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CHAPTER 1 GENERAL INTRODUCTION 

1.1 Background 

Let {Xi}iE% be a sequence of random variables defined on the same probability space 

(fi, J7, P) with common distribution function F, where Z = {0, ±1, ±2,...} denotes the set of 

all integers. Let F~l be the corresponding quantile function, defined by 

F-1 (t) = inf{u : F(u) > t}, 0 < t < 1. (1.1) 

For a sample Xi, • • • , Xn ,  n > 1, let Fn  denote the empirical distribution function, putting 

mass l/n on each Xi, i.e., 

n 

Fn(x) = n-1 ̂ 2l(Xi < x), x € E, 
i=1 

where /(•) denotes the indicator function, with I(S) = 0 or 1 according as the statement S 

is false or true. Then, F"1 is the sample quantile function. If Xi, • • • , Xn are independently 

and identically distributed (i.i.d.) random variables and F is differentiate at the population 

quantile F~1 (p) with a positive derivative f(F~1(p)) for some p E (0,1), then the p-th sample 

quantile is asymptotically normal. More precisely, the centered and scaled sample quantile, 

Zn=V%rl(p)-F-l(p)), (1.2) 

converges in distribution to N ( 0, \ J p {  1 —  p ) //2(F_1 ( p ) ) )  as the sample size n  — > •  oo. 

Like population means, population quantiles are also very important parameters. For 

statistical inference about the population parameter F~1(p) (e.g., for setting a confidence in­

terval for F-1 (p) using the limiting normal distribution), estimation of the asymptotic variance 

\/p{ 1 - p)//2(F_1 (p)) is an important problem. The classical Jackknife method is known to 
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be ineffective in this problem, as the resulting Jackknife variance estimator is inconsistent 

(cf. Efron (1982)). As an alternative, bootstrap approximations for the distribution and the 

asymptotic variance of the sample quantiles have been extensively studied in the literature in 

the i.i.d. situation. Bickel and Freedman (1981) and Singh (1981) proved that, in the i.i.d. set 

up, under some regularity conditions on F, the bootstrap approximation to the distribution 

of the statistic Zn is strongly consistent. Furthermore, in a significant work, Ghosh, Parr, 

Singh and Babu (1984) showed that under some mild moment and smoothness conditions, the 

bootstrap variance estimator of the normalized sample quantile was strongly consistent. As a 

result, in the i.i.d. set up, the bootstrap method is superior to the classical Jackknife method 

for estimation of asymptotic variances of sample quantiles. 

In the dependent case, under suitable mixing conditions on the process {Xi}içz and un­

der mild regularity conditions on the one-dimensional marginal distribution function F, the 

centered and scaled p-th sample quantile, Zn = y/n(F~1(p) — F~1(p)), is also asymptotically 

normal with mean zero and variance given by 

= [ ^ Cov(7(Xi < F-i(p)),7(X,+i < F-i(p)))]/f (F-'(p)) (1.3) 
i——oo 

(see, for example, Sen (1972) or Theorem 2.1 below). Thus, under dependence, the asymptotic 

v a r i a n c e  o f  t h e  p - t h  s a m p l e  q u a n t i l e  n o t  o n l y  i n v o l v e s  t h e  d e n s i t y  o f  t h e  r a n d o m  v a r i a b l e  X \  

at the population quantile F~1(p), but at the same time, an infinite series of lag-covariances 

of the transformed sequence {I(Xi < F~l (p))};ez- We shall show that, in spite of the more 

complicated form of the limit distribution of Zn, the simple blocking mechanism of the moving 

block bootstrap method (cf. Section 1.2 below) captures both the effect of the dependence 

structure of the process {X,}jgz (given by the infinite series in the numerator of r^,) and the 

effect of the nonlinear nature of the sample quantile (quantified by the density function of 

individual X,-'s) on the limit distribution of Zn .  

Although properties of the bootstrap method for sample quantiles in the independent case 

is well studied in the literature, no work seems to be available on properties of bootstrap 

approximations for sample quantiles when the observations are dependent. The main objective 

of this dissertation is to investigate asymptotic properties of bootstrap methods for estimating 
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the sampling distributions and the asymptotic variances of the sample quantiles under weak 

dependence. 

1.2 Literature Review 

1.2.1 Moving Block Bootstrap Method 

It is well-known that, in the i.i.d. set up, compared to the classical normal approximation 

method, Efron's (1979) bootstrap resampling procedure provides more accurate approxima­

tions to the distributions of many regular statistics, e.g., smooth functions of sample means 

(cf. Singh (1981), Babu (1986)). However, it fails to provide valid approximations in the situa­

tions when the observations are dependent. In his Remark 2.1, Singh (1981) pointed out that, 

even in the simple m-dependence case, Efron's (1979) bootstrap approximation to the distri­

bution of the normalized sample mean is invalid. Block bootstrap methods for dependent data 

have been put forward by several authors. Carlstein (1986) initiated the idea of nonoverlap-

ping block bootstrap (NBB). Politis and Romano (1992) proposed the circular block bootstrap 

(CBB) rule. Kiinsch (1989) and Liu and Singh (1992) independently proposed a substantially 

important resampling procedure, called the moving block bootstrap (MBB). Recently, Papar-

oditis and Politis (2001) proposed a resampling method called the tapered block bootstrap. 

See Lahiri (2003) for a detailed account of bootstrap methods in the dependence case. For def-

initeness and conciseness, in this dissertation, we shall exclusively concentrate on the moving 

block bootstrap method of Kiinsch (1989) and Liu and Singh (1992). Similar conclusions can 

be proved for certain other variants of the block bootstrap method, as pointed out in Remark 

3.3 of Chapter 3 below. 

We now briefly describe the MBB method, which is frequently used for estimating the 

u n known distributions of statistics based on weakly dependent data. Let Xi, • • • , Xn denote 

the observations from the stationary process {X,};ez. For I, a positive integer between 1 and 

n, we define the overlapping blocks of size i as 

Bi = (%,, • • • ,Xi+e-i),i = 1, • • • ,  n -  i + 1. 
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Let Bl, • • • , be a random sample of blocks from {B\, • • • , -Bjv}, where N = n — € + 1 , 6  =  

[72,/lJ, i.e., , • • • , are independently and identically distributed as UniformjBi, • • • , Bjv}-

Here and in the following, for any real number x, we denote by [»J the largest integer not 

exceeding x, and by [x] the smallest integer not less than x. The observations in the resampled 

block B* are denoted by X|*_1^+1, • • • , X*e, 1 < i < b. Then, Xf, - , X£, • • • , X*t is the MBB 

sample, where n\ = 61. Let 

Tn  = tn(X i,... ,Xn~,9) (1-4) 

be a random variable of interest that is a function of the random variables {Xi,... , Xn} and 

of some unknown (possibly vector valued) population parameter 9. Then, the MBB version of 

Tn is defined as 

= (1-5) 

where 9n  is a suitable estimator of 9 based on {Xi,... , Xn}. The MBB estimator of the 

distribution of Tn  is given by the conditional distribution of T*, given Xn  = {Xj, • • • ,  Xn}. 

For an example, suppose that Tn  = ̂ (Xn  — 9), with Xn  = n-1 X,- and 9 = EX\. 

Then, the above description of the MBB method suggests that the MBB version of Tn be given 

by T* = y/n{(X* - 6n), where we write X* = n^1 ^"=1 X* f°r the bootstrap sample mean and 

where 9n = E*(X*). Throughout this dissertation, we use P*, E*, and Var* to denote, respec­

tively, the conditional probability, the conditional expectation, and the conditional variance, 

given Xn. An alternative definition of the MBB version of Tn of (1.4) is given by resampling 

[n/l] blocks from {£?i, • • • , Byv}, and using the first n out of the \n/C| -£-many resampled val­

ues. However, the difference between the two versions is asymptotically negligible. To simplify 

the proofs of the main results, here we shall use the version given by (1.5) based on b complete 

resampled blocks. 

Next we define the MBB version of the p-th sample quantile and of its centered and scaled 

version Zn, for a given p € (0,1). Let F* denote the MBB empirical distribution function, 

i.e., F*(x) = n~[l Ym=\ < x), x £ R. Then, the MBB version of the sample quantile 

in = F~1(p) is defined as £* = F*~1(p). Similarly, the MBB version of the centered and scaled 
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sample quantile Zn  — y/n(in  - £p) is given by 

z; = ̂ r(C-W, (1.6) 

where £p = F~ l  (p), £„ = Fn 
1 (p), and F„(-) = F*F*(-). Note that in the definition of the MBB 

version of Zn, we center by fra. As in the case of the sample mean (cf. Lahiri (1992)), this 

appears to be the analogous centering constant for the bootstrap sample quantile. Because 

F* is a valid distribution function for each set of resampled {Xj",. .. , X*t}, the function 

Fn(x) = F*F*(z), z G R, is also a valid distribution function. Hence, £„ is well-defined. Let 

Gn(x) = P(Zn  < x), i G l ,  ( 1 . 7 )  

denote the distribution function of Zn .  Then, the MBB estimator of Gn(x) is given by the 

conditional distribution of Z*, i.e., by 

Gn(z) = FL(Z; < I), z € R. (1.8) 

Furthermore, the MBB estimator of the asymptotic variance of Zn  (cf. (1.3)) is given by 

the conditional variance of Z*, i.e., by 

= yor»(z;). (1.9) 

In the independent case, properties of the bootstrap approximation for the sample quantile 

have been studied by Efron (1979, 1982), Bickel and Freedman (1981), Singh (1981), Ghosh et 

al. (1984), Babu (1986), Hall and Sheather (1988), Hall and Martin (1988), Hall, Diciccio and 

Romano (1989), and Falk and J an as (1992), among others. For weakly dependent processes, 

properties of various block-bootstrap methods (for smooth functions of the data) have been 

studied by Lahiri (1992, 1996a, 1996b, 1999), Biihlmann (1994), Naik-Nimbalkar and Rajarshi 

(1994), Hall, Horowitz and Jing (1995), Gôtze and Kiinsch (1996), among others. See Lahiri 

(2003) for a detailed account of results on bootstrap methods in the dependent case. In 

this dissertation, we investigate the properties of the MBB method in the case of nonsmooth 

functional, the sample quantiles. 



1.2.2 Stationary Processes and Mixing Conditions 

We now introduce some measures of dependence between the observed random variables. 

Suppose that random variables {Xz},ez are defined on the same probability space (f2, F, P). 

The sequence {X,};ez is called (strictly) stationary if, for any positive integer fc, any ti,- • -tk E 

Z, and any h E Z, the distribution of (X^+h, • • * , Xtk+h) is the same as the distribution of 

(Xtl, • • • ,Xtk). Let J7™ = a(Xi : m < i < n,i E Z), -oo < m < n < oo, i.e., is a cr-algebra 

generated by the random variables Xm, • • • , Xn. For n > 1, we define 

a(n) = sup sup \P(AC\ B) — P(A)P(B)\ 
mez 

and 

m = nf sup I P M n f l ) - P ( A ) P ( B ) |  

The sequence {X{}iez is called uniformly mixing or <f>-mixing if <f>(n) —> 0 as n —> oo, and it 

is called strongly mixing or a-mixing if a(n) —y 0 as n —> oo. In this dissertation, we shall 

focus on the situation when the observations are from a a-mixing process with polynomially or 

exponentially decaying coefficients. It is easily seen from the definitions that «^-mixing implies 

a-mixing. 

As a convention, we assume throughout this dissertation that, unless otherwise specified, 

limits are taken as n —> oo. 

1.3 Dissertation Organization 

This dissertation is organized as follows. In Chapter 2, we investigate consistency properties 

of MBB approximations to the distribution of the scaled and centered sample quantile of 

weakly dependent data. Strong consistency of the MBB estimators of the asymptotic variance 

of the sample quantile is established in Chapter 3. In Chapter 4, a Berry-Esseen Theorem 

for sample quantile under weak dependence is discussed. Chapter 5 gives a refinement of the 

result in Chapter 2 by examining the rate of convergence of the MBB approximation. Finally, 

conclusions are addressed in Chapter 6. 
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CHAPTER 2 MBB DISTRIBUTION APPROXIMATION 

2.1 Introduction 

In this chapter, we investigate consistency properties of block bootstrap approximations for 

sample quantiles of weakly dependent data. Under mild weak dependence conditions and mild 

smoothness conditions on the one-dimensional marginal distribution function, we show that 

the moving block bootstrap (MBB) method provides a valid approximation to the distribution 

of the normalized sample quantile in the almost sure sense. More specifically, we show that 

the MBB approximation to the distribution of the centered and scaled sample quantile is 

strongly consistent under a mild polynomial strong mixing rate. For the proof, we develop 

some exponential inequalities for block bootstrap moments and some almost sure bounds on 

the oscillations of the empirical distribution function of strongly mixing random variables, 

which may be of some independent interest. 

Sample quantiles have been extensively studied in the literature. In the i.i.d. set up, Ba­

hadur (1966) introduced an elegant representation for the sample quantiles in terms of the 

empirical distribution function, which is usually referred to in the literature as Bahadur repre­

sentation for sample quantiles. The Bahadur representation allows one to express asymptoti­

cally a sample quantile as a sample mean of certain (bounded) random variables, from which 

many important properties of the sample quantile, e.g., the central limit theorem, the law of 

iterated logarithm, may be easily proved. Under dependence, Sen (1972) gave the Bahadur 

representation for sample quantiles for the sequence of ^-mixing random variables. Babu and 

Singh (1978) established a Bahadur representation for sample quantiles under the assumption 

of a-mixing with exponentially decaying coefficients. A Bahadur representation result given by 

Yoshihara (1995) requires that the random variables are from a bounded, a-mixing sequence 
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with a polynomially decaying rate. 

For those situations where a Bahadur representation for sample quantiles exists, consistency 

properties of bootstrap approximations to the distributions of the sample quantiles will also 

follow from consistency results on bootstrapping the empirical process. We refer to Arcones and 

Giné (1992), Biihlmann (1994), Naik-Nimbalkar and Rajarshi (1994), and Radulovic (1998) 

for some details of bootstrapped empirical processes. This chapter is focused on investigating 

the properties of the sample quantiles under a more general weak dependence assumption, say, 

a-mixing with polynomially decaying coefficients. It appears that no Bahadur representation 

result is available under this dependence structure . Here, we shall use the central limit theorem 

for triangular arrays under weak dependence (cf. Lemma 2.1) to obtain a central limit theorem 

for the sample quantile under fairly weak conditions. A machinery for the empirical distribution 

function and sample quantile is built to prove the consistency of MBB approximations to the 

distributions of the sample quantiles. 

The rest of this chapter is organized as follows. In Section 2.2, we investigate the asymptotic 

normality of the centered and scaled sample quantiles based on weakly dependent observations. 

The consistency property of the MBB approximation to the distribution of the normalized 

sample quantile function is discussed in Section 2.3. A small simulation study is presented in 

Section 2.4. 

2.2 Asymptotic Normality of Sample Quantiles Under Weak Dependence 

,We first introduce some basic notation. Let C, C(-) denote generic constants in (0, oo) that 

depend on their arguments (if any) but not on the variables n and x. For real numbers x and 

y, write x A y = min{x, y} and x V y = max{x, y}. Let Z, N denote the set of all integers and 

the set of all positive integers, respectively. For a random variable X and a real number q, we 

define 

' if g<=[l,oo) 

ess.sup.(X) if q = oo. 
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For random variables X and Y, we write X =d  Y if X and Y have the same probability 

distribution. Recall that unless otherwise indicated, limits are taken by letting n tend to 

infinity. 

We now present a result that will be used to establish the asymptotic normality of sample 

quantiles based on strongly mixing observations. It is an extension of Theorem 1.7 of Bosq 

(1998), from sequences of random variables to triangular arrays. 

Lemma 2.1 Suppose that {Xnj : j  G Z}n>i is a double array of zero-mean real-valued (row­

wise) strictly stationary strong-mixing process with (row-wise) strong-mixing coefficients «„(•), 

n > 1, such that for some y > 2 andC > 0, ElXn^p < C and an(j) < Cj~@, j > 1, n > 1, 

where (3 > • U 
71—1 

a2  = Jirn^ ^2 Cov(Xn ti,Xn ,1+j) > 0, 
j = -(n-l) 

then we have 
Vn Y • 

(Ty/n 

Proof: Note that by Davydov's inequality (cf. Corollary 1.1 of Bosq (1998)), we have 

72—1 

<72  = 
E ( x n ,  i ,X n A + j )  

j= —(n—1) 

-y 
— 2 • —j-r • (2an(j)) i ||Xroii||7||Xnji+j||7 

j= - (n -1 )  

< lim V 2-^—-(2Cr6)^-C2 '1  

7 - 2  

< oo, 

since /3 >  7 / ( 7 - 2 ) .  Thus, a2  is well-defined here. 

For any two sequences {on}n>i, {bn}n> 1, we write an  ~ bn  if lim^oo an/bn  = 1. Let 

r ~ logn, p ~ n/logn — n1/4, q ~ n1/4 .  (2.1) 
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We then construct blocks of variables as follows 

jp+(j-i)g i(p+<?) 
Vn,J = 53 '  Vn,j  = , for j = 1, • • • , r , 

i=(j-i)(p+g)+i »=jp+(i-i)g+i 

and 

Rn = (^n,r(p+g) + l + h -Xn,n)-f(r(P + ç) < Tl) . 

By Theorem 3 of Bradley (1983), there exists a triangular array of independent random 

variables, Wnji, - - - , Wn>r such that iynj- =d Vnj, j = 1, • • • , r. Here we use AT =d Y to indicate 

that the random variables X and Y have the same distribution. And for all j 6 {!,••• , r}, for 

every e > 0 

P(|w„ - K.,l > €) < 18 W K(«))^ • (2-2) 

We define 

A _ K,1 + • • • + Vn,r Wn,l + ' '  1  + Wn,r 
ûln — — " 

A2 n — 

(Ty/n P\/n 

Wn t  i + • • • + W n ir 

Oy/n 

v ' ,  A  \ ~ V '  
A3n = "-1 ",r (2-3) 

(Ty/fl 

By equation (2.1) and Bonferroni's inequality and Minkowski's inequality, we have 

f (|Ai»| >6) < r -18 K(9))^ 

. 18 ^ 

1 7 7 27 _a 27 
< r - 18 • C2^1 e 27+1 n2(27+i) . C2^1 q p '2^+ l  

= o(l) (2.4) 

We now use some moment inequality (cf. Yokoyama (1980)) and Liapounov's central limit 

theorem (cf. Chapter 27 of Billingsley (1995)) to prove the asymptotic normality of It 

can be shown that if j ' is close to 2 and 2 < 7' < 7, 
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where C' is a positive constant. For details, we refer to Yokoyama (1980). 

It can also be proved that (cf. proof of Theorem 2.1 below) 

E^ = E^ = ̂ p(l + o(l)). 

Then 

y Ei^r' , <CL c v ' n  ^ _ r ( 1 )  

~{{VarJ2rj=iW^j)'y'/2 V {o2rpy/2) 

indicating that the triangular array {Wnj}j=1 satisfies Liapounov's condition. Thus we apply 

Liapounov's central limit theorem to {Wn,j}rj=i and get 

A2„ = M1 '2  • + " ^ N(0,1). (2.5) 
\n J Oy/rp 

By (2.2)-(2.5) and Slusky's lemma, Lemma 2.1 will follow if we can show the following 

— Op(l), Rn  — Op(l) . 

