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ABSTRACT. In recent years, three-dimensional (3D) sensing has gained a great interest in plant phenotyping because it 
can represent the 3D nature of plant architecture. Among all available 3D imaging technologies, stereo vision offers a 
viable solution due to its high spatial resolution and wide selection of camera modules. However, the performance of in-
field stereo imaging for plant phenotyping has been adversely affected by textureless regions and occlusions of plants, 
and variable outdoor lighting and wind conditions. In this research, a portable stereo imaging module namely 
PhenoStereo was developed for high-throughput field-based plant phenotyping. PhenoStereo featured a self-contained 
embedded design, which made it capable of capturing images at 14 stereoscopic frames per second. In addition, a set of 
customized strobe lights was integrated to overcome lighting variations and enable the use of high shutter speed to 
overcome motion blurs. The stem diameter of sorghum plants is an important trait for stalk strength and biomass potential 
evaluation but has been identified as a challenging sensing task to automated in the field due to the complexity of the 
imaging object and the environment. To that connection, PhenoStereo was used to acquire a set of sorghum plant images 
and an automated point cloud data processing pipeline was also developed to automatically extract the stems and then 
quantify their diameters via an optimized 3D modeling process. The pipeline employed a Mask R-CNN deep learning 
network for detecting stalk contours and a Semi-Global Block Matching stereo matching algorithm for generating 
disparity maps. The correlation coefficient (r) between the image-derived stem diameters and the ground truth was 0.97 
with a mean absolute error (MAE) of 1.44 mm, which outperformed any previously reported sensing approaches. These 
results demonstrated that with proper customization stereo vision can be a highly desirable sensing method for field-
based plant phenotyping using high-fidelity 3D models reconstructed from stereoscopic images. With the proving results 
from sorghum plant stem diameter sensing, this proposed stereo sensing approach can likely be extended to characterize 
a broad spectrum of plant phenotypes such as leaf angle and tassel shape of maize plants and seed pods and stem nodes 
of soybean plants.  
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Introduction 
Understanding the relationship between genotype and phenotype plays an important role in plant phenomics (Bao et al., 

2019). Plant phenotyping, which refers to the assessment of plant phenotypic features related to growth, tolerance, 
architecture, and yield, can potentially aid in the identification of high-yielding, stress-tolerant crop species (Li et al., 2014). 
By dissecting the genetic basis of plant phenotypic traits, robust crop species can be selected by plant breeders. Recent 
advances in high-throughput genotype screening have offered fast and inexpensive solutions for plant genomics, which has 
accelerated plant breeding programs (Bao et al., 2019). Applications of genomic technologies, however, are limited by the 
ability of accurate and precise phenotypic trait collection. Traditional phenotyping procedures are time-consuming, labor-
intensive, and low-throughput, whereas most phenotypes were obtained in a destructive way or involved manual 
observations (Minervini et al., 2017). Hence, the efficient and effective phenotyping strategies are demanded to assess plant 
growth in an automatic and non-invasive way (Furbank and Tester, 2011).  

In recent years, various vision-based phenotyping systems have been developed to automate field-based phenotyping. 
Previous high-throughput phenotyping systems can be divided into two major categories: aerial-based and ground-based 
measuring systems (Li et al., 2014). Aerial-based phenotyping platforms enable capturing information of a large scale of 
plants within minutes. As one of the emerging alternatives in aerial-based platforms, unmanned aerial vehicles (UAVs) are 
gaining increased attention due to their low cost, portability, and ease of operation (Barbedo, 2019). UAVs equipped with a 
variety of sensors have been successfully developed to estimate vegetation index (Li et al., 2019), canopy temperatures 
(Perich et al., 2020), biomass accumulation (Devia et al., 2019), and plant height (Lu et al., 2019). However, the use of aerial 
imaging systems to monitor plant growth has well-known limitations. For example, these systems can only capture top-view 
images, making it impossible to assess plant traits (e.g., stalk size, leaf angle) that are only observable in side-views of 
plants. 

Compared to aerial-based phenotyping platforms, ground-based phenotyping platforms have the advantages of flexible 
design, large sensors payload, and high sensor resolution. With customized ground vehicles and a wide range of sensing 
sensors, these systems are capable of traversing a field to measure a rich set of plant traits such as plant height, leaf area, 
leaf angle, stalk size, tiller density, and many other organ-level traits (Bao et al., 2018; Baweja et al., 2018; Jin et al., 2019; 
Sodhi et al., 2017). Some examples of such systems include ‘Robotanist’, ‘Vinobot’, and some semi-autonomous tractor-
based systems (Milella et al., 2019; Salas Fernandez et al., 2017b). The Robotanist, developed by Carnegie Mellon 
University, is a field robot that can self-navigate within tightly-spaced crop rows and gather phenotypic data with side-facing 
sensors (Mueller-Sim et al., 2017). The Vinobot is another autonomous field robot with a robotic manipulator to handle 
multiple sensors at different viewing angles (Shafiekhani et al., 2017).  

