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I. INTRODUCTION AND REVIEW OF 

THE LITERATURE 

A. Introduction 

The problem of classifying an observation X into one of 

two (or more) populations is commonplace in statistical 

literature. Let the two populations be denoted by and 

It is usually assumed that the populations are multivariate 

normal with mean vectors and respectively, and 

with common covariance matrix ̂  where £ is positive-definite. 

Let the random vector X have a k-dimensional normal distribu

tion, then X has probability density 

f(X) = (2n)-k/2 1^1 -1/2 exp{_ i-(X-p) •E"^(X-y) }. 

The distribution of X will be denoted by Nj^(^,£). (The 

subscript k will not be written when k=l.) If . then 

the distribution of X is ,2), which we write as 

X N (2^^^ ,n , i=l,2. Now the observation X is assigned to 
f, (X) 

77^ if the likelihood ratio X = ̂ ^ c and to -rr^ if X<c 
2 — 

where c is a constant and f^ (X) is the density of the random 

vector X in population ir^, i=l,2. Using the likelihood ratio 

procedure when ^ and £ is the common covariance 

matrix, the discriminant function obtained is linear in X, 

often referred to as Fisher's linear discriminant function. 

In many situations the assumption that the covariance 
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matrix £ is the same in the two populations seems unlikely. 

Further, if both populations have a common covariance matrix, 

then no discrimination is possible when • 

Bartlett and Please (1963) obtained the discriminant 

function for assigning an observation to one of two multi

variate normal populations when (zero mean dif

ference) and ^ where is the covariance matrix 

in population , i=l,2. In particular, Bartlett and 

Please obtained the discriminant function when 

and the covariance matrices Z 
(i) 

are of the form 

' " Î  

(i) GiPi 

2 
L^i^i 

2^ 
OiPi 

2 
*i 

2^ 
Ci^i 

2 -
*iPi 

2^ 
*iPi 

2 
^i 

— *^-1 t (1~P' ) I+P-J] f J- 1 — 1— 

i=l, 2, (1.1) 

2 2 
where ^ ̂ ^2 ' — the (pxp) identity matrix, and J is a 

(pxp) matrix of ones. The matrices, represented in 

(1.1) are said to have the intraclass correlation matrix 

pattern. When Z^^^ ^ , the discriminant function obtained 

is a quadratic discriminant function. 

In this thesis, we shall consider intraclass correlation 

models with unequal covariance matrices. The cases of equal 

or unequal mean vectors will be treated. Further, if co-

variates are available, they may be used in the discriminant 



3 

function. In view of these, three situations appear to be 

of importance both from a theoretical and a practical view

point. 

Suppose there are two normal populations 

'i= Vq ((^'") ' ̂"3' 

where is a (pxl) vector and y is a (qxl) vector. Let 

(i) 
be of the form 

(i) 

a. [ (1-p. ) l+p. J] a.ap;. J 
d. 1 — ZL— X J. — 

a.ap: J 
1 1 — 

a^[(1-p)l+pj] 

y(i) 
-11 

y(i) 
-21 

yiiY 
-12 

-22 

(1.2) 

2 2 
for i=l,2, where a^ ^ For i=l,2, the matrix 

= a? [(1-p^)^ + P^J] is a (pxp) positive-definite 

matrix, = a.ap*. J is a (pxq) matrix, is the 
—X Z XI — —Z X 

( •; 1 I A \ (i) 

transpose of £^2' ' written ^21' ~ ^^12 ^ 

—22 ~ ° [(1-p)^ + pJ] is a (qxq) positive-definite matrix. 

The matrices and 

lation structure. If X = I^^i' then 
2ii) 

^2 

, i=l,2. 

£22 have intraclass corre-
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where is a (pxl) vector and X2 ^ (qxl) vector. Notice 

that X2 has the same mean and the same covariance matrix in 

the two populations. Hence X2 alone does not have discrimi

nating power, and it may be treated as q covariates. 

In the first situation, we consider only the variates 

of X^ as discriminators ignoring X2 completely. Therefore, 

X. ̂  N ) when the observation comes from IT. , 
—1 p — —XX X 

i=l,2. In Chapter II, under the assumption that "—11^ 

is positive-definite, the discriminant function is given and 

its distribution is derived when all parameters are known. 

The distribution is also obtained when the means , equal 

or unequal, are unknown, but the covariance matrices are known. 

When the parameters are unknown, an asymptotic expansion for 

the distribution of the discriminant function is derived. 

The second situation would be to view the p variates of 

X, as discriminators and the q variates of X- as covariates. 
—1 —z 

Cochran and Bliss (1948) and Cochran (1964a) have considered 

this situation when the two populations have the same co-

variance matrix. 

Suppose is the matrix of regression 
— —1Z —z 6 

coefficients of the discriminators X^ on the covariates X2 

in population tt^, i=l,2. Ordinarily, one does not know to 

which population the observation belongs. Accordingly, a 

natural procedure is to form the variates 
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Zi = - in'^2^2 (1-3) 

and then form the weighted variates 

Z = '^'+«28.(2) IXj, (1.4) 

where the are weights. (The choice of weights will be 

discussed in Chapter V.) The discriminant function could then 

be calculated in the usual way from Let denote the 

covariance matrix of Z when Xeir., i=l,2. In Chapter III, 

using constant weights and such that + Wg = 1 and 

under the assumption that is positive-definite, the 

distribution of the discriminant function is obtained when 

all parameters are known. Also the distribution is derived 

when the means are unknown, but the covariance matrices 

are known. When all parameters are unknown, the limiting 

distribution for the discriminant function is found. 

In Chapter IV, we consider the third situation where the 

q covariates, X2, are included in the discriminant function 

as discriminators. Therefore, all of the p+q variates of X 

are treated as discriminators. If the observation comes 

from IT. , then 
1 " 

where is given in (1.2). The discriminant function is 

calculated using the p+q variates of X = • Its distribu

tion is obtained when all parameters are known and also for 
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the case when the means [— \ are unknown, but the covariance 

\]L ) 
matrices are known. When all parameters are unknown, asymp

totic results are obtained. 

Based on the above setting, we might wish to determine 

which one of these three classification procedures would be 

preferable. One criterion used for comparing methods of 

classification is the minimization of some function of the 

probabilities of misclassification P(2/l) and P{l/2) where 

P(i/j) is the probability of classifying the observation X 

as belonging to when X comes from ir^. In Chapter V, a 

comparison of the probabilities of misclassification for these 

three classification procedures is made when are bivariate 

(p=l, q=l) normal populations or when the populations 

are trivariate (p=l, q=2) normal populations. 

B. Review of the 
Literature 

1. Linear discriminant function 

Fisher (1936) developed the linear discriminant function 

as a classificatory measure. However, Pearson (1926) proposed 

a coefficient of racial likeness which would express the 

measure of resemblance (or divergence) between two groups. 

Pearson's coefficient was essentially the ratio of the dif

ference between the group means to a pooled standard deviation 

of the group means with the assumption that the mean dif

ferences were independent. Mahalanobis (1930, 1936) proposed 
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a measure of distance using the within group standard devia

tion in the denominator, which was later termed the general

ized distance or Mahalanobis' distance. Mahalanobis' distance 

provided a measure of the magnitude of separation of the two 

groups. 

Suppose a random sample of size N. is taken from a p-

^ P 
variate population TT . , i=l,2. Let Y = Z L.U. denote a linear 

^ j=l ^ ] 

function of characters , j=l,2,...,p. Fisher (1936) 

defined the discriminant function between the two populations 

as that linear function of the characters for which the ratio 

P (• 1 \ ^ P P 
[ I  L .  / Z Z L. L, S., (1.5) 
j=l ^ ] j=l k=l ] K ] 

is maximized where is the mean of the jth character in 

population IT., i=l,2, and S., is the pooled estimate of the 
1 JK 

covariance between the jth and kth characters. Fisher found 

that the coefficients , j=l,2,...,p, which maximize the 

above ratio are 

L. = Z , (1.6) 
^ k=l k Jc 

where 

Welch (193 9) derived a discriminant function using the 

likelihood ratio procedure of Neyman and Pearson. He sup

posed that a priori probabilities of drawing an individual 

from 7T^ with density p^ (X) , i=l,2, were known. If there 
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were two multivariate normal populations tt^ and with common 

covariance matrix £ and mean vectors and respective

ly, and if all parameters were known, then Welch classified 

an individual X into if X=p^ (X)/p2 (X) ^ c and into 

if X<c where c=q2/q2_- Taking the logarithm of p^ (X) /P2 (X) , 

Welch obtained as the discriminant function 

U = . (1.7) 

The first term in (1.7) is Fisher's linear discriminant 

function when all parameters are known. The distribution of 

U is easily obtained. 

Wald (1944) introduced the cost function into the 

constant c. Anderson (1958) presented a thorough discussion 

of classification including decision theory considerations. 

If TT^: Np(]£^^^,n with probability density Pj_ (X) where 

and Z are known, if are known a priori probabilities, 

i=l,2, and if C(i/j) is the cost of misclassifying an 

individual from Tr^ as from , then Anderson (1958) proved 

that the "best" regions of classification are given by 

R^: X'^(u+y(y-U'^') > log k, 

«2= X'r" < leg k, 

(1.8) 

where k = q2C(1/2)/q^C(2/1) and denotes the region of 

classification into The "best" regions refer to the 
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regions that minimize the expected loss (2/1) P (2/1) + 

q2C(l/2)P(l/2) . 

In the case when all parameters are unknown, a random 

sample is taken from : Np(]i^^^,£) 

and an independent random sample X^^^ / is 

( 2 )  2  
taken from tt_; N (y ,Z). On the basis of this information 

z P — — 

we wish to classify an observation X as coming from or . 

Our estimate of is the sample mean X= à— xf^^ 
- "i o=l ^ 

and of £ is S where 

in&p? ï' (xi"-x<i')(xi^'-x<")' . (1.9) 
1 2 1=1 a=l 

Substituting these estimates for the unknown parameters in 

(1.7) we obtain 

W = x's"^ (X^^^-X^^^ ) - j(X^^^+X^^^ ) •S~^(X^^^-X^^^ ) . (1.10) 

This is often called Anderson's statistic W. The distribu

tion of W is very complicated and has been considered by 

Anderson (1951). Wald (1944), Sitgreaves (1952), and others. 

Okamoto (1963) has given an asymptotic expansion for the 

distribution of the discriminant function W for the case 

^ and y.^^^ , y/^^ unknown when the covariance matrix 

is the same in both populations but is general and unknown. 

The statistic Z (see Kudo, 1959 and John, 1960) where 
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Z = (X-X^^^ ) 's"^ (X-X^^^ ) - fj-lyCX-X^^^ ) 's"^{X-X^^h 

(1.11) 

is a criterion which has been proposed as a competitor to the 

Anderson statistic W where Xand S are defined above. 

Memon (1968) and Memon and Okamoto (1971) have obtained an 

asymptotic expansion of the distribution of Z. 

2. Discriminant analysis with covariance 

The idea of combining discriminant analysis with the 

analysis of covariance was proposed by Cochran and Bliss 

(1948). This case occurred when in addition to the discrimi

nators there were measurements (covariates) whose means were 

known to be the same in both populations. Both populations 

were assumed to have the same covariance matrix. Although 

such variates have no discriminating power by themselves, 

they may still be utilized in the discriminant function. If 

these covariates are correlated with the discriminators, they 

may serve in some way to "improve" the discriminant: e.g. to 

2 
increase the power of Kotelling's T -test, or to reduce the 

number of errors in classification. The problem is analogous 

to that which is solved by the analysis of covariance. In 

covariance, as applied for instance in a controlled experi

ment, variates that are unaffected by the experimental treat

ments can be used to provide more accurate estimates of the 

effects of the treatments or to increase the power of the 
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F-test of the differences among treatment means. 

The procedure suggested by Cochran and Bliss was to ob

tain the multiple regression of each discriminator on all of 

the covariates. These regressions were calculated from the 

within saiiç>le sums of squares and products. Then they re

placed each discriminator by its deviations from multiple 

regression and calculated the discriminant function using 

these deviations. An attempt was also made to obtain a 

quantity that will measure what has been gained by the use of 

covariance. 

Cochran (1964a) was concerned with the question of what 

happens if the covariates are siitply included in the dis

criminant function in exactly the same way as the discrimi

nators. If the covariates are treated in the same manner as 

the discriminators, one avoids the necessity of learning the 

Cochran-Bliss technique for handling covariates. Cochran 

found that for tests of significance the covariance technique 

is more powerful. For classifying observations into one of 

two populations, it appears that the gain from the covariance 

technique is trivial provided that the discriminant function 

is constructed from a reasonably large sample. 

Rao (1949, 1966) was concerned with a number of problems 

arising out of the discrimination between two populations when 

it is known that they do not differ with respect to a given 

subset of characters (covariates). Rao stated that in 
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practice if the correlations between the discriminators and 

covariates are unknown and have to be estimated from the 

data, there may, indeed be loss of information, unless the 

correlations are high. Therefore, some caution is needed 

in the choice and use of covariates. 

Rao (1956) was primarily interested in various tests of 

hypotheses. He considered the case when one has a (p+q)-

dimensional random variable (Y,Z^) where Y is p-dimensional and 

£ is q-dimensional. The variable Y was the main variable 

(discriminator) and ^ was the covariate. Let and E2 

denote expectations with respect to two (p+q)-variate 

normal populations with the same covariance matrix and pos

sible different mean vectors. Some hypotheses of interest 

were : 

(a) E^(Y) = EgfY), E^(Z) = EgfZ), 

(b) E^(Y|Z) = E^ (YI Z) , 

(c) E^(YiZ_) = EgtYjZ) given E^(Z) = E2 (Z) , 

(d) (Y) = (Y) given E^ (Z) = E^ (Z) , 

(e) E^(Y) = E2(Y) . (1.12) 

The interpretation of these hypotheses and their tests 

based on independent samples of size and from the two 

distributions were examined. 



13 

Subrahmaniam (1970) developed a unified approach to the 

theory of discriminant analysis in the presence of covariates 

2 
by partitioning the D -statistic. She demonstrated the 

equivalence of the methods of Rao (1949) and Cochran and 

Bliss (1948) . A study was made of the null and non-null 

distributions of the test statistic, which is a function of 

2 
the D -statistic, for the five hypotheses given in (1.12). 

Although Cochran and Bliss were essentially interested in 

this same problem, namely, adjusting the distance function of 

the main variables (discriminators) for the effect of the co

variates, their development parallels that of a multiple 

regression technique. Cochran and Bliss made the further 

assumption that the covariates have the same population 

means. Imposing this restriction, the hypothesis under test 

becomes 

E^(Y|Z) = ^^(Ylz) given (Z) = EgfZ) . 

Memon and Okamoto (197 0) also considered the problem 

of discriminant analysis with covariance. Let 

be two random samples drawn independently from 
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"1= Vq f ] ' 4 ' 
where is a (pxl) discriminator, is a (qxl) 

covariate , i=l,2; a=l,2,...,N^; and the covariance matrix 

L = 
-11 -12 

-21 -22 

is positive-definite. Let B be the sample estimate of the 

regression matrix B of the discriminator X on the covariate 

Y. Define X* = X-ê Y and replace X by X* in the Anderson 

discriminant function W given in (1.10). The modified 

criterion is given by 

W* = [X* - j(X* 

(1.13) 

where X* - B  y f i )  
1 x,z; B £^2-22' 

^(i) 
and Y denote the sample means and finally 

S = 
-11 -12 

-21 -22 

is the best unbiased estimator of Memon and Okamoto ob

tained the asymptotic expansion of the distribution of W*. 

They compared the three classification procedures (i), (ii), 

(iii), where one utilizes information on 

(i) X only. 

or 



15 

(ii) Q , 

or 

(iii) X* , 

using the minimization of the probabilities of misclassifi-

cation as their criterion for obtaining the best procedure. 

They found that procedure (iii) is preferable to procedure 

(ii), while its superiority over (i) depends on the balance 

of the increased Mahalanobis' distance and the increased 

effective dimensionality, which they did not consider. 

3. Quadratic discriminant function 

Smith (1947) used the likelihood ratio procedure proposed 

by Welch (1939) to derive the discriminant function when there 

are two populations with different covariance matrices. He 

carried out the necessary computations for the bivariate case. 

He also compared the probabilities of misclassification be

tween the linear discriminant function and the quadratic 

discriminant function for the bivariate case on two sets of 

data. 

Okamoto (1961) has worked on the problem of discrimina

tion between two populations with common mean vectors and 

different covariance matrices. He derived an asymptotic 

expansion of the first approximation to the quadratic dis

criminant function up to the linear term for the special case 

where the mean vector was known. 
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Bartlett and Please (1963) obtained the discriminant 

function when the mean differences between the two populations 

i.e., they have intraclass correlation structure. Han (1968) 

extended the Bartlett-Please case and derived the dis

criminant function when the mean differences between the 

two populations is not zero. 

Anderson and Bahadur (1962) treated the classification 

problem by determining the admissible linear procedures for 

classifying an observation as coming from one of two multi

variate normal populations in the case that the two distribu

tions differ both in mean vectors and covariance matrices. 

They assumed all parameters known. 

In. the case vhara the mean vectors are known and the 

covariance matrices are general and known, finding 

the distribution of the discriminant function is often 

equivalent to finding the distribution of 

are all zero and the covariance matrices Iare of the form 

G: [ (l-P^)I + Pj_J] , i=l,2 

V = A - B (1.14) 

where A and B are given by 

A 

B 
o ]=1 3 

(1.15) 



17 

where a>0, 6>0, ^ 1, bj ^1/ ^ 0, d^ ̂  0, ^0, 

2 
^0 — for all i and j, and where (X) denotes a non-

central chi-square variate with m degrees of freedom and with 

non-centrality parameter X, and all chi-square variates are 

independent. Gurland (1955) has obtained the distribution 

of an indefinite quadratic form of central chi-square variates 

using a complicated infinite series expansion involving 

Laguerre polynomials for the case in which the number of 

positive (or negative) coefficients is even. Shah (1963) 

extended his work to the non-central case. 

