
INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document.

While the most advanced technological means to photograph and reproduce this

document have been used, the quality is heavily dependent upon the quality of

the original submitted.

The following explanation of techniques is provided to help you understand

markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document

photographed is "Missing Page(s)". If it was possible to obtain the

missing page(s) or section, they are spliced into the film along with

adjacent pages. This may have necessitated cutting thru an image and

duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black

mark, it is an indication that the photographer suspected that the

copy may have moved during exposure and thus cause a blurred

image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being

photographed the photographer followed a definite method in

"sectioning" the material. It is customary to begin photoing at the

upper left hand corner of a large sheet and to continue photoing from

left to right in equal sections with a small overlap. If necessary,

sectioning is continued again — beginning below the first row and

continuing on until complete.

4. The majority of users indicate that the textual content is of greatest

value, however, a somewhat higher quality reproduction could be

made from "photographs" if essential to the understanding of the

dissertation. Silver prints of "photographs" may be ordered at

additional charge by writing the Order Department, giving the catalog

number, title, author and specific pages you wish reproduced.

University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

A Xerox Education Company

I
.1

72-20,009

ZIMMERLI, Dana Wayne, 1942-
SYMBIOTIC COMPUTER SYSTEM MEASUREMENT AND
EVALUATION.

Iowa State University, Ph.D., 1972
Computer Science

Uxiiveisity mieroiilms. A XckuX Company, Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

Symbiotic computer system measurement and evaluation

by

Dana Wayne Zimmerli

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subjects; Electrical Engineering
Computer Science

Approved:

In Charge of 'Major Work

For the Major Departments

For the Graduate^College

Iowa State University
Ames, Iowa

1972

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

PLEASE NOTE:

Some pages may have

indistinct print.

Filmed as received.

Un ive rs i t y M ic ro f i lms , A Xerox Education Company

ii

TABLE OF CONTENTS
Page

PART ONE. THE PROBLEM OF EVALUATION 1

INTRODUCTION 2

INTRODUCTION TO EVALUATION 4
Why Evaluate ? 12

CLASSES OF EVALUATION 15

TYPES OF EVALUATION 19
Analysis of Evaluation Methods 20

EVALUATION DATA 24
Required Data for Evaluation 28

A SUFFICIENT SET OF MEASURABLE PARAMETERS 36

HOW TO USE THE DATA 41
Summary - Part One 45

PART TWO. THE MEASUREMENT OF DATA 48

INTRODUCTION 49

COLLECTION OF DATA 51

DATA REDUCTION 62
Trace Record Production 66

FifiTÂ ft N ST. Y S IS OïÎTpîï'T' h y
Data Analysis Discussion 78

PART THREE. THE SIMULATION OF AN OPERATING SYSTEM 83

TRACE-DRIVEN SYSTEM SIMULATION 84
Why Create a New Simulation Language? 86

THE BASIC OPERATING SYSTEM SIMULATOR 89
Variable Types 91

SIMULATING AN IBM/360 OS SYSTEM 95

PART FOUR. CONCLUSIONS AND SUMMARY 101

BIBLIOGRAPHY 107

APPENDIX A: ACRONYMS OF THE IBM OPERATING SYSTEM 110

iii

APPENDIX B; GLOSSARY OF TERMS 111

APPENDIX C: DATA COLLECTION MONITOR PROGRAM 131
LISTING

APPENDIX D: BOSS LANGUAGE STATEMENTS 145

APPENDIX E: FORMAL LANGUAGE DEFINITION OF BOSS 154

APPENDIX F: ELEMENTS OF THE ISU META PI 163
COMPILER-COMPILER

iv

LIST OF FIGURES
Page

Figure 1. A flow diagram of the collection 53
Monitor

Figure 2. The monitor output record for EXCP 55

Figure 3. The monitor output record for Error 56
EXCP

Figure 4. The monitor output for I/O interrupts 59

Figure 5. The monitor output for job dispatching 60

Figure 6. The jobtrace records 67

Figure 7. Output information from the data 70
reduction program

Figure 8. Activity plots of the collected data 77

Figure 9. An activity plot for data analysis 81

Figure 10. A sample system simulation in BOSS 98

1

PART ONE.

THE PROBLEM OF EVALUATION

2

INTRODUCTION

Computer evaluation began as soon as the second computer

was developed. The inevitable comparisons have been made

over and over again by persons interested in using computers.

Early evaluations were primarily comparisons of the hardware

characteristics, but the development of the computer operat

ing system added another facet to the problem. Where simple

numeric comparison is sufficient for a hardware comparison,

the software is much more complicated.

It is the purpose of this dissertation to present a

method for the evaluation of an operating system. This

method is a three-step process which is described in some

detail. The basis for the evaluation is a set of data which

is obtained by direct measurement of an average job stream in

the computer installation. This data is a microscopic trace

cf all of the important events occurring during the time of

measurement. This data is then restructured into a job-

oriented representation of the job stream. As the data is

restructured, the characteristics of the job stream are accu-

+ an/R -f nr- nraliminarv analvcic Tk a final

step of the evaluation is somewhat iterative in nature. The

restructured data is used as input to a simulation model of

the operating system. The simulation model may then be var

ied to optimize the performance of the job stream as applied

3

to the model.

This dissertation describes the choice of parameters to

be measured, using several references as guides to these

choices. The measurability of these parameters is experimen

tally verified by measurements on an IBM 360/65 system. The

resulting data is accumulated and restructured as described

above, and some interesting observations are made. Finally,

a simulation language is developed which supports the job

stream data as input, and provides the necessary features to

simulate an operating system.

4

INTRODUCTION TO EVALUATION

Early computer programmers enjoyed a sometimes enviable

rapport with the computer. A detailed knowledge of the com

puter's characteristics was necessary to produce efficient

programs. Many man-hours were necessary to develop a program

and patience was a most important quality in the programmer.

Often, only numeric codes were available for programming pur

poses. Debugging was usually done by tracing the program on

display lights and programmers worked directly with the ma

chine .

The sole purpose of early operating systems was the re

duction of computer idle time. Even a casual observer could

easily discern the primary sources of idle time in an envi

ronment where the programmer marched into the machine room

with his card decks and listings, preparatory to an extended

session of playing with the console keyboard. Whenever the

program failed and the machine stopped, the programmer

scratched his head and tried to figure out his next move.

When the job was completed or the time period expired, the

transfer of material tc the departing programmer and from the

incoming programmer caused more idle time.

The initial thrust of the computer operating system was

to provide some mean? of isolating the programmer from the

computer. Professional computer operators were hired to per

5

form some of the mechanical operations involved with program

loading ar.d execution. These operators certainly cut the

amount of time required to transfer from job to job, but this

time period still was noticeable.

The next step was to automate these operator functions

as much as possible. This automation required rigid control

of access to the machine console. Programming aids such as

dump routines, loader programs, and symbolic assemblers were

necessary to free the programmer from console debugging.

These aids also allowed programmers to spend more time on the

logic of their programs and less time to the mechanics of

coding the program.

The development of the first computer operating system

has been attributed to the General Motors Research Laborato

ries by Steel (30) . General Motors developed and used an el

ementary operating system for +heir 701 computer and later

collaborated with the Los Angeles division of North American

Aviation to produce a similar system for a 704 computer.

Shortly after the operating system concept became generally

known, the idea jumped the boundaries of machine type. Today

operating systems are used almost universally in connection

with large computers.

Batch processing or jobstacking was the basic idea of

early operating systems. Father than reading each job into

the machine independently, a collection of jobs (a batch) is

6

gathered into an input stream together with their respective

data. A supervisor program, which is normally kept in the

main storage unit, loads the next job from the input file and

initiates execution of that job. Upon completion of the job,

control must be returned to the supervisor, which then

selects the next job in the input stream.

The remaining idle time during program execution was

connected with the assignment of input-output(I/O) devices to

particular jobs. The complex logistics of these assignments

was solved by removing all I/O from the programmer's control.

Standard routines that are part of the operating system were

added to perform the I/O operations with standardized con*

straints. Additionally, error recovery was standardized for

all programmers.

These changes and requirements allowed the efficiency of

the computer to increase by reducing the idle time and

delivering more machine cycles to the users. At the same

time, changes were occurring in the area of programming. A

desire to express programs in a problem-oriented language led

to the development of languages which guided researchers into

the development of what nas become jcncwn as a compzler. The

compiler allowed programmers to express their programs in a

language which is reasonably close to natural language. The

compiler is the software device which allows a programming

language to be converted +o a machine code for execution.

7

These problem-oriented languages are easy to learn and

remember because they are closely related to both the prob

lems to be solved and a natural language (usually English) .

These languages are also easier than machine or assembler

languages because of the macro like properties of each state

ment and the automatic management of storage that they pro

vide. This ease of use propagated the use of the computer

into many new areas.

Unfortunately, dumps of memory at abnormal completion

were no longer as useful in error diagnosis. The compiler

obscured the executed code because a one-to-one relationship

was no longer possible. Error diagnostics were then devel

oped within the compilers to aid the programmer. These diag

nostics aided the debugging process by classifying the errors

and indicating, where possible, the area of trouble in the

program. The diagnostics removed some of the last objections

to the restricted access to the computer console. The pro

grammer could no longer gain very much by watching the con

sole. The isolation of programmer and console was thus

achieved.

As prOyrâûiïùiriy bëCâmê ïûOlc SOpuiSt iCâtâûu. COûplëX,

routines were developed and shared for common problems. To

use these routines in many different applications, the idea

of the relocatable loader was developed. Using this concept,

programs or parts of programs could then be written in such a

8

manner that they could be loaded into any location in memory

and then could be dynamically linked to any other program.

To control and direct the computer, job control lan

guages were developed. The allocation of resources such as

primary and secondary storage and I/O devices is controlled

by specific statements in the input stream. These resources

are then logically or actually connected to the program by

the operating system. Common or standard routines are also

combined with the program under the direction of the job con

trol statements. Operator action can then be directed by the

operating system, and resource allocation can be automatical

ly determined.

Idle time was now observed in the time reguired to

transfer data from I/O devices and secondary storage into or

out of the main memory. The necessity of communicating with

the programmer reguired mechanical operations which were

slower than the internal operations. This communication tiros

was unused since the program had to wait for the data. Since

computer personnel were interested in the over-all efficien

cy, some form of overlapping the internal operations was soon

The ability to overlap I/O and computation was made pos

sible by the principle of cycle-stealing in memory devices.

Cycle-stealing allows the I/O equipment to obtain memory

cycles on demand for fetching or storing data. These memory

9

cycles can often be fitted in during times when the CPU is

not accessing memory. This sharing of memory allows the in

dependent action of the I/O devices and the CPU.

Multiprogramming, the concept of executing more than one

programming job at a time, was an attempt to utilize a

greater proportion of the computer time and memory. Under

multiprogramming, separate programs may be written to process

the input-output requirements. This transfer of the data

(called spooling) onto faster I/O devices such as disc, drum,

or tape allowed the programs to make the logical connection

for I/O to one of these faster devices. With multiprogram

ming the overlap of I/O and computation was permitted and

greater efficiency resulted.

The concept of a real-time system originated with the

defense installations where an immediate response was neces

sary. A real-time system allows a user direct interaction

with the computer for computation purposes. This interaction

eliminates the clerical details (both external and internal)

of the computer operation. The concept of multiprogramming

allows several stations or terminals to interact with a

single computer. The cûêxistérice of both reâl-timô programs

and normal batch processing is therefore allowed in large ma

chines .

Rs this computer system evolution occurred, many poten

tially incorrect assumptions were made. Insufficient analy-

10

sis may have contributed to some of these incorrect assump

tions, but many of them have been made on the basis of intui

tion alone. As these incorrect assumptions were uncovered,

more emphasis was placed on the use of deterministic and

probabilistic measurements.

As computer systems have become more complex, evaluation

of these systems has become more difficult. Many new ele

ments must be considered as part of the computer system.

Since one objective of an operating system is to aid program

mers by providing common routines, computing time must be

spent to allow generality. Multiprogramming requires large

quantities of information about each job. This information

is used to define the transfer between jobs and to start and

stop each job. Updating and maintaining this job information

requires an additional part of the available computer time.

In this case, a tradeoff occurs between the capability of tha

computing system and the manual or semimanual procedures sur

rounding the computer. As the computing system makes more of

the decisions in the scheduling, allocation of resources, and

operation of these resources, time is required which is no

longer available to the user. Evaluation must therefore con

sider many more parts than ever before, because these proce

dures are a part of the considerations in a large system.

In any discussion on computer system evaluation, the

characteristics which are to be compared influence the evalu

11

ation. Historically, computers were divided into two

classes, scientific and commercial. Scientific computers

were measured almost exclusively in terms of their arithmetic

speed. Certain discrete operations such as add, subtract,

multiply, load, and store were considered to be the main ac

tivity of scientific operations. The tacit assumption that

arithmetic processing was the dominant function for consuming

time was the justification for this approach to evaluation.

Transferring data into and out of primary storage was assumed

to occur only a small fraction of the time.

In the commercial processing field the input-output ca

pabilities were considered the most important factor. Deep

commitments to card-processing techniques, where literally

tons of data had to be processed led to assessment of systems

in terms of their record reading and writing rates. In fact,

the first commercial processors were little more than colla

tors and sorters.

Presently, no clear division of computers is possible.

Jobs which are structured much like a "commercial" applica

tion are now found in the "scientific" computers and vice

versê. This blurring of the uistinction between scientific

and commercial computers has complicated the task of perform

ance evaluation even further. Evaluation techniques must now

be made general enough to cover both types of computer. In

fact, the two types of computer have merged into only one.

12

the general-purpose or universal computer.

Why Evaluate ?

The nature of the widespread interest in evaluation is

difficult to classify. Users need a basis to compare compet

ing proposals, a basis for acceptance testing, and ways of

selecting and describing systems tasks. Users must also be

able to estimate the running time and costs of new tasks for

planning purposes,

A common problem is the determination of a new configu

ration. Should new devices be installed? Will a faster CPU

be utilized? Is more secondary storage necessary? Will data

channels, additional I/O devices or anything else add to the

cost-effectiveness of the system performance? These questions

are among some of the things users would like answered by

system evaluation. System programmers and computer designers

are faced with the problem of determining the performance of

systems under development. During system development, evalu

ation is an important aid to the system designers both for

Verification of thé performâucê arm for uirection in deter

mining new features to be added. Consequently, performance

evaluations are extensively used in both software and hard

ware development. An example of this type of development

evaluation may be found in the Hultics project described by

13

Saltzer and Gintell (20). The evaluation system used in this

project consists of both hardware and software devices com

bined. The important hardware features described are a high

resolution clock capable of reading accurately to a

microsecond, an internal memory cycle counter, and an

externally driven I/O channel which permits another computer

to access the computer under test. Most of the software

evaluation tools in the Multics project are concerned with

the measurement of time spent in certain sections of the ex

perimental system, or with the number of times a particular

event occurs during program execution.

Another application for system evaluation is in the

field of system optimization. Each computer installation has

a unique distribution of job characteristics as determined by

+heir users. Proper system parameters must be chosen to

optimize the system performance for the user community at

each installation. Job scheduling algorithms, page swapping

(in a virtual memory), time-slicing, and priority levels are

some of the potential areas to be modified during system

optimization. These items may be part of the normal system

mâiûtsûâûce ânu iû&y reguire chs.ûyê uue to a change in the

users' job characteristics. Optimization of individual pro

grams such as compilers may be contained in this application

of evaluation, as well as the gross system characteristics.

m

The selection and acquisition of new equipment is anoth

er area where system evaluation may aid a computer installa

tion. Often evaluation can identify a potential problem or

deficiency before it becomes serious. These problems may be

related to an equipment deficiency which can be corrected by

the addition of more or different devices. These deficien

cies may require some additional evaluation or testinq to de

termine the proper actions, but the time may be available du^

to the foresight given by the evaluation.

Evaluation may also be used to determine the relative

merits of several competing philosophies. An example of this

form of evaluation is described by Sherman, et al. (27).

This paper describes the evaluation of several CPU scheduling

philosophies. The evaluation is a simulation which produces

a comparison between the scheduling techniques. Theoretical

results for other computer processes may also be tested by

suitable evaluations.

In summary, evaluation is a desirable activity for com

puter systems personnel, because it provides better insight

irto the operation of the system. This insight may then be

a56u to Optimize t hs Of t h*? SystêîTu Tu? rGyulTB-

ment for evaluation leads to a desire to provide a systematic

method for evaluation. The remainder of this dissertation

describes a system which may fulfill this requirement.

15

CLASSES OF EVALUATION

Evaluation falls into two primary classes according to

Druir.mond (5) . These are availability and work capability.

Availability expresses how much of the time a system (or part

of a system) is or can be used for productive purposes. Work

capability is an assessment of a system's ability and effi

ciency as applied to performing an intended function.

Availability may be defined in absolute terms as the

time the computer is on (power applied) minus the portion of

that time which is required for maintenance. The reduction

of maintenance time therefore increases the availability.

Two forms of maintenance are common, scheduled and unsched

uled. Scheduled maintenance may be planned ahead and may not

be a serious loss of availability, if the time period chosen

is during a period of low usage requirements.

Unscheduled maintenance can be very critical because it

is unpredictable and may last for an indeterminate length of

time. Unscheduled maintenance is directly dependent on the

reliability of the entire system. The reliability of the

system is deperidèat on the quality of the components and the

construction of the computer. In this area, consideration

must be given to the fact that some failures may be transient

in nature, so error correction and error re-try schemes may

extend the availability of the computer.

16

Additional methods of decreasing unscheduled maintenance

time are dependent on by-passing the failing part or parts.

Multiple or redundant parts may be substituted for the

unavailable part until a more convenient time period allows

the bad part to be replaced. This redundancy is usually only

used for highly critical applications and is usually quite

costly.

A similar scheme of increasing availability involves

modification of the system so that the work which does not

require the failing part may still be performed. This allows

partial availability to the computer so some work could still

be performed.

Work capability is measured by many forms, with the

three most popular being job time, throughput, and response

time or turnaround time. Job time is a measure of the time

it takes to process a particular application. This measure

of job time does not commonly account for the external cleri

cal portion (the- handling of the input decks and the output

listings) of the job. To determine the relative performance

of a computer system, a synthetic job has been formulated.

This job is dêSCribéd by Buchîiûlz (2) âS a "greatly

simplified file maintenance procedure". He postulates that

it can be "programmed with a modest effort in different lan

guages and on dissimilar machines, so as to be run and timed

on each of the systems". This job exercises both the CPU and

17

the major I/O devices of a computer. Naturally the data ob

tained is valid only for this particular job in the particu

lar environment in which it is executed. In another job in

another environment, the results may be considerably differ

ent .

Throughput is a generic term which relates in some way

to doing the total work of the system, rather than any single

job. In a multiprogramming environment, the number of jobs

per day may be cited as a measure of throughput. The use of

throughput as a relative measure estimates the performance of

a computing system when it is measured against some base com

puting system. Relative system throughput is defined as the

ratio of the time of computation for a given load on the base

system divided by the time of computation for the same load

cr. the new system. Naturally, the systems to be compared

must have similar or equivalent facilities or the comparison

will be invalid,

Response time, a term generally associated with real

time systems, is usually measured in absolute terras. In

terminal-oriented systems, response time refers to the amount

of time that the computing system takes to react to terminal

transactions. In other real-time systems, response time can

indicate the time needed to identify, load, and execute a

critical function. Although no response is necessary, com

pletion of some critical processing may be required. Re

18

sponse time calculations must be well defined within the

context of their intended use.

Turnaround time is generally associated with batch proc

essing systems to imply the same relative time period as re

sponse time. Turnaround time is usually defined as the time

between turning in a job at a station and the time that the

results are received. Turnaround time does include the time

required for the external clerical handling necessary to exe

cute the job.

Acceptable computer performance must be a mixture of

these factors. The programmer is usually most interested in

job time and turnaround or response time. The job time is,

of course, directly related to the turnaround and response

time. The effectiveness of an individual programmer may be

partially dependent upon the turnaround time. Job time, on

the ether hand, is a measure of the cost of an individual

job. System programmers and operations personnel are proba

bly more concerned with the throughput, because this is a

measure of the number of people the computer is serving.

Basically, programmers or users are interested in the factors

that affect their jobs, where system programmers and opera

tions personnel are more interested in the total system.

19

TYPES OF EVALUATION

The three primary types of evaluation are classifica

tion, comparison, and time estimation. Classification is

probably the most popular form of evaluation, although eval

uation of a set of attributes or a single attribute by clas

sification may be misleading. Classification may investigate

attributes such as capacity of main storage, storage cycle

time, or add time, and attempt to tabulate computers into

classes based on these properties. Often vague terms such as

small, intermediate, and large systems accompany evaluation

by classification.

Comparative evaluations usually designate one system as

a base against which all other systems are compared. Like

other types of evaluation, comparative evaluation often con

siders only the CPU and processor storage. The interdepen

dent methods of the instruction mix and the kernel have been

developed for comparative evaluation,. The mix method assigns

a weight to each instruction or group of instructions. The

weighted instruction time can be used to compute an average

instruction time for couipaiison purposes. The kernel methoS

examines the central or essential part of the application

under study. The most frequently used portions of an appli

cation are determined and these portions are programmed in

the various instruction sets. Continuing this to programming

20

the entire job stream would allow a comparison of system

throughput.

Time estimation involves estimating the time involved

for required functions or operations. The comparison then

could involve entire jobs and all system components. The

time estimate may or may not be the desired end.

Analysis of Evaluation Methods

?.s Calingaert (3) has shown# the above mentioned types

of evaluation have proven inadequate to produce meaningful

results in present-day computers, Thç simplifications and

approximations used can cause large discrepancies in the

results. Application of these erroneous measures may then

incorrectly bias the opinions of users.

The first method of evaluation was the classification of

instructions and other absolute data items. This form of

evaluation is an over-simplification of the problem and does

not consider the additional structure of a viable system. An

example of this problem is the comparison of memory times.

If only memory times are compared, the «mount of information

transferred per access may later cloud the comparison. A

comparison of the amount of information transmitted per unit

time (bandwidth) may be more accurate, but the other factors

in the memory may still enhance or diminish the significance

21

of the overall memory speed as a measure of the system.

Instruction time comparison can also be influenced by

the other parts of the computer structure. The add instruc

tion is a common instruction for comparison. It must be rec

ognized that no one instruction can adequately describe a

computer system, but even if this one instruction is consid

ered interesting, are the word lengths equal in both ma

chines? If the machines have character addressability, what

operand length should be chosen and why? The addressing

schemes for different machines may vary radically, so what

effect will addressing have? These are a few of the problems

involved in instruction time comparison.

Calingaert has discussed some of the problems with the

instruction mix and kernel methods. The instruction mix

technique must be based on a measurement of the execution of

several programs through a large number of instructions, and

is therefore dependent upon the structure of this original

CPU. The coefficient which weights each instruction time

supposedly represents the relative frequency of instruction

occurrence. As the structure of the CPU varies from the

original, the instruction mix becomes less ar.cî less 5ppllca =

ble. To illustrate this effect, Calingaert cites an experi

ment performed with a group of experienced system engineers.

"Its members were asked to specify the time in microseconds

on System/360 Model 40 for the compare class of instructions.

22

given only the fact that the original mix was based on the

7090, where the instructions in that class were CAS and LAS.

The ten answers ranged from 11.88 to 30.66 with a mean of

21.5 and a standard deviation of 7.0".

Kernels, like instruction mixes, are not free of disad

vantages. The problem of providing equal programming skill

for the different CPU's is a practical limitation in both

personnel requirements and implementation time. The proper

weighting cf two or more kernels can also be a problem.

Calirgaert (3) again cites a difference in performance ratios

of one CPU compared against another. Different kernels

yielded ratios as high as 9.5 and as low as 3.3. There is

strong evidence that all presently identified kernels are

atypical and typical kernels may not be definable in the gen

eral sense.

The time estimation technique relies heavily on the

thorough understanding of the processes involved and requires

careful analysis of available data. Verification of the

results depends on the subsequent measurements of the trans

planted system. Time estimation may be performed by a simu-

t f IT t TT\ 4» /s ^ y» vr» ^ ̂ ^ 1% xx xii *-na.o u. o «r: y --.lic-

result is dependent on the knowledge of the designer.

A recent survey of performance evaluation by Lucas (13)

rates several techniques for evaluation in terms of three

main purposes. These three purposes for evaluation are se-

23

lection evaluation, performance projection, and performance

monitoring. Selection evaluation is the process associated

with obtaining new equipment or programs which already exist;

Performance projection is that part of the decision activity

which preceeds the design and implementation of both new

hardware and new software; Performance monitoring is the

constant measurement process used to evaluate the performance

of a production system. Each of the eight techniques (in

struction times, instruction mixes, kernels, models, bench

marks, synthetic programs, simulation, and monitoring) is

rated in terms of its suitability to the purposes for per

formance evaluation. The most satisfactory technique is pos

tulated to be simulation, but simulation has drawbacks in the

cost of running the simulation, the validation of the simula

tion results, and the question of the necessary problem of

the level of detail required to produce valid results.

Many additional techniques of evaluation have been de

scribed. An excellent bibliography of computer performance

analysis techniques has been compiled by Miller (15). The

references in this bibliography cover all aspects of perform

ance measurement. Itemizeu listings of the references in

cluded within particular areas of performance evaluation are

also included. The bibliography included with the article by

Lucas (13) is also comprehensive and current.

24

EVALUATION DATA

In designing an evaluation, consideration must be given

to the data which must be acquired. The choice of the data

to be collected greatly influences the evaluation because

systems are not the same. One system may be weak in the same

area that another system has its strength. If the extremes

of the systems are tested, the evaluation loses validity be

cause the environment is no longer typical but must be

artificial. Representative information obtained from a com

plete jobstream is better for the evaluation, but the volume

of data makes it difficult to analyze. One way of overcoming

this problem is to make use of a benchmark program. Drummond

(5) defines a benchmark as a "particular programmed procedure

with some associated data chosen in such a way as to impart

meaning to the originator of the benchmark". For the scien

tific problem, matrix inversion is a typical e x a m p l e of a

benchmark. Another alternate job to be used as a benchmark

is the synthetic job discussed earlier. With these programs,

gross measurements of time might be enough upon which to base

an evaluation.

Two main classes of data acquisition are common: hard

ware measurement and software measurement. Software measure

ment is able to obtain data related to individual jobs and

provide probabilistic data to indicate usage distributions.

25

Certain data which is job-oriented may be obtained only by a

software monitor which may be tailored to fit the system. On

the other hand, hardware monitors do not easily acquire

system related information, but rather describe the hardware

utilization of the system. Certain hardware related informa

tion such as instruction usage distributions may be gathered

most conveniently by a hardware monitor. In addition, hard

ware monitors can be attached so that the rest of the system

is not affected by the measurement.

Software techniques generally intercept the normal flow

of execution at particular points where information is

desired. The complexity and duration of the interception

depends on the information required and the information known

at that point. Locating the necessary information may re

quire extensive searching through memory. Intimate knowledge

of the system being measured is necessary to obtain the

proper information at the proper point. Examples of this

technique are given by Stanley and Hertsl (29) , Stanley (28) ,

and Scherr (22).

Stanley and Hertel (29) present a measurement system for

the real-time system used in -f-he Apollo space flights. Thsir

system collects data designed to provide performance measures

and to allow testing of the system for the expected loads

during an Apollo space flight. This data is collected by a

software monitor which records time in terms of an accumu-

26

la ted total time for each function. Data are not in general

associated with a particular job since all jobs are equally

important, but certain tasks are separately monitored.

Stanley (28) presents a system in a later article which

measures certain parameters which are presented in a later

part of this dissertation. In this article, the data is pro

duced as a part of the job accounting system used in a real

time system. The operating system was modified to perform

this accounting activity by adding computer instructions in

those areas where data collection was necessary. This is

then a permanent collection device which does interface di

rectly into the system.

Scherr (22) also presents a monitoring system for anoth

er real-time system. The definitions used for this real-tims

system suggest a different set of parameters to be measured,

but otherwise the system resembles the job accounting system

presented by Stanley.

A second method of software measurement is the

"snapshot" approach. At regular intervals, selected portions

of the computer memory are dumped to the collection device.

 ̂11» ̂ 4- /\ ̂a t s a c 4» f Anc — DV ^ M JL y JL. I: y m c ». v/ L& V i&v: NU.VA-.'UA w. ^

tributions may be produced which represent the measured data.

This sampling of the system produces a probabilistic rather

than a deterministic measure of the desired data.

27

Hardware monitor devices generally sense electrical

signals at critical points in the CPU to determine what is

happening in the system. These signals must be decoded by

the monitor, which may be as complex as a small computer, and

may have an interactive or immediate display. Perhaps the

most dramatic attribute of the hardware monitor is its

ability to obtain data reflecting the occurrence and duration

of many events simultaneously. Description of a hardware

monitor is given in the paper by Bonner (1) . This monitor

may be used to measure the activity of the CPU and the I/O

channel activity. This information may be used to classify a

system as CPU bound or I/O bound and also indicate I/O

channel overloading. In addition, this monitor may be used

to monitor the time spent within a particular protect key

which may be associated with a particular job. Thus, certain

important jobs may be monitored.

After data are obtained, a certain amount of analysis is

immediately possible. Graphs and charts may be prepared such

as those by Scherr (22). These graphs may describe the char

acteristics of the system and the job stream into the system.