A variety of imaging sensors like fluorescence, thermal, hyperspectral, and three-dimensional (3D) sensors have been 
integrated into phenotyping systems. Among these sensing technologies, 3D sensors have gained a great interest especially 
for measuring architectural features because of the 3D nature of plant architecture. Light detection and ranging (LiDAR) 
sensor is a widely used 3D sensor for field-based phenotyping. Chakraborty et al. (2019) reconstructed 3D models of apple 
trees and grapevine canopies by combining a 3D LiDAR with an inertial measurement unit (IMU) on a ground vehicle. The 
canopy volume was derived from the 3D models and found to be strongly correlated with manual measurements. Besides 
canopy-level morphological traits, high-resolution 3D LiDAR sensors have also provided the potential for organ-level traits 
for organs such as cotton balls (Sun et al., 2020a), sorghum panicles (Malambo et al., 2019), and corn stems (Jin et al., 2019). 
However, such measurements can be complex and require longer imaging time to obtain dense and accurate canopy models 
(Dandrifosse et al., 2020). Time-of-Flight (ToF) camera is another widespread sensor which can provide RGB-D data of 
plants in the field. ToF sensors have been successfully used for plant architecture measurement (Bao et al., 2018), biomass 
estimation (Krogh et al., 2018), fruit counting (Tu et al., 2020), and weed detection (Ji Li and Tang, 2018). The major 
weakness of ToF sensors is its sensitiveness to strong sunlight. To alleviate this issue, a shroud or an umbrella could be used 
to reduce the sunlight intensity in outdoor applications (Gai et al., 2020; Mortensen et al., 2018). 

Stereo vision, which reconstructs a 3D model from multi-view images, offers an inexpensive, accurate, and effective 
solution for in-field plant phenotyping. Multi-view stereo vision systems combine multiple-view stereo (MVS) and 
structure-from-motion (SFM) techniques to reconstruct 3D models of plants from images. Nguyen et al. (2016) developed 
an in-field phenotyping system that utilized 16 color stereo vision cameras for capturing multi-view images of eggplant, an 
arc-shaped superstructure was designed to deploy the cameras and structured illumination modules. Plant height, leaf 
number, leaf area, and plant biomass can be estimated from the system. MVS-SFM method is capable of generating dense 
point cloud of plants but is challenging to implement in the field, especially for tall-growing plants like corn/sorghum. 
Binocular stereo vision is being considered as an alternative option to overcome limitations with MVS-SFM technique. The 
technique only needs two cameras to compute depth information. Previous work has demonstrated the potential of stereo 
vision in measuring plant architecture outdoors. For example, Sodhi et al. (2017) implemented such a system to study 
sorghum plant architecture in field conditions. In their application, phenotypic traits like leaf length, leaf width, and stem 
diameter were measured. Bao et al. (2019) developed a stereo-vision-based robotic system for tall dense canopy crops in the 
field, where the stereo cameras were positioned laterally and stacked vertically on an extension rig to perform side-view 
imaging. Several morphological traits were quantified and found to be accurate and highly repeatable. However, the wider 
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row spacing was required by the system. Though their system had the advantages of high image resolution, the performance 
of stereo vision suffered from textureless regions, inadequate spatial resolution, sunlight variations, and wind conditions 
(Bao et al., 2019; Dandrifosse et al., 2020).  

Sorghum is one of the most promising energy crops due to its tolerance to drought/heat stresses (Xin et al., 2008). Stem 
diameter is an important feature for yield estimation and stalk strength assessment of sorghum plants (Salas Fernandez et 
al., 2017b; Zhao et al., 2016). Typically, sorghum stem diameter is measured manually using calipers - a tedious and error-
prone practice, but to automate a process that can accurately measure the stem diameter of sorghum plants in the field has 
been a challenging task (Salas Fernandez et al., 2017a). Several studies have investigated the suitability of stereo vision for 
field-based stem diameter estimation. Bao et al. (2019) developed a stereo vision system to retrieve stem diameter from side-
view images, where a user would first click four reference points on the stem edge to identify a representative stem, the stem 
diameter was then calculated by the triangulation principle. Though results showed high repeatability and accuracy, the 
method requires human intervention. Recent advances in machine learning offered new approaches for reliable object 
detection in some image-based deep learning tasks (Gené-Mola et al., 2020; J. Jin et al., 2018).  For example, Baweja et al. 
(2018) used convolutional deep neural networks to detect sorghum stems and calculated stem width from stereoscopic 
images. The proposed method was 270 times faster than in-field manual measuring, and a mean absolute error of 19.3% of 
the average stem width was achieved. These studies identified the sorghum stem in 2D images and performed well. However, 
the performance could be further improved by acquiring higher-quality images. In addition, 3D geometric features such as 
surface normal directions, which are robust to varied illumination conditions, can be used to assist in plant organ 
segmentation (Sun et al., 2020b). 

Based on the aforementioned literature research, this research project was set out to investigate a robust and accurate 
machine vision system that can measure the stem diameter of sorghum plants in 3D space under outdoor field conditions. 
The developed vision system was expected to deliver consistent performance under variable lighting and wind conditions in 
the field and be capable of high-throughput data acquisition for close range stereoscopic imaging. The specific objectives of 
this study were to: 1) develop a customized stereo module for high-quality and high-throughput image acquisition in the 
field and between the agronomically spaced crop rows; 2) develop an automated image processing pipeline to detect the 
stems of sorghum plants and measure their stem diameter in reconstructed 3D model; 3) evaluate the performance of stem 
instance segmentation and stem diameter estimation. 

Material and Method 

Development of a stereo imaging system 

PhenoStereo, which refers to a custom-built stereo imaging module for plant phenotyping, is capable of capturing high-
quality images in the field with strobe lighting. The PhenoStereo (fig. 1a) mainly comprised of a developer kit, two RGB 
color cameras, a printed circuit board (PCB), and strobe lights. The developer kit includes a Jetson TX2 embedded platform 
(NVIDIA, California, USA), an Elroy carrier board (Connect Tech Inc., Ontario, Canada), and other devices (e.g, SD card, 
PCIe card) on the carrier board. Jetson is able to simultaneously take image pairs from two stereo cameras through high-
speed interfaces (PCIe) and save them to a SD card. The Elroy Carrier board was chosen to interface with the Jetson TX2 
module due to its small size and a variety of standard hardware interfaces.  

