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Abstract—This paper presented an energy-efficient adaptive 

cruise control, called Energy-Efficient Electric Driving Model 
(E3DM), for electric, connected, and autonomous vehicles (e-
CAVs) in a mixed traffic stream. E3DM is able to maintain high 
energy efficiency of regenerative braking by adjusting the spacing 
between the leading and the following vehicles. Moreover, a 
power-based energy consumption model is proposed to estimate 
the on-road energy consumption for battery electric vehicles, 
considering the impact of ambient temperature on auxiliary load. 
Using the proposed energy consumption model, the impact of 
E3DM on vehicle energy consumption is investigated. In 
particular, single-lane vehicle dynamics in a traffic stream with a 
mixed of e-CAVs and human-driven vehicles are simulated. The 
result shows that E3DM outperforms existing adaptive cruise 
control (i.e. Nissan-ACC) and cooperative adaptive cruise control 
(i.e. Enhanced-IDM and Van Arem Model) strategies in terms of 
energy consumption. Moreover, higher market penetration of e-
CAVs may not result in better energy efficiency of the entire fleet. 
The reason is that more e-CAVs in the traffic stream results in 
faster string stabilization which decreases the regenerative energy. 
Considering mix traffic streams with battery electric (BEVs) and 
internal-combustion engine (ICEVs) vehicles, the energy 
consumption of entire fleet reduces when the market penetration 
of BEV (contains both e-CAV and human-driven BEV) increases. 
A higher ratio of e-CAV to human-driven BEV results in higher 
energy efficiency. 
 

Index Terms— Electric connected and autonomous vehicle (e-
CAV); Energy-efficient adaptive cruise control; Energy 
consumption model. 

I. INTRODUCTION 
attery electric vehicle (BEV) technology is considered as a 
solution to reduce oil dependence and vehicle emissions 

because of its high energy efficiency and zero tailpipe 
emissions [1], [2]. To further improve the driving efficiency and 
extend the vehicle range, an energy-efficient management 
strategy is desired [3]. Previous studies have shown that driver 
behavior could affect the fuel economy of conventional 
gasoline vehicles by 10~40% [4]–[6]. Recent development in 
advance driving assistant systems, such as adaptive cruise 
control (ACC), presents opportunities to improve energy 
efficiency through automated vehicle operations.  

The impacts of ACC-equipped vehicles on traffic flow, fuel 
consumption and emission have been widely investigated. 
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According to the studies conducted by Davis [7], Jiang et al. 
[8], and Yuan et al.  [9], ACC-equipped vehicles is able to 
enhance the free flow stability and suppress wide moving jams. 
Kesting et al. [10] reported that traffic congestion was 
completely eliminated when the share of ACC-equipped 
vehicle reaches 25%. Mersky and Samaras pointed out that, 
depending on the control strategies, ACC-equipped vehicles 
may experience fuel economy gains by up to 10% or losses by 
up to 3% [11]. Using simulations and experiments, Ioannou and 
Stefanovic found that the smooth response of ACC-equipped 
vehicle decreased the emissions in presence of disturbances due 
to high-acceleration maneuvers, lane cut-ins, and lane exiting 
[12].  

To improve fuel efficiency and decrease emissions, a typical 
method is to optimize the vehicle speed profile with smoother 
deceleration and acceleration rates [13]–[16]. Based on optimal 
control, Park et al. [17] and Ahn et al.[18] developed eco-ACC 
systems and demonstrated their potential in improving fuel 
efficiency. Vajedi and Azad proposed an eco-ACC for Toyota 
Prius Plug-in Hybrid to reduce the total energy cost [19]. 
Considering ACC-equipped vehicles in a mixed traffic 
environment, Wang et al. proposed model predictive control-
based control strategies to reduce platoon-level emissions [20]. 
The simulation results showed that a 20% share of ACC-
equipped vehicles could reduce emissions of the platoon by 
18~27%. Moreover, Li et al. studied the performance of a fuel-
optimized ACC strategy, called Pulse-and-Glide, on traffic 
smoothness and fuel economy in a mixed traffic flow and found 
that the Pulse-and-Glide strategy can significantly improve the 
fuel economy of individual vehicles [21].  

A few ACC models have been proposed for electric vehicles 
[13], [22]- [23]. For regenerative braking control, Huang et al. 
[22] proposed a nonlinear model predictive controller that is 
capable of restoring more regenerative braking energy than a 
conventional controller. Based on forward terrain profile 
preview information, Chen et al. [24], [25] introduced an 
energy-efficient driving control strategy that can optimally 
distribute the torque between the front and rear motors to save 
driving energy. Recently, Akhegaonkar et al. [26] proposed a 
longitudinal controller to minimize energy consumption and 
maximize energy regeneration. Moreover, Schwickart et al. [3] 
designed an ACC system based on model predictive control 
method with quadratic cost function, linear prediction model, 
and linear constraints. Considering terrain characteristics and 
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preceding vehicle information, Zhang et al. [23] developed an 
energy management strategy for battery electric vehicles 
equipped with in-wheel motors. The simulation results showed 
that using the preceding vehicle movement information results 
in additional energy savings. 

To assess energy efficiency of electric vehicles in a mixed 
traffic stream appropriate energy consumption models are 
needed. Using the controller area network (CAN) bus and 
Global Positioning System (GPS)-tracked trajectory data 
several BEV energy consumption models have been proposed 
in the literature. Yao et al. used instantaneous speeds and 
accelerations as predictors to estimate BEV energy 
consumption rate [27]. In their subsequent work, battery state 
of charge (SOC) was also taken into account as the energy 
consumption rate was found to be negatively correlated with 
SOC [28]. Liu et al. studied the effects of road gradients on 
electricity consumption and found that the consumption 
increases almost linearly with the absolute gradient increases 
[29]. Wang et al. studied the impact of ambient temperature on 
BEV energy usage and used a third-order polynomial 
regression model to describe the relationship between energy 
efficiency and temperature [30]. Another commonly used 
predictor in energy consumption models is vehicle specific 
power (VSP) that can be gauged by vehicle speed and 
acceleration. For example, Alves et al. and Yao et al. developed 
hybrid regression models to estimate BEV energy consumption 
based on different levels of VSP [27], [31]. One important 
feature of BEVs is regenerative braking—when the vehicle 
decelerates the electric motor converts kinetic energy to 
electricity that can be stored in batteries. Researchers have not 
reached consensus on the energy efficiency of regenerative 
braking as it is a very complex process. Fiori et al. modeled 
regenerative energy as a function of deceleration levels in their 
BEV energy consumption model [32], while Yang et al. [33] 
and Genikomsakis and Mitrentsis [34] assumed that 
regenerative braking efficiency is linearly related to vehicle 
speed.  

In summary, most of existing ecological and energy-efficient 
ACC strategies are formulated as optimization problems, using 
either global optimization models or local optimization models 
such as particle swarm optimization and model predictive 
control. The major drawbacks of optimization-based 
approaches are the complicity and computational intensity. 
Rule-based control strategies, on the other hand, have 
monopolized the production vehicle market because of its low 
computational demand, natural adaptability to online-
applications, and reliability [35]. Moreover, the existing control 
strategies for BEVs focused on optimizing the speed profile of 
individual vehicles. In this study, a rule-based energy-efficient 
ACC system is proposed, considering electric, connected, and 
autonomous vehicles (e-CAV) in a mixed traffic stream with 
human-driven vehicles. The proposed ACC system is evaluated 
using the energy consumption model that is developed and 
calibrated based on the CAN bus data collected from a BEV. 

