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ABSTRACT

Topology optimization has emerged as a popular approach to refine a component’s design and

increasing its performance. However, current state-of-the-art topology optimization frameworks are

compute-intensive, mainly due to multiple finite element analysis iterations required to evaluate

the component’s performance during the optimization process. Recently, machine learning-based

topology optimization methods have been explored by researchers to alleviate this issue. However,

previous approaches have mainly been demonstrated on simple two-dimensional applications with

low-resolution geometry. Further, current methods are based on a single machine learning model

for end-to-end prediction, which requires a large dataset for training. These challenges make it

non-trivial to extend the current approaches to higher resolutions.

In this thesis, we explore deep learning-based frameworks that are consistent with traditional

topology optimization algorithms for three-dimensional topology optimization with a reasonably

fine (high) resolution. We achieve this by training multiple networks, each trying to learn a different

step of the overall topology optimization methodology, making the framework more consistent with

the topology optimization algorithm. We demonstrate the application of our framework on both

2D and 3D geometries. The results show that our approach predicts the final optimized design

better than current ML-based topology optimization methods.
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CHAPTER 1. INTRODUCTION

Over the past few decades, there has been an increased emphasis on designing components

with optimal performance, especially using topology optimization [36, 29]. Topology optimization

(a subset of design optimization methods), initially developed by Bendsøe and Kikuchi [4], refers to

a set of numerical design optimization methods developed to find appropriate material distribution

in a prescribed design domain to obtain geometric shapes with optimal performances. Here, the

performance could be any physical phenomenon such as structural strength (or mechanical design),

heat transfer, fluid flow, acoustic properties, electromagnetic properties, optical properties, etc. [46].

The domain refers either to a 2D or 3D mesh representation of the CAD geometry, typically used

for finite element analysis. Among the different topology optimization methods, some of the most

prominent approaches are solid iso-tropic material with penalization (SIMP) [3], level-sets [53], and

evolutionary optimization [9, 54]. These approaches are used for several topological design problems

where structural, acoustic, or optical performance needs to be optimal [12, 46] while removing the

material to satisfy a total material(or volume) constraint.

1.1 Motivation

One of the main challenges in performing topology optimization is the high computational cost

associated with it. The performance measure that is being optimized needs to be computed after

each iteration of the optimization process. These performance measures are usually obtained from

physics simulations (often using numerical solution approaches, such as finite element analysis)

that are usually compute-intensive. Due to this computational challenge, performing topology

optimization for a fine (high resolution) topological mesh could take a few hours to even days. This

computational challenge has inspired several researchers to develop deep learning-based topology

optimization to reduce or eliminate the need for numerical simulations.
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Although deep learning (DL) has many diverse applications and has demonstrated exceptional

results in several real-world scenarios, our focus in this thesis is the recent application of deep

learning to learn a system’s underlying physics. There has been an increased interest in learning

physical phenomena with neural networks in order to reduce the computational requirements and

achieve better performance with very little or no data [37, 59, 44, 51, 30, 18, 58, 38, 40, 5]. A popular

approach is by modifying the loss function to ensure that a set of physical constraints (boundary

conditions) are satisfied. This approach has been especially successful in using deep learning to

solve partial differential equations such as Burger’s equation, Navier-Stokes equation, and Cahn-

Hilliard’s equation [44, 47, 58, 30, 18, 59, 38]. These approaches help the framework learn about

the physical phenomena and make the learning consistent with the underlying physics. At the same

time, algorithmic alignment between the design of the neural networks and the phenomena being

learned has been shown to be successful [55]. With this motivation, we propose an algorithmically-

consistent deep learning framework for structural topology optimization.

1.2 Overview

An algorithmically-consistent deep learning framework for the structural topology optimization

(STO) need to (i) learn the underlying physics for computing the compliance, (ii) learn the topo-

logical changes that occur during the optimization process, and (iii) produce results that respect

the different geometric constraints and boundary conditions imposed on the domain. To simplify

the problem, we first discuss three essential elements that form the backbone of any data-driven

approach: (i) the data representation, (ii) training algorithms, and (iii) model representation. For

algorithmically-consistent learning, each of these three elements must be consistent with the clas-

sical structural topology optimization algorithm. In this particular instance, we focus on topology

optimization using the solid isotropic material condition with penalization (called SIMP [3]) algo-

rithm for our framework.
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Figure 1.1 We propose a deep learning based topology optimization framework. The input

to this framework is the compliance of the initial geometry along with the target

volume fraction. Using the DLTO framework, we predict the optimal density

of the geometry without any requirement of iterative finite element evaluations.

We then convert the predicted optimal density of the geometry and convert it

into triangular surface mesh representation using the marching cubes algorithm

to give the final optimal design geometry.

The first element is the identification of an algorithmically-consistent representation for struc-

tural topology optimization. Structural topology optimization is an iterative process where the

design is modified through several iterations until the objective function (total compliance) con-

verges to an optimal value. Further, each element’s compliance is used in the sensitivity analysis

for updating the element densities at each iteration. Thus, the element compliance is a valid and

consistent representation of the geometry compared to other representations (such as voxel densi-

ties, strains, etc.) used in current deep learning approaches. Therefore, in the proposed framework,

we use the element compliance as the CAD model representation of the geometry, loading, and

boundary conditions (as shown in Figure 1.1). Note that, unlike the use of strain tensor and dis-

placement tensor as proposed by Zhang et al. [60], this representation is compact, leading to better

scaling at higher resolutions.

The next elements in an algorithmically-consistent approach are the training and inference

pipelines, which need to be consistent with the classical structural topology optimization pipeline.

In our experiments, we observe a non-trivial transformation of the densities from the first iteration
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to the final converged one. Due to this non-trivial transformation, learning the mapping between the

initial topology and the final optimized topology is not a trivial one-step learning task. Therefore,

we use the intermediate densities obtained during the process of data generation to enhance the

performance of our proposed framework along with the initial compliance and target volume fraction

as input and the final optimal density as the target.

Finally, an algorithmically-consistent framework should simultaneously satisfy two constraints

for structural topology optimization: the topological constraint of matching the target volume

(often prescribed as a volume fraction or percentage of volume removed) and the physical con-

straint of minimizing the compliance. While computing the volume fraction is trivial, computing

the compliance involves performing a finite element analysis. To avoid this computation, we pro-

pose developing a surrogate model for learning the mapping of a given intermediate density to its

corresponding intermediate compliance.

In summary, we have developed two algorithmically consistent frameworks for structural topol-

ogy optimization, namely, the Density Sequence (DS) prediction and the Coupled Density and

Compliance Sequence (CDCS) prediction. The first approach uses a sequential prediction model

approach to transform the densities without any additional compliance information. In the second

approach, we add intermediate compliance to train a compliance-predicting surrogate model for

improving the results. We compare the proposed approaches with the baseline method of Direct

Optimal Density (DOD) prediction. Direct optimal density prediction is an end-to-end learning

approach where the final optimal density is directly predicted using just the initial compliance and

target volume fraction. The DS framework involves two convolutional neural networks for obtain-

ing the final prediction. In CDCS, we use three convolutional neural networks iteratively during

inference to predict the final optimal density.
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1.3 Thesis Organization

This thesis is arranged as follows. We start with discussing formulation and related work in

Chapter 3, where we talk about the mathematical representation and the flowchart for the SIMP

algorithm. We will also talk about the relative work published in this domain of research area.