 
Figure 1. The complete device. (a) Configuration of PhenoStereo imaging unit: consisting of stereo cameras and strobe lights for capturing high-

resolution images. (b) The user interface of PhenoStereo, which uses Robot Operating System (ROS) network for wireless control. 
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Two identical RGB cameras (Phoenix 3.2MP, Lucid Vision labs, Canada) equipped with a lens of 4.0 mm focal length 
were used. The baseline of the stereo pair was set at 38 mm, which enables the module to image close by objects with a large 
overlap area between the left and right images. The stereo camera has a horizontal view angle of 85.8° and a vertical view 
angle of 63.6°. The PhenoStereo features onboard storage that performs image acquisition at a maximum rate of 14 frames 
per second (FPS). The raw images, with a resolution of 2048×1536 pixels, were stored in the memory of the device and can 
be easily transferred through an Ethernet interface.  

Four sets of high-intensity LEDs (LM75, Smart Vision Lights, USA) were mounted around the camera pair for strobing 
illumination. The motivation behind this design is to provide consistent lighting, enhance visual texture, and allow fast 
shutter speed. The LED lights were equipped with a 576 W (with 10% duty cycle) driver (CTL-IO-4, Smart Vision Lights, 
USA) for driving high-intensity LEDs.  

The imaging platform was enclosed in a waterproof metal case (151 mm × 146 mm × 82 mm), and the system weighs 
approximately 2.06 kg. An electronic circuit was designed to synchronize and trigger the camera pair and the strobe lights. 
The imaging system was able to acquire images with light illumination of 31000 lux at 0.5 m. By using the Robot Operating 
System (ROS) JavaScript Library, a web-based user interface (fig. 1b) was developed to control the cameras and visualize 
the images. The interface allows a user to adjust camera parameters (exposure time, white balance, etc.), send trigger 
commands, and view live images on a smartphone/laptop browser.  The live images and commands are published over local 
area network (LAN) using ROS. The control algorithm for image acquisition was written in C++, using ROS Kinetic running 
on Ubuntu 16.04.  

Data collection 

A 4-wheel custom-built ground vehicle was used to deploy the PhenoStereo (fig. 2). The PhenoStereo was mounted on 
the vehicle at a height of 20 inches above the ground, and aluminum frames were used to support the camera module. The 
ground vehicle was driven at 3 mph (4.8 km/h) through 30-inch spaced crop rows and the images were captured at 10 FPS. 
To prevent motion blur caused by robot movement and wind conditions, the shutter speed was set to 0.3 ms. The distance 
between the camera and the sorghum stalks was around 15 inches (0.38 m). 

 
Figure 2. Data collection. (a) Location of the image collection. (b-c) Remote-controlled data collection with PhenoStereo under sunny (b) and 

overcast (c) weather conditions.  A smartphone was used to interact with the PhenoStereo using wireless network connection. 

Data were acquired at the Agricultural Engineering and Agronomy Research Farm of Iowa State University in Boone, 
Iowa (fig. 2a). The data collection was carried out on Sep. 30th and Oct. 9th, 2019. In order to test the proposed module’s 
robustness against varying outdoor lighting conditions, sorghum plant images from the field under sunny (fig. 2b) and 
overcast (fig. 2c) weather conditions were obtained. Camera parameters (white balance, exposure time, and gain) were tuned 
in the field to produce high-quality images for 3D reconstruction. The ground truth of stem diameter was measured manually 
using a caliper at the stem section of 5-10 cm above the soil surface on Oct. 9th. In total there were 75 stems measured to 
evaluate the performance of stem diameter estimation. 

Image Processing 

A series of operations were conducted on the stereo images to extract the stem diameters of sorghum plants, including 
3D reconstruction, stem segmentation, point cloud filtering, and stem diameter estimation (fig. 3). First, 3D point clouds of 
the stems were reconstructed from stereo images by Semi-Global Block Matching (SGBM) (Hirschmüller, 2008). Then, 
individual stem masks were detected using Mask Region Convolutional Neural Network (Mask R-CNN) (He et al., 2020), 
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which is a Convolutional Neural Network (CNN) that is capable of instance segmentation at the pixel level. The 2D 
detections were projected onto 3D point cloud to segment individual stems. After that, noisy voxels in the segmented point 
cloud were detected and filtered using local geometric features. At last, cylinder fitting was conducted on selected stem 
sections, the stem diameters were finally derived from the fitted cylinders. Additional details are described in the following 
sections. 

 
Figure 3. Illustration of the proposed image processing pipeline. 

3D reconstruction 
The process of 3D reconstruction can be described as follows: at first, the parameters of the two cameras were computed 

by calibration, and then the image pair was rectified to enable the stereo matching.  After that, a stereo matching algorithm 
was implemented to find the pixel-wise correspondence between the images of the pair to generate a disparity map. The 
final step is to reconstruct a 3D model from the disparity map by computing the 3D coordinates of the pixels using 
triangulation and camera parameters.  

The camera calibration aims to compute the intrinsic and extrinsic parameters of stereo cameras. The camera intrinsic 
parameters include the focal length, the pixel size, and the principle point. The extrinsic parameters consist of a rotation and 
a translation matrix, which are related to the coordinate transformation between an object in 3D world and the 2D images. 
In our calibration procedure, a checkerboard with squares of size 20 𝑚𝑚𝑚𝑚 × 20 𝑚𝑚𝑚𝑚 was used to obtain 30 image pairs. 
During the image acquisition process, the relative distances and the poses between the checkerboard and the camera were 
changed. All the corners of the squares on the checkerboard were detected to serve as feature points, the camera parameters 
were established by calculating the relationship between the feature point sets and their corresponding 3D world coordinates 
(Bradski and Kaehler, 2008). With the camera intrinsic parameters, the image pair can be rectified by applying a projective 
transformation. Since the images follow the principle of epipolar constrains (Brown et al., 2003), two corresponding points 
are on the same horizontal line in the rectified image pair (fig. 4a). The rectification process removes the lens distortion and 
enables the reduction of the search space of stereo correspondence from 2D to 1D.  