The rest of the paper is organized as follows. Section II 
presents related work, including car following models for 
autonomous and human-driven vehicles and BEV energy 
consumption models. Section III presents the proposed rule-
based energy-efficient ACC model and the BEV energy 
consumption model. Stability analysis is presented in Section 

IV. Section V evaluates the energy efficiency of proposed ACC 
model by simulating single-lane vehicle dynamics in a traffic 
stream with different percentages of e-CAVs. The conclusion is 
presented in Section VI. 

II. RELATED WORK 

A. Human Driver Car-Following Model 
In the past decades, a number of car-following models have 

been introduced to simulate human driver behavior [36]-[37]. 
In particular, based on Gipps model [38], Treiber et al. proposed 
a human driver model named Intelligent Driver Model (IDM) 
[39]. Since IDM provides greater realism than most of the 
deterministic acceleration modeling frameworks [40], it is 
widely applied to investigate the impact of autonomous 
vehicles on traffic flow stability, fuel consumption, and 
emissions in traffic streams with mixed autonomous and 
human-driven vehicles [20], [21], [40]. Accordingly, IDM is 
used in this paper to simulate the human-driven vehicles. The 
IDM is formulated as follows: 
 

𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �vn
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where 𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛  is the acceleration of the following vehicle (m/s2); 
𝛿𝛿  is the acceleration exponent; 𝑠𝑠0  is the standstill distance 
between stopped vehicles (m); 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum 
acceleration (m/s2); ∆𝑥𝑥 is the spacing between the leading and 
the following vehicle (m); T is the desired time headway (s); 𝑣𝑣0 
is the maximum speed (m/s); 𝑣𝑣𝑛𝑛 is the speed of the following 
vehicle (m/s);  𝑣𝑣𝑛𝑛−1 is the speed of the leading vehicle (m/s); 𝑠𝑠∗ 
is the desired spacing (m); and 𝑏𝑏  is the desired deceleration 
(m/s2). 

B. Adaptive Cruise Control and Cooperative Adaptive Cruise 
Control 

In recent years, car-following models have evolved to 
describe the behavior of vehicles with advanced cruise controls, 
which take advantage of the sensing and communication 
technologies. Several rule-based ACC methods have been 
proposed in the literature (e.g. [7], [41]). As an extension of 
ACC, several Cooperative ACC (CACC) strategies have been 
proposed (e.g. [41]–[45]).  In particular, the cruise controls 
proposed by Kesting et al. [45],  Shladover et al. [41], and Van 
Arem et al. [46] are used to compare with the proposed Energy-
Efficient Electric Driving Model (E3DM). 

Kesting et al. [45] proposed an CACC based on IDM, called 
Enhanced-IDM, which inherited the parameters proposed by 
Treiber et al. [39]. The acceleration according to constant-
acceleration heuristic (CAH) is computed as follows: 
 

𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 = �
𝑣𝑣𝑛𝑛2𝑚𝑚�𝑙𝑙

𝑣𝑣𝑛𝑛−1
2 −2∆𝑚𝑚𝑚𝑚�𝑙𝑙

         𝑖𝑖𝑖𝑖 𝑣𝑣𝑛𝑛(𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛−1) ≤ −2∆𝑥𝑥𝑎𝑎�𝑙𝑙

𝑎𝑎�𝑙𝑙 −
(𝑣𝑣𝑛𝑛−𝑣𝑣𝑛𝑛−1)2𝛩𝛩(𝑣𝑣𝑛𝑛−𝑣𝑣𝑛𝑛−1)

2∆𝑚𝑚
               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

        (3) 

 
where, 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛  is the constant-acceleration heuristic acceleration 
of the following vehicle (m/s2); Θ is the Heaviside step 
function; 𝑎𝑎𝑛𝑛−1 is the acceleration of the leading vehicle; and 𝑎𝑎�𝑙𝑙 
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is the effective acceleration used to avoid artefacts that may be 
caused by leading vehicles with higher acceleration 
capabilities, 𝑎𝑎�𝑙𝑙 = min (𝑎𝑎𝑛𝑛−1, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚). 

The Enhanced-IDM is formulated as follows: 
 
𝑎𝑎Enhanced−IDM
𝑛𝑛 = �

𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛                                                                           𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛 ≥ 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛

(1 − 𝑐𝑐)𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛 + 𝑐𝑐 �𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 + 𝑏𝑏𝑜𝑜𝑎𝑎𝑏𝑏ℎ �𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼
𝑛𝑛 −𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶
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(4) 
where, 𝑎𝑎Enhanced−IDM

𝑛𝑛  is the acceleration of the following 
vehicle equipped with Enhanced-IDM (m/s2); and 𝑐𝑐  is the 
coolness factor. 

A rule-based ACC, which is proprietary to Nissan and was 
described by Shladover et al. [41], is called Nissan-ACC. The 
simplified representations of the Nissan Model contains speed 
control and spacing control. In the speed control, the control 
law is: 

 
𝑣𝑣𝑒𝑒 = 𝑣𝑣𝑛𝑛 − 𝑣𝑣0                                                                           (5) 

𝑎𝑎𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏(−0.4 × 𝑣𝑣𝑒𝑒 , 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)                      (6) 
𝑎𝑎𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛−𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 = 𝑎𝑎𝑠𝑠𝑠𝑠                                                     (7) 

 
where 𝑎𝑎𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛−𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛  is the acceleration of the following vehicle 
equipped with Nissan-ACC (m/s2); 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum 
deceleration (m/s2); 𝑎𝑎𝑠𝑠𝑠𝑠  is the acceleration by speed control 
(m/s2); and 𝑣𝑣𝑒𝑒 is the speed error (m/s).  

The function bound ( ) is defined as bound (x, xub, xlb) = 
max(min(x, xub), xlb ), where ub is the upper bound and lb is the 
lower bound. This function restricts the acceleration within the 
range between the maximum acceleration and deceleration. 

In the spacing control, the speed control law also applies. In 
addition, in order to maintain a constant time headway between 
vehicles, the spacing control law requires: 
 

𝑠𝑠∗ = 𝑇𝑇 × 𝑣𝑣𝑛𝑛                                         (8) 
𝑠𝑠𝑒𝑒 = ∆𝑥𝑥 − 𝑠𝑠∗                                          (9) 

𝑎𝑎𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛−𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 = 𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏(�̇�𝑠 + 0.25 × 𝑠𝑠𝑒𝑒 , 𝑎𝑎𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)    (10) 
 
where �̇�𝑠 is the acceleration adjustment parameter (m/s2). 

