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Form Error Estimation Using
Spatial Statistics
Form error estimation is an essential step in the assessment of product geometry c
through one or more manufacturing processes. We present a new method using s
statistics to estimate form error. Using large sets of uniform sample points measured
five common machined surfaces, we compare the form error estimates using indi
points and fitted surfaces obtained through spatial statistical methods. The results
that spatial statistics can provide more accurate estimates of form error under ce
conditions.@S1087-1357~00!01701-9#
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1 Introduction
Reconstructing a surface from a set of discrete measuremen

a problem shared by a number of related fields including reve
engineering, inspection, and topography. The general approa
to fit the data to some underlying model to obtain an artific
surface. In the context of form error estimation, we can use
artificial surface to determine the form error for a given prod
geometry. A set of data points are obtained from the surface
workpiece using devices such as a coordinate measuring mac
~CMM!. A fundamental question arises—can we fit an artific
surface to the set of points that provides a more accurate re
sentation~in terms of form error! of the actual surface than th
individual data points? If this is possible, then a more accur
estimation of form error can be obtained by evaluating
artificial surface.

Yang and Jackman@1# reviewed and evaluated current sam
pling strategies and sample data analysis for form error esti
tion. Without considering the correlation of the sample poin
they modeled the probability distribution of form error for rando
sampling. This previous work did not take into account the cor
lation between neighboring locations inherent in geome
measurements.

Palanivelu et al.@2# investigated the performance of leas
squares estimation and minmax estimation of simple geomet
The algorithms were tested using data sets as well as ideal g
etries with induced form errors using composite sine waves
random errors. They observed that the presence of sinusoida
rors caused greater variability in the estimates. Stratified samp
performed better than random or uniform sampling.

Yan and Menq@3# described form error as a deterministic com
ponent and random component. The random error was assum
be spatially independent with a normal distribution for uncertai
parameters representing coordinate transformation elements.
developed a theoretical envelope for the random error compon
For the deterministic component, the authors proposed a two-
method in which measurements are used to construct an arti
surface. This surface is then fitted to the nominal surface and
deterministic error is estimated using the orthogonal devia
from the nominal surface. They found that the two-step meth
gave more accurate estimations of form error. In related wo
Yang and Menq@4# again treated form errors as having determ
istic and random error components. They developed a hypoth
test for determining spatial independence. If the null hypothes
rejected, then deterministic error is assumed to be present. Fo
deterministic method, an iterative fitting approach is proposed
successively fit aB spline of increasing order until the null hy
pothesis is accepted~i.e., spatial independence after taking in
account deterministic error!.
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Kurfess et al.@5# proposed a method for calculating confiden
intervals based on the assumption that dimensions on a part
a multivariate normal distribution. A two-stage method is pr
posed in which deterministic errors are accounted for by first
ting a known deterministic model. The confidence intervals
estimated from the deviations from the fitted model. The ch
lenge in this approach is to find the appropriate determini
model.

In this paper, we consider this spatial dependence betw
sample points by using spatial statistics, especially the unive
kriging method, in the estimation of form errors. The surface d
used in these studies are from theAtlas of Machined Surfaces@6#.
We would like to thank Dr. P. J. Sullivan for sending us the
data. The region for each surface is a square with sides meas
1.304 mm. The grid spacing on both axes was 8mm, giving a total
of 26,896 (1643164) data points for each sample.

2 Spatial Statistics for Form Error Estimation
Let the set of all points on a surface being measured be den

by

$Z~s!: sPD%,

wheres is a spatial location vector inR2 ~a two-dimensional ref-
erence datum plane!. The index setD defines a finite region on the
surface. We obtain a set of measurements,$Z(s1),...,Z(sn)%, at
known locationss1 ,...,sn .

Previously, Yang and Jackman@1# characterized the surface o
a workpiece using a beta distribution for the deviation from nom
nal with the assumption that the measurements were sufficie
far apart so thatZ(s1),...,Z(sn) were treated as independent
each other. However, for most surfaces the values ofZ(s) at
locations in close proximity tend to be related to each other. T
covariance function

cov~Z~si !,Z~sj !!5C~si ,sj ! ;si ,sjPD, (1)

describes the relationship between the valuesZ(si) and Z(sj ) at
locationssi and sj . If C(si2sj ) is a function only ofisi2sj i
~i.e., the distance between the points!, then the surface~character-
ized by C(")! is called isotropic. Surfaces are anisotropic if th
dependence betweenZ(s) andZ(s1d) is a function of both the
magnitude and the direction ofd so that the variance is no longe
purely a function of the distance between two spatial locations
random functionZ(") having a covariance function as in Eq.~1!
and

E~Z~s!!5m ;sPD, (2)

is called second-order~or weak- or wide-sense! stationary.
The variogram is an important parameter of geostatistics tha

also used to describe the relationship between values at two l
tions. The variogram

var~Z~si !2Z~sj !!52g~si2sj ! ;si ,sjPD. (3)

e
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Fig. 1 Sample points „100… taken from the bored surface
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represents the variance of the difference betweenZ values at dif-
ferent locations. The functiong(") is called a semivariogram
When the process is second-order stationary,C(") and g(") are
related by

g~h!5C~0!2C~d!.

