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NOTATIONS

28g .
“ﬁg*

Raﬁina-@f'%ha~am$&aa@ﬂﬁ ring maaaur&é perpendlcularly
to %ﬁ@ 1$n@ of action Qf;th@ loady ﬁami-mﬁja§ axis of
an @1119%&@ rimg*

aaaimm of the ﬁaflanﬁe& ring measured ai@ng ﬁha line
of actlon of the loady semi-minor axls of an elliptic
ringy width of the ring.

%hiekmgsa of the rimg section,

?hiamneas of the elastic portion of the ring sectlon
when the ring gection has pertislly gone into plastie
range of stress,

Hodulus gf a&aﬁtiaiﬁy gf‘ring material for %énsian |
aﬁ& eam@r@saiﬁmg allipﬁie integrel of the second kimﬂ.
ﬁiraumfar&n%ial strain in the ring section due to

thﬂ @ﬁﬂﬁ@ﬁ@%aﬁeé 1@adgtm@éa&ua of passive pressure

~of tha sidefills

Elliptic integral of th@ first kind,

Horizontal thrust at any seetion of the loaded ring.
Maximum horizontal unit pressure on the flexible
pipe due to the sideffll.

Moment of inertia of the ring section

Constants from Burke's graphs.
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Bending moment.
Bending moment at the ring section directly under the
concentrated load.
Bending moment at the section ?@”‘fwrn the section of
the ring directly under the concentrated load.
aximum resisting moment the ring section can develop
without going into the plastic range of stress.
%;
Ry |
Concentrated load.
MaxLoum &aﬁaanﬁyaﬁﬁﬁ‘lﬁﬁﬁ the ring ean be subjected

to without putting it into ylaﬁtia range of sﬁr@as*
=Ar*Ry ""'f '

Iﬁiﬁi&l_&@an radius of the ring.
unit stresse ,
Proportional limit,

Thickness of corrugated pipe

d
gigfﬂrmly distributed load.

Rectangular coordinate.

Radiel deflection of the 10&&@& ring at any section,

rectangular ecoordinate. |
‘Radial deflectlon of the loaded ring in the elastic

portion.
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" ﬂiﬁfﬁamﬂﬁﬁxaﬁ
A« Usefulness of Flexible Pipes in Construction

Plexible pipe has been used in different types of
construction for the last half-century or more. UOne of ﬁha}
most important uses of flexible pipe is in the construction -
of culverts and other underground conduits. When used as an
underground ¢amﬁﬁﬁ# it is ususlly corrugated for éxtra
strength. Eﬁa~@f\¢mrwﬁgataﬁﬁmatal pipe as crosg-~drainage
structures in highways, railways and airport construction
hag increased greatly in the last fifty years, particularly
due to the fact that it is much lighter in weight than similar
concrete or other rigid pipes, Also it is advantageous
because of ease of transportation and installation.

In the early days of flexible pipe culvert, its wuse
was restricted mainly to the smaller waterways and drainage
areas and 1ts size very seldom exceeded 36 in. in diemeter.

In those days the height of £1il11 over the pipe culvert usually
was not adequate. In some cases 1t was even too low to
protect the culvert from the live traffic load. With the
ineresse of experience of the engineers and its use, the pipe
culverts were made in larger diameters and the heights of

the £ills were increased sufficlently so that practically



D

they were no longer subjected to the live load due to the
traffic. Deep under the earth f£i1ll the pipa culvert had to
earry only the dead load due to the mass of earth above and
sdjacent o it. - | |

‘B, Need for Investigation

At the early stage of usage of flexible pipe culvert
no successful attempt was wade to develop a rational method
for designing this atruﬁtura secording to the principles of
mechanles. Engineers r@thay placed their reliance slmost
wholly on the service sx@arianﬁa and intuition.

In 1941 M@f%w'ﬁpangiar {17)'&%‘3&%&'8%&#& College suthored
& bulletin published kyéﬁha‘xawa Engineering Experiment
r$t&%i@§§ In tha‘%uli@%&n Spangler ﬁa&a\&n extensive investi~
gation on the structural design of fiaxi%le pipe culverts
un&arvﬁiffgramﬁ‘l@aﬁing conditions, the amlwﬂw%& being stressed
within the elastic limit. Spangler established a ratioral
formila for the horizontal deflection of a flexible pipe
culvert under field load condition according to his £ill-load
hypothesis ( 174pe26)s As the criterion of failure of an |
unﬂmrgranmd flexible condult is excessive deflection,
&pamgmar*a equation gave engineers a long sought for rmtianai
method to ﬁaﬁign th& underground fl@xibla pipe culverts
stressed within the elastic 1limit.



Subsequently with the idea of limit design (19) coming
into engineering practice more and more it was felt that
underground conduit which at the present day carry only a
certain amount of dead load due to the earth f£ill, might
successfully and economically be loaded stressing beyond
its elastic 1imit, This 1dea demanded both theoretical and
experimental investigation of the defleetion behavior of a
flexible pipe eculvert when stressed beyond the slastic limit,
As a matter of fact, at present there are some flexible pipe
culverts in successful use, which, in all probability are
stressed beyond the elastic limit., The purpose of this
investigation is to establish a vrocedure by which it will be
possible to prediet the deflection characteristics of a
flexible pipe culvert wh$a~$%@@$$&ﬁ'ﬁay@m& the elastic 11mit4

‘ﬁ# Heview of Literature

The study of the mechanies of the plastic state of matter,
the theory of plastieity, i1s still in a formative stage |
even though 1t was forpulated by B. de 8%. Venant (i???*lﬁ&é)
more than ?f years agos

In 1864 8t. Venant presented what 1s known today as the
complete mathematical basis for the theory of elastieity, which
ineluded the principle of plane section before bending remaining
plane after bending. He am#;yweﬁ the vsses explicitly in which
the prineiple holds. 8t. Venant was one of the first to



kttamyﬁ to a@lve the prwbl&m of glaatie bending« A

In 1?&3 Bugene von Meyer {11}, ﬁh&rlatﬁenbﬁwg,publiﬁhﬁﬁ
the results of an experimental investigastion with simply
aa@@mwtaé beamns I@aﬁ@ﬁ at the center with a concentrated load
w@are the material did not a%ay tha Hooke's Law.
 In 1932 Hans Bleich (2) developed a theory of plastic
bending for beams., This theory became the %ami@ for the limit
design method as coneeived by Van Den Broek in 1?3? (1?)&
‘Later on Van Den Broek wrote a ﬁ&ak on %h@ary of 1imit design
(20) in which he shows how it is possible to design a ﬁtruwtura
which may carry loads beyond its elastic limit at certain
points and still be saf% fwam the enginaawﬁng point of view.
Bleieh is credited with the idea of the m@um«a stress~strain
~ diasgram. He also developed an expression ?ﬁr the ratic bew
tween the resisting moment a section &@v&léyg when acting partly
plastically and the maximum value it éav*lapa when seting
purely elastically. | | |

In 1938 E. 0. Scott (15) at the University of Michigan
investigated deformation af’heama'imvglvﬁmg éuﬂ*iim behavior.
In 1940 George Winter at Cornell University, investigated
@iaﬁti@ bending of b@ama (31); In 1?&& Ws T. Daniels (&) aﬁ
Tows State College 1ﬁv§s%igmtaa,a¢$1aetion.mf rigld frames
gtressed beyond the yvield point.

