e n t s  w i t h i n  d i s t a n c e  h  

of a randomly chosen event) 

(e.g., Diggle, 1983, p.47). The 1-dimensional, unidirectional, temporal K function is 

defined as: 

K{t )  =  A ~ ( n u m b e r  o f  e x t r a  e v e n t s  o c c u r r i n g  w i t h i n  t i m e  f  ^  

after an arbitrary event.) 

In this article we give both an estimator of the K function suitable for the tem­

poral case, as well as a method for analyzing one or two groups, each consisting of 

several estimates. We begin (in Section 2.3) by finding the temporal analogue to 

an initial, well known, d-dimensional K function estimator due to Ohser and Stoyan 

(1981). We then show how to improve on the initial estimator in the temporal case 

and give the (approximately) optimal estimator. In Section 2.4 we give a method for 

comparing the %-function estimates from one sample of data to the null hypothesis 

of complete temporal randomness. We illustrate this method with rat behavior data 
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that is expected to follow this null hypothesis. Section 2.5 gives a method for ana­

lyzing the difference between two samples of estimates that are paired. In this case 

we do not necessarily assume complete temporal randomness for either of the two 

samples. Again we illustrate the use of this method with rat behavior data; the two 

samples consist of a control group and an exposed group. Section 2.6 contains some 

final discussion. 

2.3 Properties of the Temporal K Function. 

To find appropriate estimators for the K function, we first obtain several gen­

eral distributional results. Where a specific distribution is needed, we use the case of 

complete temporal randomness (CTR) as the basis for our results. The CTR model 

was chosen because it is the natural null hypothesis from which one determines de­

partures of either a clustered or regular nature. In Sections 2.4 and 2.5, CTR arises 

naturally in the application presented, where it indicates a lack of pattern in the 

initiation of various behaviors. 

The exact K function for a stationary temporal point process can be calculated 

as follows. First, let N{dv) denote the number of events occurring in the time span 

dv, located at u; u > 0, and consider the following probability: 

Pr(there is an event in the time span rfu, located at « | an event at 0). 

This probability can be rewritten as: 

PT{N{du)  >  0,iV(rf0) > 0) 
rfO™0 Pr(W(dO) > 0) • I ' 

A CTR point process is a Poisson process with parameter A. That is, the number 

of events occurring in disjoint regions are independent and follow a Poisson distri­
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bution. As a consequence, if N{dv)  denotes the number of events occurring in the 

infinitesimal time span dv located at v, then PT(N{dv) > 0) = Xdv + o{dv) and 

FT{N{du) > 0,N{dv) > 0) = {Xdu + o{du)){Xdv + o{dv)). Therefore, under CTR 

(2.2) becomes: Xdu. The K function in (2.1) is defined to be a constant times the 

expected value of the number of events happening within time t after an event. This 

expectation can be rewritten as 

Pr(there is an event in the time span du, located at « | an event at 0)du. 

Combining equation (2.1) and equation (2.2) for a Poisson process, 

K{t )  =  X~^  j^ X d u  =  t \  for t > 0. (2.3) 

To make inferences about a process, we can use data in the form of an observed 

point pattern to estimate a K function. Several estimators for the spatial K function 

are available; some have analogues in time. Time analogues of K function estimators 

are all based on counting the number of pairs of events located in a time interval 

less than or equal to t and then averaging this count over the number of points 

in the observation region. The presence of boundaries (or edges) that limit the 

observation region means that not all ranges of time are available for consideration. 

The main difference among estimators is the way that they correct for the edges of 

the region. One two-dimensional estimator due to Ripley (1976) uses a weight equal 

to the conditional probability that an event is observed given that it is a distance h 

away from the current reference event. Unfortunately there is no natural analogue to 

this in the temporal case so we look elsewhere for temporal AT-function estimators. 
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2.3.1 An initial temporal K function estimator 

Consider now the two-dimensional estimator suggested by Ohser and Stoyan 

(1981). Their edge correction is achieved using a weight that is based on the condi­

tional probability of observing a pair of events (s^-,sj) given that they are a distance 

|s^ — Sjl apart. In the temporal case the analogue to the Ohser and Stoyan's edge 

correction is the conditional probability of observing a pair of events where 

t j  >  given that they are a time lag of t j  — apart. This probability is 

T -  {t j  -  t j )  

T  

Thus, the temporal analogue to Ohser and Stoyan's two dimensional estimator of the 

K function is: 

3 ^ 

where the summation is over {{ t i , t j )  :  t j  >  t j  and t j , t j€[0 ,T]} .  

To calculate the variance of this JC-function estimator, we rewrite (2.4) as 

^(t) — % s ̂ titiitj)- (2.5) 

where 

(2.6) 
"J I 

These two expressions for the K function are equivalent, the difference being that the 

summand <^((-, •) in (2.5) is symmetric (i.e. ^ti^i^tj) = (l>t{tj, tj)). The multiplication 

by 1/2 corrects for counting each pair of events twice. 

To compute the expectation (under stationarity) and variance under the more 
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specific case of CTR of K{t)^ let 

Now, under stationarity, 

E(B) = j^2 h{H^j)da2{k^j), (2.7) 

where 0:2 is the second factorial moment measure (e.g., Daley and Vere-Jones, 1972, 

sec 3.1) for the process, and A = [0,T] denotes the observation region. Similarly, 

+ 4^3^  {H , t j ) ( f>t  { t j ,  t f .  )  da^  m  

+ ̂  (2.8) 

where 0:3 and 0:4 are the third and fourth factorial moment measures, respectively. 

Under CTR, ar = X^Vr, where A is the rate of the Poisson process and i/r is the 

Lebesgue measure in R^, which leads to 

var(B) = E(fî2) _ [E(B)]2 = AX^Si + (2.9) 

where 

-^i = (2.10) 

— (4 ' 

S2 = j^2^<l>t{'l^v^j))'^dtidtj. (2.11) 

Because K{t)  = we have that var(Âr(f)) = ^^var(B). 
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Details of the derivations of the following results can be found in Appendix A. 

For •) given by equation (2.6), K{t) is unbiased for the K function and 

var(iï(<)) = log (^) + f + ̂  log (%&) • 

Figure 2.1 shows a plot of this variance as a function of t .  The plot shows the 

variance increasing with t, which is true in general because 

|w(/i:(()) = ilog(5;^) + ^^5^^>0, for(<T. 

To obtain an estimator that can be used with equal confidence across all values of t  

under consideration, we shall attempt to find a function g such that the variance of 

g{K{t)) is approximately constant across time. 

It was shown earlier that E{K{t ) )  =  t  and the variance was given by eq. (2.12). 

Let c be a constant and let represent the variance function (2.12). An application 

of  the  5-method (e .g . .  Bishop,  Fe inberg ,  and  Hol land,  1975,  p .  491)  to  w&v{g{K{t ) ) )  

yields the following condition: 

d 2 

To find g solve 

A Taylor series expansion can be used to approximate V^{t ) .  The first two terms of 

this approximation are: 
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Figure 2.1: Variance of temporal iiT-function estimator, given by (2.11). Units of 
variance are and units of t are seconds. 
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In solving for the transformation, use initially only the first term in the Taylor series; 

i.e.. 

9 { y )  =  ^  

= c 

0 \T \^J  
(  \  

-2 

dt  

( 1 
VItFJ 

This implies the use of g{y)  = as a first-order variance stabilizing transfor­

mation. For the data set discussed in Sections 2.4 and 2.5 we found that although 

this transformation does not completely stabilize the variance, much improvement 

occurs. 

If the first two terms of the Taylor series expansion are used, the following 

function is obtained using Gradshteyn and Ryzhik (1980, p. 81): 

/ _ I„ . \ 1/2 _ . \ 
oc log 

2 ({1+4XT)  (H-4Ar)2 n 
- y  +  - — y  

/ 
A^T ^ T ^ " I T 

Again using the application in Sections 2.4 and 2.5, we found that this transformation 

did not improve the stabilization of the variance much over the square root, so we 

recommend inference based on 

, 1 /2 .  
t  >  0. 

2.3.2 Improving K function estimators using Stein's approach 

Stein (1993) uses the following theorem to improve an existing rf-dimensional 

K-function estimator. 

Theorem 1 (Stein, 1993). Suppose X\ , . . . ,Xn  are i.i.d. and uniformly distributed on 
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A C R^.  For a given function 0(-, •), 

/ 
varn 

n 

J J 
vTJ  ;=i 

is minimized by 

gQ{x,<f>)=2{n-l)E[<P{Xi,X2)\Xi=x] (2.13) 

and the minimizing variance is 

2n{n -  1) [a~^S2 - 2a~35i + , (2.14) 

where 

S = ^2 <A(a;,2/)(fa;% 

4  = J j^9{x)dx ,  

2 
dx ,  

and a = v^[A)U.  

Note that and S2 are defined, for the temporal case, in (2.10) and (2.11) re­

spectively. A detailed proof of this theorem is given in Appendix B. The proof does 

not depend on d and the arguments are the same for the temporal case as for the 

rf-dimensional case. We now use this result to give a temporal analogue to Stein's 

estimator. 

To estimate K{t)  we need an appropriate </)(•, •) which should be symmetric 

so that the variance calculation in (2.14) holds. Stein (1993) suggests dividing an 

unbiased estimator for X^aK{t) by (an estimate for) A^a. Note that for any stationary 
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isotropic process in there is a non-decreasing function R{-)  on [0, oo) such that 

(2.15) 

where is the surface area of the rf-dimensional unit sphere (Ohser, 1983). Ohser 

(1983, Lemma 2.1) also shows that in general, for rf-dimensional space, 

E Jq J^J^( l>{x ,x+r 'y) I{x+r^€A)Cô{ 'r )dqfdxR{r)dr ,  (2 .16)  

where 0 is the set of unit vectors on iî^, and w('y) is the rf-dimensional uniform 

density on 0. To ensure that is an unbiased estimator for any stationary 

isotropic process, we need to find a function ^(•, •) that satisfies the constraint formed 

by combining (2.15) and (2.16) in the following manner: 

E ^(X%,Xj) = X^aKi t )  =  X^auj^  f  I {r  <  t )r^- ' ^R{r)dr .  (2.17) 

WJ / 
We now reduce the constraint (2.17) to the temporal case. For d = 1, eq. (2.15) 

reduces to K{t) = /q R{r)dr. This is, however, the one-dimensional case rather than 

the temporal case. Since K{t) is an expected value of occurrences close to an event 

X, and since the process is stationary and isotropic, equal numbers of events are 

expected to occur behind and in front of the event in question, implying that the 

temporal K function should be equal to one half of the one-dimensional K function. 

Thus, for the temporal case, K{t) = 5/9 R{r)dr and eq. (2.16) reduces to 

E 53  ~  ^  L L\<f>{x ,x  +  r) I{x- \ - reA)dxR{r)dr  
\ i ^ j  J  JA^  

-f- ^  ^ — r ) I{x  — reA)dxR{r)dr .  (2.18) 
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In the temporal case a = T, so from (2.18) and (2.17) the constraint that <p{-, •) must 

satisfy in the temporal case is 

Finding the optimal function g as defined in (2.13) under the constraint given 

in (2.19) is difficult so we use an approximation that has an exact solution. Suppose 

that the 0(-, •) used in the estimator (2.17) is uniformly bounded as A = [0,T] grows 

and that ^(a;, y) = 0 for \x — y\ > M, where M is a fixed constant that does not 

depend on A (we can take M = t)\ then 5, 5^, and S2 are all 0(T). The expression 

for the variance of Stein's estimator, given by eq. (2.14), can then be written as: 

which allows us to concentrate on minimizing S2 subject to (2.19). The left hand 

side of the constraint in (2.19) can be rewritten as follows: 

where /i2(^l)^2 I 1^1 ~^2\  — the conditional density of Xi  and X2 given that 

they are a distance r apart and f{r) is the marginal density for \Xi — Xgl- Using 

(2.20), the constraint shown in eq. (2.19) becomes 

2n(n-l)[r-2s2 + 0(T-2)], 

X +  r) I{x  +  reA)  +  ̂ {x ,  x— r) I{x  — reA)]dx  

^  ( i  ^) / (a:  +  reA)  +  (f ){x ,x  — r ) I{x  — reA)]-^dx^  

T  f 
'• 2  +reA) f i2{x i ,X2 \  \ x i  - zg l  =r) f{r )dx i  

T  r  
+  2 -  reA)] f i2{x i ,X2 |  \xi  -  X2\  =  r) f{r )dx i  . 2 1' i 1 

= TE{<I>{X i ,X2)  I |%i  -  %2l  =  r) f{r )  (2.20) 

E[^,(Xi, X2) I |Xi - X2I = r] = (2.21) 
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Constraint (2.21) fixes 'E{(f){Xi,X'^] so it is equivalent to minimize var[<^(X2,%2)] 

subject to the constraint (2.21). Note that 

is fixed. The first term in (2.22) is always nonnegative and so is minimized at 0. This 

term equals zero if and only if 0(Xj,X2) is measurable with respect to — Xgj. 

So the solution to the problem of finding the optimal 0(*, •) is to find a symmetric 

function that satisfies the following conditions: 

1. 4>{x ,y)  is uniformly bounded as T increases; 

2. y)  =0 for [a; - yj > t ;  

3. <f){x ,y)  is measurable with respect to |a; — î/|; 

4. ( j ) {x ,y )  satisfies (2.19). 

By satisfying these four conditions, an (approximately) optimal solution is found. 

2.3.3 Improving the initial estimator 

We start with the following function based on the temporal analogue to Ohser 

and Stoyan's estimator for the K function (1981), discussed in Section 2.3.1. Define 

var(iA(Jfl,X2)] = E[var(,^%,%2) | -XgDI 

+ var[E(^(Xi ,X2)\\Xi-X2\)]. (2.22) 

But if </>(•, •) satisfies (2.21) then 

var[E(^(A'i,%2) I 1^1 -^2!)] = var 
' i { \x i -x2 \<ty  

,2r/(|Xi-X2|). 

HXi,X2)  = 
TI{ \X2 - at, I < <) 

2(r - 1X1 - X2I) • 
(2.23) 
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See Appendix C for a proof that this function satisfies the conditions laid out in 

Section 2.3.2. 

The first step in constructing the new estimator of the K function is to find the 

function gQ{x,(f)) referred to in eq. (2.13) of Theorem 1. Recall that Xi and X2 are 

independent and uniformly distributed on the region of interest A = [0,T]. Since 

Xi, X2 are independent we have that 

f (x2 \Xi  =x)  = i/(0 < 12 < T) ,  

from which 

rT I ( \x2-x \<t)  
J o  2(T -  \x  -  X2\) ' " '2  

Therefore, 

(n — 1)[2 log(T) — log(T — <) — log(T — a;)] , for 0 < % < ( 

90(%, 4>)  = ' (n - 1)[2 log(T) - 2 log(T - t ) ]  , foTt<x <T- t  (2.24) 

(n - 1)[2 log(T) - log(T - t )  —  log(a;)] , f o T T - t < x < T .  