Note thatC(0)5var(Z(s)) is the variance ofZ(s) at any loca-
tion s. Cressie@7# points out that the variogram exists even f
some processes that are not second-order stationary, and hen
more general than the covariance function. The majority of m
chined surfaces are typically anisotropic because they exhib
pronounced lay or directional character. Sayles and Thomas@8,9#
also point out the limitations ofC(") and use the structure func
tion

S~h!5E$@Z~s!2Z~s1d!#2%,

to model the spatial dependence in their surface roughness stu
Assuming that a process is stationary with respect to the m

~i.e., Eq. ~2! holds!, then var(Z(s1d)2Z(s))5E(Z(s1d)
2Z(s))2 and the variogram is estimated by

2ĝ~d!5
1

nd
(

~ i , j !isi2sj i5d
~Z~si !2Z~sj !!2, (4)

where the summation is over all distinct pairs of locations in
sample that are separated by distanced, andnd is the total number
of pairs separated byd. Other robust estimations of variogram a
also described in Cressie@7#. For irregularly spaced data, pairs o
data with approximately the same separation may be groupe
gether. Finally, a smooth curve~e.g., linear, exponential, spher
cal, rational quadratic model! is fitted to the set of variogram
estimates for a discrete set of values in order to interpolate
variogram values for other distances.

2.1 Kriging. Kriging is a stochastic processes predicti
theory used to produce contour maps of surfaces derived f
regularly or irregularly scattered points in a space. This the
usesC(") or g(") in the prediction process. If we assume a pr
cess is second-order stationary~i.e., Eq.~2! holds!, then ordinary
kriging can be used to predict the process. If the process is
tropic, then estimator~4! can be used. However, if the process
anisotropic, the variogram estimators are not only a function
ufacturing Science and Engineering
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distance but also a function of direction~i.e., g(d,u) in polar
coordinates!. Cressie@7# gives an important note about the var
ogram estimators. Ifm in Eq. ~2! is not constant but in fact de
pends on the locations, then the variogram estimators are actua
estimating

2g~d!1~E~Z~s1d!!2E~Z~s!!!2.

Thus, if the process is nonstationary~i.e., Eq. ~2! does not
hold!, we can decompose the process into two components

Z~s!5m~s!1«~s!,

whereE(Z(s))5m(s) and «(s) is a zero-mean intrinsically sta
tionary stochastic process with var(«(s1d)2«(s))5var(Z(s
1d)2Z(s))52g(d). The m(s) component represents a dete
ministic trend surface that accounts for large-scale variation.
«(s) component represents small-scale variation on the trend
face and is considered to be stochastic in nature. An example
trend surfacem(s) used in kriging is

m~s!5a1c~x!1r ~y!, s5~x,y!8, (5)

wherea is the overall trend,c is a column effect, andr is a row
effect. Another example is

m~s!5 (
u1v<p

auvxuyv, s5~x,y!8, (6)

where integerp is the order of the trend surface.
Expression~5! is the basis of median-polish kriging and Eq.~6!

is the basis of universal kriging@7#. The general approach is t
estimate the trend surfacem(s) and subtract it from the data val
ues$Z(si)% to obtain residuals$«(si)%. The residuals are treate
as stationary and a variogram is fitted to the residuals. Finally,
estimated residuals are combined with the trend surface to ob
estimates of the actual surface.

Venables and Ripley@10# provide a software package inSPLUS

@11# to implement universal kriging. The minimum mean-squa
error unbiased predictorẐ(x) is given by Ripley@12# as

Ẑ~s0!5 f ~s0!Tb̂1yTk~s0!. (7)

The computation procedure is summarized as follows:
FEBRUARY 2000, Vol. 122 Õ 263
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Fig. 2 Variograms and correlograms for 100 data points. „a… and „b… Sample points; „c… and „d… residuals from first-order
surface; and „e… and „f … residuals from second-order surface.
1 FormK5@C(si ,sj )#.
2 Find L such thatLLT5K, whereLLT is the Cholesky de-

composition ofK andL is a lower triangular matrix.
3 Form
264 Õ Vol. 122, FEBRUARY 2000
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F5F f1~s1! ¯ fP~s1!