A Nedai (12) has investigated the problem of plastic
%@nﬁing’af besms in which strain hardening was taken into
account. He al&a-ﬁa@ai@yéﬂ an equation for the internal resisting



moment of the béam, an equation for plastic boundary curve,
and showed how the neutral axis position may be determined
for losds whi&hyﬁans@ the beam to be pléﬁﬁiaally bent,

In %9&3 Giulio Pizzetti (13) pﬁb&iahnﬁ a paper concerning
elasto-plastie flexure of a bar with pronounced initial curvature,
In 1§%§‘&, B. Blezeno and J. J. Koch (1) made an investigation
on the gereralized buckling problem of the cireular ving.

In 1946 Ln M. Kachanov (10) made a study on the stressestrain
relations in the theory of plasticity. In the same year

A. Gleyzal (J) investigated general stressestrain laws of
elasticity and plastieity. In i@%?_&* A« Tlyushin {?3
published a report on the theory of plasticity in case of
simple loading of plastic bodlies with strain hawdﬁning;
X&yﬁahin‘té) puhiishmé another paper on the continuation of
the same tople in 1?@93 In 19%8 William Prager (ik) wrote a
paper on the stress-strain laws of the mathematical theory of
plasticity, In ﬁh@ paper Prager has made & survey of the
recent progress of the subject, |

The theories of the deformation of materials stressed
into two graupﬁ* In

beyond the elastic limit may be divided
the first group 1t is assumed that there exists a definite
ﬁ@iatian @atwe@n tstress' and 'veloeity strain', which 1s
ealled the *hhaaw#;@fupiaStia flow', This theory has been
developed by'ﬁt,‘?&n&nt* Levy and ?@m'ﬂﬁa@a and in recent
years by @. I. Taylor (18) and his ea#wmwkarm* In the second
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group it is assumed thet there exists a definite relation be=
tween stress and strain, which is called %hﬁ ftheory of plastie
defornation’ s This theory has been developed by H, Hencky

and A. Nadai (12)s 4. &« Ilyushin (8) has discussed in detail
the relationship of these two theories snd established a
general cordition for the agreement of thelr predictions.

The essential difference between the two theorles is the
following. According to the theory of plastic flow, the
instantensous stress is determined by the instantaneous velocity
strain. According to the theory of plastic deformation
the instantaneous stress is determined by the instantaneous
strain and, hence, by the entire history of velocity strain

rather than by the instantaneous veloeity strain. In view of
~ such different basic assumptions, it may appear that axperi*
mental results should confirm one and contradiet the other
theory. However, there are no experiments described in any
literature which contradict the theory of plastle flow under
the conditions at which the theory of plastic deformation is
well supported, ‘

Az a rule, snalyses based on th@lth@@ry of plastic flow
are rather complicated because the deformation process must be
treated as an infinite sequence of infinitesimal changes of
gtate. In certain types of problems, for instsnce, for uni=

axial stress,
in trusses and beams, the distinction between the theory of

and hence for the anslysis of plastic stresses
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plastic flow and that of plastic deformation becomes ine
significant. In view of the relative mathematical simplicity
of the theory of plastic deformation and the fact that experi-
mental works published so far are in‘gawé agreement with both
the theories, this investigatlion has been based on the theory
of plastic ﬁa%a&ﬁa%i&a* |

D« The Problem

~ Very little investigation hss been done so far with the
deflection of a flexible cireular ring under different loading
conditions when plastic action exists in the ring. According
to the author's knowledge no literature is availabie whieh
‘deals with the prediction of deflection of a flexible cireular
ring when it is loaded beyond the elastic limit,
| The aim of this investigation is to establish a prediction
equa@ianyfar @hﬁ'&&fﬁ&ﬂﬁiﬁmrﬁf a ﬂir&u&a& ring under two equal
and opposite congentrated loads, when the ring 1s stressed
beyond the elastic limit. It may be appreciated that the
problem of the deflection of a flexible circular ring of
rectangular cross section and that of a flexible eirculer
pipe under same loading system is essentially the same if the
effect of sxial stress on the pipe due to the loed, whieh is
very small, be negleeted, This investigatlon 1s primarily
a theoretical snalysis, where the flexible ring is considersd
and the comcentrated

to have a rectangular cross section,
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load is a line load rather than s point load. The line

load gonsideration mekes the results of the investigation
readlly transferable to the case of flexible yiya$* Az a
tﬁé% of the velidity of the investigetion the theoretical
solution obtained from the prediction equation has been
compared with the results of tests on corrugated flexible
pipes. As the corrugation on a2 pipe Increases its moment of
inertia, in each case the theoretical solution has been |
obtained for a eirenler pipe of squivalent moment of inertia.



aga‘p

II, THEORETICAL SOLUTION OF THE PROBLEM
A. Fundamental Theory

a. JIdealized stress=strain diagram. For metals
which have definite yield points, such as soft annealed
wrought iron, mild steel, etec., the stressestrain curve
may be represented, for the purpose of calculation as in
Figs 1« Up to the point A the stress and strain of the

test speecimen increases proportionately. At the pbint A

oy S 3}5“‘14 . 4 R
| 8 £/ n
2 1 ~ I -
IR 9 ! /

% i Ic i
E B f 0 %/fain-f__.-» :

; / $ ;
| Fig-/ £ 7 1% |
’é 4 |
i . 2
| A

the éﬂt@rial of the test specimen yields and the strain in the
gpecimen increases without aﬁy'apgraéi&bla increase of stress
in the material. Thus the stress at the point A represents
both telastic limit? and tyield pmiﬂti of the material of the
teatvspecimenﬁ If the s@acimﬁn is unloadled when the curve

reaches point B, the line BC will represent the unloading
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If & mild steel bar of rectangular section is bent
plastically, two kinds of strese regions are developed inside
the bar. At the top and bottom of the bar section are stresses,
which are equal to the yield point stress of the material.

In the center of the section the stresses are elastic and are
linearly proportional to the strains. A stress distribution
diagram at the section is zhmwn hy Flgs 3« 1t &ay be noted
that the strains are assumeﬁ to' be amngtamh in a plane parallﬁl

to the neutral surface q;fjmp_}ggsmg@sgtipm

| ; . RN

| AAsTE I /55,

i \

| $ 4

Ve fLasTC N NMA.
PASTIC, } 5.

coordinatesis given as

Bl

[ri * (r;)g]g'




In Eqs 1, P = radius of curvatures ry = variable radius of
the ringj ri = §£&¢ r = 5@§k/ Let us represent ry by rey,
vwhere r 1is th@ arigimal raéiua of the ring and y is the
variation of r in radial direction. It may be hoted here thnt
y ordinerily will be a small quantity. Since ri is a small
gquantity (ri)” will be neglected in this analysis.

| Egs 1 then becomes |

8ince

T eTey, TieT -2y 4y
1’2.""“3’#; ?f”%
‘ 4e

?hén

. (1a)

If we neglect small guantities like y* and yy", Eg. la becomes,



j.lcimen

(s - 2yt

= d (2" - 2ry 4 ry)(1 - 202
p? | r

" ;‘% o . 2ry + ry*)(1 4 %,x) .
or

3ot ey ey sy -6yt 43
:

, 2 P « - ‘
Bince y and yy* may be neglected, then Eq. la becomes

B-d ot emenm,

or
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Let Fig. b represent an element BC of the ring of
differenitisl length ds, whose initial radius is re After
the application of the load the radius of the ring changes to
P If we consider that a g&mﬁ section before bending remains
plane after bending, the section ICF assumes the new position
L'C'¥, The elongation of any fiber at any distance from the
neutral surface may be obtained by drewing a line through
C* parallel to CO. In Pig. % KI' represents e, The total
extension of the imnermost fiber of the riﬁg;. S8irnce triengles
C'L'x and C'O'D are similar,

¥ op

mga i ,i "

{a)