When 𝑣𝑣𝑛𝑛−1 = 0 , 𝑣𝑣𝑛𝑛 = 0  and 𝑠𝑠𝑒𝑒 = 𝑠𝑠0 , 𝑎𝑎𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛_𝐶𝐶𝐶𝐶𝐶𝐶
𝑛𝑛  should 

equal to 0. Since the desired speed and maximum acceleration 
are larger than 0, we have: 
 

𝑎𝑎𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏(0.4 × 𝑣𝑣0, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚) > 0              (11) 
 

Since 𝑎𝑎𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛_𝐶𝐶𝐶𝐶𝐶𝐶
𝑛𝑛 = 0  and 𝑎𝑎𝑠𝑠𝑠𝑠 > 0 , �̇�𝑠 + 0.25 × 𝑠𝑠0  should 

equal to 0. Therefore, the acceleration adjustment parameter (�̇�𝑠) 
can be derived as follows: 
 

�̇�𝑠 = −0.25 × 𝑠𝑠0                                   (12) 
 

As a result, the spacing control law is modified as follows: 
 

𝑠𝑠∗ = 𝑇𝑇 × 𝑣𝑣𝑛𝑛 + 𝑠𝑠0                           (13) 
𝑠𝑠𝑒𝑒 = ∆𝑥𝑥 − 𝑠𝑠∗                                 (14) 

𝑎𝑎𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛−𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 = 𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏(0.25 × 𝑠𝑠𝑒𝑒 , 𝑎𝑎𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)    (15) 
 

The acceleration of the Van Arem model equipped e-CAVs at 
every decision point is calculated as: 

 

𝑎𝑎Van Arem model
𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑏𝑏( 𝑎𝑎𝑑𝑑 , 𝑘𝑘(𝑣𝑣0 − 𝑣𝑣𝑛𝑛))            (16) 

𝑎𝑎𝑑𝑑 = 𝑘𝑘𝑚𝑚𝑎𝑎𝑛𝑛−1 + 𝑘𝑘𝑣𝑣(𝑣𝑣𝑛𝑛−1 − 𝑣𝑣𝑛𝑛) + 𝑘𝑘𝑑𝑑(∆𝑥𝑥 − 𝑠𝑠∗)   (17) 

𝑠𝑠∗ = 𝑚𝑚𝑎𝑎𝑥𝑥 �𝑇𝑇𝑣𝑣𝑛𝑛 , 𝑠𝑠0, 𝑣𝑣𝑛𝑛
2

2
 � 1
𝑑𝑑𝑝𝑝
− 1

𝑑𝑑
��            (18) 

where,  𝑘𝑘𝑚𝑚 ,  𝑘𝑘𝑣𝑣 , and  𝑘𝑘𝑑𝑑  are constants;  𝑏𝑏𝑝𝑝  and 𝑏𝑏  are the 
deceleration capabilities of the leading and following vehicles, 
which are equal to 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚  in this study; and 𝑘𝑘 is the constant-
speed error factor. Based on the recommendations of Van Arem 
et al. [46], 𝑘𝑘 = 1, 𝑘𝑘𝑚𝑚 = 1, 𝑘𝑘𝑣𝑣 = 0.58, and 𝑘𝑘𝑑𝑑 = 0.1. 

In this paper, Enhanced-IDM, Nissan-ACC, and Van Arem 
model are applied to simulate the CAVs. The performance of 
these three models are compared with the proposed energy-
efficient ACC model in Section III.A. 

C. BEV Energy Consumption Model 
This section introduces two BEV energy consumption models 

that are representative of mainstream methods of estimating 
energy consumption and can be easily calibrated using the 
vehicle CAN bus data. 

First, Yao’s BEV energy consumption model is a multivariate 
regression model consisting of linear, quadratic, and cubic 
combinations of speed and acceleration [27]. The model was 
developed based on chassis dynamometer experiment data. The 
model parameters are calibrated for different vehicle modes—
acceleration, deceleration, cruising and idling. Yao’s model is 
described as follows: 

 

𝐸𝐸𝐸𝐸𝐸𝐸 =

⎩
⎪
⎨

⎪
⎧∑ ∑ (𝜔𝜔𝑁𝑁,𝑗𝑗 × 𝑣𝑣𝑁𝑁 × 𝑎𝑎𝑗𝑗)3

𝑗𝑗=0
3
𝑁𝑁=0    𝑎𝑎 > 0
∑ ∑ (𝛽𝛽𝑁𝑁,𝑗𝑗 × 𝑣𝑣𝑁𝑁 × 𝑎𝑎𝑗𝑗)3

𝑗𝑗=0
3
𝑁𝑁=0    𝑎𝑎 < 0
∑ (𝜃𝜃𝑁𝑁 × 𝑣𝑣𝑁𝑁)3
𝑁𝑁=0    𝑎𝑎 = 0, 𝑣𝑣 ≠ 0

𝑒𝑒𝑐𝑐𝑒𝑒�����   𝑎𝑎 = 0, 𝑣𝑣 = 0

            (19) 

 
where 𝐸𝐸𝐸𝐸𝐸𝐸  is the energy consumption rate (W); 𝑣𝑣  is the 
instantaneous speed (m/s); 𝑎𝑎 is the instantaneous acceleration 
(m/s2); 𝜔𝜔𝑁𝑁,𝑗𝑗, 𝛽𝛽𝑁𝑁,𝑗𝑗, 𝜃𝜃𝑁𝑁 are the coefficients; and 𝑒𝑒𝑐𝑐𝑒𝑒����� is the average 
energy consumption (W) in idling mode. 

Second, Yang et al. proposed a BEV energy consumption 
model, considering vehicle specific power and auxiliary load, 
as well as the energy efficiency of regenerative braking [33]. 
When instantaneous acceleration 𝑎𝑎 ≥ 0 , the energy 
consumption rate is calculated as: 
 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑚𝑚
𝜂𝜂𝑡𝑡𝑡𝑡𝜂𝜂𝑡𝑡

𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎  , 𝑎𝑎 ≥ 0             (20) 
 
where 𝑚𝑚  is the vehicle mass (kg); 𝜂𝜂𝑡𝑡𝑒𝑒  is the BEV’s 
transmission efficiency; 𝜂𝜂𝑒𝑒  is the driving efficiency of the 
battery; 𝑉𝑉𝑉𝑉𝑉𝑉  is the vehicle specific power (W/kg); and 
𝑉𝑉𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎  is the electricity consumed by accessories (W). 

When vehicle decelerates, a portion of kinetic energy is 
recovered and restored in batteries due to the regenerative 
braking feature of motors. The regenerative braking factor 𝑘𝑘 in 
Eq. 18 indicates the percentage of braking energy that can be 
recovered, which changes with speed. Note that, in practice 𝑘𝑘 
is influenced by many factors, such as speed, deceleration, and 
braking force. In Yang et al. model, 𝑘𝑘 is defined as a function 
of speed, as in Eq. 22.: 
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𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑘𝑘𝑚𝑚𝜂𝜂𝑡𝑡𝑒𝑒𝜂𝜂𝑚𝑚𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎   𝑎𝑎 < 0              (21) 

𝑘𝑘 = �
0.5 × 𝑣𝑣

5
 , 𝑣𝑣 < 5

0.5 + 0.3 × 𝑣𝑣−5
20

,   𝑣𝑣 ≥ 5
                       (22) 

 
where 𝜂𝜂𝑚𝑚 is the motor efficiency. 