]

f1~s1! ¯ fP~sN!
G for ZN5F Z~s1!

]

Z~sN!
G ,
Transactions of the ASME
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Fig. 3 Fitted surface „a… and standard error of the prediction error „b… for expo-
nential model with aeÄ8.
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wheref is polynomial function for the trend surface andP is the
number of coefficientsP5(p11)(p12)/2, wherep is the order
of the trend surface.

4 SolveL21ZN5L21Fb̂ by least squares forb̂.
5 FormWN5@Z(si)2 f (si)

Tb̂#.
6 Find y such thatL(LTy)5WN .
7 Predict Z(s0) by f (s0)Tb̂1yTk(s0), where k(s0)

5@C(s0 ,si)# and var(Z(s0)2Ẑ(s0)#5C(s0 ,s0)2iei21igi2,
whereLe5k(s0), RTg5 f (s0)2(L21F)Te, andR is the orthogo-
nal reduction ofL21F.

3 Method for Form Error Estimation Using Kriging
We will not consider the extrapolation of the fitted surfa

which is outside the convex hull~CH! formed by the sample
ring Science and Engineering

gscience.asmedigitalcollection.asme.org/ on 06/0
e

points in theX–Y plane, i.e.,Ẑ(s) with sPCH only. Our proce-
dure to calculate the flatness error by using universal kriging
described as follows:

1 Take random samplesZ(s1),...,Z(sN) from the inspected
surface.

2 Use Venables and Ripley’s programs to calculateẐ(s) and
sE

2 within D. Note that the grid size specified in their program
X andY directions to obtain the surface coordinates will affect t
approximation of the flatness errors of the predicted surface.

3 Obtain the two-dimensional~2D! convex hull only consider-
ing X andY coordinates of the sample points.QHULL @13# can be
used to find 2D or three-dimensional~3D! convex hulls for a
given set of points.

4 Remove the fitted surface outside the convex hull of
X–Y plane.
FEBRUARY 2000, Vol. 122 Õ 265
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Fig. 4 Fitted surface „a… and standard error of the prediction error „b… for wave
model with awÄ5
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5 Calculate the flatness error of the fitted surface~X–Y coor-
dinates! inside the convex hull CH.

Note that a similar procedure could be used for the estima
of other form, orientation, and position error zones.

3.1 Flatness Error Estimation for a Surface From a Bor-
ing Process. As an example of form error estimation, we illus
trate the use of universal kriging to calculate the flatness error
a machined surface from a boring process. An estimate of flat
error ~using the minmax method in Yang and Jackman@1#! is
41.16 using all 26,896 points. We treat this estimate as the
flatness error which would be unknown to the inspector. Let
define an inspection process where we take 100 sample p
from this surface~i.e., the set of 26,896 points! using a random
sampling method. The scatter plot of these points in theX–Y
plane is shown in Fig. 1. If we only consider the individual poin
the flatness form error~using the minmax method as before! is
29.31. Next we use universal kriging to generate an artificial s
face for these points.

The variogram must satisfy a property called conditional ne
tive definiteness, i.e.,
UARY 2000
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aiaj2g~si2sj !<0,

for any finite number of spatial locations$si : i 51,...,m% and real
numbers$ai : i 51,...,m% satisfying ( i 51

m ai50. Otherwise, we
may obtain negative mean-squared errors of prediction. The v
ogram estimators, e.g.,ĝ(d), cannot be used for kriging becaus
they are not necessarily conditionally negative definite. It is s
gested that a variogram model be selected from among a para
ric family of variograms which best fits the data@7#. Figure 2
shows correlation plots for the data and the residuals from fi
and second-order surfaces using Eq.~6!, together with covariance
functions fitted by the eye~the fitting of correlation~variogram!
function is a subjective process!. The covariance functions use
are the exponential model

C~d,ae!52e2idi /ae, (8)

and wave model
Transactions of the ASME
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Fig. 5 Convex hull „CH…
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C~d,aw!5aw

sin~ idi /aw!

idi
. (9)

The corresponding variogram models are

g~d,ae ,be!5be@12e2idi /ae#, (10)

and

g~d,aw ,bw!5bwF12aw

sin~ idi /aw!

idi G , (11)

for the exponential model and the wave model, respectively.
parameters (ae ,be) and (aw ,bw) must be estimated for eac
model.