In Eqe (a), L'K = &3 L'C" = d3 0'D = P(b~§)s 0'Ct =P
Bubstituting these values in Eq. (a), we get,

(v}

Since e = ds x (,, where € is the strain in the extreme
inner fiber of the ring, § = %&, and ¥ = %&- « Ege (b) cen
be written

—~g—= = e - .

or



idealized stressestrain ﬁiagram, the eross~section of the ring,

gtress distribution in the section and the atr«aﬁwatrain
ralatiwn»hip mny be raprasunt&é as in Fiﬁﬁn 5@, 5h and ﬁ@a

M—w

L FLASTIC /

-‘2""1‘;

A LTLASTHC -

5 & //OLAS)”/%

(@)

. ._.x,.‘_wf o s m%%y

=8,
/s,

-
b6/

From the stress distribution diagram equation for internal
moment e¢an be written as the integral over the area of the

éaﬁ@imx

where

U

Fig-S,

A
o= Jf 8pdz
o

a
”béﬁﬁéﬁg

for 0 S 85 dos $w7§§§

for do g 2 S 4y

8 = 8ge

e

(c/

SHP@I- e

|

(&)
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Integrating within the limits we can write Eq. ' as

| | dg Y- S 8
H=1b 4 Bzdz + / Bgadz + [ Boadsz

(lea)

If we define %3* = u, Bq. %a becomes

PF PRV ). TS

8ince %‘ %Ma is the meximum moment a rectangular section ean
develop without going into plastic range of stress. If we
substitute Mo = § Sobd'y Ba. ¥a reduces to

| Mﬂ* ?% (% “%)* o €5)
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B. Assumptlons

In this analysis thﬁ‘f@ii@wimg assumptions are made in
the ﬁawak&pmmﬂﬁ of th& ﬁ@ﬂ&ﬁiﬁﬁg for the plastic behavior of
a,flam&bla ring.

1*
24

b

7.
8

104

13;‘«‘ ~

The material 1s isotropie.

Deformstion of a ring csused by direct tension or
‘compression is negligible.

Deflection due to shearing foree is naglig&h&ﬁ*

& plane section of a ring before bending remains plane
during and after bending beyond the elastic limits
Hooke's Law is valid up to the elastic limit of the
material. |

The idealized str&a&wsﬁwaiﬁ diagram taw pure bending
represents the true stress~strain diagram of the
materials | | |

The moduli of elasticity in tension and compression
are equals.

A ring is initially eiwﬁmiar and of wniform rectangulsy

‘@w$$3*$$§%&ﬁﬁﬁ

Only a portion of the ring under the load is $ﬁ®$ﬁ$&ﬁ
to the plastic range of stress,

The thickness of the ring is small compared to its
redius so that the neutral plane can be considered

o be passing through its mid-~thickness.

The free~body at any portion of the ring is in equili~

brium under the applied load.
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C. Limitations to the Assumptions

Assumption 1 can be said to be generally true for all
practical purposes. Assumptions 2 and 3 will be |
approximately true, only if the thickness of the ring be small
compared to its radius, in other words 1f the ring can
be called a thin ring. Assumptions % and 5 have been
experimentally verified. Assumption 6 is nearly true in
the case of soft annealad wrought iron, mild steel, etc.,
but in the case of material like aluminum alloys 1t does
not hold good. However, assumption 6 still may be desirable
in certain type of problems in ar&ar to simplify their
mathematical solutions, Assumption ? is found to be true
experimentally for the types of metals used in engineering
practice., Q(ood workmanship will make assumption 8 reaaanably
true. Assumption 9 limits the load such that in Pig. 6b
the section of the ring at the point A will not be stressed
beyond the elastlc 1limit. Assumption 10 is approximately
true in the case of thin rings. Assumption 11 will be true
if a% any instant the plastic flow taking place in any part
of the ring be negligible.

- Ds  Development of the Basic Differentlal Equations

as Elagtic portion of ggg ring., Fig. 6a shows the ring
and the loading condition. The portions of the ring within



angle 80 denotes the reglons which are partially in the plastio

range of stress. As the loading system 1s symmetriecsl with
o :;y; _;, o ’“‘%””“‘““v””“”*ff”“‘m“"”"””“w"' V'j
o N g PAASTIC PORTION g ;
e | |
,
i ‘ f
i |

b/

Fig-6.

S

respeet to both XX snd YY axes this ring problem ean be

anelyseéd from the free~body dlagram of a quarter of the ring.

Fig. 6b shows the free-body diagrem of a quarter of the ring.
From Filg. 6b the genersl axpfa&aion for moment at any

point g on the ring, meking an sngle € with the horizontal

axis, may be written es,
Mg = %% (1 - cos®) ~ My, (8)

From the equation of the elastle curve we know,

Change of curvsture at any sestion

« the m@mmnt‘&avalagad at the seoction
flexural rigidity of the section




L8 R
Then we ean write at any section of the ring

r EI

If we put value of % and Mq from Eqs. 2 and 6, respectively,
BEgs 7 reduces to |

. o
y* 4y = = E|&8 (1=cos0) ~ ¥, |,
ey m[% ) a}'

or

(ﬁg%:}? - %; (M, . %37 + %;- %ﬁ cose. | (8)

Partislly plastic portion of the ring. In Fig. 6b

the @&aam@ pwtmm raf t:&ma mrsg can be represented by the
1mit (% - <04 %« The general expression for moment given
by Bqs 6 holds true at any point on the ring 0 L 0 < % The
expression for internal moment glven hy Eq. 5’ he:ams within the
untt F-a) $0<E 8o within the 1tmit (§ - SRR &

it may be stated

Ba - 2050) = M, = i&a@ - %ih (9

or | | B

If we mt 1 » ¢o80 = 2&&& Egs. 98 becomes
5‘



o =30 T .2 0 2. (9b)
Now letting 3 + 2 Ry, &

(9e)

(94)

~ NHow letting g& = N, in Eqe 94 we have
u= Ry (1«8 sin %}ﬂ (10)

It may be noted here that by definition u lies within

the 1limits 0 ¢ %:&5., 1. As maximum 6= %‘ Then maximum
ﬁiﬁa g = é, Therefore, in order that Eqw 10 be true, N must
be N < 2. We know Ry > 3, now if ¥ be less than or equal to
1, say N = 1. Then at 6= % minimum u = R%x 7% or u)[ér >1,
whieh is absurd, Hence it can be reasoned m’e value of W
lies within the limits 1 N 2.

~ PFigs, 78, 7b and ?ea: represent cross-section of the ring
portion in plastic range of stress, portion of the ring in
plastic range of stvress and stress-strain diagram of the ring



-

Prom geometry (see Eq. 3}

1.1-5

r

In Bq. 3a, ea - %ﬂg where €5 = elastic limit strain,
8o = elagtie 1imit stress, and B = modulus of elasticity of
the material. Using value for €, in Bq. 3a we get,

1.1

3 (3@)

Introducing u = -2 and substituting value of % from BEq. 2,

in Eq. 3:b we get,



tza)

Letting %f» = A and taking the velue of u from BEq. 10, we can

write Eq. 3c as

gww%m@@w%ﬁwqiamﬁwﬁgmm
ﬂ*rw@mwﬁsﬁ ﬁﬁﬁ
W . o

{n «K&}y = @(1 = § sin’ gl‘é {Mﬁ

E. General Solutions of the ;nmrmmm Byuations

B tic portion. ’ﬂw mmplﬁmnmw solution of Eq. 8

can be wittm Mx*wﬂly 88,

%@mﬁ* = Ca8ine + Cyeos0 , {8a)

The particular solution is

(8b)

-l = Gy and m ¢o80 = éeg&ue s BEg. 8b can be




written as

{Be)

If we add Egs. Ba and 8¢, the general solution of Bg. 8
becomes | '

Vg * Cysine + 0080 + (M Eeor €

In mga zalw%,w&ﬁw$ﬁamta %h@ w&éial deflection of the ring in
its &1&@%&@ part.

