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1 Introduction Kurfess et al[5] proposed a method for calculating confidence

. . intervals based on the assumption that dimensions on a part have
Reconstructing a surface from a set of discrete measurementg 'ﬁ]ultivariate normal distribution. A two-stage method is pro-

a pr_obler_n sh_ared b)_/ a number of related fields including rever Gsed in which deterministic errors are accounted for by first fit-
engineering, inspection, and topography. The general approac ﬁ% a known deterministic model. The confidence intervals are

to fit the data to some underlying model to obtain an artifici stimated from the deviations from the fitted model. The chal-

Sufff"“?e- In the context of _form error estimation, we can use ge in this approach is to find the appropriate deterministic
artificial surface to determine the form error for a given produ odel

geometry. A set of data points are obtained from the surface o A this paper, we consider this spatial dependence between

workpiece using devices such as a coordinate measuring mac;i'l(:jlﬁ1 . : - g ; .
. . . o ple points by using spatial statistics, especially the universal
(CMM). A fundamental question arises—can we fit an artificigl;oing"method, in the estimation of form errors. The surface data
surface to the set of points that provides a more accurate repigsj in these studies are from thgas of Machined Surfacés]
sentation(in terms of form error of the actual surface than the\we would like to thank Dr. P. J. Sullivan for sending us these
individual data points? If this is possible, then a more accuralf, The region for each surface is a square with sides measuring
estimation of form error can be obtained by evaluating the 304 mm. The grid spacing on both axes was giving a total

artificial surface. :
. of 26,896 (164« 164) data points for each sample.
Yang and Jackmahl] reviewed and evaluated current sam- ( ) P P

ling strategies and sample data analysis for form error estima- . - . .
Fion? WithoSt consideringpthe correlati)(;n of the sample points; Spatial Statistics for Form Error Estimation
they modeled the probability distribution of form error for random Let the set of all points on a surface being measured be denoted
sampling. This previous work did not take into account the corréy
lation between neighboring locations inherent in geometric ]
measurements. {Z(s): seD},

Palanivelu et al.[2] investigated the performance of leastwheresis a spatial location vector iR? (a two-dimensional ref-
squares estimation and minmax estimation of simple geometriegence datum planeThe index seD defines a finite region on the
The algorithms were tested using data sets as well as ideal ge@urface. We obtain a set of measuremef{¥s,),...,Z(s,)}, at
etries with induced form errors using composite sine waves aRflown locationss;, ...,S, .
random errors. They observed that the presence of sinusoidal erPreviously, Yang and Jackmémh] characterized the surface of
rors caused greater variability in the estimates. Stratified sampliagvorkpiece using a beta distribution for the deviation from nomi-
performed better than random or uniform sampling. nal with the assumption that the measurements were sufficiently

Yan and Mend 3] described form error as a deterministic comfar apart so tha#(s,),...,Z(s,) were treated as independent of
ponent and random component. The random error was assumeddoh other. However, for most surfaces the valueZ() at
be spatially independent with a normal distribution for uncertaintipcations in close proximity tend to be related to each other. The
parameters representing coordinate transformation elements. Tbeyariance function
developed a theoretical envelope for the random error component.
For thepdeterministic componerqt, the authors proposed a tvF\)/o-step COMZ(s),Z(s)))=C(si.5) Vsi,s;€D, @
method in which measurements are used to construct an artifigi@kcribes the relationship between the valdiés) and Z(s;) at
surface. This surface is then fitted to the nominal surface and tloeationss; ands;. If C(s;—s;) is a function only ofs; —s;|
deterministic error is estimated using the orthogonal deviatigie., the distance between the pojntbien the surfacéharacter-
from the nominal surface. They found that the two-step methaged by C(-)) is called isotropic. Surfaces are anisotropic if the
gave more accurate estimations of form error. In related wordependence betweet(s) andZ(s+d) is a function of both the
Yang and Mend4] again treated form errors as having determinmagnitude and the direction dfso that the variance is no longer
istic and random error components. They developed a hypothgsisely a function of the distance between two spatial locations. A
test for determining spatial independence. If the null hypothesisrigndom functionZ(+) having a covariance function as in Eq)
rejected, then deterministic error is assumed to be present. For &nel
deterministic method, an iterative fitting approach is proposed to
successively fit 8 spline of increasing order until the null hy- E(Z(s))=n VseD, @
pothesis is accepted.e., spatial independence after taking intgs called second-ordgor weak- or wide-sengestationary.
account deterministic errpr The variogram is an important parameter of geostatistics that is
also used to describe the relationship between values at two loca-
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Fig. 1 Sample points (100) taken from the bored surface