III. METHODOLOGY 
Existing energy-efficient BEV cruise control strategies are 

optimization-based and do not consider mixed traffic consisting 
of autonomous and human-driven vehicles. In this paper, a rule-
based ACC, named Energy-Efficient Electric Driving Model 
(E3DM) is proposed for BEVs in mixed traffic stream. A single-
lane car-following scenario is considered to derive the 
properties of the proposed ACC and conduct stability analysis. 
Such scenario can be used to implement the concept of 
dedicated lanes, where one or more lanes are designated for 
autonomous vehicles to attain greater throughput gains in 
mixed traffic situations [47].  In addition, the following 
assumptions are made regarding e-CAVs: 

1. Only e-CAVs are capable of communicating with other e-
CAVs through vehicle-to-vehicle communication.   

2. On-board sensors measure vehicle speed, gap (relative 
distance), and relative speed with respect to the preceding 
vehicle.  

A. Energy-efficient Electric Driving Model 
Electric connected and autonomous vehicle technologies are 

likely to be gradually implemented over time. Thus, e-CAVs 
and human-driven vehicles are likely to share the roads in the 
near future. An example of a platoon containing e-CAVs and 
human-driven vehicles is shown in Fig. 1. The human-driven 
vehicles and e-CAVs are represented by green vehicles and 
yellow vehicles, respectively. According to the aforementioned 
assumptions, information can be shared among e-CAVs, and an 
e-CAV can only measure the gap and speed of the human-
driven vehicle immediately preceding it. Therefore, the number 
of human-driven vehicles between e-CAVs is unknown. As a 
result, human-driven vehicles separate the platoon into several 
vehicle sets. Human-driven vehicle is always the first vehicle in 
a vehicle set. That is, the location (N) of a human-driven vehicle 
is assigned as 1. The locations of e-CAVs in the vehicle sets are 
labeled from 2 to M. Note that the vehicle set definition is used 
to determine the location of e-CAV and design the E3DM 
strategy. A human-driven vehicle can still follow an e-CAV in 
the platoon, according to the proper car-following rules. 

In the context of conventional gasoline vehicles, the 
environmental benefit has shown to vary with the position and 
penetration of CAVs in the string of mixed traffic [12]. Thus, it 
is necessary to consider the location of e-CAV when designing 
the adaptive cruise controller. Moreover, Fiori et al. [32] 
showed that marginal increment of energy regeneration 

efficiency decreases exponentially with the increase of 
deceleration. To achieve high energy efficiency of regenerative 
braking, the ACC of e-CAVs should maintain a small 
deceleration for a long duration instead of applying a large 
deceleration for a short duration. Consequently, the acceleration 
of a following vehicle equipped with E3DM is determined by 
the following equation: 
 

𝑎𝑎𝐸𝐸3𝐼𝐼𝐼𝐼
𝑛𝑛 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 × �1 − �𝑣𝑣𝑛𝑛

𝑣𝑣0
�
4
� −

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×�1−�𝑣𝑣𝑛𝑛𝑣𝑣0
�
4
�+𝑣𝑣𝑛𝑛

2−𝑣𝑣𝑛𝑛−1
2

2∆𝑚𝑚

𝑒𝑒

∆𝑚𝑚

𝑠𝑠0+𝑣𝑣𝑛𝑛×𝑇𝑇+𝑣𝑣𝑛𝑛(𝑣𝑣𝑛𝑛−𝑣𝑣𝑛𝑛−1)
2𝛽𝛽�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏

−1−𝛽𝛽2×𝑣𝑣𝑛𝑛𝑣𝑣0
×�

(𝑣𝑣0−𝑣𝑣𝑛𝑛)
𝑣𝑣0

�
𝛾𝛾  

(23) 
where 𝑎𝑎𝐸𝐸3𝐼𝐼𝐼𝐼

𝑛𝑛  is the acceleration of the following vehicle that is 
equipped with E3DM (m/s2); 𝛾𝛾  is a parameter indicating the 
preceding vehicle type; and 𝛽𝛽  is a parameter related to the 
position of e-CAV in the vehicle set. 

In order to stabilize the string of vehicle in a mixed traffic 
stream quickly, the e-CAVs located closer to the human-driven 
vehicles have to react more dramatically to attenuate the 
disturbance from human-driven vehicles in front of them. 
Therefore, the parameter (𝛽𝛽) of E3DM is determined as follows: 
 

𝛽𝛽 = 1
𝑙𝑙𝑛𝑛 (𝑁𝑁 )

+ 1                                 (24) 
 

where N is the location of an e-CAV in a vehicle set, N ≥ 2. 
The parameter (𝛾𝛾) of E3DM is determined as follows: 

 

𝛾𝛾 = �1,        𝑖𝑖𝑖𝑖 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑒𝑒𝑠𝑠 𝑎𝑎𝑏𝑏 e−CAV
0.5,                                     𝑒𝑒𝑓𝑓𝑠𝑠𝑒𝑒                       (25) 

 
According to Eq.23 to Eq.25, e-CAVs with E3DM accelerate 

with 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �𝑣𝑣𝑛𝑛
𝑣𝑣0
�
4
� when ∆𝑥𝑥 is large, which is the same as 

IDM [39]. An e-CAV will brake while the speed of the e-CAV 
is greater than the leading vehicle speed and ∆𝑥𝑥 is less than the 
desired spacing. When there is no speed difference between the 
leading and following vehicle, an e-CAV’s acceleration 
increases with the ratio of ∆𝑥𝑥 to the desired spacing. According 
to the characteristics of exponential function, the jerk of e-
CAV, which represents the changing rate of e-CAV’s 
acceleration, decreases with the ratio of ∆x  to the desired 
spacing. Moreover, an e-CAV adjusts its speed-dependent 
spacing based on the location of the e-CAV in a vehicle set and 
type of leading vehicle. Consequently, the e-CAVs equipped 
with E3DM can achieve smooth acceleration and efficient 
regenerative braking. 

Several properties of E3DM are discussed as follows, 
considering special cases:  

First, when an e-CAV is cruising (i.e. 𝑎𝑎𝐸𝐸3𝐼𝐼𝐼𝐼
𝑛𝑛 = 0, 𝑣𝑣𝑛𝑛 −

𝑣𝑣𝑛𝑛−1 = 0 ), the speed-dependent spacing ∆𝑥𝑥  between the 
preceding and the following vehicle is given by: 
 

∆𝑥𝑥 = �1 + 𝛽𝛽2 × 𝑣𝑣𝑛𝑛
𝑣𝑣0

× �(𝑣𝑣0−𝑣𝑣𝑛𝑛)
𝑣𝑣0

�
𝛾𝛾
� (𝑠𝑠0 + 𝑣𝑣𝑛𝑛 × 𝑇𝑇)       (26) 

 
In particular, when the vehicle is stopped or reached the 

maximum speed (i.e. 𝑣𝑣𝑛𝑛 = 0  or 𝑣𝑣𝑛𝑛 = 𝑣𝑣0 ), speed-dependent 
spacing ∆𝑥𝑥  equals to the desired spacing, that is, ∆𝑥𝑥 = 𝑠𝑠0 +
𝑣𝑣𝑛𝑛 × 𝑇𝑇. The desired spacing is composed of a standstill distance 

 
Fig. 1.  A platoon with e-CAVs (yellow) and human-driven vehicles (green) 
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(𝑠𝑠0) and an additional speed-dependent term, 𝑣𝑣𝑛𝑛𝑇𝑇. When an e-
CAV follows other e-CAVs, β decreases with the location (N) 
and the speed-dependent spacing ∆𝑥𝑥 of the e-CAV is closer to 
the desired spacing. Note that in equilibrium traffic of arbitrary 
density, the speed-dependent spacing ∆𝑥𝑥  of both Enhanced-
IDM and Nissan-ACC models are the desired spacing; while 
the speed-dependent spacing ∆𝑥𝑥 of E3DM would only equal to 
the desired spacing when 𝑣𝑣𝑛𝑛  is equal to 0 or the maximum 
speed. 