;w%,m ;m,,.wmm ic porilon. As in the @l&at&@ par%imn
the ﬂ@myiamantary aa&uﬁiwm of Eq* 11 msy be written as

ﬁ%@myﬂ ww$$$ﬂne + Cpe0s0 f. (11a)

The partieular solution is:
Loqa-nat DT, am

or | "
”’53?3Q‘3,* i aiﬁg‘ghug;
vhere 1 = ./:x

(1le)
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‘It has been shown before that W is 1{ N < 2, Hence in
order that Eg. C may be transformed into elliptie integral
form, change of variable is necessary.

Let "

N ;s‘m% = %ﬁx;g@é,

§ = sm“*( % gm@) .

or

Using the above substitutions we can write



(*q)

sgemooeq Yq +by *Tp puw o *eby wolF senyes 9nN3TILqnS oA JI

(*p)

. w@p t“’;ﬂ% /]’gfﬂp

gowooeq » *by * (Q ugs %wt)ﬁnﬁ = @xurs aangvmﬁqns en JF1

3-1» @wm az»*::/‘f

AraeTinie

(2)  —

40




Right hand side of Eq«. by nov is in elliptlc integral form.
The limits of the elliptic integrals can be determined as
follows:

Wwwmw»a aw&@m@ in the ring exists w&ﬁ velues of O in
am:au ) m, Mﬁ $o ,mg limits of wagwgﬁg will be nmi&
and 6 4 6 being the upper limit of the integrals. When the
variable of wﬁgwmﬁg is \m.\ limits of the integrals become
@s& m mgwﬁm the ﬁﬁuﬁ, 1imits

Now if ve let

/

N sin am - a,a 9.

for m - m ﬁ b = sin (/R tn w

§ m\@ ﬁm}mf b = stn™ Tw sin(] L *

wﬁgg .ﬁ ,ug iimits of wﬁmgwgﬁ%w § can write Bg+ by as

or




« Ag the lower 1imit of thea integrals is & eonstant the
value obtained from the lower limit can be absorbed in

L €5 of Eg+ 1la. Then Bg. b can be written as,
sin(/F sind)  etn™ (/R stag)

constants ﬁ* and

or

& [ i sn )

. ?% %, m*"*gr/ﬁ mg»;} ] (By)

can m written as,

If we take vealues from Bqs. a and by, Bg. 114

’pmﬁ; =9 ”me% [m { -, sin " (/R ﬁiﬂ%?'f

-7 %/@mm”ﬁﬁﬁ ﬁmg'}}:l 4 NS08 ATy sin®2.  (1le)

becomess

and 1le, the general solution of Eg. 11



In Eq. 13 Vp Tepresents the redial deflection of the ring in
its plastie part. ¥ and F represent and 1lst type of
celliptie integral, respectively,

The unk
1«

24
b,
54
6,

The Unknown Consgtants

P

known constants in this snalysis ares

M,» the moment at the point A. A

Cge the eoefficlent of sine in Eqs 13.

Cas the coefficient of cos® in Eq. 13,

Cys the cosfficient of sine in Bq. 12,

am the coefficient of cos® in Eq, :z_m

é, the measure of the plastic portion of the »ing
{see Plgs. éa and 6b)e

G« The ﬁw&ry Conditions

The mmaamr conditions in this analysis ares

1. At ew§ @Ewm




wézw

he At O = &%«-u), Yp * Ve i.e, Elasto-plastic
&aﬂwﬂaﬁm = glastic deflection.
Y« At O = {%ﬂﬁ%, E-ﬁ w éy imﬁ Maatamlmtm

6
glope = elastic amm»
6y AL O= {%’i&), ‘

1«6+ Elasto-plastlc

ée* T et
'&WW# = elastic cwrvature.

He Determination of the Constants

Boundary condition no. 3 atawm, at o= 51 - a, n =12,
m &m 9a substitouting the boundery o condition nos 3, we get

24 | ,
1e3e eﬁé 5& (14s1n w). (1)
aimmifﬁ.@mﬁ.@n of Bg. 1% ymmw
M, = BE (1-sin @) = Mo, (%)
ng the value of M, from Eq. 15 waé gan have

Ry = 1+ %g. (1-sin o). (16)

Boundary condition no. 1 statess at © = &, ya- = O
Differentiating Bg. 13 with respect to © we have:



or
(18)

Boundary condition no. 2 states: at e= 0, g?grﬁ = Qs
Differantiating Eq. 12 with respect to 6 we get,

+ BEL (stnot coso)e  (19)

or
€3 =0, " (20)

mﬁm condition nos ata%am st o= (%-u} ¥ y’F = For
At © = {%«a) equating Eqs. 13 and m,, and substituting values



e

of Gy and Cy from iIgss 18 and 20, we haver

9s030. ¢ [ %ﬁm“’*{/ﬁ sin(i-4

? [ j'%fﬁﬁiﬁ%gjﬁ 5;%(%“%%} |

g s o]

(21)

—_— E T _ . dyp dye
mw Mgaiﬁi@ﬁ No.. 5 ﬁ’gﬂ.ﬁ'&g% gt O= (%“33, a‘éB w 3.“6“”

At © = (E=g) equating Eqs. 17 and 19 and substituting values
of Cy and C3 as before, we get
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Cysinscose +

% m‘*{/ﬁ am(&g*,ﬁ

Now gubﬁw&atimg Bae 21a framAﬁq* 228 and smbatituﬁimg value of
ﬁ£ fﬁ@m Bg« 19 we have

ifm’gmﬁg} . Mo ,

3 1ex :&m*{%"g"? wl%} + By

(23)
$imilarly, multiplying Eq. 21 by cose and Eq. 22 by sing,

izhm subtraeting one from the other we get

/_ g/ﬁ sin” {/ﬁ sin(p~

C med | o ' ‘  Mapd : -
BT {g%m) - wmsﬁm} - “‘%” cosas {24)

From Bas 6, MB{MW Fig. 6b) can be expressed ss

% = % *"* M&* gﬁﬁ}



Using value of M, from Bqe 15 we can vrite Eq. Ga as

{6b)

%ﬁ m,é;

How 1f we &qmaté the external noment E@‘a%‘thg point B
(see Figs 6b), which can be found spproximately, to the right

hand side of the Eq. 6b, where Pr snd M, are known, the value

of o can be calenlated.
I« Modifications of Moment Byquations for the Ring
Pue to the Change in its Geometry Under Load

By the theory af'@xa&ﬁia,ﬁﬁfgwmaﬁiaﬁi the well known
equations for the horizontel and vertical radial deflectlon
of a circular ring acting under two equal and opposite cone
¢entrated line losdsare g&véﬁ by

@

| ,&ﬁﬁh@@igg} = ,0583 g}ji
H e 3
%{Wﬂlt} = 07k %’a (26)
Bguations %5‘@%6 25 very obviously represent & straight
1&n@_rw&a@i@nani@ between load and deflection. Eﬁ the
derivation of these equations it is assumed that the geometry
of the ring uwnder the 1@&&,&@33 not change sppreclably to cause




%33&»

any change in the generasl moment eguation. In other words it
i1s assumed that the moment developed at any section of the ring
is proportional to the applied load.

(. : |

w— |

I "'-. ~—r' ‘ R
Lpertected shape | P S

f

Fig-8

r:
)

¥
i

I + 4 ﬁé&* gﬁ,aﬁé 26 which represent radial é%fla@tigna at
‘the points A and B be expressed in terms of the moments
developed at those points, they become
(258)
(26a)

By = 23 B M.