Press (1966) obtained an explicit form for the distribu

tion of V in (1.14). He has also obtained several asymptotic 

procedures for the case of unknown population parameters, 

assuming unequal covariance matrices whose difference is 

positive-definite. Vftien the covariance matrices are unequal 

with intraclass correlation structure, Press (1964) has 

applied the method of classification developed by Anderson 

and Bahadur. Several of the situations developed by Press 

will be made more explicit in the following chapters. 

Han (1969) has derived the discriminant function between 

two multivariate normal populations with mean vectors 

( 9 ) 2 2 
and £ , covariance matrices £ and a £ (cr >1) , respectively. 

Hence the covariance matrix of the second population is a 

constant multiplier of the covariance matrix of the first 

2 f 1 \ 
population. He assumed that £ and o are known; y ̂ ^ and 



18 

are known or unknown. When and are known, 

he obtained the distribution of the discriminant function. 

When and are unknown, an asymptotic expansion 

of the distribution of the discriminant function was obtained. 

Han (1970) has also obtained the discriminant function 

when the two populations are multivariate normal with un

equal circular covariance matrices. The discriminant function 

and its distribution were derived when all parameters are 

known. When the covariance matrices are known but the means 

are unknown, Han obtained the discriminant function and its 

distribution. An asymptotic expansion for the distribution 

of the discriminant function was obtained when all parameters 

are unknown. 

Gilbert (1969) compared Fisher's linear discriminant 

function and the quadratic discriminant function with respect 

to probabilities of misclassification when one covariance 

matrix is a constant multiple of the other. She assumed 

known population parameters. She used a chi-square distribu

tion to approximate probabilities of misclassification for 

the quadratic discriminant function. Gilbert employed a 

wide range of parameter values and suggested situations when 

Fisher's linear discriminant function compared favorably with 

respect to the quadratic discriminant function. 

Marks (197 0) compared the performance of three discrimi

nant functions in classifying individuals into two multi-
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variate normally distributed populations when covariance 

matrices are unequal. The functions compared were Fisher's 

linear discriminant function, the Anderson-Bahadur best 

linear discriminant function, and the quadratic discriminant 

function. The expected probability of misclassification, 

based on known a priori probabilities, was used as a measure 

of performance. Monte Carlo methods were used. Parameters 

that were varied in the study included the relative position 

of the population means, the covariance matrices, number o:^ 

dimensions, sample sizes, and a priori probabilities of origin 

from the populations. Recommendations are given, based on 

this study, for choosing the discriminant function which 

has the smallest expected probability of misclassification in 

the various situations. 
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II. DISTRIBUTION OF THE DISCRIMINANT FUNCTION 

UNDER INTRACLASS CORRELATION MODELS 

A. Introduction 

A (pxl) observation vector X is to be classified into one 

of two populations. Using the likelihood ratio procedure, 

we could assign the observation to if 

Pi(X) P.(X) 

pp^xT - ̂ ^2 if " k' 

where k is a constant and p^ (X) is proportional to the 

probability of X if the individual comes from i=l,2. 

We assume that X N^ ) when the observation belongs 

to iT^, where is a (pxl) vector and is given by 

= o%[(l-P.)I + p. J], i=l,2, (2.1) 
— 1 1 — X— 

where I is the (pxp) identity matrix, J is a (pxp) matrix of 

ones, and is positive-definite for i=l,2. We shall 

2 2 (1 ) (2) 
assume ^2 ' Hence, ̂  and ̂  are unequal co-

variance matrices both having intraclass correlation struc

ture. 

Bartlett and Please (1953) considered this problem 

when the populations are ; N^ ) . They derived 

the discriminant function when = 0_ and have 

the form (2.1). Han (1968) extended their work and derived 

the discriminant function when the mean difference is not zero. 
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Following Bartlett and Please, suppose is standard-

? 2 9 fl^ f2^ 
ized,then 0^=1 and Og say. If M -l£ = 0_ where 

,  y a r e  k n o w n ,  t h e  l o g a r i t h m  o f  t h e  l i k e l i h o o d  r a t i o  

is proportional to 

X ' -  X '  ( 2 . 2 )  

Since 

r. (1)^-1 
1-Pj — 1+ (p-1) — 

J] 

and 
P 

(2.2) can be written as 

r 1 1 in r 1 ^2 1 

'5^' a^d-pj)' ïîlp^ IMP-DP;: 2' 

P 2 
where Z, = 2 X. and Z„ = ( Z X.) . Penrose (1947) 

^ i=l " 2 i=l P 
called the square of the "size" component, as E X. 

^ i=l 1 

measures "total size." If 

^"^1 (l-pg) 

^1 1 ^2 1 

1-Pl l+(P-l)Pl ' c2(l-P2) 1+(P-1)P2 ' 

then the likelihood method leads to 

aZ^ - bZ^ = c (2.4) 

as the boundary separating the regions of misclassification 

b = 
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and R^. The constant c in (2.4) is usually chosen so that 

the probabilities of misclassification are equal. 

In the case of the further assumption•=  P, 

(2.4) reduces to 

^1 " l+(p-l) p ^2 " 

Bartlett and Please (1963) suggested that the boundary (2.5) 

(or (2.4) if ¥ P2) is probably better fitted visually 

when only samples from the two populations are available 

and the parameters are unknown. Bartlett and Please give an 

interesting biological example of discriminating between 

monozygotic and dizygotic pairs of twins (with like sex) 

using the above procedure. 

If the mean difference is not zero, using the likelihood 

ratio procedure, we obtain the quadratic discriminant function 

u = (x-y ̂ ^^ ) ' [I ]~^(x-y )-(x-u^^^ ' ] "^ . (2.6) 

Press (1966) derived the distribution of U when all parameters 

are known and is positive-definite. 

In Section B, we give the distribution of the discrimi

nant function when all parameters are known. Section C ob

tains the distribution of the discriminant function when the 

mean vectors and equal or unequal, are unknown, 

but the covariance matrices are known. In Section D, we 

derive an asymptotic expansion for the distribution of the 

discriminant function when all parameters are unknov.Ti. 
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B. Parameters Known 

Let X be a (pxl) observation vector such that 

X ~ N when X belongs to tt . , i=l,2. We assume 

in this section that all parameters are known. 

Let r_ be a (pxp) orthogonal matrix whose first row 

is p where e is a (pxl) vector of ones. Then, 

r  z F '  =  r  ,  ( 2 . 7 )  

where is a (pxp) diagonal matrix, which we write as 

= diag(a^,6^,...,B^), and where 

"i ~ / 

Bi = (l-p^) , i=l,2 (2.8) 

(see, for example, Press, 1972, p. 48). Since £ is independent 

of the elements in and , the discriminant function 

is equivalent to that when the covariance matrices are diagonal. 

This is true because the discriminant function given in (2.6) 

is invariant under any orthogonal transformation. To see 

this, let Y=rXsoY'^'N (v^^^ ,D^^^) when X belongs to TT. , 

where = diag (aB-,•••,&•) , i=l,2. It 
—  — -  —  1 1 1  

follows from (2.6) that the discriminant function in terms 

of Y is 
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(Y-v (2)) ' (Y-v(2) ) _ (Y-v^l) ) ' [c/l) ] (Y-V^l) ) 

= [r x-r p(2)),[r z(2)r']"i(r x-r 

- ( F  X - r  %(!))'[? x-r 

= (x-ptz)),r' (r')"i[z(2)]-ir-ir(x_^(2)) 

= (X-w(2) )'[z(2)]-l (x-y ) -(x-y ) ' [Z (X-U ) 

= u. 

Hence the discriminant function can be written as 

U = ) ' [D ) -(Y-2^^^ ) ' [D ) . (2.9) 

Substituting and Dwe obtain, apart from a constant, 

4"" 4" 

1 1 *^2 2 
'57 - î7> <^r -3—r-^) 

.,C2) ^(1) 

J u 

+ (r - 4-) ? (%.- -4^ T — )^, (2.10) 

' Ij - 57 

where Y^ and are the jth components of Y and 

1=1,2, respectively. We shall classify X into if V^c 
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and into if V<c for some suitable choice of the constant 

c. 

To find the distribution of V, we shall assume that 

a^>a2f equivalently that is positive-

definite. Hence — - — > 0 and ̂  ̂  > 0. Let 
^2 "l ^2 ^1 

v^l) 

•1 ' J h -  h  -Î—r^' ' 

"2 *1 

v(2) v!l> 

r i s 

Zj ~ ̂  (Yj- —J J ) f j=2 ,. . . ,P« (2 .11) 

P 2 
Then V » Z Z. . When X comes from u., i=l or 2 ,  Z. 

i=i ] ^ 

are independently distributed as T?.) where 

v<2) ' v'l)' 

°^2 ^1 

„'2> „(1) 
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T • . — (%— — ô—) 6 ' for j—2,...,p; i—1, 2 .  (2.12) 
13 Bg 1 

2 2 2 
Therefore, V is distributed as the sum of T.. Xn (<5. • ) , 

P 2 2 2 3.: i X3 
which we write as V ̂  Z T.. Xi (6-- ) for i=l,2, where 

j=l 13 i ID 

2 2 
(ôij ) denotes a non-central chi-square distribution with 

1 degree of freedom and non-centrality parameter 

2 « . = —3-

'ii 

It is not easy, in general, to obtain the distribution of V 

in a closed form. 

Several special cases are of interest and will be con

sidered separately in the following: 

1. Case (i): 

Suppose that in addition to the above assumptions con

cerning the parameters, we assume and 

= P2 = p. Therefore, V becomes 

"2 "1 

1 P 2 
• ^ Z (Y.-v.)^}, (2,13) 
1-P -I ] 

where is the jth component of v. and (2.12) becomes 
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2 2 
2 ,*1 -02 2 
T.. = ( / ) a i=l,2,...,p; 1=1,2. (2.14) 

Ol4 

P 2 2 2 
Hence V I T.. Xi , where Xn denotes a central chi-

j=l ^ 

square distribution with 1 degree of freedom. Therefore, 

2 2 
^1"°2 2 

V 2 Xp / if X belongs to ir^ , (2.15) 

^2 

and _ 2 
of -c? p 

V ——=; X , if X belongs to . (2.16) 

2. Case (ii) : f p. 

If we drop the assumption p^=p2 in case (i) but keep the re

maining assumptions concerning the parameters, we obtain V 

in the form 

V = (~ - ̂ )  ̂(Y.-v.)̂ , (2.17) 
0-2 1 X S>2 P]_ j = 2 ] ] 

where is the jth component of ^ ~ The 

equations in (2.12) become 

= 0, j=l,...,p; i=l,2; 

T. . = (&— - &—) B-, i = 2,...,p; i=l,2. (2.18) 
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Therefore, 

V Xi + Xp_i , if X belongs to (2.19) 

and 

V ~ Xi + Xp_i, if X belongs to tt^. (2.20) 

3. Case (iii) : ^ = P2-

If we drop the assumption in Case (i) , but keep 

the remaining.assumptions concerning the parameters including p^= 

Pg = P, we obtain V in the form 

v(l) 

vP' v(ll 
J _1 
2 2 

1 P *1 2 
+ I&F ^ (^4—Ï (2-21) 

•L P j = 2 ] i-

*2 °1 

4"-J _2.j} 2 .2, 4"-^')' 
O2 (]-+ (p-i) p) (c^ " ̂2^ 

4 ' ' - J  , .2, (1+ (p-1) p) (0^ - o^) 
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.gi "S"J" 
^2 „2 

2 1 "" 9 o 
T. . = ( ? 4 )C4 , ]=!,...,p; i=l,2. (2.22) 

' % 

Therefore, 

" ̂2 2 P 2 
V ~ (x' I Z (6f. )] }, if X belongs to tt. , (2.23) 

0: P i=l 13 - J-

and 

2 2 
< -O) 2 P 2 

V ~ , {%' [ Z (6f.)] },if X belongs to tt,, (2.24) 
at P 4=1 ^ 

where 

6? . 

.. . fl) . (2^ 
4. Case liv; : v' ' F 2" p pg. 

Suppose we have the assumptions concerning the parameters 

given at the beginning of Section B. In addition, assume 

^ and p^ ^ p^. From (2.12) we see that 
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Ot_ ^ ^ ^ Bn ""^9 P n 
^ ~ '«!:>' )' 

if X belongs to tt^ , (2.25) 

and 
a, -a_ 9 9 1^1 9 P 9 

if X belongs to (2.26) 

Both (2.25) and (2.26) can be written in the form 

A = a[x'2(d_) + ^a. x;^(à.)l, (2.27) 
0 " i=l 1 

where A is a positive-definite quadratic form with a>0, 

a.>l, dn>0, d.>0 for all i, and all chi-square variates are 
1— u— 1— 

independent. Specifically, if 

a = '^"'2 

^2 

then (2.25) can be written as 

(2.29) 

if the parameters are labeled so that a^/ag > 3^/82-

Similarly, (2.26) could be written in the form (2.27). 

Press (1966) has shown that if F(x) is the c.d.f. of 

A in (2.27) and F^(x) denotes the c.d.f. of a central chi-

square variate with v degrees of freedom, then one possible 
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representation for F(x) is 

CO 

F(x) = Z q.F . (x/a), (2.30) 
i=0 ^ 

where 
r » 

M = Z m., q. > 0, 2 q.=l, and the q. are constants 
i=0 1 1 i=0 1 1 

depending on d^, a^^. Hence the c.d.f. of V, (2.25) 

or (2.26), can be obtained by this method. It is perhaps 

important to note that V is expressible as the sum of two, 

instead of p, chi-squared variates. 

Patnaik (194 9) has considered a chi-square approximation 

to the distribution of (2.25) and (2.26) by fitting the first 

two moments. Pearson (1959) suggested an improvement of the 

chi-square approximation to the distribution of this sum by 

fitting the first three moments. These approximations and 

their applications will be discussed more fully in Chapter 

V. 

C. Means Unknown, Covariance 
Matrices Known 

In this section, we shall assume that and are 

unknown, but and are known. Suppose that we have a 

random sample from and an indepen-

(2) (2) ^  ( 2 )  
dent random sample X^ , X^ ,. . . ,X^ from Clearly, 

(i) ^ 
our estimate of y is the sample mean 
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Ni 

X^ E , i=l,2. The sample means 
a=l -G 

x(i) N (y i=l,2. If Y = r X, where T is 

the (pxp) orthogonal matrix given in Section B, then we esti

mate = r_ by Y^^) = £ X^^) , 1=1.2. The sample 

means Y ^ are independently distributed as ^ ^ D ), 

i=l,2, and independent of the distribution of Y. Further, 

since the Dare diagonal matrices, the components of Y 

are also independently distributed. The discriminant function 

V in (2.10), after substituting the unknown parameters by 

estimates, becomes 

^(2) yd) 
1 1 

1 1 ^9 2 
V = (1- - (Y^- ^ ̂  ̂  )' 

a- a, 
Z X 

y(2) Y(1) 

1 1 V ? ""2 \2 
+ (r ~ -r) ^ (Y.- Ï T ) / (2.31) 

^ ' h - h  

where Y. and Y^^^ are the nth components of Y and Y^^^, 
J 3 " ' - — 

i=l,2, respectively. Let 

Y (2) yd) 
1 1 

"i =./ s; - (^1- A—A— 
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Y(2) yÇl) 

_ _1 

Wj — J ̂ — - -g— (Yj- —-—J J— ), j —2,3,...,p. (2.32) 

Then 

? 2 
V = z w. . 

j=l ^ 

The distribution of V given in (2.31) can be found in 

a manner similar to that used in Section B. When X comes 

from 7T^ , i=l or 2, then W. are independently distributed as 

N(Cj^^ , T*j) , j=l,2,...,p, where are given in (2.12) 

and 

x *2 = (1 l_ja. + 

2̂ '̂ 1 ^ ^1^2 ̂^'l ^2^ 

2 11 ^l^l''"^2^2 
Ij =  ( g T  -  g r ^ G i  +  N L N . '  3 = 2 , i = l , 2 .  

Z X i ^ X i 

(2.33) 

2 
The second term on the right side of Ttj is the increase in 

variance accounted for by the unknown means. Therefore, 

V'. !? ;«')! }- (2.34) 
3-^ 

if X comes from -n^, i=l,2, where 

[%(!)]2 

= —2__ , j=l,2,...,p, and where and . 
T* J J 
i] 

are given in (2.12) and (2.33), respectively. 
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Consider the special case in which the means and 

( 2 )  
V are equal but unknown. Let v denote their common value. 

The maximum likelihood estimate of v is 

Y = (N^ [D ] ~^Y^^^+N2 [D 

On simplifying we obtain 

^1^2 ^1 yd) ^2 y(2) 

^1®2'^^2^1^1 ^ BY 2 J 

N^Sj+N^Bi 'B^ s 82 "P • 

Hence V given in (2.31) is of the form 

V = (1- - (Y -Y + (i- - T-) z (Y.-Y.)2, (2.35) 
^2 ^1 ^ ^2 ^1 j = 2 3 ] 

where Yj and Y^ are the jth components of Y and Y, respective

ly . Then 

cf = 0, 

8 S 
'Ij " ^^i ' j=2,...,p; 1=1,2. 

(2.36) 
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Hence, if X belongs to 

ot-j ct~ ~ 3-1 60 _ 

^ ~ ^p-1 > / 

(2.37) 

and if X belongs to / 

cx, "O'o o 6-, 6-1 

V 'V { _ [1+ N^a2+N2a^^ ̂ 1 ^p-1 ̂ • 

(2.38) 

One could determine the c.d.f. of V in (2.37) or (2.38) 

by Press' method. Also, Patnaik's or Pearson's method could 

be used for approximating the distribution of V for the 

situation presented in this section. 

D. Parameters Unknown 

When the parameters are ail unknown, we shall derive an 

asymptotic expansion for the distribution of the discriminant 

function. The technique used for the expansion is the 

"studentization" method of Hartley (1938) and of Welch (1947) . 

