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GENERAL INTRODUCTION 

The development of an index of deterioration can provide valuable guidelines in 

minimizing the unnecessary quality loss during handling and storage of agricultural crops. 

Carbon dioxide evolution in a biological material, as a result of decomposition of its dry 

matter, can be used as an index of deterioration. Steele and Saul (1962) were earlier workers 

to use carbon dioxide as a measure of the quality of com during handling and storage. They 

measured the amount of carbon dioxide produced from shelled com during laboratory storage 

and standardized as per kg of dry matter. The equivalent dry matter loss was calculated using 

the familiar carbohydrate decomposition model described as the oxidation of hexose sugars 

(C6H12O6). The shelled com were graded according to the United States Grain Grades and 

Standards. Saul (1967) and concluded that a loss of more than 0.5% in dry matter affects the 

market grade. It has been further observed that a loss of 1.0% in the dry matter would make 

shelled com almost sample grade. 

The use of dry matter loss as an index of quality has since attracted many related 

studies, such as those of Saul and Steele (1966), Steele et al. (1969), Fernandez et al. (1985), 

Friday et al. (1989), Al-Yahya et al. (1993), and Dugba et al. (1996), which improved the 

definition of dry matter loss. Multipliers were incorporated into the dry matter loss model to 

account for the effects of parameters such as breakage, temperature, moisture content, com 

hybrid and fungicide. Dry matter loss prediction model was incorporated as a subroutine in 

an ambient temperature drying model for com developed by Thompson et al. (1968). The 

subroutine is to predict the dry matter loss of the top layer of the drying com and determine 
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whether drying could be completed before the grain loses quality. Another useful 

contribution made from several of these studies was the development of an allowable storage 

time (AST) table (MWPS, 1980). The values read from the table, at any particular moisture 

content-temperature combination, will give the length of time (days) that shelled com can be 

safely stored before it loses 0.5% of dry matter. It is assumed that com losses some quality 

within those limits of dry matter loss, but maintains its market grade. 

The usefulness of the study to the com industry has prompted the idea of establishing 

similar information for the soybean industry. 

Soybeans, Glycine max (L) Merill, is one the oldest food crops grown by man. Grown 

first and for several years primarily as a forage and pasture crop and soil improvement 

purposes, it became a crop of worldwide economic importance only in the last 40 to 45 years 

to the United States and few other countries like Brazil, Argentina and China. During the last 

25 years, world production increased by 350%, while U.S. production rose over 300%, 

making soybean industry one of the world's fastest growing agricultural sectors. In the 

United States, soybeans is second only to com in terms of production value. 

Soybeans account for about 50% of the intemational trade of major oilseeds in 

1984/85-1988/89 (Crowder and Davidson, 1^89), with the United States being the leading 

exporter of soybeans at more than 70% as of year 1987/88. The world supply of soybeans is 

driven by the demand for oil and high protein meal, each contributing about 30.2 and 50.2%, 

respectively, to the world supply of vegetable oil and feed meal production as shown in 

figures 1 and 2 (Wynstra, 1980). 
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Oilseeds, such as soybeans, are at a much higher risk of loss during storage than 

cereal grains. Under the same environmental condition, the moisture content requirement for 

safe storage of soybeans is usually 1% lower than for starchy cereal grains such as com 

(Sauer et al., 1992). A study in maintaining quality of soybean during handling and storage 

therefore is a relevant proposition. 

Cottonseed 
16% 

Flaxseed 

F l̂m kernel 
1% 

Sunflower 
9% 

F^nut 
11% 

1% 

Soybean 
51% 

Figiu*e 1. World Vegetable Oil Production 



Cottonseed 
16% 

Flaxseed 

ftim kernel 
1% 

Sunflower 
9% 

F^anut 
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Figure 2. World Meal Production 

A similar study of carbon dioxide production as a measure of physical quality of 

soybean during storage was initiated to relate dry matter loss with quality. Experiments for 

such a study require that soybeans be preserved at low temperature after harvest to facilitate a 

continuous supply and uniform quality of soybeans for future work. Low temperature 

preservation is known to maintain seed viability over a long period of time, but no 

information is available on the temperature-moisture-content-preservation period interaction 

effect with soybean quality parameters, such as damaged level and oil quality and the ability 

to produce carbon dioxide, when use in storage studies. It is therefore important that such 

information be established. 

It is also felt that dry matter loss during storage of soybean be also evaluated with 

inherent quality such as its oil. One of the important criteria of soybean oil quality is its 
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percentage free fatty acids (FFA) content in the oil. Though a standard method exists for the 

analysis of FFA content in extracted oil (AOCS, 1989), adoption of the procedure is limited 

by the relatively large oil sample size. Laboratory storage experiments are usually carried out 

with a sample size of about 1-kg. A minimum amount of soybeans for any evaluation of FFA 

content would require an equivalent of at least 150 soybeans per analysis. Withdrawing such 

a quantity of soybeans for oil analysis coupled with the need for certain amounts of soybeans 

for other quality evaluations during the experiment may not be possible. A revised method 

for the determination of FFA on smaller sample size needs to be developed. 

Objective 

To develop a better understanding on the rate of deterioration of soybeans during 

storage and the impact of preservation of samples on the relative rates of quality loss during 

storage, the present research was conducted with the following objectives: 

1. to revise a method of FFA analysis to use a smaller oil sample size 

2. to define the rate of deterioration of soybean during storage as influenced by 

methods of handling and preservation 

3. to define dry matter loss of fresh and preserved samples in term of FFA content and 

total damaged kernels 
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Explanation of dissertation format 

This dissertation is written in manuscript format and consists of four papers. The 

papers were written in compliance with the formats required for the respective publications. 

The first paper, "Effects of field and storage conditions on soybean quality: A 

review," will be submitted to Applied Engineering in Agriculture, an American Society of 

Agricultural Engineers (ASAE) publication. The second paper, "A modified method for 

determining firee fatty acids from small soybean oil sample sizes," is to be submitted to the 

Journal of the American Oil Chemists' Society (AOCS). The third paper, "Carbon dioxide 

evolution from fresh and preserved soybeans," and the fourth, "Effects of preservation on 

quality of soybean during storage," are to be submitted to the Transactions of the American 

Society of Agricultural Engineers (ASAE). As required by those publications, the tables and 

figures are compiled at the end of each of the text. 

Each manuscript contains an abstract, introduction, materials and methods, results and 

discussion and conclusions. The four manuscripts are preceded by a general introduction and 

are followed by general summary. The reference cited in the general introduction are listed 

after the appendices. The references cited in the introduction, materials and methods and 

results and discussion of each manuscript are listed at the end of that manuscript. 

The dissertation also includes five appendices. Appendix A is an attachment 

describing the American Oil Chemists' Society recommended methods used during the 

course of the study. Appendix B presents the raw data from the AOCS and revised method of 

FFA determination experiments and its data analysis. Appendix C describes the calibration of 
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the carbon dioxide measuring system. Appendix D contains raw data from the carbon dioxide 

evolution studies, the rates of deterioration of soybean to 0.5 and 1.0% dry matter loss and 

data analysis. Appendix E is a compilation of raw data on soybean damage and quality and 

data analysis. 
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EFFECTS OF FIELD AND STORAGE CONDITIONS ON SOYBEAN 
QUALITY: A REVIEW 

A paper to be submitted to the Applied Engineering in Agriculture 

Rukunudin, I. H., and C. J. Bern 

ABSTRACT 

Field and storage conditions affects the quality of soybeans for processing. Soybean 

damage prior to harvest, which is influenced mostly by weather conditions, can caused up to 

35% damage. This damage can be compounded by damage incurred during harvesting 

operation. Harvest damage is minimized by harvesting at 13 to 15% moisture contents. Field 

damaged soybeans are more difficult to store than a normal mature crop. During storage, 

damage could be inflicted by variables such as temperature, moisture of the 

microenviroiunent within the storage facility, and length of the storage period. Normal 

mature soybeans between 13.0 to 14.0% moisture content, can be stored for about nine 

months before they become sample grade. Deterioration of soybeans has a profound impact 

on the extracted oil quality than the meal. Oil extracted from deteriorated soybeans exhibited 

high FFA content than a normal bean. Damaged soybeans exhibited a faster rate of FFA 

increased during storage than sound soybeans. The high the FFA content results in high 

refining losses during extraction. The loss is generally 3 times the FFA content, but a loss of 

between 5 to 10 times the FFA content is no uncommon. Failure to minimise soybean 

deterioration at various points during handling results in financial losses to farmers, grain 
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storage operators, exporters and importers. The financial loss during refining as a result of 

high FFA content in soybean oil from a typical oil plant that produces 2,400 tanks cars of oil 

per year had been equated to be about $83,700.00. 