Note that by the same arguments above, we may show that 

N ( 0 , 1 ) .  
"I 1" K,r J 

(r^/gr 

Hence 

Finally, if r(p + q) < n, 

P{Rn  > e) < 
E\X n ,r(p+q) + l + ' '  " + X 12 

n,n\ 

a2n 
a2(n -  r(p + q) -  1)(1 + o(l)) 

a2n 

«(I) , 

and conclude that Rn  = op(l) by Chebyschev's inequality. Thus we complete the proof of 

Lemma 2.1. • 
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Now, we are ready to give conditions for the asymptotic normality of the centered and 

scaled p-th sample quantile 

Zn — \Aî(Çn ~ £p) i 

for a given p E (0,1). Recall that, £n  — F~x  (p) and £p = F_1(p). The proof is based on 

Lemma 2.1. 

Theorem 2.1 Suppose that F is differentiable at £p  with a positive derivative /(£p) > 0 and 

that a(n) < Cn~@ for some C > 0 and (3 > 1. Then, 

where is as defined in (1.3). 

Proof of Theorem 2.1: For a real number z, define >j(x) = I(Xi < x), i = 1,2, • • •. Then 

Yi(z), >2(2:), • • • is a strictly stationary sequence with mean F(x) and auto-covariance function 

Rj{x) = Cou(y'i(a:),y1+_?(a:)), j E Z Further, by Billingsley's inequality (cf. Corollary 1.1 

of Bosq (1998)), |Ej(z)| < 4a(j) < 4j'13, j E Z. Thus, 

OO OO 
<4,(z) = g Cor(7(%i<i),7(%i+j<z))= Cov(yi(%),%+,(%)) (2-6) 

j — — OO j —— OO 

converges absolutely. Let y„(x) = ^ 53™= 1  ̂ zi(z)- Then, f^(z) = Fn(x), where Fn(x) is the 

empirical distribution function of the sample Xi, • • • ,  Xn .  

By the stationarity of {%,}, 

Var{y/nYn(x)) = ~^ar Yi(x)j 

= ;ÊÈC°»« W.nW) 
2 = 1 j = l 

(1 -
j=~(n-1) 

= o-n
2(x) (say). 
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Note that by Kronecker's lemma, 

n— 1 

j>n j=-(n-1) 

< 4 E a(j) + \ E \j\aU) 
j>n j--(n-1) 

0 

implying that an
2(x) converges uniformly to a^x). Thus, we have 

lim V a r ( \ / n Y n ( x ) )  = lim a n
2 ( x )  = ( T ^ x )  uniformly in x  (2.7) 

Next we show that o - ^ ( x )  is continuous at x  = £p. Because ct(n) = 0 ( n  @ )  for some ( 5  >  1, 

it follows that for any e > 0, there exists a positive integer N such that 

OO 
E < f/12 -

|il=w+i 

Also note that for any j, R j ( x )  is continuous at x  —  £p. Then for the same e, there exists a 

S > 0 such that for arbitrary real number Xi satisfying |zi - £p| < 5, we have 

N N 
g a,(%i) - E 

j=-N j——N 
< 6/3. 

Hence, 

koo(a=i)-^oo((p)l < 
N N 

E %(zi) - E 
j=—N j=—N 

+ E l^((p)l 
\j\=N+l 

< e/3 + 2 E 4aU) 
|i|-N+i 

< £, 

+ E 
liNv+i 

which shows that cr^(z) is continuous at x  —  £ p .  

Next, let x n  =  £ p  +  x / y / n .  Then, for any x  € M, by the uniform convergence of u 2 ( x )  to 

cr^(x) and the continuity of <7^,(2) at x = £p, we have 

lim Var(y/nFn(£p  + x/y/n)) = lim al(xn) = cr^(£p) = a2^ {say). 
n-ï oo 

(2.8) 
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We define Ynj = I { X j  < xn) — F(xn), j G Z, n = 1, 2, • • •. Then 

% i r < i  v - r > o ,  T i > i .  

And the variables {Y n , j  : j G Z} is a strictly stationary a-mixing process with coefficients 

an(j) satisfying 

< 4«(j) < j > 1, m > 1. 

Now applying Lemma 2.1 to the array {Ynj : j G Z}„>i and using (2.8), we have 

y i ï ( F n { x n )  -  F ( x n ) )  = Ej=i Ynj ^ ̂ 

&oo Q oo \/^ 

Also note that by the differentiability of / at £p, 

\A^(P -  F(xn)) -xf(£p) 

for any x G M. Hence, it follows that 

P(Fn(£p + x/y/n)>P) = P  , 
\ ~QO 

/ VM(&(z^) - F(zn)) > y / n ( p -  F ( x n ) )  

X (Too ~ 

^ $(z/((p)/(Too) . 

By similar arguments, for any ifR, 

f $(z/((p)/coo) -

By the definition of £n, 

P{Fn(£p  + ®/>/n) > p) < - Cp)) < «) < P(Fn(Çp  +  x/Vn) > p) 

Thus, it follows that 

^Ar(0,(7i/f(W). 

This completes the proof of Theorem 2.1. • 

Note that the conditions imposed on the dependence structure of the X^s and on the 

ma r g inal distribution of Xi here are fairly non-restrictive. Asymptotic normality of Zn for 

mixing random variables under stronger conditions also follows from the results of Sen (1972), 

Babu and Singh (1978), and Yoshihara (1995), who obtained Bahadur-representations for 

sample quantiles. 
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2.3 Validity of the MBB Approximation 

In this section, we consider the validity of block bootstrap approximation to the distribution 

of the sample quantiles under dependence. The following main result asserts the consistency 

of the MBB approximation for the distribution function of Zn .  

Theorem 2.2 Assume that 0 < p < 1 and that F has a positive and continuous derivative 

f in a neighborhood Afp  of £p  with /(£p) > 0. Also, suppose that a(n) < Cn~73  for some 

C E (0, oo) and /3 > 9.5, and that £ = 0(n1/2_??) for some rj E (5/(2 + 4/3), 1/2). Then, 

sup |P*(V4C - Ç„) < x) -  P{Vn(£n  - £p) < z)| = o(l) a.s. 

Theorem 2.2 shows that the MBB method provides a valid approximation to the distribu­

tion of the centered and scaled sample quantile Zn in the almost sure sense under a polynomial 

strong mixing rate and under a mild condition on the block length I. Note that for /? > 9.5, 

5/(2+4/3) < 1/8. Hence, for any /3 > 9.5, the MBB approximation remains valid for block sizes 

£ that grow to infinity at the rate 0(n3/8). Furthermore, Theorem 2.2 allows the block size 

£ to grow at a rate 0(n1/2-e) for an arbitrarily small e > 0, provided that /3 is appropriately 

large (viz., (3 > [5(e)-1 — 2]/4). In the independent case, validity of Efron's (1979) bootstrap 

for the sample quantiles was established by Bickel and Freedman (1981) and Singh (1981). 

Theorem 2.2 is an extension of the basic consistency result to the case of weakly dependent 

random variables for the MBB method. 

As in the case of block bootstrap methodology for smooth functions of the data, per­

formance of the block bootstrap distribution function and variance estimators of Zn critically 

depends on the block size I. There has been some work on the choice of the optimal block length 

in approximating the distributions of statistics based on sample means (cf. Hall, Horowitz and 

Jing (1995)). We shall discuss the optimal block length and the optimal rate of convergence 

of Theorem 2.2 in Chapter 5. 

The main tools used for proving the strong consistency result are (i) an 'exponential in­

equality' for sums of block variables (i.e., for block-bootstrap moments, cf. Lemma 2.2, Section 
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2.4), and (ii) a bound on oscillations of the empirical distribution function of strongly mixing 

random variables under a polynomial strong mixing condition (cf. Lemma 2.5, Section 2.4), 

which may be of some independent interest. For proving Theorem 2.2, we shall first develop 

some results which are presented in the form of following lemmas. 

of random variables (not necessarily stationary) on a probability space (f2, J7, P) and let {£} = 

{ ln}n>i be a sequence of positive integers satisfying 1 < I < n/8 for all n > 1. For each 

n  >  1 ,  l e t  { W n j  :  1  <  j  <  N }  b e  a  c o l l e c t i o n  o f  z e r o  m e a n  r a n d o m  v a r i a b l e s  s u c h  t h a t  W n j  

is u({Xi : j < i < j + I -  1})-measurable for all 1 < j < N, where N = n — I + 1. Also, let 

{^n}n>i C N and {en}n>i C (0, oo) be two sequences of real numbers with 21 < dn  < n/4 for 

all n e N. Then, for any q £ [0, oo], there exist positive constants Ck, k = 1,2, depending only 

on q, such that for all n > 8, 

where w„ j a  = maxi<j<N ||Wnj||a> a £ [1, oo]. Forq — oo, the exponents q/[2q+l] and 2ç/[2ç+l] 

are interpreted as 1/2 and 1, respectively. 

Proof: Let Kn  = \N/dn~ | and Sn(k) = J2f=i Wn j l ((k-l)dn + l  < j < kdn), k = 1,. . .  , I<n .  

Note that for any 1 < k < k + r < /<„, the variables Sn(k) and Sn(k + r) are functions of 

{Xj : (k- l)dn + l < j < kdn + £— 1} and {Xj : (k + r - l)dn + l < j < (k + r)dn + £- 1 An}, 

r e s p e c t i v e l y  a n d  a r e  s e p a r a t e d  b y  [ ( k  +  r  —  1  ) d n  —  ( k d n  +  £  —  1 ) ]  =  [ ( r  —  1  ) d n  —  I  +  l ] - m a n y  X j  

variables. Let K,n ,\ = {k € N : k is odd, k < Kn} and let /C„,2 =  {k € N : k is even, k < Kn}. 

Then, by definition, 

Lemma 2.2 (An exponential inequality for sums of block variables). Let z be a sequence 

N 

+Ci • [n/dn] • max {1, 2,+1 [a(dn/2)]^+r 

TV 2 

(2.9) 
3 — 1 % — 1 
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For each i G {1,2}, by Theorem 3 of Bradley (1983), as in the proof of his Theorem 4, there 

exist random variables {S°(&) : k 6 /Cn_,} such that 

(i) S°{k) =d  Sn(k) for all k G 

(ii) {S°(fc) : k € £„,,•} are independent, 

(iii) for any e G (0, ||Sn(fc)||?), 

f ( |5°(t) - ̂ (&)| > e) < 

for every k G ICn j i .  

2 g + l  (2.10) 

Next, note that by Minkowski's inequality, for any a G [0,oo], ||S„(fc)||a < dnwnA for all 

k = 1,... , Kn. Hence, by (2.9), (2.10), and by Bernstein's inequality for sums of independent 

random variables (cf. Shorack and Wellner (1986), pp. 855), we have 

N 

j=i 

<  I M I  Z  ̂ ( t ) | > ^ / 2 )  
i=1 

2 

<  E p ( |  E  s 2 ( i = ) |  >  N ( j 2 )  
i— 1 k£tCn i t  

A n 

k=1 
> 

dn^n 
A 

. \ 
- 1 ^ K^,2]" + K«;n,oo)(NEn)[A:»]-l/^ 

+CiA'n(max{l, ̂ hi})2,+1 [a(d„ - ̂)]2«+T, 

which yields Lemma 2.2 after some simple algebra. This completes the proof of Lemma 2.2. • 

The next result is an extension of Bernstein's inequality, from the independent set up, 

to the situation where the random variables are strongly mixing. It can be proved by easily 

modifying the proof of Theorem 1.4 of Bosq (1998). 
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Lemma 2.3 Suppose that {Xnj : j  E Zjn> 1 is a double array of a zero-mean real-valued 

row-wise strictly stationary a-mixing random variables with mixing coefficients an{-), n> 1. 

Also, suppose that there exists a constant c > 0 such that 

m > l ,  A  =  3 , 4 , - - .  

Then for each n > 2, e > 0, each integer q E [1, n/2] and every k > 3, 

,2 1 

P 
3 = 1 

> ne) < «i exp • 
ge 

25)7*2 + 5 ce 
+ a2(fc)o;„ 

n 

q +  U  

2 k + l  

where 

° l  -  2 ~  +  2  ( 1  +  ï i m \  +  5« ,  with Too = max FIX, ,-| 
^ l<j<n 1 "Jl 

ft2(^) = ( 1 + * , with mk  = max ||Xnj||fc. 
€ ; !<J<" 

Proof: For each integer ç E [1, n/2], let r = L^+rJ- We define the blocks as the following 

Z n , j  — ^ ^ Xn g_ i)y+7, J — 1) ' ' ' ) r i  Rn  — (^n,çr+i + • —h xn,n)l( g r  n) . 
i=1 

Then, by Bonferonni's inequality 

P E X n ' i  
3 = 1 J-l 

4ne 
> ne ) < E ̂  > I57 J + -^ ( l-R"! > 

ne 

(2.11) 

(2.12) 

Note that for any random variable X, arbitrary t > 0, a E 1R, we have, by applying Markov's 

inequality 

f (X > a) = f (e*^ > e*") < . (2.13) 

Let t = e/ (5m2 + ce)(n-çr), then tc(n-gr) = ce/(5ml + ce) = S < 1. We now apply inequality 

(2.13) to Rn with t given as above and a = ne/5 
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P f ^ tnti5 rpARn 

oo ^ 
< e"'-/: 1 + E42K, , 

/ OO .g \ 
< e~ t n£/5  I 1 + -y(M -  qr) sc s~2s\m\ 

s=2  

-*"V5 ^ 

< exp 
5(5ra2 + ce) 

1 + 

Hence, 

exp -

5(5m2 + ce) y 

5(5m2 + ce) 
(2.14) 

Next, let c0 = + 2e/5, then, by Minkowski's inequality 

H-^n,(i-l)r+l + co|U > Co -  > 2e/5 > 0 . 

Thus, by Lemma 1.2 of Bosq (1998), there exists a triangular array of independent random 

variables {Yn.JLi such that Ynj =d %^,(,-i)r+i &%d 

ll^n,(»-l)r+l + ColU^ 2k+1  2e 
P I IYn, i  ~  ^n,(i-l)r+ll > "T ) < 11  

< H 1 + 

2e/5 

5mfcX 2*TÏ 

(«n(r))^+' 

-

G??i 
n 

2 k  
2k+l 

- Ç +  1 .  ,  

which together with Bonferronni's inequality and Bernstein's inequality, leads to 

\ z'=l 

< Hgfn-

+2 exp 

P (\Zn,j\  > < P l^. 'l  > ) + Y1P  ( 1^".»' ~ ^n,(»-l)r+ll > 

5m&\ SfcTT 
2 — 1 

9  +  1 .  

2 k  
2 k + l  

qe-

5(5m2 + ce) 

Thus, Lemma 2.3 follows from (2.12), (2.14), and (2.15). 

(2.15) 

• 
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Lemma 2.4 Assume that a(n) < Cn~P for some C 6 (0, oo) and (3 > 1 and that I = o(n1/2). 

TTien we Aczue the following 

(i) sup^gjg \Fn(>c) — -^n(•c)I — 0{i./n), a.s., 

(ii) \Fn(t) — F(f)| = O ^n~2 + ïô+?s lognj a.s. t  G M; 

(""V & = + O log + 0 log, d.g. 

for any 8 E (5/(2 + 4/3), 1/2), provided that (3 > 2; 

fz'u) Moreover, if (3 > 9.5, 

Fn{in) = p + 0(n~1/2(logn)~2), Fn(fn) = p + 0(l/n + n-1/2(log n)-2) a.s. 

Proof: For i£i, Let Y i ( x )  be defined as before, i.e., Y i ( x )  =  I ( X {  <  x ) .  Define the block 

average 
1 ^ 

j=i 

Note that Z/f, • • • ,Uj* are conditionally i.i.d.. Hence, 

Fn(x) = E* 

£* 

1 "i 
r E W f )  
rai »=i 

Ey."M 
1=1 

£* 

1 
N 

j=i 

n-l+1 ^-1 
/(%,- < %) + ̂  < z) + /(%,_,+! < z)) 

i=l 2 = 1 

n 
\ /  (  \  ^ ̂  

•i-\ 

Y]^-^)(^M + y»_,+i(z)) 
.2 = 1 

Then for every ïéK, 

|Fn(x) -  F„(z)| = 
e-1 

Yn{x) -  ~^Yn{x) + J-j-j ~ + Yn-i+l(x)) 
1 = 1  

(2.16) 
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< —-—\Yn{%)\ + ~ 0 + l^n-i+i(a:)|) 

<  2 -

N 

J- 1 

2 = 1  

N 

" O a.s. 

Hence, (i) is proved. 

Next we use Theorem 1.3 of Bosq (1998) to prove (ii). Let 

9 6 = 
10 + . 

c — n l!2+8 logn, q = [n1  25  (log n) 1/,2J + 1, n > 2 . 

Then 

- q f  
< 

(log re)3/2 

^ 1 + 0  =  0 ( n 1 / 4  5 / , 2 ( l o g  n) l!2) 

^ " 0(n"^(logn)-^). 

Therefore, we have by Theorem 1.3 of Bosq (1998), 

P( |# i ( f ) -F( f ) |>e)  <  4exp 
qe' 

+ 22 ( 1 + -
4\  1/2  

qa 
n 

2g .  

< 4exp -
(logn)3/2 

implying 

+0 (n1,/4 5/,2(log n) 1/2 • n1 2<5(log n) 1/2 • n 25/3(logn) 

= 0(?T2) + O 

= 0(^"^) + 0(M-Xlogn)-^+^2)), 

00 

53  p ( \ F n{ t )  -  F( t ) I > n-1/2+5log n) < oo . 
71 = 2 

Thus (ii) follows from Borel-Cantelli lemma. 

Next consider (iii). Fix a 5 6 (5/(2 + 4(3), 1/2), and let 7 = —(3/2 — 5 — 26(3) and 

ei = n-1/2+5(logn), n > 3. Note that the lower bound on 5 implies that 7 > 1. We apply 

Lemma 2.3 to the double array 

X n j  —  I ( X j  < £ p + €1) — F ( £ p  + ei), j  G Z, n > 1, 
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with e = n 1/2+5(log n)1/2, q = [n1  25(loglog n)J + 1, n > 3 . Then, with pn  = F(£p  + e^, 

m ? - Pn), =p^(l -  Pn) +Pn(l -  Pn)". Further, 

«1 < Cn2S  (log log n) 1 

— Of2 

< -C(logra)(loglogra) 
25^2 + he 

a 2 ( k )  <  C n 3 / 2 ~ S ( l o g  n ) ~ 1 ! 2  .  

Thus Lemma 2.3 leads to 

OO 
Y -P(|-^ri(Cp + el) - F(£p + el)l > e) 
71 = 3 

2k 

.9 + 1 

< ^ [0(%-2) + o(^-^(logn)-^^ . . (loglogn)^TT^ 
71—3 

YJ [o(n~2) + 0 ̂ n_7+2fc+1 "(log n)_1/2(log log n)2^1^ j 
n=3 

< oo, by taking k sufficiently large. 

Hence, it follows that 

oo oo 
Y P^n  ~ £p > ei) < Y P(Fn(Çp + ei) ^ p) 

n=3 

oo 

y  P ( F n ( i p  +  € i )  —  F ( £ p  +  c i )  <  p  -  F ( Ç P  +  t i ) )  

n=3 n=3 

oo 

n=3 

oo 

< Y< P(Fn(£p + €l) ~ F ( € p  + el) < _ m$ f ( x ) € l )  
" € N p  n=3 

n—3 
< oo. (2.17) 

This proves the first part of (iii). To prove the second part, note that by (i) and the condition 

I = o(n1/2), 
oo oo 

E % - f, > w < Z f (Axe,,+<i) < p) 
n=3 n=3 
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n=3 
oo 

n=3 
< oo. 

Thus (iii) follows from Borel-Cantelli lemma. 