 
Figure 4. The procedure of stereo matching using Semi-Global Block Matching (SGBM). (a) A rectified and segmented image pair, where 

corresponding points are on the same horizontal scan lines. (b) The disparity output of the SGBM algorithm. (c) 3D point cloud reconstruction 
of the sorghum plant. 
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To extract the 3D coordinates of the object, the rectified image pair was used to generate a disparity map by stereo 
matching. Stereo matching is the process of finding corresponding pixels in a pair of stereo images. For stereo 
correspondence matching of field crops, two thorny situations can happen. The first one is from the nearly homogeneous 
color and texture of plant canopy surfaces that can make the correspondence search ambiguous. The second challenging 
situation is occlusion, which means that some pixels in one image do not have correspondences in the other image. In this 
study, the Semi-Global Block Matching (SGBM) (Hirschmüller, 2008) was adopted to do the stereo matching given its 
efficiency and robustness. The principle of SGBM is to perform scan line optimization along multiple directions and 
aggregate the matching cost from each direction to enforce the smoothness constrain. With global consistency constraints in 
the optimization process, the SGBM has shown the ability to retain edges and deal with untextured areas (Hirschmüller, 
2008). Considering the PhenoStereo has a short baseline (38 mm) and the sorghum plants were around 15 inches away from 
the camera, the matching window size and the disparity range were set to 5 pixels and 100 pixels, respectively. The result 
of stereo matching is the disparity map (fig. 4b), which gives the apparent pixel difference in left and right images. The 
disparities are inversely proportional to depths.  

After working out the disparities of the images, the 3D coordinates (X, Y, Z) can be extracted from the images and the 
disparity map based on a triangulation method. We considered the rectified left image as a reference, the X-Y coordinates 
and the distance between the object and the camera (Z) are given by equation 1: 
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where x and y represent the coordinates of a pixel in the 2D image, and d is the corresponding disparity value, b denotes the 
baseline (m) of the stereo camera, and f is the focal length (pixel). The focal length and baseline can be obtained from the 
calibration process. After the stereo matching, a 3D point cloud can be obtained (fig. 4c). Since we are only interested in 
plants with a distance of 15-20 inches, the points with z-coordinates larger than 0.8 m or less than 0.002 m were removed as 
background/noise.  The obtained 3D model is processed to determine the stem diameter according to geometric features.  

Stem segmentation  
For individual stalk size measurement, effective stem segmentation is the prerequisite for further image analysis. Though 

there was a strong contrast between plants and background in the images, identifying the stem from plant canopy can be a 
difficult task because of the color and texture similarities between plant organs. Additionally, the occlusions generated by 
the dense canopy of sorghum plants have proposed challenges for automated segmentation of stems. In this study, we firstly 
detect the individual stems in 2D images, the 2D detections were then rectified and projected onto the 3D point cloud to 
segment the stems.   

The Mask R-CNN, which provides both bounding boxes and semantic masks for the detected object regions, was utilized 
to detect and segment sorghum stems from RGB images (fig. 5a). The model is an improvement over Faster R-CNN (Ren 
et al., 2017), where a mask generating branch was added to predict segmentation masks on each output proposal box. The 
framework of Mask R-CNN (fig. 5b) consists of two parts: 1) a Convolutional backbone part for feature map extraction 
from input images; and 2) a head part which takes the feature maps for classification prediction, bounding box recognition, 
and mask prediction. The backbone employs a feature pyramid network (FPN) (Lin et al., 2017) to construct feature maps 
for objects at different scales. The feature maps are then fed into the region proposal network (RPN) to generate regions of 
interest (ROIs). Target features are extracted and mapped for ROIs by the RoiAlign layers and sent to a fully convolutional 
network (FCN) for classification prediction and instance segmentation. The RPN slides different region boxes (anchors) on 
the feature map to generate ROIs that are most likely to contain objects. In this study, according to the elongated shape of 
the target (sorghum stems), three length-width ratios (2:1, 4:1, and 8:1) of the anchors were used to improve computational 
efficiency.  

 
Figure 5. Summary of Mask R-CNN based stem segmentation. (a) An example of the input RGB image. (b) The diagram of Mask R-CNN 

architecture. (c) A masked image with detected stems. 
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The detection of individual stems was formulated as a semantic segmentation task with two classes: ‘stem’ and 
‘background’. Pixels of the class ‘stem’ referred to the stalk of sorghum plants, while remaining pixels were assigned to the 
class ‘background’. In this case, the background not only included field background, but also other non-stem parts of the 
plant, such as leaves and tillers. We manually annotated 440 images, where each plant stem was colored independently. The 
labeled images were split into a training set, a test set, and a validation set with a proportion of 7:2:1. Although the strobe 
lights were utilized to maintain consistent lighting conditions, the images varied in color rendering because of different 
camera settings such as auto white balance mode. Therefore, to alleviate the variations in color between images, the RGB 
images were converted to gray-scale images. This process reduced the image dimension from three channels to one channel, 
which also decreases the complexity of network architecture.  

We used a TensorFlow-based implementation of the Mask R-CNN with a ResNet-50 backbone network. The Mask R-
CNN model was initialized using pre-trained weights from COCO dataset (Lin et al., 2014). Image augmentation was 
employed to increase the number of training images and diminish overfitting. The image augmentation technique allows the 
networks to be more adaptive to field conditions. In this study, we applied crop, flip, Gaussian blur, multiply, and affine 
transformation to simulate the differences in real-world cases such as the variations caused by camera settings, lighting 
conditions, object-to-camera distance, and noise (Jung et al., 2019). During the training process, the augmentations were 
randomly assigned to 50% of the source images to enlarge the training dataset artificially. The obtained masks were applied 
to the original image for the segmentation of individual stems (fig. 5c).  