Second, when the traffic density is low (i.e. ∆𝑥𝑥 is large), e-
CAVs will accelerate to the maximum speed. When ∆𝑥𝑥 → ∞, 
𝑣𝑣𝑛𝑛2−𝑣𝑣𝑛𝑛−1

2

2∆𝑚𝑚
 is close to 0 and: 

𝑒𝑒
� ∆𝑚𝑚

𝑠𝑠0+𝑣𝑣𝑛𝑛×𝑇𝑇+𝑣𝑣𝑛𝑛(𝑣𝑣𝑛𝑛−𝑣𝑣𝑛𝑛−1)
2𝛽𝛽√𝑚𝑚𝑏𝑏

−1−𝛽𝛽2×𝑣𝑣𝑛𝑛𝑣𝑣0
×�(𝑣𝑣0−𝑣𝑣𝑛𝑛)

𝑣𝑣0
�
𝛾𝛾
�

 is close to infinity. 
As a result, the acceleration of E3DM is approximately equal 
to the maximum acceleration, 𝑎𝑎𝐸𝐸3𝐼𝐼𝐼𝐼

𝑛𝑛 ≈ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 . After the speed 
reaches the maximum speed, acceleration of E3DM is 0. 

Third, when e-CAV is following a slower vehicle or 
approaching a stopped vehicle (i.e. 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛−1 > 0) with a 
limited spacing (∆𝑥𝑥 → 𝑠𝑠0 + 𝑣𝑣0 × 𝑇𝑇), the acceleration equation 
is given by: 

𝑎𝑎𝐸𝐸3𝐼𝐼𝐼𝐼
𝑛𝑛 → 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 × �1 − �𝑣𝑣𝑛𝑛

𝑣𝑣0
�
4
� −

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×�1−�𝑣𝑣𝑛𝑛𝑣𝑣0
�
4
�+

𝑣𝑣𝑛𝑛2−𝑣𝑣𝑛𝑛−1
2

2(𝑠𝑠0+𝑣𝑣𝑛𝑛×𝑇𝑇)

𝑒𝑒𝑚𝑚𝑝𝑝�−𝛽𝛽2×𝑣𝑣𝑛𝑛𝑣𝑣0
×�(𝑣𝑣0−𝑣𝑣𝑛𝑛)

𝑣𝑣0
�
𝛾𝛾
�

  (27) 

 
Specially, when an e-CAV with the maximum speed 
approaches a stopped vehicle (i.e. vn = v0, vn−1 = 0 ), the 
maximum kinematic deceleration is applied to avoid a collision, 
as follows: 

𝑎𝑎𝐸𝐸3𝐼𝐼𝐼𝐼
𝑛𝑛 = − 𝑉𝑉0

2

2(𝑠𝑠0+𝑣𝑣0×𝑇𝑇)
                       (28) 

 
Fourth, when the spacing is much smaller than the desired 

spacing (∆𝑥𝑥 ≪ 𝑠𝑠0 + 𝑣𝑣0 × 𝑇𝑇) and there is no significant speed 
differences (𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛−1 ≈ 0), the acceleration is determined as 
follows: 

𝑎𝑎𝐸𝐸3𝐼𝐼𝐼𝐼
𝑛𝑛 ≈ 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 × �1 − �𝑣𝑣𝑏𝑏

𝑣𝑣0
�

4
� −

𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥×�1−�𝑣𝑣𝑏𝑏
𝑣𝑣0
�

4
�

𝑒𝑒

∆𝑥𝑥

𝑠𝑠0+𝑣𝑣𝑏𝑏×𝑇𝑇+
𝑣𝑣𝑏𝑏(𝑣𝑣𝑏𝑏−𝑣𝑣𝑏𝑏−1)

2𝛽𝛽√𝑎𝑎𝑏𝑏

−1−𝛽𝛽2×
𝑣𝑣𝑏𝑏
𝑣𝑣0

×�(𝑣𝑣0−𝑣𝑣𝑏𝑏)
𝑣𝑣0

�
𝛾𝛾  

(29) 
Specially, when ∆𝑥𝑥 → 0, Eq. 29 reduces to 
 

𝑎𝑎𝐸𝐸3𝐼𝐼𝐼𝐼
𝑛𝑛 ≈ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 × �1 − �𝑣𝑣𝑛𝑛

𝑣𝑣0
�
4
� × �1 − 1

𝑒𝑒
−1−𝛽𝛽2×

𝑣𝑣𝑏𝑏
𝑣𝑣0

×�(𝑣𝑣0−𝑣𝑣𝑏𝑏)
𝑣𝑣0

�
𝛾𝛾�    (30) 

 
Since 𝛽𝛽2 × 𝑣𝑣𝑛𝑛

𝑣𝑣0
× �(𝑣𝑣0−𝑣𝑣𝑛𝑛)

𝑣𝑣0
�
𝛾𝛾

 is always greater than 0, 

𝑒𝑒−1−𝛽𝛽
2×𝑣𝑣𝑛𝑛

𝑣𝑣0
×�(𝑣𝑣0−𝑣𝑣𝑛𝑛)

𝑣𝑣0
�
𝛾𝛾

 is always less than 1. The following vehicle 
will adjust its deceleration according to its speed. 

In the numerical experiment presented in Section IV, a traffic 
stream containing both e-CAVs and human-driven vehicles is 
simulated. IDM is used to describe the driver behavior of the 
human-driven vehicles. The e-CAVs are simulated by using, 
Enhanced-IDM, Nissan-ACC, Van Arem model, and E3DM. 
The acceleration model parameters of the human-driven 

vehicles and e-CAVs are based on the parameters of IDM 
proposed by Kesting et al. [45], as listed in TABLE I. 

B. Proposed Energy Consumption Model 
Most of the existing energy consumption models were 

developed based on the data collected in heterogeneous driving 
conditions. For example, Yao et al. and Fiori et al. used data 
collected from chassis dynamometer experiments [27], [32], 
Zhang and Yao collected data in low-speed urban traffic 
conditions [28]. Alves et al. collected data under constant 
ambient temperature [31]. By using real-world driving data 
collected on urban roads and highways over an extended time 
period, an energy consumption model that considers vehicle 
specific power, regenerative braking, auxiliary load, and 
ambient temperature is proposed to estimate BEV on-road 
energy consumption.  