Probability densities of program size, processor time, and

response time are typical of the useful measurements. A

careful examination of these figures may lead to necessary

answers. All the other methods of evaluation previously de

scribed may be used to extract the maximum possible informa-

28

tioîi from these data.

Required Data for Evaluation

A minimal set of data is necessary to adequately de

scribe the computer system which is being evaluated. This

minimal set may vary due to the characteristics of the system

being studied but certain parameters should be common to all

systems. These parameters must completely describe the sig

nificant characteristics of the system, including bo+-h hatch

processing and time-sharing applications.

In an article describing an experimental simulation of

System/360, Katz (11) describes a set of parameters which

represent each job and each job step. The parameters

pertaining to each job as a whole are:

(1) Job identification number.

(2) Time job is submitted.

(3) Station at which job arrives.

(4) Job priority.

(5) Keypunching time.

(6) number of job steps,

(7) The device class which specifies the input

devices that can service this job's input.

Parameters that characterize each step of the job are the

following :

29

(1) The core storage requirement.

(2) The base time for the job step, i.e. the minimal

execution time for the step.

(3) The programmer specified time limit for the job

step.

(4) The number of data sets belonging to the job

step.

(5) Whether the job step requires setup.

Parameters that characterize each data set belonging to each

jcb step are:

(1) The device class whose equipments may be assigned

to the data set.

(2) The storage which needs to be allocated for the

data set.

(3) The programmer's estimate for the quantity of

data in the data set.

(4) The actual quantity of data in the data set.

(5) The variance of the data rate to and from the

data set.

(6) Whether the volume assigned to the data set needs

to be retained for subsequent job steps.

(7) Whether the volume assigned to the data set is

private, i.e., must not be shared by any other data set.

(8) An identifier of that data set, if any, to which

this data set has a unit affinity.

30

(9) Whether the data set is new (was generated during

the job step), old (was in existence at the beginning cf the

job step), or modified (was developed during the job step by

modifying an existing data set).

(10) The output class to which the data set belongs

(relevant only if the data set constitutes output).

(11) The disposition to be made of this data set.

Possible dispositions are: sysout, an output data set; tempo

rary, hold the data set for the duration of the entire job

rather than for the current job step only; delete, destroy

the data set following the current job step; keep, hold the

data set indefinitely - until a subsequent delete.

In this set of parameters very little information is

available on the system activity which is also present in all

computer systems. A later article by Stanley (28) includes

more system information. Stanley's choices of parameters are

divided into two classes, job statistics and step statistics.

The class of job statistics includes;

(TOTAL COUNTS)

(1) Jobs run.

(2) IFL's (initial program load) necessary.

(3) Abnormally terminated jobs.

(4) Operator accounting messages.

(5) Background utilities.

31

(6) Concurrent initiators.

(TOTAL TIMES)

(1) CPU time for job stream.

(2) CPU time for system tasks.

(3) CPU time for utilities.

(4) System I/O wait time.

(5) System idle wait time.

(6) Job run time.

(7) Nonjob time.

(9) Sample time,

(AVERAGE TIME)

(1) Job elapsed time.

(2) Job CPU time.

(3) Initiator between job time.

(4) Time to IPL.

(5) Time between IPL's.

The general step statistics measured by Stanley are;

(1) Number of completed steps.

(2) Average steps per job.

(3) Average steps per hour.

(ii) Average elapsed timê.

(5) Average step CPU time.

The step statistics by step name are:

(1) Average CPU time.

32

(2) Number in sample.

(3) Percent of step type.

(4) Step to job CPU time.

Unfortunately, not all of these parameters have meaning

in all circumstances. These records do have a striking simi

larity to the parameters now supplied, if desired, by the IBM

System/360. A facility called SHF (system management facili

ty) is now being offered as a part of the IBM system. This

facility records information which is considered important in

the IBM system. Several classes of information are recorded

as individual records of variable length. Each record has a

standard header section which includes the time of the record

in hundredths of seconds, the date, the model number of the

computer, a system ID, and the record type. The records

which describe the system are;

(1) IPL record.

(2) Initial I/O configuration.

(3) Vary online-offline (the logical removal or addi

tion of I/O devices as directed by the operator) .

(4) Scratch or rename a data set.

(5) Direct access volume record.

(6) Error statistics on tape volumes.

(7) Wait time (written every 10 minutes) .

Records written by SMF to describe each job are:

33

(1) Job initiation record.

(2) Step termination record containing: step initia

tion time; dispatching priority; completion code; program

name; regions requested and used; CPU time.

(3) Job termination record containing: job initiation

time; number of steps; completion code; job priority;

termination indicator; job CPU time.

(4) Data set activity records: data definition names;

data set organization information; data set name; count of

accesses; device type information.

(5) Output classes and counts.

The SHF records are continously recorded during system

operation if the SMF option is chosen. Several levels of use

allow a variety of information records, but the overhead re

quired for the SMF processing has been estimated to be less

than 3- for the worst case. The data available can be used

as a basis for accounting, so it is probable that the option

will be chosen at system generation time for accounting pur

poses. This data is quite similar to the data previously de

scribed, except the SHF records include a time field which

identifies the time that the record was written.

One more set of information may also be desired. The

three sources above do not contain any information for real

time or time-sharing applications. The article by Scherr

(22) shows some of the relationships in a time-sharing

34

system, and presents some of the results of the measurements.

More detail on this subject is available in Scherr's mono

graph (21) on the same subject. Six distinct states of a

time-sharing system are described;

(1) Dead; no program is waiting to run for the user, and

no core-image is being saved for the user. This is the nor

mal starting point.

(2) Command wait; a program is waiting to run but it has

not yet run for the first time. It must be loaded before ex

ecution may begin.

(3) Working; the program is in execution.

(4) Input wait; the program requires a line of input

from the terminal.

(5) Output wait; an output buffer is full and terminal

output must empty this buffer until space is available for

further action.

(6) Dormant; a special where no action is possi

ble.

These measurements ar<^ based on the basic unit of work in a

time-sharing system called the interaction. The usual form

of interaction is the sequence of events as follows: tho user

thinks, types input, waits for a response from th° system,

reads the response, and begins the process again. The user

is in one of two states: 1) the user is waiting for the

system to execute the program, or 2) the system is waiting

35

for the user. These two states correspond to "working" and

"input wait", respectively, so an interaction may be defined

as the activity which occurs between two successive exits

from either "working" or "input wait".

In this environment the following measurements were

made:

(1) "Think" time of the interaction. The terminal or

input wait part of the transaction.

(2) Program sizes.

(3) Processor time per interaction.

(U) Interactions per command.

(5) Response time. The working time of the interaction.

(6) The number of concurrent users.

These measurements correspond to some of the measurements in

the batch system. The time-sharing system places the

greatest importance on response time. This single measure

ment is the most reguested item in a time-sharing evaluation.

Other considerations are necessary for other types of time

sharing systems. If a paging system is studied, for example,

^he paging algorithm needs study. The frequency of fetching

a new page is then an important statistic.

36

A SUFFICIENT SET OF HEASUHABLE P&%&M%TERS

The considerations above have shown some of the parame

ters which are used in the area of system performance evalua

tion, A set of these parameters which is all things to all

people would be impossible to formulate. A set of parameters

which will satisfy most of the requirements should be much

easier to assemble. Some parameters are obvious, but perhaps

all parameters should be discussed with their uses.

Starting with the job oriented parameters, the first

most obvious parameter is job and step CPU time. These two

parameters are nearly redundant except for one difference.

The job CPU time should include the time required for step

initiation processing, and data set allocation. These param

eters are useful in determining the CPU time distribution for

an installation. An y evaluations of CPn utilization must

have information on the distribution of C?U time being used

per job.

Heal time, wall clock time, or elaps^a time is a measure

of the time the job resides in memory. The ratio ot real

time to CPU time can be considered important in the measure

ment of I/O blocking and buffering. High real time to CPU

time ratios indicate a poor buffering factor for I/O. The

real time is also important in determining the number of jobs

which can run through the system in a given time period.

37

Required memory space is important in estimating the

number of concurrent jobs which may run. If a hierarchy of

memories is available, the measurement should be made for

each memory type. Information on the amount of memory

actuelly used can also be used to make estimates of optimiz

ing the jobs being run. Users also tend to be interested in

this information. Strategies of running jobs of certain max

imum sizes at certain times depend on knowing the memory dis

tribution information.

The name of the program ûeing executed may be a valuable

piece of information. The distribution of languages being

used can point to desirable development projects. Optimiza

tion efforts should be directed toward the highest used pro

grams.

The number of steps in a job reveals how many times the

job bad to get anrther program and its associated space. In

most systems the 5 :itiotion of a job step is a non-trivial

process which involves interpreting the JCL {job control lan

guage) , loading a program, allocating both secondary and pri

mary storage and other housekeeping. The number of steps,

therefore, determines this effect.

Job priority determines the system action on the program

in terms of allocating CPU time to the job. Priority levels

allow faster system response for high priority jobs. Job

priority may also indicate why a particular job required much

38

less time than another.

The job step completion condition indicates the reason

for job completion. If abnormal completion occurs, the data

should be analyzed differently. If a large number of users

get the same completion code, some action may be called for.

Either some form of system problem has shown up (usually cer

tain completion codes indicate these system problems), or the

users may need education on the causes of this particular

code.

Submittal time studies may give some indications of op

erational changes to be made. Submittals may come in large

batches, which may be the most or the least optimal, depend

ing on the environment. Comparisons might also be made on

the sizes of jobs at certain times of the day.

Data set information is valuable in evaluating the usage

of the I/O devices. This information may be the most diffi

cult of all to obtain, because it is a dynamic measurement of

unpredictable actions. The obvious place to obtain this in

formation is in the I/O supervisor of the system. Additional

information on the data set, I/O device, and perhaps the time

of the action would often be convenient. As a matter of

fact, one of the interesting factors about data set activity

may be the distribution with time. Certainly, time distribu

tions on terminal devices can provide the measurements needed

for time-sharing evaluation.

39

System oriented measurements must also consider data set

activity. The balance or distribution of the system data

sets is important in tuning a particular system for better

performance. Certain operations on data sets such as cata

logs, procedure libraries, job libraries, and other system

data sets need monitoring.

One activity which should produce records is the initial

program load (IPL) . At this time of system initialization,

the system is probably inspected to see what is attached and

operational. This initial configuration should he recorded,

preferably automatically. After IPL, any changes in the con

figuration should also be noted.

System time measurements would also be very interesting

if available. Several time measurements could be mentioned.

System wait time could be defined as the time the CPU is

idle; It could also be further broken down into times when no

work is available and times when the CPU is waiting for I/O

completion. Another measure might be the system CPU time.

This is very difficult to define, since much of the tim% the

system is doing its work for some user, if that user could be

identified. In most cases, the system is not programmed to

find out who to charge this time to, because the search would

take more time than the operation required.

A set of parameters which is postulated to be sufficient

to describe a system is given below.

40

(JOB PARAMETERS)

(1) CPU time; by step and by total job.

(2) Real time.

(3) Memory space; by step, broken down into types or

hierarchies.

(4) Step program name,

(5) Number of steps.

(6) Job priority.

(7) Step completion condition.

(8) Submittal time.

(9) Data set activity.

(SYSTEM PARAMETERS)

(1) Data set activity.

(2) IPL configuration.

(3) System time measurements.

41

HOW TO USE THE DATA

After data are collected from the system which is to be

evaluated or to be used as a base for evaluation, the data

must be properly used. Absolute forms of measurement are of

some value, but generally the scientific method is prefer

able. The classical trilogy of hypothesis, experiment, and

modification of hypothesis is a desirable form of evaluation.

Absolute evaluations of the data should not be ignored, but

only experimentation can prove or disprove a particular

hypothesis. This experimentation cannot realistically be

performed on the production system, so some form of simula

tion is desirable.

Evaluation of a system may now be viewed as a three step

process where first, data are obtained by a measurement

process, second, these data are manipulated and summarized,

and third, the observations obtained from the first step are

used as input to a system simulation. Each step of this

process is an evaluation by itself, but the total process

provides a direction for optimization and allows testing

prior to commitment to a particular system (hardware or soft

ware) . This series of operations produces data which must be

manipulated so that it has meaning to the user. The process

ing to provide this meaning is described below.

42

If the measurements described above are the base for the

evaluation, several distributions will be of interest. Dis

tributions of CPU time, real time, and total data set activi

ty should be drawn. Correlations between these variables

should be checked for relationships. These correlations may

indicate device or channel contention or improper management

of resources. Memory space could be presented as a bar graph

or histogram since discrete values are involved. The number

of steps could also be presented as a histogram.

Presentation of the system-oriented parameters may be

viewed in more than one way. The minimum detail required

would be a set of totals summarizing the amount of CPU time

used by the system, and the total I/O activity by unit ad

dress. To determine the unit usage, the individual unit

totals are sufficient, but to determine a particular data set

order on the unit, data set references are necessary. Excep

tionally fine detail would even indicate the proper ordering

of information within the data set. This extant of detail

would be voluminous and difficult to analyze, so summaries

are necessary.

One possibly interesting presentation might be a time-

data set graph which would present the- data set activity as a

function of time. Unit requests could be presented as time

dependent entities. If jobs could be associated with each

request, an I/O activity - time relation could be shown

43

during the course of a job. Many measurements of these data

would show any correlation in these variables. Distributions

of I/O activity within a job could then be cited for analy

sis.

The only process which can predict and measure the

changes in the system in terms of throughput or turnaround

time without implementation of these changes is simulation.

Simulation has traditionally been used as a means of predic

tion. Many references can be cited as support for simula

tion. Among these, Katz (11) , Seaman and Soucy (25) and

Nielsen (16) discuss simulation in some detail.

Katz describes a job generator to produce a simulated

job stream for system simulation. His job stream is produced

by a simulation language program which might be called a sim

ulated programmer. The output of this program is then used

as input to a system simulator. Presumably, this system sim

ulation is variable to represent different conditions. The

actual language used is Simscript and a macroscopic simula

tion is produced for the System/360. Extended events are in

cluded such as messenger pick-up and delivery. The simula-

u i Wi ! uvx ^ o u L c HI c: w i D A. c Ju vrr uw m ^ ̂

throughput, hardware utilization, software utilization, and

queueing processes.

Seaman and Soucy describe a simulation which is much

more hardware oriented than software. This simulation is

produced in an IBM proprietary language which has many fea

tures which are easily adaptable to hardware simulation. A

discussion of an operating system sub-model is given to show

how such a simulation may be written.

Nielsen's work is in the field of time-sharing computers

with page structured memories. The language chosen for this

simulation was Fortran because of its nearly universal avail

ability. A study of the IBM/360 model 67 time-sharing system

is presented with this paper and several different configura

tions are tested. In this study, as in the previous two, the

job stream used to exercise the system was obtained as a

series of approximations.

The concept of using a set of measured data for the

input to a simulation model is presented by Chang (4). This

attempts to solve the problem of making too many simplifying

assumptions. It also removes the problem of approximating

the job stream, since the job stream is a part of the input

data. This concept of using a set of measurements or

jobtrace as the input is also a part of the Advanced Multi

programming Analysis Procedure (AMAP) as distributed by IBM

(5) .

As in all simulations, the simulation must be very care

fully formulated. Simulation must be carefully controlled to

avoid the problems of incorrect results. In simulation more

than anywhere else, incorrect answers may go unrecognized.

45

Simulations often produce information which is not well un

derstood, and cannot be cross-checked. In the case of the

trace information, the cross-checking of the simulation may

be achieved with the trace data. Of course, one data point

for checking is not really conclusive, but some changes

should produce predictable results which can also verify the

correctness of the simulation.

R simulation of a computer system allows the iterative

process of hypothesis experiment, new hypothesis, more easily

than any other scheme. A modular simulation of devices

should be possible to allow simple substitution of various

components. A trace-driven simulation should provide all of

the goals of evaluation previously stated, if it is initially

properly designed.

Summary - Part One

Examination of evaluation technigues has shown that many

of the traditional methods have logical flaws which may

invalidate their conclusions. Since evaluation is a valuable

tool for people interested in computer performance, addition

al study must be devoted to the problem. The key to perform

ance evaluation appears to be a thorough understanding of

what systems are and how they operate. To better understand

systems, more measurements of their characteristics are nec

46

essary-

A proposed set of parameters is presented for considera

tion in evaluation efforts. The first requirement for system

evaluation is the measurement of system requests and actions.

Proper analysis of the measurement data is the next step

in system evaluation. Many valuable hints may be discovered

with no more than this data. Improving the system perform

ance may be based on these measurements.

Finally, predictive information may only be obtained

reliably by the simulation of the system. It must be

emphasized that the preferred form of simulation should use

as much data as is available. For this reason, a trace of

the computer activity is suggested as input to the simula

tion.

In summary, the system suggested by these preliminary

studies is composed of three parts. The first phase is a

software monitor system to collect microscopic data to de

scribe individual jobs within the jobstream. The second

phase is a data manipulation phase which has two purposes:

First, to tabulate and summarize the data produced by the

first phase; and second, to organize and prepare the data for

a simulation model. The third phase is a simulation of that

system which is to be tested. The input data is obtained

from the first two phases and is sufficiently detailed to

provide a complete representation of the jobstream. The

47

simulation may be modified to change the characteristics of

the model system and therefore, will allow testing of hypoth

esis, followed by further modification according to the test

results.

It is clear that measurement of computer systems in both

laboratory and production environments is likely to increase

in importance. In evaluation and prediction, measurement

should become an extremely important part of the total

picture.

48

PART TWO.

THE MEASUREMENT OF DATA

49

INTRODUCTION

To verify the measurability of the parameters considered

sufficient for system evaluation, a series of experiments

were performed on the IBM/360 model 65 of the Iowa State Uni

versity Computation Center. This computer is a typical

medium-large scale computer with 512K bytes of high-speed

core memory, and 1 megabyte of slow-speed core memory. The

normal I/O configuration includes one 2303 drum, two sets of

eight 2314 disk drives, eight tape drives, two seven-track

and six nine-track. The unit record devices include one 2540

card reader-punch unit, one 2501 card reader, and two 1403

line printers. The three basic types of remote terminal

devices are two model 2260 character display cathode ray tube

terminals with keyboard, one model 2780 remote card reader-

printer end fifteen low-speed typewriter-like terminal ports

connected to telephone lines.

This hardware is operated under the OS/360 operating

system with the HVT option. The slow-speed memory is used in

a memory hierarchy for supplemental processor storage. Some

of the system tasks and the time-sharing monitors reside in

most of this memory, with a small portion of it reserved for

userc. Jobs are distributed into classes determined by the

memory and time reguirements of the jobs and these classes

are used as the basis for job scheduling.

50

The availability of the complete system code and docu

mentation allowed the necessary research and study. Even

with this availability, several unforeseen difficulties were

encountered. Unfortunately, the measurement program is po

tentially more dangerous than normal programs in terms of its

effects on other jobs and the operating system. Debugging is

therefore much more difficult and must be restricted to

nonproduction time periods on a special arrangement basis.

The monitor was designed to operate as a series of

interrupt-driven asynchronous tasks. The measurements were

selected on the basis of the projected uses. The most impor

tant activities seemed to be the I/O operations and the CPU

time required for each job. These activities were chosen be

cause they represent the limits applied to jobs executing in

the computer. Generally, the sum of the time required for

I/O operations plus the CPU time determines the real time for

the job. I/O operations cause time periods during which

other tasks may use the CPU and may show contention on a par

ticular channel. These measurements are described below in

some detail. The subsequent analysis and simulations of the

system show the general utility c£ this scheme o£ evaluation.

51

COLLECTION OF DATA

Obtaining information on the characteristics of a par

ticular job stream requires interaction with the system which

is running the job stream. In that respect, the principle of

uncertainty is a factor. Any method of measurement will in

fluence the information being measured. Either the influence

must be kept as small as possible or the influence must be

known and later removed from the evaluation. If information

is available without additional measurements, this influence

is minimized. If additional measurement is necessary, the

influence must be considered.

Some information is supplied by the operating system as

a consequence of the S MF operations. These records are writ

ten at all times for all jobs and thus do not abnormally

affect the normal job stream. This influence is a part of

the accounting system so jobs are always influenced by the

SMF recording and allowances for this influence are already

part of every job.

Complete information on the I/O activity is more diffi

cult to obtain. The measure of activity is ueterciineu by

the accesses and replies to and from each unit. Accesses to

the unit are handled by a supervisor call (SVC). An SVC pro

duces an interrupt in the normal processing of jobs. The

reply from the I/O unit also produces an interrupt. In the

52

IBM/360 series of computers an interrupt is processed by a

swapping of the program status word (PSW). The current PSW

is stored in a fixed location in memory. Another fixed loca

tion contains a new PSW which is then loaded.

A measurement scheme initiated by each of the system in

terrupts will gather data in an asynchronous manner, and will

obtain all the data. This method may then be described as an

interrupt-driven process.

Three specific operations are chosen to represent the

I/O activity. The first operation is SVC 0. This SVC is the

primary entry point to the input/output supervisor from a

problem program. This SVC is also known as execute channel

program (EXCP). The second operation is an error EXCP. This

SVC is called if an I/O operation must be restarted. The

third operation is the I/O interrupt produced by the I/O

unit. Certain conditions may cause I/O interrupts without

corresponding requests.

To obtain information from these sources the system must

branch to the data gathering code. Each of the three opera

tions require slightly different procedures. These proce

dures ère shown in Figure 1 as a flow diagram. ru initiali

zation procedure is used tc overwrite the system entry point

information. Since memory protection is part of the computer

hardware, and these addresses are in the protected core, a

user supplied SVC must be inserted into the system. The ad-

53

/O INTERRUPT "VEXCP

G™D

•RREXCP

INITIALIZE
CONSTANTS

flSoT
OPER

I FT
RTOfî

1 7

INITIALIZE
COLLECTION

7

WRIT FOR
REQUEST

TASK
"IME

ÊOUEST̂ ^̂ ÊRRTOR

PRO&RAM

±
OUTPUT
TO TAPE

FIX-UP
STSTEM

1
(ïrop ̂

GET
CSW

FIND
TIME

7

REQUEST
OUTPUT

A. TES x- uu(r un

(EXIT ^

Figure 1, A flow diagram of the collection monitor

54

dresses needed by the initialization routine are also provid

ed by this SVC. The data collection program then issues a

write-to-operator with reply. When the operator is

instructed to halt the program, the proper reply is given to

the program. This instructs the program to fix-up the system

modifications and terminate the measurement.

When a request for an EXCP operation occurs, the system

enters a section of code called the first-level interrupt

handler (SVC FLIH). The FLIH loads certain important ad

dresses, determines if this SVC is resident or transient, and

acts accordingly. In the case of EXCP, a resident routine,

an address is loaded as an offset from the beginning of the

SVC table (IBHORG). The initialization section has

overwritten this address with the address of the EXCP data

collection entry point. Rs a precaution, the registers are

stored on entry and reloaded on exit. The starting point for

the data to be collected is the address of the input-output

block (lOB) which is passed in register one. From this con

trol block other control blocks are located to provide the

information required (Figure 2).

An error EXCP is another resident SvC. The data start

ing point is now the address of a request queue element

(RQE). Again addresses may be obtained to locate all of the

required information (Figure 3).

55
\

00 TIME FIRST FIVE BYTES

OF 100 Ioe+8 oca FI00RE5S DCBD50RG

DCBRECFM 0C8HRCRF OCBIFLGS DC0OFLGS
PROTECT
KEY

FF FF

FIRST SIXTEEN ÔYTES OF UCB

FF

VOLUME - IF

TAPE OR DIRECT ACCESS

FF

TIOT JflBNfiME

FF FF

TIOT DONfiHE

Figure 2. The monitor output record for EXCP

56

01 TIME

RQE

•

FIRST SIXTEEN BTTE5 OF UCB

«

FF

VOLUME - IF TAPE

OR DIRECT ACCESS

FIRST FIVE BYTES OF 108

103*8 OCB ADDRESS DCBOSORG OCBRECFH OCÛHACRF

0CBIFLG8 DCBOFLGS

TIOT JOBNflHE

1 FF 1
I 1

710T OONAME

Figure 3. The monitor output record for Error EXCP

57

The third type of record is produced by an I/O inter

rupt. The interrupt processing is designed to produce an im

mediate swap of the program status word (PSW), Certain core

locations are reserved for the two types of PSW's. The cur

rent PSW at the time of the interrupt is stored into a core

location for old PSW's. Another memory location contains the

new PSW to be loaded. The PSW contains a mask field, inter

rupt codes and the current program location. When it is

loaded, execution continues from the location specified in

the new PSW.

The interrupt handling is started by the hardware PSW

swap. The first instruction executed must be a register

storage instruction. Addressability may then be established

and the remaining registers stored within the monitor's

region. Absolute addressability must be used for the first

store. The I/O interrupt supervisor uses an area within the

first 4096 bytes of memory to save its registers. The loca

tion of this save area was obtained during the initialization

SVC and filled in at that time. Also at that time, the orig

inal system I/O interrupt PSW was stored in the monitor's

region.

After +he registers are stored, the old I/O interrupt

PSW is investigated. The PSW interrupt code contains the I/O

device channel and unit addresses. Hatching of the unit ad

dress with the unit control block (UCB) unit address field

58

then occurs. One of the fields in this UCB is a pointer to

the most recent RQE. This RQE is the starting point for the

required data. This information is essentially the same as

the error EXCP record (Figure 4).

When the data are collected, the registers must be

restored to what they were before the interrupt. The system

PSH is then loaded to process the interrupt and processing

transfers to the I/O interrupt supervisor.

In addition to the I/O data described above, data con

cerning the CPU activity is valuable. The SHF records only

record accumulated time and, therefore, do not provide a dis

tribution of the CPU requirements. The system uses a partic

ular set of code called a dispatcher to assign CPU time to a

particular task and to later remove that task from execution.

To obtain this task time information, a modification must be

made at initialization time to the dispatcher. In this case,

the initialization is made by moving selected portions of the

code out of the way and bringing in new code to branch to the

appropriate location.

Two identical records are written to record the task

timing information. The only sources of input for these

records are the Task Control Block (TCB) and the timer. In

formation is recorded to provide the jobname, the time of

start or end, and several flags (Figure 5).

59

02 CHANNEL STATUS WORD

TINE

RQE

FIRST SIXTEEN ÔTTE5 OF UCB

FF

VOLUME - IF TAPE

OR DIRECT ACCESS

FIRST FIVE BYTES OF lOB

IOB+8 oca flOORESS DCB050RG DCBRECFH DCBHACRF

DCBIFLG5 DCBOFLCS

FF

TIOT J8ÔNAME

FF FF

TIOT OONAME

Figure 4. The monitor output for I/O interrupts

60

fitCQflO TIME TC8 PTH

fiô FLAGS P5H OF fl8

TI07 FIELDS

Figure 5. The monitor output for the job dispatching opera
tions

61

The data collected by the monitor program is intended to

provide a detailed description of the activity of all the

tasks in the computer. Each record contains at least a time

stamp, a protect key, and, if available, a job name. To min

imize interference with other tasks, certain information may

be only partially computed. For example, the time field re

quires additional computation based on some fields which are

added to the beginning of the records. The proper manipula

tion of this data produces an actual time of day for timing

purposes.

Packing the data is important because of the volume of

the data involved. The variable field length approach is

used to ensure a minimum size record. Storage of the data on

magnetic tape dictates a record size as large as possible. A

buffer size of 16,38W bytes was chosen to be written onto

magnetic tape. Two buffers are used with an exchanging

scheme to switch back and forth between them.

The data provided by the monitor should be sufficient

for most analysis requirements. Definition of each process

is achieved by the various flags and addresses found in the

monitor output. although all of the data may not be relevant

to a paticular study, if all the records are provided, then

only one run of the monitor program may be sufficient for

many independent analyses.

62

DATA REDUCTION

After all of the information is recorded on magnetic

tape, the next step is to make some sense out of it. The

magnitude and nature of the data precludes any manual opera

tions and implies a requirement for efficient programming.

In actual fact, two sources of input are available. The mon

itor program produces the "microscopic" information on I/O

activity and CPO cycles. The system has also recorded the .

"macroscopic" information abou^ each job in its SHF data.

The first operation performed is to separate the re

quired records from the SMF data set and organize these

records into individual data set. The first record is read

from the monitor output and the time of that record is com

puted. SHF records occurring before that time are discarded

and all data following that time is processed. One SMF

record type is not discarded, the TPL devices record. This

record is stored into memory for later use. If another IPI

devices record appears before the monitor program starts, its

data replaces the previous data. If an IPL devices record

occurs âftéi t.hw monitor program started, the separation op

eration is halted and processing continues as if all the

records had been processed.

A printed report is begun which will include the time of

IPL and statistics about individual jobs. Since several jobs

63

may be executing at any given time, the records in the data

sets may be somewhat randomly distributed. Reorganizing the

SHF data set at least allows some sequentiality to be

apparent in the resultant data sets. Information from a job

is produced at job end a.s defined by the name change in the

computer. This information is provided in the form of a

printed report showing the job name, the number of times it

was dispatched for execution and an identification number

which is then used for all future references to that job.

After the SMF data set is split into three data sets,

the next routine in the process operates on the monitor pro

gram data. The disorder of the information in the monitor

data is even more extreme than the SMF data. Data must be

recorded within the program storage to enable a logical

matching with the various measurements. For this reason,

certain variables are input as cards to complete the system

definition. Accumulation of totals is done within areas

which are set up using the IPL devices record information.

Each unit is represented in alphabetical order within this

SHF record so a simple transfer is possible.