Chapter 2 deals with the primary explanation of deep learning architectures, specifically on

convolutional neural networks (CNN) and long short-term memory cells (LSTMs). We will explain

each layer involved in CNN and LSTM architectures.

Next, we introduce the deep learning methods proposed in this thesis in Chapter 4. We discuss

the different frameworks used for each method in detail. Additionally, we will talk about the data

representation and training algorithm for each method.

We cover the details of the data generation process in Chapter 5, which is used as training data

for our proposed approaches. Both 2D and 3D data generation pipelines will be explained in this

chapter.

In Chapter 6, we show the statistical results from our experiments and demonstrate the per-

formance of our proposed methods on both 2D and 3D structural topology optimization. We also

visualize our results and show them in this chapter.

Finally, we conclude this work with some future directions of research in Chapter 7.
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CHAPTER 2. BACKGROUND ON DEEP LEARNING

2.1 Deep Learning

Deep learning (DL) is the subset of machine learning (ML), which is a subset of artificial

intelligence (AI). AI is a technique that enables machines to mimic human behavior, where ML

is the technique to use statistical methods to enable machines to improve with experience. Deep

learning which is, on the other hand, is inspired by the structure of the human brain. Deep learning

methods aim to draw similar conclusions as humans would by continually analyzing data with a

given logical structure. For this, deep learning uses the multi-layered inter-connected structure of

neurons, also known as deep neural networks.

Basically, given the pair of inputs X and outputs Y , deep NN tries to approximate the function

F (), which is parameterized by weights W . The parameter weights (W ) here is the numerical

value which is the weight of the linkage between two neurons. This approximation is possible using

numerous layers of neurons that transform the input in latent space. Then NN extract features

from this latent space and maps them to the output. Therefore, in multi-layer NN, at any layer l

in the NN, the the output yl is computed from xl as: yl = σ(wl.xl + bl), where wl and bl are the

weights and biases used as a weighted linkage from layer l − 1 to l, respectively. The function σ(.)

is the non-linear transformation known as activation function, which is only non-linear mapping in

the NN. So combining such layers to form multilayered NN, we get W as the set of all weights from

every layer, and the prediction at the output layer, Ŷ , can be realized with Ŷ = F (W,X).

The goal of the deep NN is to find the best parameters W ∗ such that the prediction Ŷ is as

much as close to the output Y . The process of finding appropriate weights is called training. At

the start of the training, the weights W are randomly initialized. During the training process,

the W is modified W ∗ such that the loss function is minimized computed between Ŷ and W

during training. This optimization of parameters is performed using gradient-descent-based back-
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propagation method [25]. There are several gradient descent methods like Adam optimizer [20],

RMSProp and Adagrad [32], Adadelta [57] and many others. Also, various loss functions can be

used based on the application; some examples for loss function are mean square error (MSE), binary

cross-entropy (BCE), KL-divergence loss.

For better training performance, we can perform batch-normalization [17], regularization [23],

and dropout [49]. In batch normalization, output from the previous layer is normalized for each

batch to enforce the mean close to 0 and standard deviation close to 1. In regularization, an

additional term is added in the loss function termed as the penalty function to avoid overfitting.

On the other hand, in dropout, multiple connections between two layers are dropped randomly

during the training process; the effect is that the network becomes less sensitive to the specific

weights of neurons and generalizes better.

In an upcoming couple of sections, we will be discussing some popular classes of deep NN,

the convolutional neural networks (CNNs) and long short-term memory cell(LSTM), variant of

recurrent neural networks (RNNs) architecture.

2.2 Convolutional Neural Networks (CNNs)

As discussed earlier, NN tries to fit function F (), which maps input data to output and is

done through stacking multiple layers of neurons. In typical NN, each layer neuron is connected

with its previous and next layer neuron, known as fully-connected layers. This fully-connected

deep NN, when used for the input of large size, the number of parameters get really high makes it

computationally expensive, and over-fitting occurs. We understand from it that every connection

of neuron to neuron may not be useful. Instead of fully-connection, CNNs connect the neuron

to only a local region of the input volume. This layer is termed as convolutional layer in [25] as

the output of this layer is obtained by convolving the input with weights (filters). These weights

are shared for all such local regions in the input, reducing the number of parameters dramatically.

The convolutional layer is depicted in Figure 2.1. The output at of any convolutional layer l with

convolution connection with 3D input (width, height, channels) is given by,
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Figure 2.1 Illustration of convolution operation performed on an image with size 5 × 5

with filer of size 3× 3.

Zl[i, j,m] = Wl ⊗Xl

Wl ⊗Xl =
∑
k1

∑
k2

∑
n

Wl[k1, k2, n,m]Xl[i+ k1, j + k2, n] + bl[m]

Yl = σ(Zl)

(2.1)

Where Xl is the input to layer l, and Yl gives the output of the layer by convolving the input

with the weights and biases and passing it through non-linear transformation σ(.). The weights

here are also known as filter or kernel. The shape of the kernel is (k1, k2, n, n), where k1, k2 is

the spatial resolution, and n denotes the depth of the kernel same as the number of channels in



9

input, and m represents the number of kernels same as the number of channels in output. Yl, the

intermediate output of the layer, is called a feature map extracted from the input.

In CNNs, the other operation performed is the pooling operation. As the neighboring pixels

share similar features, these features can be discarded by using better representation in lower

dimensions by performing the pooling operation. One of the popular pooling operations is max-

pooling [22], where we select the feature which has maximum numerical value within the local

region. This layer is known as the pooling layer or max-pool layer in case the max-pooling function

is used. As it is just a downsampling layer, it does not have any trainable parameters.

Another layer we use in CNNs is the upsampling layer, where we increase the dimension of the

data to get the output of the desired shape. For example, taking an image as an input and predicting

the image of some shape at the output. This upsampling is necessary as we have used a pooling layer

to decrease the dimensionality of the data. By arranging and stacking these convolutional layers,

pooling layers, upsampling layers, and sometimes fully-connected layers, we get the convolutional

neural network.

2.3 Long Short Term Memory Cells (LSTMs)

We talked in an earlier section about the use of CNNs for spatial data representation. However,

when the data contains the temporal representation or has temporal correlation, recurrent neural

networks (RNN) [31] is preferred. Simple RNN suffers from short-term memory; that is, if the input

data sequence is long enough, RNN will struggle to carry the information from earlier steps to later

ones. LSTMs are the type of RNN that can learn long-term dependencies in the data. LSTMs

are introduced by Hochreiter and Schmidhuber [15] in 1997 and refined by many researchers since

then. LSTMs have an internal mechanism called gates that can control the flow of information.

The main attributes of the LSTM are cell state and multiple gates. The cell state acts as the

memory of the network, which carries the relevant information throughout the processing of the

input sequence. So the information from the earlier step can also propagate in later steps avoiding

short-term memory problems. The information in the cell state is modified according to the gates.



10

x

+X

x

x

+X

x

x

+X

x

XtXt-1 Xt+1

ht-1 ht ht+1Cell stateForget gate
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Pointwise 
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+ Pointwise 
Addition

Concatenation
t Current

time stepLSTM

Figure 2.2 Example of LSTM network with Xt as the input sequence at current step t and

ht is the corresponding hidden state.

The gates decide which information needs to be added or removed from the cell state. During

training, gates can learn what information should cell state keep or forget. The gates contain a

sigmoid activation function which transforms the input into 0 to 1 range; this helps to update or

forget the data. The architecture of LSTM is showed in Figure 2.2.