The final piece needed is 

^ (n - 1)[2 log(T) - log(r - t ) -  log(T - x)]dx  
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f jn  ^ 
+ ̂  (n — l)[21og(r) — 21og(T — <)]dx 

fT 
+ - l)[21og(T) - log(T - t ) -  log(a;)]rfa; 

= (n - l)[2Mog(T) - t log{T - t )  + {T- t )  log(T Tlog(T) 

+ T] + (n - l)[2riog(T) - 4Hog(r) - 2riog(T - t ) +  4(log(T - t ) ]  

+  {n- l )[2 t log(T)  -1 log(T -1)  - r log(T)  +  T +  (T -  f)  log(T -1)  

- (T - i)] 

= 2(n - (2.25) 

Theorem 1 suggests as the estimator of the K function; 

#) = 
a2T 

which is unbiased for all stationary point processes. However, in most situations, A 

is unknown and must be estimated by A = (n/T). Thus, we propose 

K{t)  — 
t .  

Stein(1993) shows from simulations that the bias of this estimator is much smaller 

for the homogeneous Poisson process than for the Poisson cluster process. 

Using the <!>{•,•) defined in (2.23) and the results (2.24) and (2.25) we have 

K ( t )  — E 
TI{ \ t j  - t j \  < t )  

- (n -1) Z [2 log(r) - iog(r - i) - iog(r - ;,)] 
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+ E [21og(r)-2Iog(T-f)] 

+ E [21og(T)-log(T-i)-log(fi)l-
2t  

n-
T- t<t i<T 

This can be simplified somewhat to: 

#) = 4  1: 
TI{ \ t i  -  t j \  <  i )  

- (n - 1) 2n log(T) - n log(T -1-H) 
0<t j<t  

Of 

Z log(T-t)- Y. 
t<t i<T- t  T- t<t i<T ^  

In Appendix D we verify that, conditional on n, 

varn(i^(i)) = 
2T^{n - 1) '1 2{T- t ) '  T \ _^2tT + t^ 

(2.26) 

(2.27) 
\ 2  T  J " ° \ T - t J  '  t 2  

This variance is increasing in i as can be readily seen in Figure 2.2. 

To find a transformation of the %-function estimator that has (at least relatively) 

constant variance under CTR, we again apply the ̂ -method. Let V(t) be the variance 

function given in (2.27). Then 

V ( t )  «  +  M a ^ , 2  

Solving the following integral for g{y)  should give an approximate variance-stabilizing 

transformation: 

g { y )  =  r  
0 (y(a;))l/2 

dx  
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Figure 2.2; Variance of improved temporal JC-function estimator, given by (2.26). 
The variance is in units of and units of t are seconds. 
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Using only the first term of the Taylor series this gives: 

.3 \ 1/2 
g{v)  =  2c 

w-
5T{n -1)  

y  

from which the transformation 

9{y)  =  

is suggested. The transformation becomes quite a bit more complicated if the first 

two terms of the Taylor series are used, giving 

,3 \ l /2 f  /25T(n-l)2 25(n-l)2 
9 { y )  =  

TV-

5(n — 1) 
log 

\ 
w-

-y  +  - y  

, , 5r(n-l)' 
n" n" / 

which suggests the transformation: 

g{y)  =  log ^2 {y{T +  2/))^/^ + 2y +  T^  .  

Again, we will use the simpler square root transformation. The variance for 

whi le not constant, increases at a much slower rate than the variance for K{t), and 

is represented approximately by 

var (Â:(t)l/2) « ' 

where V{t)  is given by eq. (2.27). Therefore, 

/ 1 
var 

T ^ j n  -1) 

2tr f i  

'1 2{T- ty  T  \  2tT + 
+ (2.28) 

2 J' ' j,2 

We illustrate in Figure 2.3 that the (approximate) variance for as given by 

(2.27), is indeed much more stable than that of K{t) \  cf Figure 2.2. 
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Figure 2.3: Variance of the transformed temporal /^-function estimator, 
Units of the variance are t, units of t are seconds. 
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2.4 An Example of the Use of Temporal K Functions 

2.4.1 Preliminary explanation of the data set 

The following application is an example where temporal K functions offer differ­

ent, and possibly more important information than traditional statistical approaches. 

Stated simply, the problem is to find possible physiological/neurological side effects 

of drugs (e.g., Mullenix, Kernan, Tassinari and Schunior (1989)), but in the early 

stages of testing it is unknown what type of side effect might occur in any particular 

experiment. This has led to an exploratory stage where the researchers look for be­

havioral changes, believing that such changes point to the occurrence of some type 

of physiological/neurological change. 

Experiments were run by separating rats into two groups, a control group and 

an exposed group, and at some relevant point in time observing the rats in pairs, one 

control and one exposed, for 15 minutes in a novel environment. The pairing is not 

done because of similarities between rats, but rather, to help control for environmental 

differences across observation times. The actions for each rat, for each second of 

the time period are recorded by a computer pattern recognition program leading to 

an observational vector of length 900, each unit of which represents the value of a 

categorical variable, "body position," corresponding to the rat's act at the beginning 

of that second. The possible values for this variable are: stand, sit, walk, rear, and 

lying down. Originally, researchers looked at statistics representing the total time 

the rat spent performing each act (or body position). They then added a statistic 

that represented the number of times that each act was initiated. 

Wender (1971) showed that some types of behaviors, such as hyperactivity in 
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children, will not be discovered using only these measures. Hyperactivity has been 

traditionally seen as a state of increased motor activity, but this sense of increase 

comes from the behavior occurring in a different pattern than normal. The temporal 

K function is useful in helping to identify differences in the patterns of events. In 

this article we demonstrate the use of the temporal K function by analyzing the act 

"stand." We start, in Section 2.4.2 by analyzing the iC-function estimates of just one 

group of rats and we show that the null hypothesis of CTR is an appropriate model 

for  a  cont ro l  group.  We go on  in  Sect ion  2 .5  to  g ive  a  technique  for  us ing  the  K 

function to detect differences between two groups of rats. 

For this analysis, the events of interest are the in i t ia t ions  of the act stand. The 

duration of time that the rat stood continuously is not of interest here. Thus we 

concentrate on patterns of stand initiations. To do this, the original data vector was 

first recoded with O's and I's, where 1 represented the act stand, 0 anything else. 

We then eliminated excess "stand times" by deleting all I's occurring consecutively 

just after the initial 1. The time periods deleted could not possibly contain an 

initiation since, to initiate an act, the rat must first have been doing something else 

immediately preceding the initiation. The final data vector is a string of O's and I's 

with the I's occurring as singletons. Using this technique, the original data vector 

can be transformed to allow analysis for any one particular act. 

2.4.2 Analysis 

Each rat has its own estimated K function which can be calculated using eq. 

(2.26). As pointed out in Section 2.3.3, this estimator has a rapidly increasing vari­

ance as t increases. Instead of using K{t), it is better to use the square-root transfor­
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mation. For this application, the null hypothesis is lack of pattern in the initiations, 

or CTR. Under CTR, we have shown in Section 2.3 that K{t) = t, which leads to 

— (1/2. It is common, instead of using the K function or its square root, 

to use the function 

L{t )  = [K(()]V2 _ fl/2. (2.29) 

Under CTR, L{t )  = 0 for all which means that departures from CTR are easily 

interpretable and seen graphically. Using the i-function estimate based on eq. (2.29) 

and eq. (2.26), departures from CTR are often consistently positive or consistently 

negative: A positive departure implies that the events are more clustered, while a 

negative departure implies that the events occur in a more regular fashion. In reality, 

the L-function estimate will have a small bias because the if-function estimate has 

a small bias (Stein, 1993) and because of the nonlinear square root transformation, 

but this bias should be minor. 

In preparation for testing the null hypothesis of CTR for control rats, %-function 

estimates were calculated using eq. (2.26) for 20 rats that were observed as controls 

with no treatment whatsoever. These fC-function estimates were then transformed 

into L-function estimates using eq. (2.29). Under CTR, eq. (2.28) gives the vari­

ance of the L-function estimator. However, A must be estimated, here by n/T, and 

since each rat had a different total time after the original data vector was recoded, 

each Z/-function estimate will have a different estimated variance. For comparison 

purposes, the 20 L-function estimates were standardized by dividing each estimate 

by its standard deviation at every time point; the standard deviation was computed 

using eq. (2.28). 

Before proceeding with the more formal statistical analysis, we provide a graphi-
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cal analysis. Figure 2.4 shows the 20 standardized L-function estimates for this group 

of control rats, as well as the theoretical value (namely zero) for the L function under 

CTR. Several points need to be made about this plot. First, the X-function estimates 

appear to be close to the line at zero but, there are several L functions that are quite 

positive. These are indicative of a possibly troublesome component of error caused 

by rat-to-rat variability. 

We now address the question of how to judge analytically whether CTR is an 

appropriate model for the control rats. We use a signed area measure between each 

estimate and the hypothesized L function at 0. This area is computed as follows: 

the area where the estimate lies above 0 is positive, the area where the estimate is 

below 0 is negative, and the two areas are then summed. Under CTR, the L-function 

estimates should hover around 0, and, therefore, the average signed area should be 

close to 0. 

It was hoped that the distribution of the average of the 20 areas would be 

something close to normal so that the normal distribution could be used in the 

test of the null hypothesis that the average area is zero. To judge the normality 

of the distribution of the average signed area, 5000 bootstrap samples of size 20 

were chosen with replacement from the original sample, and the 5000 average signed 

areas were calculated. From the histogram in Figure 2.5(a), the distribution appears 

to be slightly right skewed but the normal plot in Figure 2.5(b) confirms that the 

distribution of the averages is approximately normal. 

To test whether the pattern of stand initiations in control rats follows CTR, a 

standard one-sample hypothesis test was performed on the set of 20 areas, where 

the standard deviation of the bootstrapped means was used as an estimate of the 
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Figure 2.4: Standardized Z-function estimates for 20 control rats. Each solid line 
represents one rat. The dashed horizontal line is the L function un­
der CTR. Units on the horizontal axis are in seconds and units on the 
vertical axis are in (seconds) 
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average area average area 

Figure 2.5: Two figures for a sample of 20 control rats. The histogram in (a) shows 
the bootstrapped distribution of the average area between the standard­
ized L-function estimates and CTR, while the normal probability plot 
in (b) compares this distribution to the normal distribution. 
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true standard deviation of the average area. The usual (-statistic with the sample 

standard deviation in the denominator is not acceptable in this case because of the 

occasional rat with an unusual L function. In the presence of outliers, the (-statistic 

will not have the usual (-distribution, but often, a skewed distribution, and therefore 

cannot be used as easily. By using the standard deviation based on the bootstrapped 

sample, we get a much more stable estimate for the true parameter than the sample 

standard deviation, allowing the z-score to be approximately normally distributed 

(Hall, 1988). The z-score for the test was 1.018 with a p-value of .3087. The results 

suggest that the mean of the average signed area between the L-function estimates 

and CTR's L function is zero and, therefore, that a CTR model is appropriate. 

2.5 Comparing Two Sets of K Functions 

In Section 2.4, we gave a method for comparing a sample of L-function estimates 

to an hypothesized value. We also established that CTR seems to be a reasonable 

assumption when describing the events of stand initiations in a group of control rats. 

However, most often the researchers wish to judge the effects of a specific treatment 

on the behavior of the rats. Therefore, an exposed (to treatment) group and control 

group of rats are compared; the rats in the control group have, themselves, had 

some sort of treatment (i.e. injected with saline solution when the "treated" rats 

were injected with the drug of interest). The result is that the control rats may not 

be exhibiting truly normal behavior. If normal behavior and CTR are equated, we 

might expect to see some departure from CTR, even among control groups. So, for 

this type of experiment, a method is needed to compare estimates from the control 

group with those from the exposed group. We now provide a method that can be 
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used when the data are paired; that is, one control observation is paired with one 

treated observation. 

There are two possible approaches to comparing two sets of (standardized) L-

function estimates. The first would be to compute some sort of area between each 

pair of estimates. The average signed area would be zero under the null hypothesis 

of no difference, so a test based on the average signed area would be easy to use and 

interpret. However, there are cases where this approach would not pick up potentially 

in teres t ing  d i f ferences .  For  example ,  one  of  the  pa i r  of  ra t s  could  have  a  very  s tab le  L 

function while the other rat's L function might oscillate above and below the stable 

estimate. A test based on the average absolute area is difficult to implement, because 

it is unclear what the mean value is under the null hypothesis of no difference. 

The second approach (and the one we take) is to compute areas between each of 

the rats' standardized L-function estimate and a third entity (for this example, the 

CTR L function), compute the difference in area for each of the pairs and average 

these differences across pairs. In an attempt to pick up any type of difference, we use 

two types of areas separately, both the positive (the area where the estimate lies above 

the CTR L function) and the negative (the area where the estimate lies below the 

CTR L function). We chose these areas rather than the signed and absolute areas 

because of their interpretation. Generally, L functions that are positive represent 

events that are more clustered, while L functions that are negative represent events 

that are more regular. It should be noted that the signed and absolute areas are 

simply linear functions of the positive and negative areas. The method results in two 

test statistics, the average difference between positive areas and the average difference 

between negative areas. The test of no difference between control and treatment rats 
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is then based on two-sided paired comparisons of the two types of areas. 

We shall use two different data sets in this section, a control-control data set, 

and an exposed-control data set. First, the data used in Section 2.4 is actually one 

half of a control-control data set; recall that a z-score of 1.018 and a p-value of 

.3087 were obtained. The hypothesis test from Section 2.4 was also applied to the 

second half of the data set with the resulting z-score of .2711 and p-value of .7863. 

This indicates that both groups of the control-control can be modeled by CTR, as 

expected. The second data set comes from an experiment where each of the 20 pairs 

of rats consisted of one rat injected with 1 mg/kg of d-amphetamine, a drug known 

to cause behavioral differences, and the other rat was injected with an equal amount 

of saline solution. The hope is to detect a difference due to the d-amphetamine while 

controlling for the effects of the injection. 