In order that the effect of the change in geometry of the
ring can be teken cere of (see Fig. 8), slight modification
in Eq. 26s is introduced by replaeing %ﬁ by ra.



“39=

Then Bqe. 26a becomes:

Ay = 4234 8 1y, (26w

Though the Bqy 26D 1s not derived mathemstically, it
gives closer results to the experimentel data than that obe
tained from Bgg. :!.25 and 26. | |

We ¥. Burke £3’} has developed some curves from which My
and Mp of & ring mey be determined when acting under two equal
and opposite concentrated line loads, when the deformed ring
is considered to be elliptical (see Fig. 9) and stressed within
the elastic limit.

Table 1
Prom Burke's graph

Burke's formulas
e (27

My = B« = Pa(den). (28)



The Tirst approximation for 2 and b cen be obtained as
&wg&%,@xm};mgy“%ﬁ

where A, and A, cen be obtained from Ease 29 and 26« Then
from Bys. 27 and 28, M, end My can be obtained and finally

By and Ay can be caleulated from Bqs. 25a and 26b. It may be
noted here that A, and Ay according to our previous notation,

essentlslly represent y at 0° and y at 90% For a better

From Eqs 15 we know

M, = ?g: (1-sing) = Moy when P ) Poj

Po being the load which stresses the ring section at the point
B (see Fig. 6) to 1ts elastie limit.

| Pi-| | BSmet_

= Z@gf/ecfed Shape|p

S T e v renies




41~
ﬁwam.?igw.i@ considering the deflected position of the

ring M can be written as

My = £ (ryrasine) « M. (29)
In Bge 29, Ty = T 4 ¥y, Pg = * > ¥ae If we put these values
of vy and ¥y, HBge 29 becomes:

My = B (43~ § (reydatne = iy,
or . o ‘ .
= &F (1-s1na) = Mo + § (yytyasine). (298)

Comparison of Egs. 15 and 298 shows that the ehange in
geometry of the ring due to the load ecauses an increment of
B(vitvastne) 1n Mye As both y, and y, are u
ﬁﬁkﬁ%&t&tﬁ@ﬁkiﬁ nade as

nknown, sn empirical

73 + Yesina wﬁggiﬂﬁi 30

Though the substitution represented by Eq. éﬁ is not derived
from any theory, 1t gives a close result compared to the ex~
perimental work done by Burke (3).
Using substitution from Eqs 30 in Eq. 2%a, we get
‘m§ w‘??v(1wﬁina3 - My + %ﬁaina;
or

My = BE il?'%@m} - M. (31)
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IIT. COMPARISONS OF THE TUEORETICAL SOLUTIONS
WITH RESULTS OF TESTS ON CORRUGATND METAL PIPES

As the theoretical solution has been obtained essentislly
for a thin cireular ring with rectangular section, for the
sake of comparison the test data on corrugated pipes were
imagined to be from a eircular ring with rectanguler section,
whose moment of inertia of the section and mear radius is seme

as that of the corrugated pipe. The basie properties of the

imaginary ring, such ss Py and
tained from the graph plotted from the test data of the
corresponding corrugated pipe. Width of the ring in each case
was considered o be unity. e

#» in every case, were ob-

gw"ﬁaxﬁugatﬁ& pipe of 36 in. mamﬁ@al*diam@%ar;;alﬁ?% ine
gigﬁ@ thicknessy corrugations heving 2 %}§ in. piteh and
1/2 in, depth. | Lo

The average radius of the ﬁiﬂﬁﬁk?‘“ i3£5 in,.

The elastic limit load from Fig. lla,; Py = 100 1lbs.

By elastic deformation theory,

My = (1817 Pr (32)

Mp = & Pr, (33)

Fron Ede. 33 Wé Qan 58y,



Mo = ‘“‘“‘3“5"‘ (33a)

Wm@ m@ 33% we got, Mg = 590

From w&ga ;Ia the w&w%iea& ﬁﬁﬁxa@ﬁi@n of @k@ ring Ay
by elastie deformation theory %wrﬁﬁg in.

Usiog Eq. 26 we get | | |

07 & #'pe = 59

From Teble 2 when P = 1,05 Poy Mg = 1.07 Mp. Using
conditions of Eqs, 6b and 33a we

or

ﬁm & *@@25,

or
‘ «wa*?*%’
similarly'%ha rest of the as in Table 2 wwra»ua&aulaﬁaﬁ*
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In deriving Eq. 23, instead of using the velue of M,
from Eq. w ir z.w ﬂaaw approximated value be taken from
Bg. 319 then we get

«{aéa)

3%&&&1@* using M, frouw Bq. 31 instead of Eq. 15 in
the derivation of Bgs 2k we get,

6, = & [3‘{ L sta™ (/& sﬁa{H}}}
. :mg %,xm“ { /B s&a{%}}}] +

| 'yé at & = 0 may be expressed from Eqs 12 as

: | (Ky%;h - {12a)

) from Bq. 6a, Eq. 12a becomest

y&m = Oy + I

If we substitute value of (M~

Tomo = O = B My (12b)

In Bq. 12b, My 18 to be aalmlat@@ from Eq. 28 (as in Table 2),
while Cy will be obtained fwm B ajim



v, at 6 = %, may be expressed from Eq. 13 as

g = O v%[w{% sin W“y%?} | axf% sin*™ (Jﬁ&ﬂ‘

(13a)

In Bqg. 13a, €y 18 to be evaluated from Eq. Z4e. The elliptie
integrals are to be evaluted fyom any standard tables of
those integrals (as in Table k).

2 %rm Joad P = Py, ¢ = Oy MB Mos
Then from Egq. 23& we gﬁt

o3
- Por?
o = i 0

and from Eq. Z4a we have

o = i% [F & stn™ (/A M} g -}::m ' »M%]

Pgrs % ﬁgﬁ‘

Using the value of Cy and Cy ss obtained above we get from

Bg. 12b
Fgﬁ'a ﬂaﬁ
%w@ W TR

Bubstituting value of My from Eq. BBa we get



or

= -, ﬁé&é E%%’i * (3’4’3

5 [ZV { %»ﬁiﬁ*‘*ﬁ [ ?;%)} - 2B g et

a1 )

2

or

or

(35)

I%tm AL P = Po the mlm for y obtained i‘mm B 3*+
am& 35 is awmtmlly ‘&iw some as t!mt which my be obtained
from Bqs. ﬁﬁ and 26, i'h:m smzwiw in result 1s expected
a8 at P = Py the ving, though on the verge of gssing into
plastic range of stress, still obeys Hooke's Law, Thus at
P = Py, both the theory of ;a'};asi}sm &ﬁmmmsim and the elastie



w5e

deformation theory are equally applicable to the ring. The
negative sign in Bg. 31@ &w&iﬁa{ﬁw the deflection 1s away
from m center of the ving (deflection towards the center
was chosen as positive). |

by When P = hﬁﬁ Pos %mg i+ 33% and teling numeprical
rerent factors from Tables 3 and & we get

values for 41f

Co = =34115{ /TL.588: 4787 = /I-79%] + 10570198
+ 2,52 x 0425,
or
Gy = 2411,

Now using ;&q* 2ha and Tables 3 and ﬁw we get
Gy = =1963 { 1.191-2%950] + 105 x.0198 * 1,528 = 2,52 .99

or |
Then using Eq. 12b we get
Tgagp = 2+11 = 400428 = 631

or |
; Vw@ w *, 59 in,



The negative sign indicates a deflection away from the center.
Now using Bg. 132 we have

y@% = awﬁgﬁ + iﬁ%a {1»/35{3 - 3..9563

or

y‘&.% L ‘g‘? in.