We will discuss each element of Figure 2.2 in details. One of the gates in LSTM is forget gate.

This gate, as the name suggests, decides what information to be or remember. Information from

previous hidden state and current input information is passed through the sigmoid layer. Sigmoid

outputs the value between 0 and 1; the value closer to 0 means to forget, and the value closer to 1

means to keep the information.

Now, as the new input is processed, the cell state needs to be updated. For this, LSTM uses

an input gate. Again, the current input and the previously hidden state information are passed

through the sigmoid to obtain a value between 0 and 1. Additionally, both quantities are also

passed through the tanh function to transform the value into a -1 to 1 range to help regulate the
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network. Then multiplying the output of the tanh with the output of the sigmoid will decide which

information relevant to keep from tanh output.

With the help of the forget get and input gate, the cell state can be updated. First, the cell

state from the previous hidden step is multiplied by the output of forget get. This will discard

the less important information. Then the point-wise addition with the output of the input gate is

performed to update the current cell state.

Finally, LSTM uses an output gate that decides what the next hidden state should be. Hidden

states contain the information from previous inputs, and they can also be used to make predictions.

The first step is to pass the previous hidden state and current input through the sigmoid function.

Next, pass the updated current cell state through the tanh function and perform point-wise mul-

tiplication. The multiplication with sigmoid output decide which information should hidden state

should carry.

Summarizing these multiple gates, the forget gate decides what information should be kept

from the previous hidden state. The input gate determines what relevant information needs to be

added from the current input step, and the output gate decides what the next hidden step should

be. It can be used for predictions as well.
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CHAPTER 3. FORMULATION AND RELATED WORKS

3.1 Mathematical Representation

Formally, topology optimization is represented as:

minimize: C(U)

subject to: KU = F

gi(U) ≤ 0.

(3.1)

Here, C(U) refers to the objective function of topology optimization. In the case of structural

topology optimization, this is the compliance of the system,

C =

∫
Ω∈S

bu dΩ +

∫
τ∈dS

tu dτ (3.2)

where b represents the body forces, u displacements, t surface traction, and Ω and τ are volume and

surface representations of solid. The constraint gi(U) includes a volume fraction constraint, gi =

(v/v0)− vf . Since, this optimization is performed for every element in the mesh, the combinatorial

optimization is computationally intractable. Naturally, an alternative solution is to represent the

same set of equations above as a function of density ρ for every element.

Minimize: C(ρ, U)

subject to: K(ρ)U = F

gi(ρ,U) ≤ 0

0 < ρ ≤ 1

(3.3)

3.1.1 SIMP Algorithm and Flowchart

This design problem is relaxed using SIMP, where the stiffness for each element may be described

as, E = Emin + ρp(Emax − Emin). Here, p is the parameter used for penalizing the element
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Algorithm 3.1: SIMP topology optimization [3]

Input : S, L, BC, V0

Output: Dfin(set of all densities for each element, ρ)

Load design; apply loads and boundary conditions

Initialize: D0 → V0/
∫

Ω dΩ

Initialize : ch = inf

while ch < threshold do
Assemble global stiffness matrix K for element stiffness matrix ke(ρe)

Solve for U, using K, loads (L) and boundary conditions (BC)

Compute objective function, C = UTKU =
∑N

e=1 ρ
puTkeu

Perform sensitivity analysis, ∂c
∂e = −pρ(p−1)uTkeu

Update the densities (Di) using a optimality criterion

ch = ||Di −Di−1||
end

density to be closer to 1.0. A typical SIMP-based topology optimization pipeline is shown in

Algorithm 3.1. We can understand more about the SIMP algorithm with the help of flowchart in

Figure 3.1. We also visualize the evolution of topology shape on right hand side through each step

of SIMP algorithm. Starting with initializing design domain and defining the loading and boundary

condition, then computing the compliance using finite element analysis (FEA). Then using each

element’s compliance in the sensitivity analysis for updating the element densities at each iteration.

This process is continued until the change in the shape of the design for consecutive iterations is

within some small margin.

While this is a naive implementation, more sophisticated methods for structural topology op-

timization such as level-set methods [53] and evolutionary optimization methods [9, 54] are also

popularly employed. Despite several advancements in structural topology optimization, a common

challenge in all these approaches is that it requires several iterations of the finite element queries to

converge on the final density distribution. Different optimization methods result in different, yet

comparable, optimal solutions alluding to the fact that multiple optimal solutions exist for the same

topology optimization problem. Deep learning-based methods are a natural fit for accelerating this

task, which has been explored in several works about which we will talk about it in next section.
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Figure 3.1 A flowchart for SIMP method with showing evolution of design shape on right

hand side.

3.2 Related Works

3.2.1 Deep Learning for Topology Optimization

Several deep learning-based topology optimization frameworks have been proposed [48, 2, 56,

60, 33, 7, 28, 21, 41, 14, 11, 24, 34, 27, 43, 56, 35, 61, 13, 1, 26, 10, 6, 45, 50, 39, 19]. Among

these several works, the most relevant and significant ones are discussed below. Initially, Banga

et al. [2] and Sosnovik and Oseledets [48] proposed to perform the fine refinement of the design

using deep convolutional autoencoders since the fine refinement stage usually requires several finite

element iterations during the optimization process. Sosnovik and Oseledets [48] used the densities
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obtained after five iterations of the SIMP-based structural topology optimization as input to a

deep learning network that directly predicts the final density. Banga et al. [2] extend this idea to

3D design geometries, along with an additional input of the boundary conditions, but for a very

coarse geometric resolution (12×12×24). Yu et al. [56] developed a framework that takes the input

design, boundary conditions, and the prescribed volume fraction and predicts the final target shape.

They also create a generative framework where they generate several optimal designs. However,

their research was restricted to only one type of boundary condition. A more generic framework to

accommodate all possible boundary conditions using this method would require an impractically

large dataset. Therefore, Zhang et al. [60] developed an improved representation of the geometry,

loading conditions, and boundary conditions using the strain tensor and displacement tensor as

input. They demonstrate this framework using 2D geometries and represent each component of

the strain tensor and displacement tensor as a different channel of the 2D image input. Using

convolutional neural networks, they predict the final density. While their results are an improvement

over earlier methods, this representation is not scalable to 3D. The strain tensor has three more

components in addition to the increase in overall data size due to representing the geometry using

3D voxels, leading to several computational challenges. Recently, Chandrasekhar and Suresh [7]

propose a topology optimization algorithm using neural networks where the neural network is

used for identifying the density for each element at each iteration of the optimization process. This

approach produces faster convergence and comparable results with SIMP-based structural topology

optimization. However, this approach’s main drawback is that finite element evaluations are still

needed (although lesser than SIMP-based structural topology optimization). To the authors’ best

knowledge, very few researchers consider the idea of using compliance and the intermediate densities

and compliances for improving the learning of structural topology optimization. Further, most of

the efforts in the area have been in the 2D representation of geometries and very low-resolution

3D representation of geometries. Therefore, a scalable 3D framework for algorithmically-consistent

deep learning framework for structural topology optimization is needed.
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CHAPTER 4. ALGORITHMICALLY-CONSISTENT DEEP LEARNING

Converged 

density

Initialize geometry, 
loads, BC, and 

constraints
Perform FEA

Sensitivity analysis 
and filtering

Density update

No

Yes

Final topology

Initialize geometry, 
loads, BC, and 

constraints
Compliance prediction network Density prediction network

Converged 

density

No

Yes

Final topology

Classical Topology Optimization

DLTO

Figure 4.1 Topology optimization pipeline: The traditional topology optimization per-

forms several iterations of finite element analysis, followed by sensitivity anal-

ysis and filtering. Using the filtered densities and compliance, we perform a

density update. These iterations are performed several times till the density

has converged. The DLTO approach replaces the repetitive performance of

finite element analysis using a compliance prediction network and the density

update with density prediction network.