The output of the program is pEOuuced in two forms. The

first is the printed report which was started earlier. As

all of the information is read, statistics can be produced on

various parts of the data. The first information written in

this phase is the job summary for the completed jobs as noted

64

above. These records are written in the order in which the

jobs complete, as they complete.

The second part of the listing is data to define the

time period for the measurement, the total number of records,

and the distribution of the records. This part is essential

ly a statistical description of the records themselves. This

information is provided to give an indication of the statis

tical validity of the data and to date the data so that the

configuration might be remembered.

The third part of the printed listing is an I/O activity

listing by unit number. Each unit is listed and the total

number of each type of record is listed behind it. This

listing may be used to show which units are being used the

most. Additional information is recorded on each direct

access I/O operation which provides the address of the opera

tion on the device. This information may be used to produce

a histogram of direct access device addresses and the

distance traveled between accesses.

Finally, the printed listing contains the job informa

tion for the jobs which are unfinished. This listing

includes all OÏ the jous wnich aiie permanent in the system

such as writers, readers, and teleprocessing programs. Also

in this list are the system requests and tasks, and the

system wait time. The monitor program will also appear in

this listing.

65

A second form of information is produced at the same

time as the printed listing is created. Some graphical means

of presenting the computer activity is considered valuable,

since the magnitude of the data is so great. The form chosen

is tc plot line segments for each period of time that a par

ticular resource is in use. This form allows a pictorial

representation of the overlap of I/O activity and CPU activi

ty. Tn practice, the CPU activity is broken up into jobs and

the lines are labeled with the job number. This scheme

allows a potential investigation of job activity within that

job.

The problem with graphing time periods is the small mag

nitude of the basic time unit. Since each time unit is ap

proximately 0.016 seconds, many time units are contained

within a short period of time. If one second is chosen to be

represented by 0.6 inches, then the minimum time period

(0.016 seconds) is nearly the same as the minimum increment

on the available plotter (0.01 inches). To investigate a

long time period would require a very long graph. The

ability to look at selected portions of the graph is neces

sary to overcome this problem.

A problem also exists with the resources axis of the

graph. A large number of I/O devices may cause the graph to

extend upward a considerable distance. In this case, the

graph is split into multiple graphs which may be placed one

66

above the other. Each graph is a complete graph with all

axes labeled.

Trace Record Production

After the information described above is produced, the

last phase of the program produces a set of records which may

be called a jobstream trace. This trace information is pro

duced as three distinct record types (Figure 6). The first

record is a job record, which defines overall job information

such as the time it was read into the system, the number of

steps, the priority, and output information. The job record

is a variable length record with an ordinary data set organi

zation.

The job record includes a pointer to the first step

record for the job. Both the step records and the I/O

records are contained in a common data set because they re

quire the same organization and are the same length. Infor

mation in the step record includes both the core storage re

quested and used, the CPU time, the priority, and the time of

step initiation and termination. Pointers are included to

obtain both the first of the I/O records and the next step

record.

Each I/O record is an indication of seven I/O actions.

Each record has a one byte unit number followed by three

67

JOBN
\ 1

AME
1 1 1

STEP POINTER READER START

READER END STEPS PRIOR COMP CODE

JOB
CLASS JOB ID LENGTH ACCOUNTING

FIELDS.. OUTPUT
CLASS

DATA
SETS WTR START

WTR TIME ADDITIONAL WTR RECORDS

JOB RECORD

STEP POINTER DISPATCH RECORDS

REQUI
HO STORE

:STEQ
HI STORE

USED
HO STORE HI STORE

INITIATION TIME TERMINATION TIME

man COMP CODE CPU TIME

STEP RECORD

NEXT RECORD UNIT TIME USED

DISPATCHING RECORD

\

Figure 6. The jobtrace records

68

bytes of use time. Each record also has an address of the

next I/O record.

The information represented by these records is believed

to be in excess of the requirements for a system simulation.

Few, if any, of the previously cited sources have had as much

data to work with in their simulations. Additional informa

tion is provided so that the simulation may be as simple or

as complex as is desired. To provide the jobs in the same

order as they were presented to the system, the data set con

taining the job records may be sorted. The pointers to the

step records will still be valid, so this is an acceptable

modification.

69

DATA ANALYSIS OUTPUT

The output of the data reduction program is interesting

for an insight into the working of the system. The records

and plots produced show certain immediate information for ap

plication in system performance improvement. Figure 7 shows

the highlights of one data reduction program output.

The first section of the output shows statistics on the

jobs which have run to completion during the monitored time

period. The first column of the data provides the users

jobname. This jobname has two additional names given to it.

First, since the job is started by a particular initiator,

that initiator name is given as an "alias" for the job. The

second identification is the ID number assigned to the job.

This number is added to provide an easy way of referencing

each job. The remainder of the information is an indicator

of the CPU activity of the job. The total time uiviuwu by

the number of dispatches of that job is an indication of the

time between interrupts for that job. The system has a fa

cility called time-slicing which forces the job to release

the CPU so that another job may execute. This time-slicing

interval may be selected using this data as a guide.

The second section of the output shows some of the data

concerned with the monitor operation. A total number of

records processed, and the totals for each type of record

show the magnitude of the process. The elapsed time for the

70

JOB DISPATCHING STATISTICS

Name Alias Dispatch Total Time ID

BATCH02 B 173 11.18 5
A369I0P4 D 207 8.28 9
A421F5 B 105 7.93 10
C383SHHP D 63 2. 54 13
B2872222 D 124 19.41 16
B2873333 D 70 3.29 17
A233T101 B 227 7.71 14
A273SPLT C 53 2.39 20
C288BG2 D 233 13.03 18
C393HTH0 C 247 10.08 24
DEKLIST9 C 78 2.94 24
C449F0BT B 379 26.64 19
A401F02 D 287 14.68 22
A254H C 353 36.46 25
DUANE09 E 964 1:37.76 7
D204SELI B 320 27.31 26
C346NAAM D 243 13961 27
A409D9 B 99 5.84 30
C346NAHE D 214 13. 23 31
A435ADA B 255 14.58 32

r B 7 3 3.04 34
C241BQ B 66 2.78 35
T406SMF C 648 37.09 28
A345STAT D 586 1:06.82 33
C428V77 E 467 49.06 29
D342 C 93 4.99 37
A282TKRN B 98 3. 36 36
A335PLT C 144 5.98 40
C384AAEF D 262 9.39 38
C235CJRÏ C 6 1 2.29 42

Figure 1 , Output information from the data reduction pro
gram

71

STATISTICS ANALYSIS RETURN

Total Number of Records Processed
589,345

Time Information

Collection Date 71:232
First Record 11:47:10.01
Last Record 12:18:45.06
Elapsed Time 31:35.05

Distribution of Record Types
Type 0 42392
Type 1 471
Type 2 108682
Type 3 218900
Type 4 O O A £. IO?VV

time 143463

Figure 7. Output information from the data reduction pro
gram (continued)

a me

OOB
OOC
OOD
OOE
010
OIF
020
021
130
131
132
133
13U
135
136
137
280
281
282
283
297
330
331
332
333
334
335
336
337
380
381
382
383

: 7.

72

Distribution of Unit Activity

Type 0 Type 1 Type 2

246 2 501
11541 18 21128
2627 8 4562
2828 18 3118
1932 16 2137
201 0 240
603 0 680
0 0 0

319 50 17459
199 1 391
24 0 34
392 10 706
286 10 549
298 4 526
0 0 0

98 0 147
0 0 2

1405 13 1767
197 6 288

3784 25 3904
1421 0 11255
1455 57 19047

0 0 0
1106 42 1525
2681 54 5597
2288 38 4360
2015 65 3812
76 0 293
0 0 0
14 0 36
1 0 0

3887 32 4088
184 2 216

Output information from the data reduction pro
gram (continued)

73

Unfinished Job Summary

Marne Alias Dispatch Total Time ID

SYSTHAIT 4527 13: 06. 56 0
SYSTREQ 2319 35.13 1
PRT2 1002 47. 13 2
PPT1 1264 1:02.54 3
MASTER 392 9.13 4
R335PEOG B 201 6.98 41
OPER 439 29. 53 6
C206TOB E 704 1:11.61 39
lOSTAT 325 18.49 8
C369BGK3 D 212 8.09 43
ED El 2433 1:49.32 11
PUNI 451 16.78 12
CPS 108 6. 44 15
B383CHPL C 203 34.43 45
MOUNT 27 0.94 23
RDR2 69 2.64 44

Figure 7. Output information from the data reduction pro
gram (continued)

74

collection period is also given. From these numbers, it is

apparent that a large amount of activity is present in the

computer system. Dividing the total time by the number of

records provides a measure of the average time between

records. This time period is less than three milliseconds.

If only the dispatching records are considered, the interval

is still something on the order of nine milliseconds.

The small size of the average time period may also be

seen in the "zero time" count. This field represents the

number of time periods which were less than one timer unit

(0.016 seconds) in duration. As can be seen, nearly two-

thirds of the activity was within this category.

The third section is devoted to the I/O unit activity.

I/O unit activity is important in determining channel splits

and device overloading. These areas are considered when the

I/O operations are the limiting factor on a system's perform^

ance. These records may be sufficient to provide some infor

mation relevant to system performance, but a better guide

would be the actual address of the operation. For this

reason, a data set is produced which contains the address of

^n.ch I/O XTxterrupt and both the volume xdentificatxon and thG

unit number. This data may then be tabulated into some

usable form. This data is then useful to position the data

sets on these volumes.

75

A careful examination of the records will reveal that

many more I/O interrupts occur than EXCP operations. Since

the I/O interrupt operation is a hardware action, it is

assumed to be correct. One of the sources of extreme differ

ence is the use of data transfer methods which do not rely on

the system EXCP method. This may be seen in the data for the

system volumes 130, 297, and 330. These three volumes con

tain the principal data sets for the system. Since the

actions on these data sets are controlled by the system, EXCP

may be bypassed and no records will be written for EXCP to

these data sets. Therefore, the only reliable indicator of

activity appears to be the I/O interrupt records.

The fourth section of output tabulates the unfinished

job information. Included among the unfinished jobs are

records which tell how much time various system tasks re

quire. The first data item in this list is an indication of

the system wait time during the interval. This information

combined with the time period of the monitor, shows the per

centage of CPU utilization. In this time period, the CPU

utilization was approximately 59%, but this run was during a

slack time for computer usage.

Notice that the time required for the monitor program is

also listed in this output. In this case, the monitor re

quired slightly less than 1? of the time period. However, it

must be remembered that the monitor also requires at least

76

one tape unit and causes some interference with channel ac

tivity. One other situation occurs while the monitor is run^

ning which may influence these numbers. If a monitor buffer

gets full before the previous buffer has been written, data

may be overwritten. This could happen if a tape error is

detected and automatic error correction actions are applied.

To prevent disastrous results, a feature of the operating

system is used to effectively lock out all other tasks from

execution. This occurs fairly regularly in the time period

and no measure of this influence is shown.

The second form of output is the plot produced from

these records (Figure 8) . The plot is provided as a pair of

sections which may be put together. The plot is labeled with

I/O unit numbers and a concurrent job number. This job num

ber has no relation to the job identification number, howev

er, the job identification number is used to label each line

on the CPU requests section of the plot. Each action is tha-

oretically shown by a line segment extending from the begin

ning of the action to the end. In many cases, however, the

action has a zero time length. In these cases, only a dot

will be plotted. It was also fûùnù necesâauy to eliminate

multiple dots on the same time coordinate. This is an indi

cation of the number of actions which occur between timer in

tervals. In the I/O action section, the intent was to meas

ure each I/O action from the EXCP record until the interrupt

77

9«»

BU....

P?» ..
pas

, -, . —

poj
MB

L
isiiiiue

T I H E

t Z i l l i U S I 2 i l l i 5 a

ONE INCH TB ONC JtCOND
i 2 i U ; S z l a i i i t s u i s - . i t i s e

Figure 8, activity plots of the collected data

p«....

PÎ?
03C

J L_i I I : 1 1 1 '
, 1 1 , 5 6 1 2 : 1 2 . 2 U 1 2 : 1 2 . 2 6 1 2 , 1 2 . 2 8 1 2 . 1 2 | 3 Q 1 2 : 1 2 . 3 2 1 2 . l 2 i 3 U I 2 i l 2 i 9 6

a

78

record. As shown above, the records do not match, so this

was only partially successful. In the cases where only an

I/O interrupt was recorded, the record is marked by a single

dot. Although it may not be immediately apparent to the eye^

many of the "lines" on the plot are really a series of close

ly spaced dots. This is especially true in the CPU activity

and I/O unit 297.

Data Analysis Discussion

To a system programmer, the output from the data analy

sis program can be very interesting. The data which is

tabulated and plotted may show information which will aid in

system performance optimization. The printed tables shown in

Figure 7 may guide the system programmer in this effort.

First, the information provides the measurements necessary to

calculate the average CPU time per dispatch. This number

should be used to guide the selection of the time-slicing pa

rameters. The time-slice period should be large enough to

satisfy 90% of the job requests. This is supposed to allow

most of the jobs to progress far eiiOUgh to start àn I/O opér

ation before it is interrupted. From the data presented

here, this number might be selected at 80 milliseconds. Pre

vious selections set this number at 200 milliseconds.

79

The next information of interest is contained in the

unfinished job summary. No other measurement scheme allows a

measurement of the system tasks. These tasks include the

reader and writer programs and other system control tasks for

such things as modifying jobs from class to class, displaying

job queues and cancelling jobs. Also included in this summa

ry are the teleprocessing jobs. From the table, the readers

and writers accumulated 3 minutes, 55.77 seconds out of 31

minutes, or about 10T of the time period. This seems to be a

reasonable amount of time for the spooling operation. As was

previously noted, this data was collected during a slack day,

so the system wait time (SYSWAIT) is quite high. In fact,

over this time period, the CPU has less than 59% utilization.

The two tasks which represent system activity are SYSTREQ

and MASTER. The accumulated total time of these two tasks is

44.26 seconds which is less than 0.5% of the time period.

The two teleprocessing tasks, OPEP. and CPS are listed

with the unfinished jobs. OPER is really a specialized task

for operator control purposes, but CPS is a user oriented

system. Together, these two used about 0.2% of the time. Of

course, very little activity (abriorrally low) was recorded on

CPS.

The last bit of information on this sheet is the time

required for the statistics monitor lOSTAT, This quantity is

less than 0.1% but it must be remembered that most of the

80

monitor's time is spent under some other task's time. In

fact, this time for lOSTRT may be down within the timer reso

lution .

Unit activity is the next important measurement. This

information may be used to locate critical data sets for

optimum performance. The critical data sets exist on the

units named 130, 297, and 330. From the numbers recorded,

these units appear to be quite evenly accessed.

The plotted information is more interesting as a method

of viewing the system activity rather than having any intrin

sic value in a detailed analysis. The plots in Figures 8 and

9 are typical of two time periods in the data. Figure 8

shows an active period in the computer. Note that the system

wait time (job id number 000) is nearly a solid line to start

with and toward the end of the plot the activity becomes much

less solid.

Other tasks of interest might be OPER (006) and lOSTAT

(008) . The pattern of OPER is determined by the option se

lected and the automatic update time selected by the opera

tor. In this case, the pattern is composed of three little

bits of time followed by â lôui: second wait. The first, bit

is a signal from the timer followed by a read of the operator

display. After the read is complete, a little bit of time is

required to format the next display, and then the write oper

ation is initiated. The last little bit is used to set up

81

p i s

pot.

. m
j

12,00:22
TIWE

12:00:2̂ (2:00:26
ONE INCH TO ONE SECOND

l?t00:2a 12:00;3U

Figure 9. An activity plot for data analysis

I 1 I I I 1 I 1 1

2 : 0 0 : 3 2 1 2 : 0 0 : 3 1 1 1 2 : 0 0 : 3 6 1 2 : 0 0 : 3 8 1 2 : 0 0 : > 1 0 1 2 : 0 0 : 4 2 1 2 : 0 0 : ^ 4 l 2 i O O : U 6 l a i O O t t d

82

the timer for an interrupt after a specified period of time

(4 sec.) . The read and write operations may be seen in the

line marked 020.

The statistics monitor (008) is a regular pattern of two

dots followed by a slightly longer period of wait. The write

operation is directed to unit 281. These writes may be

closely correlated with the CPU requirements. This regular

pattern may be noticed in Figure 9 as well. In Figure 9, the

only other job running is 007. This job requires a tape

mounted on unit 283 and the effect of channel contention may

be easily seen because the CPU time for job 007 is

interrupted during the time that unit 281 is used. Since ths

monitor runs at a higher priority than any other job, its

requests are serviced before other job requests. Therefore,

the execution of the job using unit 283 is interrupted until

the write is complete.

Figure 9 also shows the start up action for reading jobs

into the system. As a job is read in, distinct phases may be

noted. First, the cards are presented to the physical card

reader. After a bit of checking, the reader begins spooling

the cards onto a disk unit; in this case the unit is 135. At

the end of a step in the job, the step and its control blocks

are entered into the job queue on unit 297. These phases may

be clearly seen in Figure 9.

83

PART THREE.

THE SIMULATION OF AN OPERATING SYSTEM

84

TRACE-DRIVEN SYSTEM SIMULATION

Once the trace information is available, the next step

is the modeling of the operating system. An immediate

decision must be made to determine the simulation language to

be used. Since any possible language must be, first of all,

available, only three simulation languages were considered.

These- are GPSS, SIHSCRIPT, and SOL. Of the three, the only

one which is truly a production system at this installation

is GPSS. Additional languages are available from external

sources, but their capabilities are either unknown or their

costs are prohibitive.

Comparing the available features in the three compilers

is the next step in the decision. An article by D.E. Knuth

and J.L. HcNeley is used as the definition of the SOL lan

guage (12). Most of the features of SOL are well designed for

a simulation language. Inadegua+e arithmetic capability is a

serious problem in SOL, as is the omission of a list or queue

creation facility. This ability is important for the simula

tion of an operating system. The only other questions con

cerning SOL are the problems of I/O and storage simulation.

The I/O statements available seem to quits powerful. How

ever, there is no way to conveniently add user routines to

handle the jobtrace information. The description of SOL does

not specify the exact form of the storage requests. For true

system simulation, the storage must be a discrete element

85

storage. This is an unknown in the SOL system.

Unfortunately, SOL is implemented as an interpreter so exten

sive simulations would be costly.

The second language to be investigated is SIHSCRIPT.

Important problems in the simulation include gueueing, I/O,

storage, and communication between parts of the model. As in

SOL, user controlled gueueing does not seem to exist in SIM-

SCEIPT. In addition, all waits for facilities are done in a

first-in, first-out (FIFO) list form. R system would in all

probability use a priority gueueing for the internal lists in

the system. Note that priority gueueing is a more general

form, since all entries with the same priority are handled as

a FIFO list. Since SIMSCRIPT is implemented as a FORTRAN

superset, FORTRAN I/O may be used as well as an extensive set

of special SIHSCRIPT I/O instructions. Storage considera

tions are again unknown, but the communication problem does

not appear to be solved.

GPSS is the remaining language to be investigated. The

definition of GPSS which was used for evaluation is found in

the GPSS user's manual (7). Most of the necessary properties

are available in GPSS with a few critical exceptions. The

most important problem is the storage operations. Storage in

GPSS is viewed as a continuous entity with no holes or

spaces. Fragmentation cannot occur in GPSS storages. The

second problem, the communication between transactions, is,

86

at the least, very difficult in GPSS.

After the above evaluations, it is seen that none of

these languages are adequate for the simulation required.

The necessary language appears to be some kind of cross be

tween GPSS and SOL. This is the form of the BOSS (Basic Op

erating System Simulator) language which was developed to

fulfill the requirements of this dissertation. This language

is specifically designed for the simulation of operating

systems. Although it is a combination of GPSS and SOL in its

functions, statements such as assignment statements and I/O

statements are quite similar to PL/1.

Why Create a New Simulation Language ?

"Before a designer sets out to devel
op a new simulation language, he should
seriously consider whether a new language
J. o j_c;axxjr y« n xu

itself, is not sufficient justification
for existence; some demonstration of the
usefulness of nr-w features is necessary.
Often user complaints about existing lan
guages are not with the language per se
but with certain features of the implemen
tation: lack of documentation, lack of
training aids, difficulties in
incorporating the package into a computer
center's monitor system, lack of adequate
debugging facilities, and so on."

As the quotation above (31) states, simulation languages

should not be created for the pleasure of the designer. The

only apparent justifications for a new language are the special

87

features which are required, fi careful analysis and comparison

must precede the design and implementation of a new simulation

language. Sometimes the resulting language may be a special

purpose language which may be difficult to compare with a gen

eral purpose system. Nevertheless, the known languages should

be investigated to determine if the required features are

available.

The design of an operating system places some rather

unique requirements on a simulation language. The obvious re

quirements of time advance,- reserving resources for a particu

lar job, and controlling an orderly progression of jobs through

a system require certain capabilities. One of the first desir

able features is some form of input to describe the job stream.

The particular form of input is somewhat dependent upon the

uses to be made of the data. Some generalized form of input

can be used for several purposes, but a specialized input for

only jobstream information might also be considered.

Communication between separate transactions or tasks in

the simulated system is a very desirable feature. R typical

multiprogramming system is usually based on separate tasks

which must pass information to other tasks in the system. An

example of this communication occurs in the spooling of data

onto secondary storage for later execution. The input program

is responsible for assemblying all the necessary information

into a set of pointers, and then placing that set of informa-

88

tion into a list where it waits until it may be executed. Some

other task (sometimes called an initiator-terminator) is re

quired to begin the execution of the job. At the completion of

the job, the output (usually printed or punched) must be en

tered into a list for another task to transfer the output from

secondary storage to the physical output device. The interde

pendence of these tasks requires a signal from one task to

start the next task. A "mailbox" technique could be used where

the tasks keep looking for work at regular intervals. A

quicker technique can be used if the tasks have some form of

"shoulder-tap" communication. The information may then be ob

tained as soon as it is available.

A third element of operating system simulation involves

the allocation of resources. Both partial and total alloca

tions are used in operating systems. Partial allocation is

typical for resources such as primary and secondary storages.

An important restriction on partial allocation is the discrete

nature of these devices. Allocation must only occur on dis

crete boundaries and may not be moved from its original posi

tion. This leads to problems of fragmentation, where free

space say not be contiguous. This means that although the

total free space might be sufficient to satisfy a request, it

is not in a single area. This fragmentation might be one of

the problem areas to be studied.

89

THE BASIC OPERATING SYSTEM SIMULATOR

A special purpose operating system simulator should be de

signed to aid the system simulation study as much as possible.

The use of terms which are either common to the system simula

tion programmer or descriptive in nature is an aid to the writ

ing of the simulation. In addition, artificial constraints

should be eliminated as much as possible. The form of the lan

guage must be easy to remember and might reasonably be based on

one of the common computer languages {PL/1, FORTRAN, ALGOL,

etc.). Typically, system programmers want more facilities and

capabilities than are available, so easy expansion or addition

should be provided.

The form of the Basic Operating System Simulator (BOSS) is

similar to PL/1. The statement structure has an optional

label, a statement identifier, and a trailing semi-colon. The

label consists of an identifier followed by a colon to delimit

the label from the statement. The statements are free format

and may occur anywhere within the card boundaries.

Additionally, the statements may be placed on the same card as

other statements. Coiïimênt statements are allowed which may

have any character except a semi-colon in them.

Some of the special features of the BOSS system are con

cerned with memory management within the model. The memory

management keywords ALLOCATE and FREE handle all reserving of

90

memory space. The memory space is defined in discrete incre

ments and maintained as a discrete storage area. The AlLOCiTE

feature also has a conditional entry feature which allows

continuation of the program even though the allocation is not

possible.

Another special feature allows the various transactions

within the simulation to communicate with each other. This

feature is similar to the WAIT-POST facility in IBM/360. The

commands are WAIT ON (list) and SIGNAL which allow the simula

tion to wait until the event is completed,

Input/Output is allowed through a statement structure

almost identical to PI/1. Data is processed as a stream of

characters from which the requested areas are determined. Two

forms of data transfer are allowed, a free format process and a

programmer controlled format. In addition, a standard statis

tical output is generated at the end of the simulation run

which may also be obtained at specific intervals (snapshots).

User def ined l is ts or queues are possib le wi th ENQUEUE and

DEQUEUE capabi l i t ies . The ENQUEUE process a lso a l lows an event

complet ion s ignal to not i fy other t ransact ions that something

h ci s p laced xnto the queu^. The? quGues & r ̂ org^n^z&d as

f i rs t in - f i rs t out wi th in a pr ior i ty c lass .

External subroutines may be incorporated into the simula

tion by using an EXECUTE statement. Either BOSS subprocesses

or assembler subroutines may be called in this way. This

91

allows certain standard routines to be written once and used by

several simulations. In addition, several standard functions

are provided to compute observations from standard probability

functions.

The BOSS program is executed as a standard language proc

essor in the IBM system. The program is able to produce object

modules and object decks, or use these as subroutines. Check

point data may be written at regular intervals for restart of

the simulation. The instruction structures are described

below.

The implementation of BOSS was achieved with a modified

form of the META PI compiler-compiler (17,18). This technigue

provided the syntactical and some of the semantic operations

with a minimum of work. The entire language definition in the

META PI language is given in Appendix F. As might be expected,

certain features have been added to META PI to accommodate the

simulation language definition.

Variable Types

iable types for simulation purposes. These variables are used

to represent values, actions, or physical items necessary for

system simulation. Variable types are usually determined by

the contextual use of the variable. In some cases, variables

92

must be def ined to ass ign cer ta in character is t ics such as

length or d imension. Almost a l l var iab le types may be ar rays

i f declared as such. Arrays may be n -d imensional wi th bounds

set as requi red. Both upper and lower bounds may be speci f ied

when the array is declared. This is achieved by speci fy ing a

bounds pa i r , two numbers , separated by a co lon. The f i rs t of

these numbers w i l l be used as the lower bound, and the second

number w i l l be the upper bound. I f only one number i s speci

f ied , the lower bound defaul ts to zero , and the number speci

f ied is used as the upper bound.

An important var iab le for s imulat ion is the t ransact ion

parameter . Th is var iab le type is associa ted wi th the current

t ransact ion, ^nd remains wi th that t ransact ion for the durat ion

of i ts l i fe . Since these parameters are unique to a par t icu lar

t ransact ion, they may be used to represent in format ion unique

to that t ransact ion. Two forms o f the parameter may be used.

The f i rs t form is s imply the le t ter P fo l lowed by a number .

Th is form is used to represent an in teger parameter va lue and

i t wi l l be used as an in teger . The second form is the le t ter

pa i r P? fo l lowed by a number . The var iab le is then used as a

f loat ing point number . The post f ix number fOS these parameters

is chosen f rom the numbers zero to seventeen. Both f loat ing

point and in teger parameters are s tored in the same area , so

numbers may not be used for both in tegers and f loat ing point a t

the same t ime.

93

Three variable types are used to store values for later

reference. These types are INTEGER, FLOAT, and BOOLEAN.

Integer variables are used only for values which do not have a

fractional part. These variables are common in simulation for

counting and quantity recording. Integer is the type assigned

for ordinary assignment statements. FLOAT is used for those

applications which must have fractional parts. Among these ap

plications is the measurement of time for a process. Statisti

cal distributions provided within the language usually return

floating point data. BOOLEAN variables may be used to set

switch information for later testing. The common Boolean con

nectives may be used to form Boolean expressions.

Two types of variables are used to represent storage type

entities. These are STORAGE and QUEDE. A STORAGE entity is

used to represent the physical act of storing data or reserving

space for data. A transaction must request space for storage

from a particular storage unit. After using that space it must

be released or freed so that another transaction may use the

same space. Storage is a discrete entity and discrete requests

must be made. Blocks or units of storage mus+ be specified, so

the variable must be declared. Fragmentation is possible be

cause freed space need not be adjacent to the current free

space.

QUEUE variables are used to produce waiting lists of

transactions. Queues may have a maximum capacity and may be

94

either ordered by priority or first-in, first-out. The number

of transactions waiting in the queue may be limited by a decla

ration. When an entry is removed front the list, the entry

removed is the top-most entry in the list. Transaction removal

may only occur if an entry exists in the queue.

FACILITY variables are used to represent items which may

only handle one transaction at a time. These devices may be

considered valuable resources because the other transactions in

the system may be competing for its use. The SEIZE and RELEASE

commands are used to service facilities. If a transaction

finds another transaction has already pre-empted the use af the

facility, the current transaction is placed on a waiting list.

This waiting list is ordered according to the priority of the

transactions in it.

The EVENT variable is used to record the occurrence of

some action. Many situations require a coordination effort be

tween several transactions. Event variables record information

which is used to determine if a transaction has completed the

event, cleared the event, or if another transaction is waiting

for the event to be completed.

95

SIMULATING AN IBM/360 OS SYSTEM

The simulation of an operating system requires a great

deal of investigation. In fact, the simulation designer should

be as familar with the workings of the operating system as he

is with applications programs. Many questions about a system's

operation must be answered before it can be simulated. This

minute investigation of the system often proves as useful to

the designer as are the final simulation results in understand

ing the system operation.

OS is best modeled in three parts. The first part of the

model is the reader procedure. The reader procedure is used to

bring the job into the system for execution. The reader is the

software entity which translates JCL to control block informa

tion and spools the user data onto secondary storage devices.

At the end of the input data for a particular job. the job is

placed into the job queue where it awaits execution. A limit

is placed on the number of reader procedures in the system. In

simulation models, each reader may be represented by one trans

action which continually loops through a series of operations.