Suppose a random sample X^^^^ , X^^^ , ...,X^^^ is taken from 

TT^ , and an independent random sample X^^^ , X^^^ 

X^^^ is taken from . Our estimate of is the sample 

2 / ' \ 2^ N • f i ) / J \ 
mean X = ^ Z X and of Z is the sample variance 

Hi 01=1 
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= — Z (2.39) 
— n. , —a — —a — 1 a=l 

where = N^-1, i=l,2. If Y = Xy where £_ is the (pxp) 

orthogonal matrix defined previously, then we will estimate 

= r by = r_ X^^^ and = diag(a^, 

3^) by 

6^^^ = diag (a^ , Bj_/.. . where 

a =1 ^ 
a. = 

n. 
1 

P ""i 
(i)_=^i),2 

^i " ~ TFÔHT ' 1=1/2. (2.40) 

The Y^and a^, 6^ are independently distributed. 

After substituting for the unknown parameters by their 

respective estimates, the discriminant function in (2.10) 

becomes 
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, -j P 6p 2 
+ (—-—) Z (Y. ^ )% (2.41) 

It is easily seen that V is invariant under any linear 

transformation. Hence, without loss of generality, we 

may let = 0_, = I, = ]^ = (^oi''^02' 

( 2 )  
Vq ^) , and D = = diag (a^, Bq  ,— / Bq ) . We shall 

derive the cumulative distribution function (c.d.f.) of 

V, F^(v), given that X comes from , i=l,2. 

The characteristic function (c.f.) of V when X comes 

from iT^ is 

(})(t/7T^) = E (e^^^/iT^) , (2.42) 

which can be written as 

4>(t/Tr^)=E- ^ 

^ ^ ^^^ )} , (2.43) 

where is the conditional c.f. of V 

given Y, Y, and . Recall that if X is 

the non-centrality parameter of a non-central chi-square 

variate X with p degrees of freedom then the c.f. of X 

is given by 
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OyXu) = (l-2iu) exp{iuX/(l-2iu)}. (2.44) 

Noting that Y , Y are fixed and that V is 

the sum of p independent non-central chi-square variates 

each with 1 degree of freedom, where 

2 ) yd) 

(-i i )2 

„ = - Wt. X, = 

^ *2 *1 ' ^ 
*2 *1 

for the first variate, and where 

Y (2) y(l) 

( 4_- :i_)2 

1 1  ^ 2  ^  u. = (: é-)t, A = ^ 

«2 6i ' 

for the remaining j(j=2,...,p) variates, we obtain 

ip (Y , Y^^) , 6^^^ , 6/2) ) = (l-2it(^- - è-) ) ̂  

^^2 "l 

y(2) gd) 

^ exp{it ( — —% ) [ (— — —) (1—2it (-— — —) ) ] } 

^2 ^1 ^2 ^1 

1 1 X (l-2it(— - —) ) ^ 

6; 8l 

P 2 
X exp{it Z (—^ -3 ) 

j=2 $2 
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X [C— - —) (l-2it(^ - <2.45) 

62 62 Si 

Since the function ij; is analytic about the point (0_, ^ 

, expanding if) into a Taylor's series, we have 

- '1 f ' diT 

+ (*2-00)3^ 

+ (p-l) (62-60)35^} 4^v(l),v(2),D(l),D(2))|o , (2.46) 

where !_ denotes that the expression is evaluated at 
• u 

(0_, . The c.f. of V is then 

• (t/%1, = EI'" -I"' (Y ,Y <2) ,D <" ,D ) } 

= 0-4^(v^^^ ,5/2))}^, (2.47) 

where is the differential operator 
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^ j=l ^ 3v^^' 

P f̂ (2) 

j = l 
^ ^Oj^ g^(2) * (p-l)(6^-l)2g^ 

+ ^^2~°'0^3lj (P-1) (^2-^0)3^^^' (2.48) 

Making use of the fact that Yand are independent, 

we have 

h) = ^{exp[ Z Y^^^ —Tyr—] } 
j=l J 3Vj ^ 

y (2) P f2 ) a 
X E^ {exp[ Z (Yr^ - V •) fsy]} 

j=i : 3vr^ 

~ (1) -v 
X E^ {exp[(a^-l)^ + (p-1) (6^-1)^]} 

5(2) ~ 3 
X E- texpE (a2-aQ)^ + (p-1) (B2-80) J^]}. (2.49) 

Since and are independently distributed as 

normal and / respectively, using the moment generating 

functions (m.g.f.), we have 
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P 
H) = exp{ 2 

j=l^^l 
-}x exp{ 

2N-
- [a ,  ( 2 1 , 2  

a(vr') 

- jitlogd- Î- j I") + (p-l)log(l- ̂  

n, ri ̂  

26. a 
+ (p-1) log (1- Ya—) ] } ' (2 . 50) 

12 13 
Substituting log (1-x) = -x- ̂ x - jx ... in (2.50) we 

obtain 

+ 1_ ̂ 2 5^ + ̂  ? 3^ + (p-1) 

^2 ° 3a? ^^2 1=2 3(^(2)^2 ^1 36? 
z " ] X 

(p-1) 6? J 2 
+ + 0* }, (2.51) 

2 36^ 

where 0* stands for terms of second order with respect to 
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(n~^ , ). Expanding the exponential in (2.51), we 

have 

SN = 1 ̂  1 ! —4  ̂+  ̂ 1 
^^1 j=l ^^2 3(v^^))2 ^1 3a^ 

. i_ _2 3^ + !OL z 3^ + (p-1) 

^2 ° aa^ ^^2 j=2 3)2 ggZ 

+ $0 -^ + O , (2.52) 
^2 ° 36^ 2 

where stands for terms of second order with respect to 

(N^"^ , , n^~^ , ̂ 2~^ ) • now find the individual terms 

in (2.47). The principal term of 4) (t/ir^) is 

^(0'Yo (l-2ita^)"^/^exp{it a^(l-2ita^)] 

P p 2 1 
X  (l-Jitag) exp{it Vpj [ 6q  a2(l-ita2)l }= (2.53) 

11 P 2 
where a, = 1, a~ = ? 1. is the c.f. of Z Z., 

^ ^0 ^0 " j=l ] 

where Z^ are independently distributed as 

Zi ̂  a^) , 

Zj ~ N(vQj/6Q/a^\ ag), i=2,...,p . (2.54) 

To find the term associated with , we have to 
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differentiate the function with 

respect to . The function 4^ ' D 

is given by 

*(%(!) ,v(2) ,D(1) ,D^^^ = (l-2it(^ - ̂ )) ̂  

— — — — 2 1 

v(2) ^il) 

. exp{it(4- - BY' 

1 1 - ^  p  v f )  v f '  ,  
(l-2it(^ - i-)) exp{it Z (-4 1 

^2 ^1 j=2 ^2 ^1 

^ [ (&— - 3—) (1-2it (^— - ) ] } . (2.55) 
82 61 P2 ^1 

Noting that the last (p-1) factors of , D , 

( 2 )  
D ) in (2.55) can be obtained from the first factor, say 

1 1 4 2 
L= (l-2it(— - —)) exp{it(— —) 

(l-2it(^ _ (2.56) 
2̂ '̂ l °̂ 2 

by replacing by 6^ and by i=l,2; j=2,...,p, 

we shall, for convenience in differentiation, only dif

ferentiate L. Since differentiation is concerned only with 

in L it makes the calculation simpler to put = 

Vq i * = 1, a g  = Gg before differentiation and = 0 

after differentiation. 
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Thus, 

\~l/2 4. / 01 _ y/l) 

3^(1) ^0 
= (l-2ita^)"^/ ̂  2it (-^ " ̂ 1 ̂  ("1) 

1 

X [a^(l-2ita^)] ^explA}, (2.57) 

where 

A = it(— - [a, (l-2ita,)]"^ . 

Further, 

2 
— .  = ( l - 2 i t a , ) " l / 2  2 i t [ a ,  ( l - 2 i t a , ) ] " ^ e x p { A }  

3(^2 

+ (l-2ita_)"l/2 4(it)2(^ -
i UQ X 

X [a^(l-2ita^)] ^ exp{A}. (2.58) 

Therefore, 

= 1_; .it ^ 2(it)^Voi ^ 

^1''(l-2ita^)a^ (l-2ita^)^a^a^ 

2 (it) 2 S vgj 



45 

• 1 
Next we shall find the term associated with Ng • 

( 2 )  
Since differentiation is concerned only with in L, 

for L in (2.56) , we put =0, = 1, before 

differentiation and after differentiation. 

Then, 

v(2) 

= (l-2ita,) 2it-^ [a. (l-2ita,) 3"^exp{B}, (2.60) 
^ a2 ^ ^ 

^(2) 

B = it(^^2[a, (l-2ita,)]"^, 
"o 

and 

a^L = (l-2ita^) ^ [aj^(l-2ita^) ]"^exp{B} 
3(vj2))2 1 

2 v(2) 

+ (l-2ita,)"l/2 4(it) ( 1 )2[a (l-2ita,)]"lexp{B}. (2.61) 

< 0 

Therefore, 

= k-s it ^ 2(it)^v%i 

N2'' (T-^TtâjTa^ (l_2ita^)2a^2 

2 P n 
2(it)2_Z vg. 

+ [(l.k;ijla. " ĵ .3 2 • ^2.62) 
'2'»0=2 (l-2ita2) "6ga^ 
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-1 
To obtain the term associated with n^ , which in-

( 2 )  
volves differentiating L with respect to , we set -

Vq i  , c'2~°^0 before differentiation and = 0, = 1 

after differentiation. Hence, 

#7 = 4-
1 0 1 

+ (l-2it(^- - ̂ ))"^/^exp{c} 
°'o °'l 

" lT-(l-2it(i- - i-))- - 1^)1}, (2.63) 

where 

(2.64) 

Combining terms, (2.63) can be written as 

^ (l~2it(i exp{c} X [D] , (2.65) 
oai UQ 

where 
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2v 
D = it (l-2it(^ - ̂ )) + 

0̂ °'l a: a 

(1) 
1 
T~ 

V 01 
a. k'" 

1 (^01 
V 
(1) 

a. 
a. a. 0 

( 2 . 6 6 )  

Therefore, 

2 
^ ^ A = (l-2it(- ^) ) exp{c}x{[D]2 + ̂ [D]}, (2.67) 

3(a )^ ^0 ^'l ^°'l 

where C and D are given in (2.64) and (2.66), respectively. 

Expanding (2.67) we have 

^ ^ ) = (l-2it(— - —)) ̂ ^^exp{C}x{[D]^ 
3(â ) °'l 

. ,1 - 3̂ ,-1  ̂rioi _ 4^' ,2,1 . 

"l '"O °l' ' '"O ' '«0 ''l' 
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"o 1 

-i_(!2i-!i )2(1_ _ l_)-2 
"i "o °'l °'l 

°'o 1 

Setting = 0 and = 1 in (2.68) we have 

2 _1 

' ~-yi =(l-2ita-) ^exp{it ia« a. (i-2ita,)3 
fn 1 ey ) 01 u 1 X 3(a^) i(0,Vo^,l,aQ) 

v2, ^..2 , 

1 a.a' 0 1 

v f ,  v f  
+ I#M- (-1 + -M- + 

+ (1-
(l-2ita^)^ 

2 
01 ,vgi 

2.2 
0*1 30*1 . 
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+ 2(it)3 (4 ^01 )}. (2.69) 

(l-2itai)^ 

It is easily seen from the first factor L that the term 

associated with is 

E[([l-2itai l-2ita2 

+ [ ^ y (c^+2c,+b;) + A Z (c?+2c^+bî)] 
(l-2itai)^ 111 (i-2ita2) j=2 ^ ^ 

+ [ ^ (4b,+2b,c,) + ^ Z (4b.+2b.c.)] 
(l-2ita^)^ ^ ^ ^ (l-2ita2)3 j=2 3 3 D 

+ [ 4 b^ + 4 I b^]}^o, (2.70) 
(l-2itaT)* ^ (l-2ita,) j=2 3 

where 
O 2 O 2 

bi = 42̂  ' bj - , 

°0®1 ®0®2 

b' = 4^ (|-+ 2), b! = (1_+ 2), 

: 60 ^2 2 

— 2  
^ ^ 2  

— 2  < 
0

 
H

 

2  0
 

0
 ^ 1  



50 

1) , CÎ = 1) , i=2,...,p. 

(2.71) 

—1 
Similarly, one could obtain the term associated with ^2 / 

which involves differentiating the first factor L with 

respect to . To simplify the calculations we set 

= 0, a^=l before differentiation and 

0-2 = OIQ after differentiation. Consequently, we find the 

-1 
term associated with n2 is 

n^^ ̂ l-2itaj_ °'o^i 

where ^ ~ 
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2v 

91 
01 
r 

2v 
(-

*6*1 *0*1 

4), •i: - 4) , 

h, = 01 

*0*1 

- 1) -

a. 

V 
h. = Oi 

&;a2 *2 

- 1) -

= ̂ (4v - ̂ +1) ' h, = ̂ (4v -4-+"' 
°'ô l °'o*l 0̂ 0̂̂ 2 0̂*2 

j = 2 ,...,p. (2.73) 

The c.f. of V, after collecting terms, is 

2 iTim ̂  g 2 
*(t/n )= {1 + it Z (, \ + (it) ̂ Z ^ y 

^ k=lll"2ita%) k=l (l-2itaj^) 

3 ^ ^3k 4 ^ ^4k + (it) Z 2iS + (it) 4 Z + o 
k=l (l-2ita,)-^ k=l (l-2ita, ) " ^ ^ 

^ ^ (2.74) 

where 

^11 - irrr •" iorsr  ̂=1 * &r -
X X  ^ \J J. X  

»12 ' ̂ ^ ̂  J /j + k ' 
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o 2 _ 2 
m 01 1 2 

+ q (oQhï- 2hl-'09i) ' 

\̂ /oi \l/oi , p , 

m 

+ ̂  Z (BghZ- Zh.-egg!), 
"2 j=2 ° ] :) ^ 3 

31 " S-^Abi+Zb^Ci) + ^(•'5i,-2ao3l^l' 

""32 = .fz'^bj+ZbjCj) + ̂  E_^4gj-2e2g.hj) 

1  2  1 2  2  
*41 - FY bi + Vl 

-42 = ̂  " k A4 • 

In order to invert the c.f. to obtain the c.d.f. F^Cv), 

we use the method given by Wallace (1958) which was used by 

Ito (1960) and Han (1969, 197 0) for similar problems. If 

F (x) is the c.d.f. of a statistic and tj) (t) is its c.f., 
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3r ( 
then the c.d.f. corresponding to (-it) ({> (t) is F (x) where 

(x) is the rth derivative of F (x) . Now let ^(x) be 

the c.d.f. of a non-central chi-square variate with m 

degrees of freedom and non-centrality parameter 

P 2 
2 Z . 
^01 4=2 o] 

-J—2 if k=l and ^ ^ if k=2. Then 

*0*1 ®0^2 

* *^1^5,1 * "'22®Mp-l) ,2 (v) - (v) 

- "'32°7Vp-l) ,2 <v) + •°4241:p-i),2'^' * °2' 

(2.76) 

where (v) is the rth derivative of G , (v) . 
m/k m,k 

To find the c.d.f. when X comes from a 

similar procedure is used. When ̂  comes from TT̂ , the con

ditional c.f. is given in (2.45). Using a procedure similar 

to that used in obtaining (2.45), we can find the condi

tional c.f. ̂  (Y^^^ when X comes from 

This conditional c.f. is 
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^(yd) ) = (l-2itaQ(i- -

*2 *1 

^(2) yd) 

X exp{ (it) [Vq^ (% ^) - (-^ —) 1 
2 

a2 «]_ «2 ^1 

X [C~ ^) (l-2itaQ (i ^ ) ) 3 "^} 

^2 "l ^2 

(p-1) 
1 1 X , 2 

X (l-2it$_ (— - —)) 

92 

p , , yfz) 2 

exp{ (it) Z [v .(- —) - ^—) ] 
j=2 0: 8, 6; B, 

X I (- l-)(l-2it(L(- —))l"^}. (2.77) 

B2 SI " S; Bl 

Again expanding ^ in a Taylor's series about (0_, I^, 

Dg), we obtain as the principal term 

_1 

V q = (i-zitOga^) ^ exp{itVQj^ [a^ (l-2itaQa^) ] 

-(P-I) p , ^ 

X (l-2it6Qa2) exp{it Z [a2(l-2it6Qa2)]" >, (2.78) 
j=2 

P 2 
which is the c.f. of I Z. where Z. are independently 

j=l ^ J 
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distributed as 

Zi ~ , 

Zj ~ N(VQj//iJ, Bgag), i=2,...,p . (2.79) 

As was done when X came from we also want to obtain the 

-1 -1 -1 -1 
terms associated with , Ng , n^ , and 112 for this case. 

These terms are found to be 

L-{ r it + ^01 n + r (p-l)it 
^1 ï-2ltâ^â^Ti^ (l-2itaQaj^)^a^ (l-ZitS^agiag 

2 (it) 2 ? 

+ 6 (2.80) 
(l-2it6oa2) ag 

2 (l-2itaQa^)aQa^ (l-2itaga^) a^a^ (l-2itBQa2)BQa2 

2 P 2 
2(it)^ Z 

j=2 
]}^n, (2.81) 

1 ;r it . it f 
n^^ (l-2itaQa^) ^1 (l-^ite^ag) ^^2^ 

2 
+ [ — 5- (C^ + 2a C +B') 

(l-2itaQa^)^ ^ Oil 
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(it) 2 P ,2 

(l-2itBQa2) j=2 
Y Z^(Cj+26oCj+B^)] 

+ [ J (4aQB^+2B^C^)+ — y Z (4BnB^+2B^C^ ) ] T .Z,(46oBi+2BiCi 
(l-2itaQa^) (l-^itBgag) j=2 

+ [_ g2 ^ Ut) P Ef]}^ , (2.82) 

(l-2itaQa^)^ (l-^ite^ag) j=2 ^ 

1 rr it 2 , it o2 ? ,, 
(l-2itaQa^) ^o"l ^0 i 

(it) 2 P 
z 2 2 2 

(l-2it6oa2^^ j=2^^°"^ 

(it)^ P 2 
I ' 2 (46„G.-26^G.H.)] 