To show (iv), first we prove that 

OO 

E f (!&(&) - Pl > %-^(logn)-2) < oo . 
71 = 2 

Let en = n~1/2(logn)-2, S n  = n-3/8logn, r ) n  = n-5/2-1/8(logn)~ 3 ,  m n  = \S n / i j n ]  , and 

Ir,n = [Cp + rr?„,Cp+ (r + l)??n), r = -mn, ••• ,mn. Then 

( m n  U -^,n 
r= —mn 

if n is large enough. Note that for j  > 1 and for any n  > 1, 

mn  

P { X \  —  X j ,  X \  E  l n )  <  ^ 2  - ^ ( ^ 1  —  X j , X i  G  I r , n , X j  6  / r , n )  
r—-mn 

mn 

< £  [(P(X1€/ r , , ))2  + 4a(j-l)]  
r=—mn  

mn 

< E [Wi%)' + 4a(;-l)], (2.18) 
r=-mn 

where c?i = max^^/p /(a:)- Also, note that for ( 3  > 9.5, < §• By part (iii), with <5 = 1/8, 

we have 
OO 

"fpl > <W < oo. 
n=2 

Hence, by (2.18) and the inequality above, 

OO 

n=2 

OO 

n=2 

oo 

< E ^ ^ = ̂ "(Ln(p+c»)J)) + ^ 
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<  ^ T P ( 3 i , j € {  l , " - , r a }  w i t h  j -  i > nen  - 2, such that Xi = X^eln) 
71=2 

+0(1) 
oo n—1 

= EE E G In)+0(1) 
ri=2 î=1 j>z'+nen —2 
oo n—1 n 

< EE E f(^i = ̂ i+t,%i€i,) + o(i) 
n=2 fc=[nen~|-2 

oo n 
<  E  E  ^ ( % l = % j , ^ l G % n )  +  0 ( l )  

n=2 j=["ne„]-l 
oo n 

< E E » 
n=2 j=[nen]-l 

mn mn 

E (^l7?")2 + E 4tt0 - 1) 
,r=—mn r=—m n  

OO 71 

+ 0(1) 

< E n2(2mn + l)(cZi??n)2 + E !E n(2mn + l)4a(j — 1) + 0(1) 
n=2 n=2 j=fn£n] — 1 

oo 
< CAg E " 1 (logn) 2 + C*E nmn(nen) 0+1+0(1) 

71=2 71=2 

oo 

= 0(1) + C E n(n~3/8  log n)[n-5/2-1/'8(logn)~3]~1[ra1/'2(logri)-2]~/3+1 

71= 2 

OO 
< 0(l) + CE^"^^(log^)^ 

71=2 

< oo, 

provided that /? > 9.5. 

Likewise, we may show that 

00 

E < P - E*) < OO . 
71= 1 1 

Hence, by Bore-Cantelli lemma, we have, for > 9.5, 

#i(&) = P + 0(R"^^(log n)"2) a.s. 

Using part (i) and similar arguments, we get 

Fn( in )  = P  + 0 ( £ / n +  n~1/2(logn)~2) a.s. 

This completes the proof of Lemma 2.4. • 
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It follows from the proof above that, unlike in the i.i.d. case, the MBB empirical distribution 

function F* (z) for a given x G M is no longer an unbiased estimator of the empirical distribution 

function based on the original sample, and the bias depends on the choice of block length £. In 

fact, the bound on Lemma 2.4 (i) can be refined as 0(VÏ/n) (cf. Gotze and Kiinsch (1996)). 

It is known that, when the observations are independent, 

L = + 0(7T1/2(loglogn)1/2), Fn(t)  = F(t) +0(n-1/2(loglogn)1/2) . 

Lemma 2.4 (ii), (iii) extends these results from the i.i.d. set up to the weakly dependent 

case. The bounds in those results may be modified to be in the uniform sense by blocking 

the random variables, applying the exponential inequality within each block, and then apply­

ing Bonferroni's inequality to the union of all those blocks. However, we do not pursue such 

extensions. These results stated above are sufficient to establish the consistency of the MBB 

approximations. 

Lemma 2.5 Assume that the a-mixing coefficient of {Xi}ie% satisfies a(n) < Cn~@ , n > 1,  

for some positive constant C and for some /3 > 7.5. Also, suppose that the marginal distribution 

function F(x) is continuously dijferentiable with derivative f(x) in an open neighborhood Afp  

of Çp  such that 

0 < di = inf{/(x) : x € Af p }  < d2  = sup{/($) : x E Af p }  <  oo. 

Then 

An  = sup I Fn(x) -  F( x) -  Fn(£p) + p\ = 0(n~1 / 2  (log n)~2) a.s. ,  (2.19) 

where ln  = [£p - n~3/8 log n, £p  + n~3/8 log n]. 

Similar results were obtained by Sen (1972) for ^-mixing processes and by Babu and Singh 

(1978) for a-mixing processes with exponentially decaying coefficients. Lemma 2.5 relaxes the 
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weak dependence condition by exploiting the exponential inequality of Lemma 2.3. 

Proof: The proof is based on Lemma 2.3, Bonferroni's inequality, and Borel-Cantelli lemma. 

Let 

Vr,n = + ren, r = 0, ±1, • • • , ±dn ,  €„ = tT1!2(log n)"2 ,  dn  = [n1/8(logn)3] . 

We define 

Ar,n — Fn (Vr,n) ~ F{j]r,n) ~ -^n(Cn) + Pi 9{ x)  = Fn(x) ~~ F(x) — Fn(£p) ~f" P • 

Then for all z G [j? r,n, ^r+i,n], 

f iK 2 - )  F n ( j ] r +i j n )  — F^r /r^n)  — F n (£p)  +  p 

< A r + i ) n  -J-  [^(^r+l .n)  ~  •^ ' ( î?r ,n)]  

^ ^r+l,rt • 

Likewise, #(%) > Ar,n - d2en .  

Thus, 

An = sup |Fn($) - F(z) - Fn(£p) +p| < max Ar,n + d2en  • 
xeln k l<dn 

Hence it is enough to show that 

max |Fn (?7r,n) F(Tj r^n) Fn(£p) p\ ^  £n â.s. (2.20) 
-dn<r<d„ 

For r = ±1, • • • , ±dn, we define vj r )  =  [ I ( X j  <  ??r,n) - 7(Xj < £p)]sign(r), j  -  1, • • • ,  n , 

where sign(i) = 1 or -1 according as r is positive or negative. Then vjr^ follows a Bernoulli 

(pr,n) distribution with pr,n = EVzjr^ = \F(ijr,n) - F(£p) |. Further, 

<iin_1/'2(log re)-2 < p r ,n < d2n~3 /8  log n 

E\vj r^ -  P r , n \ k  =  P r , n { l  -  P r , n ) [ { ^ -  -  P r , n ) k  1  +  P ^ n ]  

< t!E(^) - Pr,n)^ A 2p,,n , (2.21) 
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for any integer k > 2. We now apply Lemma 2.3 to the row sum of the triangular array 

{vjr) : 1 < j < %}„>!, where 

with c = 1, e = n 1/2(log n) 2, m\ = pr>„(l-pr,„), and m% = pr,n(l-pr>n)[(l - p r ,n)k  1  + 

Pr.n1]- Choosing q = [n5/8(log n)7] leads to 

.  n / .  e2  

0 1  "  2 ^  +  2 ( 1  +  2 5 m |  +  5 «  

< 2n3/8(logn) 7 + 2 ^1+ 25<j2n-i/2( l o g„)-2 +  5„-i/2(logn)-2 

< 0(n3/8(logn)~7) ; 

and 
k  

Cm2fc+1 

a2(fc) = lin I H 

< lira I 1 + 5^2n~3/8 log n)^ 
n_1/2(log ra)-2 

< O ^n3//2(log ra)2 • (n_3'/8logn)2fc+1 j ; 

Also 

\—4 
^ > ra5/8(log n)7n ^logn)" >C1(logn)2 

2bm\ + See 50d2n-3/8 log ra + 5ra-1/2(log ra)-2 ' 

for some C\ > 0, if n is sufficiently large. In view of the inequalities above, by Lemma 2.3 we 

get 

P ;|Ê%' >»"1/2(log-) - 2  

j= 1 
0 . . 2 k  

qe2  2J=+1 
5 °ieXp'~25m|T5«'+°2(')Q:" VU+ lj 

< O(n3/,8(logra)-7) • exp{-Ci (log ra)2} + O ^ra3/2(log ra)2 - (n-3/8 log ra) 2fc+! j 

O (n? (log ra)7^+2 
• (ra 3/8+3^/8(logra)7^)2*+i ^ . 
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Hence, by Bonferroni's inequality, 

\-dn<r<dn '  

= P( max -1 "Y] Vni > n_1/,2(log n)-2) 
\-b„<r<b„ n\^ n 'J  \  o / J i=i 

n 

j=i 

< 2n^^(log%)^ - 0 - (n-^+^^(log»)^)^+r) . (2.22) 

Then we have, for /3 > 7.5 and k sufficiently large, 

E P ( max \Fn{r]r,n) - F{Vr,n) ~ Fn{£p) +p\ > n-1/2(logn)-2) < oo. 
\-dn<r<dn  /  

So Borel-Cantelli lemma yields (2.20). This completes the proof of Lemma 2.5. • 

Lemma 2.6 Let {W n}n>i be a sequence of random variables that converge in distribution to 

a random variable W with a continuous distribution function G(x).  Then 

sup |Gn(x) - G(z)| = o(l) , 

where Gn(x) is the distribution function ofWn ,  n = 1, 2, • • •. 

Proof. For any positive integer m, we set 

Xk,m -  G~ l(k/m), k — 1, • • •  ,  m -  1, 

%0,m — OO,  % m,™, — -("OO . 

Then, by the continuity of G and the definition of convergence in distribution, for k = 

1, • • ' ,m- 1, 

\G n(Xk,m) — G(xk ,7n)\  0 . (2.23) 

Note also that (2.23) holds trivially for the cases, k — 0 and k = m. 

For x 6 (x/ç—i5TO,  Xk,m), 

G TI{ X )  G(x) < Gn (xfcl7n) G(x) Gn(ï)î,m) G(£fctm) ~h 1 /Ttl  ,  
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similarly, 

(z) G (x) Gn(Xk— 1,771)  G(z) Gn^Jt - i^)  G (^fc—1,771)  1 /TTI .  

Hence, for x € (a;/c-i,m, ^k.m), k = 1, • • • , m, we have 

|Gn(z) - G(z)| < max \Gn(xk t m) -  G(xk ,m)\  + 1/m . 
0 <k<m 

Lemma 2.6 follows from (2.23) and (2.24). 

(2.24) 

• 

Proof of Theorem 2.2: By Lemma 2.6 and Theorem 2.1, it is enough to show that for 

every x € R, 

- W < 2) - = 0(1), a-s- (2.25) 

For 1 < i  < N and iGR, let Ui(x) = \  J2j=o I(Xi+j < x) , and let Yi(x) and U*(x) be defined 

as before, that is, 

1 ' 
Yi(x) = I(Xi < x),  U*{x) =< x),  i  = l ,---,b. 

j=1 

Write 

Then we have 

Xjn — in ~l~ x/yfii  . 

P,(F;(& + a=/V^)>p) = f,(f:(^)-E^(^)>p-E.f:(^)) 

^ ̂  E(^,-w - ̂ ^r(^n)) > y - F„(a„) 
i=1 

Then by the Berry-Esseen theorem (Feller (1966)) 

V \JVarJJ±{xn) 

3Em \U;{xn) -  EmUj{xn)\3  

\/6(yor.[/r(z»))^^ 
< 

Similarly, 

p.(F:(^)>p)-$ 
( Vb{Fn(xn) -  p) 

\ y/VarJJl(xn) 

*(X.  \ |3 

< 
3E.\UÎ{xn)~ E„Uj{x 
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Since f*(f%(î^) > p) < fL(\/^(C - W < z) < > p), 

3E*|C/r(zn) -
P,(V5(K -£.)<*)-*(' %/^(J?"(i") P) 

\ y Var*t/j (xn) 
< 

\/6(yar.[/;(î»))3/2 

Therefore (2.25) will follow if we can show that 

Vb(Fn(xn) -  p) 
z/(€p)/<?oo &-S-

0 a.s. 

yJVar*Uf( 

and 

E|[/rK)-E^(^)|3 

V6(yor*C/r(2T.))3/2 

Hence, it is enough to show the following three relations. 

(i) y/ri(Fn(xn) -  p) -> xf(£p) as n-> oo a.s. 

(ii) jVar*Uf(xn) -* as ra -> oo a.s. 

(ii i)  I 1^E i r \U*(xn) -  E^U*(xn)\30 as n ->• oo a.s. 

STEP I. Proof of (i): Note that (i) trivially holds for x = 0. Hence suppose that x 0. 

Choose ra sufficiently large so that |z| < log ra. Also note that for (3 > 9.5, Lemma 2.4 (iii) 

implies that 

||n - Cpl = o(ra~3/8logra), \xn  - £p| = o(ra-3/8 log ra), a.s. 

Thus, Lemma 2.5 yields 

l&OW - &(&) - F(z») + %)| = 0(ra-^/"(logra)-") a.s., 

which, together-with Lemma 2.4, leads to 

Fn(Xn) -  P ~ [Fn(xn) ~ Fn(|n)] + [&(&) -  p] 

= -&(&) +0(^/ra)] + 0^/n + ra-^(logn)-^ 

= [F^(i^) - F»(&) - F(aW + + [F(z») - %)] 

+0(£/n + ra_1/'2(logra)_2) 

= 0(ra-1/2(log ra)-2) + [F(xn) - F(fn)] + 0(1/n + ra-1/2(logra)-2) 

= /(ê„)x/\//n + o(ra-1/2) a.s. (2.26) 
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where ên  € (£„ A xn ,  |n V xn).  Hence, by part (iii) of Lemma 2.4 and the assumption that f(x) 

is continuous on Mv (a neighborhood of £p), ^/n(Fn(xn) - p) — xf(£,P) + o(l) a.s. Thus, (i) is 

proved. 

STEP II.  Proof of (i i):  By definition, 

1 N 

yar.(t%)) = M 
i=i  

Let 50 = Note that (3 > 9.5 implies 60 < Given £ -  0(n^~v) for some 77 6 (80, |), we 

fix a ii £ (50, V A i) and define two sequences of real numbers {£n,i}n>i and {x„j2}n>i by 

^,2 = (p + n-M\ m>i. (2.28) 

Note that by Lemma 2.4 (iii), 

%n — Cn + 7~ 

= fp + 0(7%-Mlogn) (2.29) 

for every 8 € (d>o, |)- Hence, by (2.28) and (2.29), there exists a set A € J7 with P(A) = 1 such 

that for every u; € A, there exists an integer £ N such that for all  n > nw ,  

®n, 1 ^ xn (^) ^ xn,2 i (2.30) 

which, together with (2.27), implies that for all n > nw ,  

N 

i=1 

and 
N 

yar.([%)) > 
i=1 

Since rc/W -» 1 as n -> oo, it is enough to show that for {x„} = {xn,i}, {xn^}, 

N 

£ • [N'1  Y2Ui(xn) -  Fn  (ccn)) -> cr^ as n -> oo a.s. (2.31) 
Z=1 

I • (Fn
2(xn,2) - F„2(a:n,i)) = o(l), as noo a.s. (2.32) 
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First, we consider (2.32). Note that by Lemma 2.4, Lemma 2.5, equation (2.28), and by 

the smoothness of F in a neighborhood of £p, 

- &(Zn,l)| 

< £\Fn(xn t 2) -  Fn(xn , i)  \ + 2£sup\Fn(x) -  Fn(x)\  
X 

< ^|[&(z^) - &((p)] - [&K,i) - &(f„)]| + 0(^/n) 

< ^|[^(z^,2) - Fn((„)] - [F(z.,2) - F(fp)]| 

+^|[&(z,,i) - F»((p)] - [F(%n,i) - F((p)]| 

+^|F(^,2)-F(^,i)|+0(^/n) 

< 21 - 0(n-1/,2(log n)~2) + Cl\xn a  - zn,i| + 0{£2 /n) 

= O(^n- % (log n)-^) + O(^-&+*')+ O/m) 

= o(l) a.s., 

since £ — 0(n2~V) — o(nï~S l).  Hence, (2.32) follows. 

Next consider (2.31). It is easy to verify that 

N 

w - ̂  w) 

N 

= - 4&K) - F(Z^)]" . (2.33) 
2 — 1 

By Lemma 2.4 (i), 

- F(zJ| = 0(f^/n) = o(l) a.s. 

Also, note that by (2.7) and (2.28), 

Œ [ U i ( x n )  -  F ( x n ) ] 2  -4- <7^ as n -> oo. (2.34) 

Hence, to prove (ii), it remains to show that 

N 

N ' 1  £  W n i  -  E W n i  = o(l) a.s., (2.35) 

where W n i  =  £ [ U i ( x n )  -  F(xn)]2. To prove (2.35), we now apply Lemma 2.2 with W n j  =  

Wnj — EWnj. It is easy to check that for this choice of Wnj's, wn,oo < £ and by (2.34), there 
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exists a constant C > 0 such that 

m2,, = 

< Œ. 

Hence, with dn  = n1/2 and q = 2, by Lemma 2.2 , for any e > 0, we have 

N 

2 = 1 

5 c. =p ( " ct+tw/'cfe)+ Clln/d-]{1 v 

< Ci exp ( - C(e)[n/c?n]3/2£-1) + C(e)[n/dn]l5cin 
5 

= Ciexp(-C(6)n^r^ +C(e)n2-f^, 

which is summable over n, as fâ = O(nîô) and /3 > 9.5. This proves (2.35) and hence, 

completes the proof of STEP II. 

STEP III.  Proof of (i i i):  Observe that, by STEP II, 

= 2y^<7°°(1 + °(1)) 

—t 0 almost surely. 

Hence, STEP III is proved, and so the proof of Theorem 2.2 is complete. • 

2.4 Simulation Study 

For the simulation study, we here focus on investigating the behavior of the MBB estimators 

of the sampling distribution of the scaled and centered sample quantile Zn = \/%(& - £p). For 

simplicity, we consider the following three models: 
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(i) AR(1) : Y( — 0.4Yt_i + et ; 

(ii) ARMA(1,1): Yt — 0.4Yt_i = £< + 0.3et—1 ; 

(iii) MA(1): Yi = -f- 0.3€j_i. 

In all three models above, we assume that {et} are independent JV(0,1) random variables. For 

each model, we considered four different values of the sample size n, n — 80,140, 300, 500. A 

brief description of the simulation procedure goes as follows. 

Step 1: For a particular model, generate 20, 000 samples of size n and compute the values of 

Gn(x) = P(Vn(Cn -  £P) < x) . 

Step 2: Generate 500 data sets of size n and for the m-th data set, compute the conditional 

quantile £nim and the 500 replicates of the MBB version of £n, denoted as 

- , C ,m(500), 

and then evaluate the corresponding estimate of Gn(x): 

i 500 

for m = 1, • • • , 500. 

Step 3: Find the bias and variance of the MBB estimator: 

^ 500 

500 

1 

Bias(Gn(x) 

V a r { G n ( x )  

SD(G»(z) 

AMSE(G,.(z) 

Y! [G„,m(a;) - G„(rc)] 
771=1 

500 

4 0 0  5 Z  [ ^ " , m ( z )  -  G n ( x ) } 2  

4 y y  m-1 

= \jVar(Gn(x)) 

= [Bias(Gn{x))]2  + Var(Gn(x) 

= MgE(G^z))/(^(z))' 
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where 
j 500 

G n ( x )  —  5 3  G n , m ( z )  •  

For AR(1) model and ARMA(1,1) model, we did simulations with block length varying 

from 1-15 for all four sample sizes: 80,140, 300 and 500. It turned out that MBB estimation 

of the sample quantile of the MA(1) model is very different from the other two models in that 

much larger block lengths are needed to get good estimations. We simulated MA(1) model 

using 15 block lengths between 3-17 for sample sizes 80 and 140. The block lengths used for 

sample sizes 300 and 500 are between 20-34 and between 30-44, respectively. 