VSP provides an estimate of the battery output power per 
mass unit for getting over the resistance encountered by a BEV 
[31], [48]. It is calculated using vehicle dynamics in Eq. 31. 
Energy consumption is heterogeneous at different VSP levels 
[31]. Negative values of VSP indicate that due to regenerative 
braking some electricity is converted from kinetic energy and 
restored in the batteries. Therefore, the proposed energy 
consumption model is calibrated based on VSP levels (>0, =0, 
or <0) to account for regenerative braking. 
 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑣𝑣(1.1𝑎𝑎 + 𝐸𝐸𝑎𝑎𝑎𝑎) + 𝐸𝐸𝑚𝑚𝑒𝑒𝑎𝑎𝑎𝑎𝑣𝑣3             (31) 
 
where 𝐸𝐸𝑎𝑎𝑎𝑎 is the rolling resistance coefficient (N/kg); and 𝐸𝐸𝑚𝑚𝑒𝑒𝑎𝑎𝑎𝑎 
is the aerodynamics drag coefficient (N s2/m2 kg). 

Auxiliary systems, especially heating and air conditioning 
systems, consume considerable electricity [32], [49]. The 
relationship between average auxiliary load and ambient 
temperature for each trip is illustrated in Fig. 2. The data were 
collected using an on-board diagnostics (OBD-II) logger and a 
GPS device installed on a passenger BEV (2013 Nissan Leaf) 
for 6 months in real-world driving conditions. Since the data 
were collected from November 2016 to April 2017 in Iowa, 
USA, the ambient temperature range only covers -17 °C to 23 

TABLE I 
PARAMETERS OF THE ACCELERATION MODELS 

Parameters IDM Enhanced-
IDM 

Nissan-
ACC 

Van 
Arem  E3DM 

Maximum speed v0 
(m/s) 33.3 33.3 33.3 33.3 33.3 

Free acceleration 
exponent δ   4      4    

Desired time 
headway T (s) 1.5 1.5 1.5 1.5 1.5 

Standstill distance 
s0 (m) 2 2 2 2 2 

Maximum 
acceleration 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 

(m/s2) 
1.4 1.4 1.4 1.4 1.4 

Desired 
deceleration b 

(m/s2) 
    2         2   2 

Maximum 
deceleration  bmax  

(m/s2) 
6 6 6 6 6 

Coolness factor c  0.99    
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°C. Thus, part of the curve (i.e. ambient temperature from -17 
°C to 23 °C) is calibrated using the data. The R-squared is 0.46. 
𝑐𝑐0  and 𝑐𝑐1  are 6.71 and -0.0894, respectively. Yuksel and 
Michalek [50], Wang et al. [30], and Liu et al. [50] explored the 
U-shaped relationship between BEV energy consumption and 
ambient temperature, where the energy consumption is lowest 
at 20 °C ~ 25 °C and increases as the temperature becomes 
colder or hotter, with similar  trends. In this study, a symmetric 
equation is assumed to estimate the auxiliary load from 23 °C 
to 40 °C, as shown in Eq. 32: 

 

ln𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚 = �
𝑐𝑐0 + 𝑐𝑐1𝑜𝑜,   𝑖𝑖𝑖𝑖 − 17 ≤ 𝑜𝑜 ≤ 23

𝑐𝑐0 + 𝑐𝑐1(46 − 𝑜𝑜),   𝑖𝑖𝑖𝑖 23 < 𝑜𝑜 ≤ 40           (32) 

 
where 𝑜𝑜 is ambient temperature (°C); 𝑐𝑐0, and 𝑐𝑐1 are 
coefficients. 

Considering the VSP and auxiliary load, a hybrid linear 
regression model is proposed to estimate BEV energy 
consumption: 
 

𝐸𝐸𝐸𝐸𝐸𝐸 = ℎ0 + ℎ1𝑉𝑉𝑉𝑉𝑉𝑉 + ℎ2𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚                   (33) 
 

where ℎ0, ℎ1, ℎ2 are the parameters.  
The model parameters are calibrated at different VSP levels 

to consider regenerative braking. Moreover, unlike internal 
combustion engine vehicles that are more fuel efficient on 
highways, BEVs driving at high speeds consume more 
electricity per distance unit than at low speeds [31], [32], [51], 
[52]. Therefore, the model parameters are also calibrated at 
different instantaneous speed levels. The threshold of 12.5 m/s 
(or 45 km/h) is used to separate high speed driving from low 
speed driving.  

Note that the impact of road gradient on energy consumption 
is not considered. The data service provider, FleetCarma, did 
not provide road gradient information. Also, Iowa is located in 
the Interior Plains of central North America, where gradient has 
relatively weaker impacts on energy consumption. 

IV. STABILITY ANALYSIS  
The linear stability method is widely applied to analyze the 

stabilization performance of car-following models [53]–[59]. In 
this section, we applied the linear stability method to study the 

stability of the E3DM model. The general form of time-
continuous car-following models is 

 
�̈�𝑥𝑛𝑛(𝑜𝑜 + 𝜏𝜏) = 𝑖𝑖(𝑣𝑣𝑛𝑛(𝑜𝑜), 𝑠𝑠𝑛𝑛(𝑜𝑜),∆𝑣𝑣𝑛𝑛(𝑜𝑜))              (34) 

 
where 𝜏𝜏  is the total time delay caused by vehicle-to-vehicle  
(V2V) communication, sensor, and vehicle actuator. 
 

The stability condition is calculated as [60] 
 

𝑉𝑉𝑜𝑜𝑎𝑎𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖𝑜𝑜𝑆𝑆 = 1
2
𝑖𝑖𝑣𝑣2 − 𝑖𝑖𝑠𝑠 + 𝑖𝑖𝑣𝑣𝑖𝑖∆𝑣𝑣 + 𝜏𝜏

2
𝑖𝑖𝑣𝑣𝑖𝑖𝑠𝑠 > 0            (35) 

 
where 𝑖𝑖𝑣𝑣 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑛𝑛
�

(𝑣𝑣𝑡𝑡,𝑠𝑠𝑡𝑡,0)
≤ 0, 𝑖𝑖∆𝑣𝑣 = 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑣𝑣𝑛𝑛
�

(𝑣𝑣𝑡𝑡,𝑠𝑠𝑡𝑡,0)
≤ 0, and  𝑖𝑖𝑠𝑠 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑛𝑛
�

(𝑣𝑣𝑡𝑡,𝑠𝑠𝑡𝑡,0)
≥ 0. 

Based on Eq.23, the partial derivatives of E3DM at 
equilibrium can be calculated as follows: 

 

𝑖𝑖𝑠𝑠 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1−�

𝑣𝑣𝑡𝑡
𝑣𝑣0
�
4
�

𝑒𝑒𝑚𝑚𝑝𝑝�−𝛽𝛽2𝑣𝑣𝑡𝑡𝑣𝑣0
�(𝑣𝑣0−𝑣𝑣𝑡𝑡)

𝑣𝑣0
�
𝛾𝛾
�
                       (36) 

𝑖𝑖∆𝑣𝑣 = − 𝑣𝑣𝑡𝑡

(𝑠𝑠0+𝑣𝑣𝑡𝑡𝑇𝑇)𝑒𝑒𝑚𝑚𝑝𝑝�−𝛽𝛽2𝑣𝑣𝑡𝑡𝑣𝑣0
�(𝑣𝑣0−𝑣𝑣𝑡𝑡)

𝑣𝑣0
�
𝛾𝛾
�
�1 +

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1−�
𝑣𝑣𝑡𝑡
𝑣𝑣0
�
4
�

2𝛽𝛽�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏
�  (37)    