Point cloud filtering  
The filtering was one of the most important steps in the proposed algorithm since the accuracy of the cylinder fitting and 

stem diameter estimation depended on it. The process of filtering aimed to eliminate everything that does not belong to the 
cylindrical stem, including the random noise introduced by stereo matching and the non-stem (such as leaf collar) points 
that were miss-classified by the instance segmentation process.   

During the filtering process, we denoted the stem points and non-stem points as inliers and outliers, respectively. It was 
noticed that most of the outliers were from leaf collar (fig. 6a), which is the intersection between a leaf and a stem. For the 
filtering process, color and/or intensity values were unreliable because some outliers had almost the same color as the inliers. 
Geometrically, the inliers and outliers exhibited distinguishing local features, which can be attributed to 1) the stems’ 
cylindrical structures, and 2) the relatively smooth and continuous surface of the stems. Based on that observation, we opted 
to use local surface features to highlight the stem points. The point cloud was stored in a k-d tree, which is a binary search 
tree enables the fast lookup of range and nearest neighbors. Principle component analysis (PCA) was implemented to 
characterize the shape features of each individual point. For a point p in the point cloud, the k-neighborhood point set can 
be defined as 𝒩𝒩𝑘𝑘 (eq. 2), where d is the search radius of neighbor points in 3D space. Covariance matrix (C) of region 𝒩𝒩𝑘𝑘  
can be computed using equation 3, where �̅�𝑝 (eq. 4) denotes the centroid of the region. We then performed PCA on C to obtain 
the eigenvalues 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 (𝜆𝜆1 > 𝜆𝜆2 > 𝜆𝜆3). 

𝒩𝒩𝑘𝑘 = {𝑝𝑝𝑖𝑖 : ‖𝑝𝑝 − 𝑝𝑝𝑖𝑖‖ <  𝑑𝑑} (2) 
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Figure 6. Point cloud filtering using local features. (a) The point cloud segment of a stem, where leaf collars were highlighted with red circles. (b) 

Histogram of cylindrical difference in stem and non-stem points. The red dotted line is the Otsu threshold which separates stem inliers from 
noise. (c) The result from the proposed filtering algorithm, where green points are stem inliers and red points are outliers. 

Different arithmetic combinations of the eigenvalues have been proposed as 3D local feature descriptors for point cloud 
classification (Hackel et al., 2016). For example, if the three eigenvalues are close to each other (𝜆𝜆1 ≈ 𝜆𝜆2 ≈ 𝜆𝜆3), the point is 
part of a region that has isotropic spatial distribution, such as a spherical structure. For a cylindrical structure like sorghum 
stem, we expect 𝜆𝜆3 to be much smaller than 𝜆𝜆1 and 𝜆𝜆2 ( 𝜆𝜆1 > 𝜆𝜆2 >> 𝜆𝜆3). In this work, Cylindricity was defined as a structure 
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tensor to discriminate stem and non-stem points. The cylindricity c at a point p is expressed by equation 5. Numerically, a 
point and its neighbor points belong to a sorghum stem should have small c values. The cylindricity value of each point was 
chosen to eliminate leaf collar and noise points from the stem. We binarized the point cloud into stem and non-stem points 
based on Otsu’s method (Otsu, 1979) (fig. 6b), the points with cylindricity values greater than the Otsu threshold were 
removed as outliers (fig. 6c).   

𝑐𝑐 =
𝜆𝜆1 − 𝜆𝜆2
𝜆𝜆1 − 𝜆𝜆3

 (5) 

Stem diameter estimation 
Fitting a cylindrical shape of the plant stem proved to be a reliable modeling method (Chaivivatrakul et al., 2014). 

Therefore, we modeled sorghum stems as cylindrical shapes for stem diameter estimation. A cylinder is described by its axis 
and radius. If a point locates at a distance r from the axis, then it is on the cylindrical surface. Cylinder fitting can be a 
computationally intensive process because of its high parametric space. To reduce the complexity/dimension of the 
parameter space, we split the process to firstly find the cylindrical axis direction and then detect a circle in a plane. In the 
first step, the direction of the cylindrical axis was calculated from the surface normal. After that, the point cloud of a selected 
stem section was projected onto a 2D plane along the direction of the axis; a circle was then fitted to the projected points to 
find the radius, which was defined as the stem diameter in this study.  

Surface normals are important properties for analyzing a geometric surface. The normal of a point P is a vector that 
perpendicular to the tangent plane at P (fig. 7a). It’s not hard to find that the normal vectors of a cylinder are perpendicular 
to its axis. Mathematically, the cross product of the surface normal and the cylinder axis direction vector is supposed to be 
zero. Based on this principle, normal estimation was implemented to estimate the orientation of the cylindrical axis. In this 
study, the normal vector of a given point is computed by finding the eigenvector corresponding to 𝜆𝜆3, which is the smallest 
eigenvalue of the covariance matrix in equation 3. We calculated surface normal for each individual point in the point cloud 
(fig. 7b and c). We aim to find a vector that is most orthogonal to the surface normal of all the points. The orientation of the 
cylinder axis was defined as 𝜔𝜔��⃑ (𝑎𝑎,  𝑏𝑏,  1), and the parameters were determined by least-squares method using the cost function 
ℱ(𝑎𝑎, 𝑏𝑏) given by equation 6.  