(l-2it6oa2)3 j=2 ° ̂ 0 j j 

+ [ 4%oG2 + (It) 4 f G^]}* , (2.83) 
(l-^ita^a^)* ° ̂  (l-^itBgag)* ° j=l ^ ° 
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where 

B, = 2^01*0 

C, =-

!!oi^ (1_ + 4) , B'. = -
ai ai ] ^2 

+ a 

4 

'01 2 "01 

2 _ 2 

0 '  J  

3v 
01 

2[-^ + 
3v 

1 

2 
Oj 

3v 

- ' 

01 _ 
Go]' 

(^- + 4), 

+ Bq ,  

=1 = ̂  ' 

2v 

0"1 

2 
G; = 

H. = 

"0*1 

01 - 2], GÎ = -  2 ]  ,  

*0*2 
V ^ 

,2 
^01 

«0*1 *0 

2^01 + 2 

=0"1 

= _ L_ H . 

»0^2 

2v 

^0 ' 

H] = ; j=2, . ..,p. 

«0 
R3-3 
*0"2 

(2.84) 

The c.f. of V given that X comes from n^, after col

lecting terms, is 
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p 2 M , 2 M__ 
(it)2 Z ^ 5-+ (it) 3 Z ^ 

k=l (l-2ita%/(a%+l))^ k=l (l-2ita%/(a%+l))^ 

. 2 M.. 
(it)* Z — (2.85) 

k-1 (l-2ita%y(a%+l))4 " ^ 

where 

M 
12 

M 
21 

2v~ 

^ * AT'=i+"°'o':i+=l' + ^(=oHr:'oHi-=o=l' ' 

1 1  ^ 2  0 ^ 1  ^ ^ 

K 

P 2 P 2 

M/oi 

2 2  

+ i- Z (8^H?-26„H.-6^GM , 
'2 j=2 0 D ""0"j "0"] 

M 
31 
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"32 = ^ J^(46„B.+2B.C.) + J^(4B„G.-2B2G.H.), 

1 2 1 2 2 
"41 = ̂  q "0=1' 

"42 = ̂  ^ ®0 .fj^j • (2-86) 

The c.d.f. ^2 (v) is obtained by inverting 4)(t/7r2). 

Let ^Xx) be the c.d.f. of a non-central chi-square 

variate with m degrees of freedom and non-centrality 

p a r a m e t e r  — w h e n  k = l  a n d  ^ when k=2. Employing 

"o^l ^0^2 

the same method used in obtaining (v), we have 

F2 (v) = G^^^(v) + - Wi2^3^p-l) ,2 

•^^21^5,1^^^ ^22^5 (p-1) ,2^^^ " ^(v) " ̂32^7 (p-l) ,2 

+ M4iG(4^(v) + %42G(4^_i) 2(v) + 0, , ^.87) 

where G^'^'(v) is the rth derivative of G . (v). 
ni ̂  X m / K 
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III. DISTRIBUTION OF THE DISCRIMINANT FUNCTION 

FOR P ADJUSTED (FOR Q CO VARIATES) DISCRIMINATORS 

UNDER INTRACLASS CORRELATION MODELS 

A. Introduction 

In this chapter, we assume that, in addition to p 

discriminators, q covariates are available for the dis

criminant function. Though the covariates do not have 

discriminating power by themselves, it is demonstrated 

that it is advantageous to use them in linear discriminant 

function (see, for example, Cochran and Bliss, 1948 and 

Cochran, 1964a). We shall show in this thesis that it is 

also advantageous to use covariates in the case of quadratic 

discriminant function with intraclass correlation structure. 

Assume a ((p+q)xl) observation vector X is of the form 

fh\ 
X =l,/| , where X, = fx 
- XAg/ 

Y , Xp)' and Xg = (Xp+^f Xp+2, 

Cp_j_g) ' . Suppose X belongs to one of two populations 

\= Vq 
(i) 

where y 
.,{i) 

is a (pxl) vector. 

is a (qxl) vector, and 

(i) 

o\[(l-p,)I+p.J] 
X X — 1— 

a.ap!J 
X 1— 

a.ap^J 

a [(l-p)l+pJ] 

y u; 
-11 

r(i) 
-21 

y UJ 
-12 

i22 

(3.1) 

2 2 
for i=l,2, where ^ . For i=l,2, the matrix 
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[(1-p^)£+p^Jl is a (pxp) positive-definite matrix, 

a^ap|J is a (pxq) matrix, £.21^" ^—12^ ̂ 

2 
—22 ~ ̂  [(l-p)I+pJ] is a (qxq) positive-definite matrix. 

The p variates, X^, are discriminators and the q variates, 

X2, are covariates. Notice that X2 has the same mean and the 

same covariance matrix in both populations. Hence X2 has no 

discriminating power by itself. 

In Chapter II, we ignored X2 completely. The rule for 

classifying an observation in Chapter II was based only on 

X, (written as X) , where X, when the observa-
—i — —1 p — —li. 

tion belongs to i=l,2. The matrix (written as 

in Chapter II) is given in (3.1) for i=l,2. 

In this chapter, we shall make use of the information 

provided by X2, by adjusting the discriminators, X^. Since the 

regression coefficient matrices = ^^^^£22 

( 2 ) "X 
—12 —22 the two respective populations and are, in 

general, not equal, a natural procedure is to form the 

variates Z. where 
—X 

Z.i = 2.1 - (3.2) 

when XeiT^, i=l,2. Ordinarily, one does not know to which 

population the observation belongs. Using the variates 

given in (3.2) , .one could form the weighted variates ^ where 
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Z = (3.3) 

and are weights such that + #2 = 1. Therefore, the 

variates Z_ are a weighted sum of the variates In terms 

of the observation vector X, (3.3) can be written as 

- ~ -1 " (^1-12^ ^2-12 )—22-2 * (3.4) 

As mentioned previously, Cochran and Bliss (194 8) and Cochran 

(1964a) considered a similar situation when both populations 

have the same covariance matrix. For their situation, the 

adjusted variates are given by £ = X^ - £2.2—22^—2"—^* 

Memon and Okamoto (1970) considered the problem of 

classifying an observation f into one of two populations 

TT^: IL j, Zl , i=l,2, where £ is an arbitrary positive-

definite matrix. They obtained an asymptotic expansion of 

the distribution of the classification statistic W* given by 

(1.13) in Chapter I. 

In Section B of this chapter,the discriminant function 

for the adjusted variates (3.3) or (3.4) , is obtained using 

the likelihood ratio procedure. The distribution of the 

discriminant function is given when all parameters are known. 

The distribution of the discriminant function when the mean 

vectors are unknown, but the covariance matrices are known is 

obtained in Section C. In Section D, the limiting distribu

tion is found for the discriminant function when all parameters 
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assume 

are unknown. 

B. Parameters Known 

Let (x^) a ((p+q)xl) observation vector where 

is a (pxl) vector and X2 ^ (gxl) vector such that 

X ^p+q(()j" ) ' —when X belongs to i=l,2. We 

in this section that all parameters are known. 

Let Z = W, Z, + W_Z_ where Z. are given in (3.2) and where 
— 1—1 Z—Z —1 

are known constant weights with W^+Wg = 1- Let ~ 

L2Wl^ ' 1=1,2" then 

E(Z) = W^E(Z_^)+W2E(Z2) 

= ".5) 

and 

E (Z-E (Z))(Z_-E (Z ) ) • = W^E (Z^-E (Z_^) ) (Z^-E (Z^) ) ' 

+ ZW^WgEfZi-EfZ^) ) (^^-^(Z^) ) ' 

+ W^E (Z^-E (Zg)) (Z^-E (Zg)) ' 

pf, 
= Ml(Wi+2»2){oZ[(l-0i)I+(Pi- ̂ j:(q-l)p>£'pxp' 

+ M^{Ol[(l-Pl)I+PlJ]pxp 
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+ °2°^2^pxq ^Zfi-p) ~ l+(q-l) P-^qxq 

X [agOp^-ZaiGpllJpxg} 

, 2  

W^CW^+ZWg) {a^[ (l-Pi)I+(Pi l+(q-l)p)2^pxp} 

2  2  ' ^ 2 ^ 2 * ^ 1  
+ «2(°I[(l-Pl)l+ClJ]pxp + 14-(q-1) p Zpxp' 

-pxp 

= (a^-b^)! + b^J = v(l), (3.6) 

where 

bi = 

and 

®1 1+ (q-1) p^^l (Wi+ZWgio^PÎ q W2 [a2P2q (C^2'^2~^'^1^P ̂  ̂  

Similarly, if Xe^g' then 

E(y = u'^'-(Wj^5.;}2'™2£.12'>i2k = (3-8) 

and 
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E (Z-E (Z.) ) (Z-E (Z) ) '=*2 II2 (I21' -2£il' > 1 

= wJ(a2[(l-P2)I-^P2ilp^«iapiJp^ -5^[I- i+RZini'gxg 

X [OiOPi-ZOaCPzlJpxpl 

2 P2^9 
+ «2(«2+2Wi,{G2[(l-P2,I+(P2- i+(;.i)p)J.]pxp) 

= o2(l-P2)Ip^p+{a2p2- i+(g,i)p[-Wi°iPiq(°iPl-2°2Pp 

+ W2(W2+2W^)a2p^^q]}çr -pxp 

= (ag-bg)! + bgj = (3.9) 

wnere 

®2 = °2-®2' 

b2 = «2"2-^2' 

and 

®2 1+ (q-1) (o^p^ 9} ' (3.10) 

The covariance matrices and given above have 

intraclass correlation structure. Let F be a (pxp) orthogonal 
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1 
~2 

matrix with first row p e' where e is a (pxl) vector of ones. 

Then r_ simultaneously diagonalizes Vand , that is, 

r = D, O.ii) 

where D= diag(a^,3^,...,B^), and 

= a^+(p-l)b^ = a? [1+(p-1) p^]-pB^ , 

- a^-bu = o\(l-p^), i=l,2. (3.12) 

Since £ is independent of the elements in and 

the discriminant function is equivalent to that when the co-

variance matrices are diagonal. This is true because the 

discriminant function is invariant under any orthogonal 

transformation as shown previously. 

Let Y = L Z so Y (v 

when X belongs to where 

v'i' = = r wji), C3.13) 

with given in (3.5) or (3.8) and = diag(a.,B• #•••/ 
""6 — 1 X 

6j^) with a^, Bj^, given in (3.12) for i=l,2. 

The discriminant function for the adjusted variates 

using the likelihood ratio procedure, is 

(3.14) 
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The discriminant function U in (3.14) can be written 

in terms of Y as 

U = (Y-V )-(Y-v(l) ) ' [D ] "^ (Y-V^^^ ) . 

(3.15) 

Substituting and , we obtain, apart from a constant, 

vf> V<1' v!^' vfl> 
— —3 — 3 

11 ^2 ^1 2 1 1 P ^2 ^ 2 
t - 57' <^1- -4—r^> ̂<B7 - sr' / -T—r^' ' 
2 1 2 1,-2 5--g-

(i) (i) 
where Y. and v. are the jth components of Y and v , i=l,2, 

J ] — — 

respectively. We shall classify X into if V^c and into 

if V<c for some suitable choice of the constant c. 

To find the distribution of V in (3.16) , we shall assume 

that o^>a2, equivalently that is positive-

definite. Since V is in the form given by (2.10), we can carry 

out the procedure of obtaining the distribution of the dis

criminant function in precisely the same manner as for the 

case of known parameters in Chapter II. Let 

•1 =Y <"I- ' ' 

^2 "l 

v!2) „(i) 

J 1 
/ I  1  9  

2] ï/ FT - FT 1% j=2,....P, (3.17) 

*2 " 
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where a^, 3^ are given in (3.12) and are given in (3.13) 

P 2 
Then V = Z 2 .. When X comes from TT . , i=l or 2, Z. are 

3=1 ^ (i) ^ 2 
independently distributed as N(Çj , T^^) where 

v( l )  

"2 °1 

v<2> 

1 T"̂ ' ' 

' ' 57-17 

T?. = (| B• for j=2,...,p; i=l,2. (3.18) 
ID 1=2 ^1 

Therefore, we have 

V ~ Z / (3.19) 
j=i ^ 

2 where 5. . = —^ , for i=l,2. 

i i  

The c.d.f. of V in (3.16) could be found by using 

Press' method as explained in Chapter II. Also the distribu

tion of V could be approximated by either Patnaik's or 

Pearson's approximation. 
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C. Means Unknown, Covariance 
Matrices Known 

I In this section, we shall assume that ( j and 

„(2) 
\ (1) (2) 

^ J are unknown, but £ and ^ are known. Suppose that 

we have a random sample from 

^(1) 

TT^: ^p+q^^~ j ' and an independent random sample 

x{^', from It : N • Our 
1 z -^2 F q j J 

estimate of ^ ̂  j is the sample mean j where 

= h \ Jil" ' l"' ° S- \ ̂2" ' 
1 a=l 1 a=l 

our estimate of (3.5) or (3.8), is given by 

Z<" = + W2[x^"-z^fl-lxf>l 

= x|i>-[W^Z^l'+W2Î^f I£-^X™ • (3-20) 

/ 2 \ 
The sample means £ are independently distributed as 

N(kg^^ ' ̂  ) , i=l,2, where are given in (3.6) 

and (3.9) . The sample means are also independent of the 

distribution of If Y = 2 %. where £ is the (pxp) ortho

gonal matrix given in Section B, then we estimate 
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= r by i=l,2. The sample means 

Y a r e  i n d e p e n d e n t l y  d i s t r i b u t e d  a s  ^  ,  

i=l,2, and independent of the distribution of Y. Further, 

since the Dare diagonal matrices, the components of Y 

are also independently distributed. The discriminant function 

V in (3.16), after substituting for the unknown parameters by 

their respective estimates, becomes 

y (2) yd) 

1 1  * ^ 2  * ^ 1  2  
- = (''I- -RNR' 

a. 

Y(2) y(l) 

+ - J-) Î (Yj 1^'^' (3.21)  ̂ 1 ' 57- I7 
where Y^ and Yj^^ are the jth components of Y and Yand 

, 6^ are given in (3.12), i=l,2, respectively. Since 

V in (3.21) is similar to the discriminant function in (2.31), 

one can proceed in the same manner as in Chapter II-C. 
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D. Parameter s Unknown 

(1) 

In this section, we assume all parameters j , 

^(2) 

j , and are unknown. Suppose that we have 

a random sample , -.., X^^^ from 

TT^: ^p+q j ' and an independent random sample 

= ' 41' 2= 

^(i) 

estimate of ( " ) is the sample mean X^^^ = Z 
\H. / a=l 

and of is the sample variance 

= i_ Z (x(i)-x(^))(x(i)-x(^))'f (3.22) 
*i a=l -G - -^ -

where n^ = N^-1, i=l,2. 

In Sections B and C ,  we did not specify any values 

for the known constant weights W^, i=l,2. If Z^^^, 

are known, one possible choice for the weights is 
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and 

I 

where 

= 111' - :l2'i;Wl' i=l'2- These 

are the weights used in Chapter V for the two bivariate 

(p=l, q=l) normal populations and for the two trivariate 

(p=l, q=2) normal populations. 

If the parameters are unknown, the estimates for 

and shall be defined, respectively, as 

s = lin'.2l 

' I il" 21 + 

and 

c(l)+n c(2) 

where ^ and S, - ^"^2 2;-^22 
—11.2 —11 —12 —22—21 —22 n^+ng 

The discriminant function (3.16), for the adjusted 

variates Y, when all parameters are known is 

1 1 \ °'2 \2,,1 1 P 2̂ 1̂ 

^ ("r —rmr^ - $1^2'""r "FT"' 
°'l ^2 ^1 
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when all parameters are unknown, let V* denote the dis

criminant function obtained if we replace any unknown 

parameters by their respective estimates in the discrimi

nant function V. Hence 

Y*(2) y*(1) 
1 1 

1 1  ^ 2  0 ^ 1  2  
V* = (èr - (Y* —, A-) ITT - TT' T 

a 
' a* a 2 "1 =* 

1 

Y* ̂2) ^ (1) 

J 2 

6*'i=2'"i 

1 1 P B* 2 
+ (—-—) Z (YÎ ^ J: (3.25) 

6* 6* 

where 

(3.26) 

Y*(i) = = r 

= ^ ] , (3.27) 

and 

E (Y* (i) )2 

-

I  ^  ( Y * .  - Y ^ 2  
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We have as N^, Ng » = 

plim ̂  , 

plim ct| = 

plim B? = B. i=l,2, (3.29) 
X X-/ 

where "plim" denotes convergence in probability (Cramér, 1946, 

p. 255). Also, we know from C3.26) that the distribution of 

Y* tends to that of Y when ». Therefore, from 

Cramer's Theorem (Cramer, 1946, p. 254) for stochastic con

vergence we find that the distribution of V* tends to that 

^2 
of V, as Ng + ™ in such a way that ̂  ->• constant. 

Consequently, for sufficiently large samples from and , 

we can replace any unknown parameter values by their respective 

estimates and use the discriminant function V* in the classi

fication procedure. 
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IV. DISTRIBUTION OF THE DISCRIMINANT 

FUNCTION FOR P+Q UNADJUSTED DISCRIMINATORS 

UNDER INTRACLASS CORRELATION MODELS 

A. Introduction 

As in Chapter III, assume X is a ((p+q)xl) observation 

are viewed as covariates. . Suppose X belongs to one of two 

for i=l,2. Since X2 has the same mean and the same covariance 

matrix in both populations, it has no discriminating power by 

itself. 

In Chapter III, the discriminators X^ were adjusted for 

these covariates, « In Chapter II, the covariates Xg 

were ignored. In this chapter, we shall include the q co

variates X„ in the discriminant function in exactly the same 
—z 

way as the p discriminators, X^. Hence X will be viewed as 

p+q discriminators. 

In Section B, the discriminant function for the p+q 

variates X is given using the likelihood ratio procedure. The 

distribution of the discriminant function is given when all 

parameters are known. We obtain in Section C the distribution 

of the discriminant function when the mean vectors are un

vector, y is a (qxl) vector, and Z 

where is a (pxl) 

has the form (3.1) 
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known, but the covariance matrices are known. In Section D, 

the limiting distribution is found for the discriminant func

tion when all parameters are unknown. 