represents the variance of the difference betwéealues at dif-
ferent locations. The functiory(-) is called a semivariogram.
When the process is second-order station&ft) and y(-) are
related by

distance but also a function of directidne., y(d,6) in polar
coordinates Cressi€g7] gives an important note about the vari-
ogram estimators. I in Eqg. (2) is not constant but in fact de-
pends on the locatiog then the variogram estimators are actually

estimatin

¥(h)=C(0)~C(d). ? )
Note thatC(0)=var(Z(s)) is the variance oZ(s) at any loca- 2y(d)+(E(Z(s+d))—E(Z(s))".

tion s. Cressie[7] points out that the variogram exists even for Thys if the process is nonstationafiye., Eq.(2) does not

some processes that are not second-order stationary, and henggg|i$, we can decompose the process into two components
more general than the covariance function. The majority of ma-
Z(s)=pu(s)+e(s),

chined surfaces are typi_cally anisotropic because they exhibit a
pronounced lay or directional character. Sayles and Thd8)8k where E(Z(s)) = u(s) ande(s) is a zero-mean intrinsically sta-
tionary stochastic process with va(6+d)—e(s))=var(Z(s

also point out the limitations of(-) and use the structure func-
ion
tio +d)—2(s))=2y(d). The u(s) component represents a deter-
S(h)y=E{[Z(s)—Z(s+d)]?}, ministic trend surface that accounts for large-scale variation. The
ég) component represents small-scale variation on the trend sur-

to model the spatial dependence in their surface roughness StUdﬁ € and is considered to be stochastic in nature. An example of a
Assuming that a process is stationary with respect to the mesly ) p

trend surfaceu(s) used in kriging is

m(s)=a+c(x)+r(y), s=(xy)’, (®)

wherea is the overall trendg is a column effect, and is a row
effect. Another example is

(i.e., Eg. (2) holdg, then varg(s+d)—Z(s))=E(Z(s+d)
—Z(s))? and the variogram is estimated by

2y(d)
7 Nd (i,j)l1s—s;|=d

= (Z(s)—=Z(s))?, 4)
where the summation is over all distinct pairs of locations in the
sample that are separated by distadcandng is the total number

of pairs separated hy. Other robust estimations of variogram are
also described in Cressji&]. For irregularly spaced data, pairs ofwhere integep is the order of the trend surface.

data with approximately the same separation may be grouped toExpressior(5) is the basis of median-polish kriging and E6)
gether. Finally, a smooth curv@.g., linear, exponential, spheri-is the basis of universal kriginfi7]. The general approach is to
cal, rational quadratic modelis fitted to the set of variogram estimate the trend surfage(s) and subtract it from the data val-
estimates for a discrete set of values in order to interpolate thes{Z(s;)} to obtain residual§e(s;)}. The residuals are treated
variogram values for other distances. as stationary and a variogram is fitted to the residuals. Finally, the

- . . . . . estimated residuals are combined with the trend surface to obtain
2.1 Kriging. Kriging is a stochastic processes pred'Ct'O’éstimates of the actual surface.

theory used to produce contour maps of surfaces derived fromgnaples and Riple10] provide a software package &pLUS

regularly or irregularly scattered points in a space. This theofy 1] 1o implement universal kriging. The minimum mean-square-
usesC(-) or y(+) in the prediction process. If we assume a pro-

error unbiased predictat(x) is given by Ripley[12] as
kriging can be used to predict the process. If the process is iso- Z(s)=Ff(s)TB+VTK(s
tropic, then estimatof4) can be used. However, if the process is (So) =f(So) B +y k(So).
anisotropic, the variogram estimators are not only a function @he computation procedure is summarized as follows:

w(8)= 2, a,xly’, s=(xy), (6)

ut+vs=p

cess is second-order stationdig., Eq.(2) holds, then ordinary

(@)
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Fig. 2 Variograms and correlograms for 100 data points.
surface; and (e) and (f) residuals from second-order surface.

1 FormK=[C(s;,sj)].

2 Find L such thatLLT=K, whereLLT is the Cholesky de-

150

composition ofK andL is a lower triangular matrix.