INTRODUCTION 

The soybean plant is an efficient protein producer and, in fact, yields more usable 

protein per hectare than any other commonly ciUtivated crop - at least three times more than 

rice, wheat or maize. It has been variously referred to as "The miracle golden bean," "Pearl of 

the orient," "The cow of China," and "The meat of fields". Regardless, soybeans is a proven 

and yet promising source of plant protein and edible oil, contributing about 50% and 30%, 

respectively, of the world's supply of feed meal and vegetable oil (Wynstra, 1980). 

In the United States, the soybean crop is primarily crushed for oil and the meal is 

incorporated into animal feed. When raw soybeans are received at the processing plant, they 

are weighed and cleaned to remove foreign material. Drying is sometimes necessary if the 

beans are to be stored for a longer period of time or are to undergo a hot dehulling process. 

The soybean is then cracked into several pieces to facilitates further processing and enhance 

the separation of the hull from the rest of the bean. The dehulling process removes loose hulls 

from the cracked beans before flaking. It is in the flaked form that soybean oil is extracted. 

The common method of oil extraction is the hexane solvent process. The crude oil 

separated from hexane is then subjected to a refining process. The principal steps in refining 

soybean oil are degumming, neutralization, bleaching and deodorization. After removal of 
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solvent, the spent flakes are ground to meal for use as animal feed. The use of meal for 

animal feed is not for the protein per se, but for the essential amino acids which are the 

building blocks for tissues and muscles. Other coproducts of soybean processing are lecithin 

and various soy protein products. 

This paper summarizes field and storage factors affecting the rate of deterioration and 

quality of soybeans and their products during the time from physiological maturity through 

processing. Quality factors affecting soybean seed viability are only considered briefly. 

SOYBEAN AND SOYBEAN PRODUCT QUALITY 

USDA grade 

One measure of soybean quality is the USDA grade. U.S. soybeans are traded on 

specific standards established by the USDA (table 1). The most important quality factors to 

the soybean processors are moisture, splits, foreign material and damage (Spencer, 1976). All 

of these contribute to successful storage of the crop for up to 10 months, and to commercially 

optimum processing yields, operating costs and product quality. 

Presence of foreign material with stored soybeans can trigger an oxidative reaction 

and introduce undesirable pigments, such as chlorophyll. Some of these materials are high in 

moisture and may cause heat damage in storage. Broken soybeans, splitting and the damage 

occurring in storage can break natural barriers present in sound soybeans, and initiate 

enzymatic and biological processes that increase free fatty acids (FFA), nonhydratable 

phosphatides and metal concentration in the oil. The presence of fine materials has been 
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associated with increases in the concentration of foreign material along the spout line during 

loading. A 2% fine materials level can create a 50% concentration of fine materials along the 

spout line during loading (Christensen and Kaufinan, 1975). The tightly packed spout line 

and the section above it may have minimum contact with the air during aeration; thus 

creating a favorable condition for fungal spoilage. 

Free fattv acids 

In general, the quality of soybeans will not affect the quality of soybean meal in terms 

of protein content and nutritional value as used in animal feed, but soybean quality does 

affect the quality of soybean oil in terms of free fatty acids (FFA), bleachability, phosphorus 

content and other factors (Erickson et at., 1993). Deterioration of grain or oilseeds is always 

accompanied by deteriorative changes in oils they contain. The oil may either be subjected to 

an oxidative reaction, resulting in typical rancid off flavors and odors or to hydrolysis, 

resulting in the production of FFA. Development of oxidative rancidity is rarely a problem 

during the storage of sound soybeans, as compared to hydrolysis of fats. The same 

observation has been made with raw wheat (Fellers and Bean, 1977). Figure 1 shows the 

typical reaction associated with the hydrolysis of fat, where fats (triglycerides) are broken 

down to FFA and glycerol, particularly when temperature and moisture content are high. 

FFA level is not a soybean grade-determining factor, but high levels have been the 

focus of complaints lodged by foreign as well as domestic buyers. To soybean oil buyers, oil 

FFA content is a very important parameter since it indicates soybean quality and consequent 
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processing costs. If it is not removed from the crude oil, the end product will taste bitter. The 

economic effects of high FFA content in oil include higher refining losses, increased use of 

refining materials, and lower-quality refined oil. 

According to Markley (1950), FFA in freshly extracted soybean oil may be present in 

the seed at the time of harvest or they may have developed in the seed after harvest or before 

processing. Soybean oils often contain 0.05 to 0.7% FFA (Hiromi et al., 1992) and those 

levels may increase during harvesting, handling and subsequent storage of the soybeans, 

especially in the case of abnormally high moisture content, which favors heating and en2yme 

activity. Hydrolysis of triglycerides is catalyzed by eniyme whose activity is increased by 

increased moisture. 

Refining losses 

Crude oil extracted from soybeans must be refined to remove impurities before use by 

food industries. The refining process yields what is termed "neutral soybean oil," along with 

undesirable components. The amount of impurities removed is referred to as the refining loss. 

A simple way of estimating refining loss is to calculate the difference between the 

weight of crude oil entering the process and the weight of refined oil out. Specifically, 

refining loss is the sum of loss in weight of an oil during the removal of FFA and other 

impurities plus entrained neutral oil in soapstock during the normal alkali refining process. 

Refining losses, which involve substantial neutral oil loss, are mfluenced by the amoimt and 

kind of impurities in the oil. 
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FFA is used as an indicator of oil refining loss in soybeans and some other oilseeds. 

In kettle refining of coconut oils, for instance, the total loss usually does not exceed about 1.4 

times the amount of FFA removed. In vegetable oils, such as cotton seed and soybean oils, 

the loss is generally 3.0 times the FFA content and the loss of between 5 and 10 times the 

FFA content is not uncommon. Several different formulae are used in estimating the percent 

refining loss. One simple example (Lusas et al., 1988) is given by the equation [1]: 

% Refining Loss = 0.5 + % phospholipids * 1.5 + % FFA * 2.0 [1] 

The normal range of refining loss for soybean oil is between 1 and 1.5% 

(Robertson et al., 1973), and can be as high as 10% or even 15% for oils containing high 

percentage of phosphatides (Markley, 1950). Urbanski et al. (1980) calculated the dollars lost 

for a typical oil plant that produces 2,400 tank cars of oil per year. Using the industry 

dockage formula for neutral oil loss and a price of 9.75 cents per pound, an 18% increase in 

neutral oil represents an aimual loss of $36,000.00. Based on the current market price of 23 

cents per pound, the annual loss would be equivalent to $83,664.00. 

Soybean oil compositions 

During refining operation, concentrations of FFA together with phosphatides, 

unsaponifiable matter and trace metals are reduced. A typical composition of crude and 

refined soybean oils are shown in table 2. The refining process reduces FFA in the crude oil 
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by 83.3 to 92.8%. The maximum levels of FFA content, as set in the Yearbook and Trading 

Rules (1993-94) of the National Oilseed Processors Association (NOPA) are higher at 0.75% 

for crude degummed oil, 0.1% for once-refined soybean oil and 0.05% for fully refined 

soybean oil (NOPA, 1995). 

Unsaponifiable material consists of compounds such tocopherols, sterols, phytosterols 

and hydrocarbons, ketones, alcohol which are not saponified by alkali but which are soluble 

in ether or petroleum ether. During typical oil processing operation, the concentrations of 

these compounds are reduced, however some are still remains in the final refined oil. 