Numerical results are presented in the form of tables and graphs below. As described 

in the simulation procedure, for each choice of the sample size n of a given model, the true 

value of Gn(x) — P{\/n{^n - £p) < x) in the case of the median, is simulated from 20,000 

samples. The MBB distribution function estimates of Gn(x), with a number of block lengths 

are calculated from 500 replicates. For simplicity, our simulation study is focused the cases 

x = 0 and x = 1. The SD(-), MSE(-), RMSE(-), and the histograms for MBB estimators 

of Gn(0) and G„(l) are all based on the same 500 data sets generated from the given model 

(cf. Models (i)-(iii)). Tables 2.1-2.6 show the simulation results of the MBB approximations 

of Gn(x) at x = 0 and x = 1, with the block length that results in the smallest MSB among a 

range of values. For example, in AR (1) model (i) estimation, when the sample size is chosen 

to be n = 80, the MBB approximation of Gn(0) with block length £ = 7 gives the smallest 

MSB among the results simulated with block length from 1 to 15 (cf. Figure 2.3), and the 

bias, SD, MSB, RMSE are —0.0397, 0.0332, 0.0027, 0.5078, 0.0053, respectively. The 

corresponding histogram of the 500 MBB estimates is given in the top left of Figure 2.1. The 

rest of the tables and histograms are presented in the same manner. Figures 2.3, 2.4 show 

respectively, how the MS Es of the MBB distribution function estimators of G„( 0) and Gn(l) 

for the AR(1) model vary with different combinations of of sample sizes and block lengths. 

For all the MBB distribution estimators of the given models, as the sample size increases, 

the MSEs get closer to zero under all three models, which supports our theoretical findings. 
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Table 2.1 Distribution approximation of Gn(0) for AR(1) Model (i) in the 
case of the median, based on 500 MBB replicates. 

n I Bias SD MSB True Gn(0) RMSÈT 

80 7 -0.0397 0.0332 0.0027 0.5078 0.0105 
140 1 -0.0290 0.0224 0.0014 0.5068 0.0055 

300 13 -0.0195 0.0245 0.0010 0.5025 0.0040 
500 9 -0.0159 0.0245 0.0008 0.5032 0.0032 

Table 2.2 Distribution approximation of Gn(0) for ARMA(1,1) Model (ii) in 
the case of the median, based on 500 MBB replicates. 

n I Bias SD MSB True Gw(0) RMSE 

80 7 -0.0403 0.0361 0.0029 0.5022 0.0115 
140 1 -0.0204 0.0245 0.0010 0.5010 0.0040 
300 13 -0.0206 0.0245 0.0011 0.5006 0.0044 
500 9 -0.0212 0.0245 0.0010 0.5042 0.0039 

Table 2.3 Distribution approximation of Gn(0) for MA(1) Model (iii) in the 
case of the median, based on 500 MBB replicates. 

~ 1 Bils SD MSB True G„(0) RMSE 
80 7 -0.0471 0.0424 0.0040 0.4990 0.0161 

140 9 -0.0430 0.0332 0.0029 0.5019 0.0115 
300 31 -0.0292 0.0316 0.0018 0.4974 0.0073 
500 37 -0.0235 0.0265 0.0013 0.4999 0.0052 



37 

Table 2.4 Distribution approximation of G n (  1) for AR(1) Model (i) in the 
case of the median, based on 500 MBB replicates. 

n £ Bias SD MSE True Gw(l) RMSE~ 

80 6 -0.0114 0.1091 0.0120 0.7098 0.0169 
140 5 -0.0133 0.0922 0.0087 0.7110 0.0122 
300 8 -0.0075 0.0775 0.0061 0.7064 0.0086 
500 5 -0.0021 0.0671 0.0045 0.7084 0.0064 

Table 2.5 Distribution approximation of G n ( l )  for ARMA(1,1) Model (ii) in 
the case of the median, based on 500 MBB replicates. 

n £ Bias SD MSE True Gn(l) RMSE 

80 5 -0.0310 0.1269 0.0170 0.7659 0.0222 
140 1 0.0101 0.0959 0.0093 0.7687 0.0121 

300 2 -0.009 0.0854 0.0074 0.7690 0.0096 
500 4 -0.0141 0.0742 0.0057 0.7658 0.0074 

Table 2.6 Distribution approximation of Gn(l) for MA(1) Model (iii) in the 
case of the median, based on 500 MBB replicates. 

n £ Bias SD MSE True G»(l) RMSE 
80 14 -0.0246 0.1304 0.0176 0.8294 0.0212 
140 11 -0.0337 0.1109 0.0135 0.8283 0.0163 
300 22 -0.0221 0.1015 0.0107 0.8282 0.0129 
500 36 -0.0179 0.0889 0.0082 0.8292 0.0099 
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Figure 2.1 Histograms of distribution function estimates of Gn(0) for AR(1) 
model (i) in the case of the median. All the histograms are based 
on 500 MBB replicates. They are from different combinations of 
sample sizes and block lengths: (1) n = 80, £ = 7 (top left) ; (2) 
n = 140,1=1 (top right) ; (3) n = 300, £ = 13 (bottom left) ; (4) 

n = 500, £ = 9 (bottom right). 
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Figure 2.2 Histograms of distribution function estimates of G n ( l )  for AR(1) 
model (i) in the case of the median. All the histograms are based 
on 500 MBB replicates. They are from different combinations of 
sample sizes and block lengths: (1) n = 80, i = 6 (top left) ; (2) 
n — 140, I = 5 (top right); (3) n = 300, 1 = 8 (bottom left); (4) 
n = 500, I = 5 (bottom right). 
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Figure 2.3 Block length impact on the MSE of the distribution function 
estimation of G„(0) for AR(1) model (i) in the case of the median, 

based on 500 MBB replicates. The solid and dotted lines are for 
sample size n = 80, and n = 140 respectively, while the dashed 

lines denote respectively the MBB approximation with sample 
size n = 300 and n = 500. In each case, the block length varies 
from 1 to 15. 
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Distribution Estimation 
AR(1) Model: ar=0.4 
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Figure 2.4 Block length impact on the MSE of the distribution function 
estimation of Gn( 1) for AR(1) model (i) in the case of the median, 
based on 500 MBB replicates. The solid and dotted lines are for 
sample size n = 80, and n = 140 respectively, while the dashed 

lines denote respectively the MBB approximation with sample 
size n = 300 and n = 500. In each case, the block length varies 

from 1 to 15. 
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Figure 2.5 Histograms of distribution function estimates of Gn(0) for 

ARMA(1,1) model (ii) in the case of the median. All the his­
tograms are based on 500 MBB replicates. They are from differ­
ent combinations of sample sizes and block lengths: (1) n = 80, 
£ — 7 (top left); (2) n = 140, £ = 1 (top right); (3) n — 300, 
£ = 13 (bottom left); (4) n — 500, £ = 9 (bottom right). 
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Figure 2.6 Histograms of distribution function estimates of G n {  1) for 
ARMA(1,1) model (ii) in the case of the median. All the his­
tograms are based on 500 MBB replicates. They are from differ­
ent combinations of sample sizes and block lengths: (1) n = 80, 
£ = 5 (top left);  (2) n = 140, £ = 1 (top right);  (3) n = 300, £ = 2 

(bottom left) ; (4) n = 500, £ = 4 (bottom right). 
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Distribution Estimation 
ARMA(1,1) Model: ma=0.3, ar=0.4 
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Figure 2.7 Block length impact on the MSE of the distribution function 
estimation of G„(0) for ARMA(1,1) model (ii) in the case of the 

median, based on 500 MBB replicates. The solid and dotted lines 

are for sample size n = 80, and n — 140 respectively, while the 
dashed lines denote respectively the MBB approximation with 
sample size n — 300 and n = 500. In each case, the block length 
varies from 1 to 15. 
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Figure 2.8 Block length impact on the MSB of the distribution function 
estimation of Gn( 1) for ARMA(1,1) model (ii) in the case of the 

median, based on 500 MBB replicates. The solid and dotted lines 
are for sample size n = 80, and n = 140 respectively, while the 
dashed lines denote respectively the MBB approximation with 
sample size n — 300 and n = 500. In each case, the block length 

varies from 1 to 15. 
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Figure 2.9 Histograms of distribution function estimates of G n (0) for MA(1) 
model (iii) in the case of the median. All the histograms are based 
on 500 MBB replicates. They are from different combinations of 
sample sizes and block lengths: (1) n = 80, £ = 7 (top left); (2) 
n = 140,1 = 9 (top right); (3) n = 300,1 = 31 (bottom left); (4) 

n — 500, I = 37 (bottom right). 
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Figure 2.10 Histograms of distribution function estimates of G n {  1) for 
MA(1) model (iii) in the case of the median. All the histograms 
are based on 500 MBB replicates. They are from different com­
binations of sample sizes and block lengths: (1) n = 80, £ = 14 
(top left); (2) n = 140, £ = 11 (top right); (3) n = 300, £ = 22 
(bottom left); (4) n = 500, £ = 36 (bottom right). 
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Figure 2.11 Block length impact on the MSE of the distribution function 

estimation of Gn(0) for MA(1) model (iii) in the case of the 
median, based on 500 MBB replicates. The plot on the top is 
for sample size n = 80, while the one at the bottom denotes the 
MBB approximation for sample size n = 140. In both cases, 
block length varies from 3 to 17. 
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Figure 2.12 Block length impact on the MSE of the distribution function 
estimation of Gn{ 1) for MA(1) model (iii) in the case of the 
median, based on 500 MBB replicates. The plot on the top is 
for sample size n = 80, while the one at the bottom denotes the 
MBB approximation for sample size n = 140. In both cases, 
block length varies from 3 to 17. 
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Figure 2.13 Block length impact on the MSE of the distribution function 
estimation of G„(0) for MA(1) model (iii) in the case of the 

median, based on 500 MBB replicates. The plot on the top is 
for sample size n = 300 with block length varying from 20 to 34, 
while the one at the bottom denotes the MBB approximation 
for sample size n = 500 with block length varying from 30 to 

44. 
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Figure 2.14 Block length impact on the MSE of the distribution function 
estimation of G„(l) for MA(1) model (iii) in the case of the 

median, based on 500 MBB replicates. The plot on the top is 
for sample size n — 300 with block length varying from 20 to 34, 
while the one at the bottom denotes the MBB approximation 
for sample size n = 500 with block length varying from 30 to 

44. 
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CHAPTER 3 MBB VARIANCE ESTIMATION 

3.1 Introduction 

In this chapter, we investigate consistency properties of the moving block bootstrap (MBB) 

estimator of the asymptotic variances of the normalized sample quantiles based on weakly 

dependent data. In order to get critical values used for constructing confidence intervals or 

doing hypothesis testing, one needs to estimate the asymptotic variances. As pointed out 

earlier, traditional resampling methods, such as the Jackknife method does not provide a 

consistent estimator of the asymptotic variances of the sample quantiles. However, under mild 

weak dependence conditions and mild smoothness conditions on the one-dimensional marginal 

distribution function, we show that the moving block bootstrap variance estimator is strongly 

consistent. 

As indicated in Section 1.1, for both i.i.d. and weakly dependent situations, the asymptotic 

variances of the normalized sample quantiles involve the value of the unknown (marginal) 

population density evaluated at the unknown population quantité. There have been a variety 

of density function estimation methods. Among those are kernel density estimation, histogram 

estimation, and spline estimation method. In the i.i.d. set up, a simple consistent estimator 

of 1//(£P) was proposed by Siddiqui (1960), and Bloch and Gastwirth (1968). It is defined as 

Sm,n — (Xn tr-\-m Xn,r—m) i 

where r = r(n) = [npJ + 1, m = m(n) —¥ oo. Here Xn^ denotes the fc-th order statistics. 

This variance estimator is based on the difference of two order statistics that are 2m apart, 

m is a smoothing parameter. Hall and Sheather (1988) studied the distribution of the sample 

quantile studentized by using the Siddiqui-Bloch-Gastwirth estimator of l//(£p). Another 
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alternative is bootstrap variance estimation. In fact, one of the most appealing characteristics 

of the bootstrap method is its ability and simplicity to produce variance estimation in some 

complicated problems by use of Monte Carlo simulation technique. In terms of theoretical 

development, Ghosh, Parr, Singh and Babu (1984) established the strong consistency result 

of Efron's bootstrap variance estimator of the sample quantile based on i.i.d. observations. 

Further, Hall and Martin (1988) found that the exact convergence rate of Efron's bootstrap 

quantile variance estimator is of order 0p(n-1/4). 

We note that, compared to the independent case, the asymptotic variance of Zn  = y/n(^n  — 

£p) under dependence is more complicated, involving the infinite sum 

Cou(7(Xi<fp),7(X,+!<(,)) 
«ez 

of lag-covariances and the density function of X\ at £p. Even for a direct plug-in estimation 

of the asymptotic variance, it is evident that the user would have to employ different non-

parametric functional estimation techniques for the numerator and the denominator of (cf. 

(1.3)), and specify smoothing parameters for each component (cf. Chen and Tang (2004)). In 

comparison, the MBB provides a unified way of approximating both parts of the asymptotic 

variance consistently using a single smoothing parameter, viz., the block-size variable I, for a 

wide range of possible values of I  and under very weak smoothness conditions on F. 

The layout of this chapter is as follows. In Section 3.2, we establish the consistency result of 

MBB estimators to the asymptotic variance of the scaled sample quantile. A small simulation 

study is presented in Section 3.3. 

3.2 Consistency of the MBB Variance Estimator 

The main result of this section shows that under some mild conditions, the MBB estimator 

of the asymptotic variance of the centered and scaled p-th sample quantile is strongly 

consistent. Recall that is the conditional variance of the MBB version of the centered and 

scaled p-th sample quantile based on block length I, i.e., 

= yor.(z;), 
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where Z* = y/n(Ç* — |n) is defined as in (1.6) of Chapter 1. Also, recall that a(n) denotes the 

strong mixing coefficient of the stationary process {Xn}nçz as defined in Section 1.2.2. The 

main theorem of this chapter is stated as follows. 

Theorem 3.1 Assume that a(n) < Cn~@ for some C € (0, oo) and (3 > 9.5, and that i  = 

0{n l!2~'n) for some rj G (5/(2 + 4/3),  1/2).  Also assume that for 0 < p < 1, F has a positive 

and continuous derivative f  in a neighborhood Afp  of £p  with f (£p) > 0, and 

E\Xi\a  < oo for some a > 0 . (3.1) 

Then 

where 

= Var.(\/R(f; - &.)) -» o.g., 

OO 

4 = [  ̂  C o u ( 7 ( % i < F - i ( f ) ) , 7 ( X , . + i < F - X p ) ) ) ] / f ( F ^ ( p ) )  

Theorem 3.1 shows that under some mild conditions, the MBB estimator of the asymp­

totic variance of the centered and scaled p-th sample quantile is strongly consistent. This is an 

extension of the important result of Ghosh, Parr, Singh and Babu (1984) on strong consistency 

of bootstrap variance estimator, from the i.i.d. set up to the weakly dependent case. Note that 

unlike the distribution function estimation problem treated in Chapter 2, for the consistency 

of the MBB variance estimator, we impose a mild moment condition, given by (3.1). It can 

be shown that (3.1) is a necessary condition for the validity of Theorem 3.1, i.e., the MBB 

variance estimator need not be consistent if (3.1) fails. 

For proving Theorem 3.1, we need two lemmas that are standard facts from probability 

theory. We include them for the sake of completeness. 

Lemma 3.1 Let {Wn}n>i be a sequence of random variables that converges in distribution to a 

random variableWo. Letr be a positive integer. / /sup{J3|W /
n | r + e  :  n > 1} < oo for some e > 
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0, then for any 1 < s < r, 

E\W0\S < oo, and E\Wn\s E\W0\S 

Proof: For s 6 [1, r], by Skorohod Embedding Theorem (cf. Billingsley (1995), Theorem 

25.6), there exists a probability space (fi, J7, P) and a sequence of random variables {VniS}n>o 

defined on (f2, J7, P) such that V„jS has the same distribution as W* , for all n > 0 and 

Vn<s —> Vb,s for each u> € fi. Then, we have 

lim sup f \VHtS\dP = lim sup £|Vn,s|/(|ynJ > t) 
n>l J\Vn„\>t t—ïoo n>i n>l J\V„ iS\>t 

= lim sup E\Wn\SI{\Wn\S > t) 
<_>°° n>l 

< lim sup (E\Wn\r+t)s/{r+t)  I{\Wn\ > Ws) 
i1/8—>• oo n>l 

/ - \ s/(r+e) 
= lim sup / |W„r+edP 

t1/3—>oo n>l VlW'"l>*1/s / 
= 0. 

The last equality follows from the condition sup{S|Mz
n|r+t : n > 1} < oo and the monotone 

convergence theorem (cf. Billingsley (1995), Theorem 16.2). Thus, {Vn7S}n>i is uniformly 

integrable and converges to random variable Vo)S. Then Theorem 16.14 of Billingsley (1995) 

implies that 

£|Vb,,| < 00' and E\Vnts\ -> s|y0,s| -

Hence, 

E\W0\S < oo, and E\Wn\s -»• E\W0\S. 

Lemma 3.1 is proved. • 

Lemma 3.2 Let be a strictly stationary sequence with E\X\\a < oo for some a > 0. 

Then 

(|%)| +1%(»)|)/^/"->0 e.g. 
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where = min{Xi, • • • , Xn}, X^ — maxjjfi, • • • ,Xn} . 

Proof: The proof uses standard arguments as in Gosh, Parr, Singh, and Babu (1984). They 

showed the same result in the i.i.d. case. Note that (cf. Corollary 4.1.3, Chow and Teicher 

(1997)) for any random variable X and any r 6 (0, oo), 

OO OO 

^ f (|X| > n^) < E|%r < E f (|z| > . 
n=l n=0 

Then, for every e > 0, 
OO 

f (|%i| > 6^/") < < oo, 
n=l  

since E\Xi\a < oo. And, by stationarity, 

]] f (|%»| > m^«) = g P(|Xi| > em:/") < oo . 
71=1 n=l  

Thus, Borel-Cantelli lemma implies that, for any arbitrary e  > 0, \ X n \  <  e n l l a  a.s., except for 

finitely many n's. Hence, 

(l-^(i)l + \^(n)\)/nl^a —> 0 a-s., 

which concludes the proof of Lemma 3.2. • 

Proof of Theorem 3.1: By Theorem 2.1 and Theorem 2.2 

- &) AT(0, fL/AU) a.8. 

Hence, by Lemma 3.1, it suffices to show that for some <5 > 0, 

sup{E*\Z*\2+8} < oo a.s., (3.2) 
n>  1  

where Z* = -&)- For x > 0, we define 

^+(z) = f.(^>^, #-(%) = f.(Z;<-z). 