The required actions are: 1) read in the job information; 2)

wait until the proper time as recorded in the job information;

3) enqueue the job in the proper input queue as described by

the job information; 4) return to get the next job. It is the

duty of the reader to signal the next part of the simulation

96

that a new job is ready.

The second part of the simulation is the initiator-

executor, This section responds to the prompting of the

reader, and picks up a job from the job queue. Front the step

records, storage and other resources are allocated. The

executor portion then passes the job through all of its steps,

causing the proper waits in the storage. When the last step

has been executed, the job is put into the output queue for the

last part of the simulation.

The third part of the simulation is the writer program.

This section is used only to output the job. Information is

picked up from the output queue, and this data determines the

length of time the writer is busy with this job. Ks with both

the reader and the initiator-executor, a limited number of

writers are available. Each writer is represented by a trans

action which loops back to the first of its section.

Timing information is picked up with the records which are

Dart of the jobtrace. In addition, the simulation is terminat

ed by one of two conditions. The first possibility occurs if

t-he model reaches a state where no transactions can be

dispatched for execution. This might occur if the model runs

out of work, or if a mutually exclusive lock-out condition

occurs. The second form of model termination occurs when a

preset transaction termination limit is reached. This may

occur because a clock was produced which generates transactions

97

at regular intervals and these are then immediately destroyed.

In this way a clock effect may be obtained by terminating the

transactions and using these transactions as the limiting

count.

A sample simulation model is shown in Figure 10. This

particular simulation is designed as a study on the effect of

storage requirements in a system, but it is probably more im

portant as a sample of the form of simulation. It is assumed

that the input data consists of four data items per job step.

The first number is the elapsed time period between the previ

ous job and the current job as they are read in. The second

number is the amount of storage required by this job step. The

storage residency time is represented by the third data item

and the fourth item is the number of pages printed by the job.

The time information are floating point numbers, but the other

two items are integer numbers. It should be apparent from this

example that the language is well structured for this type of

simulation. More extensive examples may be found in Appendix

F .

Simulation of specific hardware devices depends upon the,

characteristics of these devices. The SEISE and RELEASE com

mands are used to reserve exclusive control of a facility for

one transaction. If another transaction requests a facility

which is already in use, the new transaction is queued into a

list based on the priority of the transactions. In this way

98

SAMPLE : SYSTEM 50,5 ;
NOTE THIS IS A SAMPLE TO SHOW THE FACILITIES OF

THE SYSTEM SIMULATION LANGUAGE CALLED BOSS.
THIS IS IN NO WAY REPRESENTATIVE OF ALL OF THE
FEATURES AVAILABLE IN THE LANGUAGE.

DCL (JOBQrOUTQ) QUEUE (75) , MAIN STORAGE (370) ,
CPU FACILITY , EXTIME FLOAT , (QIN,QOUT) EVENT ;

NOTE THE FIRST SECTION DEFINES THE READER TRANSACTIONS
WHICH OBTAIN THE INFORMATION FROM AN EXTERNAL
SOURCE ;

GENERATE MAX (2) , MEAN (0) , START (0) ;
PF1 = 0 ;
RDRIN ; WAIT UNTII(PFI) ;

GET EDIT(PF1,P2,PF3,P4) (SKIP,2 (F (8,4) ,X (4) ,F (4) ,X (4)))
ENQUEUE JOBQ,QIN ; GO TO RDRIN ;

NOTE NOW SIMULATE THE INITIATOR-EXECUTOR PART ;
GENERATE MAX (4),MEAN (0),START (0) ;
INEXEC : WAIT 0N(1,QIN) ; DEQUEUE JOBQ ;

ALLOCATE MAIN,P2 ; WAIT UNTIL (PF3) ;
FREE MPIN,P2 ; ENQUEUE OUTQ,QOUT ;
GO TO INEXEC ;

NOTE NOW SIMULATE THE WRITER ACTIONS ;
GENERATE MAX (2),MEAN (0),START (0) ;
INWTR : WAIT 0N(1,Q0UT) ; DEQUEUE OUTQ ;

IF P4 > 10 THEN EXTIME = .25 * P4 ;
P T Ç T ? n n . n w — n n ^ i n .

V ^ 1.-T — CT* X V ^

EXTIME = .15 * P4 ; END ;
WATT UNTIL (EXTIME) ;
GO TO INWTR ;

NOTE THE NEXT SECTION DEFINES A CLOCK TO BE USED AS
A TIME LIMITER ;

GENERATE MEAN (1),DEVI (0) ;
TERMINATE 1 ;

END ;

Figure 10. A sample s imulat ion in BOSS

99

an I/O request can be simulated by issuing a SEIZE on a

channel and a unit address. To represent the actual data

transfer, a WAIT must be issued to hold these facilities until

the simulated data transfer completes. After the time period

is complete, the facilities are made available for other trans

actions. The use of a subprocess to do this entire operation

will allow a savings in the programming and will allow easy

modification to change device type.

In the simulation of an operating system, one of the

changes desired might be the total number of resources such as

readers, printers, direct access devices, and even central

processors. In many cases, the only changes necessary to simu

late these modifications would be to change a constant. For

example, to increase the amount of primary storage should be

just a constant in a declaration, increased printers just means

the number of writer transactions is increased, and increased

readers is the same form of increase in the number of reader

transactions.

Another possible modification might be the addition of

multiple central processors. If all of the processors use a

common storage device, then a subprocess for the CPu must

decide which CPU is free and use that CPU. A more extensive

task would be to increase the number of direct access devices.

Some preprocessing may be necessary to select particular job

accesses for the new devices. These new devices may be diffi

100

cult to use properly.

Software modifications might mean changes to the simula

tion model itself. Certain things such as using more job

classes for jobs, are more or less trivial changes. On the

other hand, modifying the criteria used to select a particular

job queue for a job may require some form of external pre

processing.

101

PART FOUR.

CONCLUSIONS AND SUMMARY

102

This paper has proposed the combination of two evaluation

techniques into one procedure. This combination is postulated

to provide a more accurate evaluation for a complete computer

system, because the simulation is driven by the detailed data

obtained by the monitor. Naturally, the simulation is costly

because of the magnitude of the data to be processed, but the

data structures and the special simulation language are effi

cient means of handling this magnitude of data. Simulations cf

computer systems are generally recognized to be the most gener

ally applicable form of evaluation, so the procedure presented

here is postulated to be useful in all forms of performance

evaluation.

Although the measurement step of the procedure is primari

ly designed to provide data to the simulation step, the insight

into the operation of the system must not be ignored. The data

produced by these measurements may suggest particular areas to

investigate. For performance monitoring applications, these

measurements may be sufficient to evaluate the potential prob

lem areas in the computer system.

The measurement step is dependent upon a software probe

which iiiiiSt bë xàilorêu to fit thé systèiïi Ou which it Is to be

run. This fitting process must be done by someone with an

intimate knowledge of the computer system. The proper loca

tions must be found to be modified and the data obtained must

be properly presented. This portion of the process has been

103

verified by experiments with an IBM 360/65 operating system.

It is postulated that other computer systems can be measured in

the same way. This particular point is necessary in order to

apply this procedure to a general class of computer systems.

In fact, this process has been applied to at least one other

computer system (see Schwetman (24)).

The creation of a simulation language which will easily

provide a model of the operating system is an important part of

the total system. The features built into the BOSS language

allow the simulation designer to accurately model the computer

system. Of course, the designer must still have a certain

level of familiarity with the system, but the degree of

familiarity varies with the required simulation. It is the

author's belief that the BOSS system is misnamed, because it

appears to be much more general than just an operating system

simulator (see Appendix D) .

The production of a job stream trace and the use of these

records may be important to a serious system simulation. How

ever, it is believed that the data in these records is

seriously degraded because of the timer resolution. Since such

n làcyé riuHiu&r of records (approximately two-thirus) have an

apparently zero time period, a randomizing factor would have to

be applied. This would then make the simulation less accurate

in an area where accuracy is very important. The lack of I/O

operation start times for so many operations also degrades the

104

accuracy in a similar way. These short-comings are probably

sufficient to put a severe burden on the user in the area of

the estimation of time distributions. With so many records in

these classes, the accuracy of the resultant simulation may

depend on some individual's insight into the system actions in

these areas.

Another possible shortcoming of the system is the fact

that the measurement and subsequent simulation may be dependent

upon the software-hardware system which was used. By careful

choice of the measurements, this effect should be minimized.

Careful study of the system may allow the evaluation of changes

in the software or hardware. If certain areas in the configu

ration are frequently used, the use of these areas may be meas

ured. Modifications may then be studied by varying the simula

tion to match the proposed modifications. The simulation phase

may therefore study deficiencies in the system being evaluated.

The choice of parameters to be measured seems to be

adequate for most job-oriented system analysis. In fact, sev

eral parts of the data have been used to improve system per

formance at ISU. I/O activity records are carefully studied to

yuiuê the placement of daté sets on diSKs and even to order the

information within these data sets. The job dispatching

records are being used to guide a new selection of time-slicing

parameters, as the previous values are apparently too high.

105

Severa l extensions could be considered in th is area of

system eva luat ion. F i rs t o f a l l , the in format ion prov ided by

th is scheme w i l l probably be used in the near fu ture for an

eva luat ion of the HASP (Houston Automat ic Spool ing Pr ior i ty)

system, compared wi th a system wi thout HASP. I f pre l iminary

in format ion is correct , HASP is an a id to the I /O act ions for

input and output , but is a degradat ion to the CPU requi rements .

These theor ies wi l l be ver i f ied by measurement wi th the system

descr ibed here .

Many o ther programs or systems produce a t race of opera

t ions dur ing the i r execut ion. A good example is the T ime Shar

ing Opt ion (TSO) o f the operat ing system. Prov ided wi th the

system is a specia l t race program. The in format ion ava i lab le

f rom th is program is typ ica l o f in format ion requi red in t ime

shar ing measurement . Swapping, user in teract ion t ime, program

storage requi rements , commands executed, and severa l o ther pa

rameters are measured. These data i tems produce a t race of the

act iv i ty which may be la ter processed in to a form sui tab le for

dr iv ing a s imulat ion model .

An ambi t ious approach to the problems encountered dur ing

th is study would involve a combinat ion of hardware and sof tware

moni tor ing schemes. The problem wi th the I /O operat ions could

be c i rcumvented by a hardware moni tor which recorded in forma

t ion on the I /O inst ruct ions executed by the computer . These

inst ruct ions must be a par t o f any I /O access, no mat ter what

106

program requires it. This hardware monitor could be a small

computer which might also be responsible for the data

collection and at least part of the timing. R feature of the

IBM/360 computers is available which allows the direct transfer

of eight bits of data between two machines. This feature, the

direct control feature, would be a possible method of communi

cation between the IBM/360 and another device. It seems that

an immediate possiblity would be the addition of a high resolu

tion timer, accessed through the direct control feature. If a

combined hardware-software monitor were produced, each part

would be able to obtain the data that was most compatible with

its characteristics.

In summary, the methods o f eva luat ion should move fur ther

in to the area of measurement . In par t icu lar , each insta l la t ion

needs to measure i ts system wi th i ts normal jobstream. Only by

measur ing the normal jobstream can rea l is t ic eva luat ions be ob

ta ined. Admit ted ly , the measurement process is a t ime

consuming and sometimes dangerous process, but the results are

worth the t ime and r isk . The s imulat ion of the system can be a

def in i te a id to the predic t ion of fu ture needs, but the in i t ia l

measurements are probably as important for improve me Fit 5 in the

current system's per formance. Opt imizat ion of a system is

s t i l l large ly a mat ter o f wi tchcraf t , but the modi f icat ions may

be tested by the system descr ibed here . At least , the goals

can be recognized when they are obta ined.

107

BIBLIOGRAPHY

1. Bonner, A. J. Using system monitor output to improve per
formance. IBM Systems Journal 8, No. 4: 290-298. 1969.

2. Buchholz, W. A synthetic job for measuring system perform
ance. IBM Systems Journal 8, No. 4: 309-312. 1969.

3. Calingaert, Peter. System performance evaluation: survey
and appraisal. Communications of the ACM 10, No. 1: 12-18.
1967.

4. Cheng, P. S. Trace-driven system modeling. IBM Systems
Journal 8, No. 4: 220-239. 1969.

5. Drummond, M. E., Jr. A perspective on system performance
evaluation. IBM Systems Journal 8, No. h: 252-263. 1969.

6. IBM System/360 Operating System Advanced Multiprogramming
Analysis Procedure Service Description Manual. Form
GH20-0725-0. Poughkeepsie, N.Y., IBM Corporation. 1970.

7. IBM System/360 Operating System General Purpose Simulation
System/360 Users Manual. Form GH20^0326-8. Poughkeepsie,
N.Y., IBM Corporation, 1970.

8. IBM System/360 Operating System Operator's Reference. Form
GC28-6591-2. Poughkeepsie, N.Y., IBM Corporation. 1971.

9. IBM System/360 Operating System System management Facili
ties. Form GC28-6712-3. Poughkeepsie, N.Y., IBM
Corporation. 1970.

10. IBM System/350 Operating Sys+em System Programmers Guide.
Form C28-6550-7. Poughkeepsie, N.Y., IBM Corporation. 1970.

11. Katz, Jesse H. An experimental model of System/360. Commu
nications of the ACM 10, No. 11: 694-702. 1967.

12. Knuth, Donald E. and J. L. McNeley. A formal definition
of SOL. IEEE Transactions on Electronic Computers 13, No.
8: 409-414.

13. Lucas, Henry C., Jr. Performance evaluation and monitoring.
Computing Surveys 3, No. 3: 80-91. 1971.

14. Martin, James. Design of real time computer systems. New

108

York, N.Y., Prentice-Hall, Inc. 1967.

15. Miller, Edward F., Jr. Bibliography on techniques of com
puter performance analysis. An unpublished paper. Santa
Barbara, California, General Research Corp. 1971.

16. Nielsen, Norman R. The simulation of time-sharing systems.
Communications of the ACM 10, No. 7: 397-412. 1967.

17. O'Neil, John T., Jr. Meta pi - an on-line interactive
compiler-compiler. Fall Joint Computer Conference
Proceedings 1968; 210-218. 1968.

18. P.eschly, Christian J. The extension of an ISU version of
Hetapi to allow for the execution of user defined primatives
loaded from a job library dataset. An unpublished Master's
degree paper. Ames, Iowa, Computer Science Dept., Iowa
State University. 1970.

19. Rothstein, Hicheal F. Guide to the design of real-time
systems. New York, N.Y., Wiley-Interscience. 1970.

20. Saltzer, Jerome H. and John W. Gintell. The instrumenta
tion of Multics. Communications of the ACM 13, No. 8:
495-500. 1970.

21. Scherr, Allan L. An analysis of time-shared computer
systems. Cambridge, Mass., MIT Press. 1967.

22. Scherr, Allan L. Time-sharing measurement. Datamation 12,
No. 4: 22-26. 1966.

23. Schorre, D. V. Heta-II a syntax-oriented compiler writing
language. Proceedings - 1964 ACM National Conference. 1964.

24. SchwGtman, H. D., Jr. A study of resource utilization and
performance evaluation of large-scale computer systems.
Technical Systems Note-12. Computation Center, University
of Texas at Austin. 1970.

25. Seaman, P. H. and R. C. Sôucy. Simulating operating
systems. IBM Systems Journal 8, No. 4; 264-279. 1969.

26. SHARE Corporation. SHARE Education Committee. SHARE
Glossary. New York, N.Y., author, 1967.

27. Sherman, Stephen, Forest Baskett III, and J. C. Browne.
Trace driven modeling and analysis of CPU scheduling in a
multi-programming system. ACM Workshop on System Perform

109

ance Evaluation Proceedings 1971; 173-199. 1971.

28. Stanley, W. I. Measurement of system operational statis
tics. IBM Systems Journal 8, No. 4: 299-308. 1969.

29. Stanley, W. I. and H. F. Hertel. Statistics gathering and
simulation for the Apollo real time operating system. IBM
Systems Journal 7, No. 2; 85-102. 1962.

30. Steel, T. B., Jr. Operating systems. Datamation 10, No. 5:
26-28. 1964.

31. Teichroew, Daniel and John Francis Lubin. Computer simula
tion - discussion of the technique and comparison of lan
guages. Communications of the ACM 9, No. 10: 723-741. 1966.

110

APPENDIX A

ACRONYMS OF THE IBM OPERATING SYSTEM

These acronyms are taken from IBM reference manuals. No at
tempt has been made to include a complete set, but only to
include those which were used by the author.

BSAH Basic sequential access method
CPO Central processing unit
CSS Computer system simulator
DCS Data control block
DEB Data extent block
EXCP Execute channel program
FLIH First level interrupt handler
GPSS General purpose simulation system
ID Identification
I OB Input/output block
I/O Input/output
IPL Initial program load
MVT Multiprogramming; variable tasks
PRTY Priority
PSW Program status word
QSAM Queued sequential access method
5QE a L yu^u^ element
SMF System management facility
SVC Supervisor call
TCB Task control block
TIOT Task I/O table
UCB Unit control block

Ill

APPENDIX B

GLOSSARY OF TERMS

The following definitions were taken from either the IBM Opera
tors Reference Guide(8) or the Share Glossary(26). Some of the
definitions have been modified to correspond with current
usage.

ACCESS METHOD,.. A method for transferring data between main
storage and a direct access storage or input/output
devices.

ADDRESS CONSTANT... A number, or a symbol representing a num
ber, used in calculating storage addresses.

ALIAS... Another name for a member of a partitioned data set;
another name for an entry point of a program.

ALLOCATE... To assign a resource for use in performing a spe
cific job, job step, subtask of a job step, or job sup
port task.

APPLICATION PROGRAM... A problem state program written by a
user. A job.

ASYNCHRONOUS... Without regular time relationship; unexpected
or unpredictable with respect to the execution of a pro
gram's instructions.

ATTACH (task)... To create a task and present it to the super
visor.

ATTRIBUTE... A trait; for example, attributes of data include
record length, record format, data set name, associated
device type and volume information, use, creation date,

112

etc,

AUXILIARY STORAGE... Data Storage other than main storage.

AVAILABILITY... The degree to which a software/hardware system
is available when needed to process data.

BASIC ACCESS METHOD. . . Any access method in which each
input /output s ta tement causes an input /output operat ion
to occur .

BATCH-PROCESSING... The operational procedure of collecting
several jobs together to be input all at one time. The
operating system is then responsible for all scheduling
and execution. See also BATCHED JOB PROCESSING.

BATCHED JOB PROCESSING. . . A technique whereby job definitions
are placed one behind another on a common input device to
form a batch of job definitions that are processed by the
CPU with as little operator intervention as possible.

BLOCK (records)...
1. To group records to conserve storage space or to in
crease the efficiency of access or processing.
2. A blocked record.
3. Â. portion of a telecoEmunicaticns ncssags defined as
a unit of data transmission.

BUFFER, MAIN STORAGE... An area of main storage that is tempo
rarily reserved for use in performing an input/output op
era tion.

BYTE;,; Continuous storage equal to eight bits. (Eight bit
in the IBM System/360 and System/370).

CALL... The transfer of control from one routine to another
routine.

CATALOG. . .

113

1. In the operating system, a collection of data set
indexes that are used by the control program to locate a
volume containing a specific data set.
2. To include the volume information for a data set in
the catalog.

CATALOGED PROCEDURE... A set of job control statements that
has been placed in a cataloged data set, called the pro
cedure library, and can be retrieved by naming it in an
execute statement or started by the START command.

CENTRAL PROCESSING UNIT... All that portion of a computer ex
clusive of the input, output, peripheral and in some in
stances, storage units. Also, a unit of a computing
system that performs the work of processing data by exe
cuting predefined sequences of instructions, such as add,
subtract, multiply, and divide instructions.

CHANNEL... A hardware device that connects a CPU and main
storage with input/output control units.

CHANNEL ADDRESS WORD... A word in main storage that specifies
the location in main storage where a channel program
begins.

CHANNEL COMMAND WORD... A doubleword at the location in main
storage sp«ci£ieô by the CAW. One or more CCWs make up
the channel program that directs the channel operations.

CLASS SCHEDULING... The concept of grouping jobs with similar
characteristics for input. Class scheduling attempts to
present a more optimal job mix to the system.

uLASS, JOd... A set ô£ jobs with Similar characteristics.

COMMAND LANGUAGE... The set of commands, succommands, and op
erands recognized by the system.

COMMAND PROCESSING... The reading, analyzing, and performing
of commands issued via a console or a system input

114

stream.

COMPUTING SYSTEM... A central processing unit together with
the main storage, input/output channels, control units,
direct access storage devices, and input/output devices
connected to it.

CONTROL BLOCK... A storage area used by the operating system
to hold control information.

CONTROL PROGRAM... A program that is designed to schedule and
supervise the performance of data processing work by a
computing system.

CONTROL SECTION... That part of a program specified by the
programmer to be a relocatable unit, all of which is to
be loaded into adjoining main storage locations.

CPU TIME... The amount of time denoted by the central process
ing unit to the execution of instructions.

DATA CONTROL BLOCK... A control block used by access routines
in storing and retrieving data.

ùÂTÂ DEFINITION NâMP;;; A name appsaring in the data control
block of a program which corresponds to the name field of
a data definition statement.

DATA FILE...
1. A collection of related data records organized in a
specific manner. For example, a payroll file (one record
for each employee showing his rate of pay, deductions,
etc=) or an inventory file (one record for each inventory
item, showing the cost selling price, number in stock,
etc.) .
2. In the operating system, a data set.

DATA MANAGEMENT... A major function of the operating system
that includes organizing, cataloging, locating, storing,
retrieving, and maintaining data.

115

DATA SET... The major unit of data storage and retrieval in
the operating system, consisting of a collection of data
in one of several prescribed arrangements and described
by control information to which the system has access,
(see also DATA FILE) .

DEBUG... To detect, locate, and remove mistakes from a rou
tine.

DEDICATION... Describing the assignment of a system resource
(e.g., an I/O device, a program, or a whole system) to
one application or purpose.

DIRECT ACCESS... Retrieval or storage of data by reference to
its location on a volume rather than relative to the pre
viously retrieved or stored data.

DIRECT ACCESS DEVICE... A device in which the access time is
effectively independent of the location of the data.

DIRECTORY. . . An index that is used by the operat ing systems
contro l program to locate one or more sequent ia l b locks
of data (ca l led members) that are s tored in separate par
t i t ions of a par t i t ioned data set in d i rect access s tor
age .

DISABLED, . . A s ta te o f the CPU that prevents the occurrence of
cer ta in types o f in ter rupt ions.

DISPATCHING PRIORITY... A number assigned to tasks to deter
mine the order in which they will use the central proc
essing unit in a multitask situation.

DUMP (main storage)...
1. To copy the contents of all or part of main storage
onto an output device, so thax it can be examined.
2. The data resulting from number 1.
3. A routine that will accomplish number 1.

116

DYNAMIC AREA... An area of main storage that is allocated for
performing job step or job support tasks.

ENABLED... A state of the CPU that allows the occurrence of
certain types of interruptions determined by the current
program status word.

EVENT... An occurrence of significance to a task; typically,
the completion of an asynchronous operation, such as an
input/output operation.

EVENT CONTROL BLOCK... A control block used to represent the
status of an event.

EXTERNAL REFERENCE... A reference to a symbol defined in an
other module.

EXTERNAL SYMBOL... A control section name, entry point name,
or external reference; a symbol contained in the external
symbol dictionary.

FACILITY...
1. A measure of how easy it is for people to operate,
use, and manage the use of a software/hardware system.
Together with system perfocmanct;, iht* facility of a
system is a major factor cn which the total productivity
of an installation depends.
2. A feature of the operating system designed to serve
a particular purpose — for example, the check
point/restart facility.

FIXED STORAGE AREA... That portion of main storage occupied by
the resident portion of the control program (nucleus).

GENERAL PURPOSE OPERATING SYSTEM... An operating system de
signed to handle a wide variety of computing system ap
plications.

GLOSSARY... A collection of glosses.

117

HARDWARE.,. The mechanical, magnetic, electrical, and elec
tronic devices from which a computer is constructed.

HARDWARE RESOURCES... CPU time, main storage space,
input/output channel time, direct access storage space,
and input/output devices, all of which are required to do
the work of processing data automatically and
efficiently.

HEXADECIMAL. . . A numbering system with a base of 16;
therefore, valid digits range from 0 through F, where F
represents the highest units position (15).

HIERARCHY STORAGE... A division of main storage that allows
hierarchy 0 and hierarchy 1 to be addressed separately.
For MFT and HVT systems with hierarchy support and an IBM
2361 Core Storage Unit, processor storage is addressed as
hierarchy 0, and the 2361 is addressed as hierarchy 1.
For HVT with hierarchy support, but with no 2361, there
are still two hierarchies: both are in processor storage.

"HUMAN ORIENTED" LANGUAGE... A programming language that is
more like a human language than a machine language.

T/O-PRGCESSOR OVERLAP. . . The automat ic process by which
channels contro l I /O operat ions whi le the CPU carr ies out
normal inst ruct ion execut ion.

IBM SYSTEM/360 OPERATING SYSTEM... A comprehensive collection
of control program options, language processors, I/O sup
port, application programs, and service programs designed
to meet the needs of the users who require the extensive
facilities of a large operating system.

INITIAL PROGRAM LOAD... As applied to the system, the initial
ization procedure that loads the supervisor and the job
control processor and begins normal operations.

INITIATOR/TERMINATOR... A part of the job scheduler. In an
MFT or HVT configuration of the control program, the

110

initiator/terminator selects a job from the input work
queue, allocates resources required to perform a step of
the job, loads and transfers control to the program that
is executed to perform the job step, and terminates the
job step when execution of the program is completed.

INPUT BUFFER... An area of main storage used to store a data
block received from an input device for processing by the
CPU.

INPUT JOB QUEUE... A collective term for the fifteen queues of
job information which the job scheduler uses to select
the jobs and job steps to be processed. Each of the fif
teen queues is associated with one input job class. (see
INPUT WORK QUEUE)

INPUT WORK QUEUE... A queue (waiting list) of job definitions
in direct access storage assigned to a job class and
arranged in order of priority assignment. Job defini
tions are entered into an input work queue by one or more
reader/interpreters, and are selected and removed by one
or more initiator/terminators.

INSTALLATION... A particular computing system in terms of the
overall work it does and the people who manage it, oper
ate it, apply it to problems, service it, and use the
results it produces.

INTERACTION,,, In time-sharing applications, a basic unit used
to record system activity, consisting of acceptance of a
line of terminal input, processing of the line, and re
sponse, if any. Interactions are recorded when a user
task starts its wait for a line of terminal input.

INTEPKUFTIONo o • A uf CPU uOiitlOl to tliê SUptéi.vitiOi
that is initiated automatically by the computing system
or by a problem state program through the execution of a
supervisor call (SVC) instruction. The transfer of con
trol occurs in such a way that control can later be
restored to the interrupted program, or, in systems that
perform more than one task at a time, to a different pro
gram.

119

JOB... The major unit of work performed under operating system
control. A job consists of one or several related steps.
It is defined by a series of job control language state
ments.

JOB CLASS... Any one of a number of job categories that can be
defined at an installation when using an MFT or MVT con
trol program configuration. Each job can be assigned to
any one of several predefined job classes and each
initiator/terminator can be directed to initiate jobs
from one to three different classes. By classifying jobs
and directing initiator/terminators to initiate specific
classes of jobs, it is possible to control the mixture of
jobs that are performed concurrently.

JOB CONTROL LANGUAGE... A high-level programming language used
to code job control statements.

JOB CONTROL STATEMENT... Any one of the control statements in
the input job stream that identifies a job or defines its
requirements.

JOB MANAGEMENT... A major function of the operating system in
volving the reading and interpretation of job defini
tions, the scheduling of jobs, the initiation and termi
nation of jobs and job steps, and the recording of job
Out pu t uâT.à.

JOB PRIORITY... A value assigned to an MVT job that, together
with an assigned job class, determines the priority (rel
ative to other jobs) to be used o to be used in
scheduling the job and allocating resources to it.

JOB STEP... A Unit Of wOlk fCI COmputiûy SyStèiû frOîû th^

standpoint of the user, presented to the system by job
control statements as a request for execution of a spe
cific program and a description of the resources required
by it.

LINK LIBRARY... A partitioned data set which, unless otherwise
specified, is used in fetching load modules referred to

120

in execute statements and in other load type operations.

LINK PACK AREA... An area in upper main storage containing a
list of track addresses for routines that reside in
SYSI.LINKLIE, routines from SYS1.SVCLIB and SYS1.LINKLIB
as selected by the user, types 3 and 4 routines, and
master scheduler and system modules required resident by
system tasks. The link pack area is set up by the nucle
us initialization program (NIP) at the time of initial
program loading.

LINKAGE CONVENTIONS... A set of operating system conventions
that should be adhered to when passing control from one
program module to another. Adherence to the conventions
helps to ensure program sharing and compatibility.

LINKAGE EDITOR... A processing program that can be used to
combine program segments or modules that are independent
ly compiled or assembled. The linkage editor also
enables a program that is too large for the space avail
able in main storage to be divided so that executed seg
ments of the program can be overlaid by segments yet to
be executed.

LOAD... To place a program into main storage so that it can be
executed.

LOAD MODULE... A program or part of a program formed of one or
more object modules, the object modules, that is ready to
be loaded into main storage fay the control program for
execution bv the CPU,

"MACHINE ORIENTED" LANGUAGE... A programming language that is
more like a machine language than a human or mathematical
langu&gy.