B. Parameters Known 

Let X = be a ((p+q)xl) observation vector where 
-2 

is a (pxl) vector and Xg is a (qxl) vector such that 

X ~ {{ — \ when X belongs to TT. , i=l,2. We 
~ J ~ J ~ '• 

assume in this section that / P.» and ̂  have the s true-

ture given in Section A and that all parameters are known. 

Since and are positive-definite matrices, there 

exists a non-singular matrix P such that 

= I, P'Ï'2'P - A = diag(X, .Xj , 

(4.1) 

where the Xj's are the roots of = 0. The 

eigenvalues are all positive since both and are 

positive-def inite. 

In the known parameter case,- the logarithm of the like

lihood ratio procedure is proportional to 

... ,p<i> 

where = f j , i=l,2. Let Y = P'X. Since the dis

criminant function U in (4.2) is invariant under any non-
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singular linear transformation, the discriminant function can 

be written in terms of Y as 

U =  ( Y -V ) 'A~^ (Y-v )-(Y-V ' (Y-v ) (4.3) 

where = P ' . 

Substituting and A, we obtain 

U = -v(2))2_(y _^(l))2j^ (4.4) 
j=l D : 3D 

where and are the jth components of Y and , 

i=l,2, respectively. If A^^^l for each j=l ,2 ,. .. ,p+q, we obtain, 

apart from a constant, 

Ç , V = E (à 1) (Y. i—. )- . (4.5) 

3=1 : ^ I- - 1 

If Xj, = 1, for some j=j', the distribution of U in (4.4) 

is difficult to obtain. However, if the first p components 

of the eigenvector associated with À^, are all zero, then the 

terms involving Y^, in (4.4) cancel out, and we can complete 

the square as in (4.5). A sufficient condition for the 

first p components of the eigenvector associated with 

to be zero is 

(a^-a^) + 2^ i" 0 , (for p=2,3,...) 

and 
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The case when £^2^ = ^^2^ / hence o^p^-o^p^ = 0, will be 

considered in Chapter V-D-1. Assuming the sufficient condi

tion obtains, we write 

V = Z (^ - 1) (Y . L(4.6) 

] 

where s is the number of eigenvectors of = 0 

not equal to one. We shall classify X into if V>_c and into 

^2 if V<c for some suitable choice of the constant c where V 

is given in (4.6). 

To find the distribution of V, we shall assume, without 

loss of generality, that the coefficients (^— - 1) are labeled 
"j 

so that the first r are positive and the remaining s-r 

coefficients, (^ - 1), are negative. Then V can be 

written as 

4: - -i" 
V = z (y- - 1) (Y. \ )2 

3=1 3 ' ^ - 1 

v(2) 

^ 1 '3 2 
- Z (1- - ) (Y ^ )-. (4.7) 

j=r-.l ^ : ^-1 
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Let (2) 

n— 4- - 4'' 
A. —J T— - 1 (Y . - —^ ) / j—1(4.8) 

: i ^ r- - 1 
] 

and 

( 2 )  
(1)  

B . —J 1- y—(Y . - ^—; ) , j—r+1,. .. ,s. (4.9) 
^ j ^ T 1 

Tnen 

r 2 ^ 2 
V = Z A. - Z B.. When X comes from ÎT. , i=l or 2 ,  

j=l ^ j=r+l ^ ^ 
all Aj's and B^'s are independently distributed as 

N(Çj^^, T?j) where 

(j 
(1) _ 

=L=(vf'-vf ), 

S' 

( 2 )  
-Jvh 

2 
^Ij 

T2j = 1-Aj, ]=i,z,...,r; 14.iu; 

and 

(1) . 

J X.(x.-i) : J 
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S"' V(vf'-vf). 

,2 . 'y-i 

'V ' 

Tg. = (À.-l), j=r+l,...,s. (4.11) 
2j 3  

Now 

V ^ Z - Z (4.12) 
j=l ^ j=r+l ^ 

2 2 
when X comes from i»l,2, where x| (5^^) denotes a non-

central chi-square variate with 1 degree of freedom and non-

2 
centrality parameter ô^j =— . 

"^ij 

Hence V in (4.12) can be written as 

V = A-B, (4.13) 

where A and B are given in (1.15) in Chapter I and are inde

pendent positive-definite quadratic forms in non-central chi-

square variates. In particular, if , then all 

variates are central chi-square variates. In general, it is 

not easy to obtain the distribution of V given in (4.12) or 

(4.13) in closed fonn. Gurland (1955), in considering the 

problem for central chi-square variates, found an infinite 

series expansion in terms of Laguerre polynomials for the 

case in which the number of positive (or negative) 
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coefficients is even. Shah (1963) extended his work to the 

non-central case. Press (1966) obtained the c.d.f. of forms 

such as V. 

C. Means Unknown, Covariance 
Matrices Known 

In this section, we shall assume that the means = 
(i) 

/ — \ ( ' ) 
( j are unknown, while £ are known. Suppose we have a 

random sample , X^^^ , ... , from 

C D  ^  

TT^: ^p+q an independent random sample 

"2= VqÛ ) ' 
Ni 

estimate of is the sample mean X^^^ = ̂  E x/^^. 
-X - N. -a 

The sample means Xare distributed independently as 

Np_|_g(u^^^ ' Al" ) ' i=l»2. The sangle means are also 

independent of the distribution of X. If Y = P'X where P is 

a non-singular matrix such that 

p.j = I, P'Z = A = diagfXi ,A^,... ) , (4.14) 

where A^'s are the roots of | | = 0, then 

we estimate = P'y^^^ by = P'X^^^, i=l,2. 

The sample means Yare independently distributed as 

Np+qfv^^), ̂  1) and Np+g(v(2), A) for i=l,2, respectively. 
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and independent of the distribution of Y. Further, since ̂  

and A are diagonal matrices, the components of Yare also 

independently distributed. The discriminant function V in 

(4.6), after substituting for the unknown parameters by their 

respective estimates, becomes 

y(2) 

V - ' 
V = Z (y- - 1) (Y. )2 

^ - 1 

y ( 2 )  
li yfl) 

s 1 i o 
- Z (1- f-) (Y 2— )'% (4.15) 

j=r+i : h - ̂  
j 

where Y. and Y^^^ are the jth components of Y and Y^^^ , 
J J — — 

i=l,2, respectively. Let 

^(2) 

^ 
rr " ̂  1 ) , j=l,2,... ,r, (4.16) 

V (1) 
] 

A* 

rr - 1 

and 

^(1) 

t- -Bt 1 - ̂ (Y ^ ) , j=r+l,...,s . (4.17) 
: 3 1 

^ 2 ^ 2 
Then V = Z Af - Z B* . The distribution of V in 

j=l J j=r+l ^ 
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(4.15) can be found in a manner analogous to that in Section 

B. When X comes from i=l or 2, all A*'s and Bf's are 

independently distributed as j=l,2,...,s, where 

are given in (4.10) and (4.11) and 
] 

*2 _ ,1_ . ^1+^2^1 

1] Npçrrajr ' 

*9 1 N^+N„A. 
'^2j ^X~ ~ (1-Aj) ' 3=1/2,. ..,r; (4.18) 

,•2 . (1- + VVj_ _ 

N^NgfAj-l) 

*•? ^ N +N_A. 
"2j = <1- ' i=r+l (4-19) 

*2 
The second term on the right side of is the increase in 

variance accounted for by the unknown means. Therefore, V 

in (4.15) is distributed as 

^ *2 s 
y X v'P *9 *2 '2 *2 

ijX^ (c^j) - I (G^j) when X comes 

rr(i)i2 
*2 -i (i) *2 

from , i=l,2, where 5. . = —— and where C- and t. • 
^ ^ J _ ^ D ^ J 

are specified above. 
'i] 
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D. Parameters Unknown 

In this section, we assume all parameters 

are unknown. Suppose that we have a random sample t 

X^^^ from ir^: ) and an inde

pendent random sample X^^^ , X^^^ , •••/ from 

it : N Our estimate of is the sample 
6 pT<J —X — —A 

mean X^^^ = ̂  X^^^ and of Zis the sample variance 
^i a=l -* 

= — Z (X^^^-X^^^ ) (X^^^-X^^^ ) ' , (4.20) 
^i a=l ^ ~ ^ -

where n^ = N^-1, i=l,2. When all parameters are unknown, 

let U* denote the discriminant function obtained if we 

replace any unknown parameters in the discriminant function 

U in (4.2) by their respective estimates. 

Hence, 

U* = (X-X^^^ ) ' [S (X-X'^^ )-(X-X ' [S (x-x^^h . 

(4.21) 

As in Section B, we know there exists a non-singular matrix ̂  

and a diagonal matrix A such that 

£'S^^^P = I, P's^^h = K = diag(%^,%2,.. • '^p+g^ ' (4.22) 

where the ^'s are the roots of =0. We 

adopt (P, ^) as an estimate of (P, A). Let Y* = £*X and 
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Y*_  p ' X ,  i = l , 2 .  T h e r e f o r e ,  t h e  d i s c r i m i n a n t  f u n c t i o n  

U* in (4.21) can be written as 

U* = {Y*-y* {Y*-Y* • (Y*-Y* . (4.23) 

Kg 
Okamoto (1961) has shown that as Ng ^ ™ such that ̂  -» 

constant, 

plim ^ = A, 

plim P = P . (4.24) 

The distribution of (Y*-Y* ) tends to the distribution of 

(Y-v^^^ ) as for i=l,2, respectively. 

Therefore, from Cramer's Theorem (Cramer, 1946, p. 254) 

for stochastic convergence we find that the distribution of U* 

tends to the distribution of U. It follows that the discrimi

nant function U* in (4.23) is asimptctically equivalent to the 

discriminant function U in (4.3). 
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V. COMPARISONS OF PROBABILITIES 

OF MISCLASSIFICATION 

A. Introduction 

In the previous three chapters, we have discussed the 

distributions of the discriminant functions when there 

are 

(a) p unadjusted discriminators, 

(b) p adjusted (for q covariates) discriminators, and 

(c) p+q unadjusted discriminators. 

In this chapter,we shall compare probabilities of mis-

classification for these three classification procedures. 

Numerical comparisons are made for the following cases : a 

bivariate (p=l, q=l) case and a trivariate (p=l, q=2) case. 

p(i) 

In both cases all parameters ( \ , i=l,2, are 
\ — / 

assumed known. Various sets of parameters will be considered 

for each case. The probabilities of misclassification are 

approximated by numerical integration for some parameter 

situations. But it is not possible to obtain approximations 

for all cases. Hence a Monte Carlo study was conducted to 

compare the three classification procedures empirically. 
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B. Methods of Computing Probabilities of 
Misclassification for the 
Bivariate (p=l/ q=l) Case 

Consider the problem of classification of a bivariate 

observation X = (X^fXg) ' into one of two normal populations 

and iij where u.: jI' ' 1.2- We shall 

assume all parameters are known. Since the parameters are 

known, we could make the transformation 

^1 " 

X2 - i(X2-u) 

and consequently the populations and Tr^ could be written 

as 

"1= '2 T')) "2=^2 ;')). 

.(2) (1) 2 ^1 2 
where 8 = and a. = —rr . We shall assume a_ > 1. 

°2 ° ol ° 

In this section, we shall determine the probabilities 

of misclassification for each of the following three pro

cedures : 

(a) the univariate (p=l) unadjusted discriminator, 

(b) the univariate adjusted (for q=l covariate) 
discriminator, and 
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(c) the bivariate (p+q=2) unadjusted discriminator. 

Numerical integration procedures will be obtained for use 

in approximating the probabilities of misclassification 

for each of the three procedures under some parameter situa

tions. In addition, Monte Carlo procedures are used to esti

mate the probabilities of misclassification empirically for 

each of the three classification procedures. 

1. Numerical integration procedures 

a. The univariate (p=l) unadjusted discriminator In 

this situation, we consider only the variate as a dis

criminator ignoring the covariate . Hence if Xeir^, then 

X^ N(0, OQ) and if Xeir^, then X^'^' N(6,l). 

Following Chapter II, we shall classify the observation 

into 77^ if 

and into "ÎT̂ , otherwise. Equivalently, classify the observa

tion into TT^ if 

(X,-6)^ - xf + log (5.1) 

k (5.2) 

where 

2 e 
k = log Og + -2 

If Xeir^, then 
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X 80 -ea 
- -^) ~ N(-y-5. , 1) 

0 a^-1 *0-1 

Therefore, 

P(2/l) = P[x{^( a ° y < T—1 • (5.3) 
(Ofl-l) a„-l 

If XeTT^ t then 

so 

eoQ _Q 
(X - - " ) % N(-^ , 1) 

°o-i »o-i 

(X^ - ~ x{2( f' ;) . 

Oo-I 

Therefore, 

ka2 

P(l/2) = P[x'^(-^ 5) > ] . (5.4) 
(«^-11 - iol-l) 

To obtain P(2/l) and P(l/2) when 8^0. one could use 

non-central chi-square tables where convenient. We shall use 

an approximation to the non-central chi-square distribution 

for determining the probabilities of misclassification. Many 

approximations have been suggested. The simplest approximation 
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2 2 
consists of replacing %' by a multiple of a central x t 

2 
aXg say, with a and g chosen so that the first two moments of 

2 2 
the two variables, (5) and aXg agree. The appropriate 

values of a and g are 

^ _ n+25 ^ _ (n+6)2 
^ - TFT" ' 9 - ̂ +26 " 

This approximation was suggested by Patnaik (1949). Pearson 

(1959) suggested an improvement of this approximation, intro

ducing an additional constant b, and choosing b, c, and f so 

2 2 
that the first three cumulants of x^ (^) and (cXg + b) agree. 

2 2 
Let and Kf denote the ith cumulants of (cXg + b) and x^ 

respectively for i=l,2,3. Equating = Kf, 1=1,2,3, we have 

cf + b = v+X 

2c^f = 2(v+2X) 

8c^f = 8 (V+3X). 

Solving for b, c, and f gives 

^ " ̂rF3T ' 

c = V+3A 
V+2X 

and 

f = (v+2X)3 _ (5.5) 

(v+3X)^ 

In both Patnaik's and Pearson's approximations the degrees 

of freedom g and f are usually fractional, thus interpolation 



91 

2 
is needed if standard % tables are used. 

In the univariate unadjusted discriminator situation 

considered, we will use Pearson's approximation to determine 

the probabilities of misclassification P(2/l) and P(l/2) when 

6^0. For determining P(2/l) : 

and for determining P(l/2) : v=l, X = —« y . 
(*0-1) 

To compute P(2/l) and P(l/2), the IBM Scientific Subroutine 

Program CDTR was used. This subroutine determines 

2 
P[Y ̂  y] where Y Xf Computation results are shown in the 

tables in the Appendix for given values of parameters. 

b. The univariate adjusted (for q=l covariate) discrimi

nator As before we have the bivariate normal populations 

As specified in Chapter III, we form the variates 

(5.6) 

Then use the weighted variate Z where 

(5.7) 
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Possible choices for weights will be discussed in Section 

D. Two of these choices are the constant weights 

„ _ l£u'.2i 

"l " iv(l) I ^ If (2) I ' 2 |,(1) I ^ 1^(2) I ' 

-11.2' •*" '-11.2' '-11.2' '-11.2 

and the matrix weights 

% = [<IU.2'"^'^<£.U.2''^J'^'£U.21'' • 

For the case p=l, these weights are the same and are given 

by 

4V.2 _ 

Simplifying (5.7) we obtain 

Z = XI-TWIOQPL+WGP^LXG, (5.9) 

where are given in (5.8). We consider Z as our univariate 

adjusted discriminator. 

If XeiT^, then Z ~ N(0,V^) where 

=GQ + (WiGoPi+WgP^)^ - 2(W^aQP^+W2p^)aQp^ . (5.10) 

If Xe'ÏÏ2, then Z 'v N(8, V^) where 
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V2 = 1 + (W^aQp^+W2p^)^ - 2(W^aQPi+W2p%)P^ . (5.11) 

By the results in Chapter III, we shall classify X into 

iT^ if 

<2^ - |i . log > 0. (5.12, 

2 1 1 

Suppose . Then we classify X into "n-^ if 

1 V 8 V 

X X ^ X Z 

where ^ 

V i  g 2  

^1 " vT " vT v. (V, -V-, ) • 
2 "2 "2'"1 "2' 

If XeiT^, then 

, v^e -/vTe 

so 
, 2  

V, 6 ^ ^ V, e 

^1 " • ̂i-''2'' ~ • 

Therefore, 

2 ViG^ V 
P(2/l)=P[xi (— 5-) < V -V k.]. (5.14) 

(V1-V2) 1 2 

From (5.13), if V^>V2, classify X into if 

1 V 8 V 
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If XcTT^, then 

-vATT e 

so 

Therefore 

•9 a/2) = PLx-l ( (5.16) 

If V^<V2, then we would have to reverse the inequalities 

in (5.14) and (5.16). 

To determine P(2/l) and P(l/2), Pearson's approximation 

was again used. Computation results are given in the tables 

in the Appendix. 

c. The bivariate (p+q=2) unadjusted discriminator In 

this procedure, we consider both and X^ as discriminators 

ignoring the fact that X^ has the same mean and covariance 

matrix in both populations ir^ and . 

Using the likelihood ratio procedure our rule is to 

classify X into TT if 
— 1 

(5.17) 
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and into if U< 0. 

As mentioned in Chapter IV, there exists a non-singular 

matrix P such that 

P'Z^^^P = I, = A = diag(X^,X2,...,Xp+g) , (5.18) 

where the X^'s are roots of 1= 0 .  L e t  Y  =  P ' X .  

Then (5.18) becomes classify X into TT̂  if 

)'A"^(Y-v^^^) - Y'Y + log IA| ^0, (5.19) 

where = P'y . 

To determine the matrix P in general, the following pro

cedure given in condensed form by Cooley and Lohnes (1962) 

was used. We used the IBM Scientific Subroutine Program EIGEN 

to determine matrices A and D such that 

= A D A' (5.20) 

where A is the orthogonal matrix whose columns are the 

eigenvectors of and D is the diagonal matrix whose ele

ments are the eigenvalues of . The method, which used the 

IBM Scientific Subroutine Program NROOT, involves finding the 

eigenvalues and eigenvectors of the non-symmetric matrix, 

j^(l)J-1^(2). 