Then, 

* 11-\-8 
roo 

= / f*(|z;i^ > %)dz 
JO 
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J o  

=  ( 2  +  6 ) / % i + 4 p * ( K | > s ) d z  

poo „ poo A  

= (2 + 5) / x 1 + s Ê + ( x ) d x  +  /  x 1 +  H ~ ( x ) d x  
[ J o  J o  

Hence (3.2) will follow from 

p CO 

/  x 1 + s ( x ) d x  <  oo a.s. (3.3) 
J o  

By Lemma 3.2 and part (iii) of Lemma 2.4, we get 

K l  =  l v % - & ) l  

= 2n1!2 • o(n1/,a) + n1/2 • o(l) 

= o(n1/3+1/ûf) a.s., 

which implies that, almost surely, 

H n ( x )  = 0, for all x  > rzJ+â , provided n is large enough. (3.4) 

For 1 < x < oo, we have 

< p*(F;w<p) 

=  f * ( f : ( z » ) - F » ( W < P - & ( W ) .  ( 3 . 5 )  

By (2.26), for 1 < x < logn, n sufficiently large 

P - & W  =  - - ^ / ( W  +  « ( ^ )  

< —d\ -^= + o(n~1!2) 
V Ti 

—A—j=- a.s., (3.6) 
v ft-

where 0 < di = inf{/(x) : x G AQ, 0 < A < dx and en € (f„ A z„,£„ V zn). Hence, for 

0 < x < log n, (3.5) and (3.6) yield that, for n large enough 

a + ( z )  <  p . ( f : ( w - ^ w < - ^ / v ^ )  

<  f L ( | F ; ( 2 n ) - ^ ( î n ) | > A c / v % )  a . 8 .  ( 3 . 7 )  



58 

We now apply Corollary 1 of Fuk and Nagaev (1971) and then use Taylor's expansion to get 

an upper bound for ff^(x). Recall that 

l' 

j=l 

And for notational simplicity, we write U* = U*(xn),i = 1,... ,b. By (ii) in the proof of 

Theorem 2.2, 

cr2 = -Var*{U{) -> as n ->• oo a.s. (3.8) 

Hence, using Taylor's expansion of the function g(y) = log(l + y) around y = 0, we get, 

uniformly for x G [1, log n], and sufficiently large n , 

p ; ( | f ; ( z » ) - & K ) |  >  

= p* | 

< exp 

b 

i= 1 

Axb ( Axb 

> M 

s 

/ /Irb 

Aix 

+ 1 

+ 1 

2*2 
< Cexp(-4^r + o(l) 

< C exp < -
A25 
4(7^ 

a.s., 

where the last two steps follow from (3.8) and the condition I = 0{nxl2 v). 

(3.9) 

Next, let an — 2<r^^/(l/2 + l/a)(2 + 6) logn/A, with A as in (3.6). Then, an < log n for 

sufficiently large n. Define 

^ l / 2 + l / a  
Ii = sup f H%(x)x1+sdx, /2 = sup f 

n> 1 J1 n> 1 J an 
($)a:1+5da:. 

We have, by (3.4), 

sup I  ( x )  < 1/(2 + J) + Ii + I2 • 
n>l  J0  
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By (3.7) and (3.9), 

7 j  =  s u p  [ (x)x1+sdx < s u p  [  e x p  { - A 2 x 2 / ( 4 c r ^ 0 ) ) a : : L + ^ d a ;  =  0 ( 1 )  a . s .  
n > l h  n > l J l  L  i  

Next, note that H+(x) is nondecreasing in x 6 (0, oo). Then 

1/2+1/0, 
J 2  =  s u p  /  H+(x)x1+sdx 

n> 1 J an  

1/2 + 1/a ^ 

<  s u p  /  H+(an)x1+ dx 
n>l  Ja„ 

• ?j1/2 + l/a 
<  s u p /  e x p { - A ^ o ^ / ( ( T ^ ) } a ; ^ + d %  

1 J (in 
1/2+1/a , « , 

=  s u p  J e x p  |  — A 2  y  ( 1 / 2  +  l / a ) ( 2  +  5 )  l o g  n/Aj /(c^) |a;1+ da; 

l / 2 + l / a  

= sup ^-(l/2+l/a)(2+6)^l+(j 
7 1 1  v  C t n  

< C(<5) a.s. 

Therefore 

Similarly, we may show that 

^ OO 

sup I H+ (x)x1+5dx < oo a.s. 
n> l 7o 

roo A 

sup / F~(x)x1+ d(x) < oo a.s. 
n >l  J o  

Thus (3.3) is proved. This completes the proof of Theorem 3.1. • 

We conclude this section with several remarks. 

Remark 3.1 Note that in addition to the regularity conditions of Theorem 2.2, we require 

the moment condition (3.1) for the validity of Theorem 3.1. It can be shown that, as in the 

independent case, (strong) consistency of the MBB variance estimator does not hold without 

the moment condition (3.1). 

Remark 3.2 It is worth noting that, unlike the distribution function estimation problem, the 

centering of the bootstrap sample quantile £* at is of no importance. This is because the 
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MBB mnonce esf*moZor, being Z/ie cond^ionaZ ucrmnce o/ Z*, egtiok miyor*(^*), w/iicA does 

not involve the centering variable £n. 

Remark 3.3 In this work, we focus on only one of many available block bootstrap methods, 

namely, the MBB method of Kunsch (1989) and Liu and Singh (1992). It is not difficult to 

show that the conclusions of Theorem 3.1 and Theorem 2.2 also remain valid for the circular 

block bootstrap (CBB) method of Politis and Romano (1992) and the nonoverlapping block 

bootstrap (NBB) method of Carlstein (1986) under exactly the same sets of conditions on the 

marginal distribution function F and on the block size £. Indeed, for the CBB method, analogs 

of Theorem 3.1 and Theorem 2.2 can be proved by using the main steps used in the proofs of 

Theorem 3.1 and Theorem 2.2 and using an estimate of the difference between the MBB and 

the CBB moments (cf. (5.10), pp. 129, Lahiri (2003)) involving certain indicator variables. 

The proofs for the NBB method are simpler (because of the absence of the extra dependence 

of the overlapping MBB blocks in the NBB blocks). In this case, Theorem 3.1 and Theorem 

2.2 follow from straight-forward modifications of the arguments presented in Section 3.2 and 

Section 2.3. We omit the routine details. 

Remark 3.4 We also mention that, like the sample mean, resampling a single data value at a 

time, as done in Efron (1979) for independent data, fails to provide a valid approximation for 

the sample quantiles under dependence. In view of the dependence of the asymptotic variance of 

Zn on lag-covariances of arbitrarily high order (cf. (1.3)), it is clear that the MBB, the CBB, 

and the NBB methods with a bounded block size can not account for all such lag covariances 

and will, therefore, be inconsistent. 

3.3 Simulation Study 

For the MBB variance estimation, we use the same models as in the MBB approximation 

to the distribution which was studied in Chapter 2. We also follow the similar simulation 

procedure as well. 
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Step 1: Select a model and generate 20, 000 samples of size n and simulate the values of 

a2
n = n-Var(£n) 

Step 2: Generate 500 MBB data sets of size n and for the m-th data set, compute the 500 

replicates of the MBB version of £n, denoted as 

- , C ,m(500), 

and then evaluate the MBB estimate of a%: 

-, 500 

% n • y<zr*(£*), m=l, •••,500, 

where 

P* = 
500 

^ 500 

£n,m c,nn ^ • 
m=1 

Step 3: Find the bias and variance of the MBB estimators: 

500 

Bias(&l(£)) - — Ë -  C T n)  

1 500 

m=l 

where 
, 500 

— ^qq 53 ®n,m (I) 

The simulation for the MBB variance estimation is based on the same 500 data sets used in 

the distribution function estimations treated in Chapter 1, and the results are here presented 

exactly in the same manner as that of the MBB distribution function estimation in Section 

2.4. Again, as we may see from the tables and graphs below, the numerical results support 
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the consistency result of the MBB variance estimator of the normalized sample quantile under 

weak dependence. 

It is also worth mentioning that the optimal block lengths may differ for different estimation 

problems. There have been some studies about the choice of the optimal block length. See 

Lahiri et al. (2003), Hall et al. (1995), and Bûhlmann and Kiinsch (1999). Here, we consider 

the effect of different block size on the MBB variance estimators for the three models described 

above. It appears that the optimal block size greatly depends on the model. For the AR(1) 

and the ARMA (1,1) models, a relatively smaller block size (between 1-6) tends to perform 

better, while for the MA(1) model, a choice of block length in the range 7-9 for n — 80 and 

n = 140 seems to have small MSE values. 
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Table 3.1 Variance estimation of c2 for AR(1) Model (i) in the case of the 
median, based on 500 MBB replicates. 

~h I Bias SD MSE True a2 RMSE 

80 3 -0.6523 1.3011 2.1184 3.3911 0.1842 

140 4 -0.5366 1.1794 1.6789 3.4533 0.1408 
300 5 -0.3873 1.0467 1.2456 3.4800 0.1029 
500 6 -0.3092 0.9449 0.9884 3.4813 0.0816 

Table 3.2 Variance estimation of for ARM A (1,1) Model (ii) in the case 
of the median, based on 500 MBB replicates. 

n I Bias SD MSE True cr2 RMSE 

80 1 -0.1171 0.8170 0.6812 1.8954 0.1896 
140 1 -0.1612 0.7187 0.5426 1.9064 0.1493 
300 1 -0.2202 0.6223 0.4358 1.9331 0.1166 
500 2 -0.1678 0.5833 0.3683 1.9354 0.0983 

Table 3.3 Variance estimation of a\ for MA(1) Model (iii) in the case of the 

median, based on 500 MBB replicates. 

n I Bias SD MSE True <r2 RMSE 
80 9 0.0291 0.6813 0.4652 1.0859 0.4284 

140 7 0.0797 0.5688 0.3299 1.1061 0.2983 
300 22 0.0224 0.5220 0.2730 1.0900 0.2505 
500 36 -0.0016 0.4973 0.2473 1.0856 0.2278 
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Figure 3.1 Histograms of the variance estimates of a\ for AR(1) model (i) 
in the case of the median. All the histograms are based on 500 
MBB replicates. They are from different combinations of sample 
sizes and block lengths: (1) n = 80,1 = 3 (top left); (2) n = 140, 
I = 4 (top right) ; (3) n — 300, 1 = 5 (bottom left) ; (4) n = 500, 

1 = 6 (bottom right). 
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Variance Estimation 
AR(1) Model: ar=0.4 
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Figure 3.2 Block length impact on the MSE of the variance estimation of 
for AR(1) model (i) in the case of the median, based on 500 

MBB replicates. The solid and dotted lines are for sample size 
n = 80, and n = 140 respectively, while the dashed lines denote 
respectively the MBB approximation with sample size n = 300 
and n = 500. In each case, the block length varies from 1 to 15. 
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Figure 3.3 Histograms of the variance estimates of for ARMA(1,1) model 
(ii) in the case of the median. All the histograms are based on 
500 MBB replicates. They are from different combinations of 

sample sizes and block lengths: (1) n = 80, £ — 1 (top left); (2) 
n = 140, 1=1 (top right); (3) n — 300, 1 = 1 (bottom left); (4) 
n = 500, £ = 2 (bottom right). 
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Variance Estimation 
ARMA(1,1) Model: ma=0.3, ar=0.4 
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Figure 3.4 Block length impact on the MSE of the variance estimation of 
for ARMA(1,1) model (ii) in the case of the median, based on 500 
MBB replicates. The solid and dotted lines are for sample size 
7i = 80, and n = 140 respectively, while the dashed lines denote 

respectively the MBB approximation with sample size n = 300 
and n = 500. In each case, the block length varies from 1 to 15. 
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Figure 3.5 Histograms of the variance estimates of a\ for MA(1) model (iii) 
in the case of the median. All the histograms are based on 500 
MBB replicates. They are from different combinations of sample 
sizes and block lengths: (1) n = 80, £ — 9 (top left) ; (2) n = 140, 
1 = 7 (top right); (3) n = 300, £ = 22 (bottom left); (4) n = 500, 

£ — 36 (bottom right). 
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Variance Estimation 
MA(1): ma=0.3 
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Figure 3.6 Block length impact on the MSE of the variance estimation of 
a2 for MA(1) model (iii) in the case of the median, based on 500 
MBB replicates. The plot on the top is for sample size n = 80, 

while the one at the bottom denotes the MBB approximation for 

sample size n = 140. In both cases, block length varies from 3 to 

17. 
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Variance Estimation 
MA(1): ma=0.3 
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Figure 3.7 Block length impact on the MSE of the variance estimation of 
a\ for MA(1) model (iii) in the case of the median, based on 500 
MBB replicates. The plot on the top is for sample size n = 300 

with block length varying from 20 to 34, while the one at the 
bottom denotes the MBB approximation for sample size n = 500 
with block length varying from 30 to 44. 
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CHAPTER 4 A BERRY-ESSEEN THEOREM 

4.1 Introduction 

This chapter proves a Berry-Esseen Theorem for sample quantile of strongly-mixing random 

variables under a polynomial mixing rate. When the process {X,};ez is strongly mixing (see 

Section 4.2 for a definition) at a polynomial rate and F is differentiate at F-1 (p) with a 

positive derivative f(F~1(p)) > 0, it is known (cf. Theorem 2.1) that 

W -4»' #(0,rjL) (4.1) 

as n -*• oo, where is defined as in (1.3). 

The main result of this chapter (cf. Theorem 4.1) refines (4.1) by specifying the rate of 

normal approximation to the distribution of — F-1(p)). More precisely, it is shown 

that under appropriate regularity conditions set forth in Section 4.2, 

sup \P(y/n(F~1(p) - F~1(p)) <x)~ $(x/ too)| = 0{n~1!2) as n -» oo (4.2) 
seR 

Thus, as in the independence case, the rate of normal approximation is shown to be 

0(n-1/2) as m —» oo, and hence, the Berry-Esseen Theorem holds for the sample quantile 

for strongly mixing random variables under the conditions of Section 4.2. This is in marked 

contrast to the case of the sample mean of strongly mixing random variables, where a Berry-

Esseen Theorem with the rate 0(ra-1/2) of normal approximation is not available. The best 

possible rate for sums of strongly mixing random variables with an exponentially decaying 

mixing coefficient is only 0(n-1/2(logn)°) for some suitable c > 0 (cf. Tikomirov(1980), Das-

gupta(1989)). For processes satisfying stronger forms of dependence conditions like /3-mixing 

or ^mixing, (cf. Donkhan (1984)), a generalization of this result is recently obtained by Ben-

tkus, Gôtze and Tikhomirov (1997) for ^-statistics, but still with the rate 0(n~1/2(log n)c) for 
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some c > 0. Although validity of the Berry-Esseen Theorem with rate 0(n~1//2) for sample 

sums of strongly-mixing random variables remains unsolved, Theorem 4.1 below establishes 

the desired optimal rate 0(n-1/2) for the sample quantile, as in the independent case (cf. Reiss 

(1974)). The proof refines and adopts some of the arguments developed by Gôtze and Hipp 

(1983) and Lahiri (1993, 1996a) for deriving Edgeworth expansion for sums of strongly mixing 

random variables and also crucially exploits properties of the probability integral transform 

F~1(-) of the empirical distribution function (edf) Fn that allows one to approximate the 

distribution function (df) of F~1(p) in terms of those of (normalized) sums of certain lattice 

random variables. The rest of this chapter is organized as follows. In Section 4.2, we state the 

conditions and the main result. Technical details are provided in Section 4.3. 

4.2 Conditions and the Main Result 

We establish the main result of this chapter under a general framework introduced in the 

seminal paper of Gôtze and Hipp (1983). Suppose that the random variables {Xi : z 6 Z} are 

defined on a probability space (fî, T, P) and that {1: i G Z} is a collection of sub-c-fields of 

T. For -oo < a < b < oo, let Vh
a — cr({X>; : i G [a, b] A Z}) denote the cx-field generated by 

{T>i, a < i < b,i G Z}. We shall make use of the following conditions: 

(ÇA) 

(i) F is differentiate in a neighborhood Afp of £p with derivative f(x) such that 

0 < inf{/(z) : x G Afv} < sup{f(x) : x G Afp) < oo, 

where = F~1(p). 

(U) = E^zCoi;(7(Xi < U,7(^+i < („)) E (0,oo). 

(C.2) There exist constants d, G (0,1) and »o > 12 such that, for all n > 1, 

a(R) = 8up{|F(Ang)-F(A)f(B)|:AG%)L^,BGD^,iGZ} 

< d^n-"0 . (4.3) 
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(C.3) There exist constants d  6 (0,1) and /3q > 12 such that X ^ n  is measurable, and 

for all i € Z and n G N, 

H % - . (4.4) 

(C.4) There exist constants d G (0,1) and 70 > 12 such that for all TO, n, r G N and A G 

|P(A|X>j : j r) - P(A|Xj : 0 < |r — j| < m + n)| < d~ ln~'y° . (4.5) 

(C.5) There exist d G (0,1) and sub-cr-fields Ci, i G Z, of such that for every z G Z, 

<r(X>j : j ̂  i) U : j ± *}) C Q and 

P(G,(f„) = l)<P-d, (4.6) 

where G,(y) = P(Xi < y|C,), y G R. 

We now comment on the conditions. Condition (C.l) is a standard condition that is 

frequently used to ensure a nondegenerate normal distribution of the p-th sample quantile 

under dependence. In the independent case, (C.l)(i) is also almost necessary; see Bahadur 

(1966). Conditions (C.2)-(C.4) are similar to the conditions introduced in Gôtze and Hipp 

(1983) for deriving asymptotic expansion for sums of weakly dependent random vectors, where 

the right sides of (4.3)-(4.5) were assumed to be exponentially decaying functions of n. The 

reduction to the polynomial case here heavily borrows on the arguments of Lahiri (1996a) which 

proves Gôtze and Hipp's (1983) results under similar polynomial decay conditions. Condition 

(C.2) is a strong mixing condition in the auxiliary cr-fields P/s which, together with condition 

(C.3), imposes an approximate strong-mixing structure to the given random variables 

Condition (C.4) is an approximate Markov condition and in particular, it is satisfied, if {Xi}ie% 

is an m-th order Markov process for a fixed m G M. Condition (C.5) is a regularity condition 

that says that the conditional distribution of X{ given {Xj : j ^ i} and {Vj : j ^ i} has 

positive mass beyond £p. It can be shown that (4.6) is approximately equivalent to requiring 
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that for some e G (0,1) 

f (/(%; < (p) = 1|C.) < P (4.7) 

on a set Ai with P(Ai)  > e. Indeed, if -P(G;(£p) = 1) = p, then it can be shown that the 

conditional distribution C(I(Xi < £p)|Ci) is degenerate at 1 on a set of probability p and 

it is degenerate at 0 on the complementary set of probability q = 1 — p. As a result, the 

conditional characteristic function of Xi given Ci becomes identically equal to 1 in absolute 

value on all of Q, and the factorized conditional characteristic function of the scaled sum 

Sn = n~ll2Y^=\{I{Xi < £p) - F(£p)) no longer provides a useful bound on the discrepancy 

between the distribution functions of Sn and N(0, cr^J. However, once this degeneracy is ruled 

out at £p by condition (C.5), it is possible to derive a suitably small upper bound on the con­

ditional characteristic function of the scaled sums n-1/2 X3j=i (I{Xi < y) ~ F(y)) of the lattice 

random variables uniformly over y in a neighborhood of £p (cf. Lemma 4.3 in Section 4.3). We 

exploit the arguments of Gôtze and Hipp (1983) and Lahiri (1993, 1996a) in conjunction with 

this bound to establish a uniform 0(n_1/2)-order bound for the sums of such lattice variables. 

Note that in the independent case, if we take Vj = cr(Xj),j G Z and Cj = cr({X; : i / j}), 

then G,(£p) = P(Xi < Çp|Cj) — P(Xi < £p) = p and hence condition (C.5) easily holds. Below 

we consider some important examples and verify conditions (C.2)-(C.5). 