MACRO INSTRUCTION... An instruction in a source language that
is equivalent to a specific sequence of machine instruc
tions.

MAIN STORAGE... The storage in a computing system from which a

121

central processing unit can directly obtain instructions
and data and to which it can directly return results.

MAIM STOEAGB REGION... In an HVT control program configura
tion, a section of main storage that is allocated by the
control program for use in performing a job step or a job
support task.

MASTER SCHEDULER... A part of the control program that serves
as a two-way communications link between the operator and
the system, usually by way of the operator's console. It
is used to relay messages from the system to the opera
tor, to execute operator commands, and to respond to
replies from the operator. In MET and HVT control pro
gram configurations, the master scheduler is used to
start and stop the reader/interpreter,
initiator/terminator, and output writer tasks.

MULTIPROCESSING... A technique whereby the work of processing
data is shared among two or more interconnected central
processing units under integrated control that directly
or indirectly communicate with one another, other than
through direct human intervention.

MULTIPROCESSING SYSTEM... A computing system employing two or
more interconnected processing sys interconnected proc
essing units to execute programs simultaneously.

MULTIPROGRAMMING... A technique by which a computer system can
interleave execution of two or more generally unrelated
programs, parts of which arc residing together in main
storage.

NETWORK... In teleprocessing, a number of communication lines
connecting a computer with remote terminals.

NUCLEUS... The portion of a control program that always
remains in main storage.

OPERATING SYSTEM... An application of a computing system, in
the form of organized collections of programs and data.

122

that is specifically designed for use in creating and
controlling the performance of other applications.

OPERATIONS STAFF... The members of a data processing installa
tion who receive jobs from the programmers, schedule the
order in which the jobs are presented to the system and
performed, and direct the overall operation of the system
in performing the jobs.

OPEPATOR... A member of a data processing installation opera
tions staff who is responsible for directing the opera
tion of a computing system. The same, or a different op
erator, may perform routine functions such as mounting
tape reels and loading card decks.

OUTPUT BUFFEP... An area of main storage used to store a data
block before it is transferred to an output device.

OUTPUT CLASS... In an HFT or MVT control program configura
tion, any one of up to 36 different output classes,
defined at an installation, to which output data produced
during a job step can be assigned. When an output writer
is started, it can be directed to process from one to
eight different classes of output data.

OUTPUT WRITER... A part of the job scheduler that writes out
put data sets onto a system output unit, indepyndwiitly of
the program that produced such data sets.

OVERLAY... To place a load module or segment of a load module
into main storage locations occupied by another (already
executed) load module or segment.

PAGING... The process of transmitting pages of information be
tween mainstorage and auxiliary storage, especially when
done for the purpose of assisting the allocation of a
limited amount of main storage among a number of concur
rently executing programs.

PERFORMANCE... Together with facility, one of the two major
factors on which the total productivity of a hard

123

ware/software system depends. Performance is largely de
termined by a combination of three other factors:
throughput, response time, and availability.

PHYSICAL RECORD... A record that is defined in terms of
physical qualities rather than by the information it con
tains.

POST... To note the occurrence of an event.

PRIORITY... The relative standing a job or task has in the
system as opposed to the other jobs and tasks in the
system at a given time.

PRIORITY SCHEDULING SYSTEM... A form of job scheduler which
uses input and output work queues to improve system per
formance.

PRIVILEGED INSTRUCTION... An instruction that can only be exe
cuted when the CPU is in the supervisor state.

PROBLEM STATE... A state of the central processing unit during
which input/output and other privileged instructions
cannot be executed. Opposite of supervisor state.

PROBLEM STATE PROGRAM... Any program that is executed when the
central processing unit is in the problem state. This
includes IBM-distributed programs, such as language
translators and service programs, as well as programs
written by a user.

PROCESSOR...
1. In hardware, a central processing unit (CPU).
2. In software, a problem state program such as a lan
guage translator or service program that is usually pro
vided by IBM and is widely used at an installation.

PRODUCTIVITY... A measure of the work performed by a soft
ware/hardware system. Productivity largely depends on a
combination of two factors; the facility (ease of use) of

124

the system and the performance (throughput, response
time, and availability) of the system.

PHOGPAM... R logically self-contained sequence of instructions
that can be executed by a computing system to attain a
specific result.

PPOGPAM STATUS WORD... A doubleword in main storage used to
control the order in which instructions are executed, and
to hold and indicate the status of the computing system
in relation to a particular program.

PPOTECTION KEY... A task-oriented indicator (key) that appears
in the current PSW whenever a task is active (i.e., has
control of the system); this indicator must match the
storage keys of all main storage blocks that the task is
to use.

QUEUE... A waiting line or list.

QUEUED ACCESS METHOD... An access method that automatically
governs the movement of data between the program using
the access method and the input/output devices.

READER... A software device which reads a system input stream
from a specific input device and deposits it in tue iupui:
queue with pointers to its data on scratch disk space.

READER/INTESrPETEP..c A part of the job scheduler that reads
and interprets a series of job definitions from a job
input stream.

REÂL-TînE APPLICATION... An application in which a computing
system is used to assist in or guide a process while the
process actually transpires.

RECORD... One or more data fields that represent an organized
body of related data, such as all of the basic accounting
information concerning a single sales transaction.

125

RELOCATABILITY ... The ability of a program (in the form of a
load module) to be dynamically loaded anywhere in main
storage.

RESPONSE TIME...
1. The time between the submission of an item of work
to the computing system and the return of the results.
Loosely, turnaround time.
2. In online systems, the time between the end of a
block of user input and the display of system response at
the terminal.

RETURN CODE... A number placed in a designated register (the
"return code register") at the completion of a program.
The number is established by user-convention and may be
used to influence the execution of succeeding programs
or, in the case of an abnormal end of task, it may simply
be printed for programmer analysis.

ROUTINE... a part of a program or subprogram that may have
general or frequent use.

SEIZE... In simulation, the action of seizing a facility to
prevent other transactions from using that facility.

SERVICE PROGEhK... à prûCtissiiiy y cog ram such n.s the linkage
editor, sort/merge program, or a utility program that is
designed mainly to perform specific services for a user
of the program.

SETUP... The act of preparing a computing system to perform a
job or job step. Setting up is usually performed by an
operator or assistant operator and often involves
performing routine function, such as iaouritiuy tape reels

and loading card decks,

SETUP TIME... The time required by an operator to prepare a
computing system to perform a job or job step,

SOFTWARE... The totality of programs and routines used to

126

extend the capabilities of computers, such as generators,
compilers, assemblers and operating systems.

SPOOLING... The process of reading job information from a
physical reader and making the information available on a
faster device. Spooling depends on multiprogramming for
concurrent operation of the spooling program and allows
virtual card readers for multiprogramming. Spooling may
also be applied to the output of data.

STORAGE BLOCK... An area of main storage consisting of 2048
bytes to which a storage key can be assigned.

STORAGE DUMP... A listing of the contents of a storage device
or selected parts of it. Synonymous with memory dump and
core dump.

SUBPROGRAM... A seguence of instructions stored in a library,
that can be incorporated as part of a program.

SUBROUTINE... A relatively short seguence of instructions that
can be incorporated into a program to perform a specific
function, such as finding the sguare root of a number.

SUBTASK... A task that is initiated and terminated by a higher
uTu^r tâsk.

SUPERVISOR... A major part of •••he operating system control
program that is executed when the CPU is in the supervi
sor state. The supervisor directs and controls the exe
cution of problem state programs and provides them with a
variety of services.

SUPERVISOR CALL INSTRUCTION... An instruction that interrupts
the program being executed and passes control to the su
pervisor for the purpose of performing a specific service
indicated by the instruction.

SUPERVISOR STATE... A state of the central processing unit
during which input/output and other privileged instruc-

127

tiens car. be executed.

SYNCHRONOUS... Occurring with a regular or predictable time
relationship.

SYSIN... a system input stream, also a name used as th^ data
definition name of a data set in the input stream.

SYSOUT... A system output stream. Also, an indicator used in
data definition statements to signify that a data set is
to be written on a system output unit.

SYSTEM...
(1) An assembly of components united by some form of reg
ulated interaction to form an organized whole. (2) A
collection of consecutive operations and procedures re
quired to accomplish a specifc objective.

SYSTEMS ANALYSIS... The examination of an activity, procedure,
method, technique, or a business to determine what must
be accomplished and hew the necessary operations may best
be accomplished.

SYSTEM AVAILABILITY... The portion of time a system is or can
be used for productive purposes.

SYSTEM GENERATION... The process of using one operating system
to assemble and link together into a coherent whole all
the required, alternative and optional parts that form a
new operating system.

SYSTEM INPUT DEVICE... A device that is assigned to read a job
input stream.

SYSTEM MANAGEMENT FACILITIES... An optional control program
feature that provides the means for gathering and
recording information that can be used to evaluate system
usage.

128

SYSTEM PROGRAMMER...
1. A programmer who is assigned to plan, generate,
maintain, extend, and control the use of an operating
system with the aim of improving the overall productivity
of an installation.
2. A programmer who designs programming systems and
other applications.

SYSTEM QUEUE AREA... An area in main storage adjacent to the
fixed main storage area. The system queue area is set up
by the nucleus initialization program (NIP) at the time
of the initial program loading.

SYSTEM RESIDENCE VOLUME... The volume that contains the IPL
program, the volume index of the SYSCTLG data set, and
the system data sets. The system residence volume must
reside on the I/O device which is addressed when initial
program loading is performed.

TASK... An independent unit of work that can compete for the
resources of the system.

TASK CONTROL BLOCK... The consolidation of control information
related to a task.

TASK DISPATCHER... The control program routine thai selects
from the task queue the task that is to be performed by
the central processing unit.

TASK MANAGEMENT... The part of the supervisor that controls
and directs the concurrent performance of data processing
tasks.

TELECOMMUNICATIONS... The transmission of messages from one
location to another over telephone and other communica
tion lines.

THROUGHPUT... The total volume of work performed by a comput
ing system over a given period of time.

129

TIME-SHARING... A method of using a computing system whereby a
number of users can concurrently execute programs with
which the users may interact during execution, and gener
ally be assured some minimum amount of program execution
per unit time.

TIME SLICE... A uniform interval of CPU time allocated for use
in performing a task. Once the interval is over, CPO
time is allocated to another task. Thus, a task cannot
monopolize CPU time beyond a fixed limit.

TRANSACTION... The units of traffic that are created and moved
through processing blocks by a simulation language.

Tu r n a r o u n d t i m e... The time required for a job to pass through
the entire system; the difference between the time the
job is returned to a pick-up station and the time the job
was submitted to the station.

UNIT ADDRESS... The three-character address of a particular
device, specified at the time a system is installed.

UNIT AFFINITY... Forced allocation of a data set on the sam-3
unit as another data set.

USER...
1. Anyone who requires the services of a computing
system.
2. Under time-sharing systems, anyone with an entry in
a user attribute or accounting data set; anyone eligible
to log on the system.

UTILITY PROGRAM... A standard routine used to assist in the
operation of the computer, e.g., a conversion routine, a
sorting routine, a printout routine, or a tracing rou
tine.

VIRTUAL MEMORY... A conceptual form of main storage which does
not really exist, but is made to appear as if it exists
through the use of hardware and programming.

130

VOLUME... A section or unit of auxiliary storage space that is
serviced by a single read/write mechanism whose operation
is entirely independent of any other read/write mecha"
nism.

WRIT CONDITION... The condition of a task that needs one or
more events to occur before the task can be ready to be
performed by the central processing unit.

WAIT STATE... The state of the system when no instructions are
being processed, but the system is not fully stopped.
The system can accept I/O and external interruptions, and
can be put through the IPL procedure.

WRITER... A software device which selects data sets from des
ignated output classes of the output queue, and routes
them as an output stream to a physical output device.

131

APPENDIX C

DATA COLLECTION MONITOR PROGRAM LISTING

The program used to produce the monitor data is listed on

the following pages. This listing is provided as an example of

the extreme system dependence of such a program. In many

places the addresses to be modified are not apparent. Only

careful study will produce the correct results. Also notice

the modularity of the program and how it must all fit together

into one system. The use of WAIT and POST is the only reliable

way to communicate between the various parts of the monitor.

STATISTICS MODULES FOP 10 ACTIONS PAGE 1

LOG OBJECT CODE ADDBl ADDÇ2

000000
000000 Q7FF OOOC OOOOC
00000% 07C3D6D3D3C'>C3E3
OOOOOC 90EC DOOC OOOOC
000010 05C0
000012
000012 5000 C906 00918
000016 4110 C902 009 14
00001K 50 10 oooa 00008
000013 18D1

00089?

000102 91 10 CA72 00A84 -

000105 «780 C37a 00336

0001:6 am 0008 00008
00012 A 5010 CA3A 00A4C
000 12Z 1861
000130 5010 CAOA 00 A1C
000 1 3U 5A10 CAa2 00A54
000138 5010 CA12 00A24
000 1 3C 5P10 CA1E 00A30
0001U0 5010 CA1A OOA2C
000 14% 5A10 CA1E OOA30
0001US mi 1 OlOC 0010C
0001UC 5010 CAOE 00A20
000150 0703 CAUE CA4E 0OA6O 00A60
000156 5810 0010 000 10
00D15A 0203 6000 1008 00000 00008
000160 D203 600a lOOC 00004 OOOOC
000166 02 03 6008 1038 00008 00038
00016c D203 600C 1054 OOOOC 00054

000178 5006 0010 000 10
00017c ai66 0014 00014
000180 5060 CA3A 00A4C
00018a 5810 0010 000 10
000189 5811 0000 00000
0001 Be 5811 0004 00004
000190 5010 CA3E 00A50
00019tt D703 CA2A CI.2A OOA3C 00A3C
000 19% D703 CA2E C/.2E O0A4O 00 A 40

0001D8 0703 CA2A c;.2A 00A3C 00A3C
00019E D501 CAC2 C.*D3 OOAEO OOAîS
000 1KU 4770 C374 00386

STMT Î;OUPCE STATEMENT P150CT70 8/27/71

2 PRINT NOGEN IOST0020
3 COMECT CSECT A STUDY IN ASYNCHRONOUS ROUTINES IOST0030
4 BC 15,12(15) IOST0040
5 DC X'07',CL7'COLLECT' IOST0050
6 STTT 14,12,12(13) IOST0060
7 BALR 12,0 IOST0070
8 USING • , 12 TOST0090
9 ST 13,SA?E+4 IOST0090
10 LA 1,SAVE IOST0100
1 1 ST 1,8(13) IOST0110
12 LR 13,1 SAVE AREA SET UP IOST0120
13 • ISSUE WRITE TO OFEPATO? IOST0130
14 WTO • *** *** *** «** it** •••» IOST0140
23 WTO • UNLESS YOU LIKE TO IPL,' IOST0150
32 WTO • CANCEL THIS PROGRAM BY* IOST0160
41 WTO « REPLYING "GOriT" ONLY' IOST0170
50 WTOR • SIGNED ... DANA*,PSPL,5,0PECE IOST0130
62 OPEN (TAPES,OUTPUT) IOST0190
68 Tcrp EQU X*89E' IOST0200
69 REGS IOST0210
86 TM TAPES+48,X'10' IS IT OPEN ? IOST0220
87 BZ HELPOT IOST0230
88 GETMAIN S,LV=32768,HIARCHY=1 IOST0240
98 LA R1,8(R1) IOST0250
99 ST R1,CURLNG IOST0260
100 LR R6,R1 IOST0270
10 1 ST RlfBUFADl IOST0280
102 A R1,LENG IOST0290
103 ST R1,HIP0INT CURRENT HIPOINT FOR STAFT IOST0300
104 S IFSAFED TOST0310
105 ST 1,DANGER ÎOST0320
106 A 1,SAF£D IOST0330
107 LA Rl,268(PI) IOST0340
108 ST R1,BUFAD2 SECOND BUFFER IOST0350
109 XC TAPES*12(4),TAPES+12 IOST0360
110 L 1,16 IOST0370
111 MVC 0(4,6) ,8(1) LINKLIE DC3 TOST0380
112 nvc 4(4,6),12(1) J09QE DCP SOMEWHERE HEPS IOST0390
113 MVC 8(4,6) ,56 (1) DATE IOST0400
114 MVC 12(4,6) ,84(1) SVCLÏB DCP IOST0410
115 TIME BIN IOST0420
118 ST 0,16 (6) IOST0430
119 LA 6,20(6) IOST0440
120 ST 6,CURLNG IOST0450
121 L 1, 16 IOST0460
122 L 1,0 (1) TOST0470
123 L 1,4(1) IOST0480
124 ST 1,CURTCB TOST0490
125 XC 0PECB(4) ,0PECB IOST0500
126 XC TIMSCB(4) FTTMEC» IOST0510
127 WTOP •REPLY GO TO BEGIN COlLECTION•,REPL,2,OPECP IOST0520
139 WAIT ECB=OP ECB TOSI0530
143 XC OPECB(4),OPECP IOST0540
144 CLC REPL (2) ,OKREP IOST0550
145 BNE HELPOT IOST0560

STATISTICS MODUIZS FOR 10 ACTIONS PAGE 2

LOC OBJECT CODK ADDP 1 A0DF2 STMT SO IH'CF STAT £y.F.HT F15OCT70 e/27/71

146 • HOW INITIALIZf EVhivYTHiriG IOST0570

000119 5810 C996 009A8 147 L 1,IHITZ AD0P2SS OF INITIALIlATTOl ; r O'JTINK I0sr0580

000 nc 0&F2 146 SVC 254 HEPS WE GO ... IOST0590
149 • -/HFÂ' ... IVITIALIZATION OVSa IOST0600
150 • STAPT AUTOMATIC UPDATE FOR WRITING P5C03DS IOST0610
151 UPDAT VAIT 1,FC5LIST=ECBS IOST0^20
156 • (JOT SOMET HING ... CHICK IT OUT IO5T0630

0001F\ 9140 CA2R 00A3C 157 Tfl O^EC5,X'40' IOST064 0
OOOlf s U710 C296 002A% 158 BO OPACT 0?£?AT0? WANTS SOMETHING IOST0650
000202 5920 CA2E O0A40 159 L 2,TIMrC3 LOCATION OF OUTPU" IOST0660
000206 5830 0010 00010 160 L 3,16 CVT AOD?KSS IOST0670
000 20* 5833 0058 00058 16 1 L 3,88(3) PSE'JDO CLOCKS IOST0680
00020? 5833 0008 00008 162 L 3,8(3) LOCAL PSEUOO CLOCK IOST0690

000212 5032 0004 00004 163 ST 3,4(2) IOS70700
000216 0202 CAA7 CA2F 00AE9 00A4 1 164 MVC CCWS+l (3) ,TIMEC9+1 iosr0710

0002 1C D703 CP2E CA2E 00A40 0OA4O 165 xc TIM2CB(4),TI%ECB PRSET THE ECB IOST0720
000222 *642 0000 00000 166 LH R4,0(P2) LENGTH FIELD IOST0730
000226 4040 CAAC OOAEE 167 STH »4,CCWS+6 IOST0740
00022K 0703 CA76 CA76 00A88 00 ASS 168 XC EECB(4),EECP CLEAR CCD IOST0750
000230 D703 CA16 CA16 00A28 0ÛA28 16 9 XC DANGFCB(4) ,DAN'GEC9 IOST0760

170 EXCP lOADS IOST0770
173 WAIT 1,EC5LIST=0ESE IOST0780

0002t6 9140 CA16 00A28 170 Tfl DANGECB,X'40« IOST0790
00024C 4710 C276 00288 179 BO HANGIT IOST0900
0002S0 180 COK?]- EQU $ IOST0810

181 » WAIT FOE COMPLETION OF EXCP IOST0820
000250 9101 CA86 00A9Q 182 TÎ1 CSHF+4,X*01* EOV NECFSSAPY ?? IOST0830
00025% 4780 C24A 002 5C 183 9Z * + 8 IOST0840
00G2S3 4580 C382 00394 184 3AL R8,F0VS END OF VOLUME PROCESSING IOST0850
00025C 917F CA76 00A8B 185 T.I EEC3,X'7F' NORMAL COMPLETION IOST0860
0002^0 47E0 C2EC 002FE 186 BNO OUTOFIT IOST0870
000264 9140 CA16 00A28 187 TM DANGECB,X'40' IOST0880
00026A 4780 C1DC OUI EE 188 BZ DPDAT IOST0890
00026C 940F C753 00760 189 NI EN0P1+1,X'0F' IOST0900

190 DEQ (0NM,RNM2,,SYSTEM),RMC=SYSTEM IOST0910
000262 47F0 C1DC 001EF 201 B UPDAT IOST0920

202 HAN1%T ENQ (0NM,RNM2,E,,SYSTEM),SNC=SYSTEM IOST0930
213 WAIT 1,ECB=EEC3 IOST0940

Q002AU 47F0 C23E 00250 217 B COMPE IOST0950
0002AQ 0504 CACE CAD3 OOAEO 00AE5 218 OPA'-'J CLC BEPL(5),OKREP IS THE REPLY VALI D ? IOST0960
0002AE 4780 C2EC 002FE 219 BE OUTOFIT IOST0970

220 ÏTOR •CAREFUL WHAT YOU SAY...THATS NOT A VALID REPLY', XIOST0980
BEPL,5,0PSCB IOST0990

0002py 0703 CA2A CA2A 00A3C 00A3C 232 XC OPECB(4),OPECB IOST1000
0002FA 47F0 C1DC OOIEE 233 B DPDAT ICST1010
0002F5 5910 C99A 009AC 234 OUToriT L 1,REOOS SYSTEM FIX-UP POUTI NE IOST1020
000302 OAFS 235 SVC 254 IOST1030
000304 5850 CAOE 00A20 236 I. 5,BUFAD2 I05T1040
000308 5860 CA3A 00A4C 237 L 6,C0RLNG IDST1050
00030C 1965 238 CR 6,5 IOST1060
00030 E 4740 C304 00316 239 BL BUFR2 IOST1070
000312 5850 CAOA OOA1C 240 L 5,B0FAD1 CHANGE BUFFERS IOST1080
000316 5B50 C9D2 009E4 241 BOFRH S 5,FOUR IOST1090
00031 A 5B50 C9D2 009E4 242 S 5,FOUR lOSTllOO
000315 5830 0010 00010 243 L 3,16 CVT ADDRESS I0ST1110

STATISTICS HODOLSS POP lO ACTIONS PAGE 3

LOC OBJECT CODE ADDS1 ADDR2 STMT SODHCE STATEMENT

000322 5833 0058 00058 244 L 3,88(3) PSEODO CLOCKS
000326 5833 0008 00008 245 • L 3,8(3) LOCAL PSEUDO CLOCK
00032A 5035 0004 00004 246 ST 3,4(5) STORE INTO OUTPUT
00032E 1B65 247 SR 6,5
000330 D7 03 5000 5000 00000 00000 248 IC 0(4,5),0(5) CLEAR LENGTH FIELD
000336 4065 0000 00000 249 STH 6,0(5)
00033A 4060 CAAC OOAEE 250 STH B6,CCWS+6
000335 5050 CA2E OOAdO 251 ST R5,TIMECB
000342 D202 CAA7 CA2F 00AB9 00A41 252 HVC CCWS+1(3),TIMECB+1 DATA ADDRESS
000348 D703 CA76 CA76 00688 00A88 253 XC EECB (4) ,EECB

254 EXCP lOADR
257 HAIT 1,ECB=EECB

00035E D703 CA76 CA76 OOASa 00A8B 261 XC EECB (4) ,EECB
00036a 4110 CAAE OOACO 262 LA HI,TPHK
000368 5010 CA8A 00A9C 263 ST R1,CSWF+8 NOW WRITE TAPEMARK

264 EXCP lOADR
267 HAIT 1,ECB=EECB
271 OUT NOW . .• READY FOR ANALYSIS
272 CLOSE (TAPES,)

000386 58D0 C906 00913 278 HELPOT L 13,SAVE+4
00038A 93EC DOOC OOOOC 279 LM 14, 12, 12(13)
00038E 1DPF 280 SR 15,15
000390 07FE 281 B5 14 OUT ... OUT ... OUT

282 EOVi; ENO (ONM,RNa,E, ,SYSTEM) ,SMC=SySTEM
293 EOV TAPES
296 DEQ (QNM,PN.1, , SYSTEM) ,RMC = SYSTEM

0003BE D703 CA4E CAUE 00A60 00A60 307 XC TAPES+12(4),TAPES+12
0003Ca 4188 0008 00006 308 LA R8,8(R8)
0003C8 07F8 309 BR R8

310 *
311 * END OF VOLUME ROUTINE
312
313 DROP 12

P150CT70 8/27/71

IOST1120
IOST1130
IDSTIiaO
lOSTUSO
IOST1160
IOST1170
I0ST1180
IOST1190
IOST1200
IOST1210
IOST1220
IOST1230
IOST1240
IOST1250
IOST1260
IOST1270
IOST1280
IOST1290
IOST1300
IOST1310
IOST1320
IOST1330
IOST1340
IOST1350
IOST1360
IOST1370
IOST1380
IOST1390
IOST1400
IOST1410
IOST1420
IOST1#30
lOSTIUaO

W

135

W O

oooooooooo O O O O o vor»cDo>o^(Nrn^iP r- m <N m 9 m cîazfainuntfiif^uiin m U1 m m v£> VO VO vO r» r~ r- h" r- r~ r- r-f T— T— H H H H H H H fH H H H H (-* H H EH H H s (/)viv>c/)(/itO(nWww (A U) (0 U) w w w tn W to «0 m 10 10 tn w to to 10 10 <0 (O to OOOOOOOOOO O O O O o o o o O O O O O O O o o o o o O o O HHHHHHHMHH M H H H M H H H M M H M H M H H H H M H H H

OOOOOOOOOOOO
OT-(Nm*invor~coeiOT-COCOOOQOCOOOCOa3COGO<7>a« r-t-r-^T-r-T-r"
WWWtOVîWWWlOtOWW OOOOOOOOOOOO MHMMMHMMMMMH

< > EH
iu to to mi O a

CL to <N o tJ ^ W 10 W X «: m jr H m M H X o O in a* u o - z t«i H H H o H << m o 9 s D Z oc o u • »tO M (0 K m m u > o M X ^ 0, £0 •«-' ̂ o > to (N E- »o
<N H o o rsi to -̂ 05 o <N M o • (N •< (N a- E- X tti m * CD Ou ^ eu EH — at r- D. u «O EH % FH • • < «e 10 —'U os * X » rsi A, O 0, (N K to to CL o K CC to M o H *- o » (0 « * eu M Al - * • 3 3 3 mmoooaa-zfa^^ CT a- o M m r M

CC 2
>J M
"C (/) CO D W

S X S
f-« H H
M W W

S X S
H H H
M (A M U

U U U > > >
K C B t

I @4 U
> M to K *

U U U U M O > t» > > > ÛS PS i r S S S E CQ a

p. M EH M IH •< H o: M H (0 fj a m M K
G X (J M O

£ O X D EH 0,
b) X < EH M Û4 o to k. to H H O (H bd H 3C eu (L m (0 U U » eu 10 K W o
< MO%*

*̂ o X
r- m %oo ̂ K O <N O ÎT —'O «. m if CN * m o \o m 03

u
K 2 CL iJH U U U U U O fC lA >>> > ̂ M K OS iQDtJICKC^JaiOOOO

M • « » *
invor*co(T»o»-*Nrn:Tif»\or^coo>o»"<Nfniri/»\or»cDC*o^rvjm3u^^r» ^^^•"»-<N<N<N<N<N<N(NfNfNO<n'nmrno^fnnfnmf»i3-3^jTsriTa^^*T

O w

uwuw>oncoooua)oo^ucocou
oc3ucoc\or-oonr»cQOKirnr^aî*. oiAmr'*f~cocoooooc\o<yiooo>o oooooooooooooooooo oooooooooooooooooo

o W (N «s o ÙH cr o o o a> o «< o o o o o o o o o o
u o CO œ \û fN tN *-u Q o w o CL. if (N 0^ o o O o o O O O o o O o o o o o
o u CO rg CN w
O m r»

m es m (N
U o o ? u a O 00 o 03 u u o u vo VO (N r-

o
o

ou-otûU3^;roooowowmt^Wf-. Of-(N<nrn^ ̂ o\ONûvoi/<omooir>o 0<N(Nr^<N<M(NO(Nfgr>4fNONOO(NO
o ^oooooof-mmr^ofnoMPioo (N mmmmmmmmooc.fa^a'^ozfa' in oooooooocofNfNfMcoocoor^coo o u^oaff^sTijifiûoQt/^irjininDtnin
^ U U o ? oc uo^coo'Ncoûif^vû rtUJcrco UVVOOoOWMWWkkk,OOOOf-f fnmmMrnMrifnMmmfnmfn?cT:T3*3 OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO
O

T- *- o (N d" (N o \û o vo O O o <N m «N n O
f- CN 0^ CD 0> 5T W m o o o o o qli CO C>4 CN <N <N <N r» o o û o ̂ o
(J o u N CO u *- fs rs M m m m
o o o o o 0*0 o o o o o o o o o o o o o o

er m iTi if> r» n m mmn n<n

o u o CD o o u u 0^ o o o o o o o o o
o (_) CO CD

o o
u o CO

<N fS
U CO O o o o CN fM o o o O O o m m O

f- u o k, CD f\ rsi (N tn O o a m a O o> o
fO o o 9 •< o «A O

sT 9 sr
O O o o O o O O o o o o O O

HEW EXCP LOCATION

LOC OBJECT CODE ADDRl ADDP2 STMT sot'!