-XZ ̂ ^hp = 0 

the A's are the eigenvalues of because the 

roots of 
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Z  - X Z  (D|= 0 

are equal to the roots of 

1 [Z -Xll = 0. 

In view of (5.20), 

= A D^ D^A' , 

1 1 

(£-^'-XA D^D"A ' ) p = 0_, 

_1 1 

(D -XD^A')p = 0 , 

_1 _1 1 1 

(D ^A' Z ̂ ^^A D 'A'-XD^A' )p = 0 , «n mmtm — «M 

_1 _1 1 

(D ^A'Z^^^A D ^-XDD^A'p = 0 . (5.21) 

1 
2 

Let the eigenvectors g_ be chosen so that b = D A'p 

are of unit length. Then (5.21) becomes 

_1 _1 

(D D ^-Xl)b = 0 (5.22) 

and, therefore, 

_1 _1 

B' (D ^A'Z^^^A D ^)B = A, (5.23) 

where B is the orthogonal matrix whose columns are the 

1 1 
~2 (2) ~2 

eigenvectors of D A'£ A D and A is the diagonal matrix 

whose diagonal elements are the eigenvalues of 

- 1 , - 1  

D ^A'Z(2)A D 2 . 
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1 
2 

From B = D A'P, we have P 

_1 

P'Z^^^P = B'D D 

1 1 
2  ~ 2  = B'D D D B 

_1 

A D ^B. Thus 

1 
2 
B 

I (5.24) 

Also 
_1 

pij;(2)p ^ g'D D 

1 
2 
B 

A (5.25) 

Hence the matrix P obtained, is the desired matrix. Thus 

far, our development could have been for a multivariate un

adjusted discriminator situation. 

In the bivariate case, for the parameter values speci

fied, the matrices P and ̂  were determined by the method 

described above. One of the roots, say . was less than 

one and the other root, say , was greater than one. The 

2 
roots depend on and (p^, p^)• The roots obtained from 

(P^y-Pg) and from (-p^jp^) are the same. Also the roots 

from (p^, p^) and from (-p^, -p^) are the same. Therefore, 

we only considered (p^, -p^) and (p^, p^) for the specified 

parameters. 

Specifically for the bivariate (p+q=2) unadjusted dis-

( 2 )  
criminator situation where y 

( 2 )  
and hence v = 

we have from (5.19) to classify X into if 
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+ ̂ (Y2-V^^^ )^-Y^-Y2+log(XiX2) l_ 0, (5.26) 

where Y = (Y^fYg)'. Letting X^<1, Xg^l' we can write (5.26) 

as 

, vf> , ,vf' 

'^1" -(1- xj' (%2- r̂ i -

(v<2')^ 

^— + logCX^Xg) 1 0 . (5.27) 

If XETT̂ , then 

v<2) <,(2), 2 

'"1 - ik' ~ ''i 'ïï^' 

and 

2 2 (f')' 

If XcTT^ , then 

" V. - ;k" -
and 

vf) , , 

Therefore, the probabilities of misclassification are given by 

1 2 1 2 
P(2/l) = P[(Y- - 1)%: (--^ ?)-(!- ̂ )Xi (— 5-)< kg] 

^1 ^ (1-X,)^ ^2 ^ (1-X_) ̂ 
^ (5.28) 
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P(l/2) = P[(l- X  ) x ' ^ (  ^  )  ) - ( X  -l) x r ( - ^ — ^  W l k  ]  ,  
^  ^  ( l - x ^ ) ^  ^  ^  ( l - X g )  

(5.29) 

( . ( ' ) ) '  
^2 a-X^) "*• (l-Xg) " 109(^1^2) • 

( 2 ) 
If 0=0, then V =0_. Thus the probabilities of mis-

classification P(2/l) and P(l/2) become 

P(2/l) = P[(^ - Dx^-d- ̂ )Xi < -log(X^X2)] (5.30) 

and 

P(l/2) = P[(l-X^)Xi-(X2-l)Xi i -log(X^X2)] . (5.31) 

To determine the probabilities of misclassification in 

(5.30) and (5.31) we have to determine probabilities of the 

form 

P[aX-6Y>c] 

2 2 
where c is a constant, a>0, B>0, X^x^f and X and Y 

are independent. 

More generally, we may wish to determine probabilities 

of the form 

P[aX-6Y>c] 

2 2 
where a>0, B>0, X'^X^/ Y^x^' X and Y are independent. Press 

(1966) obtained the probability density of Z = aX-8Y where a>0, 

2 2 
6>0, X^x^' Y%Xn' and X and Y are independent as 
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m+n-2 t 
~2a , ,n m+n a+6 

m+n m n 

2~^a^e^r (|) 

t e '5^ t) , t > 0 

Pz(t)=i 

iti+n m n 

2 ^ a^6^r(|) 

(-t) 

m+n-2 t 
2 2b" I /in m+n a+6 

2' 2 ' 2a6 

(5.32) 

t) , t < 0 

where is the finite version of the confluent hypergeometric 

function, which can be found, for example, in (Slater, 1960) 

and is given by 

4^a,b;x) = p-(^ (5.33) 

for a>0, x>0. 

In our situation, m=n=l so 

t 
2a , ,1 

2a^6^r(^) 

p,^(t) = { 
(5.34) 

*(&' 1; - ifl-1), t 1 0 . 

2a^B^r(i) 
V. ^ 

Now one can relate (see, for example, Al>ramowitz and Stegun, 

1965, p. 510) 4J(Y+J, 2y+l, 2z) to a K (modified) Bessel 

function of order y by the relation 
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ip(y+jr 2Y+1, 2Z) = 7T (2z) "^K^(z) , (5.35) 

where K^(Z) denotes a K Bessel function with argument z and 

order y. 

For our situation using (5.35) with y=0, we can write 

(5.34) as 

f (a-6)j 

e 4*6 

I i 

2a^B^TT 

*0(15# t), t 1 0 

(g-B). 

e 4a6 

1 1 

2a^3^TT 

(5.36) 

Ko(- t), t < 0 

To illustrate, without loss of generality, how the 

probabilities of misclassification in (5.30) and (5.31) v;sre 

determined, we will find 

P[aX-6Y > C] (5.37) 

2 2 
where a>0, B>0, Y^x^f X and Y are independent, and C is 

a positive constant. From (5.36) and (5.37) we have 

, 00  

P[aX-BY > C] = Pgftldt , (5.38) 

where 

p^(t) 

(g-B)^ 

 ̂RI 0̂ (%IT) 
2 2 

2a B TT 
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We can write (5.38) as 

(t)dt = 
B 

Pg (t)dt + 
B 

Pg (t)dt . (5.39) 

We evaluated the first term of the right-hand side of (5.39) 

numerically by a Newton-Cotes quadrature formula employing 

Romberg integration with the trapezoidal rule. For a dis

cussion of these procedures, the reader is referred to 

(Ralston, 1965, pp. 114-124). The interval from C to B was 

first split into shorter intervals of equal length. For each 

of these intervals of integration we employed our numerical 

method of integration, each time halving the given interval 

of integration until two consecutive results agree within the 

input tolerance e specified, in our case z = .0001, or until 

the maximum number of specified halvings was accomplished. The 

K Bessel function of zero order, (^^ t) , was evaluating 
u 4ap 

using the IBM Scientific Subroutine Program BESK. To deter

mine the second term of the right-hand side of (5.39) we used 

the fact that for large x, 

t]i(a,b;x) = X ^ (Slater, 1960) 

Hence, 

.GO 

B 
Pg (t)dt ^ 

t 
2a ,a+6 

B 
2a^6^r (j) 

(5.40) 
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where is the c.d.f. of a central chi-square variate with 1 

degree of freedom. The IBM Scientific Subroutine Program 

CDTR was used to evaluate (5.40). 

If 6 7^ 0, then the probabilities of misclassif ication 

P(2/l) and P(l/2) are given by (5.28) and (5.29), respective

ly. It appears that none of the methods available, for example. 

Press (1966) , Shah (1963) , are easily applicable in deter

mining these probabilities numerically. Since later the 

probabilities given in (5.28) and (5.29) were determined 

empirically by Monte Carlo procedures, we used a "rough" 

approximation suggested by Imhof (1961) to check these 

probabilities of misclassification P(2/l) and P(l/2) for some 

parameter values. Following Pearson (1959) , Imhof (1961) 

equated the first three cumulants K*, r=l,2,3, of a positive 

quadratic form Q where 

i=l 
(5.41) 

and 

(r-1)1(l+rô?) 
1 

(5.42) 

2 
with the first three cumulants K , r=l,2,3, of V = cx« + b 

X A. 

where 

K 

K 

K 

^ = cf + b, 

2 = 2c^f, 

3 " . 
(5.43) 



104 

Then 

P[Q > x] ^ PEXf i y] (5.44) 

where 

+ f, c, 
^ i=l 

^ r 2 =  Z  X .  (l+rô.) 
J _"l 1 i 

r = 1,2,3 

In determining the probabilities in (5.28) and (5.29), 

our quadratic forms are non-positive. Imhof (1961) suggested 

the same approximation as used in (5.44) if Q is non-positive 

assuming Cg > 0. If c^ < 0, then approximate the distribu

tion of -Q. Certainly, there could be an appreciable loss of 

accuracy for non-positive forms, but the approximation still 

gives useful indications which could be of value for 

practical considerations. As mentioned previously, for cer

tain parameter values, Imhofs procedure was used to approxi

mate P(2/l) and P (1/2) given by (5.28) and (5.29), respective

ly. 

2. Monte Carlo procedures 

As in the previous section, assume and are bivariate 

normal populations given by 

In this section, we will illustrate how to estimate the 
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probabilities of itiisclassification by Monte Carlo procedures. 

We will generate independent uniform pseudo-random 

variates U on (0,1) by a composite multiplicative congruential 

generator suggested by Marsaglia and Bray (1968). A pair of 

independent standard normal pseudo-random variates can 

be obtained from each pair of independent uniform variates 

^1' ̂ 2 using the transformation of Box and Muller (1958) , 

that is. 

To obtain X = (X^ , X,) ' , we need to determine a matrix G 

X = (X^, X2) '£"^2/ we need to determine a matrix H such that 

Dempster (1969) uses a sweep operation to obtain the 

matrices G and H. For our covariance structure.- the matrices 

G and H are given by 

1 

Y^ = (-2 log u^)^ cosfZnUg) 

and 1 

Yg = (-2 log U^)2 sin(2iTU2). 

and to obtain 
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Therefore, for we make the transformation 

^2 ^i^l ^"^1 ^2 
(5.45) 

and for TT- we make the transformation 
2 

(5.46) 

The probabilities of misclassification were estimated 

empirically for each of the three situations. For the uni

variate unadjusted discriminator, we use the variate as our 

discriminator and the classification rule (5.1). For the 

univariate adjusted discriminator, we use the variate Z in 

(5.9) as our discriminator and the classification rule (5.12). 

For the bivariate unadjusted discriminator, we use the 

variates (X^, X^)' as our discriminators and the rule of 

classification (5.17). 

The Monte Carlo method involves substituting the values 

of the parameters into the respective classification 

rules, assigning normal random numbers generated from or 

1^2 to X^, Z, and X = (X^, X^) ' and then classifying into 
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or TT^ according to (5.1), (5.12), and (5.17), respectively. 

A probability of misclassification is then estimated by the 

ratio of the number of individuals misclassified to the 

number tested lor one or the other population. 

C. Methods of Computing Probabilities of 
Misclassification for the Trivariate 

(p=l, q=2) Case 

In this section, we shall consider the problem of 

classification of a trivariate observation X = (X^, X^, X^)' 

into one of two trivariate normal populations TT^ and where 

"1= "3 

I j 
u 

\ 

CiOp! 

\ o.op! 

Jicp: 

a^p 

cf^p 

II 

i=l,2. Hence X^ and X^ can be viewed as covariates. We shall 

assume all parameters are known. Therefore, we could make 

the transformation 

§7 

X. 

X. 5-(X3-P) 

and, consequently, the populations and could be given 

by 



and 

/ 0 / 
"1= "3 0 r 

\ 0 1 
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1 

P 

\ \  

p 

1 
II 

'^2 ' ̂3 

f! ' \ 

0 

0 \ \  

"2 

^2 

1 

P 

^2\\ 

P 

1 

where 

and = We shall assume cJq > 1. 

As in Section B, three procedures are still available 

for use in classification, namely 

(a) univariate (p=l) unadjusted discriminator, 

(b) univariate adjusted (for q=2 covariates) 
discriminator, and 

(c) trivariate (p+q = 3) unadjusted discriminator. 

Numerical integration procedures employing Pearson's 

approximation are used to obtain the probabilities of mis-

classification for the univariate unadjusted and univariate 

adjusted discriminator cases. A few approximate values for 

the probabilities of misclassification were determined by 

using Pearson's approximation for the trivariate unadjusted 
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discriminator. For the sets of parameters specified, Monte 

Carlo procedures were used to calculate the probabilities of 

misclassification empirically for each of these three classi

fication situations. 

1. Numerical integration procedures 

a. The univariate (p=l) unadjusted discriminator We 

consider only the variate as a discriminator ignoring the 

covariates Xg and X^. This situation is identical to that 

which is explained in Section B-l-a. 

b. The univariate adjusted (for q=2 covariates) dis-

cr iminator As in Section B-l-b, we form the variate s 

- £U'£22 (XJ) = ' 

= X, - £.22 (xj) = *1 - i;? <5-"' 

Then use the weighted variate Z where 

Z = W^Z^ + WgZg (5.48) 

as the adjusted discriminator. 

Following (5.8), we shall use the weights 

°ll'2 
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simplifying (5.48) we obtain 

Z = %! - ITpWlCoPl+NzPp IX2+X3' ' (5-5J) 

where are given in (5.49). If XETT̂  , then 

Z N(0,V^) where 

Vl - =0 + - TTr'Vo''i+"2»2> • (5.51) 

If Xeu^, then Z N(6, V^) where 

^2 = 1 + ll?f<V0»i-'"2P2'^^ - <"l°0Pi+"2P^ - '5-"' 

Since the univariate adjusted (for q=2 covariates) dis

criminator Z is now in the same form as given in Section 

B-l-b, the probabilities of misclassification are given by 

(5.14) and (5.16). 

c. The trivariate (p+q=3) unadjusted discriminator 

The trivariate (p+q=3) unadjusted discriminator consists of 

the variates X^, and X^. The rule of classification 

for this procedure is given in (5.17). As mentioned previous

ly, there exists a non-singular matrix P such that 

p.r<l'p = I, P'z'2)p = A . diagCX^.Xj.Xj) , 

where the X^'s are the roots of |-X [ = 0. If we let 

Y = P'X, then using (5.17) , we classify X into if 
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(Y-v^^^) •A"^(Y-v^^^)-y'Y + log I A| >0, (5.53) 

( 2 )  ( 2 )  
where v = . For the parameter values specified, 

the matrices P and ^ were determined by the method explained 

in Section B-l-c. One of the roots of = 0 was 

greater than one, one root was identically equal to one (this 

can be shown analytically), and the other root was less than 

2 
one. The roots depend on p, and (pjyPg). The roots ob

tained from (p^, -Pg) and from (-p^, p^) are the same. Also, 

the roots from (p|, p^) and from (-p^, -p^) are the same. 

Hence we only considered (p|, -P^) and (p|, Pg). 

For the trivariate unadjusted discriminator situation, 

let ^2, denote the roots greater than one, equal to one, 

less than one, respectively. For the parameter values speci

fied in Tables 9-12, the first component of the eigenvector 

o = 0. 

The rule of classification given in (5.53) can be written as 

associated with the eiaenvalue A^=l is zero and so v. 
' £. 2 

f ' 2 1 2 

" 1-^1 

(v(2))2 

+ log(X^X3) > 0 . (5.54) 

Since (5.54) is in the same form as (5.27), we can refer to 

Section B-l-c to determine the probabilities of misclassifi-

cation. We shall consider only the case where 8 ^ 0. Equa

tion (5.44) could be used to approximate the probabilities of 
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misclassification for non-positive quadratic forms by Pearson's 

appr oximat ion. 

2. Monte Carlo procedures 

Assume and are trivariate normal populations given 

In this section, we will estimate the probabilities of mis-

classification by Monte Carlo procedures. Following Section 

B-2, we obtain a triple of independent standard normal pseudo

random variates. , Y^, and . To obtain X = (X^, X^, 

the transformation 

X = G Y where Y = (Y^, Y^, Y^)' and 

by 

/ /  0  \  I "o "o"! \\ 

7T^: 0 , Ogp^ 1 P 

\\ ° / \ OgP^ P 1 / / 

and 

// G \ / 1 pM \ 

ïï^ : 0 , p^ 1 p 

\\ ° / \ "2 " M/ 

/ 

\ 
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To obtain X = (X^, X^, X^jeWg, make the transformation 

X = H Y + (6,0,0) 

where 

1 0 0 

H 0 

^ ̂ -^2 * 

l-2p^2_p2+2p^2p 

The probabilities of misclassification were estimated 

by the relative frequency explained in Section B-2 for each of 

the three situations. For the univariate unadjusted dis

criminator, we use the variate X^ as our discriminator and 

the classification rule (5.1). For the univariate adjusted 

(for q=2 covariates) discriminator, we use the variate Z in 

(5.50) as our discriminator and the classification rule (5.12) 

where and V2 are given by (5.51) and (5.52) , respectively. 

For the trivariate unadjusted discriminator, we use the 

variâtes (X^, X^, X^)' as our discriminators and the rule of 

classification (5.17). 
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D. Discussion 

1. Consideration of weights 

In Chapter III, to form the weighted variate Z = l'''^2—2 

where 

-1 ̂  -l~-12^-22-2' 

-2 ~ -2 "-12 ̂^2-2' 

we used as weights 

Note that is the covariance matrix of Z. when 
—i 1.2 —1 

X e.TT. , i=l,2. Hence, we are weighting each Z . by 
\ ̂2 / ^ 

the inverse of the determinant of its covariance matrix. 

