
Contents lists available at ScienceDirect

Safety Science

journal homepage: www.elsevier.com/locate/safety

Evaluating machine learning performance in predicting injury severity in
agribusiness industries

Fatemeh Davoudi Kakhkia,⁎, Steven A. Freemanb, Gretchen A. Mosherb

a Department of Technology, San Jose State University, San Jose, CA, USA
bDepaertment of Agricultural & Biosystems Engineering, Iowa State University, Ames, IA, USA

A R T I C L E I N F O

Keywords:
Injury severity classification
Injury severity prediction
Machine learning

A B S T R A C T

Although machine learning methods have been used as an outcome prediction tool in many fields, their utili-
zation in predicting incident outcome in occupational safety is relatively new. This study tests the performance
of machine learning techniques in modeling and predicting occupational incidents severity with respect to ac-
cessible information of injured workers in agribusiness industries using workers’ compensation claims. More
than 33,000 incidents within agribusiness industries in the Midwest of the United States for 2008–2016 were
analyzed. The total cost of incidents was extracted and classified from workers’ compensation claims. Supervised
machine learning algorithms for classification (support vector machines with linear, quadratic, and RBF kernels,
Boosted Trees, and Naïve Bayes) were applied. The models can predict injury severity classification based on
injured body part, body group, nature of injury, nature group, cause of injury, cause group, and age and tenure of
injured workers with the accuracy rate of 92–98%. The results emphasize the significance of quantitative
analysis of empirical injury data in safety science, and contribute to enhanced understanding of injury patterns
using predictive modeling along with safety experts’ perspectives with regulatory or managerial viewpoints. The
predictive models obtained from this study can be used to augment the experience of safety professionals in
agribusiness industries to improve safety intervention efforts.

1. Introduction

Occupational incidents can affect workers’ life, both in and out of
work, and impose a considerable economic burden on employers, em-
ployees, insurance companies, medical care systems, and society
(Suárez Sánchez et al., 2011). According to an estimation by the In-
ternational Labor Organization (Organization, 2008), nearly 337 mil-
lion occupational incidents are reported per year globally. Occupational
injuries and incidents are caused through multiple factors that con-
tribute to the occurrence of an incident (Sarkar et al., 2018). Con-
sidering the enormous human capital and financial losses from injuries,
researchers have continually sought ways to gain a better under-
standing of factors that affect the occurrence and severity of incidents,
and to improve the accuracy of predicting the likelihood of future in-
juries (Lord and Mannering, 2010).

A valuable and informative source of injury data with detailed in-
formation about the incident, the injured and the cost of injury is
workers’ compensation claims data. They provide useful details of
workplace incidents such as injury cause and nature, injured body part,
demographics of injured workers, and injury narratives (Wurzelbacher

et al., 2016; Utterback et al., 2012). Using injury data, occupational
incident analysis focuses on identifying prevalent causes of incidents to
design proper prevention measures (Jacinto et al., 2009). Due to the
significance of occupational injury management from the engineering
and economic points of view in industry (Bevilacqua et al., 2008), it is
necessary to learn from past incidents to plan measures that reduce the
likelihood of future incidents (Field et al., 2014).

A review of literature, presented in Section 2 of this work, shows
that machine learning (ML) methods were widely used in classifying
and predictive modeling of future events in various fields including
occupational injury analysis. However, there is no literature on evalu-
ating the performance of ML techniques in classifying and predicting
the severity of occupational incidents in agribusiness industries in the
United States. The aim of this study is to apply, validate and compare
the performance of ML methods in accurately classifying severity of
occupational injury outcomes in various agribusiness industries in the
Midwest of the United States using to a data set with over 33,000
workers’ compensation claims in.

This study contributes to the rare current literature on analysis of
non-farm agricultural-related occupational injuries by evaluating the
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performance of ML methods, and specifically support vector machines
(SVMs), for classification purposes in severity outcome prediction of
such incidents. In addition, interpreting the results from boosted trees
(BT) and Naïve Bayes (NB) models could provide important insights
about the characteristics and severity outcomes of potential future oc-
cupational incidents, which aids safety practitioners and planners in
agriculture-related industries who are interested in revising safety
measures and reducing occupational incident rates.

The second section of the paper includes a literature review of ML
methods and their application for classification and prediction pur-
poses. Section 3 includes a discussion of the workers’ compensation
claims data set that the modeling was based on, followed by a brief
description of methodology. Section 4 presents, assesses, and compares
the results from each classification prediction ML model. Conclusions
and discussion about the performance of the prediction methods, the
effect of classification task on injury severity prediction and the ap-
plications of the proposed analyses in the safety field complete the
paper.