Figure 2.6 gives an idea of how much difference can be expected in the L-function 

estimates from a control-control pair as opposed to an exposed-control pair. Figure 

2.6(a) is a plot of the standardized L-function estimates of a typical pair of rats in a 

control-control experiment, whereas Figure 2.6(b) shows a typical pair of rats in an 

exposed-control experiment. It is clear that while some difference can be expected 

between two control rats, this difference is not nearly as large as the difference found 

between an exposed and a control rat. Figures 2.7(a) and (b) show the two samples 

separately. These two figures indicate that the exposed rats have events that tend to 

be more clustered than the control rats. 

We now illustrate the proposed method of analysis. As in Section 2.4, we used a 

bootstrap approach to find the distribution of the two average differences in areas. We 

did this for both statistics, in both data sets, using 5000 bootstrap samples. We start 
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Figure 2.6: Two pairs of standardized L-function estimates from rat behavior data. 
Plot (a) shows the L-function estimates from a typical pair of rats in 
a control-control experiment. Plot (b) shows the X-function estimates 
from a typical pair of rats from an exposed-control experiment. Units 
on the axes are the same as for Figure 2.4. 
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Figure 2.7: Two plots of standardized L-function estimates. Plot (a) shows the 
estimates for 20 control rats; plot (b) shows the estimates for 20 exposed 
rats. Units on the axes are the same as for Figure 2.4. 
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by examining the control-control results. Figures 2.8(a) and (b) give the histograms 

for the average difference in the positive area and average difference in the negative 

area, respectively, while Figures 2.8(c) and (d) give the normal probability plots for 

these same distributions. All four plots indicate that the two average differences are, 

at least approximately, normally distributed. This means that the usual two-sided, 

paired-comparison hypothesis test using the normal distribution is acceptable; the 

standard deviation of the 5000 bootstrapped values is used as the estimate of the 

true standard deviation. 

Figures 2.9(a), (b), (c), and (d) give the same plots as those in Figure 2.8 but 

for the bootstrapped distribution based on the exposed-control data set. Although 

the average difference in positive area shows a little skewness to the right, the normal 

plot is not far from a straight line, again indicating that the tests described above 

can be used. 

For the two data sets under consideration, the tests gave the following results; 

The control-control experiment has z-score for the mean positive area given by z = 

.3906 with a p-value of .6961, and for the mean negative area z = .9376 with a p-value 

of .3485. Some care must be taken because of multiple testing on a single data set, 

so we use Bonferroni's inequality to provide a conservative testing procedure. To 

test the null hypothesis of no difference at a = .05, we compare the p-values to .025. 

Clearly, in the case of the control-control data set, there are no detectable differences. 

The exposed-control set has z-score for the mean positive area given by z = 2.012 

with •p — .0442, and for the mean negative area z = —3.668 with p = .0002. Again we 

use the Bonferroni inequality and compare the p-values to .025, in order to provide 

an overall significance level of a = .05. For this set of data, we find a statistical 
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difference in the average difference in negative area. The differences were computed 

as exposed area—control area so with a negative z-score for the difference in negative 

area, the control rats had more negative area than the exposed rats. In other words, 

the exposed rats had events of stand initiations that were more clustered. We also 

note that the p-value for the difference in positive area, though not statistically 

significant at a = .05, is not far from being significant. The Bonferroni inequality 

guarantees that significance in any one of the tests results in an overall significance, 

and hence we declare the exposed rats' stand initiations to be significantly more 

clustered than those of the control rats. 

These two data sets illustrate that the tests based on differences of L functions 

(and subsequent bootstrapping), have low error rates. Not only are we able to detect 

differences between L-function estimates of exposed and control groups of subjects, 

we are also able to interpret the types of departures observed. 

2.6 Discussion 

In this article, we have adapted the K function (and L function) to a one-

dimensional setting, in which there already exist many classical statistical methods 

for the analysis of point processes (e.g.. Cox and Lewis, 1966; Snyder, 1975; and 

Karr, 1986). We now discuss the advantages of our approach over the more classical 

methods. Most are based on analyzing the length of times between points in the 

process (interarrivai times), usually by fitting them to a distributional model or 

testing their fit to such a model. The usual model fitted is a Poisson process, which 

results in an exponential model for the interarrivai times. The problem with this 

approach is that it does not take into consideration the patterns at different scales; 
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Figure 2.8: Four figures comparing 20 pairs of control rats. The histogram in (a) 
shows the bootstrapped distribution of the average difference in posi­
t ive  area  between the  s tandardized L-funct ion es t imates  and CTR's  L 
function, and the histogram in (b) shows the bootstrapped distribu­
tion of the average difference in negative area between the standardized 
L-function estimates and CTR's L function. Plots (c) and (d) give the 
corresponding normal probability plots. 
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Figure 2.9: Four figures comparing 20 pairs of rats, one in each pair is treated, the 
other control. The histogram in (a) shows the bootstrapped distribu­
tion of the average difference in positive area between the standardized 
Z-function estimates and CTR's L function, and the histogram in (b) 
shows the bootstrapped distribution of the average difference in nega­
t ive  area  between the  s tandardized L-funct ion es t imates  and CTR's  L 
function. Plots (c) and (d) give the corresponding normal probability 
plots. 
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its concern is only with the small-scale properties of the point process and it has 

difficulty detecting structure of a global nature. On the other hand, the K function, 

i > 0, is able to distinguish between patterns of the process at many different 

scales  t .  

There is one statistic offered by Cox and Lewis (1966) that does, at least, alleviate 

the problem of only looking at the small scale. If N{t) = number of points in [0,t], 

then the variance-time curve is defined as V{t) = var(jV(()); t > 0. In fact, from 

Section 4.5 of Cox and Lewis (1966), we obtain 

V (t)  =  Xt  — X^t^  Jo Jq  ̂Pr (event in {u,  u  + du] \  event at 0)dv 

= Xt-  ̂ 2(2  ̂  2a2 K{v)dv.  

Hence 

and so, in principle, knowledge of the variance-time curve is equivalent to knowledge 

of the K function. Because much is known about estimation of K{t), as well as 

hypothesis testing based on these estimators, the need for obtaining analogous results 

for V {t) is not so impelling. 

In general, the classical methods presented by Cox and Lewis (1966) have tests 

associated with them which assume the data come from one realization of a point 

process and a hypothesized theoretical distribution of this point process. Some of 

the tests, notably the Kolmogorov-Smirnoff test, based on the interarrivai times have 

been adapted somewhat to test the null hypothesis that two realizations of a point 

process follow the same distribution, by using the empirical cumulative distribution 

function (CDF) for the second process in place of the hypothesized CDF (Lindgren, 
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1976, p. 494). Karr (1986) also discusses estimation of a point process based on 

several sample realizations of that point process. Nevertheless, it would appear that 

none of the classical methods is currently able to do all that we have developed for 

the K function in Sections 2.4 and 2.5. 

In Section 2.4 we developed a method of analysis using L-function estimates to 

compare one group of subjects to the null hypothesis of complete temporal random­

ness (CTR). We computed the signed area between each L-function estimate and the 

L function of CTR. We then tested the null hypothesis that the true average area is 

zero. We concluded that the normal behavior of rats, as measured by the pattern of 

the initiations of the act "stand," can be modeled adequately by CTR. 

In Section 2.5, we gave a method of analysis for comparing two groups of subjects 

to each other. This analysis consisted of computing both the positive and the negative 

area between each subject and the L function of CTR. Then, the difference in area 

(for each type of area) between each pair of subjects was computed and hypothesis 

tests were performed to test the null hypothesis no average difference in area. We 

showed that, in a control-control experiment, this method finds no difference and in 

an exposed-control experiment where a difference is expected, one is found. 

It should be noted that the data sets we were using have samples of size 20. In 

looking at the average difference in areas, the central limit theorem is probably having 

an effect. We have no reason to believe that the differences are themselves normally 

distributed. In fact, as noted in Section 2.4, we expect some outliers indicating non-

normal data. So, before using these methods on smaller samples, some diagnostics 

should be performed. At the least, bootstrapping, as described in Section 2.4, should 

be done to assess the possibility of normality for the average difference. For the 



48 

case of only one subject, confidence bounds around the L-function estimate can be 

constructed using the variance function given by eq. (2.28). 

The examples used in Sections 2.4 and 2.5 illustrate a situation where researchers 

have known that traditional forms of analysis do not capture differences very well. 

It has been shown (Wender, 1971) that some types of behavior are characterized 

by a change in the pattern of act initiations. A jPT-function analysis will pick up 

such differences between two groups of subjects (or between one group of subjects 

and complete temporal randomness). In fact, researchers in this field began doing a 

type of analysis using K functions several years. Cressie (1991) discusses a similar 

experimental situation but using monkeys and gives a temporal analogue to a different 

/f-function estimator. Kernan, Mullenix, Kent, Hopper, and Cressie (1988) go one 

s tep  fur ther .  These  researchers  used a  temporal  analogue of  an  es t imator  of  the  K 

function from Diggle (1983) and tested for differences between two groups of rats. 

First they found an average iC-function estimate for each of the two groups. Then, 

to judge if those two averages were different, they picked eight values of t along the 

positive axis, calculated a test statistic at each of the eight points, and finally judged 

the two averages to be different if three or more points in a row showed a difference 

in the same direction. Kernan and Meeker (1992) used the same type of analysis in 

combination with several other types of more traditional analyses to get a broader 

view of the data and a more definitive answer to the question of whether any type of 

difference exists between the behaviors of the two groups of rats. 

We feel that we have improved on the analysis using the K function found in 

Kernan et al. (1988) and Kernan and Meeker (1992) in two ways. First, we have 

found an estimator that is not only better suited to the temporal case, but also an 
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approximate best estimator. Second, we have improved on the method of analysis by 

finding a way to incorporate all 40 estimates and for all t, in our testing procedure. 

Finally, we note several areas for further research. Kernan et al. (1988) used not 

only the K function but also a form of the cross K function as a way of looking for 

independence between the patterns of two acts. The derivation of an approximate 

best estimator for the cross K function would most likely follow similarly to that 

presented in Section 2.3, and likewise for the method of analysis presented in Sections 

2.4 and 2.5. We leave the verification to future work. We also note that, while the 

experiment described in this article is well-suited for this type of analysis, potentially, 

any experiment with an event process occurring over time could benefit from such a 

ff-function analysis. 
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2.9 Appendix A. Properties of the Initial Estimator 

In this appendix we compute the expectation and variance of the temporal ana­

logue to the Ohser and Stoyan (1981) estimator. First we show that E{K{t)) = t and 

therefore is unbiased under CTR. Letting B = Ylt -1- a^nd using factorial 
J J 

moment measures as described in eqs.(2.7) and (2.8), we have 

where 

E(5) = 

Jo £' T + 
= A 

+ A 

2 [H 1 . , /(%+< 1 . 
dtA 

r t I t j - tT  + t j—ti  3  

O fl ft A 1 fl 
+ ̂  JT-t L-tT + t,-t/*j-^L 

I 

T 

dti 

-d t .  
I  T  +  t j -  t j  3  

dti 

= >?L [log(T) - iog(r -(,.) + log(r) - iog(T -1)] 
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rjp  ̂

+ a2 jT [log(T) - log(T -1) - log(T - t) + log(T)] dti 

rT 
+ Jj ,_^  [logM - log(T - t ) -  log{t i )  + log(T)] dti 

= \\2t log(T) -1 log(T + log(T -t)-T + t-T log(T) + T 

+ 2(T - 2t)  log(T) - 2{r -  I t )  log(T -1) + 2tlog(r) - Uog(T -1) 

-  T l o g ( T )  +  T  +  ( T  -  f ) l o g ( T  - t ) - T  +  t ]  

= A^2(. 

Thus E{K{t) )  =  ̂ E(B) = 

We now proceed to calculate the variance of the estimator. The variance for B 

is given by eq. (2.9). We begin by calculating the pieces needed to compute (2.9). 

Si = 
r  < ( )  H \ h - t k \  < 4  

Ja^ T -  \t i  - t j \  T -  \ t j  -  tf , \  

_ [H 
JQ JO JO 

dt idt jd t j .  

—dt jdtk  
/O jO jO T t j  — t ^T - \ - t f ,  — t^  

rt^+t rtj^+t 1 1 

Jt i  J t i  T  + t i - t jT  + t i  -  tj ,  

fT- t  f t i  f t i  1 1 

Jt  J t i - t  J t i - t  T  + t j  - t iT  + t} , - t i^^ j^^^  "î  """ î  

f t i+t  rfj+i 1 1 

4 ' H  T  +  t i - t j T  +  t i - t ) .  1  ! =  

fT  f t i  f t i  1  ^  j s  
+ iT-t Jti-t Jti-t T+tj-tiT+t}.- ti 

fT fT 1 1 

i  Jt i  T  + t i  - t jT  + t i -  t j ,  J 

= j l  [(log(r) - log(T ~t i ) f  + (log(T) - log(T -1))2' dtA 
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These pieces are combined to obtain: 

var(B) = 4A^S'i + 2A^52 

= 4a3 [4(T - <) log (2^) + 4i] + 2a2 [2 log 

Then because yax{K{t) )  =  —^var(jB), 
4A4 

vax(A:(t)) = log + I + ̂  log .• 

2.10 Appendix B. Proof of Theorem 1 (Stein, 1993) 

Before we prove the theorem, we need the following lemma: 

Lemma 2.9.1: Fov gQ{x,4>) =2{n — \)'E[(j){Xi,X2)\Xi = z], 

.j),a(Xi) I =covn I ^ 
/ 

covn I: ̂ (X,.,%j),a(Xi) = covT^ E ̂ o%),a(Xi) | , 
/ y=i 

for every «(•) satisfying the following condition; 

jA^(x)d: X < GO. 

Proof: 

Taking the two sides of (2.30) separately, we see that 

/ \ 
covn 

VY; / 

= 2(n - l)cov[0(Xi,X2),o;(Xi)] 

and 

/ n \ 
covn 

Vi=i 
= cov(go(%i),a(A'i)) 

= 2(n - l)cov[E(<^(Xi,X2)lXi),a(Xi)] 

=  2{n- l )coY[<j>{Xi ,X2ha{Xi)] .  

(2.30) 



56 

We use this result now in proving Theorem 1. 

Proof; 

Eq. (2.30) implies that: 

f ^ f n 
covn H I = covn 

V=i  

or, that 

covn 
n 

Z - E |go(X^) - a-l/5„l.o(Xi) 
V#; ;=i 

= 0. 

This implies that for the smaller class of functions {a : a{x)dx = 0, 

and fj^a^(x)dx < oo} (2.31) also holds. Let 

n 
SolX)  =  E 'HXi ,X j )  -  Z MXj)  -  a -l/m] 

i yé j  j= l  

S(X)  =  •£  4>{Xi .X j )  -  Ê [g(Xj )  -  a- l / j ]  
j=l 

where both of these are unbiased for ( j ) {X j ,X j ) ) .  Because 

•So - <5 = E Is lXj)  -  a-l/j] - E [so(Xj) - a-^gg]  
j= l  j  =  l  

and 

we have eq. (2.31) 

and 

E((5o - 5) = 0, 

cov(5, 5q — 5) = 0 

var(5o) = cov(6Q,6) < [var(5o)var((5)]^/^. 