3 Form
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Fig. 3 Fitted surface (a) and standard error of the prediction error
nential model with a,=8.

wheref is polynomial function for the trend surface aRds the

number of coefficient®=(p+1)(p+2)/2, wherep is the order
of the trend surface.

4 SolvelL ~Zy=L"'FpB by least squares fgB.

5 FormWy=[Z(s;)—f(s))"3].

6 Findy such that(LTy)=Wy.

7 Predict Z(sp) by f(so)'B+y'K(s), where k(so)
=[C(so,s1)] and varZ(s)—Z(sp)1=C(s0.50) —llef>+ /gl
whereLe=k(sy), RTg=1f(sp) — (L F)Te, andRis the orthogo-
nal reduction ofL ~1F.

3 Method for Form Error Estimation Using Kriging

(b) for expo-

points in theX-Y plane, i.e. ,Z(s) with se CH only. Our proce-

dure to calculate the flatness error by using universal kriging is
described as follows:

1 Take random sample&(s,),..
surface.

2 Use Venables and Ripley’s programs to calculé¢s) and
(ré within D. Note that the grid size specified in their program in
X andY directions to obtain the surface coordinates will affect the
approximation of the flatness errors of the predicted surface.

3 Obtain the two-dimension&D) convex hull only consider-
ing X andY coordinates of the sample pointsuLL [13] can be

used to find 2D or three-dimensionédD) convex hulls for a
given set of points.

.,Z(sy) from the inspected

We will not consider the extrapolation of the fitted surface 4 Remove the fitted surface outside the convex hull of the
which is outside the convex hullCH) formed by the sample X-Y plane.
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Fig. 4 Fitted surface (a) and standard error of the prediction error (b) for wave
model with a,=5
5 Calculate the flatness error of the fitted surféeY coor- m - m
dinateg inside the convex hull CH. .21 le a;2,2y(s,— ) =0,
Note that a similar procedure could be used for the estimation

of other form, orientation, and position error zones.

for any finite number of spatial locatiods; : i=1,...m} and real
3.1 Flatness Error Estimation for a Surface From a Bor- numbers{a;: i=1,...m} satisfying 2",a,=0. Otherwise, we
ing Process. As an example of form error estimation, we illus-may obtain negative mean-squared errors of prediction. The vari-

trate the use of universal kriging to calculate the flatness error fogram estimators, e.gy(d), cannot be used for kriging because

a machined surface from a boring process. An estimate of flatnelssy are not necessarily conditionally negative definite. It is sug-
error (using the minmax method in Yang and Jackmam is

gested that a variogram model be selected from among. a paramet-
41.16 using all 26,896 points. We treat this estimate as the trtie family of variograms which best fits the daf@]. Figure 2

flatness error which would be unknown to the inspector. Let whows correlation plots for the data and the residuals from first-
define an inspection process where we take 100 sample poiatsl second-order surfaces using B, together with covariance
from this surface(i.e., the set of 26,896 pointsising a random functions fitted by the eyéthe fitting of correlation(variogram
sampling method. The scatter plot of these points in XkeY  function is a subjective processThe covariance functions used
plane is shown in Fig. 1. If we only consider the individual pointsare the exponential model

the flatness form errofusing the minmax method as befprie

29.31. Next we use universal kriging to generate an artificial sur-
face for these points.

C(d,a,)=—e ldlac, (8)
The variogram must satisfy a property called conditional nega-
tive definiteness, i.e.,

and wave model
266 / Vol. 122, FEBRUARY 2000 Transactions of the ASME
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sin(||d|l/ay,) covariance model parameters aarg=8_ and a,=5. A_s can be _
C(d,aw)=aWW- (9) seen from the two surfaces, the choice between different covari-
ance modelgexponential and wave modglmakes a significant

The corresponding variogram models are

¥(d,ae,be) =be[ 1—eldl/ze], (10)

and

sin(|[dl/a)
W

A (1)

y(d,ay,by)=by| 1-

difference in prediction.
Although the fitted surfaces are continuous, we use & %55

sample grid within the regioB to approximate this fitted surface.
Since we do not consider the extrapolation of the fitted surface,
we find the convex hull for the sample points in region D, which

is shown in Fig. 5. Only the grids inside the convex hull are
used in the program to determine the flatness error. The flatness
error (using the minmax method on the grid valués 25.54 for

Fig. 3 (exponential modeJ which is smaller than 29.31 obtained

by using individual points, or 62 percent of the true value. Be-
cause we use a rectangular grid to represent the predicted surface
and calculate the flatness error, the results can be biased low be-
cause we may miss the minimum and maximum points. Figure 4
gives a large flatness error of 72.28, which is 76 percent larger
than the true error 41.16 calculated from all 26,896 points.