2. Literature review

The typical tool used to study workplace incidents consists of gen-
erally descriptive statistical analysis (Matias et al., 2008). To identify
the hidden patterns in data, more advanced analyses can be done using
large data sets (Chen and Luo, 2016). Comparing traditional statistical
models to machine learning methods, the latter outperforms in pre-
dicting future events (Sarkar et al., 2018). Generally, the machine
learning algorithms that are applied for classification and regression
purposes are decision trees, artificial neural networks, extreme learning
machines, Bayesian networks, and SVMs (Witten et al., 2016).

In classification and predictive modeling, ML algorithms are used
for predicting the class or category of an observation based on the in-
formation extracted from a data set consisting of training data points.
The models are then validated on a set of new data called testing data.
ML classification and prediction models are preferred over parametric
models since the latter does not show optimal performance in catching
the relationship between the independent variables and the target
variable of interest in the analysis (Tixier et al., 2016). Classifying and
predictive modeling of future events has been done successfully in
various fields such as engineering, management, healthcare, and med-
icine (Oztekin et al., 2018; Kavakiotis et al., 2017; Kotsampasakou
et al., 2017; Crown, 2015; Zheng et al., 2018; Chou et al., 2014; Aviad
and Roy, 2011). However, ML techniques have been used on a limited
basis in the analysis of occupational injuries (Sears et al., 2014;
Bevilacqua et al., 2008). A review of literature shows that different ML
methods were applied in a limited way in analysis, classification, and
prediction of occupational injuries, mostly in the construction industry
(Chokor et al., Chen and Luo, 2016; Yi et al., 2016; Tixier et al., 2016;
Leu and Chang, 2013; Rivas et al., 2011), mining industry (Sanmiquel
et al., 2015; He et al., 2010), and crash severity analysis in transpor-
tation (Lord and Mannering, 2010; Ding et al., 2018; Delen et al., 2017;
Alikhani et al., 2013; Yu and Abdel-Aty, 2013; Li et al., 2011).

2.1. Support vector machines

SVMs with nonlinear kernels have been successfully used for clas-
sification purposes due to their ability to map data in a higher dimen-
sional feature space where classes are easily separable (Olson et al.,
2012). Kecman (2005) stated that SVM algorithms have shown com-
parable or higher accuracy in classification and regression problems, in
comparison with other statistical and ML methods. SVM predictive
models yield results with high accuracy in binary classification pro-
blems (Gangsar and Tiwari, 2017). The reason lies in the SVM algo-
rithm, which identifies an optimal boundary able to separate the two
classes of the target variable (Mwangi et al., 2015). The three popular
kernel functions for SVM are linear, radial basis function (RBF), and

polynomial of degree d.

2.2. Gradient boosting trees

Decision trees (DT) have gained popularity because they are trans-
parent and easily interpretable powerful classification algorithm (Olson
et al., 2012). The main reason to use DT is to interpret quantitative and
qualitative patterns in the data to explore hidden information (Sarkar
et al., 2018). Among different classification DT algorithms, boosting
was considered as one of the most important advances in ML over the
last 20 years since it can turn an ensemble of weak classifiers into strong
classifiers (Hastie et al., 2001). Boosting is an ensemble approach that
combines many base models to create predictions (Freund et al., 1999).
While building BT, a sequence of very small trees is grown such that a
successive tree focuses on the attributes of the training set that were
missed in the preceding tree (Hastie et al., 2001). In addition to suc-
cessfully classifying and predicting injury severity out- comes (Sut and
Simsek, 2011), BT models can contribute to identifying factors that
affect incident severity from the input variables (Zheng et al., 2018). In
addition, BT models can be used in computing the extent of each
variable’s importance in predicting the severity classification of an in-
jury (Saha et al., 2015).