(2.31) 
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Prom this it follows that 

var(5o) < var((5). 

We thus conclude is that (Jg is a uniformly minimum variance unbiased estimator. 

Now we compute the minimum variance, first looking at the variance and co-

variance of several pieces. 

/ \ 

varn = n{n — l ){n  — 2){n — 3)a  

+ 4n{n — l)(ji — 2)0 ^5]^ 

+ 2n{n -  1)0-252 -  v?{n -

= n{n — l )[{n  — 2){n — 3)  — n{n — l )]a~^s '^  

+ 4n(n — l)(n — 2)0"^5^ + 2n{n — l)a~^S2 

= 2n(n -  1)[(3  -  2n)a~'^s '^  +  2{n -  2)o-^5i  + a~^S2] .  

varlE(0(A:i,X2)|Xi)l = 

= a~^var 

= j^a-^\j^4>{Xi,X2)dX.^dXi 

— a -2  

L 

4' (Xi ,X2)  
l A J A  

dX2dXi  

varn 
n 
E m ( X j )  

n 
= var» r g 2 (m- l )E(,^(X .̂,%2)K;) 

U=1 

= 4n(n-l)2var{E[0(Xi,X2)|Xi]} 

= 4n(n - l)^{a-^Si - a-'^S^). -4c2\ 
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cov 
n 

3=1 

= 2(n - l)cov Y. E ̂ [<t>{Xj,X2)\Xj] 
Wj J=1 
/ \ 

n 

— 2n(n — l)cov 

= 2n(n — l)cov 
n 
Z - 1) , Xg)|Xj], EMXi, Xg)IXJ 

U=i 

= 4n(n- 1)2cov{E[,^(Xi,X2)|Xi1,E[.^(X i,X 2 ) |X i]} 

= 4r.(n-l)2w{E[,^(Xi,X2)|Xi]} 

= in{n -  l)^(a~^Si  -

Putting these pieces together we obtain the final result: 

n 
var I Y. ^{Xi,Xj) - E 

\¥3 J=1 

\ 

= var 

= var 

n 

VT^j  j=l 

Z <l>{Xi,Xj) I +var 
\ ¥ j  

n 
Z  so(X j )  

\ j = l  

n 

i)1 - 2cov \ Y, 4-{Xi,XA, Y go(Xj) 
i = i  J  

= 4n{n — l)(n — 2)a'~^S'i — n{n — l)(4n — 6)a~^5^ + 2n(n — l)a~ 

+ 4n(n - l)2(a-35i - - 8n(n - l)^(o-3g^ _ ^-4^2) 
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— Ati{ t i  — 1) [71 — 2 + 71 — 1 — 2(71 — l)]o ^<5^2 + 271(71 — 1)[3 — 271 — 2(71 — 1) 

+ 4(71 — l)]o + 2n(ji — l)a ^*S'2 

= 271(71 - l)[a~^52 - 20-^51 + 

2.11 Appendix C. Properties of Temporal Analogue to Ohser and 

Stoyan's (1981) ( f>{x,y) .  

We now demonstrate that the four conditions stated in Section 2.3.2 hold for this 

function. The first condition states that <^(z, y) is uniformly bounded as T increases. 

For any given realization of this function, the constant t must be given and in fact it 

must be less than T. Start with a minimum Tg, (i.e. a minimum observation region 

[0,Tq]), and let t be some constant satisfying (e[0, cTg] where 0 < c < 1. Then for 

e v e r y  x ,  y ,  a n d  T > T q ,  

T I { \ x  - y \ < t )  
( l>{x,y)  =  

< 

2 { T - \ x - y \ )  
T 

2(T -1) 
To 

2{Tq -  cTq) 2(1 - c) • 

Therefore <l){x, y) is uniformly bounded as T grows. 

The second condition states that the function should be 0 for |.t — y\ > t. The 

indicator function in the numerator of (f){x, y) assures that this condition holds. 

The third condition requires that ( f>{x,y)  be measurable with respect to |a; — y|. 

But indicator functions are measurable, so the result follows. 
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Finally, <j){x ,y)  must satisfy (2.19). That is 

^  ^ + reA) + (f){x, X — r)I(x — r€A)]dx = I{r < t). (2.32) 

Substituting 

into the left hand side of (2.32) gives 

1 r T - r T I { r < t ) ,  1 f T T I { r < t )  I I r 
T J O  2(T-r) T J r  2 { T - r )  

dx 

=  I { r < t ) .  

Therefore, the given <^(z, y) satisfies all four conditions stated in Section 2.3.2. 

2.12 Appendix D. Properties of the Final Estimator 

In this appendix we compute the variance of the final estimator, discussed in 

Section 2.3.3. 

Since this estimator was obtained by using Theorem 1, this theorem can also be 

used to calculate its variance. Eq. (2.14) gives the form of the variance as: 

var = 2n(n - 1){T-^S2 - 2T-^Si + T'^S^), 

conditional on n. This means that 

1—2 c'_ oT"—3 c. I T"—4c2 
2 

vavniKi t ) )  =  ̂ 2n(n - 1)(T-^S2 " 2T-'^Si 
n 

We proceed by calculating S, 5^, and ^2 
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= - /* f /'• 
2 Jo Jo T  + t j  - t i  ^  

1 

T + t t:'"! 

T fT rti 1 , ft; 

- ^ 2  I t  [ j t i - t T  +  t j - t i ' ^ ^ j ^ I t i  

T  f  2" f^ i  1 y] 
"*"2 ir ~ Ju-t T + t^ -U Ju T + U- tA 

Z "J 

•^z+* 1 
T _l y 

T 1 

I 

du 

dU 

dU 

^ llo ~ ^og(^ - <%) + log(T) - log(T - t)]dti 

^ ̂  It — log(^ ~t) ~ log(^ — 0 + log(^)]'^^i 

+ f - log(^ - i) - Iog(4) + log(^)]«^^i 

= j{2t log(T) -1 log(T -1) + (T - f) log(T -1) - T +1 - Tlog(T) + T 

+ 2(T - 2t) log{T) - 2(T - 2t) log(T -1) + 2nog(T) - tlog(T -1) 

— T log(T) + T + (T — t) log(r — — T + t} 

= tr. 

Next, to compute 5]^ and S2 notice that the form of ( j ){ - ,  • )  used in this estimator 

is simply the version of (f>{-,-) used in the initial estimator multiplied by Ç. This 

means that we can take both the 5]^ and S2 computed in Appendix A and multiply 
rp2 

them by This gives: 

S i  =  T2(T- t ) log(^ ) - fT2 ,  

= Ç.os(^). 

We can now compute the variance of K{t) ,  conditional on n, as: 

var„(/i:{()) = 
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- P [T2(T-i) log ( 
T - t  

)- tT' 

+ 

2T^{n - 1) 

w-

'1 2 { T - t y  
+ 

2tT + (2 

t2 
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3. STATISTICAL TESTS FOR SIGNALS IN CATEGORICAL 

TEMPORAL DATA 

A paper to be submitted to the Biometrical Journal 

Ann Cannon and William Meeker^ 

3.1 Abstract 

In an attempt to discover differences in behavior between two groups of rats, 

one treated and one control, many different correlated test statistics are computed. 

Previously, a decision was made by determining which of the test statistics were 

significant. Kernan and Meeker (1992) created a single test statistic by counting the 

number of significant individual tests. This article goes further, giving two possible 

alternatives to the Kernan and Meeker (1992) statistic: the sum of the squared 

test statistics and a Wald-like combination of the test statistics using the covariance 

matrix. The asymptotic null distributions of all three statistics are given, as well as 

a method for computing simulated distributions using the bootstrap method. The 

use of all three methods are then demonstrated on each of three data sets. Finally, 

a simulated power study reveals that the Wald-like statistic is much better than the 

other two, leading to the suggestion of its use in place of the other two statistics. 

^Principal Author is Ann Cannon. William Meeker provided guidance throughout 
the project. 
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3.2 Introduction 

Over the years, several very effective medicinal drugs have been found to have 

serious side effects, often discovered long after the primary cure has been effected. 

Some of these side effects might have been detected by behavioral differences in 

the patient although the side effect is most likely physiological. Researchers have 

designed experiments using rats as an animal model to try to predict the possibility 

of a side effect measurable by a behavior change for drugs developed for humans. 

In this article we discuss such an experimental design and the analysis of the data 

received from it. We compare the current analysis technique with two new methods 

that we propose. 

3.2.1 Motivating experiment 

The specific design of the experiment is as follows (e.g., Kernan, Mullenix, Kent, 

Hopper and Cressie, 1988): pairs of rats were chosen, one in each pair injected with 

a saline solution, the other with the experimental drug. At some later point in time 

these pairs were observed as they explored a novel environment and their act or posi­

tion at the beginning of each of the 900 consecutive seconds was recorded. In earlier 

experiments, the experimenters used 900 still-frame photographs and visual discrim­

ination to code the photographs; more recently, experimenters have used television 

cameras and a computer pattern recognition system to do the coding. Observed 

behavioral differences between the rats provide evidence of physiological change. 

The data from this experiment was coded as follows. The behavior of the rat at 

each of the 900 time points was categorized into one of five body positions: standing, 

sitting, rearing, walking, and lying down; and one of the eight modifiers: blank (no 
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recognized activity), groom, head turn, turn, look, smell, sniff, and washing face. 

The combined set of 5 body positions and 8 modifiers are defined to be the set of 

13 regular acts. Norton, Mullenix and Culver (1976) reclassified each of the regular 

acts into one of three classes labeled "grooming," "exploratory," and "attention." 

Since each of the 900 seconds consists of two regular acts, both a body position and 

a modifier, Kernan and Meeker (1992) mapped the combination of body position 

and modifier at each second into one of the six combinations of two classes, e.g., 

"attention-attention," "attention-explore," "groom-attention." It should be noted 

that these new combinations did not reflect which classification each specific regular 

act had separately, merely the two classes that the two regular acts together repre­

sented. These six combinations are labeled the combined acts. Kernan and Meeker 

(1992) then used the information from both the regular acts (of which there are two 

for each time period) and the combined acts (of which there is one for each time 

period) in their analysis of the data. 

The experiment described above leads to a raw data set with observations on 2n 

rats, where n denotes the number of pairs observed. Each observation consists of the 

following information: a pair number, a treatment/control indicator variable, and, 

for each of the 900 discrete time periods, the values of the two categorical response 

variables that represent the body position and modifier, respectively, of the act that 

the rat performed. From these data the goal is to detect systematic behavioral 

differences that exist between the treated and the control rats. At this stage the 

amount of difference is not of primary concern, merely whether a difference, not due 

to usual rat-to-rat variability, exists or not. If a systematic difference is found, the 

researchers would use this as evidence that some physiological change may have taken 
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place and more testing would be done to find the particular physiological difference 

in question. At the outset of these experiments, the researchers often do not have an 

idea about what type of systematic behavioral difference might exist, so they look 

for any detectable change. 

3.2.2 History of the analysis from this type of experiment 

Several ways of quantifying data from this type of experiment have evolved. 

Originally, researchers simply counted the number of times that each act was initi­

ated (Kernan et al., 1988). Psychiatrists, however, found that the total time a rat 

performed an act, the average duration of the acts, and the time lapsing between ini­

tiations of an act were also of interest (Pohl, 1976; Baumeister, 1978). Wender (1971) 

also showed that some types of behaviors, such as hyperactivity in children, will not 

be discovered using only the number of initiations, the total time, the average dura­

tion and the time lapsing between initiations. Hyperactivity has been traditionally 

seen as a state of increased motor activity, but this sense of increase comes from the 

behavior occurring in a different pattern than normal rather than a true increase in 

activity level. An unexpected behavior pattern may lead to the appearance of more 

activity while the average amount of time spent doing each act is really the same 

as in a normal child (Pontius, 1973). In order to detect a difference in the pattern 

of the behavior from the expected pattern of behavior, Kernan et al. (1988) looked 

more into the structure of the observations, using a temporal analogue of the spatial 

statistic, the AT-function, to define what they called the time distribution of the acts 

and the time sequence of pairs of acts. 

Kernan, Mullenix and Hopper (1989) went one step further by looking at many 
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test statistics aimed at describing differences between the groups for various aspects 

of the data, hoping that by looking at many statistics, any possible behavioral dif­

ference might be detected. The researchers then based their conclusions on which 

statistics were found to be significant (Kernan, Mullenix and Hopper, 1989). The 

Kernan, Mullenix and Hopper (1989) method evolved into a new overall test statis­

tic, consisting of the ratio of the number of individual test statistics that were found 

to be significant to the number of tests done (Kernan and Meeker, 1992). By using 

a jackknife-type simulation method with control-control data, Kernan and Meeker 

(1992) computed the null distribution for this overall statistic for experiments con­

sisting of 17 and 20 pairs of rats. 

3.2.3 Analysis of similar experiments 

Others have also approached the problem of analyzing many possibly correlated 

test statistics. For instance, Westfall and Young (1989) approach the question of mul­

tiple tests by using resampling techniques to adjust the p-values (generally upward), 

considering both the number of tests being performed and the correlational struc­

ture between the test statistics, before determining which tests are significant. Their 

techniques are appropriate for the case of determining which of the individual tests 

is significant while still dealing with the multiplicity of the tests. They report that 

their procedure will have less power than global tests when there is a mild departure 

from the null for many tests, but that it will do better than global tests when there 

are great differences for a few of the individual tests. In our problem, the researchers 

are not yet interested in what the differences are, merely whether any exist. So for 

this stage, we believe that a global statistic like the ones we are about to suggest 
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make more sense. However, after it has been determined that a difference exists, the 

p-value adjustment may make sense in the second stage of determining the particular 

nature of the difference. 

Haccou and Meelis (1992) concern themselves with the same specific type of 

data set considered in this article, vectors of animal behavior data. They use a third 

approach to analyzing this type of data, namely a continuous time Markov-Chain 

model. Because they found so much animal-to-animal variability, Haccou and Meelis 

consider each animal as a separate data set and as being a realization of a (possibly) 

different stochastic process (pg. 4). Therefore their techniques are applicable, as 

outlined in Haccou and Meelis (1992), only for comparing two realizations, rather 

than two groups of realizations. We believe that under all of the variability lies the 

same signal (model) for each of the rats within a group and therefore have combined 

the information into one comparison. 