3.2 Implications for Form Error Estimation.  De-trending

for the exponential model and the wave model, respectively. The . . . X o . A
the data is an important issue in kriging. Universal kriging is

parameters d.,b.) and (@, ,b,) must be estimated for each

limited to polynomial trend surfaces. Cresgig] suggests that

model.
If y(h)—co>0 ash—0, thenc, is called the nugget effect median-polish kriging can provide a more flexible and statistically

which is caused by measurement error. Since we consider fg&!Stant method of spatial prediction than universal kriging. An-
measurement error to be negligible, the nugget effect is not iAther more serious concern is the choice of a variogram model
cluded in these covariance functions. That is, the correlation is 1gpvariance function which can make a large difference in pre-
when the distance is 0.0, which will result in the krigged surfacéliction as we saw in the preceding example. We see from the
going through those measurement points. As seen in Figs-2 Previous example that incorrectly fitting the wave model results in
2(f), introducing a trend surface makes little difference in thes¥ overshoot for predicted surfaces. Also, it is recommended that

the variogram fitting should use only up to half the maximum

correlograms. / _ )
As can be seen from Fig. 2, even with a relatively large numbgpssible lag and then only using lags for whigf>30[7]. Thus,

of data points, it is difficult to fit the variogram and covariancéhe empirical variogram fitted from the sample data usually needs
models. The exponential model in Figib® drops off quickly as a large number of samples. It is also important to have a good fit
the distance between two points increase. The wave model in Figy. the variogram at small distances between data points due to
2(b) has the same rapid drop-off followed by a decreasing oscthe spatial dependence. In sampled data analysis, nothing can be
lation. However, to say that either of these models is a good fit ferid about the variogram at lag distances smaller than{jisin

the points would be an exaggeration at best. Figures 3 and 4 she\aj”: 1<i<j<N}. For a small number of sample points, this

the predicted surfaces and the prediction standard errors for thpsses a significant problem.
two models fitted in Fig. 2 without the trend surface. The fitted After performing universal kriging on a number of different
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Fig. 6 Histogram of deviations from minimum zone mean profile

Table 1 Parameters of beta distribution and flatness errors

Surface a b a B Flatness errors
(x1072mm)

bocll -20.589 20812 1.090 3.033 41.16

eml -9.108 8.658 5.041 3.760 17.31

ftl -3.866 3975 4.091 4.158 7.68

sgl -1.953 1.968 1.527 6.898 4.40

shlc -8.014 8.005 2.020 2.678 15.98
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Fig. 7 Correlograms obtained from 1000 points on each surface. (a) End milling; (b) grinding; (c) fly cut;

(d) boring; and (e) shaping.

surfaces, we found the following phenomenon. The variograthe distance is zero, the resulting interpolated value will lie within
determines whether the predicted surface falls inside or outsithe 3D convex hull. Therefore, the commonly adapted exponential
the 3D convex hull of the data points. If the slope of the varimodel (the spatial dependence getting smaller as the distance in-
ogram approaches zero as the distance approaches zero, krigiegiseswill always result in a predicted surface within the 3D
will return values which may be outside the 3D convex hull. If theonvex hull. This is an unfavorable situation since this provides
variogram has a slope which is sufficiently greater than zero whan additional information to standard interpolation.
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Table 2 Parameters of exponential and wave models

Surface

a,(exponential model)

a,, (wave model)

1.0

bocll

7.0

5.5

eml

5.0

4.4

0.5

ftl

10.5

N/A

sgl

2.5

N/A

shlc

5.0

5.0

3.3 Sampling Considerations. The only sampling method
discussed to this point is uniform random sampling. Rigl&g]
evaluated the performance of uniform random sampling, stratified

0.0

corre (100 points from bocit)
-0.5

random sampling, and uniforigsystematit sampling on the esti-
mation of the mean value within region D. He calculated variance

of

the error

of mean-value estimationN vaf>Z(s;)/N
—[pZ(s)ds/areaof 0, and found that if there is strong local

-1.0

positive correlation, both stratified random and systematic sam-
pling should do well relative to uniform random sampling. He
further concluded that unifornisystematit sampling should be

the best with smaller error variance unless the process has strong
periodicity with a wavelength corresponding to the basic sampling

interval along either axis or with a wavelength along a diagonal.