In this section, we first explain the baseline deep learning approach, which we use to compare our

results. We also compare the performance of our proposed frameworks and the baseline against the

classical SIMP-based structural topology optimization method. After explaining the baseline, we

explain the two proposed frameworks, the density sequence (DS) prediction and the coupled density

and compliance sequence (CDCS) prediction. Figure 4.1 shows how our proposed frameworks are

algorithmically consistent with the SIMP topology optimization.

4.1 Baseline Direct Optimal Density Prediction

Recently, U-Nets [42, 8] have been known to be effective for applications such as semantic

segmentation and image reconstruction. Due to its success in several applications, we chose a U-

Net for this task. The input to U-Net is a tuple of two tensors. The first is the initial compliance
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(represented in the voxel or pixel space); the second is a constant tensor of the same shape as the

compliance tensor. Each element of the constant tensor is initialized to the target volume fraction,

which is a number between [0, 1]. First, a block of convolution, batch normalization, is applied.

Then, the output is saved for later use for the skip-connection. This intermediate output is then

downsampled to a lower resolution for a subsequent block of convolution, batch normalization layers,

which is performed twice. The upsampling starts where the saved outputs of similar dimensions are

concatenated with upsampling output for creating the skip-connections followed by a convolution

layer. This process is repeated until the final image shape is reached. At this point, the network

utilizes a final convolution layer before producing the final density. The network architecture is

shown in Figure 4.2.

We preprocess the compliance to transform it to the [0, 1] range. We first take the log10 of

the compliance and then normalize it by subtracting the minimum value and then dividing by the

difference of maximum and minimum values to scale the log values to [0, 1] range, so all the inputs

are in the same range.

To train the neural network model such that it is robust to the loads applied on the input

geometry, we augment the inputs by rotating the input tensor by 90◦ clockwise and counter-

clockwise around all three axes and by mirroring the tensor along the X-Y plane, X-Z plane and,

Y-Z plane. We threshold the final target density to get a binary density with a value of 0 and

1. The density value 1 corresponds to the element where the material is present, while density

value 0 corresponds to the element where the material is absent or removed. We do not use any

intermediate compliance or intermediate densities to train this network as it is end-to-end learning;

we only need initial compliance and final optimal density.

We use the Adam [20] optimizer during the training phase. We use an adaptive learning rate,

which helps the optimization process. To guide the optimizer, we use the binary cross-entropy

function to calculate loss between the predicted and the target density.
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2x Conv 3x3, ReLU, BN
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Conv 3x3, Sigmoid

Figure 4.2 Direct optimal density (DOD) prediction: This baseline model is used for com-

paring our proposed frameworks. The input in this approach is the initial

compliance for the geometry along with the target volume fraction initialized.

Then we use a U-Net architecture for predicting the optimal density.

4.2 Density Sequence Prediction

For the data representation to be algorithmically-consistent we learn the structural topology op-

timization from compliance of the initial geometry. However, the compliance keeps evolving during

the iterations since the densities also change during optimization. Therefore, the mapping between

the original compliance and the final density is not trivial and may not directly correlate with the

final density. To improve the performance, we develop the framework in two phases, as shown in

Figure 4.3. The first phase is called an initial density prediction network (IDPN), which predicts

the topology’s initial density distribution based on the initial compliance per element obtained for

the original geometry. With initial density, we use the iterative density transformation informa-

tion available from the topology optimization process to transform the initially proposed density

to the final optimized density. We perform this transformation using another network (density

transformation network, DTN). The DTN does not use any information about the compliances.

Therefore, using IDPN and DTN, we can predict the final densities for a given initial design and

its corresponding original compliances. This process is shown in Figure 4.3.

The two phases of the Density Sequence Prediction method require two different network ar-

chitectures, with each performing algorithmically-consistent transformations of the given input
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Figure 4.3 Density sequence (DS) prediction: In this framework, we perform the task

in two phases. In the first phase, we take the initial compliance and volume

fraction initialization to predict an initial density map. Using the initial density

and the volume fraction initialization, we predict a series of densities similar to

the prediction from a SIMP topology optimizer to finally predict the optimal

density.The details of the training process is covered in the text.

information to obtain the final optimized shape. The first architecture corresponds to the first

phase, where the task is to predict an initial density. The second architecture corresponds to the

second phase, where the density obtained from phase 1 is transformed to a final density.

Phase 1: Initial Density Prediction:

As a first phase of the method, IDPN uses the initial elemental compliances and initialized

volume fraction as input and predicts an initial density. We use U-Net [42, 8] network architecture

for this phase. The architecture is similar to the architecture described in Section 4.1 and is shown

in the left part of the Figure 4.3.

For 2D phase 1 (IDPN), the initial compliance and the volume fraction constraint are repre-

sented as a two-channel “image”, and the target is a one-channel “image” of the element densities

obtained after the first iteration of structural topology optimization. For 3D structural topology

optimization, the input is a four-dimensional tensor with two 3D inputs concatenated along the

fourth axis, and the target is a 3D element density. An additional data processing step on the com-

pliance is necessary for the efficient performance of IDPN. The operation performed is described in

Section 4.1.
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Phase 2: Density transformation:

The training of phase 2 is more involved than phase 1. We train a convolutional neural network

with long short term memory (CNN-LSTM). Long short term memory cells (LSTMs) are helpful in

learning from data with temporal history. In phase 2, there is a sequence of density transformations

from the beginning to the end. Given these transformations are non-linear, a short-term history is

not sufficient for robust prediction of the transformation. Capturing both long-term and short-term

temporal dependencies is one of the salient features of LSTMs. Therefore, we use LSTMs along

with CNNs (traditionally used for spatial data such as images) to transform the densities. The

architecture of the CNN-LSTM used for DTN is shown in the right part of the Figure 4.3.

The CNN-LSTM architecture starts with a set of convolution, max pooling, and batch normal-

ization layers (called the encoder), which is used to transform the image to a latent space flattened

embedding used by the LSTM. A sequence of LSTM layers is used to obtain a transformed latent

layer. A set of deconvolution and upsampling layers (called Decoder) is used to obtain an image

(representing the element densities after one iteration of structural topology optimization). The

LSTM is unrolled for predicting a sequence in order to provide back-propagation through time. So,

the intermediate densities of the structural topology optimization process are loaded as a sequence

and processed to obtain the transformed density during the training process.

For phase 2 (DTN), the intermediate densities (each represented as a one-channel image) are

used for performing the training. However, all the iterations of topology optimization are not

significant in the learning process. Therefore, we curate the intermediate densities to only have

unique densities (defined by a metric of L2 norm). This uniquely curated set of densities are used

for performing the training of DTN. Since DTN only deals with densities, no processing is required.

To make the neural network more robust, we implement on the fly data augmentation, as discussed

in Section 4.1.
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Training Algorithms

For training IDPN, we use two different loss functions: (i) the mean-squared error between the

predicted and target densities and (ii) the mean-squared error between the mean of the predicted

and target densities. The second loss function ensures that the volume fraction of the target and

predicted densities are the same. While training DTN, an additional loss function is added. Since

the final geometry cannot have densities between (0.0, 1.0), the densities should belong to the set

{0, 1} because of solid isotropic material. To impose this condition, we use the binary cross-entropy

loss function and the two loss functions used for IDPN. In addition to loss functions, stochastic

gradient descent based optimizers such as Adam [20] were used for performing the optimization.