In Section 3.3 we outline in detail methods suggested by Kernan and Meeker 

(1992). We go on, in Section 3.4, to suggest two new statistics, giving asymptotic 

results for both the two new statistics and the one already in use, suggested by Kernan 

and Meeker (1992). Section 3.5 contains numerical results of the three statistics for 

three different data sets. Section 3.6 contains simulated distributional results of the 

three statistics and Section 3.7 is a comparison of the simulated power of all three 

statistics, from which we recommend the use of one particular statistic. In Section 

3.8 we discuss our results and suggest areas for future research. 
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3.3 Recent Developments for Data from this Type of Experiment 

Kernan and Meeker (1992) started by computing four types of individual statis­

tics for both the set of combined acts as well as the set of regular acts. These four 

statistics are: 

1. Number of Initiations. An initiation of an act was defined to be the first frame 

of the one or more consecutive frames where the animal performed the specific 

act. 

2. Total Time. The total number of frames where the act occurred. 

3. Time Distribution. A statistic describing the pattern of where an act occurs 

over time. 

4. Time Sequence of Pairs of Acts. A statistic describing the pattern of how a 

pair of acts occurs over time. 

These last two types of statistics are based on estimating the temporal analogue to 

the spatial statistic, the %-function. Kernan and Meeker (1992) used an estimator of 

the AT-function derived in Kernan, et al. (1988) to define both the time distribution 

and the time sequence of pairs of acts for the two groups of rats. The estimator 

for the temporal %-function in Kernan et al. (1988) has been improved upon and 

used in the development of a new estimator for the time distribution in Cannon and 

Cressie (1993) and this new estimator will be used for the analysis presented here. 

The related statistic for the time sequence of pairs of acts (based on the cross K-

function), using the new estimator for the iiT-function, has not been developed yet 

and so we will use only the first three types of statistics in the analysis presented in 
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Sections 3.4 through 3.7. Once a -function statistic for the time sequence of pairs 

of acts has been developed, it will be possible to include them in an analysis by using 

the results from this article. 

3.3.1 /^-functions 

Both the number of initiations of an act and the total time spent performing an 

act are straightforward to calculate. The time distribution, however, is complicated 

enough that we explain its background, meaning and use. The %-function, sometimes 

called the reduced second moment measure, gives a quantification of the spatial 

dependence between different regions of a stationary point process. For the type 

of experiment analyzed in this work, it illustrates the temporal dependence of the 

initiations of an act. The /('-function in two- or three-dimensional space is defined 

as: 

K{h)  = A~^£'(number of extra events within distance h of an arbitrary event) 

(e.g., Diggle, 1983, p.47). In time this becomes: 

K{t)  = A (number of extra events occurring within time f 

after an arbitrary event.) 

These functions are used to identify a structure in the pattern of initiations of 

an act over time. It is possible to find the same number of initiations and the same 

amount of time spent performing a specific act for treated animals as for control 

animals, but find that the pattern of the initiations of this act to be different. For 

example, one type of animal may have seemingly random initiations of an act where 

the other might display a nonrandom pattern. One use of /T-functions is in the 
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calculation of the time distribution of an act. This statistic is used to find any time 

dependence or differences in time dependence that might exist for the initiations of 

an act. 

The time distribution, as given by Cannon and Cressie (1993), is; 

Mt)  = 4 
n' 

- (n - 1) 2n log(r) - n log(r - i) - ^ log(T -) 

—  XI log(^ —  i ) ~  
T-t<ti<T 

(3.1) 

In this equation n denotes the number of initiations of the act and T denotes the 

total time over which the analysis is performed. This time, T, is, however, not 

the same as the total time that the rats were observed. The fîT-function analysis 

is performed only on the initiations of the act. The duration of time that the rats 

performed the act continuously is not of interest here. Thus we reduce the original 

data vector somewhat by eliminating the continuations of the act of interest after 

each of its initiations. T represents the length of this reduced data vector. Also, tj 

and tj are the ith and jih occurrences of the act, respectively, and I{\tj —tj\ < t) is 

1 (or 0) according to whether the pair of initiations of the act occurred (did 

not occur) within a time separation t .  K{t )  is evaluated for every integer value of t  

between 1 and 100 to get a full picture of the time pattern of the particular act in 

question. Evaluating (3.1) for small values of t gives the pattern of initiations on a 

small scale, detecting whether points close together are clustered, regular or random. 

Large values of t are needed to see the macro pattern of the initiations. Cannon 



72 

and Cressie (1993) developed paired test statistics based on the areas between these 

functions and the theoretical AT-function under the hypothesis of Complete Temporal 

Randomness. These statistics were found to be approximately normally distributed, 

at least in part, because of the central limit theorem. Cannon and Cressie (1993) 

also developed similar test statistics to compare a set of pairs of these functions; one 

in each pair coming from a treated rat, one from a control rat. 

Kernan and Meeker (1992) placed a restriction on the use of of the iiT-functions 

in order to limit consideration to those statistics for which there was sufficient in­

formation. Their rule for the calculation of the if-functions was to use only those 

acts that had an average number of initiations per animal of ten or greater for both 

the control group and the exposed group separately. They believed that acts with 

fewer initiations would not bring enough accurate information into the function. We 

continue to use this restriction. 

3.3.2 Kernan and Meeker (1992) approach for obtaining a single test 

statistic 

First each of the four statistics defined at the beginning of Section 3.3 had to 

be computed for each of the regular and combined acts (or pairs of acts) defined in 

Section 3.2. Because of the restriction on the use of K functions described above, the 

body position "lying down" was never used in the computation of the statistics "time 

distribution" or "time sequence". Therefore there were 13 "total time" statistics, 13 

"number of initiations" statistics, a maximum of 12 "time distribution" statistics and 

a maximum of 68 "time sequence" statistics computed using the 13 regular acts (5 

body positions and 8 modifiers) for a maximum of 106 statistics. There were also 
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6 "total time" statistics, 6 "number of initations" statistics, a maximum of 6 "time 

distribution" statistics, and a maximum of 30 "time sequence" statistics using the 6 

combined acts for a maximum of 48 statistics. The resulting maximum number of 

statistics for a data set is 154. Some of these statistics may not be calculated for 

every experiment of this type because of the restrictions mentioned above, but a large 

majority will be used. At this point, then, there were approximately 154 statistics 

to use in answering the question "Is there a difference between the two groups?" 

Kernan and Meeker (1992) suggested two ways of combining the statistics to help 

answer the question. First they created a vector X, of length at most 154, containing 

the statistics that can be used to test for differences between the two groups. Then X 

was mapped into a vector Y of O's and I's where a 1 signified that the corresponding 

element of X showed a statistically significant difference. 

At this point the analysis took into consideration the fact that each observation 

of the animals was used twice, once in the computation of the statistics for the regular 

acts and again for the combined acts. Because of this overlap, Kernan and Meeker 

(1992) divided their vector Y into two parts, Yj based on the regular acts and Yg 

based on the combined acts. They designated 5"^ and S2 as the sums and and 

T2 as the lengths of these two vectors respectively. In their example < 106 and 

T2 <48. The two statistics that Kernan and Meeker (1992) suggested are 

Because of the structure of the actual data analysis, will always be larger than 

RTOT = ̂ 1+^2 
T1+T2 

and 

RSQR 
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T2 which results in RTOT more heavily weighting the information from the regular 

acts. RSQR weighs each of the subvectors more evenly, possibly a desirable condition 

since each subvector, in some sense, summarizes the data set. 

Kernan and Meeker (1992), using previous control-control and control-treatment 

data and jackknife techniques, explored the distributional characteristics of both 

statistics. They found that there was an extremely high degree of correlation be­

tween RSQR and RTOT, indicating that either could be used. By using Monte 

Carlo calculations on a data set from a control-treatment experiment where a sys­

tematic behavior difference was known to exist, they showed that these statistics can 

be useful in determining whether a systematic behavioral difference exists or not. 

The simulation results presented in Kernan and Meeker (1992), however, only give 

procedures for experiments with 17 or 20 pairs of animals. They suggest that one 

might be able to interpolate, using their results, for 18 or 19 pairs, under a similar 

experimental design, but their work does not directly apply to other numbers of pairs. 

For experiments of other sizes more simulations would have to be run. 

3.4 Alternative Statistical Methods 

3.4.1 Background 

In essence Kernan and Meeker (1992) performed a number of two-sample hy­

pothesis tests and counted the number of tests that were found to be statistically 

significant. This count was used to determine the answer to the question "Is there a 

statistically significant difference between the two groups of rats?" Because the sam­

pling distribution of the overall statistic was not known, Kernan and Meeker (1992) 

used a jackknife-like resampling procedure to obtain critical values for the overall 
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test statistic. In this section we propose two alternatives to the Kernan and Meeker 

(1992) overall statistic. Here and in subsequent sections we will compare the three 

methods. 

Before proposing the new statistics, however, we suggest one change in procedure 

from Kernan and Meeker (1992). They used two-sample t tests, because the pairs 

of rats were chosen primarily for convenience of observation, as discussed in Section 

3.2.1. There is, however, a potential for correlation within pairs because the rats 

within pairs were observed together. This experimental design allows for possible 

uncontrollable differences between pairs. Although in the data sets used by Kernan 

and Meeker (1992) the within pair correlation did not seem to exist, the potential 

for such correlation does exist so we suggest using paired tests instead of two-sample 

tests. 

3.4.2 Test statistics defined 

Let i  = l,...,m be m statistics, each based on samples of size n and let 

i- — iH,n^ •••lim.n)'-

3.4.2.1 The Kernan and Meeker (1992) statistic. The Kernan and 

Meeker (1992) statistic can be defined as: 

m 

(3.2) 

where I  is the indicator function and n—1 1 — a/2 quantile of the t  

distribution with n — 1 degrees of freedom. 
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3.4.2.2 A statistic based on the sum of squares of t. The first compar­

ison statistic we suggest is the sum of the squared test statistics computed from the 

sample (which can also be thought of as a weighted sum of the original observed sum­

mary statistics with the weights being the individual standard deviations.). Define 

the first comparison statistic as: 

Ml _ 
^i,n- (^•^) 

i=l  

This statistic, while still rather simple to calculate, will likely carry with it more infor­

mation than because Sj' does not dichotomize the original information, and will, 

therefore, take into account the size of any departures from the individual hypotheses. 

However, like Sq, does not take into account the correlational structure between 

the test statistics. Because of this limitation, we suggest another possible statistic 

which is somewhat more complicated but which takes the correlational structure of 

the test statistics into account. 

3.4.2.3 A statistic based on a quadratic form in t. The second statistic 

we suggest is a Wald-like combination of the individual test statistics. To define 

this statistic, let S be the true covariance matrix associated with this set of test 

statistics and let S be the estimated sample covariance matrix and note that its 

spectral decomposition into its eigenvectors and eigenvalues is 

Ê = QÂQ' 

where Q is the matrix of normalized eigenvectors and Â is a diagonal matrix of the 

eigenvalues. Because the sample covariance matrix must be nonnegative definite, all 

eigenvalues are greater than or equal to 0 and the rank of the matrix is the number 
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of positive eigenvalues. For the problem at hand, S will usually not be of full rank 

and we will assume that the rank is known to be r. Partition the matrices Q and Â 

as 

Q - ( Qi Q2 ) ' 

/ - \ ( Ai 0 ) 
A = 

I 0 0) 

where Qi is of dimension p x r and Aj is of dimension r x r. Then, define 

Â = QiÂf IQ;. 

Finally, let 

(3.4) 

The statistic, while somewhat more complicated, takes the correlations be­

tween the original (-statistics into consideration. One result of using the correlations 

in the computation of the test statistics is that, for example, the statistic would 

treat the case where two non-correlated i's are both significant, differently than if 

two highly correlated t's are both significant. Neither nor Sj^ would distinguish 

between these two cases. The drawback to 5^ is that much more computation is 

involved and typically the matrix S is unknown and must be estimated from the 

available data. 

In Section 3.4.3 we discuss the computation of the statistics including the esti­

mation of S where necessary, the simulation of the distribution of the test statistics, 

and the computation of the critical values for hypothesis tests using the test statis­

tics. In Section 3.5 we compare the three statistics to each other for three different 

data sets. 
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3.4.3 Computation of the test statistics 

For a given data set the actual computations of the test statistics and Sji are 

straightforward following equations (3.2) and (3.3). requires more work because 

an estimate of the covariance matrix for the test statistics is required. We begin by 

discussing how to find an estimate of S which will be used both in the computation 

of S-[Y and in finding the critical values for all three test statistics. 

3.4.3.1 Computing the estimated covariance matrix. In order to esti­

mate the covariance between any two test statistics we need to have a substantial 

number of realizations of those two statistics. This could be done by conducting 

a sequence of complete experiments run under the same conditions, an event that 

is not likely to occur in practical applications. We can, however, approximate this 

process by employing the bootstrap method on the data set. For this purpose the 

bootstrap is implemented by choosing, with replacement, samples of rat pairs of size 

20 (the original sample size) from the original sample of rat pairs and recomputing 

the test statistics for each new bootstrap sample. In this way we create a collection of 

"re-samples" of the test statistics from which we can estimate the covariance matrix 

of the test statistics. The empirical covariance matrix computed in this manner will 

converge in conditional probability to the theoretical covariance matrix of the test 

statistics. For proof of that last statement, see Appendix A. 

For our purposes, we used 300 bootstrap samples to compute the covariance 

matrix. Although a larger number of bootstrap samples might be a little better, 

larger bootstrap sample sizes would add proportionately to the amount of computer 

time required for our simulations. We have chosen relatively small bootstrap sample 
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sizes for estimating the covariances because we have seen that the amount of Monte-

Carlo variance present does not affect the estimates very much. Later, when we use 

the bootstrap to estimate confidence levels and percentiles of simulated distributions 

we use a much larger number of bootstrap samples, because, for these purposes the 

Monte-Carlo variation does make a large difference. 

3.4.3.2 Computation of S^. The statistic 5"^ depends on the covariance 

matrix only through the positive eigenvalues and the corresponding normalized eigen­

vectors. So, once the estimated covariance matrix has been found, the eigenvalues 

and eigenvectors of S must be computed and the number of positive eigenvalues de­

termined. Typically, with matrices as large as we are dealing with, a computer is used 

to compute the eigenvalues and eigenvectors and rarely will any of the eigenvalues 

be found to be exactly equal to 0. It is clear that any eigenvalue that is of the order 

of or less can be safely assumed to be 0. But what about an eigenvalue on 

the order of 10~^ or We suggest looking at a scree graph of the eigenvalues 

(e.g., Cattell (1966)) which is a plot of the eigenvalues in descending order. Figure 

3.1 is such a plot for the EC-1 data set considered in Section 3.5. To determine the 

number of non-zero eigenvalues, we look for the last visible drop from one eigenvalue 

to the next and use all eigenvalues up to the point of that last drop. Of course this 

decision will depend on the resolution of the graph, but the results from the methods 

we present are not very sensitive to the exact number of positive eigenvalues chosen. 