Similarly for all other loads; Cy, Cy, yé&glgmﬁ yéwgpawa
ealeulated. The results are given in Table 5.

| Table 6 shows the comparison between caloulated data
and the observed data.

~ B. Corrugated pipe of 36 in. nominal diamter 3

+1406 in, plate thicknessi corrugations having 2 3}3 in.
piteh and 3/*’2 in. depth, | o

The average radius of the ring, %‘ﬂ<$$wg ine

The alaaticylimit‘iaaérfram Fig. 11b, Pg = 150 1bs,

Vﬁy«ﬁga~ééa ve have, a@;misag 1bs in. From Fig. 11b
the vertical deflection of the ring &, by slastic defornation
theory is 1.25 in. |

Using Hg. 26 we get




Then

1.05P,

1.10P
1.20P¢
1.30P,
140P

“1,12

+ 72
«B81

«89
1s

141
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SCUSSION OF THE COMPARISONS

For comparison of the theoretical solutions with results
of tests on corrugated pipe the corrugated pipe has been
assumed to be a plane cireular pipe with an equivalent moment
of inertia of the section. The assumption 1s necessary, as
this theory has been developed wmmy for a circular ring
of rectanguler section whose deflection eharacteristics are the
same as that of a plane eircular pipe. The equivalent moment
of inertis M‘ the asgsumed plane cireular pipe has been obtained
from the tw‘éz data on the corrugated pipe,

From Fig. 1la and Fig, 11b 1t may be observed that the
theoretical solutions check closely with the test data,
particularly for the horizontal deflection &y, (see Fig. 8)
of the ring; the portion of the ring which does not go into
plastic range of stress under the applied load., For the vertieal
deflection of the ring the theoretical solution also compares
very closely with the test data except for very high losds
vhere the theoretical selution gives s smaller deflection
value than that obtained f&*&m test results. In comparison A,
theoretical solution for verticel deflection of the ring
 compares the test data favoradly up to a load of 1.4 Pg,
whereas in comparison B, it compares with the test data
favorably up to a load of 1!.‘3 Pos ’E{‘htﬁ’ difference in the range




of comparison is very possibly due to the fact that the modi~
fieations introduced in the equations of moments (Seec. Hy
Chapter II)} in the ring due to the change of its geometry
under the load, does not conform ecloselyany more to the actual
conditions of the ring under those higher loads; more than
1% Py in comparison A and 343 Po in comparison B« The load
on the ring up to which the theoretical solution remains
comparable with the test dats will depend on the percentage
deflection at Py based on 1ts radius. A higher percentape
defiection at Py will lower the range in which the theoretical
solution and the test data 1s expected to give a close
comparison. |
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Y. POSSIBILITIES OF THE EXTENSION OF THIS THEORY
70 FLEXIBLE PIPE CULVERTS UNDER FIELD-LOAD CONDITIONS

© As the development of the theory is quite general it
seems possible to extend this theory to find the deflectlion
of flexible pipe culverts under field load conditions. It
may be recalled that in developing and solving the differentiel
equations we had to consider the moment equation of the ring
under load. In order to make the solutlion general, that is
to meke the solution applicsble to the ring for all loads
beyond Pg, we need to assume a constant mowent equation for
the ring under load. The constants of integrations ean be
evaluated in the same manner as hes been done in this analysis.
However, as the assumption of constant moment equation does nob
hold in reality, due to the successive change 1in geometry of
the ring, modifications must be made in the moment equation
of the ring (as has been done in this analysis), later, to
 ealeulate approximate values for the deformation of the ring
under field load conditions,

The corresponding differential equation s for the solution,
in ease of flexlble pipes under field loed conditlons, are
bound to be more involved mathematically, but a preliminary
survey showed thet even their solution ean be carried out with
the help of elliptic functions by making proper modifications
in the field load conditions,
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Vi. CONCLUSIONS

A study of the theoretical solution and its coumparison
with the test data obtained on corrugated pipe justify the
following conclusions. |

1) The deflection formula developed is satisfactory for
deteruinstion of the deflection of flexible eircular rings
acting under two equal
stressed beyond the elastie 1&&&%* |

2) 7The theory ecan be applied to determine ﬁ@f&ﬂ@t&@ﬁﬁ
of a corrugated pipe under the same loading amnﬁitians by
gssuming it to be a plama eireular pipe with an eguivelent

and opposite concentrated load when

moment of inertia,

3} The change in gaama%ry of the ring under load arfaatﬁ
its moment aquatimna suffi@ismﬁly to need modifications in
actual caleulations of deflections, :

%) The theory enables one to calculate the raﬁaal de-
fleetion at any point on the ecircumference of the ring.

| 5} The theory developed in this analysis is very general
and there éra pﬁ@ﬂi@iﬁit&&ﬁAaf‘iﬁa agpi&a&%ian to flexible
pipe culveris ﬁn&aw»fiaiﬁwiaaa conditions, stressed beyond
the elastic limﬁﬁg by introdueing some @»Aifiaaﬁimms in
the loading condition.



1,

2

Sa

4.

5

64

7,

8,

P

10,

VII. LIST OF REFERENCES

Biezeno, C. B« end Koeh, J. J. The generalized buckling
problem of the clroulsr ring., Nederl, Akad, Wrtensch,
Proo. 48:447-468, 1948,

Bleleh, H, Btehlhochbauten, 1:396-411., Berlin, Julius
Bpringer. 1932,

Burke, W, F, Working charte for the stress analysis of
elliptiec rings. U, 8, Nat. Adv. Comm, Aeronaut,
Tech, Notes. n. 444. Washington., 1933,

Daniels, W. T, ﬂaﬁléaﬁi@n,aﬁ rigld fremes stresaed
beyond the yield point. Unpublished Ph, D, thesis,
Iowa Btate College. 1941.

Gleyzal, A, General stress-strain law of elasticity and
plastieity., J. Appl. Mech, 13:;A-261-A-B64. 1946,

Ilyushin, A, A. The theory of plasticity in cese of simple
loading secompanied by strain hardening. Teoh.
%gﬁgs, U, 8, Net, adv. Comm, Aeronaut. n. 1207:7.
L ! . ‘ '

Ilyushin, A. A. On the theory of plastlelty in case of
simple loasding of ﬁiaatie bodies with straln
h&x&aniﬁg, Appl. Math. Mech,. (Akad, Nauk, 8.3.5.R.
Prikl. Met, Mech,] =n. 11:293-206, 1047,

Iiyushin, A, A, Relation between the theory of Saint
- Venant-Levy~-Mises and the theory of small elastio-
~ plastic deformations, in plastic deformation
{(English trans,} by Kachsnow, L. N. and others.
f'ﬁgqﬂllﬁ“  Mapleton House, publishers. New York.
1948,

Iowa Culyert and Piﬁe Gamganyg Handbook of Culvert and
Drainage Practice, &nd ed. p. 64, Des Moines,
Towa, 1987, :

Eachanov, L. M. On the stress-strasin relations in the
theory of plasticity. €. R. (Doklady) Acad. Sei.
UBS8. N. S, 54:1300-310. 1946,



il.

12,

13,

14.

15.

18,

17.

lgi

19,

20,

2l

*33&“

Meyer, E. Von Die Berechnung der Durchblegung von
gtaben, deren Materlal dem Hookeschen Getsetze niohi
folgt., Zeltsechrift des Vereines deutscher Ingenieure.

Nedal, A. Plasticlity; & mechanios of plastic state of
metter. New York. MeGraw-Hill, 1931.