𝑖𝑖𝑣𝑣 =

−

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1−�
𝑣𝑣𝑡𝑡
𝑣𝑣0
�
4
�

⎝

⎜
⎛ (𝑠𝑠0+𝑣𝑣𝑡𝑡𝑇𝑇)𝑇𝑇

�𝛽𝛽2𝑣𝑣𝑡𝑡𝑣𝑣0
�
(𝑣𝑣0−𝑣𝑣𝑡𝑡)

𝑣𝑣0
�
𝛾𝛾
�
2−

𝛽𝛽2𝛾𝛾𝑣𝑣𝑡𝑡�
(𝑣𝑣0−𝑣𝑣𝑡𝑡)

𝑣𝑣0
�
𝛾𝛾

𝑣𝑣0(𝑣𝑣0−𝑣𝑣𝑡𝑡) +
𝛽𝛽2�

(𝑣𝑣0−𝑣𝑣𝑡𝑡)
𝑣𝑣0

�
𝛾𝛾

𝑣𝑣0

⎠

⎟
⎞

𝑒𝑒𝑚𝑚𝑝𝑝�−𝛽𝛽2𝑣𝑣𝑡𝑡𝑣𝑣0
�(𝑣𝑣0−𝑣𝑣𝑡𝑡)

𝑣𝑣0
�
𝛾𝛾
�

−

4𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑡𝑡3

𝑣𝑣0
4 �1 + 1

𝑒𝑒𝑚𝑚𝑝𝑝�−𝛽𝛽2𝑣𝑣𝑡𝑡𝑣𝑣0
�(𝑣𝑣0−𝑣𝑣𝑡𝑡)

𝑣𝑣0
�
𝛾𝛾
�
�                                       (38) 

 
The sensor delay is between 0.1 and 0.3 seconds, the actuator 
lag is in the order of 0.1–0.2 seconds [61]–[63], and the 
communication delay is between 0.1 and 0.4 seconds [64]. 
Therefore, the range of the total time delay is 0.3-0.9 seconds. 
The stability of a platoon of E3DM-equipped vehicles can be 
evaluated based on Eq. 35 by varying the time delay between 0 
and 1.5 s. Fig.3 presents the stability of E3DM-equipped vehicle 
considering different time delays. The parameters, shown in 
TABLE I, are used to plot the stability against equilibrium 
speeds. Fig.3 shows that using the parameters listed in TABLE 

 

Fig. 2.  Relationship between auxiliary load and ambient temperatures 

 
Fig. 3.  Stability of E3DM-equipped vehicle with different time delays (τ) 
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I, E3DM is string stable when the time delay is less than 1.5 
seconds.   

V. RESULTS  

A. Performance of the BEV Energy Consumption Models 
The parameters of the proposed BEV energy consumption 

model are calibrated using the vehicle data collected from a 
2013 Nissan Leaf.  𝐸𝐸𝑎𝑎𝑎𝑎  equals 0.0981 N/kg and 𝐸𝐸𝑚𝑚𝑒𝑒𝑎𝑎𝑎𝑎  equals 
0.0002 N s2/m2 kg for the 2013 Nissan Leaf [32], [52], [65]. 
This vehicle was primarily used on urban roads and major 
highways. The data fields include timestamp, GPS location, 

vehicle speed, ambient temperature, battery current and 
voltage, and battery SOC. Energy consumption is the product 
of battery voltage and current. Acceleration is the derivative of 
vehicle speeds. During the 6-month data collection period, 512 
valid trips were recorded. The calibrated model parameters are 
listed in TABLE II.  

Moreover, Yao’s model and Yang et al.’s model described in 
Section II.C are calibrated and validated using the same data. 
The trip level energy consumptions estimated by the proposed 
model, Yao’s model and Yang et al.’s model are compared with 
the actual energy consumption for the same trip. As shown in 
Fig. 4, the proposed model can estimate trip level energy 
consumptions fairly close to the actual values and outperforms 
Yao’s and Yang et al.’s models.  

 The Mean Absolute Percentage Error (MAPE) and Root 
Mean Square Error (RMSE) are calculated and compared for 
these three models, as listed in TABLE III.  
 

𝑀𝑀𝑀𝑀𝑉𝑉𝐸𝐸 = 1
𝑝𝑝
∑ �𝐸𝐸𝐶𝐶𝑚𝑚,𝑖𝑖−𝐸𝐸𝐶𝐶𝑡𝑡,𝑖𝑖

𝐸𝐸𝐶𝐶𝑚𝑚,𝑖𝑖
�𝑝𝑝

𝑁𝑁=1 × 100%                   (39) 

𝐸𝐸𝑀𝑀𝑉𝑉𝐸𝐸 = �∑ (𝐸𝐸𝐶𝐶𝑚𝑚,𝑖𝑖−𝐸𝐸𝐶𝐶𝑡𝑡,𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑝𝑝
                               (40) 

where, 
𝐸𝐸𝐸𝐸𝑒𝑒,𝑁𝑁 is the estimated energy consumption of trip 𝑖𝑖 (kWh);  
𝐸𝐸𝐸𝐸𝑚𝑚,𝑁𝑁 is the actual energy consumption of trip 𝑖𝑖 (kWh); and 
𝑝𝑝 is the total number of trips in the dataset (i.e. 512). 

Among these models, the proposed model has the lowest 
MAPE and RMSE. Consequently, the proposed model is used 
to estimate energy consumption of BEVs.  

B. Experiment Setup 

The numerical experiments are performed by simulating a 
traffic stream with 1000 vehicles on a 7.45-mile long single lane 
road. As the platoon size on urban arterials usually ranges from 
14 to 81 vehicles [66], [67], when the number of lane is less 
than 4, the traffic stream is divided into several platoons with 
sizes ranging from 14 to 81 vehicles. The lead vehicle of each 
platoon is assumed to follow the Urban Dynamometer Driving 
Schedule (UDDS), as shown in Fig. 5. In each platoon, the 
initial spacing and time headway are the desired spacing and 
desired time headway, respectively. Various scenarios are 
simulated, considering traffic streams with all e-CAVs, all 
human driven vehicles, or a mixed of the two.  In the case of a 
mixed traffic stream, different market penetrations of e-CAVs 
are simulated. The car following behavior of human driven 
vehicles is assumed to follow IDM. For e-CAVs, different 
adaptive cruise control strategies are tested, including 
Enhanced-IDM, Nissan-ACC, Van Arem model, and E3DM.  

C. Homogenous Traffic Stream 
To demonstrate the impact of e-CAVs on individual vehicle 

and platoon-level energy consumption, one platoon consisting 
of 16 BEVs is examined. Fig. 6 compares the energy 
consumption of each following vehicle in the traffic streams 
with all human driven vehicles (i.e. Manual) or all CAVs (i.e. 
Enhanced-IDM, Nissan-ACC, Van Arem model and E3DM). In 
the homogeneous traffic stream, the e-CAVs equipped with 
E3DM and Nissan-ACC, consume less energy than the human 
driven vehicles. Enhanced-IDM equipped e-CAVs, however, 

TABLE II 
PARAMETERS OF THE ELECTRICITY CONSUMPTION MODEL FOR THE 2013 

NISSAN LEAF BEV 

VSP v h0 h1 h2 c0 c1 

>0 
<12.5 3.22E+03 1.16E+03 2.15E+00 

6.71E+00 -8.94E-02 

≥12.5 8.43E+03 7.57E+02 2.60E+00 

=0 
<12.5 6.10E+02 — 1.19E+00 

≥12.5 — — — 

<0 
<12.5 7.20E+02 5.58E+02 2.10E+00 

≥12.5 8.12E+03 5.94E+02 2.57E+00 
 

 

Fig. 4. Validation of the electricity consumption models for the 2013 
Nissan Leaf BEV. 