After this point, the remaining eigenvalues should form an approximately horizontal 

line located at zero. For this particular data set we chose to use the first 20 of the 

eigenvalues and eigenvectors in the computation of For the other two data sets 
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discussed in Section 3.5, we chose 19 eigenvalues in the same manner. 

3.4.3.3 Computing the critical values for the three test statistics. To 

find the critical values for testing each of the three statistics, we rely on simulation 

of the distributions for the test statistics because the actual (non-asymptotic) dis­

tributions are not readily available. We show in Section 3.6 that the asymptotic 

distributions, while close, are not completely accurate representations of the test 

statistics computed from samples with the finite sample size of 20 as in the experi­

ment described above. 

Simulated distribution of 5^ and Sj^. The simulation process starts 

with simulating at least 2000 sets of the correct number of independent statistics 

(in our data sets, 26 statistics with a ijg distribution and 18-20 statistics with a 

standard normal distribution, depending on the data set used). We chose to use a 

simulated distribution of length 2000 because we will be using this distribution to 

compute critical values for hypothesis tests. With simulations of 2000, the upper 5% 

point was quite stable. But for critical values for tests with smaller values of a, a 

large simulation should be run. Let denote one of the 2000 vectors of simulated 

independent statistics and T* be the matrix with the in the columns. Then, to 

create samples of statistics which have the same approximate covariance structure as 

the data set in question, we standardize the statistics to have variance 1 (this means 

dividing the t statistics by 1.06, and doing nothing to the normal statistics). At 

this point we have 2000 sets of statistics which have the identity matrix, I, as their 

theoretical covariance matrix. In order to change these statistics so that they have a 

covariance matrix that is approximately S, we pre-multiply each set of standardized 
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Figure 3.1: Eigenvalues of EC-1 data set plotted in descending order. 
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statistics by the transpose of the Choleski decomposition of the estimated covariance 

matrix of the data set. The Choleski decomposition gives a matrix S such that 

S'S = Ê. So, given that 

var(t*) = /, 

var(S'f ) = S'lS = Ê. 

The result is a set of 2000 simulated samples of statistics which have been sampled 

from a set of statistics having the same covariance structure as the estimated covari­

ance structure of the original data. We use this simulated set of statistics to compute 

2000 simulated values of both S g and Sj^. We now have approximate distributions 

for S g and Sj^ that can be used to find the critical value for the hypothesis test of 

interest. If a is chosen to be less than .05, more simulations should be run. 

Simulated distribution of S^/•' The final simulation to consider is that 

of . Simulating a set of 2000 values for 5^ is not as straightforward as the process 

described above for Sq and Sj^ because depends on an estimate of S. In order 

to account for the variability introduced by estimating S in the distribution of 5^, 

a different estimate of S is needed for each simulation sample. Recall, now, that the 

original estimate of S was computed using a bootstrap method on the data set. It is 

not possible to use the bootstrap method on the simulation sample because we have 

no "raw data" from which to resample and recompute the test statistics. Instead, 

for each value in the simulated distribution we will simulate a set of statistics which 

have a covariance matrix which is approximately the same as the data set of interest. 

Call the vector of simulated statistics t. Then we will re-estimate the covariance 

matrix of the data set and use the eigenvalues and eigenvectors of the new estimated 
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covariance matrix along with t from above to compute 5"]^. The complete algorithm 

for computing the simulated distribution of S^/- is as follows: 

1. Compute an estimate of the covariance matrix of the test statistics: 

(a) Select a bootstrap sample of 20 pairs of rats chosen with replacement. 

(b) Compute the statistics which do not use the K function. 

(c) Compute a K-function statistic: 

i. Compute the non-standardized /C-function statistic 

ii. Select a bootstrap sample of 20 pairs of rats chosen with replacement 

from the 20 pairs in the sample. 

iii. Compute the non-standardized j^-function statistic of the bootstrap 

sample. 

iv. Repeat steps (ii) and (iii) Bi times. 

v. Use the non-standardized JC-function statistics from the Bi bootstrap 

samples to compute the variance of the /C-function statistics. 

vi. Use the variance computed in step (v) and the statistic computed in 

step (i) to compute the standardized /C-function statistic. 

(d) Repeat step (c) for each A'-function statistic to be used. 

(e) Save the vector of test statistics for the bootstrap sample. 

(f) Repeat steps (a) through (e) B2 times to get B2 vectors of test statistics. 

(g) Use the vectors of test statistics to compute an estimated covariance 

matrix. 
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2. Simulate a vector of test statistics under the null hypothesis using the original 

covariance matrix computed the first time through step (1) as the covariances 

among the test statistics. 

3. Repeat step (1) to compute a new estimate of the covariance matrix. 

4. Combine the products of step (2) and step (3) to compute a value of 5^ for 

the simulated distribution. 

5. Repeat steps (2)-(4) times to estimate the simulated distribution of 5^. 

In our computation of the simulated distribution we used = B2 = 300 

and J53 = 2000. Notice that step (1) is the original bootstrap technique described in 

Section 3.4.3.1. For each of the B3 = 2000 covariance estimates a bootstrap sample of 

size B2 = 300 is required. But for this particular type of data set, where /C-functions 

are being used, a third level of the bootstrap of size B-^ = 300 is required. Each 

statistic based on the T^-function estimate requires a variance estimate computed 

using yet another application of the bootstrap (Cannon and Cressie, 1993). We have 

limited the inside two levels of the bootstrap to 300 each. The computer time required 

for more samples becomes prohibitively large. 

We can now find the critical value needed to test the appropriate hypothesis 

from this simulated distribution of . Again, if a < .05 is chosen, more simulations 

should be run. 

3.4.3.4 Finding the critical values. 

Finding the critical value for 5jg. Care has to be taken when comput­

ing the critical value of 5^, as the statistic has a discrete distribution; we cannot 
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simply choose a to be, say .05, and find the value of S^ at the beginning of the 

upper 5 percent point of the distribution. For example, the 5 percent point would 

be the 1900th point of the sorted distribution assuming a simulated distribution of 

length 2000. Because is discrete the 1900th point of the simulated distribution 

gives size equal to .05 only if the 1899th position is a smaller integer than the one in 

the 1900th position. In other words, by choosing the critical value to be the 1900th 

largest point, the size of the test will be at least .05, but could be greater. There are 

two possible solutions to choosing a critical value for S^. 

The first option is to choose an a-level, say .05, sort the simulated values of 

Sq in increasing order and look in the upper tail for the area that is closest to and 

smaller than or equal to a = .05 which is defined by a jump in the value of Sq. For 

example, when sorting the first control-control data set, the 1900th position is the 

integer 10. So are several positions before the 1900th which means that by choosing 

10 as the critical value, the size of the test is really larger than .05. But at the 1908th 

position the value of 5^ jumps to 11. If we use 11 as the critical value then, we have 

a conservative test for a = .05. 

The second option is to randomize the test, using random numbers in the decision 

making process. For example, in the above example, there were 23 lO's before the 

"cutoff value" and 8 after. So, in a test situation, if the observed test statistic were 10, 

then the null hypothesis should be rejected with probability .26 and not rejected with 

probability .74. To decide whether to reject or not, use a uniform random number 

generator once to generate a number between 0 and 1. If the number is less than or 

equal to .26 then reject the null hypothesis. Otherwise accept it. Randomized tests 

are useful in theoretical studies, but rarely used in practice. 



86 

For this article we will use the first option discussed. For the simulated power 

study we will use the exact observed size for and compare to tests for Sj< and 

5'^ of the same size. 

Finding the critical values for Srp and S-\y. For Sj' and 5^, the 

critical value is simply the point in the simulation that represents the beginning of 

the upper 100 x a% of the distribution. That is, with a simulation of length 2000 

and a — .05, the critical value is the 1900th largest point. 

3.5 Numerical Results Comparing Test Statistics 

In this section we use three different data sets to illustrate the use of the three 

different statistics. We also compare and contrast the simulated null distributions for 

each test statistic based on bootstrapping from the three different data sets. Each 

of the data sets consists of 20 pairs of rats observed for 15 minutes as described in 

Section 3.2. Two of the experiments used here are Control-Control experiments, the 

third is an Exposed-Control experiment. We use a = .05 for all tests. 

• CC-1: The first control-control data comes from the Forsyth Research Institute. 

For this experiment, no treatment whatsoever was given to any of the forty 

rats. The observations took place between 10 am and 2 pm and were done 

under white light, making the rats think that it was daytime. Rats tend to 

be more lethargic during the daytime hours. The results of this data set were 

reported in Kernan, Mullenix and Hopper (1989). 

• CC-2: The second control-control data set was taken at the Iowa State Univer­

sity Veterinary Diagnostic Laboratory. Again, there was no treatment of any 
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of the rats. The observation was done between 10 am and 2 pm, but for several 

weeks prior to observation the rats had their time frame gradually adjusted 

until the observation time was "night" to the rats. These rats were observed 

under a red light, which made them continue to think it was night. Rats are 

more active at night. The results of this data set were reported in Hopper, 

Kernan and Wright (1990). 

• EC-1; The exposed-control data set was taken from an experiment run at the 

Forsyth Research Institute. For this experiment the treatment was an injection 

of 1 mg/Kg of d-amphetamine, a drug that is commonly believed to cause 

behavioral differences. The control rats were injected with a similar amount of 

saline solution. At this dosage level, it was believed that the d-amphetamine 

would produce hyperactivity. The results of this data set were reported in 

Mullenix, Kernan, Tassinari, and Schunior (1989). 

3.5.1 Test results using Sq 

The calculated value of Sq for the CC-1 data set was = 1 which is much 

less than the simulated critical value of 11, indicating that we should not reject the 

null hypothesis of no difference between the two groups of rats. Similar results were 

found in the CC-2 data set where = 0 and the critical value from the simulated 

distribution is 11. For the EC-1 experiment, Sjg = 22 and the critical value is 11 

which leads us to reject the null hypothesis and conclude that a behavioral difference 

does exist. These three conclusions are, of course, what we expected from the three 

data sets in question, knowing that there was no treatment in the first two and that 

the treatment in the third data set is expected to produce a difference. 
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We now compare the simulated distributions of Sq across the three data sets. 

The difference among these data sets is manifested in the covariance structure of the 

test statistics, but how great a difference that would translate to for the distribution 

of Sq was not completely clear at the outset. Figures 3.2 (a), (b), and (c) are 

the histograms of the three simulated distributions and show that while there are 

some small differences between the three data sets, the ranges and shapes of the 

distributions are all about the same. We do not compute the asymptotic distributions 

for SQ because this distribution requires too much computation for 44-46 statistics. 

3.5.2 Test results using S'jp 

The calculated value for Sj- for the CC-1 experiment is 5ji = 35.78. When this is 

compared to the critical value of 126.07 computed from the simulated distribution, the 

conclusion is to not reject the null hypothesis of no behavioral difference between the 

two groups of rats. Similar results are found in the CC-2 data set where = 23.87 

and the critical value is 113.36. For the EC-1 experiment Sj^ = 284.06 and the critical 

value is 111.37, strong evidence for a difference between the two groups. Again, the 

results agree with the expected results and with the results of Sq. 

Figures 3.3 (a), (b), and (c) compare histograms of the simulated distributions 

of Srp from the three data sets. As we saw for Sq, the general shape and range 

of the distributions does not change much from one data set to the next indicating 

similarities over the range of covariance matrices from the three data sets. However, 

we do see a bit more difference here than we did for Sq. As another diagnostic, we 

plotted the quantiles of each pair of data sets. Figure 3.4 gives the qq-plot for CC-1 

and CC-2. The straight line represents the model for which both distributions would 
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Figure 3.2: Histograms of the simulated distributions of the statistic Sq, based on 
data sets (a) CC-1, (b) CC-2, and (c) EC-1. 
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be the same. In this plot, we see that in the lower tail, the two simulated distributions 

are similar. In the upper tail, however, the distributions are somewhat different. This 

indicates that we could not substitute one distribution for the other when computing 

the upper quantiles needed to determine critical values for the hypothesis test. The 

results are similar when comparing the EC-1 data set to either the CC-1 or CC-2 

data set, although the differences between the two distributions in the upper tail are 

more pronounced. Figure 3.5 gives the qq-plot comparing the simulated distributions 

for the EC-1 data set and the CC-2 data set. Here, the distributions are somewhat 

different as the points fall in a straight line slightly different from the theoretical 

line showing equality and the upper tails are very different. This means that the 

distribution of Sjp seems to be sensitive to the type of experiment conducted, leading 

to the conclusion that any test based on Srp should use a critical value computed 

from a simulated distribution based on the same experiment. 

3.5.3 Test results using 6"^ 

For the CC-1 data set = 22.89 compared with a critical value of 32.41. As 

with the other two statistics for this data set, we fail to reject the null hypothesis 

indicating that there is no detectable systematic behavioral difference between the 

two groups of rats. Again, the results are similar for the CC-2 data set which has 

S-^y = 22.76 and a critical value of 33.47. The EC-1 data set does show a significant 

difference, again, as with the other two statistics, with = 82.95 compared with 

a critical value of 35.43. 

Even though these simulated distributions rely on more than the positive eigen­

values (they also depend on the corresponding normalized eigenvectors), the distri-



91 

o g 
o 
(0 0# 
o m o m 

0 o 
o #0 
CM 

O 

0 100 200 300 

Pc! 

Figure 3.3: Histograms of the simulated distributions of the statistic based on 
data sets (a) CC-1, (b) CC-2, and (c) EC-1. 
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Figure 3.4; QQ-plot of the 2000 values of Sj^ for the two data sets CC-1 and CC-2. 
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Figure 3.5: QQ-plot of the 2000 values of Sj' for the two data sets EC-1 and CC-2. 
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butions remain basically constant from one data set to another. Figure 3.6 shows 

the qq-plot comparing the CC-1 and CC-2 data sets. While the points do not follow 

exactly the straight line indicating that the distributions are the same, the points are 

not far from this line. The few outliers in the far right hand tail, which represent 

about the top 1% of the distributions, are most likely due to Monte-Carlo sampling 

variability. These results are encouraging because they indicate that the statistics 

based on the estimated covariance matrices from both control-control experiments 

have approximately the same distribution. This is expected because, as we show in 

Section 3.6.3, the asymptotic distribution for both data sets is the same. 