2.3. Naïve Bayes

Bayesian classifiers are based around the Bayes rule that uses con-
ditional probabilities for classification of a categorical target variable
based on the input variables (Troussa et al., 2013). The NB classifier is
one of the most widely-used classifiers in machine learning. NB assumes
that variables are conditionally independent and, despite being a sim-
plistic method, it reports the best performance in various classification
tasks (Moreira et al.,). In other words, the NB algorithm reduces the
complexity of Bayesian classifiers by making a conditional in-
dependence assumption that dramatically decreases the number of
parameters to be estimated from the original 2(2n −1) to just 2n when
modeling P(X|Y), where X is the independent variable, Y is the cate-
gorical response variable, and n is the number of independent variables
used in the analysis (Mitchell). In addition, NB is one the fastest clas-
sifiers for prediction and classification purposes on large-scale data sets
that can handle both categorical and continuous data (Bhowmik, 2015).
Therefore, NB has been proven to be a simple and effective ML classifier
in text classification studies (Liu et al., 2013). NB models usually have
high accuracy when the response variable has two classes such as in
injury severity with non-severe and severe classes (Marucci-Wellman
et al., 2017).

3. Material and methods

In this research, a set of data was available from a leading insurance
company located in the Midwest of the United States with 34 variables
in 33,458 rows (claims). After cleaning the data, 16 variables were
selected for the analysis. The 16 columns that were not used in the
analysis included either irrelevant or repeated information. Two col-
umns of insurance account number for the employers who filed the
claims and jurisdiction state of the claims were irrelevant factors to the
severity of the incident. The other columns repeated information since
they included the numerical representation of the categorical variables
selected in the study. For instance, for the variable Type of Injury,
various numerical codes exist such as 06 for medical injuries, 09 for
total permanent injury, etc., Also, Age and Tenure variables were cal-
culated and added to the dataset since the original data included the
date of birth, the date of employment, and the date of incident for the
injured workers. Thus, the unique relevant selected categorical vari-
ables are Market, Sex, Accident State, Class description, Occupation, Type
of Injury, Injury Cause, injury Cause Group, Injury Nature, Injury Nature
Group, Body Part Group, Body Part Injured, and continuous variables are
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Age, Tenure, and Class Code (which is the numerical representative of
Class Description). It is worth mentioning that the variable Market re-
fers to non-farm agribusinesses such as grain handling, feed milling
operations, refine fuels, fertilizer blending and distribution, grain mil-
ling plants, seed conditioning, mushroom farming, dairy processing,
and fruit and vegetable processing.

In predictive modeling, data is preferably divided into training and
test data sets. The reason is that the model that is fitted on the training
set should be applied on the test set for an evaluation of the overall
model performance. The selection of data points’ assignment to train or
test set is done through stratified re-sampling method. Stratified sam-
pling is a well-known sampling technique in data mining that can
adequately capture the characteristics of the data (Shields and Teferra,
2015; May et al., 2010). Stratified sampling is conducted in two steps:
first, the whole data set is split into non-overlapping subgroups (where
data points for any individual stratum are in close statistical agree-
ment); second, data points are re-sampled randomly from the strata into
the two subgroups data called training and testing sets (Rezk et al.,
2017; Sahoo et al., 2012).

3.1. Severity classification

Binary classification is the most popular classification task in ML
modeling (Sokolova and Lapalme, 2009). A typical workers’ compen-
sation claim is monetary value, called “total incurred” amount, which
consists of three main cost categories: medical costs, indemnity costs,
and other expenses. The dependent variable in this study was the se-
verity outcome of an incident based on its workers’ compensation claim
monetary loss. Thus, a new variable, “severity”, was added to the data
set with two main levels. Claims with total incurred cost between $0
and $10,000 were classified as non-severe (NS). Claims with total in-
curred value above $10,000 were classified as severe incidents (S).
Based on the new severity classification, 87.6% of claims were re-
presentative of non-severe incidents followed by 12.29% classified as
severe incidents out of 33,458 total claims.

3.2. Predictor selection

To determine the dependency of two categorical variables, the chi-
square statistical test of independence was used. First, chi-square sta-
tistics plus its relevant P-value was calculated between each attribute
(predictor) and the target variable. If the target variable was in-
dependent of the input variable, the predictor variable was discarded.
Otherwise, the input variable was counted as an important predictor of
the target variable. The result of chi-square analysis is shown in des-
cending order in Table 1. All attributes selected for the study showed a
significantly high chi- square statistics and thus were as independent
variables in the modeling stage.

As shown in Table 1, the type of injury was the most important
factor in determining the severity of an incident. The least important
variable, yet statistically significant, was the injury cause. The chi-
square test showed that the agribusiness industries and the workers’

specific occupation class code were also predictors of the incident
outcome. However, they were not included in the modeling because the
models were built with and without those two variables, yet model
performance did not change. To reduce the complexity and volume of
the proposed models, agribusiness industries and the workers’ specific
occupation class code were not used for the final modeling phase and
results that were presented in this work.