ℱ(𝑎𝑎, 𝑏𝑏) = �(𝜔𝜔��⃑ ∙ 𝑛𝑛𝚤𝚤���⃑ )2
𝑚𝑚

𝑖𝑖=1

= �(𝑎𝑎 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏 ∙ 𝑦𝑦𝑖𝑖 + 𝑧𝑧𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

 (6) 

where 𝑛𝑛𝚤𝚤���⃑ (𝑥𝑥𝑖𝑖 ,  𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) is the normal vector of the ith point in the point cloud, and m is the number of points.  

 
Figure 7. The estimation of the direction of the cylindrical axis. (a) Illustration of surface normal estimation. (b) The side view of the surface 

normals of a stem, the vector 𝝎𝝎���⃑  represents the direction of the cylindrical axis and the white epidermal hairs are the surface normals. (c) The top 
view of the surface normals of the stem. 

Before projecting the point cloud to a 2D plane, the stem was rotated such that the cylindrical axis is aligned with z 
coordinates. The direction vector of the cylinder axis 𝜔𝜔��⃑  was normalized as 𝜔𝜔0�����⃑ . The unit vector 𝑢𝑢𝑧𝑧����⃑ (0, 0, 1) was the z-axis 
vector. At first, we computed the cross product (eq. 7) and the dot product (eq. 8) of the two vectors. According to Rodrigues' 
rotation formula, the rotation matrix (eq. 9) from vector 𝜔𝜔0�����⃑  to vector 𝑢𝑢𝑧𝑧����⃑ (0, 0, 1) can be obtained. 

�⃑�𝑣 = 𝜔𝜔0�����⃑ × 𝑢𝑢𝑧𝑧����⃑  (7) 

𝑘𝑘 = 𝜔𝜔0�����⃑ ∙ 𝑢𝑢𝑧𝑧����⃑  (8) 

𝑅𝑅 = 𝐼𝐼 + [~�⃑�𝑣] + [~�⃑�𝑣]2 ∙
1

1 + 𝑘𝑘
 (9) 

where 𝐼𝐼  is the identity matrix, and [~�⃑�𝑣] (eq. 10) is the skew-symmetric matrix of �⃑�𝑣. 

[~�⃑�𝑣] = �
0 −𝑣𝑣3 𝑣𝑣2
𝑣𝑣3 0 −𝑣𝑣1
−𝑣𝑣2 𝑣𝑣1 0

� (10) 

Finally, the stem point cloud was rotated by matrix R to ensure that the cylindrical axis was parallel to z-axis (fig. 8a). 
After rotation, the points with z values from -15 to -10 cm, which approximately represented the stem section of 5-10 cm 
above the ground, were selected for stem diameter estimation. The selected point cloud was projected to x-y plane, where 
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the projected points distributed as a partial circle (fig. 8b). The center of the circle (𝑥𝑥0,𝑦𝑦0) and the radius R were optimized 
by performing an unconstrained minimization of ℱ(𝑥𝑥0,𝑦𝑦0,𝑅𝑅) in the three-dimensional parameter space (eq. 11).  

ℱ(𝑥𝑥0, 𝑦𝑦0,𝑅𝑅) = �𝑑𝑑𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

= �(�(𝑥𝑥𝑖𝑖 − 𝑥𝑥0)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦0)2 − 𝑅𝑅)2
𝑛𝑛

𝑖𝑖=1

 (11) 

where 𝑑𝑑𝑖𝑖 represents the Euclidean distance from a point to the circle center, and (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) is the x-y coordinates of the ith 
point in the point cloud.  

 
Figure 8. Circle detection using Levenberg-Marquardt algorithm (LMA). (a) 3D transformation of the stem point cloud, the point cloud was 

rotated to have its cylindrical axis to be parallel with z-axis. The stem section in the red square was selected for circle fitting. (b) Circle fitting in 
x-y plane, the blue points were the projected point cloud of the selected stem section, the white circle was the output of LMA. 

The Levenberg-Marquardt algorithm (LMA) (Levenberg, 1944; Marquardt, 1963) was used for the optimization process. At 
kth iteration, LMA uses the following equation to update: 

𝑥𝑥𝑘𝑘+1 −  𝑥𝑥𝑘𝑘 = (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘 + 𝜆𝜆𝑘𝑘𝐼𝐼)−1𝐽𝐽𝑘𝑘𝑇𝑇𝜀𝜀𝑘𝑘  (12) 

where Jx = Jacobian matrix, I = Identity matrix, and 𝜀𝜀𝑘𝑘 is a vector of errors. LMA interpolates between the Gauss-Newton 
(GN) method and the steepest-decent (SD) method through the adjustment of 𝜆𝜆𝑘𝑘 (Song et al., 2020). For example, when 𝜆𝜆𝑘𝑘 
is assigned a small value, the descent is close to GN method, while a large 𝜆𝜆𝑘𝑘 value makes the LMA step close to the SD 
method.  

Accuracy assessment  

To evaluate the performance of stem segmentation, three widely used evaluation metrics of precision (P), recall (R), and 
harmonic mean (F1) were chosen, which can be defined as: 

𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (13) 

𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (14) 

𝐹𝐹1 =
2 ∙ 𝑃𝑃 ∙ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 (15) 

where TP (True Positives) denotes the number of correctly segmented stem pixels; FP (False Positives) is the number of 
background pixels incorrectly classified as stem pixels; and FN (False Negatives) is the number of non-segmented stem 
pixels.  