Once the training is performed, the learned parameters for both the networks are joined such

that an end-to-end inference scheme may be implemented. This inference scheme only requires

the initial compliance and the volume fraction constraint (input to IDPN). The output of IDPN is

used as input to DTN to get the final density without any additional information required. This

end-to-end scheme makes it applicable to any generic design.

4.3 Coupled Density and Compliance Sequence Prediction

Inspired by the iterative SIMP method, we use deep neural networks to develop a coupled

density and compliance sequence prediction framework. In our dataset, we observed that the first

five density iterations from the SIMP-based topology optimization method underwent more signif-

icant transformations compared to later iterations (also referred to as coarse and fine refinement

by Sosnovik and Oseledets [48]). We design three network architectures that use the intermediate

compliances and intermediate densities to predict the final optimal density. The first two networks,

namely, compliance prediction network (CPN) and density prediction network (DPN), feed their

output as an input to each other as coupled interaction, and the third network, the final density

prediction network (FDPN), uses the last output of density prediction network to produce the final

optimal density (similar to the approach taken by Sosnovik and Oseledets [48]).
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Figure 4.4 Coupled density and compliance sequence (CDCS) prediction: In this frame-

work, the initial compliance (see text for more details) and volume fraction

initialization is transformed by an iterative coupled prediction from a density

prediction network (DPN) and compliance prediction network (CPN). Five it-

erations of this process is performed to finally get the density and predicting the

optimal density using a final density prediction network (FDPN). The details

of the training process is covered in the text.

As the name suggests, the compliance prediction network predicts the elemental compliance for

a given iteration’s density. It uses initial elemental compliance and the current iteration density

obtained from the DPN. For CPN, we use Encoder-Decoder architecture. In the encoder, we use

blocks of two convolutional layers followed by batch-normalization. Similarly, we use an upsam-

pling layer, two convolutional layers, and batch-normalization blocks for the decoder. The encoder

encodes the input to the lower resolution latent space, and the decoder then decodes the encoded

input to the next elemental compliance.

We use the current iteration elemental compliance and the current iteration density to predict

the next iteration density for the density prediction network. We use U-SE-ResNet [33] architecture

for the DPN. Adding SE-ResNet [33] blocks in the bottleneck region of U-Net architecture, in

addition to the skip connections of U-Net from the encoder to the decoder, builds the U-SE-ResNet.

The SE-ResNet block consists of two convolutional layers followed by SE(Squeeze-and-Excitation)

block [16] with residual skip-connection from the input of the block. The encoder and decoder of

U-SE-ResNet are the same as used in CPN architecture. Refer to Section 4.3 for more details on

the architectures of U-SE-ResNet.
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The final model in this method is FDPN. As mentioned earlier, the elemental density has

undergone a significant transformation during the first five iterations. So, taking advantage of the

neural network, we avoid the iterative process to obtain the final density. We only use the fifth

iteration density to predict the final optimal density directly. For FDPN we implement U-Net [42, 8]

architecture. The encoder and decoder part of the U-Net used here is the same as discussed in

CPN architecture.

Compliance is preprocessed before feeding it to the neural networks. We normalize the compli-

ance values to be in the [0, 1] range. The method for normalizing the compliance is explained in

detail in Section 4.1. In addition to this, we perform data augmentation discussed in Section 4.1

for all three networks. More details on architectures mentioned in this section can be found in

Section 4.3.

Training Algorithms

All three networks are trained independently. During the training phase, we use Adam [20]

optimizer for all three networks. For more efficient training, we use an adaptive learning rate.

The mean absolute error loss function is used for CPN. Moreover, for DPN and FDPN, the binary

cross-entropy loss function is used since they are predicting the densities.

During inference, the first two networks are used in a loop (see Figure 4.4). We start with the

initial compliance and initial density, which is initialized with a volume fraction value as a tensor

with the same shape as the initial compliance tensor. Using the density prediction network, we

predict the subsequent iteration’s density and feed it as input to the compliance prediction network,

producing the compliance corresponding to the new predicted density. This loop is executed five

times, so we get the fifth iteration’s density prediction at the end of the loop. We use this predicted

fifth iteration density as input to the final density prediction network and directly predict the final

optimal density.



24

Next iteration 
compliance

Encoder-Decoder
2x Conv 3x3, ReLU, BN

UpSampling, 2x Conv 3x3, ReLU, BN
Conv 3x3, ReLU

Initial compliance
+

Current iteration 
density

Figure 4.5 Compliance Prediction Network (CPN) prediction: This CNN Encoder-De-

coder model is used to predict the next iteration compliance.
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Figure 4.6 Density Prediction Network (DPN) prediction: This U-SE-ResNet[33] archi-

tecture is used to predict the next iteration density.

Neural Network Architectures in CDCS

In this section, we provide details about the different architectures used in the CDCS method.

As mentioned earlier, we implemented Encoder-Decoder for CPN, U-SE-ResNet for DPN, and

U-Net for the FDPN part.

The next architecture for FDPN is a U-Net [42, 8] as shown in Figure 4.6. This architec-

ture is the modified version of encoder-decoder architecture. As we can see in Figure 4.7, the

skip-connections are introduced from encoder part to decoder part at each resolution level. These

connections help transfer the encoder’s contextual information to the decoder for better local-



25

5th Iteration density Final density

U-Net

2x Conv 3x3, ReLU, BN
UpSampling, 2x Conv 3x3, ReLU, BN
Conv 3x3, Sigmoid

Figure 4.7 Final Density Prediction Network (FDPN) prediction: This U-Net architecture

is used to predict the next iteration density.

ization [42]. The encoder and decoder of U-Net are exactly the same as in the encoder-decoder

architecture discussed above.

The Encoder-Decoder architecture is a simple convolution neural network (CNN) consisting of

two parts: the encoder and the decoder (Figure 4.5). The input is passed through the encoder and

converted to a lower-dimensional latent space, further expanding to the higher dimension required

by the decoder. The encoder is a collection of encoding blocks that consist of strided convolutional

layers, followed by non-linearity (ReLU) transformation and batch normalization. Similarly, the

decoder blocks of the decoder have an up-sampling layer, convolutional layers, non-linearity(ReLU),

and batch normalization. Finally, we use the last convolution and non-linearity to get the output

of the desired shape.

U-SE-ResNet [33] is constructed using U-Net with addition of SE-ResNet blocks as shown in

Figure 4.6. Each SE-ResNet block is a combination of ResNet and Squeeze-and-Excitation(SE)

blocks [16]. These blocks are introduced in the U-Net architecture at the bottle-neck region be-

tween the encoder and decoder. SE block enhances the network’s performance by recalibrating the

channel-wise features by explicitly weighing the inter-dependencies between channels. SE block

consists of a pooling layer followed by fully-connected (FC) and ReLU transformation and again

passing through the FC and sigmoid transformation, and at the end, the output of sigmoid layer

is scaled by multiplying with the input of SE block with which we get the same shape as the input
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of SE block. In SE-ResNet, ResNet is combined with SE block to improve the performance [33]

by adding the residual connection between the input to the output of the SE block. Also, in this

architecture, we use the same encoder and decoder as explained earlier.
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CHAPTER 5. DATA GENERATION

5.1 2D Data Generation

The data required for training the networks is obtained by performing several simulations of

topology optimization on different designs and volume fraction constraints. We represent each

design using a 2D mesh made up of quadrilateral elements. The nodes of the mesh form a regular

grid such that each element represents a square element. With this representation, we can directly

convert the elements of the mesh to pixels of an image. Therefore, we represent the geometry as

an image such that the pixel intensity values represent the element compliances and the element

densities of the 2D mesh.