Lovibond color 

Lovibond system of color measurement is one of the AOCS methods recommended 

for determination of color of the lighter refined oil and bleached oil and also of shortening 

and other oil and fat products. The presence of color in the crude oil may markedly affect 

subsequent processing. The determination of color is made by matching oils with the tinted 

glass in a tintometer, a 13.3 cm column of oil against red and yellow Lovibond color glasses. 

The corresponding red and yellow glasses scales that match the oil color is taken as the color 

of the oil. The method is not suitable for oils that are excessively dark or that contain colored 

substances other than red and yellow in high concentration The maximum Lovibond color for 

fully refined soybean oil is 20Y/2.0R. 
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PREHARVEST QUALITY 

One of the most important considerations in storage is the quality of crop entering 

storage. High quality soybeans store well under relatively adverse conditions, while badly 

deteriorated seeds store poorly even though conditions are quite favorable. The most modem 

conditioned storage facility cannot really compensate for delayed or incautious harvesting, 

inadequate or improper drying, rough handling, and poor bulk storage. 

Preharvest damage 

Deterioration is traditionally associated with storage. But for some cereal grains and 

oilseeds, deterioration can begin prior to harvest, during the period following physiological 

maturity. This postmaturation preharvest period is considered by some to be the first segment 

of the storage period. The field environment during this period can be unfavorable for 

storage. Frequent and prolonged precipitation, high humidity and low temperature can cause 

what is termed weather damage. Weather damage refers to firost, freeze or field damage and 

also damage caused by drought and hail. 

Weather damage 

Severe deterioration of seeds can occur before they are even harvested, especially 

when harvest is delayed. Mature soybeans remaining in the field during prolonged wet 

weather can become field or weather damaged (Krober and Collins, 1948). The dampness can 

cause molds to grow rapidly, turning soybeans brown. During the harvest season, continued 
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wet weather, including heavy rain, has caused up to 35% field and storage damage to 

soybeans (Robertson et al., 1973). 

The occurrence of cold weather during the growing period before full maturity can 

lead to frost damaged soybeans, rendering them green in color with low protein, low oil and 

high carbohydrate (Fulmer, 1988). Frost or freeze damage can occur when the temperature 

during the early harvesting season is low. Frost damage occurs when the ambient temperature 

drops to -2.2 to -1.7°C, and freeze damage occurs when the temperature drops to below -

3.9°C (Sternberg et al., 1990). Indeed, green beans can lead to green salad oil if the processor 

doesn't employ extreme measures. Frost damaged beans were noted to have poor keeping 

quality. For example, surface-sterilized seeds from frost injured lots was found to have 18 to 

40% Alternaria and other strains of fungi (Ramstad et al., 1942). With increased damage, 

there was an accompanying increase in the aerobic microfloral content. It is anticipated that 

immature and frost damaged soybeans would present a more serious storage problem than 

sound, high-grade soybeans. Frost injury might be expected to render the seed more 

susceptible to attack by microorganisms and result in increased internal microflora. 

Weather damage to soybeans is also known to alter some chemical composition in the 

beans. The most widely cited quality loss due to damaged beans is the increase free fatty 

acids (FFA) content in the crude oil (Krober and Collins, 1948; Urbanski et al., 1980; 

Henderson, 1987). Other forms of quality parameters include Lovibond color (Robertson et 

al., 1973) and the lower flavor quality of refined oil (Sander, 1944; Hutchin, 1945). In a study 

to determine the extent of oil quality deterioration from field and storage damaged soybeans 
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in Georgia, Robertson et al. (1973) found that FFA content in field damaged samples was 

about 2.5% compared to 0.4% in undamaged beans. The Lovibond color of the extracted oil 

samples was 70Y-3.0R and 70Y-3.5R for undamaged and damaged soybean respectively. In 

a similar study by Urbanski et al. (1980), the same observation was made on the levels of 

FFA in field damaged, fi^eeze damaged and undamaged soybeans. The FFA contents in field 

and fireeze damaged beans were higher than in undamaged beans (table 3). 

It has been reported that the FFA levels of the 1985-crop soybean, the year which 

initiated the tightening of the US grading standard, ranged firom 0.92% to 4.57% (Henderson, 

1987). The main processing concern of weather-damaged soybeans is that the oil is more 

costly to refine (Sanders, 1944) and even after refining it is often not of an edible grade. 

There was a suggestion that field-damaged soybeans should not be used for direct human 

consumption. 

Soybeans damaged by early frost or storage also may contain increased amounts of 

non-hydratable phospholipids. These phospholipids are poorly recovered by hydration, and 

the resulting degunmied oils have high levels of phosphorous containing compounds. These 

oils are difficult to process during later hydrogenation (Nash et al., 1984). 

Effects of early harvest 

Early harvesting, on the other hand, may increase the percentage of immature 

soybeans. Even during a normal year, harvested soybeans consist of not only mature sound 

soybeans but also immature or green soybeans. Yao et al. (1983) found that crude oils of 
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immature beans were greener in color and higher in FFA content than those of mature beans. 

Upon storage, the FFA content increased at a faster rate in the immature beans than in mature 

beans. However, the green color was more easily removed in refining than the red color 

caused by other field damage (Krober and Collin, 1948). 

SOYBEAN HARVESTING 

At the time of physiological maturity, the soybean has the highest quality for most 

uses. 

Optimum harvest moisture 

Since most grains attain maturity at moisture contents too high for efficient 

mechanical or even hand harvesting, they are, in effect, stored in the field from maturation to 

harvest. Soybeans are generally harvested at any time after the seeds are mature and the 

foliage is dry. At moisture contents higher than 18%, threshing is, however, difficult and 

harvesting can result in bruised and crushed soybeans. These damaged soybeans pose a 

problem during subsequent handling and storage, where fungi, discoloration and heating can 

develop in the crevices of machine damaged beans. Sound soybeans present a less hospitable 

medium for mold mycelial penetration and growth than do the highly damaged seeds (Milner 

and Geddes, 1946). Available evidence (Barger and Weber, 1949; Wilcke and Misra, 1984) 

suggests that the optimum range of moisture for combine harvesting of soybeans is between 

13% and 15%. Below 13% moisture, seed cracking and splitting increases sharply as 
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moisture content decreases, while seed bruising and other less visible but still detrimental 

injuries increase at moisture contents above 15%. 

Harvesting at 13% may also result in soybeans having the highest premium in the 

market, thus optimizing the financial return to a farmer. The U.S. soybean grade once used 

moisture content as one of the parameters of soybeans grade; 13% moisture was classified as 

Grade number one. Although moisture is no longer a criteria, allowing soybeans to dry down 

in the field to less than 13% causes weight loss which leads to a monetary loss. 

Haugh and Bartch (1977) found moisture content and combine cylinder speed to be 

the most significant variables influencing mechanical damage, as evidenced from 

germination percentage. In a moisture range of between 10 to 15.5%, an average reduction of 

6.1% in germination was caused by the gathering, feeding and primary threshing ftmctions. 

Separation and cleaning accounted for an additional 3.3% decrease in viability. Invisible 

damage caused by mechanical handling resulted in abnormal seedlings from soybeans which 

appeared sound. Harvesting at a lower moisture content of 10% could also result in yield 

reduction due to shattering loss, which can be as high as 8% (Byg, 1969). 

SOYBEAN HANDLING 

Several studies have been conducted to determine physical and Theological properties 

of grain in order to predict the reaction of seed under actual handling circumstances. 

Soybeans may be handled 15 or more times before they reach the processors or crushing 
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plants, and 25 or more times before they reach a foreign buyer's end-use point (Paulsen, 

1973). 

Several studies found that soybeans exhibit optimum capacity to absorb compressive 

load in a moisture range of 11 to 14%. Bilanski (1966) found that under gradually applied 

loads, on the average, the force required to initiate seed coat rupture declined from 57.8 N (13 

lb) at 11% moisture content to 44.4N (10 lb) at 16%. Paulsen (1978) confirmed these values 

when he found that the force to initiate seed rupture decreased as moisture content increased. 