If g(h)→c0.0 ash→0, thenc0 is called the nugget effect
which is caused by measurement error. Since we consider
measurement error to be negligible, the nugget effect is not
cluded in these covariance functions. That is, the correlation is
when the distance is 0.0, which will result in the krigged surfa
going through those measurement points. As seen in Figs. 2~c!–
2~f!, introducing a trend surface makes little difference in the
correlograms.

As can be seen from Fig. 2, even with a relatively large num
of data points, it is difficult to fit the variogram and covarian
models. The exponential model in Fig. 2~b! drops off quickly as
the distance between two points increase. The wave model in
2~b! has the same rapid drop-off followed by a decreasing os
lation. However, to say that either of these models is a good fit
the points would be an exaggeration at best. Figures 3 and 4 s
the predicted surfaces and the prediction standard errors for t
two models fitted in Fig. 2 without the trend surface. The fitt
uring Science and Engineering
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covariance model parameters areae58 and aw55. As can be
seen from the two surfaces, the choice between different cov
ance models~exponential and wave models! makes a significant
difference in prediction.

Although the fitted surfaces are continuous, we use a 55355
sample grid within the regionD to approximate this fitted surface
Since we do not consider the extrapolation of the fitted surfa
we find the convex hull for the sample points in region D, whi
is shown in Fig. 5. Only the grids inside the convex hull a
used in the program to determine the flatness error. The flat
error ~using the minmax method on the grid values! is 25.54 for
Fig. 3 ~exponential model!, which is smaller than 29.31 obtaine
by using individual points, or 62 percent of the true value. B
cause we use a rectangular grid to represent the predicted su
and calculate the flatness error, the results can be biased low
cause we may miss the minimum and maximum points. Figur
gives a large flatness error of 72.28, which is 76 percent lar
than the true error 41.16 calculated from all 26,896 points.

3.2 Implications for Form Error Estimation. De-trending
the data is an important issue in kriging. Universal kriging
limited to polynomial trend surfaces. Cressie@7# suggests that
median-polish kriging can provide a more flexible and statistica
resistant method of spatial prediction than universal kriging. A
other more serious concern is the choice of a variogram mo
~covariance function!, which can make a large difference in pre
diction as we saw in the preceding example. We see from
previous example that incorrectly fitting the wave model results
an overshoot for predicted surfaces. Also, it is recommended
the variogram fitting should use only up to half the maximu
possible lag and then only using lags for whichnd.30 @7#. Thus,
the empirical variogram fitted from the sample data usually ne
a large number of samples. It is also important to have a goo
for the variogram at small distances between data points du
the spatial dependence. In sampled data analysis, nothing ca
said about the variogram at lag distances smaller than min$isi
2sj i : 1< i , j <N%. For a small number of sample points, th
poses a significant problem.

After performing universal kriging on a number of differen
FEBRUARY 2000, Vol. 122 Õ 267
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Fig. 6 Histogram of deviations from minimum zone mean profile

Table 1 Parameters of beta distribution and flatness errors
268 Õ Vol. 122, FEBRUARY 2000 Transactions of the ASME
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Fig. 7 Correlograms obtained from 1000 points on each surface. „a… End milling; „b… grinding; „c… fly cut;
„d… boring; and „e… shaping.
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surfaces, we found the following phenomenon. The variogr
determines whether the predicted surface falls inside or out
the 3D convex hull of the data points. If the slope of the va
ogram approaches zero as the distance approaches zero, k
will return values which may be outside the 3D convex hull. If t
variogram has a slope which is sufficiently greater than zero w
Manufacturing Science and Engineering
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the distance is zero, the resulting interpolated value will lie with
the 3D convex hull. Therefore, the commonly adapted exponen
model ~the spatial dependence getting smaller as the distance
creases! will always result in a predicted surface within the 3
convex hull. This is an unfavorable situation since this provid
no additional information to standard interpolation.
FEBRUARY 2000, Vol. 122 Õ 269
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3.3 Sampling Considerations. The only sampling method
discussed to this point is uniform random sampling. Ripley@12#
evaluated the performance of uniform random sampling, strati
random sampling, and uniform~systematic! sampling on the esti-
mation of the mean value within region D. He calculated varian
of the error of mean-value estimation,N var@(Z(si)/N
2*DZ(s)ds/area of D#, and found that if there is strong loca
positive correlation, both stratified random and systematic sa
pling should do well relative to uniform random sampling. H
further concluded that uniform~systematic! sampling should be
the best with smaller error variance unless the process has st
periodicity with a wavelength corresponding to the basic sampl
interval along either axis or with a wavelength along a diagon
In this paper, we confine our discussion to uniform sampling st
egies.