OOOUGC 0520 362 HEXCP
000*62 363
OOOU6C 92F0 24A5 00913 364
000U72 900F 24EE 0095C 365
000W76 5860 25DE 00A4C 366
00047A 9200 6000 00000 367
000a7E 5870 0010 00010 368
OOOU62 5877 0058 00058 369
000486 5887 0000 00000 370
0004RA 5E87 0004 00004 371
000482 5890 0050 00050 372
000492 8A90 0001 00001 373
OOOU96 1F89 374
000U98 5080 252E 0099C 375
00049C D203 6001 252E 00001 0099C 376
000%A2 4166 0004 00004 377
0004A6 D204 6001 1000 00001 00000 378
0004 AC D202 6007 1015 00007 00015 379
0004B2 4166 0003 00003 380
0004B6 5871 0014 00014 381
OOOUEA 9110 7030 00030 332
OOOUBE 4760 2126 00594 333
0004C2 D201 6007 701 A 00007 OOOIA 384
0004C8 D200 6009 7024 00009 00024 335
0004CE D202 600 A 702 A OOOOA 0002R 356
0004D4 D200 600D 7030 OOOOD 00030 397

388 $ 0
0004DA 5887 002C 0002C 389
OOOUDE D502 1015 8019 00015 00019 390
000UE4 4770 2126 00594 391
000458 4188 0000 00000 392
0004 EC D200 600E 8018 OOOOE 000 18 393
0004F2 4166 0001 00001 394
0004F6 9180 701A 0001A 395
0004FA 4780 2094 00502 396
0004FE 4188 0010 00010 397
000502 5888 0020 00020 398 ISOHG
000506 D20F 600E 8000 OOOOE 00000 399
00050C 92FF 601E OOOIE 400
000510 91A0 8010 00010 401
000514 4780 20B4 00522 402
000518 D205 601E 801C OOOIE OOOIC 403
00051E 4166 0005 00005 404
000522 9520 8012 00012 405 HOVOI,
000526 4770 20C6 00534 406
00052A D207 601F 1020 0001F 00020 407
000530 4166 0008 00008 406*
000534 5864 OOOC OOOOC 409 KODASD
000538 92FF 601F OOOIF 010
00053C 1288 411
00053E 4780 2102 00570 412
000542 D207 601F 6000 OOOIF 00000 413
000548 4166 0008 00008 4 14
00054C 92FF 60 IF OOOIF 415
000550 D501 7026 255A 00028 009CB 416

PAGE 5

STATEMENT

BALH 2,0
OSING •-2 BASE REGISTER
HTI SAVE~1,C'0'
STft 0,15-EBFSAVE
L e.CURLNG CURRENT LOCATION IN BUFFER
H7I 0(6),X'00' EXCP RECORD
L 7,16
L 7,X'58' (7) PSEODO CLOCKS
L 6,0(7) SHPC
AL 8,4(7) T4PC
L 9,80 TIMER
SRA 9,1
SLR 8,9 TIME IN TIMER DNXTS (ALMOST)
ST 8,EaRSAVE+64
MVC 1 (4,6) ,EPRSAVE+64
LA 6,4 (6)
nvc 1(5,6) ,0(1) lOB INFO
avc 7(3,6) ,21 (1) DCB ADDRESSS
LA 6,3(6)
L 7,20(1) DCB ADDRESS
TS 48 (7) ,X'10' IS IT OPEN ?
BZ NOWRT
MVC 7(2,6) ,26 (7) DS03G
HVC 9(1,6) ,36(7) RECFM
MVC 10(3,6) ,42(7) MACRF f. IFLGS
MVC 13(1.6) ,48(7) DCBOFLGS
INFORMATION
L 8,44(7) DEB ADDRESS
CLC 21(3,1),25(8)
BNS NOWRT
LA 8,0(8)
MVC 14(1,6) ,24(8) PROTECT KEY
LA 6,1(6) FOR PROTECT KEY
TM 26 (7),X*80» INDEXED SEQUENTIAL ?
BZ isoac
LA 8,16(8) FOR IS
L 8,32 (6) DCB ADDRESS
MVC 14(16,6) ,0(8)
MVT 30 (6) ,X'FF' FLAG IF NO VOL SER
TM 16(8),X'AO'
BZ NOVOL
MVC 30 (6,6) ,26 (8) V0LUME=5ER
LA 6,5(6)
CLT 18 (R8) ,X'20'
BNE NODASD
MVC 31(8,6) ,32(1)
LA R6,8(96)
L 8, 12(4)
M VI 31(6),X'FF'
LTB 8,8
BZ NONAME KO TIOT
MVC 31 (3,6) ,0 (8) JOPNAME
LA 6,8(6)
avi 31(6),X'fF'
CLC 40 (2,7) ,ZEPO

P150CT70 8/27/71

IOST1930
IOST19U0
10ST1950
IOST1960
IOST1970
IOST1980
I05T1990
IOST2000
IOST2010
IOST2020
IOST2030
IOST20U0
IOST2050
rOST2060
IOST2070
IOST2080
IOST2090
IOST2100
IOST2110
IOST2120
IOST2130
IOST2140
IOST2150
roST2160
IOST2170
IOST2180
IOST2190
IOST2200
IOST2210
IOST2220
TOST2230
IOST22U0
IOST2250
IOST2260
10ST2270
IOST2280
IOST2290
10ST2300
TOST2310
IOST2320
IOST2330
IOST23Q0
IOST2350
IOST2360
IOST2370
IOST2380
IOST2390
IOST2UOO
TOST2u'lO
IOST2«20
IOST2H30
IOST2UUO
IO5T2450
IOST2tt60
TOST2«70

HEW EXCP LOCATION

LOC OBJECT CODE ADDR1 ADDB2 STMT SOU?CE STATE MEUT

000556 4780 2102 00570 417 BE NOKAME
00055A 9101 7030 00030 4 18 TM 48(7) ,X'01'
000552 4710 2102 00570 419 BO NONAME YES
000562 4A87 002 8 00028 420 AH 8,40 (7)
000566 D20B 601F 8000 0001F 00000 421 MVC 31(12,6) ,0(8:
00056C 4166 OOOB 000 OB 422 LA 6,11 (61
000570 4166 0020 00020 423 NONAMT LA 6,32(6)
000574 5960 25BE 00A2C 424 C 6,DANGER
000578 4740 2122 00590 425 EL N0WRT2
00057C 9140 261 A 00A88 426 TM EECB,X'40'
000580 4710 213E 005AC 427 BO HITEST1
000584 45E0 22FC 0076A 428 BAL R14,E!JQP
000583 5960 2596 00A2% 429 C 6,HIP0INT
ooosec 47B0 2126 00594 430 BNL NOWRT
003590 5060 25DE OOA4C 431 Nows r;2 ST 6,CURLNG
000594 432 KOWPT EQO
000594 980F 24EE 0095c 433 LM 0,15,ERRSAVE
000598 5RA0 255E 009CC 434 L 10,OEXCP
00059C 07FA 435 BR 10
00059 E 92FF 600E OOOOE 436 BADDi: B HVI 14(6) , X'FF"
0005A2 5460 2572 0O9E0 437 S 6,SXTN
0005A6 0660 438 ECTR 6,0
0005A8 47 FO 2102 00570 439 B NONAME
0005*C 5960 2556 OOA24 440 HITESri C 6,HIPOINT
O005E0 4740 2122 00590 44 1 BL N0WRT2
0005B4 «5E0 22AC 0071A 442 BAL R14,OOTPUX
0005P8 47F0 2126 00594 443 B NOWRT

444 DROP 2

0005BC 5020 OOOO 00000 446 KEPR ST 2,0
O005C0 0520 447 BALR 2,0
0005C2 44 8 OSING *,2
0005c? 92F1 2351 00913 449 HVI SAVE-1,C*1'
0005C6 900F 239A 0095c 450 STM 0,15,ERRSAVE
0005CA 5860 0000 00000 451 NERRl L 6,0
0005CE 5060 23A2 00964 452 ST 6,ERRSAVE+8
000502 5860 248A 00A4C 453 L 6,C0RLNG
0005D6 9201 6000 00000 454 BVI 0(6) ,X'01'
0005DA 5830 23FA 0C9BC 455 L 3,C0MAD
0005DE 05R3 456 BALR 10,3
0005BO 92F4 2351 00913 457 HVI SAVE-1,C*4'
0005E4 58A0 240E 009D0 458 L 10,OERR
0005E3 50A0 23C2 00984 459 ST 10,ERRSAVE+40
OOOSEC 980F 239A 0095C 460 LH 0,15,ERRSAVE
0005FO 07 FA 461 BR 10 OFF TO

462 DROP 2

PAGE 6

F150CT70 8/27/71

IS IT BUSY WITH OPES ?

DDNAflE ENTRY

IOST2UaO
•IOST2U90
IOST2500
IOST2510
IOST2520
TOST2530
IOST25aO
TOST2550
IOST2560
IOST2570
IOST2580
IOST2590
IOST2600
I0ST2610
IOST2620
TOST2630
IOST26UO
IOST2650
IOST2660
IO^T2670
IOST2680
IO3T2690
I03T2700
IOST2710
IOST2720
I0ST2730
IOST2740
IOST2750

OJ
-J

IOST2770
IOST2780
IOST2790
IOST2800

SAVE REGISTERS IOST2810
IOST2820
IOST2830
IOST28itO
IOST2850
IOST2860
IOST2870
IOST2880
IOST2890
IOST2900
IOST2910

:BMS EXCPER3 IOST2920
IOST2930

COMMON FORMAT FOB I/O INTERRUPTS AND ERREXCP PAGE 7

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE ; STATEMENT F150CT70 8/27/71

0005F2 464 USING COMMON,3 IOST2950
0005F2 92F3 3321 00913 465 COMMON MVI SAVE-1,C' 3' IOST2960
OOOSF6 5870 0010 00010 466 t 7,16 CVT IOST2970
0005FA 5877 0058 00058 467 L 7,X'58'(7) PSEUDO CLOCKS IOST2980
0005FS 5887 0000 00000 468 L 8,0(7) SHPC I0ST2990
000602 5E87 0004 00004 469 AL 8,4(7) T4PC IOST3000
000606 5890 0050 00050 470 L 9,80 TIMER IOST3010
00060X 8A90 0001 0000 1 471 SBA 9,1 IOST3020
00060E 1F89 472 SLR 8,9 TIME IN TIMER UNITS (ALMOST) IOST3030
000610 5080 33AA 0099C 473 ST 8,ERRSAVE+64 IOST3040
000614 D203 6001 33AA 00001 0099C 474 MVC 1 (4,6) ,Ef RSAVE+64 IOST3050
00061A 4166 0004 00004 475 LA 6,4 (6) IOST3060
00061E D20P 6001 1030 00001 00000 476 MVC 1(16,6) ,0(1) BQE *** TEST *** IOST3070
000624 4166 0010 00010 477 LA 6,16 (6) *** TEST IOST3080
000628 4841 0002 00002 478 LH 4,2(1) IOST3090
00062C D20F 6001 40)0 00001 00000 479 MVC 1 (16,6) ,0(4) UCB IFOBRATION IOST3100
000632 92FF 6011 00011 480 MVI 17(6),X»FF* FLAG FOR NO VOL SER XOST3110
000636 91 AO 4010 00010 481 TM 16(4) ,X'AO' IOST3120
000Ô3A 4780 3056 00648 482 B2 NOTDATP IOST3130
00063E 0205 6011 40IC 0001 1 000 IC 483 MVC 17(6,6) ,28(4) VOLUME=SER IOST3140
000644 4166 0005 00005 484 LA 6,5 (6) IOST3150
000648 5851 0004 00004 485 NOTUATP L 5,4(1) IOST3160
00064C 4155 0000 00000 486 LA 5,0(5) IOST3170
000650 0204 6012 5000 00012 00000 487 MVC 18(5,6) ,0 (5) lOB FLAGS IOST3180
000656 D200 6017 5008 00017 00008 488 MVC 23(1,6) ,8(5) IOST3190
00065C 9520 4012 00012 489 CLI 18(4) ,X'20' IOST3200
000660 4770 307c 00662 490 BKE NOTDA IOST3210
000664 D207 6018 50:!0 00018 00020 491 MVC 24(8,R6) ,32(R5) IOST3220
00066A 4166 0008 00003 492 LA R6,8(56) TOST3230
00066E 5841 OOOC OOOOC 49 3 NOTE A L 4,12(1) IOST3240
000672 4144 0000 00000 494 LA 4,0(4) TCB IOST3250
000676 5851 0008 00008 495 L 5,8(1) IOST3260
00067A D202 6018 5019 00018 00019 496 MVC 24(3,6) ,25(5) IOST3270
000680 4166 0003 00003 497 LA 6,3(6) DC3 ADDRESS ADDITION IOST3280
000684 5855 0010 00018 498 L 5,24(5) DC3 IOST3290
000688 D201 6018 501 A 00018 000 IR 499 MVC 24 (2,6) , 26(5) DSORG IOST3300
00068* D200 601A 5024 OOOIA 00024 500 MVC 26 (1 ,6) ,36 (5) RECFM IOST3310
000694 0202 601B 502 A OOOID 0002A 501 MVC 27(3,6) , 42(5) MACRFCIFLGS IOST3320
00069A C200 601E 5030 OOOIE 00030 502 MVC 30 (1 ,6) ,4 9 (5) OFLGS IOST3330
O0O6AO 5874 OOOC OOOOC 50 3 L 7,12(4) TIOT IOST3340
0006AW 92FF 601F 00011- 50 4 MVI 31(6) ,X'FF' IOST3350
0006A8 1277 505 LTR 7,7 IOST3360
0006AA 4780 30F2 006E4 506 BZ NOTIOT IOST3370
0006AE D207 601F 7000 000 IF 00000 507 MVC 31 (8,6) ,0(7) JOP.NAME IOST3380
0006B4 4166 0008 00008 508 LA 6,8 (6) IOST3390
0006PB 92FF 601F 0001F 509 MVI 31 (6),X'FF' IOST3400
0006BC D501 5028 33D6 00026 009C8 510 CLC 40(2,5) ,2ER0 IOST3410
0006C2 4780 30F2 006E4 51 1 BE NOTIOT IOST3420
0006C6 9110 5030 00030 512 TM 48(5),X*10' IS IT OPEN ? TOST3430
0006CA 4780 30F2 006E4 513 BZ NOTIOT NOT OPEN IOST3440
0006cr 9101 5030 00030 514 TM 48(5),X*01* IS IT BEING OPENED ? IOST3U50
0006D2 4710 30?2 006E4 515 BO NOTIOT YES IOST3460
0006D6 4A75 0028 00028 516 AH 7,40(5) IOST3470
0006DA D20E 601F 7000 0001F 00000 517 MVC 31(12,6) ,0(7) DD ENTRY IOST3480
O0O6EO 4166 0005 00005 518 LA 6,11 (6) IOST3490

COMMON FORMAT FOB I/O INT2PRUPTS AND EPPFXCP PAGE 8

IOC OBJECT CODE ADDPl ADDR2

000624 4166 0020 00020
0006F3 5960 343A 00A2C
0006EC 4740 3114 00706
0006FO 9140 3496 00A88
0006Fa 4710 311 A 0070C
OOOGFQ 185A
n006FA 45E0 3178 0076A
•J006FE 18A5
000700 5960 3432 OCA 24
00070% 07BA
000706 5060 345A 00A4C
00070A 07FA
00070C 5960 3432 00A24
000710 4740 3114 00706
00071% leSA
000716 47F0 3128 0071ft

00071 \ 05F0
00071C
00071C 58A0 F304 OOA20
000720 58B0 F300 OOAIC
000724 19A6
000726 4740 FOI 4 00730
00072A 17AB
00072C 17PA
00072^ 17AE
000730 50B0 F330 OOA4C
000734 5AB0 F338 00A54
000738 5030 F308 00A24
00073C 5BB0 F314 0OA30
000740 50BO F310 00A2C
000744 5BA0 F2C8 009E4
000748 5BA0 F2C8 009E4
00074C 1B6A
00074E D703 AOOO AOOi) 00000 00000
00075% 406A 0000 00000

000758 41B0 F324 0OA40
00075c 58C0 F334 00A50
000760 5840 0010 00010
000764 58F4 0098 00098
000768 07FF

00076A 05F0
00076C
00076C 070E
00076E 96F0 FOOT 0076D
000772 41B0 F2BC 00A28
000776 58C0 F2E4 00A50
00077A 5840 0010 00010
00077S 58 F4 0098 00098
000782 07FF

STMT SOURCK STATEMENT P150CT70 8/27/71

51 9 NOTIOT LA 6,32(6) IOST3500
520 C 6,DANGER TOST3510
521 BL B102 IOST3520
522 TM EECB,X'40' TOST3530
523 BO HITEST2 IOST3540
524 L» R5,AIO TOST3550
525 BAL R14,ENQP IOST3560
526 LR R10,R5 IOST3570
527 C 6,HIP0INT IOST3580
528 BCR 11,RIO IOST3590
529 B102 ST R6,CURLNG IOST3600
530 BE RIO IOST361 0
531 HITEST2 C $,HIPOINT IOST3620
532 BL B102 IOST3630
533 LR R14,R10 IOST3640
534 B OUTPUX IOST3650
535 DROP 3 IOSÎ3660
536 » OUTPUT ROUTINE FOR POST OPERATION IOST3670
537 OUTPUX BALR 15,0 IOST3680
538 OSING •,R15 IOST3690
539 L 10,BUFAD2 IOST3700
540 L 11 ,BDFAD1 IOST3710
541 CR 10,6 IOST3720
542 BL NOSWPX IOST3730
543 IR 10,11 IOST3740
54 4 XR 11,10 IOST3750
545 XR 10,11 SWAPPED REGISTERS IOST3760
546 NOSWPJ: ST 11,CURLNG IOST3770
547 A 11,LENG IOST3780
548 ST 11,HIPOINT IDST3790
54 9 S 11,SAFED IOST3800
550 ST 11,DANGER IOST3810
551 S 10,FOUR IOST3820
552 S 10,FOUR IOST3830
553 SR 6,10 IOST3840
554 xc 0(4, 10) ,0(10) CLEAR LENGTH IOST3850
555 STH 6,0(10) IOST3860
556 • SKT OP FOR POST OPERATION IOST3870
557 LA 11,TIMECB IOST3880
558 L 12,CURTCB IOST3890
559 L U, 16 IOST3900
560 L 15,152 (4) IOST3910
561 BR 15 BRANCH TO THE POST IOST3920
562 DROP R15 IOST3930
563 ENQP BALR R15,0 IOST3940
564 OSING »,15 IOST3950
565 ENQP'I BCR 0,14 IOST3960
566 01 EN0P1+1,X'F0' IOST3970
567 tk 11,DANGECB IOST3980
568 L 12,CURTCB IOST3990
569 L 4,16 IOST4000
570 L 15,152(4) IOST4010
571 BR 15 POST THE DANG ECB IOST4020
572 DROP 15 IOST4030

I /o INTERRUPTS PAGE 9

toc OBJECT CODE ADDR1 ADDP2 STMT SOURCE STATEMENT F150CT70 8/27/71

574 • IOST4050
57 5 » I/O INTERRUPTS NOW IOST4060
576 IOST'4 07 0

00078% 577 HEKIO EQO IOST4080
000764 5020 0008 00008 578 SAVI ST 2,6 IOST4090
000783 0520 579 BALE 2,0 IOST4100
00078A 580 DSING *,2 10514110
00078A 900F 2102 0095C 581 STfl 0,15,ERRSAVB IOST4 120
00078E 5810 0008 00008 582 SAVEE L 1,8 IOST4130
000792 5010 2IDA 00964 5P3 ST 1,ERSSAVE+8 IOST4140

5 * WWEW HAVE REGISTERS SAVED IOST4150
000796 92F2 2189 00913 505 H VI SAVE-1,C'2* IOST4160
00079A 5830 0010 00010 586 L 3, 16 CVT POINTER IOST4170
000792 58Q3 0000 00000 587 L «,0(3) IOST4180
000742 58l»a ooon 00004 508 L 4,4(4) CURRENT TCB IOST4190
0007A6 5854 0000 00000 589 L 5,0(4) CURRENT RB IOST4200
0007AA 5860 22C2 00A4C 590 L 6,CURLNG IOST4210
0007AE 9202 6000 00000 591 MTI 0(6),X'02' RECORD TYPE IOST4220
0007B2 D207 6001 OOl.O 00001 00040 592 HVC 1 (8,6) ,64 CSWCCAW XOST4230

59 3 » NOW] FIND THE lOB FOR THIS INTERRUPT IOST4240
0007S8 4166 0008 00008 594 LA 6,8(6) IOST4250
0007BC 1B77 595 SR 7,7 IOST4260
0007BE 1887 596 LR 8,7 ZEROS IOST4270
O0O7CO 4380 003A 0003A 597 IC 8,58 FIRST CHANNEL IOST4280
0007CU 5480 228E OOA 18 598 N 8,MASK1 X'00000007' IOST4290
0007C8 5A83 002U 00024 599 A 8,36(3) IECILK1 I0oT4300
0007CC 4378 0000 00000 600 IC 7,0(8) K IOST4310
0007D0 1B88 601 SR 8,8 TOST4320
0007D2 4380 003B 0003B 602 IC 8,59 IOST4330
0007D6 8880 0004 00004 603 SRL 8,4 IOST4340
0007DA 5480 228A 00A14 604 N 8,MASK2 X'OOOOOOOF' IOST4350
0007DE 1A78 605 AR 7,8 IOST4360
0007E0 5A73 0024 00024 606 A 7,36(3) lECILKI IOST4370
0007EW 4387 0000 00000 607 IC 8,0(7) L IOST4380
000729 1877 606 SR 7,7 IOST4390
0007EA 4370 003B 00033 609 IC 7,59 IOST4400
0007EE 5470 228A OOA 14 610 N 7,MASK2 IOST4410
0007F2 1A78 611 AR 7,8 IOST4420
0007FU 1A77 612 AR 7,7 IOST4430
0007F6 5A73 0028 00028 613 A 7,40(3) • IECILK2 IOST4440
0007FA 4837 0000 00000 614 LH 8,0(7) OCB IOST4450
0007FE 4818 0014 000 14 615 LH 1,20(8) ROE IO5T4460
000802 5830 2232 009BC 61 6 L 3,C0HAD IOST4470
000806 05A3 617 BALR 10,3 IOST4480
000608 92F5 2189 00913 618 «VI SAVE-1,C'5' IOST4490
00080C D207 0008 22WE 00008 O09D0 619 SAVir nvc 8(8,00),0psw PSW SET-OP IOST4500
000812 980F 2102 0095C 620 Ltl 0,15,ERRSAVE IOST4510
000616 8200 0000 00008 621 PSW LPSW 8(0) GOOD-BYE 10ST4520

622 DROP 2 IOST4530

DISPATCHER RECORDS FOR CPU UTILIZATION PAGE 10

toe OBJECT CODE ADDP1 ADDR2 STMT SOURCE STATEMENT F150CT70 8/27/71

624 * IOST4550
625 OLD TASK TIME RECORD IOST4560
626 IOST4570

00081 A 627 USING • , 10 IOST4580
00081 A 900F Aia2 0095C 628 0LDTÎ1 STM 0,15,ERPSAVE SAVE PEGISTERS IOST4590
00081E 5860 A232 00A4C 629 L R6,CURLNG CURRENT LENGTH OF BUFFER IOST4600
000822 9203 6000 00000 630 nvi 0(R6) , X'03' RECORD TÏPE IOST4610
000826 5870 0010 000 10 631 L R7,16 IOST4620
00082\ 5887 0000 00000 632 L R8,0(R7) TC3 POINTER IOST4630
00082E U188 0004 00004 633 LA P8,4(R8) OLD TCE ADDPESS IOST4640
000632 «5E0 A05C 00876 634 BAL 14,TIMED IOST4650

635 DROP 10 IOST4660
000836 636 USING • ,14 IOST4670
000836 980F E126 0095C 637 Lrt RO,R15,ERRSAVE RESTORE REGS IOST4680

638 DROP 14 IOST4690
00083A 58F0 0010 00010 639 L B15,16 IOST4700
00083B 9180 F0E4 000E4 64 0 Trt X'E4' (P15) ,X' 80» IOST4710
0008(42 U78E 001E oooir 641 BZ X'lE'(R14) IOST4720
0006(16 ti7FE 0010 000 10 642 B 16(R14) IOST4730

643 IOST4740
644 NEW TASK Tins RECORD IOST4750
645 IOST4760

0008()A 0540 646 IIEHTfl BALR 4,0 IOST4770
OOOSiJC 647 OSING IOST4780
00084C 5860 4200 00A4C 64 8 L R6,CURLNG IOST4790
000850 9204 6000 00000 649 nvi 0(R6),X'04' RECORD TYPE IOST4BOO
000854 90BC 4110 0095C 650 STM 11,12,EBRSAVE IOST4810
000858 5870 0010 00010 651 L R7,16 IOST4820
00085c 5887 0000 00000 652 L R8,0(R7) IOST4830
000660 45EO 402A 00676 653 SAL R14,TIMED losTueuo

654 DROP 4 IOST4850
000864 655 USING •,R14 IOST4860
00086(1 9eBC E0F8 0095C 656 LK 11,12,ERPSAVE IOST4870
000868 D2 07 0180 C010 00180 00010 657 BVC I'180' (8,0) , 16(12) IOST4880
000862 980F B030 00030 658 LM 0,15,49(11) IOST4890
000872 8200 0180 00180 659 LPSW I'180' IOST4900

660 DROP 14 IOST4910
661 * IOST4920
662 $ TIME FIELD FORMATION IOST4930
663 IOST4940

000876 0550 664 TIMED BALR 5,0 IOST4950
000878 665 USING *,5 IOST4960

666 * 03TPUT TIME FIELD IOST4970
000878 5877 0058 00058 667 L 7,I'58'(7) IOST4980
00087C 58A7 0000 00000 668 t 10,0(7) IOST4990
000880 5EA7 0004 00004 669 AL 10,4 (7) IOST5000
00088U 5890 0050 00050 670 L 9,60 IOST5010
000888 8A90 0001 000011 671 SRA 9,1 IOST5020
00088C 1FA9 672 SLR 10,9 ALMOST TIME IOST5030
00086E *OAO 5124 0099C 67 3 ST 10,ERRSAVE+64 IOST5040
000892 D203 6001 5124 00001 0099C 674 R7C . 1 (4,6) , ERRSAVE+64 IOST5050
000898 D202 6005 8001 00005 00001 675 HVC 5(3,6) ,1(R8) IOST5060
000892 5888 0000 00000 676 L B8,0 (R8) TCB POINTER IOST5070
0008A2 D200 6008 801C 00008 0001C 677 HVC 8(1,6) ,28 (8) PROTECT KEY IOST5080
0008A6 5878 0)00 00000 678 L B7,0(R8) IOST5090

142

OOOOOOOOOOOOOOOOOOOOOOOOOO o^f\jmaui\ar''fD<Tc>'-(Nrn3in,a>a)o\Of-(Nm3ui
inirvmir>inir>inminininirtinininirtmtriininifiinininintn H H h< H H f-« {••• t-« [-' H H F-4 f-i f-. t-' f-< f-. H H h« £•* H f- »-< f- E-
g e S S S S S S S S S S 2 S S S S S S 2 S S 2 2 S 2

CO w)
œ O

VÛ r m
^ — d >0 cr (J

U H
O T-CM- eu Z bl X pr. cc *- 0:

u u U
> > H > r. o m U H PCM) M) K NJ .J U H m kJ M) m u m tn CO

Oi

ec a

f-> \0 \0 \0 *C «8

c: C U O •" o

o o o o
•c o

rr m r\j CO o o \o U) « «i>i. v£. VÛ r- r- r*

o o - U o
u fN
a> < CO o o o o

So®
U <N CO

o o o o o o

m CO m ij u u
1- CO (N O

<£) iTJ so tn m m m \r U1 in
r* h. o r~ so o o o o CM

U\ so *- r~ 0\ 0? m O *- m m U1 in o
u so u o or u o - vO O U3 bi N u o o o a w Ul W (4 u. œ CD CO CD m CD CO OÛ CD CO 03 o o o o O O O o o o O O o o O o O o o o O o o o o o o o o o