With horizontal hilum position, the force of 144.0N was required to rupture 8.1% moisture 

soybean sample and only 38.2 N at 17% moisture content. Toughness, the energy absorbed 

by soybeans prior to seed coat rupture per unit of soybean volume, increased with moisture to 

a maximum value of 11 to 14%. At 1.0 mm/min deformation rate, the optimum compression 

energy absorbed by three soybean varieties under vertical and horizontal helum positions, 

range between 0.18 to 0.55 mJ/mm^. Among Amsoy-71, Corsoy and Williams tested 

varieties, Corsoy appeared to have the highest capacity for absorbing compressive energy 

among the three varieties tested. Under impact, as in most handling situations, it was 

postulated that soybeans could withstand higher energy levels than those obtained in the 

study. Soybeans may be subjected to impact loading m threshing cylinders, centrifugal 

discharging of vertical bucket elevators, filling and discharging of screw conveyors, spouting 

and free-fall dropping. Damage is dependent upon the particle velocity immediately before 

unpact and the surface against which impact occurs. Fiscus et al. (1971) concluded that 
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breakage of soybeans and com increased exponentially with impact velocity. Equation [2] is 

a general equation developed for com and soybeans. 

B = cV" [2] 

where B = percent breakage 
V = velocity, in per s 

c and n = constants varying with grain type, moisture and 
temperature 

For soybeans between 11 to 11.5% moisture content at 0 to 3.9°C, the values of c and n are 

2.6*10'^ and 2.2, respectively. At 12 to 12.5% moisture and 5 to 10°C, the values are 8.1*10"^ 

and 1.5, respectively. 

SOYBEAN STORAGE 

It is well known that in commercial practice, soybeans may normally be stored for 

periods of up to one year or longer before being processed into oil and meal. For seed, 

germination and seed viability are paramount but for soybeans that go into the commercial 

chaimels for crushing, FFA content is of prime importance. 

There is a relationship between moisture content and storage period for market stock 

soybeans. Holman and Carter (1952), in their studies on the effects of initial soybean-

moisture content on grade and other quality changes in farm storage, found that soybeans 

with an initial moisture content of less than 10% did not change in grade after nearly four 

years. A summary of the relationship is shown in table 4. 
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Soybean seed storage 

Soybean seeds are known to be inherently short-lived (Delouche et. al., 1973).They 

deteriorate more rapidly than seeds of rice, com, sorghum, wheat and many other types of 

seeds under the same conditions of production, harvesting, drying and storage. Of the major 

economic crops, only shelled peanut seeds are more short lived than soybean seed. According 

to Byrd and Delouche (1971), it is unusual to attempt to 'carry over' soybeans from one 

season to the next because of their relatively short storage life. Justice and Bass (1978) 

classify soybeans in the least storable group in their relative 'storability index'. Mills (1989) 

described and illustrated several cases of catastrophic losses of various kinds of seeds and 

other agricultural products. He regarded oilseeds as a much higher risk than cereals. There is 

a graph illustrating the relationship between temperature during storage and number of days 

of allowable storage time (Spencer, 1976). Soybean seeds at 22% moisture content can be 

stored for 2 days at 21.1 °C grain temperature. At 14% moisture content and with the same 

temperature, the allowable storage time is 42 days. 

There could be several reasons for its poor storability. The most interesting 

observation was of an earlier work of Zabolotskii and Barsukor (1932), original work was not 

examined but was cited by Markley (1950), that soybeans absorb moisture faster and retain it 

longer than other oil-bearing seeds. 
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Temperature and moisture effects 

Temperature and moisture content are the two most important variables affecting 

deterioration of grain in storage. The significance of moisture content was demonstrated in 

great detail by Holman and Carter (1952) in one of the earlier studies, between 1944 to 1946, 

on storage of soybeans. Under diumal air temperature fluctuation of between 22 to -6.7°C, 

they found that soybeans, when placed in storage bins at moisture contents of 10% or less, 

maintained their grade for four years. Germination, however, decreased moderately after the 

second year and rapidly after the third year. At 12 to 12.5% moisture content, the stored 

soybeans maintained grade for 3 years before they became musty. Germination, on the other 

hand, decreased considerably in the first year and was almost zero after three years. When 

stored at moisture contents of 13 to 14%, the soybeans became sample grade after 10 months; 

there was also a drastic drop in germination. 

There is also an interaction between moisture and temperature for safe storage as 

emphasized by Sauer et al., 1992. At 14.0 to 14.5% moisture content, soybeans can be stored 

for several years without invasion by storage ftmgi and without reduction in quality if the 

temperature can be maintained at 5 to -6°C. At 30°C, and with the same moisture content, 

soybeans will be invaded by storage fungi within weeks. Although it may be economically 

infeasible for commercial storage application, soybeans can be safely stored below 5°C and 

below 11.5% moisture content for a considerable period of time (Kauftnan, 1969). Other 

studies on the interaction of temperature and moisture during storage of soybeans also 

showed similar trend (Ramstad and Geddes, 1942; McNeal, 1966). 
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The interaction of temperature and moisture content means that there is a safe limit of 

moisture content for a particular temperature and duration. The goal of storage is to store 

soybeans as high a moisture content as is safe with zero deterioration, minimum grade 

changes, low overall cost and minimum handling. 

Fungi in storage 

It is the relative humidity of the intergranular atmosphere that influences storage life 

of stored soybeans. Microorganisms are the principal agents responsible for deterioration of 

stored soybeans having a moisture content above a certain critical limit (Markley, 1950; 

Christensen and Kaufinan, 1969). Some of these fungi do not invade soybeans before harvest, 

but inoculum of these fungi is ever present and if storage conditions are favorable to the 

growth of the fimgi, the soybeans will be invaded. The emphasis therefore must be, not on 

the avoidance of inoculum, but on the maintenance of conditions in storage that will not 

permit the storage fimgi to develop. Infestation, growth and reproduction of both storage 

fungi and insects are strongly influenced by relative humidity of the microenvironment of the 

beans in the mass. 

Since the soybean moisture content and intergranular atmospheric relative humidity 

are in equilibrium during storage, maintenance of a safe moisture content requires an average 

level of relative humidity in the storage environment no higher than that in equilibrium with 

the desired soybean moisture content. 
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A large quantity of literature has been written about the storage fungi and their 

relative growth in environments of different relative humidities. Christensen and Kaufinan 

(1969) reported that fimgi generally cannot grow at moisture contents below that in 

equilibrium with a relative humidity of approximately 65%. This is evident from the inability 

of drought-resistant storage fimgi A. restrictus and A. halophillian to grow in seeds whose 

moisture content is below that in equilibrium with relative humidity of 65%. 

Among the many fimgi which naturally inhabit healthy soybeans, only a few are 

involved in storage deterioration within the moisture content range of II to 23%. Table 5 

summarizes the ranges of relative humidities, moisture contents and the different species of 

fimgi known to be involved in deterioration of stored products. Aspergilus and Penicillium 

are the most common species encountered in storage. Milner and Geddes (1946) attributed 

most of the deteriorative activity in moist stored soybeans to the growth of A. glaucus and A. 

Jlavus. Kennedy (1964) found A. glaucus to be the predominant fimgus in 28 samples of 

soybeans collected from elevators in five states. 

Mikier and Geddes (1946) observed that at ordinary temperatures, there was marked 

acceleration in the respiratory activity of soybeans between 14 and 14.6% as contrasted to the 

very low and relatively constant respiration rate at moisture contents between 8.5 and 14%. 

They suggested that there was active biological activity occurring between the narrow range 

of 14.0% and 14.6%. The additional activity was found to be the fimgal growth. The 

equivalent relative humidity at that range of moisture content is 74.0 and 76.2%. Based on 
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their observation and several other studies by investigators before them, a relative humidity 

of 75% was considered a minimum for fungi to grow at ordinary temperatures. 