The performance of stem diameter estimation was evaluated by performing linear regression analyses between the 
system-derived measurements and the ground truth. We computed the following statistics to assess the model: Pearson 
correlation coefficient (r), root mean square error (RMSE, eq. 16), and mean absolute error (MAE, eq. 17).   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝐹𝐹
�(𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖

𝑔𝑔𝑔𝑔)2
𝑁𝑁

𝑖𝑖

 (16) 

𝑅𝑅𝑀𝑀𝑅𝑅 =
1
𝐹𝐹
��𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖

𝑔𝑔𝑔𝑔�
𝑁𝑁

𝑖𝑖

 (17) 

where N is the total number of stems used for evaluation, 𝑑𝑑𝑖𝑖 is the image-derived stem diameter of the ith stem, and 𝑑𝑑𝑖𝑖
𝑔𝑔𝑔𝑔 is 

its corresponding ground truth.  
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Results  

Performance of stem segmentation  
Table 1. The results of instance segmentation by Mask R-CNN 

IoU P R F1 
0.4 0.97 0.82 0.87 
0.5 0.96 0.81 0.86 
0.6 0.93 0.76 0.82 
0.7 0.84 0.65 0.71 

The test dataset was employed to further evaluated the trained Mask R-CNN model and weights for instance 
segmentation, where the confidence threshold was set as 0.9 for the stem class. We reported precision, recall, and F1 over a 
variety of Intersection-over-Union (IoU) thresholds from 0.4 to 0.7 (Table 1). The IoU indicates the overlap rate between 
the predicted mask and the ground truth. Considering IoU values equal to or lower than 0.5, all the precision, recall, and F1 
rates are higher than 0.8, which can meet the need of stem instance segmentation in this study. Furthermore, the precision, 
which represents the ratio of correctly classified pixels in all returned pixels, is impressive even considering a 0.7 IoU. For 
each IoU level, it is obvious that the recall rate was lower than precision rate. This is mainly because of the non-detected 
stem pixels close to the soil, where the texture and color were not prominent enough. However, since we only measured the 
diameter of the stem section from 5-10 cm above the ground, the misdetection of the pixels near the soil will not affect the 
stem diameter estimation performance.  

The proposed Mask R-CNN segmentation approach produced satisfactory results for instance segmentation. It can be 
seen that the stem mask extraction is very close to the real stem contour (fig. 9). For each segmented instance, the confidence 
level was close to 1. Also, the high statistic values (P, R, and F1) demonstrated the robustness of the trained model. Despite 
the relatively small size of training images, the model is adaptive to variable texture, stem size, occlusion, and illumination 
conditions. For example, the stem with a yellow mask in the first column (fig. 9) was visually split by a leaf. With the trained 
model, the target stem was successfully recognized as one single domain with two separate regions. Moreover, it can be seen 
that the proposed approach is not influenced by the reduction of lighting intensity near image borders.  

 
Figure 9. Some instance segmentation results produced by Mask R-CNN. Examples of the original images are displayed in the top row and their 

corresponding segmentation results are illustrated in the bottom row. Each color area indicates a segmented stem instance.  

Performance of stem diameter estimation 

The image-derived stem diameters were found to be highly correlated (r = 0.97) and precise (RMSE = 1.39 mm) with 
respect to manually measured stem diameters (fig. 10). Errors in system-derived diameters were attributable to several 
factors including falsely detected stem edges, inaccurate stereo matching, and camera calibration imperfection. The 
calibration errors resulted in an inaccurate estimation of the extrinsic as well as the intrinsic camera parameters. The fitted 
line was close to the reference line (y = x), with an intercept of 0.53 mm. The intercept demonstrated that image-derived 
diameter was slightly larger than the corresponding ground truth. This is mainly caused by the soft leaf sheath around the 
stems, as the caliper tended to give a smaller value when tightening across the stems. 
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Figure 10. Correlation of system-derived stem diameter and ground truth 

It was noticed that the proposed approach showed lower reliability when the stem diameter was less than 20 mm. One 
possible explanation is the inherent difficulty to reconstruct thin structures in the process of stereo matching. Furthermore, 
the cross-section of the stem is best modeled as an ellipse, especially when the stem was small, therefore, the process of 
stem modeling and the placement of caliper can introduce errors. 

Overall, the proposed approach outperformed the current automated and user-interactive methods. The automated method 
of StalkNet (Baweja et al., 2018) showed promising efficiency in the measurement of stem width, but with the MAE (2.77 
mm) equal to 19.3% of the average stem width. The user-interactive method developed by Bao et al. (2019) showed 
comparable performance (r = 0.95, MAE = 1.64 mm) with our automated pipeline, but the intercept (2.84 mm) was 
substantially larger than that of our method. Additionally, their method requires human intervention to assist in the 
segmentation of stems, which is still laborious and not practical for large scale studies. Most of the reported methods 
computed the metric width of a stem from its pixel width in a 2D image. To the best of our knowledge, this is the first study 
of using high-accuracy 3D surface models to estimate the stem dimeter of field-grown sorghum plants.  

Computational efficiency  

The image processing pipeline was run on a desktop workstation with a 2.2 GHz Xeon Gold 5120 CPU, 32GB RAM, 
and a NVIDIA Titan Xp GPU. The instance segmentation network was trained on a Nvidia GTX Titan X GPU with a 3.5 
GHz Xeon HexaCore CPU and 16 GB RAM. We summarized the time cost of each procedure in Table 2. Here the time for 
image processing consists of two parts: data extraction and network training. The data extraction comprised four processing 
stages: stereo matching, stem detection, point cloud filtering, and stem diameter estimation. Usually, the time for point cloud 
processing is closely linked to the size of the point cloud. The time consumed by the proposed algorithm mainly occurred 
during point cloud filtering, which occupies 49% of the total processing time. During the filtering process of a dense point 
cloud, traversing each point to search for its neighbors costs much time. However, the proposed stem diameter extraction 
operating on the point cloud was fast, and the average processing time was 3.8 s per stem. After evaluated ten representative 
stems, the average time needed for data extraction of a stem was about 20.9 s, which is much faster and less laborious than 
that of in-field manual measurement. The Mask R-CNN training process lasted 35 hours with a 0.001 learning rate. 