4 Flatness Estimation for Machined Surfaces
The data in this study come from common machining p

cesses, namely, end milling~em1!, grinding ~sg1!, fly cut ~ft1!,
boring ~bocl1!, and shaping~shlc!. Each machining process pro
duces a surface with its own characteristic topography. We
these five surfaces to evaluate universal kriging for estimat
flatness errors under the uniform sampling situation.

4.1 Random Sampling. The minimum zone mean profile is
the estimated plane in the middle of the flatness error zone.
enclosing all the sample points with two planes parallel to t
mean profile, we can find the flatness error zone. We estimate
mean profile using all 26,896 points for each surface and use th
results for the true value of flatness. The histograms of the de
tions from minimum zone mean profile are shown in Fig. 6.
can be seen from the histograms, the surfaces differ both in m
nitude and distribution of the deviations from the mean profile

Table 1 shows the parameters of beta distribution for th
deviations and the~true! flatness error for each surface as calc
lated using the minmax method.

Table 2 Parameters of exponential and wave models
270 Õ Vol. 122, FEBRUARY 2000
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u-Fig. 8 Correlograms of 100 and 25 points from boring surface
Fig. 9 Universal kriging result of 100 sampling points taken from surface bocl 1
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4.2 Universal Kriging. As we discussed in Sec. 2, the em
pirical correlogram~variogram! is hard to identify and fit when we
have a small number of sampling points. If we take 1000 rand
sample points from these five surfaces and draw the correlogr
we see some obvious wave correlation patterns between sp
locations for surfaces bocl1, em1, and shlc, as shown in Fig
The ft1 and sg1 surfaces follow more of an exponential mode

Table 2 lists the parameters of exponential and wave mo
obtained by fitting the correlation functions by eye to these s
faces. In contrast to these clear correlation patterns drawn fro
large number of samples, the correlation patterns are difficu
identify for a small number of sample points.

To demonstrate the difficulty of fitting the correlogram or va
ogram with smaller sample sizes, we show the correlogram
100 and 25 uniform sampling points taken from the bocl 1 surf
in Fig. 8. The points shown in the correlogram plots arend.6
pairs for a given distanced, which is greatly relaxed from the
recommendednd.30. Given the difficulty of fitting these vari-
ograms, we use the models listed in Table 2~obtained from 1000
sample points! as a priori correlation functions for universal krig
ing in this comparative study.

The fitted surfaces are then discretized and the flatness e
are calculated from these discrete points. Figure 9 shows an
ample of the fitted surfaces by universal kriging from 100 sam
points on the boring surface. The flatness errors are summa
in Fig. 10.
al of Manufacturing Science and Engineering
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Based on this study, we make the following observations:

1 Since many machined surfaces have pronounced lay an
rection character~i.e., strong periodicity!, the sampling period
should avoid the surface periodicity as noted by Ripley@12#. If we
take this into account when we perform uniform sampling with
small number of samples, the result should be better~higher de-
tectability and lower standard deviation! than random sampling
which has larger standard errors when a small number of sam
is taken.

2 The form errors estimated by kriging are equal to or grea
than those calculated by single points for most of the surfac
~Note: however, this is not the case for exponential models u
by universal kriging. The krigged surfaces lie within the 3D co
vex hull, which agrees with the observation we made in Sec.!

3 Kriging provides a standard deviation map for the artific
surface. How to utilize this error information to characterize t
mean and standard deviation of form error estimation for a gi
number of uniform sampling points on general surfaces requ
further study.

5 Conclusions
We have shown how spatial statistics can be used to estim

form errors. This method takes into account spatial depende
FEBRUARY 2000, Vol. 122 Õ 271
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between sample points. A large number of samples~on the order
of 1000 samples! is required to make this method feasible. T
method consists of the following steps.

1 Measure a set of points on a surface.
2 Estimate the parameters for the variogram model.
3 Fit the kriged surface.
4 Sample points from the kriged surface.
5 Use the minmax method to estimate form errors.

Our results indicate that the use of this method performs as
as using the points directly and in some cases outperforms
direct method. Identifying and fitting a correct variogram mod
~covariance function! from the sample points is a critical step
the estimation process. Due to the uncertainty in the variog
estimation, it is recommended that this method be used whe
large number of samples are available. Given the periodicity
some of the machined surfaces, sampling should be performe
a frequency higher than those observed on a surface.

A major advantage of kriging is that it provides a map f
estimates of prediction error for the fitted surface. Conceivably
would be possible to create some form of a confidence interva
the surface. This could be used in an iterative method to iden
areas on the surface that may require more measurements.

The artificial surfaces generated by fitting the sample point
a kriging model can be used to reconstruct a surface which ma
of interest in applications where the nature of the surface ge
etry is of more interest than the dimensional characteristics of
surface.
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