Ramstad and Geddes (1942) were the first to associate the respiration of fungi and 

their growth with decreases quality of stored soybeans. Extremely high respiration rates can 

occur in highly damaged seeds at moisture values favorable for fungal growth. The increased 

nutrient availability to the fvmgi, as might be expected to damage seeds, tends to decrease the 

humidity requirement for flrngal growth. Thus, soimd seeds, such as those of the high quality 

sample with their unbroken seeds coats, present a more inhospitable medium for mold 

mycelial penetration and growth than do the damaged seeds, in which the majority of the 

seed coats were ruptured. Bailey (1921) demonstrated that cracked, shrunken immature 

kernels respire more rapidly than sound grain of the same moisture content; the presence of 

foreign material and of sprouted, frost or heat-damaged kemels also was shown to increase 

respiration. Mechanically damaged com deteriorated about 3.5 times faster than hand-shelled 

kemels (Sauer, 1992). 

Insect in storage 

Like fungi, infestation by storage insects is also encouraged by moisture and 

temperature. Continuous growth and development of insects results in spoilage and 

infestation of soybeans. 

Most insects do not develop or feed on stored grain at temperatures below 10°C. At 

0°C, the insects will eventually die. Most insects usually require a bulk temperature of above 
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20°C to reproduce rapidly (Mills, 1990). Insects cause little problem if moisture content was 

low enough for satisfactory storage and bins are made weathertight. Farm storage studies 

under Illinois condition by Holman and Cater (1952), concluded that insects are not a serious 

problem during storage of soybeans at 12% moisture content or less for a period of two or 

more years. With the exception of granary weevil {Sitophilus granarius) and the rice weevil 

(Sitophilus oryza), insects found in infested stored soybeans are generally the same as insects 

found in stored com. The Indian meal moth (Plotia interpunctella) has been found to be 

present at any time during the study. Its feeding habits confined largely to split beans in the 

upper layer of the stores. 

Changes in free fattv acid content during storage 

FFA content of stored soybeans has long been used as a sensitive index of initial grain 

deterioration (Zeleny and Coleman, 1938). When soybeans are stored, oil quality continues to 

decrease, as measured by an increase in FFA. Holman and Carter (1952) sampled soybeans 

from 70 full-size farm-type bins and on analysis of FFA content, measured in term of acid 

values, showed some variation at different moisture contents during storage at ordinary 

temperatures (table 6). The highest FFA content recorded after one year of storage at the 

normal storage moisture content of 13.0 to 14.0% was 1.95%. 

McNeal (1966) conducted a 12-month laboratory study using soybeans with different 

moisture contents and two storage temperatures (10 and 26°C (table 7). The increase in FFA 

content after 12 months period, was high in soybeans with high moisture content and high 
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storage temperature. There was a four-fold increase in the FFA content at 14.6% moisture 

content at 10°C as compared to 13-fold increased at 26°C. 

A worst case example of FFA development in stored soybeans was reported by 

Robertson et al. (1973) where excessively damaged soybeans contained oil with an FFA of 

47.1% and a Lovibond color of 70Y-20.5R compared to 70Y-3.0R. The rate of increase in 

FFA content in soybeans increases as the quality of soybean decreases. Urbanski et at. (1980) 

showed that there was a linear relationship between FFA increase with months of storage 

(figure 2), the rate was higher with badly damaged beans. Iverson and Koeltzow (1986) 

established a linear relationship between FFA and damaged kemels total (DKT) as described 

by equation [3]: 

%FFA = 0.159(%DKT) + 0.915 [3] 

where FFA = Free fatty acid, % 
DKT = Damaged kemels total, % 

TRANSPORTATION 

In the international marketing of oilseeds and their products, the greatest concem for 

quality preservation during shipment has been for the soybean itself. Few studies have been 

done on degradation of oilseeds and their products while being transported. This is a subject 

of current interest in many quarters. A study by the USDA Agricultural Research Service 

(ARS) on eight shipments arriving at five European destinations from the 1985 crop 
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(Henderson, 1987), revealed that the average FFA levels was at 0.82%. The marketing 

standard for soybean oil is 0.75%. The report also mentioned another random sampling, 

conducted in the same year, from foreign shipments of soybeans leaving U.S. ports. The FFA 

content, on the average, was 1.9%. Some European and Asian soybean processors have 

previously expressed concerned with U.S. soybean quality during the 1984 and 1985 crops 

where a number of European processors turned to South American soybeans (Mounts et al., 

1990). Soybean crop reportedly yielded oil with FFA content of 1.2 to 1.6%. Destination 

soybeans also showed significant increases in nonhydratable phospholipid content in the 

extracted oil than the origin beans, contributing to a higher refining loss. 

Many earlier studies have however been related to the quality problems in static land-

based storage situations which can be applied or extrapolated to transportation containers. 

Contributing to the quality preservation problem of the soybean during shipment in 

international commerce has been the changing patterns of transportation modes and handling 

techniques in the past 15 years. Cargoes are loaded much faster, at rates up to 2,500 Mg/h. 

Vessels have increased in size from 1,500-18,000 Mg capacity to 45,000 and 60,000 Mg or 

larger. In today's modem cargo vessel with deep holds, it is not surprising, therefore, to find 

that the percentages of splits and broken bean pieces are greater at the discharge point than 

when loaded. The combined height of the loading spout and free fall into the hold of the 

vessel can approach a 30.5 m average for the entire cargo. The advent of large capacity self-

trimming bulk carriers in recent years has further increased spout-line separation of splits and 

foreign material from whole soybeans. 
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In a transportation study conducted by Velasco and Abdul-Baki (1979) on soybeans 

in shipment to Japan, samples were taken from a 51,000 Mg shipment that arrived in Japan 

and sieved into four portion (wholes, halves, pieces and fines). The level of FFA expressed as 

percent of crude oil in the composite samples increased as breakage of the bean increased. 

The FFA in bean halves, pieces and fine increased 2.8,4.7 and 14.6 times those of whole 

soybeans, respectively. The corresponding neutral oil loss from these fraction was 4.5% for 

whole beans, 4.62% for halves and 6.08% for pieces. 

In another transportation study conducted during the year 1985 to 1988 crop (Mount 

et al., 1990), there was no difference in moisture content and test weight of U.S. soybeans on 

arrival in the importing countries. The only economic factor concerned was the fine material 

content because of its non-soybean material and its role in storability of soybeans. However, 

the FFA in the crude oil met the maximum limit of 0.75% allowed in the trading rules of the 

National Oilseed Processors Association. 

CONCLUSIONS 

The maintenance of soybeans during storage begins in the field after the 

postmaturation preharvest period. A prolong unfavorable weather condition can damage the 

crop manifesting itself in the percentage mold damage and the increase in chemically induced 

products such as FFA. The harvesting and handling contribute to deteriorative changes 

during storage by creating the potential sites for deterioration through increased breakage 

content in a soybean lot. Deterioration during storage is a fimction of moisture content of the 
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soybeans, temperature during storage, the length of storage and the inherent quality of 

soybeans entering storage. The quality of soybeans and its products depend on how much 

deterioration can be minimized from field to storage. 
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Table 1. Official US Grades for soybeans (USDA, 1993) 

Maximum limits of 

Damage kernels 

Grade 

Brown, 
black 
and/or 

bicolored 
soybeans 

Minimum in yellow 
test Splits, Heat Damage Foreign or green 

weight % damaged. Total, material soybeans. 
per % % % % 

bushel, 
lb. 

US No. 1 56.0 10.0 0.2 2.0 1.0 1.0 
US No. 2 54.0 20.0 0.5 3.0 2.0 2.0 
US No. 3^ 52.0 30.0 1.0 4.0 3.0 5.0 
US No. 4^ 49 40.0 3.0 8.0 5.0 10.0 
US 
Sample 
Grade' 

' US Sample grade shall be soybeans which do not meet the requirements for any of the grades from US 
No. 1 to US No. 4, inclusive; or which are musty, sour, or heating; or which have any commercially 
objectionable foreign odor; or which contain stones; which are otherwise of distinctly low quality. 
' Soybeans which are purple mottled or stained shall be graded not higher than US No. 3. 
^ Soybeans which are materially weathered shall be graded not higher than US No. 4. 