DATA APEA PACL 12

LOG OBJECT COIF RDDP1 ADDn2 STMT SOIHiCF STATEMENT F150CT70 8/27/71

00090A UO E2C1E5C5U0CI 09 706 DC CL12* SAVP AHEA' IOST5370
0009m 0000000000000000 707 SA V? DC 18F* 0* IOST5380
00095C 0000000000000000 708 FPPS.WF DC 18F* 0* IOST5390
OOOOAU 709 DS F IOST5400
0009A3 000003CA 710 INlTi' DC A (IS1TÏZ) IOST5410
OOQOAC 0000043E 71 1 PEDO:> DC A(PCDOIT) IOST5420
0009PO oooooaGc 712 Fxcpr-i) DC A(NEXCP) TOST5430
0009BU 000005BC 713 EPPAP DC A(N5RR) IOST5440
0009P8 0000078U 71 ti INTP':/.D DC A (NEWIO) IOST5450
0009BC ooooosr2 715 COKAU DC A(COMMON) IOST5460
0009CO 0000076A 716 FNOPTA DC A(EHQP) IOST5470
0009CK 0000071 A 717 OUTPU K.\ DC A (OUTPUX) IOSTS480
0009C8 00000000 718 ZEPO DC F« 0' IOST5490
0009CC 719 OEXC«> DS P TOST5500
0009DO 720 OEfiP DS IOST5$10
0009D8 721 OPSW DS D IOST5520
000950 00000010 722 SXTH DC F' 16* TOST5530
0009FU OOOOOOOU 723 FOÎJP DC PI ̂ 1 IOST5540
000958 724 DISPV '1 DS CLIO IOST5550
0009F2 1 2 b DISP':2 DS CL12 IOST5560
0009FE 58A0E00A05P.A 726 MONT:[MEI DC XL6'58A0E00AO53A• IOST5570
OOOAOU 0000081A 727 DC A (OLDTM) IOST5580
Û0OAO8 729 DS H IOST5590
OOOAOA 58A0E0a607FA 729 MONTZHP2 DC XL6»58A0E04607FA« IOST5600
OOOA 10 000008UA 730 DC A (NEHTM) IOST5610
000A14 OOOOOOOF 731 MASK;? DC X» OOOOOOOF' IOST5620
000A18 00000007 732 MASK'I DC X* 00000007• IOST5630
OOOAIC 733 EUFAiJi DS F IOST5640
COOA20 734 BUFAU:! DS F IOST5650
000A2« 735 HIPOÏliT DS F TOST5660
OODAZa 736 DANG1:CB D3 F IOST5670
000A2C 737 DANGHH DS F IOST5680
000A30 OOOOOOAO 738 SAFEI) DC P'160' IOST5690
OOOA3U OOOOOA2880000iV88 739 DESE DC A(DANGECB) ,XL1'80*,AL3 (EECB) IOST5700
000A3C 740 0PFC1' DS F«0* IOST5710
OOOAUO 00000000 7«1 TIMECU DC F'O» IOST5720
OOOAUU OOOOOA3C 742 ECBS DC A(OPECB) IOST5730
OOOAMS 80000A40 743 DC X*80»,AL3 (TIWECB) IOST5740
OOOAUC 744 CO PLUG DS P IOST5750
OO0A5O 7a5 CORTCE; DS P IOST5760
OOOA54 00003EF1J 746 LENG DC P« 16116» IOST5770

747 TAPE:: DCB HACRF=(E),DDHAME=OUTTAPE ,DEVD=TA IOST5780
OOOA88 782 DS OP IOST5790
000A88 aooooooo 783 EECB DC XL4« 40000000* IOST5800
000A8C 784 DS OF IOST5810
0 00A8C 02 785 IOAD1Î DC X'02' SUPPRESS LENGTH INDICATION IOST5820
000A8D 786 DS XL3 IOST5830
000A90 OOOOOA68 787 ECBA DC A(EECB) ECB ADDRHSS IOST5840
000A94 788 CSWP DS 2F 10515850
000A9C OOOOOAB8 789 DC A(CCWS) CCW ADDRESS IOST5860
OOOAAO OOOOOASU 790 DC A (TAPES) DCB ADDRESS IOST5870
OOOAAQ 791 DS P IOST5880
000AA3 000 T 792 DC H» 1 • IOST5890
OOOAAA 793 DS H IOSTr»900
OOOAAC 0000000000000000 794 DC 2F«0« IOST5910

DATA A«EA 13

toc OBJECT CODE ADDP1 ADDP2 STMT soi;pcv STAT F:1 E'iT F1^0CT70 8/27/71

OOOABU 00000000
000AB6 0100000020000000 79S CCW5 ccw 01,0,32,0 IOST5920
OOOACO 1F00000020000000 706 T P K K ccw 31,0,32,0 IOST5930
000AC8 E2E8E2caE2D5U0a0 797 VMM DC CL8* SYSDSM* IOSTS9U0
OOOADO E2E8E2F143D3C9D5 798 PNf PC C*SY51.LTWK* 10575950
Û0ÛXD9 E2E8E2C3E3D3C7 799 FN?12 DC C'SYSCTLG* TOST5960
OOOAEO 800 FFF'l DS CL5 IOST5970
000XE5 C7D6E3C9E3 801 OKRP? DC CLS'GOTI-"» lOST59e0

802 END I05T5990

145

APPENDIX D

BOSS LANGUAGE STATEMENTS

SYSTEM

labelrSYSTEM terminations [,snap_interval];

Because the SYSTEM statement is the primary entry point of
a program, it may only appear as the first statement of each
simulation program. Additionally, the SYSTEM statement may
only appear once in a given simulation program and must also be
labeled to provide a label for the program. Execution parame
ters which control the number of terminations and the
"snapshot" interval are passed to the program by this state
ment. The proper form of the statement is shown above where
"terminations" is an integer specifying the number of TERMINATE
counts to be used as a maximum. The optional "snap_interval"
parameter will cause a "snapshot" of the current termination
dump at intervals equal to the integer value of this parameter.

Assignment Statements

variable = expression;

Assignment statements in the BOSS language are similar to
assigment statements in many other languages. Precedence rela
tions are used which cause multiplication and division évalua-
JL> W. ̂ ̂ s ̂̂ ̂ ̂ ,3 m •• ̂ ̂ -3 4̂ * # ̂ ̂ ̂̂ m ̂ ̂ ̂' UV> UC M i- i. V,'1. Ul r: U C3. U U J. X U 11 aUU aULf Li.ClV LW

right evaluation is performed with these precedence relations.
To force the evaluation of subgroups, parenthesized expressions
are allowed within assignment statements. Only single assign
ments may be made for BOSS variables.

Three distinct assignment statement variable types are im
plemented. These three (integer, floating point, and Boolean)
are used to set values into variables for later use. Since
variable type may be dependent upon context, a particular order
of test is necessary.

The preferred variable type for system simulation was
chosen to be integer. The first attempt to class an assignment
statement tries to find an integer expression for the right-
hand part. If ar. integer expression (one constructed totally
of integers and integer variables) is found, simple assignment
occurs and the program continues. If, however, the expression
contains noninteger parts, then the entire expression is evalu
ated in floating-point arithmetic and then converted to integer

146

form by truncation.
Floating point variables are useful only for certain vari

ables such as time periods. These variables must be declared,
and caution must be taken in their use. If an expression is
evaluated for assignment to a floating point variable, conver
sions may be necessary. If the entire expression is integer
then the conversion is done after the expression is evaluated.
If the expression contains other floating point items, then the
entire expression is evaluated in floating point.

Boolean variables are the third form for the assignment
statement. Boolean variables are only useful as arguments of
IF statements. However, used properly for an expression which
is repeated many times. Boolean variables may save both time
and space. To achieve this goal, Boolean variables must be de
clared. The precedence relations provide that arithmetic com
parison will be performed first, followed by negation, and then
the Boolean intersection and union functions. Evaluation is
also left to right with parentheses to group sub-expressions.

A number of built-in functions are also available to the
BOSS system. Most of these functions return floating point ar
guments. These functions include ABS (absolute value), RANDOM
(a random number generator), IN (the natural logarithm func
tion) , SQRT (square root function), NORMAL (returns an observa
tion from a normal distribution), HARK (returns the current
time), and MOD (the remainder function). These functions may
be used in an expression anywhere that a variable may be used.

NOTE

NOTE any_string_not_containing_semi-colons ;

X lit:; LiwiD a Ld mc u u xa a nvneaeuuvawxc auauciutriiu wiixuû x

used to insert comments into the simulation. The input string
following this keyword is ignored until the first semi-colon is
detected, when normal translation continues.

END

END;

iu*r IjIi ly SLCLsweuL xa Mit; uxL^VLXVii vu tùê uuuipii^r u
form housekeeping functions and subsequently to signal comple
tion of execution. This statement must follow each complete
simulation program or subroutine.

EXIT

EXIT;

n?

The EXIT statement effects a return from the current pro
gram or subroutine. The appropriate housekeeping is performed,
and execution returns to the calling program.

GO %0

GO TO label;

The GO TO (or GOTO) statement is an unconditional branch
to the label identifier following the keywords GO TO. Sub
scripted or variable label identifiers are not allowed.

SAVE

SAVE;

The SAVE function stores all of the current information
necessary to restart the simulation at a later time. If the
SAVE instruction is executed more than once, only the most
recent data is retained.

PESTOEE;

The complementary function for the SAVE instruction,
RESTORE restarts the system at the point of the last SAVE. If
no data set exists for the RESTORE operation, no action
results. Typically, the RESTORE would be used immediately fol
lowing the SYSTEM statement.

EXECUTE

EXECUTE proceES_name[(parmi,parm2,... ,parniN)];

The EXECUTE statement is the subroutine call operation.
The processing is transferred to the subroutine specified in
this statement. Parameters are passed through a parameter list
in the statement. The proper form of the EXECUTE statement is
shown above.

PROCESS

PROCESS process_name[(parm1,parm2,...,parmN)];

In order to define a common subroutine for a process, the
PROCESS statement is used as a header. The PROCESS statement
directs the compiler to form a new section of code with unique
names and locations. The only communication between the main

148

program and these subprocesses must be achieved through the pa
rameter lists. Each process must have an END statement as its
last statement. All subprocesses must follow the main program
in the input deck. The PROCESS statement is formed exactly
like the EXECUTE statement.

DECLARE

To reserve space for variables, a DECLARE (or DCL) state
ment is used. This statement is the only way to reserve or
declare the dimensions and type of subscripted variables. A
discussion of variable types may be found elsewhere in this de
scription .

WAIT

WAITf UNTIL (expression)][ON (event_variables)];

The function of accumulating time is primarily performed
by the WAIT statement. The WAIT statement causes the current
transaction to suspend execution and allows another transaction
to become the current transaction. Two types of events and th&
combinations of these events are used to signal completion of
the wait interval. These types are dependent upon either the
completion of a specified time interval, or the completion of
some simulation activity as defined by that activity itself.
The second type of event performs the action of communicating
between different transactions in the simulated system. The
action of waiting for a certain time period is achieved by
using the UNTIL form of the statement. The desired time period
is specified by the expression contained within the parenthe
ses. An example of the time period WAIT operation is;

W A I T U H T I L (5) ;

which will cause the transaction to remain at this point for a
period of five clock cycles.

The event completion form of the WAIT statement allows a
delay until any specified number of events have completed.

WAIT ON (i, AEVE, BEv E, CÈV È) ;

which specifies that the WAIT will continue until one of the
three events completes.

If both methods are combined, the WAIT continues only
until one of the operations completes.

SIGNAL

149

SIGNAL event_name;

The SIGNAL statement is half of the communication effort
between various transactions. This allows a transaction to
tell another transaction to resume its execution. The event
name to be used for the SIGNAL statement is used to signal the
event for the completion of the WAIT period.

ÇLERE

CLEAR event_name;

The CLEAR statement is used to reset the event variable
which is tested by the WAIT statements.

ALLOCATE

ALLOCATE store_name,size[,[sub_ident],[conditional]];

To indicate the storage of a discrete item, the ALLOCATE
instruction reserves a certain number of storage units. The
storage area must have a declaration statement to indicate its
maximum size. This storage area is designated by the identifi
er following the ALLOCATE keyword. A storage hierarchy may be
set up by a subscripted storage variable reference. The second
parameter of the ALLOCATE operation must be an integer expres
sion which specifies the amount of storage to be reserved by
this instruction.

Two optional parameters may also be specified. The first
is an identifier or integer which serves as an identifier for
the allocated storage. This allows a further subdivision of
the memory into areas. The second operation allows a
conditional allocation. If the storage area does not have a
large enough free block, then the label identifier of this pa
rameter receives control. If no alternate processing is speci
fied, the ALLOCATE function suspends processing of the transac
tion until the space is available. Suspended processes are
kept in list ordered by their priority to determine the next
request to be attempted when some additional space is avail
able.

FREE

FREE store_name,size[,[sub_ident],[conditional]];

The FREE instruction removes storage units from the re
served status and returns them to an unallocated status. The
identifiers for the process are the same as those used by ALLO
CATE. If the FREE instruction fails, the alternate label ad

150

dress is entered. The particular area freed is determined by
the size and sub-identifier. The oldest area is freed first.

EN^EUE

ENQUEUE queue_name[,gueue_post_list];

The ENQUEUE operation is used to create a list or queue of
transactions ordered by their priority. The queue name defines
a queue to which the transaction is added. Execution of the
transaction continues with the next sequential instruction, but
an exact copy of the transaction is created to be added into
the queue. The event variables specified in the queue post
list are signaled to indicate the occurrence of the event.

DEQUEUE

DEQUEUE queue_name;

The copy of a transaction in the specified queue or list
is copied into the current transaction and execution continues
sequentially. DEQUEUE then destroys the copy in the list and
removes its entry. If a list is empty, a wait occurs until
something is added into the queue.

GET/PUT

{GET I PUT}[FILE(file_name)]iotype;

The input/output instructions GET and PUT are used for
generalized I/O forms. These instructions allow the simulation
to output or input data fot usw in xiie simulation. The file
name may either be specified by the FILE subpararaetsr, or may
have a default name. The default input file name is SYSTN.
Its attributes define it to be a card image stream file with a
record length of eighty characters. This data set may also be
blocked if desired.

The default output file name is SYSPRINT. This data set
may not be changed by the user, because it is the error message
output file. No simulation program should be attempted without
this data set. If the data set is not available to the pro
gram, an abnormal end condition is created.

I/O files to be used by the simulation may be only sequen
tial organizations. The record format may be any format sup
ported by the operating system.

LIST (variable_list)
The I/O type may be either LIST-oriented or EDIT-oriented.

The LIST form shown above is the form which allows free format
input and output defined by the compiler. The only information

151

required is the list of identifiers to be processed. Proper
type conversions are performed internally for the processed
data.

EDIT (variable_list) (format_list)
The EDIT I/O type is designed to allow specification of

the format for the I/O operation. The variable list is used to
point to the variables needed for I/O, but conversion is now
performed according to the directions in the format list. The
format list is a collection of format codes which may have du
plication factors associated with them. The format codes which
are implemented are:

SKIP[(number) ... Skip the number of lines designated.
If no number is specified, skip one line.

COLUMN(number) ... Move to column specified by the num
ber. If the number is smaller than the current
column, move to the indicated column on the next
line or record.

PAGE ... Begin a new page.
A[(number)] ... Process a character string. If the num

ber is specified, output that number of characters.
Otherwise, process the current length of the string.

X(number) ... Insert the specified number of blanks in
the record.

F(number) ... Process an integer number. The length of
the number (the number of decimal digits) is speci
fied. leading zeros are suppressed.

E(number,number) ... Process a floating point number.
The total number of characters is given by the first
number and the number of digits following the deci
mal point is given by the second operand.

HAP ... Output a representative map of the storage speci
fied by thf iiiST-LUction, ishovfiiiu the aieas pî:ese»tly
reserved and their identifiers.

SPACE ... Output the numbers representing the total
available space and the largest free space in the
specified storage.

DISPLAY(queue variable) ... Output the number of transac
tions waiting in the specified queue.

DISPLAY (event variable) ... Output the word "WAIT" if a
wait is in effect for this variable, output the word
"COn?" if the event is complete, and output the worS
"CLEAR" if the event has been cleared.

The last four of these format codes may only occur in the
PUT statement and never in the GET statement.

IP

IF boclean_expr THEM statements ELSE statements;

152

The IF statement is a decision making statement which
allows logical testing and conditional statement execution de
pendent upon the test results. The test condition is a Boolean
expression using several Boolean connectives. These Boolean
connectives are:

>= greater than or equal to
<= less than or equal to
= equal to
< less than
> greater than
->= not equal to
& and
I or
"1 not

The first six of these (>=,<=,=,<,>,^=) are used as connectives
between numeric expressions. The last three (S/l,-*) are used
as Boolean connectives between Boolean variables or expres
sions.

If thG Boolean expression is true, then the statement or
statement group following the THEN instruction is executed. If
the expression is false, the ELSE clause is executed. If the
ELSE clause is omitted, then no special action is taken if the
statement is false. In order to group more than one statement
together, the stateaen^rs must be preceded by the word DO fol
lowed by a semi-colcu, and followed by the word END followed
again by a semi-colon. The allowed statements are selected
from the group of executable statements excluding the GENERATE
statement.

SEIZE

SEIZE facilii y_nâiïn-;;

The SEIZE action exclusively reserves a particular facili
ty for the transaction issuing the SEIZE. No other transaction
is allowed to SEIZE a facility until the current transaction is
finished with the facility. A transaction which is prevented
from SEIZEing a facility is linked to a chain of transactions
waiting for this facility. When the facility is free, the
highest priority ?nd eldest transaction at that priority is al
lowed to SEIZE the facility.

RELEASE

RELEASE facility_name;

After a facility has been SEIZEd, it may be freed by the
RELEASE command. This command allows a waiting transaction to
SEIZE the facility.

153

PRIORITY

PRIORITY integer_expression;

The PRIORITY operation allows a change in the priority of
the entering transaction. The integer value of the expression
is used as the priority of the transaction until it is TERHI-
NATEd or explicitly changed again.

TERMINATE

TERMINATE[integer_expression] ;

The TERMINATE operation eliminates or destroys the enter
ing transaction. The overall TERMINATE count is decremented by
the value of the expression. If no expression is specified, no
decrement occurs.

GE^RATE

GENERATE [,MAX(int)][,MEAN (int)][START (int)][DEVI(int)]
[fparmlist];

The GENERATE statement creates transactions according to
the parameters specified in the statement. Each option uses an
integer number to determine its value. The option MAX
specifies the maximum number of transactions which will be cre
ated by this GENERATE statement. The three options MEAN,
START, and DEVI define the mean time between creations, the
first transaction creation time and the standard deviation
around the mean for creation times. The parameter list option
allows the initialization of transaction parameters as they are
created. Either floating point or integer variables are al
lowed in the parameter list.

TABULATE

TABULATE table_id;

The TABULATE statement is used to output statistics com
piled for a specified set of variable names. The output is
produced by the system in a standard form. The variables to be
tabulated are specified by the table identified in the state
ment. All statistics are output as recorded to the time of the
TABULATE statement.

15%

APPENDIX E

FORMAL LANGUAGE DEFINITION OF BOSS

The following META PI definitions were produced from the

data set which is used as input for the compiler-compiler.

These definitions totally define the syntax and the semantics

of the BOSS compiler.

boss

lblstmt2

t . f
f : lblstmt2

lblstmt2
.EBP(«04 EXPECTED

.EPR('04 EXPECTED SEMI-COLON') $(
E S S (' 0 8 UNDECOD&BLE STATEMENT')

SEMI-COLON')) ;

:= Iblstmt
.OUT ('58F. '
. LABEL (*1) .
, '98ECD00C'

I .IGN(-) (.LATCH(labx) | .EMPTY) 'END'
*1 , A2 , '051F') .EXREF('ZBOUT')
OUT('58FlOOOO' , '05EF') .OUT('58DD0004'
, 'IBFF' , '07FE') .DECK ;

labx

Iblstmt

.ID . SAV(*) (';' .NOP(C) .RES . TYPE ('AOLABEL')
.ERR («08 PREVIOUSLY DEFINED ... NOT A LABEL')
. LABEL (* S) I .IGN(R)) ;

:= .LATCH(labx) Iblstmt . NOP(I) | .NOP(C) systmt | (
estmt 1 iostmt | tabu | exec I ifst I decl | genr |
alio i yfcss j qc'jiu j trcst j waitstni j . LÂÎCH (assgn)
I .IGN(-) . LATCH (bassgn)) ;

estmt := 'NOTE' . T0(';') | 'EXIT'
,OUT{'58DD0004»,'98ECD00C','IBFF','07FE') | 'TERMI
NATE' (.INT .OUT ('SBI'.IGEN) I .EMPTY . OUT (' IB 11 '))
.OUTC 58F.3termi' , '07FF') | ('GOTO' | 'GO' 'TO')
.ID .TYPE(«AOLABEL') .ERR('08 BRANCH TO A NON-LABEL
VARIABLE') .OUT('58E.' » , '07FE') | 'RELEASE' .ID
. TYPE ('SSFftCIL') .ERSCOii RELEASE OF A NON-FACILIÎÏ
VARIABLE') .OUT('581.' * , '94F71000' , '58F.arelse'
, '05EF') I «SEIZE» .ID .TYPE('88FACIL•) .ERR('04
NON-FACILITY VARIABLE MAY NOT BE SEIZED') .OUT ('581.'
* , '58F.' *1 , '91081000' , '078F' , '58F.5)seiz' ,
'05EF') .LABEL (*1) .OUT ('581 .Sme' , '58110014' ,
'D2031000EOOO' , '96081000') \ 'S AVE'.OUT ('0510' ,
'45110008') .EXREF('ZBSVE') .OUT('58F10000' , '05EF')
I 'RESTORE' .OUT('0510' , '45110008')

155

. EXREF('ZBRSTR') . OUT {• 5 8F1 0000 « , 'OSEF') | 'PRIORI
TY' iexpr .OUT ('SSE. Sine' , '42' OF ' EOOOO') . IGN (-) |
'SIGNAL' ${.ID .TYPE ('S^EVENT') .ERR{ '08 ONLY EVENT
VARIABLES MAY BE SIGNALED') .OUT('58E.' *1 , R2 ,
'051E') .EXREF ('ZBSIG') .LABEL(*1) .OUT ('58F10000' ,
'581.' * , '05EF')(I .EMPTY)) | 'CLEAR' .ID
.TYPE('8%EVENT') .ERR('08 NOT AN EVENT VARIABLE')
.OUT('58E.' * , '947FE000') ;

as.sgn : = .LATCH(prmasgn) | .ID . SAV(* S) .RES indx '='
(.LATCH (expri) (.RES) (. TYPE ('84INTE') .OUT ('50' OF P
'0000') .IGN(-) I .TYPE('84FL0AT') .0UT('18E' OF ,
'10FE' , '5UE.X8000') . SAV(W8 S) .OUT('90EF' R ,
'964E' R , '2B' +2 0 , '6A' 0 R8 , '70' 0 OF
'0000') .IGN(-) I .IGN(-) '0') .IGN(-) | expr (.RES)
{.TYPE('8aFL0AT') .OUT ('70' 0 OF '0000').IGN (- -2) |
.TYPE ('84INTE') .ERR ('16 IMPROPER TYPE VARIABLE')
. SAV(0 S S) .OUT ('38' +2 R , '2B' R R , '3A' -2 ,
«5F' 0 '.X4E00' , '58F' 98 , '60' 0 'FOOOO' ,
'58FF0004') .IGN(R8) .OUT('0510' , '%7B10006' ,
'13FF' , •50F' OF '0000') .IGN(-) | . IGN (- R -) ';'
)) ;

iexpr ;= .LATCH(expri) | iexprx ;

iexprx ;= expr .SAV{0 S S) .OUT ('38' + R , '2B' R R , '3A' -2
, '6E' 0 '.XWEOO' , '58F' W8 , '60" 0 'FOOOO' , '58F'
+ ' 0004' , '0510' , 'tl7Bl0006' , '13' OF OF) .IGN(R8
- 2) ;

systmt := 'SYSTEM' .ONCE .ERR('04 ONLY ONE SYSTEM STMT AL
LOWED') . SA V ('fflsnap') . NOP (' 84IntE') .TSET
. SAV('aterms') .TSET .IGN(O) .INT .OUT ('58E« . IGEN ,
• 50E.Sterins') (' / .INT . OUT ('58E'.IGEN ,
'SOE.Ssnap') | .EMPTY .OUT(MBEE' , ' 5 OE. Ssnap «))

inistf := .OUT ('58E.Sextr' , '58EE0000' , '4lF.3me' ,
'50FE000C' , '58F.@aispt' , •50FE0008' , '581.agenrt«
, '58F.ainit' , '58FF0000' , '05EF' , '58F.3dispt' ,
'"07FF' , Âii) . LABEL ('fflinit') . EXREF ('ZBINIT')
.LABEL ('Send') . EXREF ('ZBEND') . LABEL ('Satab ')
. EXREF ('ZBATAB') . LABEL (« Sextr ') . EXREF ('ZBEXTRC)
terminte seize release

* Other routines which may be resident are placed here
.LABEL Cadispt') .OUT('58E.Sextr' , '58E0E000' ,
•5810E0C0' , '41101000' , '582.' *1 , '1211' , '0772'
, •58F.0)end' , «58FOFOOO' , '05EF' , '58D0D00C' ,

156

•98ECD00C' , '1BFF' , '07FE') .LABEL (*1)
.OUT («501.Sine' , '58F10010' , 'SOF.SnoW , '58F01000'
, 'SOFOEOOO' , '58F0100C' , 'D503EOOH101C , •072F' ,
'18EF' , •58F,a)atab' , •58FOFOOO' , '07FF') ;

bassgn := .ID .TYPE ('81B00L') .ERR('08 IMPROPER BOOLEAN')
inax' = '.NOP (C) boole .OUT('D200' P ' 000' OF ' 000')
.IGN ()

blvar := blvar .OUT('13' OF OF , '06' OF '0') | ('TRUE'
I '1') .OUT ('IB' + OF , '06' OF '0') | ('FALSE' |
•0') .OUT ('IB' + OF) I .ID .TYPEC 81B00L') indx
.0UT('18E' OF , 'IB' OF OF , '43' OF 'EOOOO') ;

bprim := .LATCH(blvar) | '(' boole ') ' S .LATCH (icompr) |
expr bltst expr .0UT('1BEE' , '39' -2 , '18' + ' E' ,
'58E.' *1 , '07' R 'E' , '13' OF OF , '06' OF '0')
.LABEL(*1) .IGN(-2) ;

icompr := expri bltst expri .0UT('1BEE' , '19' - , '18' OF
•E' , '58E.' *1 , '07' R 'E« , '13' OF OF , '06' OF
'0') . LABEL(*1) ;

bltst := '>=' .SaV('B') I '<=' .SA7('D') I •=' .SAV('8') |
'<' .SAV('4') I •>' .SAV('2') 1 ' . SAV('7') ;

bterme := bprim $('&' bprim .OUT('14' -) | '|' bprim
.OUT('16' -)) ;

bterm := bterme .ERR('08 IMPROPER BOOLEAN EXPRESSION');

Dcoxe := (*-•' Dxerm .Our^- u' ur ur , 'uo' vr 'U') | oterm;
.0UT('58E.' W1 , '42' OF 'EOOOO' , '18' OF 'E')
.IGN(RI) ;

ifst := 'IF' boole .OUT('58E,' *1 , '95FF' OF ' 000' , '077E')
.IGN(-) 'THEN' bOFS2 .0UT('58E.' *2 , '07FE')
. LABEL(*1) (. LATCH (eclse) | .EMPTY) .LABEL (»2) ;

eclse := ';' 'ELSE' .NOP(C) boss2 ;

hoss2 := 'DO' ';' $ (Iblstmt ';') .IGN(-) 'END' .ERR('08
UNDECODABLE STATEÎ1ENT») | Iblstmt .ERR ('08
UNDECODABLE STATEMENT') ;

varb := .LATCH (prmfIt) | .ID .SAV(* S) .RES indx .RES typcon

lypccn := .TYPE (' 84FL0AT') .OUT ('78' +2 OF ' 0000') .IGN(-) |

157

.TYPE('8UINTE') .0UT(«58E' OF ' 0000') .IGN{-) confit

prim := .LATCH (elemf) | 'RBS(' expr •) ' .OUT('30' 0 0) | '('
expr ') ' i .NUM .OUT ('78' +2 .NGEN) | .INT
.OUT('58E'.IGEN) confit | varb ;

confit := .OUT('10FE' , '54E.X8000') .SAV(W8 S) .0UT('58« +

elcom1

seen

term

expr

W8 '90EF» OF '000' , '964E' OF '000' , '2B' +2 0
'6A' 0 OF '0000') .IGN(R8 -) .EMPTY ;

elemf := ('RANDOM (' .INT . OUT (' 580'. IGEN) . S AV ('ZBRNDM ')
.SAV(*2) .SAV(*1) elcomi | 'NORMALC expr .0UT('58F.'
*2 , '70' 0 'F0004') .IGN(-2) (',' expr .OUT('70' 0
•F0008') I .EMPTY .OUT('41100001' , '501F0008'))
.SAV ('ZBNRML') .SAV(*2) .SAV(*1) elconti
.OUT('OOOOOOOO') I ('SQRTC . SAV ('ZBSQRT') | 'LN('
. SAVC ZBLNX')) expr .0ÛT('58F.' *2 , '70' 0 'FOOOU')
.sav(*2) .SAV{*1) elcomi) .LABEL(*1) . OUT ('58F10000 '

'05EF' '58E.' *2 , '78' +2 'E0004');

:= .OUT{'58E.' R , A2 , '051F') .LABEL (R) .EXREF(R)
.OUT ('00000000') ') ' ;

;= prim $('*' prim .0UT('3C' -2) | '/' prim .OUT ('3D'
- 2)) ;

= seen .OUT('33' 0 0) | '+' seen | seen ;

;= term $('+' term .OUT('3A'-2) | term
.OUT('3B'-2)) :

expri := termi $(' + ' termi .OUT('1 A'-) | term!
.OUT (' IB'-)) ;

teriTii := '-' secni .OUT ('13' OF OF) | ' + ' secni | secni;

secni := primi $(('*' primi .SAV('C')) '/' primi . SAV (' D '))
.0UT('18E' OF) .IGN(-) .OUT ('180' OF , '8E000020' ,
• 1' R 'OE' , '18' OF ' 1 ')) ;

primi := .LATCH(elemi) .OUT('58E.' *1 A2 051E')
.EXPEF(E) .LABEL(*1) .OUT ('58F10000' , '05EF' , *18'
OF '1') 1 'MARK' .OUT ('58' + '.NOW , '58' OF OF
•0000') I 'MOD(' expri ',' expri ') ' . 0UT('18E* OF)
.IGN(-) .OUT('180' OF , '8E000020' , '1D0E' , '18' OF
'0') I 'ABSC expri ')' .OUT('10' OF OF) | '(' expri
') ' i ivar ;