These are convenient weights to use in computations since they 

are constant weights with W^+w^ = 1. However, they may not 

be "optimal" in the sense of minimizing [P(2/1)+P(1/2)]. 

Analogous to the weights given in (5.55) we could use 

the covariance matrices of in place of the determinants of 

these covariance matrices of That is, our weights are now 

the matrices given by 

ïl = I'£uÎ2''' + 
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^2 = '5-5«> 

These weights are intuitively appealing based on pro

cedures commonly used in statistics when combining variates. 

If these weights were used in Chapter III, then the covariance 

matrices of Z given by (3.6) and (3.9) when Xeu. , i=l,2, 

respectively, are now 

v'^' = (Z^-E (Z]^) ) (Z^-E (Z^) ) ' ' 

+ 2W^E (Z^-E (Z^) ) (Z^-E (2.2^ ) 

+ ̂ 2^ (^2"^ (-2^ ̂ (-2"^ (-2^ ̂ '-2 ' • (5.57) 

Since W. have intraclass correlation structure and each of the 
—1 

variance and covariance matrices in (5.57) have intraclass 

correlation structure, it is easily seen that the covariance 

matrices V" have intraclass correlation structure. Hence, 

we could obtain a (pxp) orthogonal matrix £ such that 

r = diag(a. ,6. ,...,B.) 
— — — — 11 1 

as done previously. These matrix weights are certainly not 

as convenient computationally as the constant weights based 

on determinants. For the case when p=l, the weights given 

by (5.55) and (5.56) are identical. 

A third choice would be weights which minimize 

[P(2/1)+P(1/2)]. For convenience, let these weights and 
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^2 be constant weights such that W^+Wg = 1. Define W = W^, 

then 1-W = Wg. 

For purposes of illustration, suppose and 9=0, 

with Z given by (5.7). Hence, the probabilities of misclass-

ification are given by (5.14) and (5.16). They are 

2 V, V 
p(2/i) = PExf < log 

and 
V, V, 

P(l/2) P[Xi 
' 

2 

where are given by 

= Gg + [W(aQpj^-p^)+p^] ̂-2 [W(aQp|-p^) ]0Qp^ , 

V2 = 1 + [W(aQpj^-p^)+p^l^-2 [W(aQpj_-p^] p^ . 

Hence differentiating [P(2/1)+P(1/2)] with respect to W and 

setting the expression equal to zero, we obtain 

2̂ "̂ 1 V V 

-f(^log^)__^_2 2_= 0, 

(5.58) 

where f(x) denotes the probability density function for a 

central chi-sguare variate with 1 degree of freedom. 

Solving for W in Equation (5.58) does not appear feasible 

analytically. Possibly by computational procedures, one 

could solve for W. 



117 

In general, the expressions for the probabilities of 

misclassification involve densities of indefinite forms in 

non-central chi-square variates. If the forms are definite, 

one might use Pearson's approximation to obtain a central chi-

square density and continue as outlined. 

These weights are "optimal" in the sense of minimizing 

[P(2/1)+P(1/2)]. However, in practical situations, they may 

not be computationally convenient. 

One interesting case occurs if 12^ ~ —12' say. 

Then it is natural to use 

- ~ -1 ~ -12-22-2 (5.59) 

as the adjusted discriminator. By making a linear transforma

tion, assuming the parameters are known, the populations would 

be TTn : N ^ ̂  , Z^^^\and Tr„ : N . l(~\. \ . where 
Pn-q - J ^ V\G / - J 

and where is given in (3.1) except we are 

assuming ^^2 "£.12 ~—12' 

Forming the likelihood ratio X for ^ in (5.59) we have 

, r. ( 2 )  j 

2 log X = log -4lfT+ 

1-11.2' 

" [ 'ïl"l' 'I12-2%]"^-l"-12-22-2^ ' 'ill'.2' 

" tXl-£l2£.2k2l • '5.60) 



118 

If all the variates in 

using the likelihood ratio, 

are discriminators, we have. 

( 2 )  

2 log X = log 
TIT ^2 

[Z 
1̂" i 

^2 

^ly [,(!)]-! 
X2 

(5.61) 

Using the facts (see, for example, Graybill, 19 69) that 

."'I = II22I llu.zl-

-Z [Z -22-211-11.2 J 

^-11.2-' -12-22 

[£22! ii'" 

r v ( i )  • ) —  y " 1  ̂  z ~ ^ z  r z ^ ^ ^  1  ~ ^ z  z ~ ^  
^-22.1^ ~ -22 -22-21^-11.2-' -12-22 ' 

(5.62) 

for i=l,2, we see that Equations (5.60) and (5.61) are the 

same. Therefore, when zii^=zi?^, the discriminant functions 
—X z —X ̂  

for the adjusted (for q covariates) discriminator ^ and for 

(-l\ 
the unadjusted discriminator X j are identical. 
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2. Construction of tables 

As outlined in Section B-2, Monte Carlo procedures were 

used to estimate the probabilities of misclassification for 

the three situations considered. To obtain the probabilities 

of misclassification by Monte Carlo methods for Tables 1-4 

(bivariate case), 500 bivariate normal observations were 

generated from or for each parameter set specified. 

These 500 observations were then used by each of the three 

procedures given in Section B to estimate the probabilities of 

misclassification. 

For Tables 5-8 (bivariate case) , 1000 bivariate normal 

observations were generated from or and used in esti

mating the probabilities of misclassification for each of the 

three situations. Tables 1-8 also contain the probabilities 

of misclassification obtained by Pearson's approximation for 

the univariate unadjusted and univariate adjusted discrimi

nator situations which were explained in Sections B-l-a and 

B-l-b, respectively. 

For the bivariate unadjusted discriminator situation. 

Tables 1-4 contain probabilities of misclassification by the 

numerical integration method derived in Section B-l-c. When 

67^0, Tables 5-8 contain some values for the probabilities of 

misclassification using Pearson's approximation for the 

bivariate unadjusted discriminator. Since this approximation 

for a non-positive quadratic form is not extremely accurate, 
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these values are included primarily as a check on the values 

obtained by the Monte Carlo procedure. 

In Tables 9-12 (trivariate case) , 1000 trivariate normal 

observations were generated from or and used in esti

mating the probabilities of misclassification for each of the 

three situations. Tables 9-12 also contain the probabilities 

of misclassification obtained by Pearson's approximation for 

the univariate unadjusted and univariate adjusted discrimi

nator situations. 

For the trivariate unadjusted discriminator situation. 

Tables 9-12 contain a few values obtained by Pearson's approxi

mation for non-positive quadratic forms. These values are in

cluded again as a check on the Monte-Carlo values. 

3. Findings and conclusion 

We now examine the tables in the Appendix and compare the 

probabilities of misclassification for the three classifica

tion procedures. For convenience, in this section, we shall 

refer to the bivariate unadjusted discriminator and the uni

variate unadjusted discriminator as the bivariate discriminator 

and the univariate discriminator, respectively. 

When 6=0.0 (Tables 1-4), the bivariate discriminator 

generally gives smaller probabilities of misclassification 

than the univariate adjusted discriminator. It is generally 

much better when = 0.9. The univariate adjusted 
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discriminator is also generally superior to the univariate 

discriminator except when = 0.9; = -0.5, -0.2, 0.0, 

0.2, 0.5, and p| = 0.5; = -0.2, 0.0, 0.2. If we 

look only at P(l/2), the bivariate discriminator is better 

than the univariate discriminator except when p| = 0.9; 

p2 = -0.5, -0.2, C.0, 0.2, 0.5. However, in these parameter 

situations, [P(2/1)+P(1/2)] is smaller for the bivariate dis

criminator. As expected, the probabilities of misclassifica-

tion are usually less for all three classification procedures 

2 2 
when Cq = 4.0, 9 = 0.0 rather than 0^ = 2.0, 9 = 0.0. 

When 9 = 2.0 (Tables 5-8), the bivariate discriminator 

and the univariate adjusted discriminator both have smaller 

P(2/l) than the univariate discriminator. For P(l/2), they are 

usually better than the univariate discriminator except when 

p^ = 0.9; P2 = -0.5, -0.2, 0.0, 0.2, 0.5. However, in these 

parameter situations, [P (2/1)+P(1/2)] is less for the bi

variate discriminator. The bivariate discriminator and the 

univariate adjusted discriminator have probabilities of mis-

classification essentially the same except for P(l/2) when the 

bivariate discriminator is much better for p^ = 0.9; p^ = 

—0. 5, —0.2. 

Confining our attention to Tables 1-8, it is clear 

that the probabilities of misclassification for respective 

2 
values of a^, (pjy Pg), for the bivariate and the univariate 

adjusted discriminators are less when 6 = 2.0 than for 6 = 0.0. 
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Again, this seems to be what one would expect. 

Focusing on Tables 9-12, we observe that the probabilities 

of misclassif ication for the trivariate discriminator and the 

univariate adjusted discriminator are generally the same ex

cept for p| = 0.7; = -0.7, -0.5, when P(l/2) for the tri

variate discriminator is much less than for the univariate 

adjusted discriminator. They are both generally better than 

the univariate discriminator except for P(l/2) when p = 0.0; 

= 0.2, 0.5; P2 = -0.2, 0.0, 0.2,and when p = 0.5; p^ = 

0.5, 0.7; p^ = -0.2, 0.0, 0.2. 

Comparing Tables 5 vs. 9 and 6 vs. 10, we find that using 

two covariates when p = 0.0 is superior to using just one co-

2 
variate when = 2.0, 9 = 2.0, since more information is 

available for the former case. 

In conclusion, it appears based on our study that if co

variates are available it is advantageous to use them either as 

discriminators or as covariates under intraclass correlation 

models. Our study shows that, in general, the performances 

are the same whether we use them as discriminators or as co

variates. For a few special cases, the former is better. This 

probably is due to the fact that in constructing the adjusted 

discriminators, we used the intuitive appealing and easily 

computed weights instead of "optimal weights." Since compu

tation for "optimal weights" appears to be difficult, this 

problem needs further consideration. 
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We have assumed in this thesis that the population co-

variance matrices have intraclass correlation structure which 

occur in practice (see, for example, Bartlett and Please, 

1963). In such a model, the number of parameters is not very 

large. If the investigator has arbitrary covariance matrices, 

then the number of parameters which need to be considered 

becomes extremely large. To compare probabilities of mis-

classification for the various classification procedures, use

ful approximations need to be found or one will have to use 

empirical results. 
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2 
Table 1. Probability of misclassification P(2/1) for = 

2.0, e = 0.0, (p^, p^) 

Bivariate (p=l, q=l) Case 
Bivariate Univariate Univariate^ 
Unadjusted Adjusted Unadjusted 

n' ml Discriminator Discriminator Discriminator 
Monte Numerical Monte Exact Monte Exact 
Carlo Integration Carlo Carlo 

0.0 -0.9 .3600 .3310 .3800 .3506 
0.0 -0.5 .5540 .5292 .5580 .5518 
0.0 -0.2 .6020 .5842 .6060 .5889 
0.0 0.0 .5830 .5949 .5830 .5949 .5830 .5949 
0.0 0.2 .5920 .5842 .58 60 .5889 
0.0 0.5 .5140 .5295 .5260 .5518 
0.0 0.9 .3080 .3310 .3340 .3506 

0.2 -0.9 .3120 .3060 . 3340 .3378 
0.2 -0.5 .5200 .4963 .5780 .5504 
0.2 -0.2 .5820 . 5599 .6040 .5915 
0.2 0.0 .6240 .5874 . 6220 .5991 
0.2 0.2 .5900 .5973 .5820 .5948 
0.2 0.5 .5680 .5569 .5640 .5614 
0.2 0.9 .3360 .3588 .3460 .3696 

0.5 —0.9 .2720 .2685 .3400 .3336 
0.5 -0.5 .4140 .4291 .5700 .5734 
0.5 -0.2 .4880 .4836 .6040 .6188 
0.5 0.0 .5220 .5203 .6240 .6275 
0.5 0.2 .5980 .5603 .6500 .6241 
0.5 0.5 .6000 .58 66 .6100 .5941 
0.5 0.9 .3900 .4121 .3940 .4138 

0.9 -0.9 .1920 .1736 .5260 .5222 
0.9 -0.5 .1480 .1355 .2000 .2023 
0.9 -0.2 .1380 .1388 .1940 .1797 
0.9 0.0 .1340 .1470 .1840 .1810 
0.9 0.2 .1980 .1604 .1960 .1911 
0.9 0.5 .1940 .1984 .2380 .2264 
0.9 0.9 ,5220 .507 0 .6120 .5854 

*These values do not depend on (pjy Pg). 
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Table 2. Probability of misciassification P(l/2) for = 
2 . 0 ,  0  =  0 . 0 ,  ( p ^ ,  p ^ )  

Bivariate (p=l, q=l) Case ~ 

Bivariate 
Unadjusted 

Univariate 
Adjusted 

n * Discriminator Discri .r-inator 
^1 ^2 Monte Numerical Monte Exact 

Carlo Integration Carlo 
0.Ô -0.9 .0720 .0895 .0680 .0931 
0.0 -0.5 .1860 .1976 .2000 .2065 
0.0 -0.2 .2320 .2314 .2300 .2343 
0.0 0.0 .2310 .2390 .2310 .2390 
0.0 0.2 .2440 .2315 .2580 .2343 
0.0 0.5 .1920 .1976 .2220 .2065 
0.0 0.9 .0860 .0895 .0760 .0931 

0.2 -0.9 .0700 .0830 .0720 .0876 
0.2 -0.5 .1780 .1897 .1860 .2056 
0.2 -0.2 .2160 .2264 .2240 .2363 
0.2 0.0 .2180 .2371 .2200 .2424 
0.2 0.2 .2340 .2347 .2240 .2389 
0.2 0.5 .2020 .2108 .2200 .2135 
0.2 0.9 .0740 .0990 .0840 .1016 

0.5 -0.9 .0700 .0773 .0700 .0858 
0.5 -0.5 .2000 .1912 . 2220 .2224 
0.5 -0.2 .2520 .2398 .2700 .2586 
0.5 0.0 .2660 .2555 .2820 .2660 
0.5 0.2 .2480 .2551 .2280 .2631 
0.5 0.5 .2360 .2344 .2240 .2384 
0.5 0.9 .1440 .1223 .1500 .1229 

0.9 —0.9 .1240 .0889 .2040 .1862 
0.9 -0.5 .3060 .2768 .5320 .5458 
0.9 -0.2 . 3400 .3321 .5060 .5122 
0.9 0.0 .3500 .3641 .5280 .5143 
0.9 0.2 .3640 .3965 .5000 ,5295 
0.9 0.5 .4760 .4478 .5860 .5786 
0.9 0.3 . 17 20 .2135 .2420 = 2316 

Univariate^ 
Unadjusted 

Pi scr iminatoj 
Monte Exact" 
Carlo 

.2310 .2390 

^These values do not depend on (p|, P^)• 
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Table 3. Probability of misclassification P(2/l) for = 
4.0, 6 = 0.0, (p|, pj) 

Bivariate (p=l, q=l) Case 

4 '2 

Bivariate 
Unadjusted 

Pi sc r imina tor 
Monte Numerical 
Carlo Integration 

Univariate Univariate 
Adjusted Unadjusted 

Discriminator Discriminator 
Monte Exact Monte Exact 
Carlo Carlo 

0.0 - 0 , 9  . 2 5 2 0  . 2 9 0 8  .2600 .2869 
0.0 -0.5 .4560 .4551 .4700 .4612 
0.0 -0.2 .4700 .4961 .4660 .4973 
0.0 0.0 .4980 .5034 .4980 .5034 .4980 .5034 
0.0 0.2 .518 0 .4961 .5160 .4973 
0.0 0.5 .4380 .4551 .4500 .4612 
0.0 0.9 .2780 .2808 .2720 .2869 

0.2 -0.9 .2640 .2633 .2820 .2756 
0.2 -0.5 .3960 .4361 .4260 .4569 
0.2 -0.2 .4720 .4860 .5020 .4976 
0.2 0.0 .4860 .5008 .4900 .5062 
0.2 0.2 .4880 .5014 .4940 .5027 
0.2 0.5 .4640 .4602 .4720 .4709 
0.2 0.9 .2660 .2998 .2740 .3019 

0.5 -0.9 .2540 .2361 .2780 .2663 
0.5 -0.5 .3940 .3967 .4720 .4669 
0.5 -0.2 .4360 .4519 .5040 .5150 
0.5 0.0 .4340 .4775 .5140 .5267 
0.5 0.2 .4780 .4935 .5360 .5258 
0.5 0.5 .4780 .4878 .4980 .4983 
0.5 0.9 .3400 .3332 .3440 .3339 

0.9 -0.9 .1840 .1678 .4120 .3728 
0.9 -0.5 .2280 .2028 .6660 .68 01 
0.9 -0.2 .1380 .1900 .28 60 .2753 
0.9 0.0 .1800 .1979 .2960 .2701 
0.9 0.2 .2300 .2161 .2880 .2782 
0.9 0.5 .3120 .3004 .6660 .6805 
0.9 0. S .3700 .3682 .4540 .4561 

^These values do not depend on (p^, P^)• 
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Table 4. Probability of misclassification P(l/2) for QQ = 
4.0/ 9 — 0.0, (p^f P^) 

Bivariate (p=l, q=l) Case 

Bivariate 
Unadjusted 

Univariate 
Adjusted 

^1 "2 
Monte Numerical Monte Exact 
Carlo Integration Carlo 

0.0 -0.9 .0820 .0666 .0800 .0675 
0.0 -0.5 .1300 .1461 .1220 .148 6 
0.0 -0.2 .2080 .1696 .2120 .1702 
0. 0 0.0 .1700 .1740 .1700 .1740 
0.0 0.2 .1620 .1696 .1700 .1702 
0.0 0.5 .1480 .1461 .1680 .1486 
0.0 0.9 .0780 .0666 .0820 .0675 

0.2 -0.9 .0720 .0621 .0600 .0634 
0.2 -0.5 .1420 .1395 .1480 .1461 
0.2 -0.2 .1900 .1655 .1940 .1704 
0.2 0.0 .1740 .1731 .1780 .1758 
0.2 0.2 .1920 .1728 .1960 .1736 
0.2 0.5 .1520 .1347 .1580 .1542 
0.2 0.9 .0820 .0727 .0800 .0731 