Example 4.1. Suppose % is m-dependent for some m € Zl) {0}, i.e., o ( { X {  : i < fc}) 

and (r({Xj : i > k + m + 1}) are independent for all k G Z. Then, we take V j  =  a( X j )  and 

Cj = a(Xi : i ^ j), j G Z. Then, it is easy to check that conditions (C.2)-(C.4) hold with 

X;m — Xi for all i € Z, m € N and a0,/?0)70 arbitrarily large. Furthermore, in this case, 

condition (C.5) reduces to 

We claim that (4.8) or equivalently (C.5) holds if there exists a set A  G T  with P ( A )  > 0 and 

e G (0,1/2), a < £p < b such that Go = the conditional distribution of Xq given {XI : 0 < |z| < 

(%o < : 0 < |*| < m) = 1) < p. (4.8) 



m} puts at least e mass on (a — e, a] and on (6, 6+ e] on the set A, i.e., 

Go((ct - e, a]) > e, Go((Z>, b+ e]) > e , for all u> G A . (4.9) 

To see this, note that (writing Go also to denote the distribution function), 

p = F(f„) = EGo(fp) = P(Go(f„) = 1) + 2Go(f„)f (0 < Go(f,) < 1). (4.10) 

Thus, P(G0(£p) = 1) < p. 

If possible, suppose that (4.8) does not hold, i.e., p = P(Go (£p) = 1), Then, by (4.10), 

EGo((p)7(0 < Go((p) < 1) = 0 , 

which implies P(Go{£ P )  G (0,1)) = 0. Consequently, 

f (Go((p) = 0) = 1 - [P(Go((p) G (0,1)) + P(Go(f„) = 1)] = 1 - p. 

But then 

P(A) = P(An{Go(fp)=0}) + P(An{Go(&,) = l}) 

< P({Go({a — €, a]) > e} fl (Go(£p) = 0}) 

+P({Go(6, b + e]) > e} D {Go(Cp) = 1}) 

= P{4>) +  P{4>) =  o ,  

which contradicts the fact that P(A) > 0. Hence, the claim is proved. 

Example 4.2. Let Xi  = f(Xoi ),i G N, where / is a Borel measurable function and {Xo,}«eN 

is a stationary homogeneous Markov-process satisfying 

|P(x;A)-P(y;A)| < 1 (4.11) 

for all i,t/G K and A G S(R), the Borel c-field on R, where P(-; •) denotes the transition 

probability function. Further suppose that £(Xoi|Xo; : t / 1) = £(Xoi|Xoo)- Then by (iii) 
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on page 219 of Gôtze and Hipp (1983), conditions (C.2)-(C.4) hold with Vj — a(Xoj), and 

XjiTn = Xj for all j € Z and with «o, Po, 7o arbitrarily large positive real numbers. For 

condition (C.5), we take Cj — a({Xoi : i ^ j}),j G Z. Let A = /-1((—oo, £p)). Then, 

G(f„) = f (Xi < ^ 1) = P(/(%oi) < f 1) = f (%oi € A|%oo). 

(4.12) 

Next, we write — {u : P(%oo(w); A) = 1}, B2 = {iv : P(Xoo(w); A) = 0}, and B3 — {u> : 

P(X 00( uj)-, A) E (0,1)}. Note that, by (4.12), P(G(£p) = 1) = P(Bi) and at least one of Bi,B2 

is empty because of (4.11). So condition (C.5) holds if P(B\) = 0. Otherwise, if P(B2) = 0, 

then we have the following: 

P(%) = l-P(Bi)>l-p>0, 

implying 

d— j P(x; A)P0{dx} > 0 , 
JXoo(B3) 

but then 

P = P{X 1 < £ P )  =  P(X01 6 A) 

= f P(x-,A)P0{dx} 

— f P(x-,A)P0{dx}+ [ P(x;A)P0{dx} 
J X o o i B i )  J X o o ( B 3)  

= P(Si) + d, 

where P0 is the marginal distribution function of -Xqo- Hence condition (C.5) holds. 

We conclude this section with presenting the main theorem of this chapter. 

Theorem 4.1 Under the conditions (C.1)-(C.5), we have 

sup IP{y/n(F~ l(p) - P-1(p)) < x) - $(z/roo)| = 0(n~1/2) n -> 00 . 
xeR 
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4.3 Technical Details 

In the proofs below, we write C, C(-) to denote generic constants with values in (0, oo) that 

may depend on the arguments (if any), but not on the variables, n,x,y. Also, unless otherwise 

mentioned, we take limits by letting n oo. By the definition of the sample quantile, for any 

y e R, 

f(Fn(y) > p) < P(F-i(p) < y) < > p). (4.13) 

Hence, we consider the sum of £"=1I{Xi < y) for y in a neighborhood of £p and study the rate 

of convergence of the upper and lower bounds in (4.13). The first result gives an expansion for 

the log-characteristic function of a scaled sum of a general strong-mixing sequence {Wj}je% of 

random variables in a neighborhood of the origin. 

Lemma 4.1 For each n > 1, let fn : R —> [—1,1] be a Borel measurable function such that 

EA(Xj) = 0, E|A(%.) - < Ck-P" /or oW i G Z, 6 € N and 

n-^ar(^]A(%i)) = l. (4.14) 
i—1 

Then, for any e 6 (0,1/4) 

5 

sup 
t€A„ 

(if)' 
logEexp(itSn) - 53 —rXr> 

r=2 ^ 

< C(6)»-^^-^(l + SUp |*ln(Z)|*) 
t€An 

+C(e)(sup \Hn(t)\~6) - n2c(aoV/3o) • {n~1/2-ao/4 + n"1/2"^/4} 
t€ An 

for all n > 1, where An = {t e R : \t\ < (logn)1,,2(loglog(n + l))1/4} and where, with 

Wni = /„(Xi), i € Z,n > 1, Sn = n_1/2EF= 1 Wni,Hn(t) = Eexp(itSn),t € R,Xr,n is the r-th 

cumulant of Sn, and 0in(t) is as defined in (4-19)below. 

Proof: For any random variables V*, • • • , Vp, p € N, set 

" i VP) ~ ' ' • y^-log£exp(ttSn + XiVi + • ••XpVp)\xx= =xp=0 . 

(4.15) 
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Then, using Taylor's expansion of the cumulant generating function log E exp(ttSn) around 

t = 0, we get 

-i (k) 5 (tt)r 

\ogEexp(itSn) - 53 —TXr>« 
r=2 T-

(4.16) 
k=0 

for any i E R with |£'exp(z.*Sn)| > 0, where 7? = ??(() € [0,1], Vj = tWnj/\/n and for a given k, 

the summation extends over ji, • • • ,je with maximal gap k. Note that by Lemma 3.1 of 

Lahiri (1996a) (with cn = 1, t = 0), for any oi, • • • , ar E R, with |cy| < 1, r > 2, 

71— 1 
|Ko(aiSn, " , «r^)| < C(r)n-^^)/^ g f-:[a(k/3) + ̂ (t/3)] 

À:=0 

< C(r)n-("-^^, (4.17) 

provided a0 > r, /30 > r, where (3w(k) = k~P°, k E N. 

Fix e E (0,1/4) and let an — nly,4-e. Then by (4.16) above and by Lemma 3.2 of Lahiri 

(1996a), (with cn = 1), as in the proof of his Lemma 3.6 (cf. (3.9)), we have, for t E An, 

O n  W  

/c—0 

< 5Z n • (^ + l)5 • C ' n_3 • (1 + |*|6){(1 + 01n(vt))6 + (1 + ̂ 2n(rlt))6} 
k—0 

< C(e)^«-^ . (1 + If )[1 + |gm(f)|^ + |^(()|-^{n-^=^ + « . „-3A/4}], (4.18) 

where 

01 n(t) = l-ffn^)!-1 max{|Sexp(5P)| : 1 < / < L, |/| < 4, / C {1, • • • , n}} 

02n(t) = \Hn(t)\-1(L2L{a(m) + npw(m)} + 

Ct(m) = C|i|(n_1m)1/'2, (correcting for a typographical error in Lahiri (1996a)) 

m = n3/4+c and L = log log n. (4.19) 

Here, for I C n}, I > 0, Sj1^ = Ln~ l!2tY?^ Wnj, with ranging over all j E 

{1, • • • , n} such that | j — i\ > Im for all i E I. Next using Lemma 3.3 of Lahiri (1996a) with 

K = L, m = 3Kn~c and cn = 1, for each k E (an,n), as in the proof of (3.10), page 217 of 
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Lahiri (1996a) (again correcting for the typo, (1 + ||#||r/2), with (1 + ||f||r)n~r/2), we get 

n—1 (k)  

#! = On + l 

<  C . m - ^ ( i  + I f  

•j 52 n(k + l)5[a(kn~'L) + nPw(kn~c) + Ç t{^kn~e)L\ 
\k=a„+1 J 

< C(€)(l + If )|^(^)|-G . -12^ . + n. ̂  

< C(e) • \Hn{rjt)\~6 • n
2e{aoS/po) • n~1/2 • {n-a°/4 + n • n'00?4} (4.20) 

for all t 6 An. Hence, the lemma follows from (4.16), (4.18)-(4.20). • 

Remark 4.1 It is possible to obtain a bound on the difference between Eexp(itSn) and its 

s-th order Taylor's expansion J2r=2 ^7i~Xr,n for an integer s > 3 by suitably modifying the 

arguments in the proof of Lemma 3.1. It can be shown that for a small S > 0, a 0(n-1/2-$) 

bound on the difference is assured, if the strong-mixing exponent û q  satisfy 

ctQ !> s -t- 4 + 9/(s — 2) . (4.21) 

By minimizing the right side of (4-21), we get s = 5, which explains the reason behind consid­

ering the 5-th order Taylor's expansion in Lemma 4-1-

Lemma 4.2 Let Wnj's and Sn be as in Lemma 4-1• Then, 

(i) For any a E (0,1/2), there exists a Co = Co (ceo, A), 7o, «) such that for all n > Co, 

\Hn(t)\ < C0exp [1 - Co(logn)-2]^ 

+ n-=^}(logn)^ 

uniformly in |t| < n(1-a)/2(logn). 
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(ii) There exist Cq G (0,1) and C\ = Ci(ctO) /?o>7o) G (0, oo) such that for all n > C\, 

\Hn(t) \ > eQexp(-t2/2) - C\(logn)Cl[n~a°^2 + n1/4 • + n~"yo/'2] 

for all |t| < €q logn. 

Proof: Let m = mi (log n)~2 and mi = na (log n)~6. Let /, ji, • • • ,ji be the integers defined 

on page 218 of Lahiri (1996a)with / = {1, • • • , n} and I\ = {mi + 1, • • • , n — mi}. Also, let 

rfc = ]J{exp{itWnj/ ^ / n )  : j e l , \ j  -  j k \  <  m j ,  k  =  1 ,  •  •  •  ,  I  

B = J[{exp(UWnj/ \ / n )  : j  e I , \ j  -  j k \ >  m i } ,  for all k = 1, •••,/}, 

where / = {!,•••, n}. 

Then, the arguments leading to (3.11) of Lahiri (1996a) (with cn = 1, R = 1) yields 

\ H n ( t ) \  =  | £ ( f l  T k ) B  

i 
<  C Y [ E \ E { T k \ T >j : j ^ jk)\ + C[la{m) + lj(m) +f3w{m){m + n1/2\t\}] (4.22) 

k=i 

for all n > 1, t G R. 

Next note that by (4.14) and the stationarity of X;'s, 

mi 
m l  

1Var(^2Wnj) - 1 
3-1 

n—1 

j=mi+l 

< c 
1 

i a U / 3 )  +  0 w  0 / 3 ) }  +  —  ̂ 2 j { a { j / ^ )  +  P w ( j / 3 ) }  
j=m 1+1 

< C(ao, N 

TO f- 1 J=1 

(4.23) 

Hence, by (3.12) and the arguments following it on page 219 of Lahiri (1996a), and by (4.22) 

and (4.23) above, it follows that for all n > C(c%, /30), 
i 

H \ E ( T k \ V r . j ^ j k ) \  
k=\ 

< Cexp 12mil(l - C(a0,(3o)m1
1) - Cn 3/2l\t\m^2} 

< Cexp f-y[l - C(o, ao, 0o) (log %)-^]l , (4.24) 
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for all \t\ < n(1-a)/2(log n), where in the second inequality, we make use of the fact 

2m.il = n[l — 0(n-1mi + m^m)] as n -> oo . (4.25) 

Hence, part(i) of the lemma follows from (4.22) and (4.24). Part(ii) can be proved by retracing 

the arguments on pages 221-222 of Lahiri (1996a), with cn = 1. • 

For the next lemma, let C be a su b-cr-algebra of J7, G(y; •) = P(X\ < y\C), Ai(y) = {w : 

G ( y \ u )  =  1 } ,  a n d  A 2 ( y )  =  { w  :  0  <  G ( y ;  • )  <  l } , y  E  R  A l s o ,  l e t  g ( y )  =  P ( { w  :  G ( y ; u )  =  

1}) = P(Ai(y)), y E R. Let vpa(*) = (oelt + 1 — a) denote the characteristic function of a 

random variable Y with P(Y = 0) = 1 — a, P(Y = 1) = a, a E (0,1). 

Lemma 4.3 I f  g ( £ p )  <  p ,  t h e n  t h e r e  e x i s t s  8 ,  e  E (0,1) such that for all t E R, 

sup ^|E{exp(t(/(%i < y)|C}| <!-(!- -
|y-£pl<5 

Proof: By definition, for all y E R 

F(y) = P(Xi<i/) = E{P(%i<!,|C)) 

=  / "  G ( y ; ) d P  
J A i ( y ) u A 2 { y )  

= f G ( y ; - ) d P  +  g { y )  (4.26) 

Note that A%(yi) C Ai(y%) for all y% < y2 and that (?(-; w) is a valid distribution function for 

each w E 0. Hence it follows that 

(i) g ( - )  is nondecreasing, and 

(ii) g ( - )  is right continuous on R. 

Indeed, for any sequence yn | y e R, {u; : G(y;u>) = 1} C n„>i{a> : G(yn;u>) = 1} by 

the monotonicity of G(y; •) in y and the reverse inclusion follows from the right-continuity of 

G(y;w) in y for each w, proving (ii). Since F(£p) = p, by (4.26), 

g ( W < P .  ( 4 . 2 7 )  
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First suppose that g(£p) <  p .  Then by the right continuity of g ( - ) ,  there exists a <50 > 0 such 

that 

g((p + ̂ o) < P - - (4.28) 

By (i), this implies that g ( y )  <  p  -  S q  for all y  <  £ p  +  5 o- Since F  is continuous at £p, there 

exists a 0 < 5\ < S0 such that 

F { £ p  —  S i )  >  p  —  S q / 2  .  (4.29) 

Next, write A3(y; e )  = {w : e < G ( y ; u )  <  1 -  e } , A 4  =  { u  :  G { y ; u > )  >  1 - e}, e E (0,1), y E E. 

Note that A4(y; e) I Ax(y) as e | 0 and A4(y; e) C A4(y + h\ e) for all y E E, h > 0, e E (0,1). 

In particular, for any y E E, 

l i m /  G ( y ; X f = / '  G ( y ; ) j P = f ( A i ( ; / ) ) = g ( y )  ( 4 . 3 0 )  
v/A 4 (y;e)  - /Ai(y)  

Hence, by (4.26), and (4.28)-(4.30), there exists 0 < e < 50/8 such that for all y E (£P-<$i,£P + 

Si), 

fMs(!/;()) > / G(y;)df 
J A z ( y , t )  

= j"G(y; )df - j"G(y; )7(G(y; ) < ()df 

-  y G ( y ; . ) 7 ( G ( , / ; . ) > l - E ) d P  

>  F ( y ) - 6 - y G ( ( p  +  6 i ; ) 7 ( %  +  ̂ ; . ) > l - 6 ) d f  

> F ( £ p  -  5 i )  -  €  —  [y(CP + <*>i) + e] 

> [p- <V2] -2e - \ p - S 0 \  

= Sq/A . (4.31) 

Next, writing \I*£(t) = \te l t  + 1 - e\,t E E, and G(y) = G(y\ •) for notational simplicity, by 

(4.31), for y E (£p - 5i,£P + <%i), we have 

E|E(exp(At/(%i <y))|C)| 

=  E | G ( y ) ^ + ( l - G ( y ) ) |  
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=  E | l - 4 G ( t / ) ( l - G ( y ) ) 8 i n " ( ^ 2 ) | ^  

< f (Ag(y; e)) + -11 - 4G(y)(l - G(;/)) sin^(/2)|i/2 

<  f ( ) )  +  | 1  -  < 1  -  < 0  s i n ^ ( t / 2 ) | ^ ^ f ( A 3 ( ! / ;  ( ) )  

<  1  -  ( 1 - ! $ , ( ( ) I ) W 4 .  ( 4 . 3 2 )  

Lemma 4.3 is proved. • 

Lemma 4.4 Suppose that condition (C.2) holds and that {Yj}j>i be a sequence of zero-mean 

real-valued random variables such that 

(i) Y j  is V ^ k
k - measurable for all j > 1 with 1 /k + k/n = o(l) a s  n  oo 

(ii) there exists a constant c > 0 such that 

E \ Y j \ l  < c l  2l\ E Y j  <  oo; j = 1, • • • , n; I = 3, 4, 

Then for each n > 2, each integer q 6 [1, 2I+tL eac/i e > 0 and each s > 3, 

P  
j-1 

>  n e ]  <  a i  exp 
25m, + 5 c e  

+ &2(s) «r 
n 

q + l  
2t 

where 

0 l - 2 ? + 2  l + 2 5 m l + 5 « ,  

-2i_ 
2 s + l  

, with m2 = max , 
l< j<n 

5m|s+1 

02(5) = lin I 1 H j , with ms — max ||Yj||s. 
e I 1<j<n 

Proof: Since the proof of this lemma follows the same line as in that of Lemma 2.3, we only 

give an outline. For details, see the proof of Lemma 2.3. We define the blocks of random 

variables as follows: 

Z'j  = J2 Y( i- i)r+j> J = • • •  ) r> R 'n  = OV+i H 1" Y n ) I ( q r  < n) 
î=l 
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where q  G [1, n / ( 2 k +  1)], r  =  [n / ( q  +  1) J .  Then, by equation (2.14), 

p ( \ K  l > f ) < 2 ( l  + 
5(5m\ + ce) J ^  ^ 5(5m^ + ce) J 

And by Lemma 1.2 of Bosq (1998), there exist random variables {Wi}g
i=l such that W{ —d 

Y(i—l)r+j i  ^  =  1) '  '  '  ) a f id 

9 c  \  /  F \ m \  5 7 3 T T  /  /  r >  

(4.33) 

g + i 

2s 
23+1 

Hence, (4.33), (4.34), Bonferroni's inequality, and Bernstein's inequality lead to 

p (\Z'i\ > f5) < P [ \ Ew ' \ > Y - ) + E f  - Wil > 

<  m | l  +  — V ' + l  l a .  
n 

. 9 + 1  
- 2A 

2 s 
2s+l 

+2exp -
5(5m^ + ce) 

Thus, by (4.33) and (4.35) 

n 

?' = 1 
> ~ |  <  g p ( | Z ; i > | l )  +  p ( K i > |  

<  r . l n l l  +  ̂ V "  l « .  
n 

.9 + 1 
2k 

2» 
2s+l 

+r • 2 exp 

+ 2 ( 1  +  

5(5 m\ + ce) 

e2  \  
exp 

qe< 

5(5m,2 + ce) J I 5(5ml + ce) 

(4.34) 

(4.35) 

which completes the proof of Lemma 4.4. • 

Lemma 4.5 Suppose that conditions (C.l)-(C.S) hold. Then for any 6 G (5/(2 + 4a0), 1/2), 

f ( I V " ( &  - & , ) ! >  ^  l o g  % )  <  ,  

for some constant C > 0. 
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Proof: Let en — n"1/2+l5 logn, xn = + fn- Then we have by (4.13) 

f (V^(& - (p) > n' log 

< P(&(Zn)<p) 

< ^ - ̂ K)] ̂  

< f ^1 E^(^. < 3:") - ̂ K)]| > , (4.36) 

where A = sup{/(») : x G A/*p}. It is easy to check that for any i G Z, any x G R and any 

eo > 0, 

E|7(X,-<%)-f(X^<z)| 

< f (min(%^,X^) < z < max(%i, j) 

< P (|Xi - x\ < c0) + P 0%, - X^k\ > e0) 

<  [ F ( x  +  € q)  ~  F ( x  -  eo)] + e0
1E\Xi - X]k \. (4.37) 

Hence, by conditions (C.l) and (C.3) for /?(n), there exists So > 0 such that for all |a: -£p| < <50, 

and i G Z, k G N, (with e0 = k'P0 in (4.37)), 

E|7(%,- < z) - < z)| < A - 2eo + - = (2A + . 