3.6 Asymptotic Distributions 

Throughout this section, as before, S signifies the true covariance matrix of the 

test statistics. Denote the eigenvalues of S by and let ^ will represent the true 

mean vector of the test statistics, the null hypothesis being that /x = (0,..., 0)'. 

3.6.1 The asymptotic null distribution of 

The statistic, Sq, is a count of the number of significant paired hypothesis tests. 

In other words it is the sum of m Bernoulli random variables with the probability 

of success equaling the a level chosen for use in the original hypothesis tests. In the 

case where all of the tests are independent of one another, Sq would simply be a 

binomial random variable with parameters m and a. In the case where all of the 

statistics are completely correlated, that is all correlations are equal to 1, 

0 with probability 1 — a, 

m with probability a 
Sb = 
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Figure 3.6; QQ-plot of the 2000 values of for the two data sets CC-1 and CC-2. 
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so is a Bernoulli random variable with probability of success a. For all other 

cases, the probability distribution is more complicated. 

Let a — (aj, ...,am) be the vector of decisions for the tests. That is, Uj = 0 if 

the zth test was not significant and aj = 1 otherwise. Then the discrete multivari­

ate probability density function for the vector of the m decisions can be written as 

(Bahadur, 1961): 

p(a) = a^i=l ®i(l — a f ^  ^i=l ̂ ^/(a) 

where 

/(«) = 1 + E +  Z n j k H ^ j ^ k  + - + n2...n^i -
i<j i<j<k 

with 

and 

a,* — (X 
^i = 

[a(l — a)]^/^ 

n j k  = 

'"12...n = . • • zn). 

Now, Sg = 2^2 is the statistic of interest. To develop the discrete probability 

density function for S^, let Af^ be the set of decision vectors which have exactly 

b decisions rejecting the null hypothesis. That is Aj^ = {a : — 6}. Then 
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(Bahadur, 1961) 

F r { S ^ ^ b )  = ^ p(a) 
aeAf, 

= a'>{l-a)"'-'' E fia). (3.5) 
aeAb 

3.6.2 The asymptotic power of Sg 

To calculate the asymptotic power of Sq one must first calculate the critical 

value of the statistic for a given a under the null hypothesis. Denote that critical 

value by be and let be the true probability that Cj = 1 under the alternative 

hypothesis. Then the asymptotic power of this statistic can be written as (Bahadur, 

1961): 

power^^ = Pr {^b > &c) = I] (1 - /(a) (3.6) 
aeAbc 

where be is the critical value and A^^ = {a : a, = 6c}- Because these calcula­

tions become prohibitively long as more test statistics become involved, we rely on 

simulation results in the Section 3.7 to compare the simulated power of the three 

statistics. 

3.6.3 The asymptotic null distribution of 

Now consider the second statistic, Sj^, the sum of the individual test statistics 

squared. Each of the paired tests for the number of initiations and total time was 

based on a sample of n pairs, leading to a number of (-statistics, each approximately 

following a Student's t Distribution with n — 1 degrees of freedom. The tests based on 

the JT-functions lead to test statistics that are approximately normally distributed. 
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We assume that, under the null hypothesis, when there is no difference between the 

two groups, each paired t test will lead to a central (-statistic and each K function 

test will lead to a standard normal statistic. Therefore, asymptotically (with large 

n), each statistic has a standard normal distribution. This in turn means that each 

statistic, asymptotically, has a Xi distribution. S'j', then, asymptotically, has the 

distribution of the sum of correlated random variables. Gordon and Ramig (1983) 

show that the distribution function of the sum of correlated Xn random variables can 

be evaluated as follows: 

Pr(a;i < S'y < zg) = F { x 2 )  -  F { x i )  

cos(n7r) fT riWrjCi)™ ^ 
m dt 

-(3.7) lim /• 
TT T-400 Jo 

where r ^ ,  r 2 ,  < t > i  and 9 are defined below; 

r-i(i) = [A^{t)+B^{t)Y'^ 

A{t) = cos(a;]^() — cos(a;2() 

B { t )  = sin(a;2i) — sin(a;j() 

'•2W = + 

a(t) = 1-4(2 Y, + •£ 

il<i2 h<j2<33<H 

4-... 4- (—1)^(2()^^ ^ ... • Xj^^) 
h<h<-<j2k 

and if m (the number of statistics being added) is even: 

m „ 

j=l jl<j2<33 

n <J2<-<J2k- l  
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TT 

where the Aj's are the eigenvalues of the covariance matrix S. If m is odd the last 

term of hit) is 

31<32<-<32M 

In this definition { t )  is the angle that lies in the quadrant in which { A { t ) ,  B { t ) )  lies, 

and has, as its angle of reference, arctan|5(f)//l(i)|. In other words, (f>i{t) is defined 

as follows: let arctem\B{t)/A{t)\ = 7 and i be the quadrant in which 

lies. Then 

where ||z/2|| signifies the greatest integer less than or equal to 2^2. Similarly 9 { t )  

lies in the quadrant in which {a{t),b{t)) lies and has, as its angle of reference, 

arctan \b{t)/a{t)\. It should be noted that this distribution depends on S only through 

the eigenvalues of S, so that two experiments with different values for S, but similar 

eigenvalue structures will have approximately the same asymptotic distribution. 

We now compare the simulated distributions for each of the data sets from 

Section 3.5 with the asymptotic distribution based on the same covariance matrix. 

Because the asymptotic distribution depends on the positive eigenvalues of the co-

variance matrix, as in Section 3.4.3.2, we assume that there are 19, 19, and 20 positive 

eigenvalues respectively for data sets CC-1, CC-2, and EC-1. 

Figures 3.7 (a), (b), and (c) compare the asymptotic null distribution CDF com­

puted using eq. (3.6) with the null distribution CDF computed using the simulated 

values of for each of the data sets. In all these plots the functions nearly overlap 

suggesting that they are very similar. Therefore, for , critical values for hypothesis 

tests could be computed using either the asymptotic null distribution or the simulated 



100 

null distribution. 

3.6.4 The asymptotic power of Sj^ 

We do not present a closed form of the asymptotic power of Sj^. The non-null 

asymptotic distribution of Sjp is that of the sum of correlated non-central variables 

which does not have a closed form to our knowledge. It would, however, be possible 

to simulate the asymptotic power. 

3.6.5 The asymptotic distribution of 

The Wald-like statistic, S\y, has, as its asymptotic distribution, a noncentral Xr 

distribution with noncentrality parameter {l/2)jJAf£, where r is the rank of S and 

A = is computed from the eigenvalues and normalized eigenvectors of S. 

The proof of this result can be found in Appendix B. Note that the null distribution 

(the central Xr distribution) does not depend on S, or even its specific eigenvalue 

structure, but instead, only on the rank of S. 

Figure 3.8 gives both the asymptotic distribution (a xf g) and the two simulated 

distributions for the CC-1 and CC-2 data sets. When looking at Figure 3.8, it appears 

that the simulated CDFs are not quite as close to the asymptotic CDF as for Srp, 

but are still quite similar. It does appear that the asymptotic CDF increases slightly 

faster than the simulated CDFs indicating that using critical values computed from 

the asymptotic distribution would be conservative and could therefore be used in a 

hypothesis test. It is also clear from Figure 3.8 that the two simulated distributions 

are very similar. The results above also hold when comparing the EC-1 CDF to the 

corresponding asymptotic CDF (a xIq)' 
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Figure 3.7: Asymptotic CDF and Simulated CDF for the three data sets: (a) CC-1, 
(b) CC-2, and (c) EC-1. 
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Figure 3.8: Asymptotic CDF (a xfg) and the simulated CDF from CC-1 and CC-2 
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3.6.6 The asymptotic power of 

The asymptotic power of 5"^ can be approximated from the asymptotic distri­

bution of as follows: 

Powerg^ = Pr(5|y >a;(r,Q;)) 

- Pr [xr > a;(r, a)] , 

where x { r ,  a) is the appropriate critical value for a central X r  random variable. There­

f o r e ,  l e t t i n g  F { x )  b e  t h e  C D F  o f  a  X r  r a n d o m  v a r i a b l e  a n d  l e t t i n g  5  —  f j A f x  

be the noncentrality parameter (Johnson and Kotz, 1970) 

Power_5^^ = > a;(r, a)] 

3.7 Power Study to Compare the 3 Statistics 

3.7.1 Computation of simulated power 

For this simulated power study, we limit ourselves to a sample size of 20 pairs (the 

typical sample size for these experiments) and several values of a chosen specifically 

for each data set dependent on the distribution of Sg, as described in Section 3.4.3.4. 

We also limit the alternative distributions to being the same as the null distributions 

but with a shifted mean. In fact, we look at the case where each element of ^ is 

shifted by the same standardized increment. That is, we look at the case where 

IX = /il, where // is, for example .25 instead of the value 0 from the null hypothesis. 
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Figures 3.9, 3.10, and 3.11 show the simulated power curves for the three models, 

each using a covariance matrix estimated in one of the three data sets, as the value of 

[x increases. Note that each model has a different value of a because of the simulated 

distribution of S'g, as described above, but we chose in each case to use the value 

of a that was closest to, but larger than .05. The value of the simulated power is 

computed though simulation for each of the three statistics at the nine points where 

the test statistics have means of 0, .25, .5, ..., 2.00, respectively. The curves have 

then been smoothed using a spline function. Technically, the simulated power could 

have been computed at more points so that a spline would not be necessary, but the 

simulated power of at each point took about 60 cpu hours to compute. 

3.7.2 Comparison of simulated power 

Initially we had two expectations about the comparison of the three statistics, 

both of which were realized, at least to some extent. The graphs comparing the three 

statistics for each of the three models used are in Figures 3.9 - 3.11. The expectations 

and rationales were: 

• Srp is more powerful than Sq. S j^ carries with it information about the strength 

of the significance which Sj^ does not have. 

• 5^ is much more powerful than either Sjp or Sq. S-^ uses the information 

about the correlational structure between the individual test statistics which 

neither Sq or do. And, like Sj-, S^r carries the information about the 

strength of the significance of the individual tests. 
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Figure 3.9; Simulated power curve for the model using the covariance matrix esti­
mated from the CC-1 data set 
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Figure 3.10: Simulated power curve for the model using the covariance matrix esti­
mated from the CC-2 data set 
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Figure 3.11: Simulated power curve for the model using the covariance matrix esti­
mated from the EC-1 data set 
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Because the power for this study was computed through simulation, an estimate 

of the Monte Carlo error was computed to check the variability of the simulated power 

calculations. To compute the Monte Carlo error, one point on one simulated power 

curve for S^r was chosen and replicated 8 times. We chose to use since it should 

have the most error associated with its simulation due to the sub-bootstrapping. 

These 8 values of power had a mean of .84 and a standard deviation of 0.0055, 

indicating that the error due to simulation was quite small. 

3.7.3 Conclusions from the simulated power study 

From the three data sets used in this article, we have shown that S'jp does 

about the same as (though usually slightly better than) Sj^, as expected. Also, S^r 

performs much better than either Sj^ or under all three proposed models. This 

suggests that is superior to the other two statistics and should be the statistic 

used for analysis of this kind. 

3.8 Discussion and Areas for Future Research 

In this article we have defined and compared three test statistics designed to 

combine the information from many dependent hypothesis test statistics into one 

test statistic. These three statistics are: Sg, a count of the number of significant 

individual tests; Sj", the sum of the squared individual test statistics; and 5|y, a 

Wald-like combination of the individual test statistics, making use of the statistics' 

covariance matrix. has been in use in this type of analysis for several years (e.g., 

Kernan and Meeker, 1992). 

We have shown through simulation studies using covariance matrices based on 
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three real data sets, that the simulated power of S-^ is much higher than that of 

either 5^ or Srp. We also found that Sj< is generally slightly better than 5'g, though 

the difference is not great. These results lead us to suggest using S-^. 

The problem that we attempted to address by creating one test statistic out of 

a set of hypothesis tests, was the problem of multiplicity of hypothesis tests. If 20 

tests are performed at a = .05 and if all null hypotheses are true, we would "expect" 

to see one false positive. In other words, the size of the combination of the tests will 

be much larger than the size of the individual tests. 

There are several other methods available for dealing with multiple hypothesis 

tests. Perhaps the simplest to use is Bonferroni's method which adjusts the a-levels 

used for the individual tests to ctQ/k, where k is the number of tests and ag is a 

conservative estimate of the overall a-level of the combined results. This method 

gives results based on a conservative a-level and does very poorly for large k. Each 

of our three tests does better than Bonferroni because we have large k and are able 

to use an (approximately) exact a-level. Also, the Bonferroni method does not take 

the correlational structure between the test statistics into consideration, whereas S^/-

does. 

The work done for this article has brought to light several areas for future re­

search. One question that we have yet to answer is how the length of the observation 

period would change the power of the statistics. Most likely a shorter period of ob­

servation time would not be preferred because more variability would be introduced 

into the data. And, 15 minutes was chosen because, in practice, once rats become 

used to an environment they reduce their level of activity so much that little more 

information could be gained. But, perhaps after 15 minutes they could be moved to 
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another novel environment and observed for a longer time period. 

One problem that arose in this research is that there was much rat-to-rat vari­

ability. In order to reduce this variability somewhat, we suggest, when possible, 

observing both the controls and the treated rats before administering the treatment 

and then observing them all again after the treatment. This is not always possi­

ble because frequently the treatment is given to pregnant rats and the offspring are 

observed. Also, the question of the novel environment occurs. If the rats are put 

into this environment as controls and then again as treated rats, the second time the 

environment is no longer novel. For this type of design, a second novel environment 

must be constructed that is similar enough not to give an environment effect, but 

different enough to be novel to the rats. 

A third question is which test statistics to include in the overall statistic. In this 

article we have addressed combining information from several applications each of 

three types of statistics. Kernan and Meeker (1992) used four types in their analysis. 

We have not done a comprehensive study on which individual statistics to include. 

There may be unnecessary redundancy or there may be other statistics, not yet 

considered, that should be included. 
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3.11 Appendix A. Convergence of a Sample Covariance Matrix 

In this appendix we prove that the estimated covariance matrix of a set of test 

statistics computed by bootstrapping the original sample (as described in Section 

3.4.3.3) will converge in conditional probability to the theoretical covariance matrix 

of the original test statistics. To see this, let Xi,X2,.. .Xn be the original sample 

of n vectors of paired differences and let 

r _ (ĵ nk ~ 

where X^^j, is the sample mean of the kth. statistic, is the sample standard 

deviation of the kth statistic, and 5n is a sequence for which <5^ —> 0 and nS^ -4 oo. 