3.3. Partitioning data

Data for this analysis was divided into two parts: training set, and
testing set, using stratified sampling method. The training set includes
70% of the data points. This set is used to fit the model of interest and
estimate model parameters. The model fitted to the training set is, then
applied to the testing set, which includes 30% of data points that have
not been used in the training data points and is used to assess the
overall error of the final model. The decision about the usefulness of a
predictive model is made against the test set.

3.4. Classification and prediction modeling

The methodology in this research was predictive modeling via
several ML classification methods. Three classifiers (1) SVMs with
linear, quadratic and RBF kernels, (2) Boosted Trees (BT), and (3) Naïve
Bayes (NB) were applied for classifying and predicting occupational
incident severity outcomes in agribusiness industries. The reason for
performing SVMs with different kernel functions was the importance of
kernel function selection in improving the accuracy of prediction clas-
sifiers. The response variable was binary severity class of the incident,
and the input variables were those from Table 1 that were selected as
the main predictors of incident severity, using chi-square test, in the
current data set. The analyses were done using JMP Pro statistical
software version (JMP®, Version < 13.2 > . SAS Institute Inc., Cary,
NC, 1989–2007), and MATLAB 2017a (The MathWorks, Inc., Natick,
Massachusetts, United States.).

3.5. Model quantitative performance metrics

To compare classification models, various performance metrics
gained from a confusion matrix are used typically. The confusion matrix
for a binary classifier is shown in Table 2. The confusion matrix, which
has the form of a contingency table, shows how the observations are
spread over actual classes (rows) and predicted classes (Guns et al.,
2012). In classification methods, confusion matrix is the basis of the
predictability power of the model. A confusion matrix shows the correct
and incorrect number of cases classified under a defined target. It is
used to calculate the accuracy of the prediction. The matrix has four
kinds of instances. True positive (TP) and false positive (FP) are in-
stances of correct and incorrect classifications per actual class, respec-
tively. True negative (TN) and false negative (FN) are instances of
correct and incorrect rejections per actual class, respectively (Labatut
and Cherifi, 2011). In this study, the binary confusion matrix for each
ML model was used for calculating the model performance quantitative
measures. In the following, the metrics for model performance eva-
luation are presented and described (Sokolova and Lapalme, 2009;
Guns et al., 2012; Mathew, 2016; Shreve et al., 2011).

Table 1
Variable importance using chi-square test.

Independent variable chi-square p-value

Injury 15989.72 0.00
Nature of injury 3070.40 0.00
Injured body part(s) 2056.01 0.00
Injury cause group 1056.91 0.00
Age 777.63 0.00
Injured body group 513.72 0.00
Tenure 210.80 0.00
Injury nature group 166.29 0.00
Cause of injury 25.96 0.00

Table 2
Confusion matrix for binary classification.

Actual class Predicted class

NS (Negative) S (Positive)

NS (Negative) TN FP
S (Positive) FN TP
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Recall or sensitivity (
+

TP
FN TP( )

) shows the effectiveness of a classifier in
identifying positive labels (Sokolova and Lapalme, 2009). Specificity
(

+

TN
TN FP( )

) shows how effectively a classifier recognizes negative labels

(Sokolova and Lapalme, 2009). Precision (
+

TP
TP FP( )

) evaluates class
agreement of the data labels with the positive labels defined by the
classifier (Sokolova and Lapalme, 2009). F-score ( ∗

+

Precision Recall
Precision Recall

2( )
( )

) is a
weighted average of the recall and precision (Guns et al., 2012; Shreve
et al., 2011). Overall accuracy ( +TN TP

Total
) shows how often the classifier is

correct in overall while overall error rate shows how often the classifier
is wrong in overall ( − Overall Accuracy1 ) (Mathew, 2016).

4. Results

The ML models were used to classify the binary severe/non-severe
response using the input variables from Table 1. In this section, the
performance of the ML models on the training, testing, and overall data
sets is discussed. The quantitative measures of model performance were
gained from the confusion matrices, which included the frequency of
the binary response in actual and predicted classes. The model perfor-
mance metrics are also explained. A discussion of the information
gained from BT and NB models regarding the factors influential on
predicting the injury severity outcomes, completes this section.

4.1. Analysis and model evaluation

Data was split into training set (70%) that includes 23,421 incidents
and testing set (30%) that has 10,037 incidents records. Assigning data
points to the training and testing data sets was done using stratified re-
sampling. The models that were built using the training data were then
used on the testing data to evaluate their performance. Table 3 includes
the results of models in classifying severe and non-severe injuries in
actual versus predicted relevant categories.