(4.38) 

Thus, for \x - (p| < 50, k = [n(1_5'//3°j, 

|f]M7(%^<z)-F(z)]| 
i-i 

< f]|E(7(X^<z)-7(X,<z)| 
i-i 

i-1 

< n-(2A + cM)&-&' 

< A^/3, (4.39) 
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and 

P ( I  £[/(*,- < z) - J( x l  <  * ) ] |  >  ̂  
2 = 1 

AREn/3 

< 

< 

< 

AnEn/3 

n  •  ( 2 A  +  d ~ 1 ) k ~ P °  

Am6n/3 

3(2/1+ cM) 
An~1/2+s log n 

< 0(7%-^^). (4.40) 

Next, let Y i  = I ( X ^ k  <  x )  -  E I ( X ^ k  <  x ) ,  i  = 1,2,-- with 1 / k  +  k / n  = o(l) as n  — >  oo. 

Then it can be seen easily that {Y;}j>i satisfies the conditions of Lemma 4.4 (with c = 1, m2 = 

EI(Xjk < x){\ - EI(Xjk < x)). Applying Lemma 4.4 to the sequence with 

k = [rS l~6W°\, e = An~1!2+S{log n)/3, q — [n1-25(log log n) + lj , 

and exploiting the arguments in the proof of Lemma 2.4 (iii) will lead to 

f  < % ) ! > % '  

= Am-^^(logR)/3j 
i=i 

< 0(7%-^^). (4.41) 

Note that there exist some 6X < <50 such that (4.37)-(4.41) hold uniformly for x satisfying 

\x - £p| < 5i since the bounds in those relations depend on x only through the moments of 

nxl - * ) •  

Hence, we have by (4.39), (4.40) and (4.41) 

P È^(^' ̂  - f KHI ^ 

< sup f A ^[/(%,^ < Z) - E/(%,^ < z)]| > /Ine^ 
k-(p|<fi \ i=i / 
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+ sup f||Y][7(X,<z)-7(X;,<z)]|>A^/3) 
k -£p l< s i  V  i= i  /  

< , (4.42) 

where C \  is a positive constant. Thus, (4.36) and (4.42) lead to 

- W > ?/logn) < . 

Similarly, 

f - €p) < log 4 < . 

Thus, Lemma 4.5 follows. • 

Proof of Theorem 4.1 By (3.1) and Lemma 4.5, it is enough to show that 

sup \ P ( F n ( y )  >  p )  -  $ ( y / T o o ) |  =  0 ( n  1/2) as n —y oo . 
|y-fpl<" 1 /2+15  logr 

(4.43) 

For x  G M, let x n  =  £p+n l ! 2 + i x ,  c t
2 ( x)  =  n V a r ( F n ( x ) )  and S n ( x )  —  ^ / n ( F n ( x ) - F ( x ) ) / c r n ( x ) .  

By the smoothing inequality (cf. Lemma 2, page 538 of Feller (1971)) 

An = sup 
\ x \ <n^ log n 

< sup 
| .T|<n5l°gn _ J  — Kyfn 

(T»(z) 

)l 

1 fKVn \ E e x p ( i t S n ( x n ) )  - e~<2/,2| 

< sup sup [^(^(Zn) < !/) - $(y)| 
logn y€K 

dt -\-
1 

\t| 24\/2tt K\/n 

where k  G (0, oo) is a constant (independent of x), to be specified later. 

Let 6* be such that 

lim inf inf{cj2 (£p + x )  :  \ x \  <  & * }  >  CT^ / 2  ,  

(4.44) 

(4.45) 

and 0 < ^* < So, here Sq  is as in (4.38) in Lemma 4.5. Note that (4.45) holds, because 

> 0, F  is continuous at £p and sup{X^„ \ C o v ( l { X i  <  x ) , I ( X j + i  <  z))| :  x  G < 

CYlT=n[ a { j /$) + /^(i/3))] -> 0 as n -)• oo. Let J V P  =  { x  :  \ x  -  (p| < 6*}, and let Xr ,n{ x )  denote 
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the r-th cumulant of Sn(x) = y/n(Fn(x) - F(x))/an(x),x € Np. Then, we have by (4.38), for 

any i G Z, there exists C > 0 and 0 < 5** < 5* such that for all \x -£p| < 6**, and i G Z, k G N, 

(4.46) 

Without loss of generality, let = 6*. Also, let W ni( x )  =  [ I ( X j  <  x )  -  F ( x ) ] / a n ( x ) ,  i G 

Z,n > l,x G Np. Then, by (4.45), (4.46) and the condition (C.3), {Wni{x) : i G Z}n>i satisfies 

the conditions of Lemma 3.1 uniformly in x G Np. By Lemma 4.1 and Lemma 4.2 (ii) above 

and the induction arguments used in the proof of Lemma 3.28 of Gôtze and Hipp (1983), it 

follows that there exists ei = ei(a0, Po) G (0,1/4) such that for all 0 < e < ex, 

5 (i£)r 

sup sup log£ ,exp(^5„(x)) - 53——Xr,n(z) 
xeMpt2<logn r—2 r" 

< C(e)[m"^^^ + {6oexp(-(\/ïôg7Ï)^/2)}-V':(^^){m-^^-°'''/4 + 

< C(6,eo)R-^=-^, (4.47) 

for all n > Ci, where C\ is as in Lemma 4.2(ii). Note also that \ex - 1| < Hence, for 

\t\2 < logn, by (4.17) and (4.47), there exist constants C\ and C2 such that 

Eexp(itSn(x)) — e ^ 

Eexp(t^(z)) - exp j5Z W^(^')"^Xr,n(a:) < 
< r  =  2  

+ exP E(ft)P(r!) \r,n(z) -kt-e 2 

exp Xr,n(%) 

<r~2 
5 

exp ^ log Eexp(t&9n(z)) - 53 W^(^0 \n»(^) 
r = 2  

+e~2 kt' exp < 5»r(H) ^r,n(z) > - 1 
<r=3 

< Co - C(e, + Cge"^ - . (4.48) 

Thus, 

sup / \Eexp(LtSn(x)) - e <2/ ,2||£| 1dt 
x G A f p  J t 2 < l o g n  

< sup f  |CoC(e, €o)n_1/2_c,(^+C2e~2t2 .n_1/2|f|3||t|_1 

^GvVp Jt2<logn 
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for all n>C\. On the other hand 

t2>logn 

= o(7%-V2) ^ 

so it remains to show that 

sup I |£'exp(^5ri(x))||i| 1dt = 0(n l!2) . 
rrEA/p J(logn)1/2<|t|<Kni/2 

(4.49) 

To this end, we split the set of t-values in (4.49) into the sets Bln = {t G M : (log n)1/2 < 

|i| < n7/16} and £2n = {i £ K : n7/16 < \t\ < nn1/2}. Then, using Lemma 4.2(i) with 

W, n j  W n j (x),x € Afp with a = 1/8, we have 

sup f \EexptSn(x))\\t\~1dt 
x^Afp J Bin 

/•n7'16 

< 2Cq  exp(-t2/2) • exp(C0t2(\ogn) 2/2)\t\ 1dt 
J (log n)1 /2  

+2Co ( r (log n)G° •n-1/2-1/s 

\ v '(]ogn)1/2 J  

rlogn z-n7/16  

cp(Co/2) / exp(—i2/2)|£|-1c?i + / exp(-£2/4)|i|-1cfc 
v flog ra)1/2  7 log n 

< 2C, 
logn 

(log 

+2C0(logn)c'0+1n_1/2_1/8 

= on -l/2) 

Next, note that (1 - u)1/2 < 1 - 1/2% for all 0 < u < 1. Hence, there exists kq = ko(<$, e) G 

(0, oo), depending on <5 and e of Lemma 4.3 such that for |£| < k0 

1-(1-|$,WI)^ = (1-g) +<^(1-46(1-6) sin"((/2))V2 

< (1 - 5) + <5(1 - 2e(l - e) sin2(t/2)) 

< 1-C(e,^)^. (4.50) 

Also, for a bounded random variable y  and cr-fields G\  C Q2 C T,  E{Y \G\ )  =  S{£ , ( y | t?2 ) |S i }  

a.s. (f ). Hence, setting k = Ko in and using (4.22) (with a = 1/8), we have 

sup f |£'exp(^Sn(a:))||t| 1dt 
30Ç.Àfp JB2n 

I 
<  s u p /  

xÇiÀfp J B^ri ^—1 
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< 2 logn • sup | JJ E\E( T k(x) \ C ) \  :  t G B2n, x G jVp| + o{n~ l /2) 

= 2logn • sup{E\E(exp(Ul( X x  < x) / y /n) \ C ) \  : t E B2n, x € A/*p}' + o(n-1/2) 

< (21ogn) • sup {l - C(e, 5) • <2/n) + o(n~1/,:2) 

= 0(log n • exp(-C(e, 6) • n~1^8 • I)) + o(n-1/2) 

= , (4.51) 

where I = n/(2m1)(l + o(l)) = n1-a(logn)6(l + o(l)) (with a = 1/8) and where the variables 

r&(z)'s are defined as in the proof of Lemma 4.2 with Wjk — Wjk(x),x G Afp. Hence, (4.49) 

follows, and this completes the proof of the Theorem. • 
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CHAPTER 5 ACCURACY OF MBB APPROXIMATION 

5.1 Introduction 

This chapter gives a refined version of Theorem 2.2 in Chapter 2, and studies the rate of 

bootstrap approximations to the distribution of sample quantiles. The main results of Chapter 

5 show that, under the assumption of exponentially decaying strongly mixing coefficients, the 

rate of convergence of the moving block bootstrap (MBB) approximations to the distributions 

of the centered and scaled sample quantiles is of order 0(n-1/4(logn)(loglog n)1/4). 

It is known that, in the i.i.d. set up, the accuracy of the bootstrap approximation to 

the unknown sampling distributions of many regular statistics such as smooth functions of 

sample means, is of order o{n~x/2) (cf. Singh (1981), Babu (1986)). Thus, in these situations, 

the bootstrap works better than the classical normal approximation which has the accuracy 

of order 0(n~1!2). For the weakly dependent case, the second order property of the block 

bootstrap methods have been studied by several authors. See Lahiri (1991, 1996b), Gôtze and 

Kiinsch (1996). However, for approximations to the distributions of irregular statistics, such as 

sample quantiles, the bootstrap approximation is inferior to the classical normal approximation. 

Singh (1981) showed that the exact rate of convergence of the bootstrap approximation to the 

distribution of the sample quantile based on i.i.d. observations is O(n~1/,4(loglog n)1/2). 

In the i.i.d. case, smoothing techniques have been introduced to improve the performance of 

the bootstrap approximation to the sample quantile. Hall, DiCiccio and Romano (1989) showed 

that, if the distribution function is sufficiently smooth, smoothing appropriately can improve 

the bootstrap estimator of the distribution of sample quantile to the order of 0(n-1/2+e), for 

any e > 0. For other works in this context, we refer to Falk and Reiss (1989), Falk and Jan as 

(1990), and Janas (1993). However, as we may see from this chapter that, unlike the i.i.d. case, 
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smoothing may not improve the performance of the MBB approximation to the distribution 

of the sample quantile based on weakly dependent observations. This is mainly because, in 

the weak dependence case, the rate of approximation for the denominator of the asymptotic 

variance (cf. (1.3)) of the sample quantile may not be improved, though that of the numerator 

can be improved as in the i.i.d. case. Details are provided in the following section. We next 

state the main theorem and prove some auxiliary results which will be used to investigate the 

convergence rate of the MBB approximation. 

5.2 MBB Approximation Rate 

Throughout this chapter, we assume that {Xijie% is a sequence of ce-mixing strictly sta­

tionary random variables with exponentially decaying coefficients, i.e., there exist constants 

C > 0, 0 < /? < 1 such that a(n) < Cpn, for any integer n. As in the previous chapters, we 

use F and / to denote, respectively, the corresponding marginal distribution function and the 

marginal probability density function of the random variables. We also follow the notation 

that are used in the first four chapters. In particular, for p € (0,1), £p = F_1 (p), £n = F"1 (p), 

£* = F*~1(p), = Fn 
1 (p) (cf. Section 1.1, 1.2), and for all x € R, 

1 
U i ( x )  =  <  x ) ,  * "  =  1 ,  —  , ô ,  

t  j = i  

s 7£'(*<"-.><+; S*)• i = 1.• • • • < > •  

3 = 1 

a2
n{x) = Var{y/nFn{x)) = - Cov(I(Xi < x),I{X1+3 < x), 

71 j=-(n-l) 

O O  

(TiW = E C«,(/(%1 <%),/(%!+; <z). (5.1) 
j  =  — oo 

Again, P*, Varand F* represent respectively the conditional probability, the conditional 

variance, and the conditional expectation, given (X\, • • • , Xn). Here, we define â2(z) as the 

conditional variance of \/£Uf(x), i.e., 

1 N 

^(z) = y*r,(V%z)) = - ^ (z) , (5.2) 
iy  i=l 

where N = n — t + 1. Now, we are in a position to state the main theorem of this chapter. 
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Theorem 5.1 Suppose that the MBB block length £ satisfies £ = «(re1^2) and that there exists a 

neighborhood oft;p, say Np, such that cr^ (x) (cf. (5.1)) is positive and has a bounded derivative 

on Np. Suppose also that there exists d G (0,1) such that 

P(G,(f„) = l)<p-d, 

where G{(y) = P{X{ < y\ X j  : j ^ i). And 

0 < do — inf{/(x) : x G N p }  <  sup{/(x) : x G N p }  = d\ < oo (5.3) 

0 < inf{/'(x) : x G N p }  < sup{/'(x) : x G N p } }  < oo . (5.4) 

Then, under the assumption of a-mixing with exponential decay rate, we have 

sup |P*(\/n(C _ In) < X) - P{V™{in - £p) < ®)| = <5n Q-S-, (5.5) 

where 

Sn = 0(l-1 + £n~1/2 log M + n-1/4(log n) (log log n)1/4) 

Thus, a wide range of choice of block length £ will lead to Sn = 0(n"1/4(log n)(loglog n)1/4), 

which is the optimal rate of convergence. 

Theorem 5.1 indicates that, under suitable choice of the block length, the MBB approxima­

tion to the distribution of the normalized sample quantile of ct-mixing sequence with exponen­

tially decaying rate, has the accuracy of order 0(n-ly,4(log n) (log log n)1/4). This conclusion 

is almost identical to the approximation result of the bootstrapped sample quantile based on 

i.i.d. observations (cf. Singh (1981)). Note that the first two terms of the right hand side of 

equation (5.5) both involve the block length £. Here we explain briefly why this is so. Details 

are provided in the proofs given below. The first term £~1 is due to the bias of <72 (x) for 

estimating <r^0(x). Note that by (5.13) and sup^^ |F„(x) — Pra(x)| = O^1/2^-1) (cf. Gôtze 

and Kiinsch (1996)), one may get 

E^(z) = E(vWz))2-fEF,Az) 

= [yor(V%/i(z)) + fF^z)] - €E(fX%) + 

= [cr2(x) + £F2(x)] - £[al(x)/n + F2(x) + 0(l1/,2n~1)] 

= <r^(z) 4- 0(f-i + , (5.6) 
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uniformly in a: G R. The second term In-1/2 logn is due to the random quantity xn occurring 

inside of the conditional variance of y/£U*(-). Note that by Lemma 5.1 (ii) and Lemma 2.4 

(iii), for |z| < logn, 

x n  —  +  x n ' 1 / 2  = Cp + 0(l1/,2n-1 + n-1/2 log n) a.s. (5.7) 

Hence, we have, by (5.6), (5.7), and the smoothness condition on <7^(z), 

n/ar*[/f(2n) = ^4-0(r^+f/^-^+^0(^R-^ + n-^logn) 

= <7^, + 0{l~ l  + ln~1!2 log n) a.s. (5.8) 

On the other hand, it can be shown as in (5.22) that, under the exponentially mixing condition, 

Vn{Fn{in + xn"1/2) - p) = xf(£p) + 0(£1/2n~1/2 + n_1/4(logn)(loglog n)1/4) a.s. 

(5.9) 

So, for appropriate values of the block length I, the accuracy of the MBB approximation to 

the distribution of sample quantile is dominated by equations (5.8) and (5.9) , since by Lemma 

5.5, (5.23) and (5.28) 

sup |P.(v% - &) < z) - P(v% - W < s)| 

sup |P*(xAï(C - W < ®) - P{y /n( in  ~  fp) < z)| 
| r |<logn 

< sup 
|®|<logn 

$ I _q( Vb{Fn(xn) - p) 

O"oo 
+ 0(£n 1/'2) a.s. 

yjVarJJ[(xn) 

Note that the above term 0(ln-1/2) is from (5.27). It can be shapened to be of order 

0(t~ll2nll2) by using the similar arguments as in Lemma 5.4. Here, this term is dampened 

by the term 0{tn~ll2 logn) in (5.8). 

As in the i.i.d. set up, if the marginal distribution function F is sufficiently smooth, kernel 

smoothing can improve the right hand side of equation (5.9) to be of order 0(£1/2n-1/2 -f 

n~1/2+e(logn)), for arbitrary e > 0. However, smoothing can not reduce the order of the right 

hand side of equation (5.8). 
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For proving the main theorem, we first present the following lemmas. The first three lemmas 

give some asymptotic properties about the deviations of the empirical distribution function and 

the sample quantile. These are extensions of the results of Babu and Singh (1978). 

Lemma 5.1 Suppose that (5.3) holds. Then, almost surely 

(*) SUPx&MP \Fn{x) - F(s)| = 0(n-1/2(loglogn)1/2) ; 

(ii) supo<,<i |F~ l{t) - F"1^)! = 0(n_1/2(loglog n)1/2) ; 

(Hi) sup t&{F{x):xeMp} |Fn(F~1(t)) -t\ = 0(n~3/4(log n)1/2 (log log n)1/4). 

Poof: Note that under condition (5.3), F is strictly increasing on Afp. Then, Fn(x) = 

Fn(F-1(<)) with t = F(x). Hence 

sup \Fn(x) - F(®)| - sup |Fn(F-1 (t)) - t\ 
x & Â f p  t Ç . { F ( x ) : x £ j f p }  

= sup \En(t) -
t e { F ( x ) : x e A f p }  

< sup IEn(t) - t\ 
0<i<l 

< cn-1/2 (log log n)1!2 , 

where the last inequality follows from Lemma 3.4 of Babu and Singh (1978). c is a constant. 

Here we use En, E~l to denote, respectively, the empirical distribution function and the sample 

quantile function of the uniform distribution defined on (0,1). So Lemma 5.1 (i) is proved. 

For the proof of 5.1 (ii), see Lemma 4.2 of Babu and Singh (1978). 

We now prove (iii). Note that 

sup |F*(F-i(m-f| = sup |F*(F-i(2-i(m)-t| 
t e { F ( x ) : x £ j \ f p }  t £ { F ( x ) : x £ A f p }  

sup \EnlE~1 (t)) - t\ 
t £ { F ( x ) : x E A f p }  

< sup - f| 
0<t<l 

= O(n_3/'4(logn)1/'2(loglogn)1/'4) . 