Pizzettl, Glulio., I a@lié@ s grende curvature in cempo
elasto-plastico, Atti-Agoas Sel. Torine, Cl-Sel~

Preager, Willlam. The stress~stirain laews of the mathe~
neticel theory of plasticity. A survey of recent
progresgs, J. Appl. Mech. n. 15:1226-833, 1948,

Seott, E, O, Deformation of beams involving ductile
behavior. Unpublished Ph. D. thesis, University
of Mlehigan., 1039. .

Shafer, G. E, Discussion of flexible plpe culverts,
Proc, Highwey Research Board (193%7) 17:237-280.
Highway Research E@ar&,‘waﬁhingtmm, D. C. 1938,

Spangler, M. G. ‘The s tructural dealign of flexible pipe
oulyerts, Iowa Eng. Exp, 8ts. Bul. 188, 1941,

Taylor, @; I, The formetion and enlargemsnt of =
eirouler hole in a thin plastie sheet. Quart. Jour,
of Meoh, and Appl. Math, 1l(part 1):103-124, 1948.

Van Den Broek, J., A, Limit design, Proe., Am, Soo. of
Civ. Eng. 66, n. B (part 2):638-861, 1940.

Ven Den Broek, J. i. Theory of limit design. New York.
John Viiley and Sons, Ine. 1948,

Winter, George. Discussion of limit desizn, Proe. Anm,
Soc. of Civ. Eng, 66, n. 8 (part 2):673-679. 1940,



“63b-

YIII. ACKNOWIEDOEMENTS

The writer wishes to express his gratitude to
Mr. M. G. Spangler, Professor of Civil Engineering; to
Dr« Glenn Murphy, Professor of Theoretlcal and Applied
Mechanicsy to Dr. B. R, Seth, Vieiting Professor of Applied
Mathematicej to Dr. R. E. Gaskell, Professor of Mathematies,
for their very useful suggestlons and criticismg which helped
this investigation to its succeesful completion,



IXs APVEEDIX I+ DEFLECTION OF A FIEXIBLE CIRCULAR RING
DUE T0 ITS OWN WEIGHT, SUPPORTED AT THE BASE

The system of foreces acting on the ring is shown in
Fige 12s. As the loading system is symmetrical to YY axis,
an investigation on a symmetriesl half of the ring will re~
veal its complete deflection characteristics, Fig. 120
shows the free body ﬁimm@f one half of the ring.

P - : : : ‘ .
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From Pig. 12b the general expression for moment at any
point D ecan be written as |

M = M, + Br(l-c0s8) = rrwrsin® + wrer(sine-bi<3se:

or

M= M, + Hr{l-cos@) « wgwa,m * :#%!(&&M*&Wa&h (3&)

| Due to the symmetry of the loading system about YY axie
wé know that tammw to the ring center line remain hori~
gontal at B and m and ‘khwaf@m the mmmtmn of angle ahma
between C and B equal to / -must equal gero. The differ~
ential length of ring ds = m and the 1imits C and B
mwwmﬁ limits & = 0 and & = v respectively. Then we

kknow f & we, equals zero, Since . g 1s constant in this

case we have

[ me = o (37)
0 | | |
In m, 37 putting the value of M from Eq* 361 we get

» CLo el ERTTR |
/; / M, + Hr(l=coss) =~ wr wsing & v w(Osings

Evaluating Eq. 37a we get

H& L ﬁrﬁw = Hrs (38)



Due to the symmetyy @ff-‘ the loading system about ¥YY axis
we know that the point B does not have any horizontal movement
with respect to the mm% % *t:ha ring mnm m ¢ and theres
fore, the ama%m of horizontal movement be setween ¢ and B
[, MEJ% st equal sero, The differentisl length of
ring ds = 7d8, y = r{l=cos8), Limits fz and B represent
limits ® = 0, and & = 7, respectively, Then we know

wm@w’m equals zero, Sinece * is constant in this

v
/;3 M(1wp088)d8 = 0

or

" v -
0 0 |
Bince 4 49 equals zero by Hgs 37. Then we have
T -
| f Meose d8 = 0, (39)

_ m Egs 39 ymming tm va&m of M from Eq, 3& mﬁ the
value of My from Eds 36* we get

4 [i* ‘w{wmﬂs«&maﬁ) = Hreos® %'w*wm ] cost 48 = O, (3%5
Evaluating Eq. 39 ve get

Ha % " (M}



Substituting this value of H in Eq. 38 we heve,
M, = 1.5 r'w, | | (388)

Using values of H and M, from Eqss 40 and 33& in Eqe 36
we can write '

(36e)

The vertical displacement of the point B from the tangent
dravn to the deflection curve at C which is 24, can be
expressed as

Mxes, where x = rsin®, ds = rde, C and B

~represent limits 8 = Oy and @ = §. Substituting these values
in the integral, we have

In Bq. 41 putting the value of M from Eq. 36a, we have

(k1)

89) sin8de, (41a)

b~rsindhae

2y = fr [ senin

Eqs Mla we get

(42)

2, = =457 BoX,

The negative sign in Eq. 42 means that the deflection takes
place in the negative y direction.
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The horizontsl displacement of the point C from the
tangent drawn to the mgmmn curve at A ~m¢h 18 by, can
be expressed as A, * '/; ZHes, where A and C represent limits
8= g-» and @ = 0, Wﬂywwww. Putting ¥ = r{l=cos8) and
ds = rde as before, we get

by = /% Er u(1-cose)de, (43)
In Bqe 43 putting the value of M from Eq. 3%@ we have

s, = %f / wawtz,wam&wﬁuméww‘}("lwma)ﬁm -
2 (43a)

Bvaluating Bg. %a we get
"'&JS': = 4285 % .
Then the total change in the horizontal diameter will be

;ff;@ | (i)

%x = #5708

As mmwmm of a Flexible %rmaw& mw of %Wm\mi
ﬁmﬁl dize to its Own W@rz&gh&s, ﬁu;awz*tw at the Base.

The mx&g analysis made in.&pp@zﬁixz will be ml:m in case
of a flexible corrugated pipe if the effect of axlal stress



on the plpe due to the load be neglected. Iu reality this
effect will be small enough to be negligible.

In Bass W2 and W4, in case of & %@¥¥@§&£?@ »ﬁpﬁ:% should
be considered to be the mean radius of the pipe. w is the
welght per inch length of the sorrugated pipe per unit
circumferential measure. I 15 the moment of inertia of the
pipe section per ineh length of the pipes E is the modulus
of elasticity of the pipe material,
| G. E. Shafer (16) of the Armeo Braﬁmaga Products
Association, hﬁﬁy&&vaiagaﬁ a simple straight line formula for
the moment of iﬂﬁ@ﬁﬁa per inch length of the eross section of
a flexible corrugated pipe with standard corrugations having
2 2/3 in. piteh and 1/@ in. depth. Shafer's formula is

(45)

vhere ¢ = khiﬁkn38$ of the metal in inches.

- In standard corrugations, a sheet wf metal maaauring
E?mﬁ inches before corrugation measures @5*5 inches after
corrugation {9). Then the length of tha metal sheet per inech
length of the corrugated sheet will be S44§ inches = 1,078 inches.
Then the vumum& of metal per inch 1@%@%& mf the aﬂrrugaﬁa&
pipa'par ineh of circumferential measure (sece Pig. 13) becomos
vol. = 1(1.078)t cubie inches.