For training data, we need raw compliance values, the volume fraction constraint, the inter-

mediate element densities obtained during the intermediate iterations of the structural topology

optimization process, and the final element densities. We generated 30,141 simulations of the struc-

tural topology optimization with different randomly generated load values, loading directions, load

locations, and a randomly generated set of nodes in the mesh, fixed with zero displacements. We

performed each simulation for 150 iterations of SIMP-based structural topology optimization. All

the relevant information from each structural topology optimization simulation is stored for use

during the training process.

5.2 3D Data Generation

The 3D data used for DLTO is generated using ANSYS Mechanical APDL v19.2. We use a cube

of length 1 meter in the form of 3D mesh as an initial design domain (see Figure 5.1). The mesh

created has 31093 nodes and 154,677 elements, and each element consists of 8 nodes. To ensure

we sample a diverse set of topologies from the complete distribution of topologies originating from

the cube, we use several available sets of boundary and load conditions in ANSYS software such as
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Initialize geometry and 
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tetrahedral mesh

Randomly define three 

points with zero 

displacement
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and boundary condition

Perform topology 
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Perform voxel 

interpolation of  all 

quantities

Figure 5.1 3D data generation pipeline: Each sample in the dataset if generated using

this data generation pipeline. First we initialize the geometry (a cube with

side length of 1 meter). This geometry is discretized into tetrahedrons to get

the mesh. On this mesh, we define three non-collinear nodes to fix the mesh

from any rigid body motion. Then we apply randomly generated boundary

conditions and loading conditions with different magnitude and direction.

Nodal Force, Surface Force, Remote Force, Pressure, Moment, Displacement. First, we randomly

sample three non-collinear nodes on one side of the cube, and we define zero displacements for

these points; so they are fixed. This is necessary to avoid any rigid body motion of the geometry.

The next step is to randomly select the load location, which is not close to the fixed support nodes.

The nature of the load (nodal, surface, remote, pressure, or moment), the value, and direction is

sampled randomly. We employ a rejection sampling strategy to ensure that each sampled topology

is unique. We obtained a total of 1500 configurations of load and boundary conditions, and then by

sampling the volume fraction, we generated a total of 13500 samples. In our dataset, the topology

optimization took an average of 13 iterations; the minimum number of iterations is 6, and the

maximum is 72; this number depends on several factors such as the mesh resolution, boundary

conditions, and the target volume fraction.

In ANSYS, we store the topology optimization output, the original strain energy, and the

intermediate results stored using the starting mesh representation. We now need to convert the

mesh representation to a voxel representation for training 3D CNN models. This conversion process

involves first discretizing the axis-aligned bounding box into a regular structured grid of voxels

based on the grid’s grid size/resolution. We compute the barycentric coordinates for each of the

tetrahedra in the mesh for each of the voxel centers. Using the barycentric coordinates, we can
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estimate if the grid point is inside the tetrahedron or not. If the grid point is inside that tetrahedron,

we now interpolate the field values (such as density, strain energy, etc.) from the tetrahedron

nodes to the voxel centers. Through this process, we obtain the voxel-based representation of the

topology optimization data. Each sample’s voxelization takes about 5-15 minutes, depending on

the resolution and the number of tetrahedral elements. We parallelize this process using GNU

parallel to complete this process in a few hours (depending on compute nodes’ availability). To

calculate the element compliance, we multiply strain energy obtained from ANSYS with the cube

of the density to obtain the compliance (C = ρpukeu = ρp ∗SE, where p is the penalty of the SIMP

approach, set to 3 in our data generation process, SE refers to the elemental strain energy).

Once we obtain the voxel-based representation, we also perform other preprocessing steps such

as normalizing the compliance by the maximum value of the compliance, converting the compliances

to log scale for better learning. We even perform on-the-fly data augmentation by rotating the model

in any of the six possible orientations. Thus we finally get the data for training the neural network.



30

CHAPTER 6. RESULTS

We split both the datasets (i.e., for 2D and 3D geometries) into two parts for training the

neural networks: training and testing dataset. Out of all data generated, we use 75% of the

topology optimization data for training and the remaining 25% for testing. We use the testing

dataset to evaluate the performance of all three methods. We will discuss the results for 2D and

3D topologies in the following subsections.

6.1 Results on 2D topology optimization

To compare the performance of our proposed methods with the baseline DOD method, we start

with the volume fraction (VF) constraint. We compute the predicted volume fraction of the final

predicted topology by averaging the density values over the whole design domain. We compute the

mean-squared error (MSE) between the predicted VF and the actual VF on the test data. This

metric is shown as MSE of volume fraction in Table 6.1. The values for the best performing method

has been highlighted in bold in all the tables. We plot the correlation plot between the predicted and

actual VF for all the three methods in Figure 6.1 and compute the Pearson’s correlation coefficient

between the predicted VF and actual VF for 2D test data in Table 6.2. We observe that the CDCS

method performs better than the other two methods for satisfying the volume fraction constraint.

Further, from the histogram plots in Figure 6.2(a), we see that CDCS consistently performs better

than DOD and DS. We see comparable values for DOD (R = 0.8986) and CDCS (R = 0.8945)

method, while the DS (R = 0.6883) method performs poorly in satisfying the VF constraint.

Next, we evaluate the performance of the methods using the physical constraint of topology

optimization: the total compliance (TC). TC is the SIMP algorithm’s objective function value,

which it tries to minimize while simultaneously satisfying the volume fraction constraint. We

compute and compare the MSE between the predicted and actual TC values. To determine the
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Table 6.1 Comparison of test loss metrics of our three methods on 2D test data.

Method MSE of VF MSE of TC Accuracy BCE MAE MSE

DOD 0.003 1.51e+05 88.54% 0.2354 0.1368 0.0737

DS 0.006 2.35e+04 84.03% 0.4421 0.1826 0.1206

CDCS 0.002 2.62e+04 89.40% 0.3146 0.1195 0.0812

Figure 6.1 Correlation plots between predicted volume fraction and target volume fraction

on 2D test data for: (a) DOD, (b) DS, (c) CDCS.

TC of the predicted final topology, we use the compliance prediction network (CPN), part of the

CDCS framework, to predict the elemental compliance and take a sum of it over the whole design

domain. We sum the elemental compliance of the target optimal topology to get the ground truth

total compliance value; this is the optimal minimum value achieved at the end of the SIMP method.

From Table 6.1, we observe almost 10× times lesser error value when we compare the MSE between

the predicted and the actual total compliance for both DS and CDCS with the DOD. To support this

statement, we plot the histogram of the MSE values on the 2D test data in Figure 6.2(b). We can see

that both our proposed methods, DS and CDCS, predict the TC very close to the predicted optimal

TC minimum value. We also compute the Pearson’s correlation coefficient between predicted total

compliance and actual total compliance values and the correlation plots between these two values

for each of the three methods (Figure 6.4). From Table 6.2, total compliance of predicted topology

by DS (R = 0.9551) and CDCS (R = 0.8926) is highly correlated with actual total compliance than

the baseline DOD (R = 0.8403) approach.
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Figure 6.2 Histogram of (a) total volume fraction loss and (b) total compliance loss on

the 2D test data.