Here, we used the arguments on pages 538-539 of Babu and Singh (1978). • 
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Lemma 5.2 Under the conditions of Lemma 5.1, we have 

sup \Fn(x) - Fn(Çp) - F{x) + p\ = 0(n 3/4(logn) (log logn)1/4 ) a.s. 
\ x — i v \ < 2 n ~ l I 2  logn 

Proof: By modifying the arguments on page 539 of Babu and Singh (1978) and applying 

their Lemma 3.3 (an exponential type of inequality) with 

&n = n 3/4 (log n) (log log n)1Z4, b = 2d\n l^2 logn, D — 2d\nbn , 

where di = max{/(z) : x G A/"p}, we have 

sup \En(t) - En(p) - t + p\ = 0(n 3/4(logn)(loglogn)1/4) , 
| t—p \ < 2 d . l n ~ i l 2  logn 

which implies 

sup \Fn{x) - Fn(Çp) - F(x) + p\ 
\ x — i p \ < 2 n ~ l l 2  logn 

sup |Fn(F-i(F(%))) - ̂ (F-\F((p))) - F(z) +p| 
\ x —£p|<2n - 1 / 2  logn 

sup |E„(F(z)) - E^(F(^)) - F(z) + p| 
\ x~£pl<2n l / 2  logn 

= sup ' \En(t) - En(p) -t + p\ 
|F- 1 ( t ) -F- 1 (Cp )|<2n-1/2 logn 

< sup | En (t) — En(p) — t + p\ 
\ t — p \ < 2 d \ n ~ l I 2  logn 

= 0(n-3/'4(logn)(loglogn)1/'4) . 

We complete the proof of Lemma 5.2. • 

As we may see that, the above three lemmas and the lemma below are actually refinements 

of Lemma 2.4 and Lemma 2.5 in Chapter 2 by imposing stronger conditions on the dependence 

structure of the stationary process. 

Lemma 5.3 Under the conditions of Lemma 5.1, we have 

(i) |Fn(Çn) -p\< 0(Z l /2n~ l  + n -3/4(logn)1/2(loglogn)1/4) a.s. 
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(H)  lin - y < 0{ l l ! 2 n~ l  + n-1/2(log log n)1/2) a.s .  

Proof: We may refine the result of Lemma 2.4 (i) (cf. Gôtze and Kiïnsch (1996)) as 

sup \F n (x )  -  F n (x ) \  =  0{ l l l 2 n~ l )  a.s. (5.10) 

Then, there exists a constant C\  > 0 such that 

sup \F n (x )  -  F n (x ) | < C\S}^ 2 n~ x  a.s. 

Thus, by the definition of quantile function, we have 

F-i(p-Ci^/^)<F^(p)<F-^+C^/^) a.s. (5.11) 

So (5.10) and (5.11) lead to 

Fn(2%-I(p - Cifi/2n-i)) -

< &(&-\p)) 

< + + a.s., 

which, together with Lemma 5.1 (iii), gives 

l^(&)-p| 

< + |Fn(F-\p - Cif^n-')) - p| V + Ci^/^-1)) - p| 

< 2Cilly/2n-1 + 0(n-3/4(logn)1/2(loglogn)1/4) 

= 0(Zll2n~l + n-3/'4(logra)1/2 (log logn)1/4) a.s. 

Here a V b = max{a, b} .  So (i) is proved. 

Note that, by condition (5.3), the mean value theorem, and Lemma 5.1, 

< |F-\p±Ci^n-:))-F-\p±Ci^/^-^| 

+\F- \p±C l i l ' 2 n- 1 ) )  -  F~ l {p) \  

< 0(n-1/'2 (log log n)1/2) + -^Ci^1/,2n_1 

do 

= 0{l l l 2 n~ l  + n-1/2(loglog n)1/2) . (5.12) 
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Hence, Lemma 5.3 (ii) follows from (5.11) and (5.12). This concludes the proof of Lemma 5.3. D 

In Chapter 2, we showed that £V arJJl(xn) (W = The next lemma gives a 

refinement of this result. 

Lemma 5.4 Under the conditions of Theorem 4-1, if the block length £ = o{n1!2), then we 

have 

£Var*Ui(xn) = <7^ + 0(1 1 + £n 1/2 log n). 

Proof: Let a2 (z) and (T^(z) be defined as in (5.1). Then 

n—1 

= Z (l-|;|/n)Cou(7(Xi<z),Z(Xi+j<z)) 
j=-(n-l)  

oo oo 

= Z < a:)) - Z Cot;(7(Xi < z),7(%i+j < z)) 
\ j \ = n  J=-oo 

n—1 

-1 Z l;|Cou(7(%i<z),7(Xi+j<z)) 
11 j=-(n~ 1) 

(5.13) 

since, by Billingsley's inequality 

|j|=n \j\=n 

for any m > 1, and 

n—1 

Z \j\Cov(I{Xi < x),I{Xi+j <x))<oo. 
j = - ( n - 1 )  

We next exploit the similar arguments as used in Chapter 2. Let 

xn,i = £p~ 2n_1/2 log n, xn<2 = + 2n~1/2 log n . 

By Lemma 5.1 and Lemma 5.3, there exist constants C3, C4 > 0 such that 

\in - 6pl < C3n-1/2(loglogn)1/2, ||n - Cp| < C3n~1/2 (log logn)1/2 a.s. 
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Then, there exists a set A £ J with P(A) = 1, such that, for any ui £ A, there exists a 

positive integer and for all n > nw, |z| < logn, \xn(w) - £p| < 2n-1/2 log n. Recall that 

xn = £n + in"1'2. Then, we have 

Zn,l < ^ ^n,2 ^ 1^1 5 &S-

Thus, 

1 ? 
yar»[/rw = 

i— 1  

1 t=i 

l N 

= 53[^'(Xn '2) ~ F(a:7l j2)]2 + 2F(xni2)Fn(xnj2) 
i= l  

—  F 2 { x n ^ )  —  F n
2  ( x H i i )  a.s. (5.14) 

And 

i=i 

1 N 

— _ -^(^n.l)]2 + 2 F ( x n , i ) F n ( x n i l )  
i= l  

- F 2 ( x n t i )  -  F n
2 { x n a )  a.s. (5.15) 

By Lemma 5.1 and Lemma 5.2, we have 

|2F(z»,2)fL(Zn,z) - ̂(Zn.g) - fi/(%n,l)| 

< !&'(%»,2) - &'(Zn,l)l + (&K,2) - F(%,.,2))2 

<  2 \ F n ( x n t 2 )  —  F n { x n , l ) |  +  { F n { x n , 2 )  -  F { x n < 2 ) ) 2  

= 2\Fn(xn>2) - Fn(xnA)\ + 0{£ll2n~l) a.s. 

And 

\ F n { x n , 2 )  -  F n ( x n A )  \  =  I [ F n ( x n a )  -  F n ( £ p ) ]  -  [ F n ( x n A )  -  F n ( £ p ) ] |  
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< \Fn(xn^) - Fn((p) - F(xn}2) + F(£p)| 

+  \ F n ( % n , l )  — Fn(Çp) — F(xnj  i) + F(£p)| 

+ \F{xna) ~~ F(xn!i)| 

< 2 • O (n~3/4(log n)(loglog n) l / A )  +  di \x n a  -  xn,i| 

= 0(n~ l ! 2 \og  n)  a.s. 

Thus, 

^|2F(zn,2)&W,2)-F^(zn,2)-FL^(z»,i)| = 0(^-^^logn) a.s. (5.16) 

Likewise, 

^|2F(z»,i)&K,i) - F2(z*,i) - &'K,2)| = O^-^logn) a.s. (5.17) 

We now evaluate 
N 

^ fKJ]', j = i, 2. 
î —1 

Let 

Wn,i — Z [ U i ( x n )  ~~ F( x n ) ]  , i — 1, • • • , N, and {^n} — i_^n,i}i {2-71,2} 1 

then, 

1 = 1 8 = 1 

By (5.13) and the condition on cr^(z), we get 

= ^l(a=n) + o(r^) 

= ^(^) + 0(M"^^logn)+0(r^) 

= + 0(n~ 1 ! 2  log n + l~ l )  .  (5.19) 

Note that wn,oo = ||^M,i||oo < I, and 

<2 = = 

< C5I, for some C5 > 0, 
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On the other hand, (5.19) indicates that, there exists some positive constant C &  such that 

<2> |WU|2>C6. 

We next apply Lemma 2.2 to triangular array { W n , i }  with 

a = 1, q = 2, dn = (logn)2, en = ̂ 1/2n_1(log n)3 , 

and get 

P  

N 

2 = 1 
£71 

< C* exp < — -
Ci[n/dn]2e2 

^n,2 [72/tin]^/2ton |00  6n  j  

€n 
^ Cin2(log n)~4£n_2(log n)6 

< C*exp{-
C5I + n1/2(logn)_1 • i • £1/2n~1(log n)3 

+C*n(logn)-2 . (CyY/^-^^(logn)-^)^^C^-^-]4/^ 

-l+C^C*CyV^(]og»)-^-^ 
^ C5 + ̂ /^-V2(logM)2 

< 0(n~m), Vm >  1 .  

Then, Borel-Cantelli lemma implies 

N 

2 = 1 

< €„ = l1/2n 1 (log n,y a.s., 

which together with (5.19) leads to 

N 

= E^,i + 0(^-Xlog^)') 

= a2̂  + O^"1 + n-1/2 log n) a.s. (5. 

Hence, by (5.14)-(5.18) and (5.20), we have 

£Var*Uf(xn) = + 0(1 1 + n 1/,2logn) + 0(£n 1/,2log n) 

= <7. + 0(£ 1 + £n 11/2 logn) a.s. 

Lemma 5.4 is proved. 
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The last lemma below investigates the tail behavior of the MBB estimator of the sample 

quantile. 

Lemma 5.5 Under the conditions of Theorem 4-1, for any m > I, we have 

= e.g. 

Proof: Let yn-^n + n 1/2 log n, then 

(\/% - &) > log n) = log n) 

= (5.21) 

Recall that 

b t i  

xn = in + xn 1/2, sup \Fn(x) - Fn(x)\ = <9(l1/2n x) , 
zeR 

which together with Lemma 5.1, Lemma 5.2, and Lemma 5.3 leads to 

F n ( X n )  -  P  =  -  - & ( & ) ]  +  [ - & ( & )  -  p ]  

^ [f^(^) - F„(&.) + 0(^/^-1)] 

+0(£1^2n~1 + n-3/4 (logn)1/2 (log logn)1/4) 

= [&(z») - F(in) - &(W + F(U] + [F(zJ - %)] 

+0(l1/2n_1 + n-3/4 (logn)1/2 (log logn)1/4) 

= 2 • O(n-3/4(logn)(loglog n)1/4) + (/(£p) + 0(n-1/2 log n)) - xn~1^2 

+0(£ l^2n~ l  + n_3/4(log n)1/2(loglog n)1/4) 

= x/(^p)n-1/2 + 0(^1/2n_1 + n~3/4(logn)(loglog n)1/4) a.s. (5.22) 

By equation (5.22) and the condition of Theorem 5.1, I = o(n!/2), there exists Co > 0 such 

that 

F n { y n )  -  P  <  Con-1/2 logn, a.s. 
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for \ x \  <  log n. So, we have, by (5.21), Lemma 5.4, and Bernstein's inequality 

= pJ 

i — 1  
b  

(y»))] 
i=1 

b  

\  i =  1  

< 2 exp | -

= 2 exp • 

= 2 exp• 

= 2 exp• 

w - 2,(^%-w)] 

[Co61/2logn]2 

> Co£l!2bn l!2 log r 

> CQb1/2logn) 

4 W - &(y»)]2 + 2Co6V2 kg ̂  

C^6(logn)' 

4 b£Var*Uï(yn) + 2C0&1/2 log n 

CpKiog n)2 \ 

46(CT^  +  o ( l ) )  + 2C0&1/2 log n  J 

CoQog n)2 1 
4(°"œ + °(1)) + 2C0b~1/2 log n J 

<  0 { n ~ m )  , Vm > 1, a.s. 

We finish the proof of Lemma 5.5. 

Proof of Theorem 5.1 By Lemma 5.1 and Lemma 5.5, it suffices to show that 

sup |P*(\/n(£* - i n )  < x ) ~  P( V n ( i n  -  £p) < x)| = 0 ( £  1 + In 1/2logn) a.s. 
|x |<logn 

We see, from the proof of Theorem 2.2 that 

< 3E*\Uï(xn) - E*Uï{xn)f 

V5(yar*C/*(z,.))3/2 'V ar*Uf(xn) 

and by the Berry-Esseen Theorem for sample quantile (cf. Theorem 4.1 of Chapter 4) 

P(V% - W < 3) - $ < Offrit) 
X CToo / 

Therefore, 

sup 
x £ R  

sup |fX\/?I(C - &) < 3) - F(\/»(& - (p) < 3)1 
| : r |<logn 
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< sup 
|x|<logn \ ^VarMi{xr 

*[ X] 

^ ^ - n J 

We have, by equation (5.22), 

Vn(Fn{xn) - p) ~ xf(Q + 0(l1/2n-1/2 + n-1/4(logn)(loglogn)1/4) a.s. 

(5.24) 

By Lemma 5.4 

: — + 0(l_1 + In-1/2 log n) a.s. (5.25) 
y j IV  arJJKxn)  

So, (5.24) and (5.25) imply 

Vb(Fn(xn) p) _ x f ( £ p )  _j_ (9^-1 -f tn~1!2 logn + n_1/4(logn)(loglog n)1/4) a.s. 

^ (5.26) 

Note also that 

(5.27) 

Thus 

E.i(%)-^(wr_ _i/2, 
\/6(yar*[/rN)^ (^yor*[/rW)^ " 

(5.28) 

Hence, we have, by (5.23), (5.26), and (5.28), 

sup |fL(^/n((; - < z) - P(iA(& - ̂p) < z)| 
| r |<logn 

< 0(t~ l  + in"1^2 log n + n-1/4(logn)(loglog n)1/4) 

+0(^-^2) + 0(n-^2) 

= 0(£_1 + in"1/2 log n + n-1/,4(log n) (loglog n)1/4) , 

and I = Cn1/4(logn)-1/2, C > 0, gives the optimal rate 0(n-1/4(log n) (log log n)1/4). We 

complete the proof of Theorem 5.1. • 
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Note that we may sharpen the right hand side of (5.28) to be of order 0(l1/,2n-1/2), by 

borrowing on the same arguments as used in Lemma 5.4. However, the result from (5.28) is 

sufficient for handling our problem here. 
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CHAPTER 6 CONCLUSION 

In this dissertation, we first establish the strong consistency results for the moving block 

bootstrap (MBB) approximations to the distributions and variances of sample quantiles based 

on weakly dependent observations. The consistency result of the MBB distribution function 

estimation is studied in Chapter 2. Theorem 2.2 of this chapter indicates that, under the 

assumption of «-mixing with polynomially decaying rate, if the one-dimensional (marginal) 

distribution function F has a positive derivative in a neighborhood of £p = F-1 (p), p 6 (0,1), 

the MBB method with the block length in a wide range of possible values provides a valid 

approximation to the distribution of the centered and scaled sample quantile Zn = \/n(£n — £p). 

The consistency of the MBB distribution function estimator is also supported by the numerical 

results from a small simulation study presented in Section 2.4. In the independence case, 

validity of Efron's (1979) bootstrap for the sample quantile was established by Bickel and 

Freedman (1981) and Singh (1981). Thus Chapter 2 extends this basic consistency result to 

the case of weakly dependent random variables for the MBB method. 

In Chapter 3, we investigate the validity of the MBB estimation of the asymptotic variance 

of the normalized sample quantile. It is proved that, under the same set of conditions as re­

quired for the valid MBB distribution function approximation, if the random variables satisfy a 

fairly non-restrictive moment condition, the MBB variance estimator of the normalized sample 

quantile is strongly consistent (cf. Theorem 3.1). This is an extension of the consistency result 

of Ghosh, Parr, Singh and Babu (1984) from the i.i.d. set up to the situation where the ran­

dom variables are weakly dependent. We note that the asymptotic variance of Zn under weak 

dependence involves both an infinite sum of lag-covariances and the one-dimensional density 

function evaluated at the unknown quantile £p (cf. (1.3)). The MBB resampling procedure 
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captures both the effect of the dependence structure of the ct-mixing stationary process and 

the effect of the nonlinear nature of the sample quantile, and thus, provides a unified way of 

approximating both parts using only one smoothing parameter, say, the block length I. 

In Chapter 4, we present a Berry-Esseen Theorem for sample quantiles based on ct-mixing 

stationary random variables with polynomially decaying rate. It is pointed out that the classical 

normal approximation to the distribution of the sample quantile under weak dependence has 

accuracy of order 0(n-1/2). 

The accuracy of the MBB distribution function estimation to the sample quantile un­

der weak dependence is investigated in Chapter 5. We show that the rate of convergence 

of the MBB distribution function estimation of Gn(x) = P(x/n(£„ - £p) < x) is of order 

O(n~1/'4(logn)(loglogn)1/'4). This slow convergence rate is not unexpected considering that, 

in the i.i.d. case, the exact rate of convergence of Efron's (1979) bootstrapped sample quantile 

distribution estimation is of order 0(n-1/4(loglogn)1/2) (cf. Singh (1981)). However, unlike 

Efron's i.i.d. bootstrap approximation, smoothing may not improve the performance of the 

MBB distribution function estimation of sample quantiles based on weakly dependent observa­

tions. Thus, in terms of distribution function estimation of sample quantiles under dependence, 

the classical large sample approximation method outperforms the MBB method. 

In the end, we discuss some possible future investigations along the line of this dissertation. 

As indicated in Section 2.1 of Chapter 2, the Bahadur representation allows one to express 

sample quantiles in terms of empirical functions which are more easily handled with. This 

idea was initiated by Bahadur (1966) for i.i.d. random variables. Sen (1972) and Babu and 

Singh (1978) established, respectively, the Bahadur representations for sample quantiles of 

(^-mixing random variables and the Bahadur representations of a-mixing random variables 

under exponential decay rate. Based on our knowledge, the most recent result for a Bahadur 

representation is due to Yoshihara (1995). He proposed a Bahadur representation for sample 

quantiles of bounded random variables under the structure of ct-mixing with polynomial decay 

rate. It is of interest to extend Yoshihara's result to situations where the random variables are 

not necessarily bounded. 
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It is known that, in several respects studentizing before bootstrapping improves the accu­

racy of bootstrap distribution approximations (cf. Hall (1992)). Indeed, in the i.i.d. set up, 

J anas (1993) showed that studentizing sample quantiles by means of a kernel density estimate 

can improve the rate of the bootstrap approximation significantly. In weak dependence case, 

due to the complexity of the variance structure, the procedure of studentizing a sample quantile 

will be more complicated. The impact of studentizing on the MBB distribution approximation 

of sample quantiles based on weakly dependent data remains unknown. 

It follows from Theorem 3.1 in Chapter 3 that, the MBB variance estimator of sample 

quantiles is strongly consistent. In the i.i.d. case, Hall and Martin (1988) showed that the 

exact rate of bootstrap variance estimator of sample quantiles is of order Op(n-1/4). Under 

dependence, the performance of the MBB variance estimator depends crucially on the smooth­

ing parameter, say, the block length I. Further investigation of the convergence rate of the 

MBB variance estimator for sample quantiles under weak dependence will be desirable. 

It is known in the literature, the MBB approximations are very sensitive to the choice of 

block lengths. There have been several studies about the choice of block lengths for the MBB 

approximation. Among those are Hall, Horowitz and Jing (1995), Biihlmann and Kiinsch 

(1999), and Lahiri, Furukawa and Lee (2003). The optimal choice of block lengths for the 

MBB sample quantile estimations also needs further investigation. 
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