Moisture was removed from the grade standards on September 1, 1985. 
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Table 2. Summary of the compositions of crude and refined soybean oil (Perkins 1993). 

Composition Crude Oil Refined Oil 

Triglycerides (%) 95 - 97 >99 

Phosphatides (%) 1.5 - 2.5 0.003 - 0.045 

Unsaponifiable Matter (%) 1.6 0.3 

FFA (%) 0.3-0.7 < 0.05 

Trace Metals 
Iron(ppm) 1-3 0.1-0.3 
Copper (ppm) 0.03 - 0.05 0.02 - 0.06 
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Table 3. Percentage of fatty acid in crude soybean oils (Urbanski et al., 1980). 

Variety Type of damage FFA 
(%) 

Williams variety 
Field damaged 0.19 
Freeze damaged 0.28 
Undamaged 0.15 

Clark 63 variety 
Field damaged 0.23 
Freeze damaged 0.24 
Undamaged 0.12 
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Table 4. Relationship between moisture content and allowable storage period to avoid grade 
drop (Holman and Carter, 1952) 

Moisture content Storage period 
roA 

<10 4 years 
10.0 to 12.5 1 to 3 years 
13.0 to 14.0 6 to 9 months 
14.0 to 15.0 6 months 
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Table 5. Relative growth of fungi during soybean storage at various conditions (Sauer et al. 
1992). 

Relative Humidity Equilibrium Fungi 
Moisture Content' 

(%) 

65-70 11 - 12 A. halophilian 

70 - 75 12 - 14 A. restictus, A.glaucus 
any above 

75 - 80 14 - 16 A. candidus, A. orchraceus, 
any above 

80-85 16- 19 A.flavus, Pennicilium spp, 
any above 

85-90 19-23 any above 

' At 25°C 
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Table 6. Free fatty acids content (expressed as acid values) during on-farm storage (Holman 
and Carter, 1952). 

Moisture Content (%) Storage period 

Initial After 12 months 

8.0- 9.0 0.15 0.40 

12.0-12.5 0.40 1.25 

13.0-14.0 0.25 1.95 

15.0 0.40 1.60' 

' after 145 days 
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Table 7. Free fatty acid (%) development in soybeans during a 12-month laboratory storage 
(McNeal, 1966). 

Moisture Content 10°C 26°C 

(%) Initial Final Initial Final 

7.4 
10.7 
14.6 
15.8 
18.4 

0.10 
0.10 
0.10 
0.10 
0.20 

0.20 
0.20 
0.40 
0.50 
2.00 

0.10 
0.10 
0.10 
0.10 
0.40 

0.30 
0.50 
1.30 
1.40 
3.50 
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A MODIFIED METHOD FOR DETERMINING FREE FATTY ACIDS 
FROM SMALL SOYBEAN OIL SAMPLE SIZES 

A paper to be submitted to the Journal of the American Oil Chemists' Society 

Rukunudin, I. H., P. J. White, C. J. Bern, and T. B. Bailey 

ABSTRACT 

A modification of the AOCS Official Method Ca 5a-40 for determination of FFA in 

0.3 to 6.0-g samples of refined and crude soybean oil is described. The modified method uses 

only about 10% of the weight of oil sample, alcohol volume and alkali strength 

recommended in the Official Method. Standard solutions of refined and crude soybean oil of 

between 0.01 and 75% FFA contents were prepared by adding known weights of oleic acid. 

The FFA contents determined from small sample sizes using the modified method were 

compared with the % FFA of larger sample sizes described in the Official Method. The 

relationship between the modified and the official methods, both for refined and crude oils, 

can be described by a linear function. The relationship for refined soybean oil had an R 

value of 0.997 and a slope of 0.99 ± 0.031. Crude soybean oil is defined by a line with 

R^=0.9996 and a slope of 1.01 ± 0.013. 

INTRODUCTION 

In the soybean industry, the presence and development of any amount of free fatty 

acid (FFA) in soybean oil is undesirable. The tolerance is theoretically at zero percent. 
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During the entire time between harvest and processing, the FFA content of oil in soybeans 

indicates how well the beans have been treated. The eventual consequence of high FFA 

content is a monetary loss since processing soybeans with high FFA content results in more 

refining loss. Specifically, refining loss is the sum of weight loss of an oil during removal of 

FFA and other impurities plus the weight of entrained neutral oil in soapstock during the 

normal alkali refining process. The percentage loss of oil during refining can be estimated as 

a multiple of the FFA percentage. Norris (1982) estimates the potential loss at about three 

times the FFA content. Because of the economic impact of high FFA, it is important to 

determine the initial level of FFA in the oil, and also to monitor accurately the concentration 

of FFA by use of a reliable, simple and quick method. 

The standard method for FFA determination in extracted crude and refined soybean 

oil samples is based on the acid-base titration technique in a nonaqueous system. The method 

commonly used is AOCS Official Method Ca-5c -40 (AOCS, 1989). The procedure 

prescribes the use of a maximum 56.4-g and a minimum 3.53-g oil sample for the titration, 

depending on the level of FFA in the oil sample (table 1). When oil samples are limited, as in 

some storage studies or when experimental use of oilseeds crops are evaluated, sample sizes 

of this magnitude is not possible. A simple and inexpensive method is needed which 

accurately quantifies FFA content while using a smaller sample size. 

The use of smaller amount of chemicals will have an impact, especially to the 

developing countries, where the availability of chemicals are scarce and expensive. On the 

other hand, it is more prudent to use less of the resources particularly those hazardous to the 
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environmental. Hexane, a solvent use in the titration, is one of the hazardous compound, 

highly inflammable and its disposal can be harmful to the environment. A smaller size of oil 

samples will also results in the saving of storage space. 

Lanser et al. (1991) developed a user-interactive computer-assisted Fourier transform 

infrared (FTIR) method to estimate of FFA in soybean oil samples. The method requires only 

one drop of soybean oil. The limitation of the method, and other similar spectrometric 

methods, such as that described by Canham and Pacey (1987), is the cost of the instruments; 

it is prohibitive for most laboratories. Lansel et al. (1991) also compared a modified version 

of the Official Method, which used between 6 and 7-g of oil, but no further explanation was 

given on the method. The correlation coefficient of the modified method was 0.999. The high 

correlation indicates that the officially recommended sample size can be scaled down without 

losing the accuracy of FFA determination. 

The objective of this research was to develop and evaluate a method for the 

determination of FFA within the range of 0.01 to 75% FFA content in soybeans oil by using 

an oil sample of about 10% (between 0.3 and 6.0-g) of the weight recommended in the 

AOCS Official Method. 

MATERIALS AND METHODS 

Different amounts of oleic acid were added to the oil to make up the desired 

concentrations of FFA in the standard soybean oil solutions. The levels of the FFA in the 
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known oil standards were then determined by using of both the modified method and the 

AOCS Official Method. 

Refined soybean oil sample 

The refined bleached and deodorized (RBD) soybean oil of Hi-Veel brand was 

purchased firom a local grocery store. The percentage FFA content of the original RBD 

soybean oil was determined to be 0.035%±0.005 by using the AOCS Official Method Ca 5a-

40 (Appendix A). The value is a mean firom three replicates. 

Crude soybean oil sample 

The crude soybean oil used was obtained fi-om Archer Daniels Midland Company^, 

Decatur, Illinois. The FFA content of the crude oil was first determined by the AOCS 

Official Method Ca 5a-40 before further use. The average initial FFA content in the crude oil 

sample, fi-om three replicates, was found to be 0.33%±0.037. 

Oleic acid 

Oleic acid of National Formulary (NF) and Food Chemicals Codex (FCC) grades was 

used, as purchased fi^om Fisher Scientific^, Fair Lawn, NJ to make up the required 

'• ^ ̂  Mention of trader or manufacturer names is for the benefit of the readers only and does not imply an 
endorsement, recommendation, or exclusion by Iowa State University over other firms or similar products not 
mentioned. 
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concentrations of FFA in the refined and crude soybean oil samples. The oleic acid purity 

was not tested, but was assumed to be 100%, as described in the specification. 