158

elemi := 'RANDOM(' .INT .OUT('580' .IGEN) .SAV ('ZBRANDI') ')'

waitstm := 'WAIT' {'ONTIL(' expr ')' .OUT('58E.' *1 , '30' 0
0 , '078E' , '58E.' *2 , '70' 0 'E0004') | .EMPTY)
.OUT ('581.' *2) (onicla .OUT ('50E1 0008') | .EMPTY)
. OUT('U7F1000C' ; AH) .LABEL(*2) . EXREF (' ZBWT')
.OUT('00000000' , «00000000' , •58F10000' , '05EF')
.LABEL(*1) ;

oncla := '0N(' ivarx .OUT ('581.' *1 , A2 05E1'
'00000000') evnts .LABEL(*1) .OUT('5B1.10004'
'96801000 '50' OF 'EOOOO') ')' .IGN(-)

ivarx := ivar . E R R('12 O N L Y S I M P L E I N T E G E R V A R I A B L E S A L

L O W E D ') ;

ivar := .NUM '0' | .INT .OUT('58' + .IGEN) | .LATCH (prmint) |
.ID .TYPE(,'8mNTE') iiidx .OUT ('58' OF OF '0000') ;

evnts := .ID .TYPE('84EvENT') .ERR('08 ONLY EVENT VARI
ABLES') .OUT ('000,' *) $(',' .ID .TYPE (•84EVENT')
.ERR('08 ONLY EVENT VARIABLES') .OUT('000.' *)) ;

alio := ('ALLOCATE' . SAV ('ZBALLO') | 'FREE' . SAV ('ZBFREE'))
.ID .TYPEC 04STOR') .ERR ('12 NOT A STORAGE') indx
.0UT('581.' *1 , '50' OF '10004') .IGN(-) lexpr
.OUT('50' OF '10008') .IGN(-) (',' (.ID .0UT('58E.'
*) I .INT .0UT('58E'.IGEN) | .EMPTY . OUT (' 58E'. âme ' ,
'58EE0000'))(', ' .ID . TYPE (' AOLABEL') .ERR ('08 LABEL
VARIABLE EXPECTED') .SAV(»580.' *)
I . E M P T Y . S A V (' 1600')) | . E M P T Y . O U T (' 5 B E . i m e ' ,
•58EEOOOO') .SAVC 1B00')) . OUT (' SOEIOOOC , '47F10010'
, A4) .LABEL (*1) .EXREF(XR) . OUT (' 00000 000 ' ,
'00000000' , '00000000' , «58F10000' , H , «05EF');

trcst := 'TRACE' .SAV('ZBTR') trctps . 0UT('58F.' *2) .SAV(*2)
. SAV(*1) parms ')' . LABEL (*1) .Ouî('58F10000' ,
'05EF');

trctps

iostmt

iocall

J U B (' . S A V (K ' J ') \ ' b T K t T . 5 A V I K ' 5 ') \ " l u r t '
. S A V (R ' I ') I ' E X I T C . S A V (R ' E ') ;

:= ('PUT' .SAV('O') , SAV('SYSPRINT') | 'GET' .SAV('I')
.SAV('SYSIN')) iocall ;

:= .OUT('58E.« *1 , '07FE') .LABEL (*2) ('FILE(' .ID
.OUT(I '#* ':') ')' I .EMPTY .RES .OUT('#' #*
':•)) . LABEL(*1) . SAV(*2) iotype;

159

iotype := «LISTC . SAvfX 'Z30UTL' R) .OUT('58F.« *2 , X
'581.' R , '501F0004' , '41FF0004') . SAV (* 2) . SAV (* 1)
parms «) ' .OUT ('00000000') .LABEL{*1) . OUT ('58F10000 '
, 'OSEF') 1 'EDITC .SRV(X 'ZBOUTE' R) .OUT('58F.' *2
, X '581.' R , '501F0004' , '41FF0004') .SAV(*2)
.SRV(*1) parms •) ' . OUT ('00000000') .LABEL (*1)
.OUT ('58F10000' , '05EF') edtfnit ;

edtfmt := .OUT('58E.' *1 , '07FE') .LABEL{*2) '(' formats ')'
.OUT('47F.' *2) . LABEL (*1) ;

formats := frmti (',' formats | .EMPTY) ;

frmti := .INT .OUT ('58' + . IGEN) .LABEL (*1) {'{' formats ') '
I frmcde) .OUT ('46' OF '.' *1) .IGN(-) | frmcde ;

frmcde := ('SKIP' ('(' intprt ') ' | .EMPTY .OUT('41' +
•00001' , '50' OF '10000') .IGN(-)) .OUT('lBll') |
(:COLUMN (!) « COL(') intprt ') ' .OUT('41100004') |
'PAGE' .OUT ('41100008') | 'A' (' (' intprt ')' |
.EMPTY .OUT('IB' + OF , '50'OF '10000') .IGB(-))
,OUT('4110000C') I 'X(' intprt .OUT ('41 100010') ')' \
'F(' intprt (',' .OUT ('411 10004') intprt | .EMPTY)
')' .OUT (' 41100014') I 'EC intprt
.OUT('D20310041000') intprt ')' .OUT('41100018')
I 'MAP' .OUT ('41 lOOOIC) | 'SPACE' . OUT (' 4 11000 20 '))
.OUTC 18FE' , '05EF') ;

intprt := .INT .OUT('58' + .IGEN , '50' OF '10000') .IGN(-) ;

exec != 'EXECUTE' .ID.TYPE('80S UBS') .ERR('12 ILLEGAL
PHOCFISS NAnE') .SAv(') .0UT('58F. ' *2) . SAv(*2)
.SAV(*1) ('(' parms ') ' | .EMPTY .OUT('9680F000'
, '051E') .LAEEL(R) .EXREF(R)) .LABEL (*1)
.OUT ('58F10000','05EF') ;

A2

parms := prmx .OUT ('41FF0004' , '50' OF 'FOOOO' , '92' R
'FOOO') .IGN(-) (',' parms .OUT (' 00000000') | .EMPTY
.OUT('9680FOOO' , '5BE.' R , A2 , '051E') .LABEL (B)
.EXREF(R) .OUT('00000000')) ;

prmx ;= prmprmj.ID prmtyp indx | .NUM .OUT('41' + .NGEN)
,SRV('02«)'| .INT .0UT('41« + .IGEN) .SAV('OI') j . SR
.OUT ('58' + *2 '581.' *1 , '07F1 ') .LABEL(*2)
. OUT('#' #* , '0700') .LABEL (*11 . SAV('03') ;

prmtyp := . TYPE ('04INTE') . SAV('OI')
.SAV('02') I .TYPE ('80CHAR')
.TYPE('OOLABEL') .SAV('04')

1 .TYPEC 04FLOAT')
.SAV('03') I
.TYPEC 04EVENT')

160

.SRV(«05«) I .TYPE('08FACIL') .SAV('06') |

.TYPE {'OIBOOL') .SAV{'07*) | . TYPE (' OOSTOR •)

.SAV(«08«) I .TYPE('00QNAM«) .ERR ('08 IMPROPER PA
RAMETER') .SAV('09') ;

•PROCESS' .ID . LABEL (*) ('(' prms ')' | .EMPTY) ;

.ID .ERR ('08 ONLY SIMPLE IDENTIFIER NAMES MAY BE
PARMS') .0UT('41E.' *, '41110004' , 'D203E0001000')
(',' prms I .EMPTY) ;

•TABULATE' .ID .TYPE ('OOTABLE») .OUT('58F.' *1 , A2 ,
'051P') .EXREF('ZBTBIT') .OUT(•OOOOOCCC=) .LABEL(*1)
.OUT('58E.' * , '50E10004' , '58F10000' , '05EF') ;

'DEQUEUE' .ID .TYPE ('01QNAM') .ERR('08 NON-QUEUE
VARIABLE') indx .OUT('58F.' *1 , A2 , «051F')
.EXREF ('ZBQOUT') .LABEL(*1) . OUT('58F10000« , *181'
OF , '05EF').IGN(-) i 'ENQUEUE' .ID .TYPE{'01QNAM')
.ERR ('08 NON-QUEUE VARIABLE') indx .OUT(«58F.' *2 ,
•41FF0004') .SAV(*2) .SAV(*1) (','
qposts.OUTC 00000000') I .EMPTY . OUT (' 96B0F0 00 ' , A2 ,
'051E') .LABEL(R) .EXREF('ZBQIN') .OUT {'00000000'))
.LABEL(*1) .OUT ('58F10000 ' , '50' OF ' 10004' ,
'05EF') .IGN(-) ;

gpsts .OUT('41FF0004' , '50' OF 'FOOOO') .IGN(-)
(',• qposts .OUT('00000000') | .EMPTY .OUT(
•9680F000' , '58E.' R , A2 , '051E') .LABEL(R)
.EXPEFC ZBQIN') .OUT ('00000000')) ;

.ID .TYPK <• S^ÊVEDÏ') .ERR (*08 ILLEGAL EVENT VARI
ABLE') indx;

.OUT(«58« + *)('(' .0UT('18E« OF , «58' OF OF
'0000') indsxl $(',' indsxl) •)• .ERR ('08 UNMATCHED
PARENTHESES') | .EMPTY) ;

expri .OUT('41EE0004' , '181' OF , 'IBOO' ,
'5COEOOOO') .IGN(-) .0UT('1A' OF *1') ;

('DECLARE' I 'DCL') declist $(',' declist) ;

= (•(' dlist I decelni typset .TSET) .IGN(*) ;

decelm (',' dlist .TSET | ') ' typset .TSET) ;

• I D . S A V (*) (' (' d e c b n d s $ (' , ' d c c b n d s) ') ' |

. E M P T Y) ;

161

decbnds := .INT .SAV(R .INT .SRV(R *) |
.EMPTY) ;

:= 'LABEL' .NOP ('SOLABEL') | 'EVENT' .NOP ('84EVENT') |
•FACILITY' .N0P('88FACIL') | 'FLOAT' .NOP ('84 FLOAT')
i 'INTEGER' .NOP ('SUINTE') | 'BOOLEAN' . NOP ('81B00L ')
I 'ENTRY' .NOP ('80SUBS') | 'INFILE' .NOP ('84SYSIN') |
•OUTFILE' .N0P('84PRINT') | 'STORAGE(' .INT
. NOP ('OOSTOR/00' *) ') « i 'QUEUEC .INT . SAV(*) (','
•PRTY' .NOP('010NAH/00' R) | 'FIFO' | .EMPTY)
.NOP ('01QNAH/80' R)) •)' | 'TABLE(' .0UT('58E.' *1 ,
'07FE') .SAV(P S) .LABEL (R) tabfrm . LABEL(*1)
.NOP('OOTABLE') ') ' ;

;= .OUT{'58F.' *1 , '58EFOOOO') .SAV(*1)
. SAV {'ZBTBITA') parms ;

•= 'GENERATE' . GENRT .OUT{'58F.' *2) .SAV(*2) . SAV(»1)
.OUT («41100001 • , '401FOOOA') gnstf . OUT ('41FF0008')
gpars .LABEL (*1) . OUT ('58F 10000 ' , '05EF') ;

:= gnprt (',' gnstf | .EMPTY) ;

:= ('MAX' .SAV('04') I 'MEAN' .SAV('06') | 'START'
.SAV ('08') I 'DEVI' .SAV ('OA')) .INT .OUT ('58' +
.IGEN , '40' OF 'FOO' R) .IGN(-) ;

:= prmx .OUT('41F?0004' , '50' OF 'FOOOO' , '92' R
'FOGOO') .IGN(-) (',' goars .OUT ('00000000') | .EMPTY
.OUT (' 9680F000' , '58E.' R , A2 , '051E') .LABEL (R)
. EXEEF ('ZBGENT') .OUT ('00000000' , ' 00000000' ,
'00000000*)) ;

terminte := .LABEL ('®terini') .OUT (' 58E. âterms' , '1BE1' ,
'58F.3finis' , '07DF' , '50E.Sterms« , '58' +
'.aextr' , '58F.' *1 , '18E' OF) . LABEL (*1)
.0UT(»181E' , '58EE0000' , '41EBOOOO' , '59E.3me' ,
'077F' , •D2031000E000' , '58F.» *2 , a2 , '051F')
. SXREF («ZBFRWRK') . LABEL (*2) .OUT ('58F 10000 ' , «181E'
, 'SSE.Sdispt' , '07FF') .IGN(-) .LABEL ('9 finis')
.OUT ('58F.5away' , A2 , '051F') .SXREF('SBOuT')
.LABEL('S)away') .OUT {'58F1 0000' , '07EF' , '58DD0004 '
, '98ECD00C' , '1BFF' , '07FE') ;

seize := . LABEL ('Sseiz') .OUT ('58210004' , ' 583.Sine' ,
'50F30008' , '50130014' , '584.®extr' , '58F,' *1 ,
•18E4') .LABEL (*1) .OUT('185E' , '58EE0000' ,
'41EEOOOO' , •19E3' , •077F' , 'D2035000EOOO' ,
'58F.' *2 , A2 , '05EF') .EXREF('ZBQSP') .LABEL(*2)

typset

tabfrm

gnst f

gnprt

gpars

162

release

.OUT('1813' , '58020004' , '58FBOOOO'
, '07?F') ;

.LABEL('arelse') , OOT ('780. Snow ' ,

'58E.Saispt'

'58210004' , •7A020008' , '70020008' ,
, '58F,' *1 ,
, '58330000' ,

prmprm

prmfIt

prmint

prmpart

prniasgn

'7B010000' ,
•58320004' ,

'1233' , •078E' , '58F,' *1 , '1B11') .LABEL(*1)
.OUT ('411 10001' , '58330000' , ' 1233' , •077F' ,
'58F.» *2 , '5912000C' , '07DF' , '5012000C')
.LABEL(*2) .OUT ('58320004' , 'D20320043000' ,
•58F.®chain' , A2 , '051F') .EXREF('ZBDISP')
.LAEEL('5)chain' . OUT ('58F10000' , '182E' , '1813' ,
'05EF' , '07F2') ;

prmflt . SAV('02') I prmint .SAV('OI') ;

'PF' prmpart ;

'P' prmpart ;

:= .INT .OUT('58' + '.Sme' , •58E' .IGEN
'0008' , '1AEE' , '1AEE' , '1A' OF 'E')

'58' OF OF

:= prmflt ' = ' expr .OOT('70' 0 OF '0000') .IGN(^2 -)
I prmint '=' iexpr .OUT('50' OF P '0000') .IGN(- -)

163

APPENDIX F

ELEMENTS OF THE ISO META PI COMPILER-COMPILER

Meta languages such as Backus Normal Form (BNF) were the

precursors of efforts to systematically produce compilers. The

original purpose of these meta languages was to standardize the

definition of programming languages and to provide a rigid

structure for that definition. The extensions to this philoso

phy naturally evolved into the area of the compiler-compiler

system. The assumption was made that if the language could be

described in some form of meta language then a translator could

be produced which would automatically produce a compiler for

that language.

The original meta languages were primarily concerned with

the syntactic qualities of the language, that is, those proper

ties which define the validity of a language statement. A com

piler must perform the function of syntax verification for the

input statements. This verification may be defined by a meta

language, therefore, the obvious process might involve a meta

language translator for syntax checking.

The second major requirement of a compiler is not in gen

eral satisfied by the meta languages. The association of mean

ing (semantics) with a given statement is the phase which pro

duces the necessary computer instructions. These instructions

16#

may be in the form of actual machine code or as an intermediate

instruction set which may later be interpreted or converted to

machine code. This part of a compiler is not described by the

Backus Normal Form or other meta languages.

The two primary tasks of a compiler are to check the

syntax of the input statements and then to produce the proper

instructions according to the semantics of the language. A

proper meta compiler-compiler language must provide facilities

for both syntactic and semantic definitions. These basic fa

cilities were designed into the META series of compiler-

compilers described by D.V.Schorre and his associates at UCLA

(2 3) .

The basic parsing algorithm of the META type compiler is

top-down left to right and deterministic. Top-down means the

compiler first decides which rule should be satisfied next and

then checks the input (or calls new rules) according to the al

ternatives of the rule. On the other hand, a bottom-up parser

would check the input and then determine which rules may be

used to describe it. The top-down parser has some advantages

for a compiler-compiler. First, the compiler generates code

immediately. This generation allows generality, in particular,

for incremental compilation. Error detection is easily

achieved because of the deterministic parser. Backup is only

provided when explicitly requested. Thirdly, the deterministic

parser has fewer choices to pick from, therefore, it is faster

165

than the non-deterministic parser.

As previously stated, the first task of a compiler-

compiler language is to provide a syntax checking capability.

This syntactic capability has been provided by earlier meta

languages such as ENF. Unfortunately, BNF was not designed

with semantic operations in mind.

The META PI compiler-compiler as described by J.T. O'Neil

(17) has attempted to remedy this situation, kn extended BNF

is used to contain both syntactic and semantic elements. The

result of this compiler-compiler is machine code which is the

compiler for the language described. This code consists pri

marily of a set of subroutine calls which perform a recursive

left to right scan of the source statements of the particular

compiler language it describes.

Four major extensions were made to the BNF form. These

extensions were made to include semantic operations and to

simplify the description of the language. These four

extensions are:

1. The inclusion of factoring and the addition of an it

erative operator. Two reasons motivated these changes. First,

the usé of a $ enables the compiler to identify an iterative

operation immediately. This greatly simplifies the compilation

process. Second, from a descriptive point of view, the itera

tive description simplifies the identification of proper

strings defined by the statement. The $ is interpreted to mean

166

"followed by an arbitrary sequence of". Therefore, the BNF

statement

<A> :;= I <A><C> I <a><d>

becomes

A ; = B$ (C I D)

2. The semantics are included within the syntax of a

statement. This allows generation of object code as the scan

of the statement proceeds. In many statements the generation

of code and the input scan complete simultaneously. Both syn

tactic and semantic operations are aided by commands called

primatives which provide standard actions and tests.

3. As previously noted, backup of the scan and code gen

eration is explicitly controlled through special commands.

This facility allows a retry with a different definition to

resolve ambiguities.

4. The compiler writer is provided with the capability

of generating compile time error comments with a special error

command. This capability allows extensive error messages with

a minimum of effort.

Minor differences in the writing of the statements also

distinguish META ?I frOm 5wr. Thé fûlloWxûy COûVêntlOûS will

hold ;

META PI BNF

:= : : =

ABC <ABC>

167

•XYZ' XY7,

In addition:

1. A ; (semi-colon) will terminfhe a META PI statement.

2. Parentheses will be used to simplify BNF and to pro

vide an indication of factoring.

3. A $ replaces BNF finite state recursion.

META PI statements contain 3 types of elements:

1. The syntactic elements create code to test for syn

tactic expressions in the source input. These elements are

used tc generate the syntax verification phase of the compiler,

2. The semantic elements assign a given meaning to the

input string. These elements produce the computer instructions

for the execution of the program.

3. META syntactic elements are compiled into code which

will allow the user's compiler to efficiently resolve possible

conflicts (ambiguities) by the use of a backup facility.

These three element types are combined to produce the META

PI input which will define a user compiler. The general form

of a META PI statement is:

LABEL := expression ;

The left hand side is a ûnigué identifier which SéîrvGè as a

reference to the expression on the right hand side (a META PI

identifier is defined as a letter (A-Z) followed by an arbi

trary sequence of letters or digits). The character pair :=

serves as a delimiter and separates BETA PI statements from

168

user source statements. These statements are compiled into re

cursive code, therefore, the expression may contain either a

direct or indirect reference to itself. One of three results

is produced by these statements:

1. True. The input scan has satisfied the expression

and the input pointer is updated past the correctly scanned

data.

2. False. The input does not satisfy the expression.

Therefore, the input pointer is left unaltered.

3. Error. A prefix cf the expression is correctly iden

tified but the remainder of the expression is not satisfied by

the input string. The input pointer is partially updated and

the error routine inserts a ? after the last character success

fully scanned.

A detailed discussion of the various elements which com

prise META PI expressions follows. These elements are grouped

ir.to like types for ease of reference.

Syntactic Elements

'XXXXX...X' The X*s represent any character string. This
syntactic element creates code which tests the
current input string for the sequence of char
acters contained within the apostrophes.

ABC This produces a call to the routine or expres
sion labeled ABC. The expression represented
by ABC is the definition of the next part of
the input string. This is the first of two
forms of linkage to routines. The second form
is written with a period preceding the name.
In general, the distinction is that the rou

169

tines with a preceding period are considered to
be built-in functions while the ordinary call
is generally to a function written in META PI.
When the period notation is used META PI will
assume that the call is not recursive.

,ID This routine makes a test for a META PI identi
fier. Code is generated to link to the .ID
routine. The period notation implies that this
routine does not subsequently link to itself.

.EMPTY A special syntactic operation which forces the
true setting of the truth indicator regardless
of the contents of the input string.

.NUM A test for a numeric literal sequence which
represents a fractional real number. This num
ber is directly related to the floating point
type of numbers and must contain a decimal
point.

.INT An integer number test on the input string.

.TYPE('NNYYY') Actually a cross between syntax and semantics,
this routine references the labels to find the
label contained in the current string. When
found, a comparison is made to determine if the
type specified by YYY is correct. The flags NN
determine if the type may be a default type and
how much space is to be allocated for one ele
ment.

A general search test which searches the input
string until an XXX is found. If the input
string runs out before the search is satisfied,
a ''false" return is made. This test is useful
for such things as comments.

. V The primary method of producing error mes
sages for the user language. If the previous
test has failed, the string NNxXX...X is
printed as an error message. The digits NN are
retained as a completion code. The maximum NN
is used as a return code at the end of the
compile step.

.SB A test for a character string enclosed in
apostrophes. The test leaves the string point
er pointing at the terminating apostrophe.

.TO ('XXX')

VDTJ n MN YYY

170

Semantics for code generation

Two types of semantic functions are contained in META PI,

These two elements are interconnected since the semantic op

erations are always contained within the semantic commands.

Each semantic command generates an element of the final object

program.

Semantic Commands

.OUTt»..) This command causes the current contents of the
output area (a temporary area where code is
being created by the user's compiler) to be
converted to internal form. This output area
serves as a staging area for output in interme
diate forms. The output is formed by the se
mantic operations contained within the paren
theses. Three actions are possible depending
on the structure of these operations.

1. If the first character is not a
letter or a digit, then the rest of
the output area is copied directly
into the code area.

2. If the fourth character is a period
or a blank, it produces actions which
assume that an index register based
address is required. The symbolic ad
dress following the period or blank
will be looked up in a label table and
an actual internal address generated
for the variable.

3. If the above two cases fail, the
character string is assumed to be ma
chine code and it is converted direct
ly into the code area.

A series of operations may be put into a
single .OUT command by separating the operation
sets with commas.

.LABEL (...) The current contents of the output area is used
as a search argument in the label table. If
the label already exists, the current core lo
cation is filled in. If the label does not

171

exist in the table, it is entered. If the
label is already defined an error results.

.IGN(...) The current contents of the output area are
ignored. This command is necessary because
many of the semantic operations have side
effects such as releasing registers.

.NOP(...) This command produces the effect of the seman
tic operations but no more. The results of the
semantic operations will be left in the output
area.

.EXREF(...) The symbolic name in the output area is recog
nized as an external reference. A four-byte
field is reserved for the address, and informa
tion is stored to produce the reference later.

A command which uses as input all of the infor
mation stored in 1) the label table, 2) the ex
ternal reference table, and 3) the working core
to produce an object module which represents
the compiled program. Normal save area conven
tions are automatically generated at the begin
ning of the object module, but not at the
return points.

A generalized declaration primitive, .TSET re
ceives its input from 1) the top of the save
stack, and 2) the output buffer. The output
buffer must contain a type declaration of the
same form as required by .TYPE. The top ele
ment of the save stack must contain the vari
able name followed by its array bounds, if any.
The array bounds must be of the form:

,[lower bound:] upper bound
where the brackets indicate optional items.

Semantic Operations

The semantic operations are used to generate code in the

output area. This code is in intermediate forms which must be

converted to an internal form. These operations are not al

lowed to alter the input pointer or the truth indicator. A

pointer is maintained to remember the next available location

.DECK

.TSET

172

in the output area. This pointer is updated after some of the

semantic commands. The semantic operations are;

'CCC...C' Suffix the string between the apostrophes to
the output area.

* Suffix the current input string to the contents
of the output area. This operation is usually
used in conjunction with a successful .ID test.

S Save the current contents of the output area in
a pushdown list and push down the list.

P. Restore (suffix to the output area) the top of
the pushdown list and pop up the list.

I Ignore the top element of the pushdown list
(pop it out).

X Swap (exchange) the top two elements in the
pushdown list.

*1 Generate a globally unique four byte character
string beginning with the character #. This
string will be locally constant and provides a
convenient way to label and reference locations
in the generated code.

*2 A second globally unique, locally constant var
iable like *1.

A2 An alignment operation which forces the next
operation to occur on a half-word boundary (but
not a full-word boundary) by filling in "no op
eration" codes.

A^ Same as K 2 , but for full-word boundaries.

W1,K4,W8 Work space operations to acquire space of
length one, four, and eight bytes, respective
ly.

P1,R4,R8 Work space operations to release space of
length one, four, and eight bytes, respective
ly.

A set of semantic routines exist for the use of the general

purpose and floating point registers. A type of pushdown list

173

is maintained at compile time for both types of registers.

There are eight general purpose and four floating point regis

ters available to the user. If more registers are needed,

coding will be automatically generated to save and restore

registers. This save and restore operation is a side effect

of the following semantic operations.

OF Output the current general purpose register.

0 Output the current floating point register.

P Output the previous general purpose register.

F2 Output the previous floating point register.

+ Output the next free general purpose register
and make it current.

+2 Output the next free floating point register
and make it current.

Output two General purpose registers, -he
first one is the previous register, the second
is the current register. Upon completion, e
previous register is made current. This opera
tion is to take advantage of the register o
register operations.

-2 Output a pair of floating point registers. The
action is the same as the semantic opera ion
for general purpose registers.

META Syntactic Commands

A final class of commands, the meta syntactic commands

are added to control the internal operation of META PI* The^e

commands aid the user in producing efficient compile^ code.

.LATCH (name) This command causes the routine in parentheses
to be called. In addition, pointers are Kept
so that if an exit to the error routine occurs,
backup will be affected.

174

C This operator may occur anywhere a semantic op
erator may occur. It causes the last .LATCH
operation to be ignored if an error occurs.

.CLAMP This operator may occur anywhere a semantic op
erator may occur. It directs the compiler to
ignore all preceding .LATCH operations.

.SAV(...) The semantic operations represented by ... are
performed and the output buffer is then entered
into the pushdown list, and the list is pushed
down.

.RES The top element of the pushdown list is
restored to the current string and the list is
popped up.

The META PI compiler-compiler is sufficiently versatile to

describe itself. As a final definition of the compiler-

compiler, its META PI definition follows:

ccst := .ID . LABEL (*) ' .NOP(C) ccx2 ${«|' .OUT('078A')
ccx2) « ,OUT(»07FA') ;

ccx2 := Scco ccx3e .0UT(*58E.' *1) .OUT(«077E') $(cco 1
ccx3e .OUT ('477..ERR')) . LABEL (*1);

cco ;= («=OUT(» ! «.IGN(« >0(1? (' 9 2FF900 A •)) îccol
.OUT('05Ey') Scco1 .OUT (• 05e9*)) <) ' I

LABEL (' Sccol ')• . OUT (' 45E.. LABE') I '.D0(' $ (. SB
.OUT(*) '") ')' I 'OPT(' ccxi •)• .OUT(0a20') |
'.SAVC Sccol ')' .OUT('45E..SAV«) | «.NOP(' Sccol
')'5

ccol := ccosub .0UT(«U5E..« ») | «C . OUT (' aSE.. L ATX «) j .SR
.OUT(*05E4») .OUT('#' #* ':') •" ;

ccosub := 'RU' I ''R8' i 'WÙ' I 'W8' | 'K1' } 'w1' j j
'A4' 1 *1' I 1 'I' I '+2' I '+' I 'S« I '-2' I
'-4* I '-' I 'X' I '*2' I 'OF' 1 '0' I I «#' j
'.'.ID ;

ccx3e := ccxS (=.ERR(' .SB .OUT('05E2') .OUT('*' #*)
" ' ') ' I .EMPTY) ;

175

ccx3 := .ID .0UT('41E.' *) .OOT(»0503«) | .SR
.OCT ('45E. .TEST') .00T('#' #* •:') | '(' CCXi

•) • I '.EMPTY' .OOT('0420') | .1ABEL(*1) ccx3
.OOT('58E.» *1) .OUT(«078E') .OUT('0420') |
'.LATCH (' .ID .0UT(«41E.' * , ' 450. .LATCH') •) ' |
'.TYPEC .SB .0UT('45E, .TYP' , '#' #* ') ' |

.ID .SAV(*) ('(' $CC01 ')' I .EMPTY)
.0UT('45E.. ' R) ;

CCXi := ccx2 $('!' .0UT('58E.' *1 , ' 078E') ccx2)
.LABEL(*1) ;