In this paper, we confine our discussion to uniform sampling strat-

egies.

4 Flatness Estimation for Machined Surfaces

The data in this study come from common machining pro-
cesses, namely, end millingm2), grinding (sgd, fly cut (ftl),
boring (bocll), and shapingshlc). Each machining process pro-
duces a surface with its own characteristic topography. We use
these five surfaces to evaluate universal kriging for estimating

flatness errors under the uniform sampling situation.

4.1 Random Sampling. The minimum zone mean profile is
the estimated plane in the middle of the flathness error zone. By

0.0 0.5

corre (25 points from bocl1)
-0.5

enclosing all the sample points with two planes parallel to this
mean profile, we can find the flatness error zone. We estimate the
mean profile using all 26,896 points for each surface and use these
results for the true value of flatness. The histograms of the devia-
tions from minimum zone mean profile are shown in Fig. 6. As
can be seen from the histograms, the surfaces differ both in mag-
nitude and distribution of the deviations from the mean profile.

. - . O N o. o
A L] T ¥ L{ L
0 50 100 150 200
distance
L 1 T LI 1
0 50 100 150
distance

Table 1 shows the parameters of beta distribution for these _ ‘
deviations and thétrue) flatness error for each surface as calcuFig- 8 Correlograms of 100 and 25 points from boring surface
lated using the minmax method.
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Fig. 9 Universal kriging result of 100 sampling points taken from surface bocl 1

270 / Vol. 122, FEBRUARY 2000 Transactions of the ASME

Downloaded From: http://manufacturingscience.asmedigital collection.asme.or g/ on 06/01/2015 Terms of Use: http://asme.or g/terms



45

40 \
35 (\

A

25

T ue

—O— Kriging

- - <& - - Minmax

Flatness Error

20

15

10

boring end milling fly cut grinding shaping

Surface

Fig. 10 Flatness error estimation

4.2 Universal Kriging. As we discussed in Sec. 2, the em- Based on this study, we make the following observations:
pirical correlogramvariogran) is hard to identify and fit when we
have a small number of sampling points. If we take 1000 random
sample points from these five surfaces and draw the correlogra
we see some obvious wave correlation patterns between spat?
locations for surfaces bocll, eml, and shlc, as shown in Fig
The ft1 and sgl surfaces follow more of an exponential mode

Table 2 lists the parameters of exponential and wave modé‘i"'%C
obtained by fitting the correlation functions by eye to these sur-
faces. In contrast to these clear correlation patterns drawn frontg2Ken:

large number of samples, the correlation patterns are difficult {0 The form errors estimated by kriging are equal to or greater
identify for a small number of sample points. than those calculated by single points for most of the surfaces.

To demonstrate the difficulty of fitting the correlogram or vari{NOte: however, this is not the case for exponential models used
lgf universal kriging. The krigged surfaces lie within the 3D con-
YEX hull, which agrees with the observation we made in Sec. 3.
3 Kriging provides a standard deviation map for the artificial
surface. How to utilize this error information to characterize the
mean and standard deviation of form error estimation for a given
number of uniform sampling points on general surfaces requires
further study.

1 Since many machined surfaces have pronounced lay and di-
tion charactefi.e., strong periodicity the sampling period
(‘I)uld avoid the surface periodicity as noted by RiplE3]. If we

e this into account when we perform uniform sampling with a
'|srhall number of samples, the result should be bétigrher de-
tectability and lower standard deviatjothan random sampling,

ich has larger standard errors when a small number of samples

in Fig. 8. The points shown in the correlogram plots age-6
pairs for a given distancd, which is greatly relaxed from the
recommendedy>30. Given the difficulty of fitting these vari-
ograms, we use the models listed in TabléBtained from 1000
sample pointsas a priori correlation functions for universal krig-
ing in this comparative study.

The fitted surfaces are then discretized and the flatness errors
are calculated from these discrete points. Figure 9 shows an ex- .
ample of the fitted surfaces by universal kriging from 100 samp Conclusions
points on the boring surface. The flatness errors are summarizeVe have shown how spatial statistics can be used to estimate
in Fig. 10. form errors. This method takes into account spatial dependence
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