AOCS Official Method Ca-5a-40. 

The FFA content of soybean oil is usually determined by titration with a standard 

alkali, NaOH, of specific strengths or normalities (N). A widely used method is AOCS 

Official Method Ca 5a-40 (AOCS, 1989). This method's recommended oil sample size, 

volume of alcohol (ethyl alcohol) and strength are listed in table 1. The NaOH solutions of 

various normalities were standardized according to AOCS Official Method H 12-52 (AOCS, 

1989). 

The FFA concentration in fats and oils is calculated as percent oleic acid. The 

expression (equation [1]) as given in AOCS Official Method Ca 5a-40 (AOCS, 1989) is: 

, . ., alkali volume (mL)* alkali Normality * 28.2 
FFA, as oleic acid %,= — 

sample weight (g) 

Modified method 

In the modified method, oil sample and reagent quantities proposed are about 10% of 

the values recommended in table 1. The titration procedure, however, remained the same. 
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Preparation of standard soybean oil solutions for titration 

Refined and crude soybean oil samples of known initial FFA contents were each 

divided into five and four lots, respectively, in Erlenmeyer flasks. A set of five levels of FFA 

concentrations for refined soybean oil and four levels for crude soybean oil, representing 

approximately the average values of the five different ranges of FFA in the AOCS Official 

Method, were chosen (table 2). Oleic acid weights were then calculated, based on the 

estimated total weight of soybean oil to be used in the titration for a particular FFA level. The 

calculated weights of oleic acid were added to the respective soybean oil lots to give the 

predetermined FFA concentrations. The solutions were stirred for 3 to 5 min by use of 

magnetic stirrers. All standard oil solutions were stored at 2 to 5°C in stoppered flasks. Flask 

headspaces were flushed with nitrogen prior to closure. 

Experimental design 

The experiment was divided into two parts. Part one dealt with FFA determination in 

refined soybean oil. A total of 10 treatments combination were used consisting of two 

methods and five FFA levels (2x5 factorial). Part two involved use of crude soybean oil 

samples with two methods and four levels of FFA (2x4 factorial), giving eight treatments. 

Each treatment was replicated three times, resulting in a total of 30 and 24 observations, 

respectively, in the first and second parts. The experiment was a completely randomized 

block design (CRBD) with replications serving as blocks. 
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Statistical Analysis Software (SAS Institute, 1990) was used for analysis of data. 

Analysis of Variance (ANOVA), General Linear Model (GLM) and regression through the 

origin procedures were used. Coefficient of determinations, R^, and the coefficients of 

variation (square root of the means square error divided by the mean of the measured values) 

were determined to evaluate suitability of the method. Hypothesis tests were conducted on 

the regression lines to find the best fit model. Significance was established at P < 0.05 unless 

otherwise indicated. 

RESULTS AND DISCUSSION 

Modified method 

The preliminary determination of FFA in a refined soybean oil with a sample size of 

2.82-g, (10% of the AOCS Official Method weight), showed that the concentration of NaOH 

needed to detect and quantify presence of FFA was about 0.0125N. Based on this estimation, 

NaOH concentrations to be used for the modified method at different ranges of FFA were 

then adjusted accordingly. Alcohol volume to be used in the modified method was also 

reduced to 10% of the AOCS Official Method volume (table 3). Although oil sample weights 

and alcohol volumes were one tenth of those recommended by the Official Method, NaOH 

normalities were slightly more than 10% of the recommended strengths. Table values need 

not be strictly followed and should only serve as guidelines in preparing the sample and 

reagents. 
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In the modified method, burette and Erlenmeyer flask sizes to be used need to be 

rationalized with the expected titer volume. The graduation of the commonly used burette 

(50-mL capacity) may not be small enough to accurately capture the reading. For the lower 

ranges of the FFA content, smaller burettes with capacities between 5 and 25 mL should be 

used. A 150-mL Erlermieyer flask was used. 

The procedure used in the modified method was the same as for Official Method, 

except the amounts were only about 10% of the original values. These smaller quantities will 

result in savings in reagent costs and in time spent if oil is to be extracted. The use of weaker 

strengths of NaOH, as in the revised method, allows a more accurate end point determination. 

FFA determination 

Refined soybean oil 

Table 4 shows the FFA content determined by using the AOCS Official Method and 

using the modified method. Raw data is listed in Appendix B. Assimiing the AOCS method 

as a reference, it can noted that within the range of this study, the modified method slightly 

underestimated the FFA content in the oil in the FFA range of 0.1 to 50.0%. The magnitude 

of underestimation ranged from 3.9 to 12.1%. But within the range of FFA content of 0.01 to 

0.2%, which encompasses the normal range of FFA content allowed under the standard 

definition of refined soybean oil and trading values of soybean oil (NOP A, 1995), the 

deviation was small. Adoption of the modified method for the determination of FFA content 

in refined soybean oil destined for consumer markets would amount to 3.9% variation from 
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the AOCS Official Method. This amount can be considered small enough to risk any possible 

marked variation in the FFA values between the two methods during FFA determination 

based on the current refining capability. The difference in the FFA content is known to be a 

fimction of the processing steps. Typical variation is shown in table 5 (Sleeter, 1981), where 

each processing step results in removal of a fraction of FFA content. With the normal 

refining process, the FFA content was about 0.05% after refining and 0.03% after 

hydrogenation and deodorization. 

Reinforcing the above argiunent statistically, an analysis of variance (ANOVA) 

showed that there was no significant difference between the means of FFA content for the 

two methods. The P value calculated by using SAS was about 0.54. There was a significant 

interaction effect between FFA contents and the methods (P < 0.0014). This observation 

could be explained by the underestimation of the FFA in the lower ranges of FFA (0% to 

50%) and the overestimation of the FFA content from the modified method in the upper 

range (greater than 50% FFA content). The size of overestimation (1.6%) was small 

compared to when the method underestimated the % FFA content (50% and below). 

Crude soybean oil 

Determination of FFA in crude soybean oil samples was also carried out by using 

both methods. Table 4 shows the FFA contents in the four standard crude soybean oil 

solutions. The modified method underestimated FFA values over the range of FFA used. The 

magnitude of underestimation from the AOCS method was greater (11.2%) at a lower range 
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of FFA. The difference in FFA content measured by the modified method therefore becomes 

less when the FFA content in the soybean is greater. Unlike the refined soybean oil results, 

there was no interaction between concentrations and methods with crude soybean oil. There 

was no significant difference in the FFA mean values between the two methods (P <0.11). 

Generally, the modified method did better in estimating the FFA content in crude 

soybean oil than in refined oil, as was evident in the coefficients of variation of 1.1 % and 

2.11%, respectively. 

Linear Regression Analysis 

Refined soybean oil 

Figure 1 shows a plot of the relationship between the Official Method and the 

modified method. Simple linear regression was conducted to correlate the two methods. 

Statistical analysis based upon the ANOVA tables generated by the GLM procedure showed 

first order regression to be a very good approximation in describing the relationship between 

the two methods over a wide range of FFA contents (0.01 to 75%). The coefficient of 

determination (R^) was at 0.995, which means that approximately 99.5% of the variation in 

the values of the FFA content determined by using the AOCS Official Method was accounted 

for by the linear regression with the modified method. The linear relationship can be 

described as: 

OM s Po + PI * MM Model [1] 
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where: OM = Official Method, % FFA 
MM = Modified Method, % FFA 
Go =1.04 
6, = 0.97 ± 0.04 

The y intercept, Bq. of 1 is the mean FFA value when the measured FFA value 

RM equals zero. The value can be quite misleading since RM =0 was not within the range of 

the experimental data and the predicted value cannot be 1.04 when the measured value is 

zero. Using of the linear model [1] may produce errors, especially at the very low values of 

FFA. For example, if the measured FFA content is 0.1, the predicted FFA is 1.11%. If the 

relationship of the revised method and official method is as desired, the slope and the 

intercept of the regression line should be 1.0 and 0.0, respectively. 