Table 2. The average computation time for each processing stage 
Processing stage Average time (s) 
Stereo matching 5.4s per image 
Stem detection 1.4s per image 

Point cloud filtering 10.3s per stem 
Stem diameter estimation 3.8s per stem 

Mask R-CNN training 35 hours 

Discussion  

Performance of PhenoStereo 

In field conditions, the development of an imaging system that is robust to environmental conditions is challenging. 
Herein, we discussed three major challenges that come with field-based imaging and our corresponding solutions, the 
challenges include: 1) variable illumination, 2) wind, and 3) complex background. Specifically, 1) In the field, illumination 
is a key factor affecting the quality of images. The direct sunlight and backlighting conditions can lead to over- or under- 
exposed images. Such an illumination issue can also reduce image texture and hence affect the performance of stereo 
reconstruction. The stereo matching requires that the plant images have as rich and crisp texture as possible. The PhenoStereo 
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comprises strobe lights which actively illuminate the object when capturing images, thus increasing the local discriminability 
and sharpness of the images; 2) The 3D reconstruction can be adversely affected by blurry images induced by wind 
conditions. In this study, the high-powered flash combined with extremely short exposure time enabled the camera module 
to capture images in a short time (0.3 ms), which effectively reduced the adverse effects of motion due to wind. Meanwhile, 
the fast shutter speed also decreases the influence of robot motion and vibrations on image quality; 3) The complex 
backgrounds in the field have imposed steep challenges for image segmentation and stereo reconstruction. The proposed 
PhenoStereo, with dominating lighting on the viewed object, was shown to be capable of producing images with a strong 
contrast between the foreground and background. 

Field-based phenotyping has been recognized as an important alternative for UAV-based phenotyping, for its capability 
of delivering organ-level phenotypic traits located at the middle and bottom of the plant canopy. However, most current 
stereo-vision-based phenotyping platforms have been reported to work best under uniform lighting condition and with the 
absence of wind (Dandrifosse et al., 2020; Kaczmarek, 2017; Wu et al., 2020). Nevertheless, the PhenoStereo has been 
successfully employed to collect over 10,000 image pairs of maize and sorghum, under various weather conditions and at 
different timings of day. The consistent and high-quality images demonstrated the robustness and generality of the 
PhenoStereo camera module. Moreover, the PhenoStereo is equipped with ROS-based API and Gigabit Ethernet Interface, 
making it highly integrative with many field-based phenotyping systems. Compared with manual imaging, the high data 
acquisition speed efficiency makes the module feasible to acquire phenotypes at large scales.  

Potential improvements in the future 

There is still room for improving both the stereo vision system and the image processing pipeline.  To improve the stereo 
vision system, polarizing filters can be added to the strobe lights and camera lens to reduce noise caused by glares. The stem 
and leave surfaces of plants tend to be reflective, especially when the camera getting too close to the viewed object, result 
in a negative effect on image quality (fig. 11). Another possibility would be to use more than one camera set to build a stereo 
vision system. By taking advantage of multiple adjacent cameras, the system can have a wider field of view, allowing some 
side cameras to have advantageous view angles over areas containing partial objects. The multi-camera system offers the 
potential to generate more accurate distance estimations and better view angles over occluded areas (Kaczmarek, 2017). 

 
Figure 11. The partially over-exposed images due to the reflective surface of sorghum stems. 

Concerning the image processing pipeline, even more advanced stereo matching algorithms could be used to improve the 
quality of disparity maps. This study focuses on SGBM for computing stereo correspondence due to its high efficiency and 
sufficient performance. However, it is worth to point out that SGBM has its limitations. In this study, the surface 
reconstructed from SGBM was found to be blurry near the object boundaries, which gave inaccurate contours of stem and 
leaf. This is because the SGBM’s filter-based matching cost aggregation tend to smooth the depth discontinuities; and hence 
cause distortions at image edges (Hirschmüller and Scharstein, 2007). Many advanced techniques have been proposed to 
improve the edge-preserving performance, including the optimization based filters and the weighted average based 
smoothing approaches (Zhang et al., 2015). On the other hand, state-of-the-art CNNs could be used to further improve the 
process of computing the similarity between stereo image patches. For instance, Bao et al. (2019) implemented a robust 
stereo matching algorithm 3DMST (Li et al., 2017) to reconstruct surface models of dense plant canopy in the field. The 
algorithm takes the advantages of both CNNs for computing matching cost and nonlocal support region filtering for 
preserving edges. Though with lower computational efficiency, the 3DMST outperformed SGBM in surface smoothness and 
edge-preserving ability regarding the surface reconstruction of sorghum plants.  

Conclusion  
This study proposed a stereo vision system, named PhenoStereo, for field-based high-throughput plant phenotyping. The 

system is capable of producing high-quality and high-sharpness stereoscopic images with fast shutter speed. The novel 
integration of strobe lights facilitated the application of the PhenoStereo under various environmental conditions (direct 
sunlight, backlighting conditions, shadows, wind conditions). As a case study, we used the PhenoStereo to quantify the stem 
diameter of sorghum plants. The high-quality stereo images allowed the reconstruction of accurate surface models of plant 
stems. Subsequently, an automated image processing pipeline was developed to segment individual stems and performed 
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modeling on the segmented point cloud. The correlation coefficient (r) between the image-derived and ground truth 
measurements of stem diameter was 0.97 with an MAE of 1.44 mm, surpassing the best values reported in the literature. To 
conclude, the proposed method offers an automated, rapid, and accurate solution for extracting the stem diameter of sorghum 
plants. Our study also demonstrated that with proper customization stereo vision is feasible for 3D-based plant phenotyping 
under field conditions. Future work will focus on improving the quality of disparity maps, as well as using the PhenoStereo 
to characterize other organ-level morphological traits such as leaf angle and panicle/tassel size. 
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