Results form Table 3 were used to calculate the numerical values for
recall, specificity, precision, F-score, overall accuracy, and overall error
(misclassification) metrics per model. The main purpose of comparing
model performance is determining the accuracy differences among all
model types to choose the best model (Oztekin et al., 2018). The pre-
diction results on test data sets are presented in Table 4.

Positive and negative classes in this study were considered as S, and
NS respectively. This was used in interpreting recall and specificity
values. Recall value showed the models’ performance in classifying the
S cases while specificity revealed the models’ ability in classifying the
NS cases correctly. All models were capable of classifying NS injuries
with high accuracy between 94.28% and 99.64%. This was expected
due to the high frequency of NS cases in the original data set. Regarding
the recall values, SVM (RBF) had the highest overall classifying power
of 89.55% compared to all others that had a recall value between
64.02% and 80.83%, considering both training and testing datasets.
This is important since the proportion of S cases was only 12.29% of all

the data points.
Another metric used in this study was F-score. To evaluate the

performance of a classifier, the F-score is one of the most useful mea-
sures since it is the harmonic mean of precision and recall (Mathew,
2016). Overall, SVM classifiers showed a higher F-score compared to BT
and NB with values of 0.72, 0.75, and 0.92 for linear, quadratic and RBF
kernels respectively. Considering F-score as a weighted measure of
performance between recall and precision, SVM (RBF) showed better
performance in predicting the incident severity classification.

Based on the performance metrics for all models, SVM with RBF
kernel outperformed the linear and quadratic SVM models, as well as
the BT and NB models, indicating the best performance. In addition, all
SVM models, regardless of the kernel function, showed equal or higher
values of F-score, overall accuracy, and lower overall misclassification
rate compared to BT and NB.

4.2. Application in safety

Based on the analysis in this study, BT and NB models did not show
the best performance in predicting incident severity outcomes. Yet, they
had a considerable predictive accuracy and could provide useful in-
formation about the most important factors in predicting the severity of
occupational incidents in agribusiness industries. The results from the
BT models indicated that, on average, the most significant variable in
prediction of injury severity level was the type of injury (61.14%).
Cause of injury, injured body part (s), and nature of injury were sta-
tistically important variables as well. The least significant variables in
estimating the severity outcomes were age and tenure of the injured
workers. Considering layouts for all of the trees, the factors with the
highest contribution to severe injuries were identified. All permanent
partial disabilities were predicted as severe. The causes of injury that
contributed significantly to the severity of occupational injuries in this
analysis included injuries caused by repetitive motions, twisting,
pushing and pulling, lifting, strain, slip on ice or snow, falling from
ladder or elevation, using tools or machinery, objects being lifted or
handled, and falling or flying objects. The injured body parts and
groups that contributed to the severity of occupational injuries in upper
extremities and lower extremities were predicted to occur in shoulder
(s) and knee, lower leg, ankle, wrist, elbow, skull, soft tissues, hip, and
abdomen including groin. The most significant natures of injuries pre-
dicted to result in severe injuries included concussion, dislocation,
carpal tunnel syndrome, hernia, rupture, fracture, strain or tear, mul-
tiple injuries, and respiratory disorders.

According to the NB predictive model, permanent partial dis-
abilities, in addition to temporary total or temporary partial disabilities,
had higher probability of ending severe compared to other types of
injuries. In addition, cause groups of injury with the highest contribu-
tion to severe incidents were strain or injury by, and fall, slip, or trip
injury groups. Considering cause of injury, injured body part (s) and
groups, and injury nature, results from NB models agreed with the BT
identifying the same factors and levels as the most important predictors
of severe incidents.

These results are significant in practicing safety analytics since they
show high predictive and accurate classification power. In addition, the
proposed models can assist safety practitioner for the purpose of clas-
sifying potential incidents, identifying the link between underlying
causes of injuries, and planning relevant strategies to remove such
causes to reduce or eliminate sources of injury at work places.

Another application of the proposed modeling is that safety prac-
titioners can prioritise to invest available resources on preventing those
incidents that have a higher probability of turning into severe injuries
and impose much higher burden on all involved parties including the
injured workers and employers. For instance, the analysis showed that
type of injury can help to predict the severity of the incidents up to
61%. To see how important the injury type was in the severity of the
incident, the following information was extracted from the NB model.