Table 6.2 Comparison of correlation coefficient(R) for volume fraction and total compliance on on
2D test data.

Method R for volume fraction R for total compliance

DOD 0.8986 0.8403

DS 0.6883 0.9551

CDCS 0.8945 0.8926

In addition to the results above, we also perform statistical analysis on MSE loss between

predicted and actual values of both topological constraints (VF) and physics constraints (TC). We

summarize the minimum, median and maximum value of MSE for 2D test data in Table 6.3. We

see that all the three metrics listed have comparable values for DOD and CDCS and slightly better

than the DS for volume fraction constraint. For the MSE values of total compliance, for 2D data,

we see that both DS and CDCS perform much better than the DOD in all three statistics, and

DS and CDCS have comparable median and maximum values. However, DS has a minimum loss

value in all three methods. We also compare the accuracy and different loss metrics like binary

cross-entropy (BCE), mean absolute error (MAE), and mean squared error (MSE) between the

density values of predicted topology and the ground truth optimal topology. The CDCS and DOD
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Total Compliance 2724.35 3193.83 2858.31 2616.62

Total Compliance 2620.39 3006.31 2657.36 2652.14

Total Compliance 2024.40 2633.85 2153.74 2035.51

Total Compliance 1716.84 2034.58 1938.51 1628.69

Ground Truth DOD DS CDCS

Total Compliance 2149.84 2315.04 2326.91 2127.80

Fixed 
Support

Load

Figure 6.3 Visualization of test data in 2D: (i) Ground truth final topology shape with

fixed supports and load locations (ii) Method 1: Baseline direct optimal density

prediction, (iii) Method 2: Density sequence prediction, (iv) Method 3: Cou-

pled density and compliance sequence prediction. The results show the target

design and the predicted design.

method’s performance is comparable in terms of these four metrics and is better than the DS

method, as shown in Table 6.1.

Apart from the numerical analysis, to further qualify the performance of our method, we com-

pare the visualizations of the predicted final topology, obtained by performing end-to-end prediction

using all three methods, with ground truth final optimal topology in Figure 6.3. Additionally, we

compute each sample’s total compliance value in the visualization. In the ground truth column, we

also show the boundary and load conditions applied for each sample. We observe that the CDCS

predicts the final shape significantly closer to the ground truth, and also, the predicted total com-
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Figure 6.4 Correlation plots between predicted total compliance and actual total compli-

ance on 2D test data for all three methods: (a) DOD, (b) DS, (c) CDCS.

Table 6.3 Statistics on the volume fraction and total compliance loss on 2D test data.

Statistics MSE of volume fraction MSE of total compliance

Method Min. Median Max Min. Median Max

DOD 5.96e-08 1.30e-03 6.08e-02 5.33e-01 1.01e+05 1.76e+06

DS 6.47e-07 2.58e-03 1.23e-01 7.47e-06 1.13e+04 5.06e+05

CDCS 1.85e-08 7.74e-04 6.12e-02 2.87e-04 8.07e+03 6.41e+05

pliance value is much closer to the actual value. Although there are some cases where the shape

predicted by DOD and DS is slightly better than the CDCS, the predicted total compliance value

is much higher than the actual value.

We further evaluate the CDCS method by visualizing the evolution of intermediate iteration

densities and elemental compliance predicted by the DPN and CPN, respectively. As we discussed

in Section 4.3, we feed the actual initial and current iteration elemental compliance and the density

values to DPN and CPN to predict the next iteration quantities. We visualize this iteration-wise

evolution of the topology and its compliance in Figure 6.5 and Figure 6.6, respectively. Looking

at the visualizations, it is evident that both DPN and CPN are efficient at predicting the next

iteration density and compliance values. Also, it depicts the non-trivial transformation flow of the

initial topology shape towards the final optimal shape.
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Figure 6.5 Visualizations of DPN predicting intermediate iterations density on 2D test

data.

From the results discussed above, we observe the CDCS method consistently performs better

than the baseline DOD and the DS method. Although DS satisfies the physics constraint (mini-

mizing the TC) better, it does not satisfy the topological constraint (VF) to the same extent. On

the other hand, CDCS accomplishes the best balance in satisfying the volume fraction constraint

and achieving a total compliance value close to the actual optimal minimum value. Hence, we only

extend the CDCS method to the 3D dataset and compare it with the baseline DOD method.

6.2 Results on 3D topology optimization

We perform a similar set of evaluations on the 3D data as discussed in Section 6.1 to assess

the performance of the CDCS method, comparing it to the DOD method. First, comparing the

MSE between the volume fraction (VF) of predicted with actual final topology, in the Table 6.4,

we see that the MSE of VF using CDCS method is 2× lower than using the DOD method. From
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Figure 6.6 Visualizations of CPN predicting intermediate iterations compliance on 2D test

data.

the histogram plots in Figure 6.8(a), we can infer that more samples have minimum MSE of VF

using CDCS than the DOD. We also compute the Pearson’s correlation coefficient between the VF

values of predicted and actual final topology using both DOD and CDCS and notice that both

values are highly correlated (Table 6.5). We confirm this visually by plotting the correlation plots

in Figure 6.7.

Comparing the MSE of total compliance(TC), DOD has 2× more error value than the CDCS.

Plotting the histogram for values MSE of TC in Figure 6.8(b), we see that most of the samples have

the lower MSE of TC value using CDCS. In the Table 6.5, we calculate the Pearson’s correlation

coefficient between the TC values of the predicted and the actual optimal topology, and we observe

that the TC value predicted by the CDCS(R = 0.9578) are highly correlated to actual TC values

than the DOD(R = 0.9139). We also observe this high correlation when we plot the correlation

plots in Figure 6.9.
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Table 6.4 Comparison of test loss metrics using DOD and CDCS on 3D test data.

Method MSE of VF MSE of TC Accuracy BCE MAE MSE

DOD 0.0002 8.04e+05 95.61% 0.1008 0.0648 0.0312

CDCS 0.0001 3.95e+05 92.74% 0.1965 0.0875 0.0544

Table 6.5 Comparison of correlation coefficient(R) for volume fraction and total compli-

ance on on 3D test data.

Method R for volume fraction R for total compliance

DOD 0.9966 0.9139

CDCS 0.9947 0.9578

In Table 6.6, we summarize the statistical analysis of the MSE value of both VF and TC on 3D

test data. In the case of MSE of VF, all the three metrics values are comparable. We see better

performance when we consider the MSE of TC. We notice that the median value using CDCS is

2× lower than the DOD method. Also, the maximum value of MSE of TC using CDCS is 15×

smaller than the DOD value, which affirms the greater performance of CDCS over the baseline

DOD approach in satisfying the physics constraint (TC). We have summarized the different loss

metrics like BCE, MAE, MSE, and accuracy between the predicted and actual topology for both

CDCS and DOD in Table 6.4. In terms of MAE and MSE, both CDCS and DOD are comparable,

while DOD performs slightly better when comparing the BCE and the accuracy values. But overall,

like in the case of 2D, CDCS achieves the balance of satisfying both topological (VF) and physical

(TC) constraints on the 3D dataset.

As discussed earlier, the CDCS method has three different neural networks dedicated to learning

the different aspects of structural topology optimization. We have compared the performance of the

different architectures for each task of TO. We have experimented with three architectures, which

are: (i) Encoder-Decoder architecture, (ii) U-Net [42, 8] architecture, and (iii) U-SE-ResNet [33].