463 oA § puw A ‘T jo seurea Furaynd 4y *ba U A[ITIETS
(4) | *atg.0T x gent* = fvz
se spnguden uj ae3ousTD
. ﬂ&ﬁ.«&&g U} eduwye Te30) Iul V314N ULD A n%@ﬁ X am = § pue
9% pue §h *sbg aﬁe 4 pue I Jo enTea Fupsn gh ,g ur

(9h) o | ,émm@_m., = M
| X0
3(RL0*TIERE" = A
S8 UBJ}TAA 9Q UGD SJNEEOM TeTIUsIHIUNDITO JO YIUY
dod adpd pejednazos eyl Fo §§ﬁ gout Zod JuBges oy3 ‘A uSYy
*pretd w@w x 0f = &
suy *no/*at £92* = JuSten ds

IAOUD] oA TOORE %ggm .S&




000400841

_ BOZ* 4

gﬁ@mﬁﬁ
g@*g.mm
000* 0514
000*0E5 45
it R
000*OTT*S
0004092
00046641
000%060*1
0004914

60T Sz6g
Seuout,, OT UF Yve SeHONF, 0T UF Ave sewous uj X

R

&1 9TaRL

*pOUTUIBYEP Sq UED ESYDUT
00T ©3 SeUPUT 0T uSesyeq snjped usew Fujawy odjd peyedndicd
PR duw do Justen o wﬁ 03 enp uCTIVeTILP #I *I1J woig
*es8q oU3 38 pejsoddng ueyM JUITEA UAO JTOYF Of SUP TIPBI UBeW
queasiytp Suramy sedid ﬁﬁﬁwﬁ pOqEENIIO0 JO JOGOWSTP TBIUCE
~F40Yy oy} pU® TEOTIIGA 0y} UT OBUNYD SUY SMOYS ZT STLNL
R *4F9.0T x 1" = Vg



~
o)
Q

g
Q

3

3

.ILT&I?IQEN w,bqw\mk bmhmw\&s”\ | )
. “ L] | RERR \\
L T07AL HORIZONTAL &mﬁﬁw&k i \\ 1

3

3

el

9

N

o
)

S

RADIUS OF A FLEX/IBLE CORRUGATED PIPE /N INCHES.

o0

Ve ]
: %\H\ ;
\\\\ w _
RLW
002 o .005 07 02 @B 05 T 2 3 & 7 zZ 3 & 0 20

DEFLECTION DUE 70 /75 OWN WEIGHT, OF A FL EXIBLE CORRUGA TED PIPE IV \\.\Q\m.m
Fig-/4.



WDIX IIs BLASTIC DEFLECTION OF A FLEXIBLE CORRUGATED
%W UNDER A MODIFIED FIELD LOAD CONDITION

X« APPT

In the £m11@wing snalysis ﬁyang&ﬁw*a f&zinlaad hypothesis
(17 « pu 26) has been modified a 1ittle for the simplicity of
ealeulations, In this modificatlon i%(iafaaaumaa that the
vﬁxﬁiaa& ﬁwa$$ur§£ on the top and boitom of the flexible pipe
aﬁ@anii@smiy,éiatriﬁaﬁaﬁ over two borizontsl planes at the
top and bottonm of the eonduit having their width equal to the
horizontal diameter of the pipe. The horizontal pressure on
either side of the flexible pipe is considered to be dise
tributed over two vmftia&l planes, in a,ﬁw&aagniar manner,

The horizontel pressure is & meximum over the horizontsl diame-
ter of the conduit and zero at the top and bottom of the
conduit. :?hﬁ meximum horizontal pressure 1& @§§$¢3¢nt¢ﬁ by
&a#,_whﬁww e iz the modulus of passive pressure of the side
£i11, end A, 1s th@~h@¥iﬁmmﬁai radial deflection of the conduit
under load.

The ﬁiﬁtﬁik&%&ﬁﬁ of praasmwa& around & f%ﬁxiﬁla pipe under
an esrth £il1, aaw&mﬁing to ﬁh&a mﬁ@iﬁi&é fiaiﬂ 1oad condition
1s shown gr&phivalzy in Pig. 15% N

‘Under such modified loading condition it is possible to
express the maman@s,‘%hﬁaﬁﬁa,tﬂhaawa, and deflections of a

pipe as continuous funaﬁi@maymf‘t&a properties of the plpe and
of the soil of whieh the side fills are constructed,
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pressure of he
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| As the loading system is symmetrical with respeet to
both XX and ¥Y axls, an Investigation on a quarter of the ring
will reveal its complete deflection characteristics. Pig. ma
shows the free body ﬁiﬁgm:a of one gquarter of the rings
Fig. 16b shows the position of the C. G. (mntar of gravity)
of a i:m;a@mmal area.

The general expression for moment st any point D(Fig. 16a)
in the ring can be written as:



M = wrr(l=cos8) + M, = (mgammm £8in8( 3~

« wr(i=cose) L 1"‘?’“)

or
e"s1n"6(3-s1n8) - Jur®(1-c0s0)’s
(49)

Due to the symmetry of struecture and loading system we

2, ‘
M= wr (lwcos®) + M, = g

ﬁ ﬂ ‘Sli_)g }*M

C= /'Jme (@ *5/09)

T

know that tangents to the ring center line remain horlzontsl
at B and vertical at A and therefore the summation of angle

changes between A and B, equal to /‘& 8 must equal zerc.

Bince BI 18 constant in thisg case, i%e ﬁaw /‘B Mds = 0.




P6a

The differential length of ring ds = rd6 and the limits A

and B represent linits 6 = 0 and @ = %, respectively.
'@h&n‘jggﬁﬂwﬁa = 0. A4s r is 2 constant, we have

f% Nd® = 0. (50)

0

In Eqs 50 putting the value of M from Eq. 49, we get
/é;% [’“_““ (1=cose) + M~ 2

Evaluating Rﬁgﬂﬁﬁa‘wa can find

*sin’8(3-s18) = Jur’(1ec0s0)"/a8 = 0.
(508)

KA » Wa(& - ) . é Wg’ {513

Bubstituting the vaiuﬁ of My in.EQa‘hﬁ;‘wﬁ get M as
M=k wr'stn’e + br'(Reg) = fwr’ < fur'sin’e(3estne). (490)
4t © = %, M= My, Then

(52)

LR AR & 28
If we consider A and B to be two points on the deflection
eurve of the loaded ring, the horizontal displacement of B
from the tangent drawn to the deflection curve at A, which is
b#, can be expressed as:

E B
e, - HYES
Ay A




vhere ds = pde, = rsin®, the limits of 4ntegration A and B
represent limits 8 = 0, and @ = %, respectively.
Then we have '

by = é /;3 % M ammm (53)

Similarly the vertical displacement of A from the tangent
drawn to the deflection curve at B, which is Ay, can be

expressed as A
by
| B

where X = veose, and other notations have the same values
az in @Mﬁ of &K'
Then we have

A = %f /§ xﬁms&‘a* | ()

:tzx Eﬁ‘i@ 53 wwtﬁwtmg the mfma of M from Eq. 49a
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Evaluating Eﬁ- 53& and mba‘bimﬁmg value of h = eA,, we get
By = 531%¢33ér¥$ (55 )

Similerly wwmw;mg valm mf M in Eqe %, and wamamng
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the integral we get

A (1% fﬁﬁ)
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&pangiar*a formula for haria@ntai éaﬁi&at&@n of a flexible
pipe eulvmw#‘aeﬁiag‘ﬁmé$r his fill-load hyy&tha&is » when the

bedding angle ¢ equals Q%@, reduces tak o
!

E@ﬁ*vﬁf end 57 give a comparison between the results
obtained by this modified field load condition and Spangler's
f£ill=load hypotheslis. A comparison with the experimentel
dmb&*(&howa that Eoe 55,w111 give closer results to the
observed data then those obtained by Eqe 57
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