 

TABLE III 
VALIDATION METRICS FOR BEV ENERGY CONSUMPTION MODELS 

Energy Consumption Models MAPE RMSE 
Proposed model 13.3% 0.296 kWh 

Yao’s model 19.5% 0.495 kWh 
Yang et al.’s model 16.7% 0.511 kWh 

 
 

 
Fig. 5.  Urban Dynamometer Driving Schedule (UDDS) [68] 
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consume more energy than the human driven vehicles. The 
reason is that Enhanced-IDM provides smoother deceleration 
which may reduce the regenerative energy of BEVs. E3DM 
outperforms Enhanced-IDM, Van Arem model, and Nissan-
ACC in terms of energy consumption. E3DM reduces energy 
consumption of the entire platoon by approximately 5.2%, 
compared to the all-manual case. Moreover, the average travel 
times of IDM, Enhanced-IDM, Nissan-ACC, Van Arem model, 

and E3DM are 22.7, 22.6, 22.7, 22.5, and 22.8 minutes, 
respectively. E3DM slightly increases travel time compared to 
the human-driven fleet. However, the increase in travel time is 
not significant.  

The reason for the better performance of E3DM is to apply 
small decelerations for long durations instead of large 
decelerations for short durations, as shown in Fig. 7. Thus, 
E3DM is able to keep high regenerative braking efficiency for 
longer duration compared to Nissan-ACC, Van Arem model 
and Enhanced-IDM. In addition, E3DM also provides smoother 
deceleration and acceleration compared to Nissan-ACC, Van 
Arem model and Enhanced-IDM. As shown in Fig. 7, with 
ACC and CACC, e-CAVs towards the end of the platoon tend 
to reach smooth deceleration and acceleration. E3DM stabilizes 
the string much faster than Nissan-ACC, Van Arem model and 
Enhanced-IDM. 

D. Mixed Traffic Stream 
To examine the impact of e-CAV location on the total energy 

consumption a platoon with one e-CAV and 15 human driven 
BEVs is selected. The location of the e-CAV varies from 
immediately following the lead vehicle (i.e. a human driven 
vehicle that follows the UDDS drive cycle) to the end of the 
platoon. As shown in Fig. 8, Nissan-ACC and E3DM strategies 
reduce fleet-level energy consumption with only one equipped 
vehicle. For E3DM, an e- CAV towards the front of the platoon 
has larger impacts on the fleet-level energy efficiency, 
compared to the case when the e-CAV is towards the end of the 
platoon. One E3DM-equipped e-CAV may result in up to 2.4% 
reduction in total energy consumption if placed at the front of 
the platoon. However, with Nissan-ACC and Enhanced-IDM, 
there is no obvious relationship between the location of e-CAV 
and total energy consumption.  

Furthermore, the impact of different market penetration of e-
CAVs on energy consumption is examined by simulating traffic 

streams with mixed e-CAVs and human-driven vehicles. Two 

 
Fig. 6.  Energy Consumption Comparison Assuming All Human-driven 

Vehicles or All e-CAVs. 
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scenarios are considered.  

First, to examine the impact of e-CAV market penetration on 
the total energy consumption, 500 simulations are generated for 
each ACC strategy and each market penetration rate, by 
randomly assigning e-CAV locations in the platoon. The mean 
energy consumption reduction of the entire fleet, compared to 
the all human driven BEVs scenario, is shown in Fig. 9. The 
higher market penetration of e-CAVs may not result in better 
energy efficiency of the entire fleet. With E3DM, the highest 
fleet-level energy efficiency is achieved when the market 
penetration of e-CAVs is 20%. The major reason is that a higher 
percentage of e-CAVs in the traffic stream results in faster 
string stabilization, which decreases the regenerative energy.   

Second, to examine the synergistic effect of CAV and BEV 
technologies, mixed traffic streams with e-CAV, human-driven 
BEV (m-BEV) and human-driven internal-combustion engine 
vehicle (m-ICEV) are simulated. The fuel consumption of m-
ICEV is computed by applying the VT-Micro model calibrated 
by Lu et al. [69] and then converted to electricty [70]. The 
impact of different market shares of e-CAV, m-BEV and m-
ICEV on energy consumption reduction of entire fleet is 
investigated, as shown in Fig.10.  The marginal improvement 
in energy efficiency decreases when the market penetration of 
BEV, including e-CAVs and m-BEVs, exceed 20%. Moreover, 
the larger the market penetration ratio of e-CAV to m-BEV is, 
the faster the marginal improvement in energy efficiency 
reaches the turn point. 

 

VI. CONCLUSIONS 
This paper proposed an Energy-Efficient Electric Driving 

Model, namely E3DM, for adaptive cruise control of e-CAVs in 
traffic streams mixed with human driven vehicles. Considering 
the location of an e-CAV relative to other e-CAVs and human 
driven vehicles, E3DM is able to maintain high efficiency of 
regenerative braking and provide smooth deceleration and 
acceleration by adjusting the spacing between the leading and 
the following vehicles. Moreover, a power-based energy 
consumption model is proposed to estimate the on-road energy 
consumption for battery electric vehicles. Using the proposed 
BEV energy consumption model, the impact of E3DM on 
energy consumption of individual vehicles and the entire fleet 
is investigated. 

By simulating single-lane vehicle dynamics in mixed traffic 
stream with different market penetration rates of e-CAVs, the 
result shows that e-CAVs equipped with E3DM and Nissan-
ACC consume less energy than the human driven vehicles. 
E3DM outperforms Enhanced-IDM, Van Arem model, and 
Nissan-ACC in terms of energy efficiency. In addition, higher 
market penetration of e-CAVs may not result in better energy 
efficiency of the entire fleet. With E3DM, the highest energy 
efficiency is achieved when the market penetration of e-CAVs 
is 20%. This is because that more e-CAVs in the traffic stream 
results in faster string stabilization and decreases the 
regenerative energy. Considering mixed traffic streams with 
BEVs (e-CAVs and m-BEVs) and ICEVs (m-ICEV), the 
marginal improvement in energy efficiency decreases when the 
market penetration of BEV, including e-CAVs and m-BEVs, 
exceed 20%. Moreover, the larger the market penetration ratio 
of e-CAV to m-BEV is, the faster the marginal improvement in 
energy efficiency reaches the turn point. 

The present paper has the following limitations. First, the 
lane-changing behavior is ignored. An energy-efficient lane-
changing strategy should be designed for e-CAVs and 
implemented in tandem with E3DM to simulate real world 
driving behavior. Second, since the lead vehicle in each platoon 
is assumed to follow UDDS, the simulation is not able to 
represent different traffic congestion levels. In the future, 

  
 

Fig. 8.  Impact of E-CAV Location on Total Energy Consumption 
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Fig. 9. Impact of e-CAV Market Penetration on Total Energy Consumption 
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different traffic states should be simulated to investigate the 
impact of E3DM under different congestion levels.  
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