For CPN, we compare MAE and MSE metrics, while for DPN and FDPN, we evaluate the per-

formance based on the BCE, MAE, and MSE values on 3D test data. All these metric values are
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Figure 6.7 Correlation plots between predicted volume fraction and target volume fraction

on 3D test data for DOD and CDCS.

Table 6.6 Statistics on the volume fraction and total compliance loss on 3D test data.

Statistics MSE of volume fraction MSE of total compliance

Method Min. Median Max Min. Median Max

DOD 9.31e-10 4.80e-05 2.75e-02 4.64e-01 1.83e+05 3.26e+07

CDCS 9.31e-10 6.19e-05 8.97e-03 1.12e-01 7.63e+04 2.35e+06

summarized in Table 6.7. From the Table 6.7 we selected the best of three for each task, like for

CPN, we implemented Encoder-Decoder, for DPN used U-SE-ResNet, and similarly, for FDPN, we

used U-Net architectures.

For 3D visualizations, we use marching cube methods to visualize the predicted and actual

optimal topology shapes. As mentioned earlier in Section 6.1, using the end-to-end prediction, we

obtain the predicted final topology. We visualize some samples from the test data(in-distribution

samples) as well as some out-of-distribution samples. As discussed in Section 5.2 about the 3D

data generation, the in-distribution dataset has three nodes with fixed support and one loading

condition. On the other hand, we generated few samples with more than three fixed support

locations and multiple loads acting on the topology; we termed these samples as out-of-distribution

samples. We visualize some samples from the in-distribution test data in Figure 6.10 and the out-
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Figure 6.8 Histogram of (a) total volume fraction loss and (b) total compliance loss on

the 3D test data.

Table 6.7 Comparison of different neural network architectures for each task of CDCS on

3D test data.

Method CPN DPN FDPN

Architecture MAE MSE BCE MAE MSE BCE MAE MSE

AE 0.0221 0.0009 0.2838 0.0211 0.0014 0.1140 0.0178 0.0026

U-Net 0.0286 0.0013 0.2810 0.0144 0.0005 0.1152 0.0145 0.0019

U-SE-ResNet 0.0294 0.0016 0.3157 0.0131 0.0006 0.1188 0.0155 0.0021

of-distribution samples in Figure 6.11. In both figures, the first column shows the initial geometry

and the locations of the fixed support and the load. We notice that CDCS performs significantly

better than the baseline DOD on in-distribution test data and even on out-of-distribution samples.

We see much smoother shapes, even smoother than actual ground truth was obtained by CDCS.

We also calculated the total compliance (TC) value for each sample. We see that the TC value of

topology predicted using CDCS is very close to the ground truth TC value than using the DOD.

From the numerical analysis performed and supported by the visualizations on both 2D and

3D datasets, we claim that the performance of the CDCS is better than the baseline DOD and DS.
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Figure 6.9 Correlation plots between predicted total compliance and actual total compli-

ance on 3D test data for DOD and CDCS.

6.3 Performance Plots During Training of Both 2D and 3D Data

This section has summarized different performance plots of training the neural networks used in

all three methods on both 2D and 3D data. Figure 6.12 shows the L2 and L1 loss plots when DOD

is used to predict the first, second, fifth, tenth, and final densities of the 2D dataset. In Figure 6.13,

the left plot is showing the training losses(L2 loss, L1 loss, and L2 loss of VF) of IDPN(Phase1 of

DS), and similarly, the right plot is of training losses(L2 loss and L2 loss of VF) of DPN(Phase2 of

DS). Figure 6.14 shows the training losses of all three networks of the CDCS method on 2D data.

Similarly for 3D dataset, Figure 6.15 has the plot of training losses of DOD, Figure 6.16 has the

loss plots for each of the three networks of CDCS. From these loss plots, we see the losses decrease

as we progress in training.

We also plot the histograms of different loss metrics values, between predicted and actual

topology, like BCE, MAE and MSE loss for all the methods on 2D and 3D test dataset in Figure 6.17

and Figure 6.18, respectively. Based on these histograms of metrics, in the case of the 2D dataset,

CDCS performs better than DOD and DS, while in the case of the 3D dataset, CDCS and DOD

have comparable performance.
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Figure 6.10 Visualization of In-distribution test data in 3D: (i) Initial geometry with

the fixed supports and load locations, (ii) Ground Truth final topology (iii)

Method 1: Baseline direct optimal density prediction, (iii) Method 3: Cou-

pled density and compliance sequence prediction. The results show the target

shape and the predicted shape.
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Figure 6.11 Visualization of Out-distribution test data in 3D: (i) Initial geometry with

the fixed supports and load locations, (ii) Ground Truth final topology (iii)

Method 1: Baseline direct optimal density prediction, (iii) Method 3: Coupled

density and compliance sequence prediction. The results show the target shape

and the predicted shape.
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Figure 6.12 Performance plots of intermediate density prediction networks while predict-

ing first, second, fifth, tenth intermediate densities and final density. (a) L2

loss (b) L1 loss.
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Figure 6.13 Performance plots of two phases of Density sequence prediction method on

2D data. (a) DS Phase1:IDPN loss (b) DS Phase2: DTN loss.
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Figure 6.14 Performance plots of (a) Compliance Prediction Network (CPN) and (b) Den-

sity Prediction Network (DPN) and (c) Final Density Prediction Network

(FDPN). Each plot shows different loss functions used in training with 2D

data.
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Figure 6.15 Performance plots of Direct Optimal Density Prediction. Plot shows different

loss functions used in training with 3D data.
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Figure 6.16 Performance plots of (a) Compliance Prediction Network (CPN) and (b) Den-

sity Prediction Network (DPN) and (c) Final Density Prediction Network

(FDPN). Each plot shows different loss functions used in training with 3D

data.
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Figure 6.17 Distribution of BCE, MAE, MSE losses on 2D test data.
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Figure 6.18 Distribution of BCE, MAE, MSE losses on 3D test data.



45

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we explore the application of algorithmically-consistent deep learning methods for

structural topology optimization. We developed two approaches (density sequence and coupled den-

sity compliance sequence models), consistent with the physics constraints, topological constraints,

and the SIMP topological optimization algorithm. We generated datasets for topology optimiza-

tion in both 2D and 3D representations and then demonstrated the superior performance of our

proposed approach over a direct density-based baseline approach. Finally, we visualize a few anec-

dotal topology optimization samples to visually compare the three methods with the SIMP-based

topology optimization process.

7.2 Future Work

The research conducted in this thesis can be improved by several ways. Some of the future

steps are listed below:

1. Current topology optimization is performed on the geometries with a simple shape as initial

geometry. To make it more generalized to real-world designs, including 3D topology opti-

mization performed on a generic 3D CAD model will help and learn the PDE underlying the

structural analysis to reduce training data requirements.

2. Topology optimization provides optimal design ready for additive manufacturing. Adding

manufacturing constraints in the deep learning-based structural topology optimization would

create a design that can be directly manufactured. One example would be imposing the

building direction ’b’ constraint for additive manufacturing as shown in Figure 7.1.
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Figure 7.1 Imposing building direction ‘b’ constraint for additive manufacturing [52]

We believe that our proposed algorithmically consistent approach for topology optimization

provides superior quality results and can considerably speed up the topology optimization process

over existing finite-element-based approaches.
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