This statistic is slightly different than the usual definition of the t statistic because 

the variance and covariance of t statistics are not always defined. The use of the 

sequence, 5n, assures the existence of the relevant variances and covariances. In 

practice will be the same as the usual t  statistic (notated here by t ^ j ^ )  because 

ôfi can be taken to be very small. And, we will show that the limit of the covariance 

matrix based on the vector of is the same as the limit of the covariance matrix 

based on the vector of (^^'s as n oo. We will assume that E { X ^ j , )  < oo for all k .  
f ?) f 7) 

Let ', ̂ 2 ) • • • ^n be the jth bootstrap sample taken from , X2,... Xn 
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and define 

° f A,. 

Letting j = 1,... iV, we compute the estimated covariance matrix from the N boot­

strap samples as 

s k = j f t  (tn!*'-i:*'')'. 

We will show that 2^^ is a consistent estimator for S, the true covariance matrix of 

the original test statistics. We start by finding E. Then we show that converges 

to E. Finally, we show that E^^, the estimated covariance matrix based on the usual 

bootstrap t-statistics, converges to E. 

Let coiv{Xij,,X.^f^f) = and var(Xij^) = (r|. Now, rewrite as follows: 

^ (-^nfc ~  f ^ k )  (  1^ + ^ i.^nk ~ ^A:) 

~  K ^ n k ^ ^ n  J  ( T k  

~ ^nk Pnk 

and similarly The covariance of and is now a function 

of cov(p^j^,p^^/), cov(r„^,,p^^j), cov(r^^j,p^^), and cov(r„;,,r^^j). We start with 

= ^kk' 

We claim that the other three terms go to 0 as n —> oo and to prove this claim 

we use the following two lemmas; 
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Lemma 1: If X i , X 2 ,  • • . X n  are iid random variable such that E { x f )  <  o o ,  and sn 

i s  t h e  s a m p l e  s t a n d a r d  d e v i a t i o n  o f  X i , X 2 ,  •  • .  X n ,  t h e n  E ( ( r  —  S n ) ^  =  0 { l / n ) .  

Proof: Notice that 

which means that 

E((T-Sn)^ < 

(e (xf ) -1?) - g] xf - xi^ = E 

= E 

< 2 

= 2 

< 2 

G(^l) ~ - I] ~ ~ 

2 
"z=l 

E 
"/=1 

+ E[(%2_/)2 

+  - E  [ n { X n  -  l i f { X n  +  
2\ 

—^—- + — ^ ^ { y / n { X n  —  n ) ) ^ E { X n  + 

which is 0(l/n) because E(%)^ < oo.D 

Lemma 2: Let Xj,X2,.. .Xn be iid random variables such that E(%^)'^ < oo. 

If Sn denotes the usual sample standard deviation of Xi,X2, • • - Xn and Jn ^ 0, 

t h e n  P r ( s n  <  5 n )  =  0 { l / n ) .  
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Proof: 

Pr(sn < 5n) = Pr(s^ < 5^) 

n .  2=1 

n 

< Pr 

^i=l 
n 

"i=l 

• V V v \ \ x l - i ? \ >  
a ^ - S ^  

< E 

= 0(l/n)n 

Next we show that var(r^^) -4 0 and therefore each of the remaining covariance 

pieces converges to 0. Actually it suffices to show that E -> 0. Using the 

Schwartz inequality 

.2 \ f = E] 

'k 

< 
\ 

E ( 
\ ""k 

^nk ^ 
- 1 

E^—^ 
V^nfc  ̂ j 

Now E 
^k 

( 

is 0(1). To see this we rewrite it as: 

(3.8) 
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But by Corollary 2, page 368 in Chow and Teicher (1988) this expected value is 

O(n^). So E —l£kï^ is 0(1). Now we concentrate on the second piece of 

eq. (3.8). 

r \4 

- { ^ n k  <  

= 0 

n 
' 1 

,n4/ 

by Lemmas 1 and 2. Therefore this second term of eq. (3.8) goes to 0 which means 

that the variance and covariance terms in question go to 0 as n ^ oo. Therefore 

Next we show that the covariance obtained from the bootstrap samples converges 

to the covariance of the original test statistics. By the strong law of large numbers 

converges to cov(t^^^^) = S^, so we concentrate on the first bootstrap sample. 

Let t* be the fcth test statistic and notice that we can write 

2^ 
nk 

_  0  n k  ^ n k )  f  1 ^  +  

"k ) "k 

^nk ^nk 

and similarly = r*).., As before, we start with E 
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by Theorem 2.2 (a), Bickel and Preedman (1981). As before, we claim that the other 

terms converge to 0 and to prove this claim it suffices to show that E (^^|.|-^) 0-

We start by applying the Schwartz inequality: 

2 / \ 2 \ 
y  u y i f ^ - y y j ^ j  \  (  a j ,  J 

< E 

\ 

4 \ 

1^ 
/ A 

E 
\\ nk "n 

4 \ 

— 1 I 1% 

By Corollary 2, page 368 of Chow and Teicher (1988) the first term is 0(1) so we 

concentrate on the second term. 

E _ 1 |  | X |  =  E |  • • ^ l k > S n , X  

- (k - '4 

+ (^) • 

Now, since E(y^'|) -4 oo we can use Lemma2 to see that Pr = 0(l/n). 

We can rewrite E |X^ as: 

^ ((*& ~ 1^) = ^ (((*& ~ ^ n k )  + ( ^ n k  " 1^) • 

Using Minkowski's inequality we get 

11/4 '^(K-^a)"!^)] < [e ((^i - «nfc)" |X)] 
1/4 
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= o i - ^ + O ^  '  ^ 
^1/4, 

by Lemma 1. Therefore E (jcrj^ — s*^)^ |X^ = 0(l/n) and 

// \4 \ 
E 11 1% 

because nS^ —> oo. Therefore cov(fj^,f*/) -4 a^ay which is the covariance of the 

original test statistics. 

We have shown that 

1. ^ 0 as iV —^ oo. 

2. — S -> 0 in probability as n -> oo. 

But, notice also that since Pr(s*^ < 5 n )  -4 0 

~ ^iVn ^ 

as n —> oo where 2^^ is the estimated covariance matrix based on the usual boot­

strap (-statistics. Therefore, the final conclusion is that the bootstrapped estimate 

of the covariance matrix computed from the usual (-statistics, (*^, is a consistent 

estimator for the true covariance matrix of the original test statistics. 

3.12 Appendix B. Asymptotic Distribution of 5]^^ 

In this appendix we prove that the statistic has an asymptotic distribution 

which is a noncentral xP distribution with r being the rank of the covariance matrix 

for the individual statistics. 
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Let •g be distributed multivariate normal with mean vector fx and covariance 

matrix S, where 'S is p x p. Assume that the rank of S is known to be r < p. 

Consider the spectral decomposition, 

S = QAQ' 

where A is a diagonal matrix containing the eigenvalues Xi,\2,...,Xp of S, and Q 

is the matrix containing the normalized eigenvectors qi,q2, •••^Qp corresponding to 

A]^, A2,Ap. Since the rank of S is r < p, when the eigenvalues are ordered as 

A^ > A2 > ... > \p, the first r of the eigenvalues are positive and the remaining p — r 

eigenvalues are zero. This allows us to partition the matrices A and Q as 

Q  =  ( q i  Q 2 )  

A = 
/ \ 

Ai 0 

0 0/ 

where is a p x r matrix and A^isrx r. 

We begin the process of finding the asymptotic distribution of S-^ by looking 

at the distribution of To make notation a bit easier, let A = 

Qj^A^^Q^. By Corollary 2s.1 in Searle (1971, page 69) y^Ay has a Xr distribution 

with noncentrality parameter 

The problem of the asymptotic distribution of S^/- is a bit more complicated, 

however, because the true covariance matrix S is usually unknown and is estimated 

by the matrix S. The following argument is similar to that used in the proof of 

Theorem 2 by Amemiya and Fuller (1984). As n (the number of observations) goes 

to infinity, S converges in probability to S. Therefore, there exists a subsequence 

{»%} over which S converges almost surely to S. Let W be a point in the probability 
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space of all sequences of observations. Fix w such that S converges to S. Franklin 

(1968, pg. 191) shows that the are locally continuous functions of the elements of 

S which implies that A^(w) converges to A^(w). 

For each eigenvalue, there is a corresponding normalized eigenvector, 

Because is normalized, the elements in q- are bounded in absolute value by 1 and 

there exists a subsequence over which converges to some q- (w) almost surely. This 

means that Sngi converges to Sg^(w) and converges to for the fixed w. 

Finally, since 

Sngi = Miv 

we have that 

= A^g.(w) 

implying that (w), the limit of the eigenvectors of the S are indeed the eigenvectors 

of S. This means that = (91,92'•••'9?') converges to (w), % W), -- -, 9r (w)) = 

Ql(a'), and since the eigenvalues converge almost surely to the true eigenvalues, 

converges to Now, the limit of each eigenvector does depend on the w chosen 

but will always be of the form where Rw is an orthogonal matrix and q^ is the 

normalized eigenvector of S corresponding to This means that for any w 

QlÂflQi -4 Qi(w)A[lQi(w)' 

= QiR^Aj 

1 / 
-

because is orthogonal. This means that the limit is no longer dependent on w, i.e. 

the limit of is the same for all w such that S(w) converges to S(w). But 
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the probability of this set is 1 so converges to with probability 

1. 

Since t converges in distribution to a multivariate normal with mean ji and 

covariance matrix S, and QiÂ^^Q^ converges to with probability 1, we 

have the desired result that 

^Ât -4 X? 

in distribution. 
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4. CONCLUSION 

The goal of this work has been to improve the method of analysis currently in 

use (e.g., Kernan and Meeker, 1992) for rat behavior data which can be characterized 

as categorical temporal data. Experiments using control and treated rats result in 

vectors of behaviors of the rats as they occur during a 900 second period. Researchers 

have traditionally measured many different aspects of this data and tried to make the 

single conclusion of whether a difference, not attributable to normal variability, exists 

between the behaviors of the two groups of rats. The method used as a starting point 

for this research appears in Kernan and Meeker (1992) and involves measuring the 

many aspects of interest from the data, performing a hypothesis test for each aspect 

and counting the number of significant tests. Two areas of potential improvement to 

this method were identified and each area is discussed in detail and improved upon 

in this dissertation. 

The first area identified for improvement is the group of measurements made on 

the data using a temporal analogue to the spatial statistic, the K function. This 

statistic was first introduced to this type of experiment by Kernan et al. (1988). The 

K function is a relatively new statistic which is used to detect temporal patterns 

in data and researchers continue to study its estimators. Since the publication of 

Kernan et al. (1988), spatial statisticians have improved upon the estimator of the K 
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function used in Kernan et al. (1988); the most recent improvement for spatial data 

appears in Stein (1993). We derived the temporal analogue to Stein's estimator for 

use with the rat behavior data. 

We also improved the individual hypothesis test involving the K function, mak­

ing it a more sensitive test. Kernan and Meeker (1992) chose eight points along the 

continuous K function to test the hypothesis that the functions for the two groups 

were equal. We created a set of two tests that use the whole function within a spe­

cific region to compare, within pairs of rats, the differences between the rat's estimate 

and a reference function provided by the null hypothesis. By incorporating the whole 

function into the test, we use more information and hence have a more sensitive test. 

While we have improved the application of the K function to this type of data, 

more work remains to be done in this area. Kernan et al. (1988) also used a statistic 

based on the cross-AT function to test for temporal pattern differences for pairs of 

acts. A derivation similar to that for the temporal analogue to the K function should 

be possible and the estimator of the cross-function updated. Also, tests using the 

cross-function should be developed, most likely along the same lines as the tests 

involving the K function presented here. 

The second area identified for improvement in the analysis involves the final 

decision making process of whether the two groups of behaviors are the same or not. 

Kernan and Meeker (1992) used a statistic which was a count of significant tests, 

denoted here by Sq. We suggested two other options: a sum of the squared test 

statistics, denoted by Srp\ and a Wald-like combination of the test statistics, denoted 

by 5^. 

In general we expected S'y to perform, at least slightly, better than Sq because 
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Srp accounts for the strength of the significance in individual tests whereas merely 

notes the fact of significance. This expectation was indeed found to be true under 

the models using the covariance matrices estimated from each of three data sets used. 

Sjp was generally more powerful than S^, but only slightly. 

The other expectation was that S^/• would do much better than either or 

Srp because the test statistics defined by this experiment are obviously correlated 

to some extent and neither nor S'p account for this correlation. Indeed, for the 

models used for two of the three data sets 6"^ was found to be much more powerful 

then either Sq or Sj'. For the third model tested, performed about the same as 

Sj^ and S'p. The basic difference among the three models is the covariance matrix 

governing the test statistics. For the two models with relatively large non-centrality 

parameters, S^r was more powerful than and Sj'. When the noncentrality 

parameter was closer to 0, S\y performed similarly to S^ and S'p. 

Based on the three data sets used for this analysis, it appears that when the rats 

are more active, either because of the treatment received or because they are observed 

under red light, the noncentrality parameter based on the estimated covariance matrix 

is larger and therefore S^/- has more power. Typically the researcher will not know 

how much activity to expect from the rats in an experiment, and therefore will not 

be able to predict a covariance matrix in advance, so we suggest using for all 

cases. It does not appear to be much worse than Sg or Srp and is possibly much 

more powerful for detecting differences. 

The improvements made in this work to the current method of analysis are 

by no means the end. Several questions have arisen throughout this project which 

merit consideration. The first question is how the length of the observation period 
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would change the power of the statistics. Most likely a shorter period of observation 

time would not be preferred because more variability would be introduced into the 

data. And, 15 minutes was chosen because, in practice, once rats become used to an 

environment they reduce their level of activity so much that little more information 

could be gained. But, perhaps after 15 minutes they could be moved to another novel 

environment and observed for a longer time period. 

One problem that arose in this research is that there was much rat-to-rat vari­

ability. In order to reduce this variability somewhat, we suggest, when possible, 

observing both the controls and the treated rats before administering the treatment 

and then observing them all again after the treatment. This is not always possi­

ble because frequently the treatment is given to pregnant rats and the offspring are 

observed. Also, the question of the novel environment occurs. If the rats are put 

into this environment as controls and then again as treated rats, the second time the 

environment is no longer novel. For this type of design, a second novel environment 

must be constructed that is similar enough not to give an environment effect, but 

different enough to be novel to the rats. 

A third question is which test statistics to include in the overall statistic. In this 

article we have addressed combining information from several applications each of 

three types of statistics. Kernan and Meeker (1992) used four types in their analysis. 

We have not done a comprehensive study on which individual statistics to include. 

There may be unnecessary redundancy or there may be other statistics, not yet 

considered, that should be included. 
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