0.5 -0.9 .0400 .0577 .0360 .0601 
0.5 -0.5 .1380 .1357 .1760 .1519 
0.5 -0.2 .1700 .1646 .1860 .1814 
0.5 0.0 .2040 .17 47 .2140 .1892 
0.5 0.2 .1560 .1776 .1680 .1886 
0.5 0.5 .1520 .1662 .1620 . 17 08 
0.5 0.9 .0800 .0913 .0800 .0860 

0.9 -0.9 .0600 .0625 .0820 .1031 
0.9 -0.5 .1900 .2016 .3260 .3147 
0.9 -0.2 .3120 .2753 .6320 .6381 
0.9 0.0 .2920 .3035 .6280 .6322 
0.9 0.2 .3200 .3214 .6220 .6414 
0.9 0.5 .2960 .2882 .3360 .3151 
0.9 0.9 . 1140 . 1271 • 164 0 . 14 57 

Univariate^ 
Unadjusted 

Discriminate 
Monte Exact 
Carlo 

.1700 .1740 

^These values do not depend on (p^, p^) . 
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Table 5. Probability of misclassification P(2/l) for o.= 
2.0, 6 = 2.0, (p|, p^) 

Bivariate (p=l, q=l) Case 

Bivariate 
Unadjusted 
Discriminator 

Univariate 
Adjusted 

Discriminator 

Univariate 
Unadjusted 

Discriminator 
Monte Pearson's Monte Pearson's Monte Pearson's 
Carlo Approxi Carlo Approxi Carlo Approxi

mation mation mation 
0.0 -0.9 .2060 .2090 .1923 
0.0 -0.5 .2820 .2710 .24 55 
0.0 -0.2 .2380 .2481 .2580 .2475 
0.0 0.0 .2530 .2474 .2530 .2474 .2530 .2474 
0.0 0.2 .2530 .2520 .2475 
0.0 0.5 .2650 .2660 .2455 
0.0 0.9 .1830 .2070 .1923 

0.2 -0.9 .2110 .1950 .2240 .2020 
0.2 -0.5 .2490 .2400 .2524 
0.2 -0.2 .2710 .2430 .2485 
0.2 0.0 .2640 .2440 .2447 
0.2 0.2 .2430 .2416 .2430 .2415 
0.2 0.5 .2430 .2440 .2346 
0.2 0.9 .1810 .1850 .1790 

0.5 -0.9 .1650 .2070 .2139 
0.5 -0.5 .2640 .2740 .2531 
0.5 -0.2 .2510 .2500 .2358 
0.5 0.0 .2250 .2190 .2261 
0.5 0.2 .2190 .2280 .2184 
0.5 0.5 .2170 .2065 .2170 .2058 
0.5 0.3 .1480 .1462 .1640 .1464 

0.9 -0.9 .1270 .2750 .2573 
0.9 -0.5 .0880 .1130 .1080 
0.9 -0.2 .1000 .0940 .0877 
0.9 0.0 .0880 .0910 .0830 
0.9 0.2 .0910 .0940 .0812 
0.9 0.5 .0900 .1040 .0850 .0800 
0.9 0.9 .0530 .0410 .0445 

^These values do not depend on (p^, p^)• 
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Table 6. Probability of misclassif ication P(l/2) for cr. = 
2 . 0 ,  0  =  2 . 0 ,  ( p j y  p ^ )  "  

Bivariate (p=l, q=l) Case 

"1 "2 

Bivariate 
Unadjusted 
Discriminator 

Univariate 
Adjusted 

D i s cr iminator 

Univariate 
Unadjusted 

Discriminator 
Monte Pearson's Monte Pearson's Monte Pearson's 
Carlo Approxi- Carlo Approxi Carlo Approxi

mation mation mation 
Ô. 0 -0.9 .0370 .0380 .0438 
0. 0 -0.5 .1040 .1020 .1118 
0. 0 -0.2 .1390 .1406 .1400 .1362 
0. 0 0.0 .1440 .1407 .1440 .1407 .1440 .1407 
0. 0 0.2 .1410 .1410 .1362 
0. 0 0.5 .1320 .1230 .1118 
0. 0 0.9 .0510 .0480 .0438 

0.2 -0.9 .0530 .0554 .0450 .0448 
0.2 -0.5 .1400 .1300 .1135 
0.2 -0.2 .1500 .1500 .1385 
0.2 0.0 .1400 .1160 .1428 
0.2 0.2 .1540 .1387 .1540 .1379 
0.2 0.5 .1190 .1150 .1130 
0.2 0.9 .0410 .0360 .0426 

0.5 -0.9 .0550 .0540 .0475 
0.5 -0.5 .1190 .1270 .1276 
0.5 -0.2 .1340 .1550 .1552 
0.5 0.0 . 1670 .1550 .1577 
0.5 0.2 .1580 .1600 .1500 
0.5 0.5 .1200 .1249 .1210 .1204 
0.5 0.9 .0460 .0419 .0440 .0398 

0.9 -0.9 .0650 .1010 .1016 
0.9 -0.5 .1750 .2630 .2437 
0.9 -0.2 .1830 .2350 .2268 
0.9 0.0 .2200 .2330 ,2106 
0.9 0.2 .1850 .1900 .1894 
0.9 0.5 .1300 .1446 .1330 .1416 
0.9 0.9 .0260 .0280 .0277 

^These values do not depend on (p^, P^)• 
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Table 7. Probability of inisclassif ication P ,2/1) for a^= 
4.0, 8 = 2.0, (p^, p^) 

Bivariate (p=l, q=l) Case 

Pi 

Bivariate 
Unadjusted 
Discriminator 

Univariate 
Adjusted 

Discriminator 
X 6 

Monte Pearson's Monte Pearson 
Carlo Approxi Carlo Approxi 

mation mation 
0.0 -0.9 .1910 .2020 .2159 
0.0 -0.5 .3250 .3270 .2990 
0.0 -0.2 .314 0 .3134 .3140 .3136 
0.0 0.0 .3100 .3158 .3100 .3158 
0.0 0.2 .3230 .3160 .3136 
0.0 0.5 .3260 .3220 .2990 
0.0 0.9 .2050 .2190 .2159 

0.2 —L . S .2170 .2135 .2110 .2183 
0.2 -0.5 .3210 .3140 .3029 
0.2 -0.2 .3400 .3520 .3152 
0.2 0.0 .3460 .3530 .3152 
0.2 0.2 .3270 .3108 .3280 .3110 
0.2 0.5 .3020 .3010 .2941 
0.2 0.9 .2030 .2150 .2116 

0.5 -0.9 .1800 .1990 .2211 
0.5 -0.5 .3010 .3420 .3094 
0.5 -0.2 .3040 .3240 .3155 
0. 5 0.0 . 3310 . 3430 .5110 
0.5 0.2 .3100 .3190 .3029 
0.5 0.5 .3010 .2807 .3060 .2818 
0.5 0.9 .1980 .1979 .1970 .1980 

0.9 -0.9 .1580 .2930 .2740 
0.9 -0.5 .1590 .2560 .2463 
0.9 -0.2 .1330 .1960 .1920 
0.9 0.0 .1340 .1860 .1791 
0.3 0.2 . 1330 .1740 .1760 
0.9 0.5 .1800 .2008 .1980 .1796 
0.9 0.9 .1420 .1290 .1360 

Univariate 
Unadjusted 

Discriminator 
Monte Pearson * s 
Carlo Approxi

mation 

.3100 .3158 

^These values do not depend on (pJ pi). 
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2 
Table 8. Probability of misclassification P(l/2) for = 

4.0, e = 2.0, ' (Pi' P2) 

Bivariate (p=l, q=l) Case 

4 Bivariate 
Unadjusted 

Discriminator 

Univariate 
Adjusted 

Discriminator 

Univariate 
Unadjusted 
D iscriminator 

Monte Pearson's Monte Pearson's Monte Pearson's 
Carlo Approxi Carlo Approxi Carlo Approxi

mation mation mation 
Ô.0 -Ô. 9 .0380 .0370 .0426 
0.0 -0. 5 .0900 .0850 .0939 
0.0 -0. 2 .1040 .1115 .1010 .1091 
0.0 0. 0 .1160 .1120 .1160 .1120 .1160 .1120 
0.0 0. 2 .1090 .1180 .1091 
0.0 0. 5 .1010 .1000 .0939 
0.0 0. 9 .0440 .0490 .0426 

0.2 -0.9 .0410 .0496 .0350 .0421 
0.2 -0.5 .0880 .0780 .0940 
0.2 -0.2 .1160 .1260 .1097 
0.2 0.0 .1010 .1170 .1129 
0.2 0.2 .1040 .1128 .1030 .1103 
0.2 0.5 .0920 .0760 .0950 
0.2 0.9 .0340 .0460 .0431 

0.5 -0.9 .0370 .0350 .0421 
0.5 -0.5 .1070 .1070 .0986 
0.5 -0.2 .1290 .1220 .1165 
0.5 0.0 . 1220 .1370 .1204 
0.5 0.2 .1100 .1080 .1175 
0.5 0.5 .1070 .1170 .1180 .0999 
0.5 0.9 .0530 .0435 .0590 .0433 

0.9 -0.9 .0500 .0710 .0697 
0.9 -0.5 .1630 .2350 .2414 
0.9 -0.2 .2000 .2610 .2641 
0.9 0.0 .2370 .2760 .2541 
0.9 0,2 .224 0 .2500 .2328 
0.9 0.5 .1560 .1999 .1620 .1771 
0.9 0.9 .0500 .0460 .0437 

^These values do not depend on (p^, p^). 
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Table 9, 

P-î 

Probability of misclassification P(2/l) for = 
2.0, 9 = 2.0, p = 0.0, (p^, Pg) 

Trivariate (p=l, q=2) Case 

pA 
Trivariate 
Unadjusted 
Discriminator 

Univariate 
Adjusted 

Discriminator 

Univariate 
Unadjusted 
Discriminator 

Monte Pearson's Monte Pearson's Monte Pearson's 
Carlo Approxi Carlo Approxi Carlo Approxi

mation mation mation 
0.0 -0.7 .0790 .0810 .1390 
0.0 -0.5 ,2360 .2430 .2339 
0.0 -0.2 .2640 .2484 .2630 .2475 
0.0 0.0 .2580 .2474 .2580 .2474 .2580 .2474 
0.0 0.2 .2600 .2590 .2475 
0.0 0.5 .2600 .2630 .2339 
0.0 0.7 .0900 .0920 .1390 

0.2 -0.7 .0740 .1479 .0890 .1490 
0.2 -0.5 .2370 .2580 .2474 
0.2 -0.2 .2640 .2630 .2495 
0.2 0.0 .2360 .2380 .2418 
0.2 0.2 .2540 .2356 .2540 .2353 
0.2 0.5 .2260 .2260 .2133 
0.2 0.7 .0730 .0770 .1207 

0.5 -0.7 .0700 .0810 .1562 
0.5 -0.5 .2160 .2810 .2565 
0.5 -0.2 .2090 .2220 .2051 
0.5 0.0 . 1920 .1930 .2114 
0.5 0.2 .1600 ,1570 .1748 
0.5 0.5 .1450 .1501 .1450 .1490 
0.5 0.7 .0440 .0440 .0610 

0.7 -0.7 .0500 .2710 .2562 
0.7 -0.5 .0130 .0190 .0232 
0.7 —0.2 .0290 .0230 .0190 
0.7 0.0 .0150 .0160 .0181 
0.7 0.2 .0180 .0150 .0164 
0.7 0.5 .0100 .0076 .0050 .0095 
0.7 0.7 .0000 .0006 .0000 .0001 

^These values do not depend on (pjy p^). 
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Table 10. Probability of misclassification P(l/2) for u. = 
2.0, CD

 

II
 

M
 

O
 

"D
 

— 0.0, (P^, P^) 

Trivariate Cp= 1, q=2) Case 

Trivariate Univariate Univariate 
Unadjusted Adjusted Unadjusted 

Pi PÔ Discriminator Discriminator Discriminator 
J. Monte Pearson's Monte Pearson's Monte Pear son's 

Carlo Approxi Carlo Approxi Carlo Approxi
mation mation mation 

5.Ô -0.7 .0110 ,0120 .0118 
0.0 -0.5 .0760 .0750 .0821 
0.0 -0.2 .1350 .1401 .1340 .1316 
0.0 0.0 .1460 .1407 .1460 .1407 .1460 .1407 
0.0 0.2 .1390 .1380 .1316 
0.0 0.5 .0910 .0850 .0821 
0.0 0.7 .0100 .0100 .0118 

0.2 -0.7 . Clio .0035 .0110 .0121 
0.2 -0.5 .0860 .0870 .0844 
0.2 —0.2 .1430 .1420 .1364 
0.2 0.0 .1470 .1480 .1451 
0.2 0.2 .1600 .1365 .1600 .1350 
0.2 0.5 .0870 .0890 .0829 
0.2 0.7 .0110 .0110 .0108 

0.5 -0.7 .0160 .0160 .0124 
0.5 -0.5 .1020 .1380 .1154 
0.5 -0.2 .1890 .2070 .1875 
0.5 0.0 .1790 .1760 .1927 
0.5 0.2 .1530 .1550 .1626 
0.5 0.5 .1040 .0964 .1050 .0899 
0.5 0.7 .0070 .0070 .0059 

0.7 -0.7 .0150 .0850 .0946 
0.7 -0.5 .0890 .1380 .1736 
0.7 -0.2 .0860 .1070 .1589 
0.7 0.0 .1090 .1200 .1472 
0.7 0.2 .0880 .1010 .1274 
0.7 0.5 .0450 .0631 .0520 .0621 
0.7 0.7 .0000 .0003 .0000 .0001 

^These values do not depend on (p^, p^). 
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Table 11. Probability of itiisclassif ication P(2/l) for cr^ = 
2.0, 6 = 2.0, p = 0.5, (Pi, P^) 

Trivariate (P=l, cr=2) Case 

Trivariate Univariate Univariate 
Unadjusted Adjusted Unadjusted 

p2 Discriminator Discriminator Discriminator 
i. 

Monte Pearson's Monte Pearson * : s Monte Pearson* s 
Carlo Approxi Carlo Approxi Carlo Approxi

mation mation mation 
0.0 -0.7 .2260 .2250 .2186 
0.0 -0.5 .2750 .2750 .2431 
0.0 -0.2 .2670 .2482 .2680 .2475 
0.0 0.0 .2540 .2474 .2540 .2474 .2540 .2474 
0.0 0.2 .2490 .2490 .2475 
0.0 0.5 .2640 .2690 .2431 
0.0 0.7 .2200 .2260 .218 6 

0.2 -0.7 .2370 .2211 .2660 .2305 
0.2 -0.5 .2660 .2760 .2523 
0.2 -0.2 .2540 .2520 .2488 
0.2 0.0 .2590 .2590 .2438 
0.2 0.2 .2390 .2396 .2400 .2395 
0.2 0.5 .2520 .2540 .2286 
0.2 0.7 .2420 .2430 .2021 

0.5 -0.7 .1920 .2530 .2465 
0.5 -0.5 .2550 .2730 .2545 
0.5 -0.2 .2390 .2440 .2288 
0.5 0.0 .2010 .1950 .2156 
0.5 0.2 .2010 .2030 .2060 
0.5 0.5 .1800 .1899 .1790 .1890 
0.5 0.7 .1580 .1580 .1595 

0.7 -0.7 .1530 .2620 .2574 
0.7 -0.5 .1790 .2290 .2056 
0.7 -0.2 .1330 .1620 .1543 
0.7 0.0 .1270 .1340 .1422 
0.7 0.2 .1240 .1310 .1368 
0.7 0.5 .1370 .1378 .1370 .1276 
0.7 0.7 .0940 .1035 .0950 .1025 

^rhese values do not depend on (p^, P^)• 
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Table 12. Probability of itiisclassif ication P(l/2) for a. = 
2.0, 8 = 2.0, p = 0.5, (pjy p^) 

Trivariate (p=l, q=2) Case 

Trivariate 
Unadjusted 
Discriminator 

Univariate 
Adjusted 

Discriminator 

Univariate 
Unadjusted 

Discriminator 
J. 

Monte Pearson's Monte Pearson's Monte Pearson's 
Carlo Approxi Carlo Approxi Carlo Approxi

mation mation mation 
Ô.Û -0.7 .0710 .0700 .0639 
0.0 -0.5 .0860 .0870 .1019 
0.0 -0.2 .1270 .1404 .1270 .1347 
0.0 0.0 .1330 .1407 .1330 .1407 .1330 . 1407 
0.0 0.2 .1330 .1320 .1347 
0.0 0.5 .1090 .1040 .1019 
0.0 0.7 .0850 .0780 .0639 

0.2 -0.7 .0800 .1008 .0660 .0653 
0.2 -0.5 .1060 .1120 .1039 
0.2 -0.2 .1340 .1340 .1378 
0.2 0.0 .1520 .1540 .1436 
0.2 0.2 .1260 .1380 .1260 .1370 
0.2 0.5 .1000 .1000 .1032 
0.2 0.7 .0680 .0690 .0632 

0.5 -0.7 .0690 .0710 .0733 
0.5 -0.5 .1060 .1140 .1234 
r\ c n  ̂A £ 1 C A ^ ^ A 
W • w/ — V • 6 • J.T \J\J •  X 0 0 1  

0.5 0.0 .1700 .1780 .1657 
0.5 0.2 .1650 .1640 .1539 
0.5 0.5 .1190 .1172 .1200 .1117 
0.5 0.7 .0790 .08 00 .0635 

0.7 -0.7 .0830 .1050 .1084 
0.7 -0.5 .1250 .1980 .1956 
0.7 -0.2 .2190 , 228 0 . 2172 
0.7 0.0 .2050 ,2130 .2052 
0.7 0.2 .1830 .1780 .1820 
0.7 0.5 .1250 .1349 .1250 .1237 
0.7 0.7 .0730 .0677 .0730 .0631 

™These values do not depend on (p|, p^)• 