Table 3
Confusion matrix for all models (train vs test data).

Model Actual class Predicted (train) Predicted (test)

NS S NS S

SVM (linear) NS 20,100 443 8,620 183
S 1,010 1,868 44 790

SVM (quadratic) NS 20,104 439 8,638 165
S 920 1,958 389 845

SVM (RFB) NS 20,465 78 8,775 28
S 412 2,466 129 1,105

BT NS 20,095 448 8,622 181
S 1,002 1,876 792 1,234

NB NS 19,392 1,151 8,274 529
S 658 2,220 274 960
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This was a scenario for an injured 41-year-old worker with 5.5 years at
work with an incident caused by slip or trip in the pelvis in the lower
extremities body group. When the injury was a medical type, it had
90% chance of ending as a non-severe injury while the same injury
resulting in permanent partial disability had 97% chance of becoming a
severe injury with high cost.

Another example of the applications of the modeling results in
safety management of workplaces is the NB model that can provide
information about the dominant causes of incidents that have a higher
probability of resulting in severe permanent partial disability injuries.
Those injuries caused by object being lifted, or handled, stepping on
sharp object, temperature extremes, dusts, gases, fumes, or vapors, and
fall from elevation (different levels) have a higher probability of turning
into severe permanent partial disability injuries.

5. Conclusions

Many studies have applied regression and classification models in
prediction of injury outcomes in various fields including medical,
mining, and construction sectors. To the authors’ knowledge, this study
is the first to apply three machine learning methods in classifying injury
severity outcomes in agroindustry. This study incorporated a large data
set with a large number of demographic information and injury specific
details in prediction of occupational injury severity in agribusiness in-
dustries. The relative variable importance helped in providing insights
about the information with higher value in predicting injury severity
level.

Considering all metrics of model evaluation, support vector ma-
chines with RBF kernel outperformed all other models in the current
data set and can be proposed as a superior method for injury severity
outcome prediction based on information from workers’ compensation
claims data. The high prediction power of the support vector machines
classifiers indicate that they supersede simpler models such as boosting
trees and Naïve Bayes in correctly and specifically classifying a target
variable and justifies the choice of machine learning algorithms over
parametric models. In addition, the results indicated that the machine
learning models were able to predict the severity of injury outcomes
with the highest accuracy rate of 98.44% on the test data with 99.68%
accuracy in classifying non-severe and 89.55% accuracy in classifying
severe outcomes successfully. This suggest that injury severity is not
random and underlying patterns and trends can be revealed and dis-
cussed using powerful machine learning models. According to this
study, the authors suggest that occupational injuries should be studied
empirically and quantitatively in addition to being qualitatively ap-
proached through expert opinions with regulatory or managerial per-
spectives only. This provides the ground for applying quantitative
modeling techniques in addressing safety concerns prior to, or along
with, risk planning and management. Machine learning models can be
used in complementing the experts’ opinions including data-driven
decision-making for safety practitioners and risk analysts in safety
management field. For instance, the machine learning models built
based on prior data for a specific industry can be used on new injury
data from similar industries as a useful platform for providing safety
practitioners with actionable feedback to plan more effective inter-
vention efforts in a given workplace.

Even though the support vector machines showed the highest

predictive and classification power in this study, they have been criti-
cized for performing as a black-box which cannot be directly used to
identify the relationships between the input variables and the outcomes
(Li et al., 2011). To extract the detailed information about the re-
lationship between the input variables and the outcomes, sensitivity
analysis is used as a valuable method to evaluate the relationship be-
tween the inputs and outputs. A future study can focus on sensitivity
analysis to provide insight from SVMs models to improve the applica-
tion of analytics in safety field.

It should be noted that the results of the study are conditional on the
occurrence of the incident. In other words, the machine learning models
used the information from the workers’ compensation claims that are
filed for a past occupational injury as the predictors of injury severity.
Predicting the severity of injury outcomes is valuable if done prior to
the occurrence of incidents based on workers’ medical records, injury
history, and work environment. Since a consistent database linking the
medical records and injury history of the workforce in specific sectors is
currently unavailable, future research can focus on gathering such data
to identify the important predictors of injury severity based on workers’
specific medical history combined with the workplace environmental
factors. Another area for future research would be to combine workers’
medical data and workers’ compensation data to model the interactive
factors of injury, injury severity and costs, to predict days away from
work as the result of the injury. Another important direction for future
research is to apply the same machine learning techniques in other
industries to validate the techniques and results of this study.
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