Alternatively, a linear regression analysis 'through the origin' was performed on the 

data. Under the procedure, the regression will set the y intercept at zero. The regression 

procedure would therefore meet, in part, the expectation of the results. The 0.99 ± 0.031 

slope is better than model 1 as it is very close to 1, the ideal slope (table 6). The (0.997) is 

slightly greater than that obtained in model [1] (figvure 1). The full model is: 

OM = pi * MM Model [2] 

where: Pi =0.99 ±0.031 

Hypothesis testing was therefore made for the slope of the line (B,) with a null 

hypothesis, Hq: fii = 1. The t-statistic is calculated from the expression: 
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^ _ Estimate - Hypothesized value 

Standard error of estimate 

The "Estimate" equals the slope from the regression analysis, the "hypothesized value" 

equals 1 and "standard error of estimate" was obtained from SAS output. Table 6 summarizes 

the results of the regression analysis. The calculated t of 0.7 infers an acceptance of the null 

hypothesis that the slope (0.99) is in fact 1. 

Figure I shows the plot of model [2] and the line of equal values drawn to indicate 

how far off the models are from an ideal relationship. Model [2] is superior to model 1 in 

defining the relationship between the modified method and the Official Method. 

Crude soybean oil 

The plot of the FFA values in crude soybean oil measured by the two methods is 

shown in figure 2. Again, the correlation between the two methods can be best described by a 

linear flmction. 

By following the same argument for the intercept, a regression analysis also was 

conducted by setting the intercept at 0 as default. The summary of the statistic is shown in 

table 6. The slope is 1.01 ± 0.013 with an value of 0.9996. The t-statistics of 1.7 (table 6) 

infers the acceptance of the null hypothesis that the slope 6, for the crude oil also is 1. The 

regression line for crude soybean oil (R^=0.9995) therefore presents better correlation than 
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the model developed for refined soybean oil (R~=0.997). The final model that described the 

correlation between the modified method with the Official Method for crude soybean oil is: 

CM = pi * MM Model [3] 

where: fii= 1.01 ±0.013 

Figure 2 shows the best fit linear model relating the modified method with the 

Official Method for crude soybean oils. Linear model [2] for refined soybean oil and an ideal 

model also are superimposed on the plot for comparison. 

Lanser's revised procedure versus revised method from the study 

Lanser et al. (1991) published a set of FFA values in crude soybean oil established by 

the AOCS Official Method and their version of a modified method. Regression analysis, 

through the origin, on the FFA values between the two methods was carried out to compare 

with model [3] from the study. Lanser's data yield a line with an R of 0.999 and a slope of 

1.09 ± 0.025 as compared to a slope of 1.01 firom model [3]. The regression line for Lanser's 

model is plotted in figure 3 along with the model [3] and the line of equal values. There is a 9 

and 1% variation in Lanser's and model [3] firom the ideal line, respectively. The variation is 

not unexpected as in any titration, the methods are not only a ftmction of FFA content but 

also of all other components that will react with alkali. Variation in the samples used may 

have contributed to the difference. In addition, it should also be noted that titration end point 

is usually not distinct and is often subjective. Also, the range in FFA values used in Lanser's 
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study was small, 0.03 to 4.98%. As described earlier from this study, the greatest variation 

between the Official Method and the modified method occurs at the lowest range of FFA 

content. 

CONCLUSIONS 

The findings of the study indicate that the modified method for determining FFA in 

the refined and crude soybean oils is reliable and can be used as an alternative to the AOCS 

Official Method. This method is specific for FFA determinations in soybean oil and may be 

modified for other types of oils. The method may be applicable to industry and laboratories 

currently using the AOCS Official Method. 

The relationship of the revised method to the AOCS Method for the refined and crude 

soybean oils, based on models [2] and [3] are close to the ideal relationship. The model that 

best describes the relationship between the revised and the official methods for refined and 

crude soybean oil is given by straight lines passing through the origin having slopes of 0.99 ± 

0.031 and 1.01 ± 0.013, respectively. The modified method estimates the FFA content better 

in crude soybean oil than in refined soybean oil. The use of the modified method reduces the 

constraint in the preparation of oil samples, and greatly lowers the consumption of organic 

solvent and other reagents associated with the procedure. 
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Table 1. Sample size and reagents used in AOCS Official Method Ca-5a-40 (AOCS, 1989) 

Range of FFA Weight of oil sample Volume of ethyl Normality of 
(%) (g) alcohol (mL) NaOH (N) 

0.01 - 0.2 56.4 50.0 0.10 
0.20 - 1.0 28.2 50.0 0.10 
1.0 - 30.0 7.05 75.0 0.25 

30.0 - 50.0 7.05 100.0 0.25 or 1.0 
50.0 - 100.00 3.525 100.0 1.0 

Table 2. FFA concentration of prepared standard soybean oil solutions 

Ranges of FFA from 
AOCS Official 

Method 
(%) 

Estimated FFA 
content prepared from 

refined soybean oil 
(%) 

Estimated FFA 
content prepared from 

crude soybean oil 
(g) 

0.01 - 0.20 
0.20 - 1.00 
1.00 - 30.00 

30.00 - 50.00 
50.00 - 100.00 

0.1 
0.6 

15.0 
50.0 
70.0 

0.6 
15.0 
50.0 
70.0 
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Table 3. Sample size and reagent concentrations used in the modified method 

FFA Range Weight of oil sample Volume of ethyl Normality of 
alcohol NaOH 

(%) (g) (mL) (N) 

0.01 - 0.2 5.64 5.0 0.013 
0.20 - 1.0 2.82 5.0 0.013 
1.00 - 30.0 0.70 7.5 0.031 

30.00 - 50.0 0.70 10.0 0.13 
50.00 -100.0 0.35 10.0 0.125 
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Table 4. FFA values from AOCS and modified methods using RBD and crude soybean 
oil 

Method FFA concentrations' Overall CV 
Mean 

[0.01-0.2] [0.2-1.0] [1.0-30.0] [30.0-50.0] [50.0- 100.0] 
(%) (%) (%) 

RBD: 

AOCS 0.103 0.603 15.60 51.45 70.95 27.74 3.64 
Revised 0.099 0.57 13.71 49.10 72.10 27.51 3.67 
% Difference -3.90 -5.00 -12.10 -4.60 1.60 
from AOCS^ 

Crude soybean oil: 

AOCS na 0.89 15.53 50.90 71.20 27.76 2.05 
Revised na 0.79 14.20 49.80 70.90 27.28 2.09 
% Difference na 11.20 -8.60 -2.20 -0.40 
from AOCS^ 

Standard Error of a mean : refined soybean oil = 0.58; crude soybean oil = 0.33 
' average from 3 replications 
^ negative indicates underestimation, positive over estimation; na=not available 
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Table 5. Relationship of free fatty acid content as a function of processing steps 
(Sleeter, 1981) 

Processing Steps Free fatty acids from 
2 different runs 

I II 
(%) (%) 

Crude 0.61 0.53 
Degummed 0.31 0.44 
Refined 0.05 0.05 
Deodorized 0.02 0.03 
Hydrogenated and 
Deodorized 0.025 0.03 
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Table 6. Summaries of the linear regression statistic 

Model Slope Standard error of t for Status R 
estimate 

fi, Sfii H,: B, = 1 of Ho 

Refined soybean oil: 

2 0.99±0.031 0.0143 

Crude soybean oil: 

3 1.01±0.013 0.006 

(0.99 -1)/0.0143 
=0.7 

(1.01 -1)/0.006 
=1.7 

Accept Hq 0.997 
6,=1 

Accept Ho 0.9996 
B, =1 

Null hypothesis (Hq) is rejected if t > t ,a5ic at a = 0.05 
Nlodel 2: t Q Q2514 = 2.145 
Nlodel 3:1002511 ~ 2.201 
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CARBON DIOXTOE EVOLUTION FROM FRESH AND PRESERVED 
SOYBEANS 

A paper to be submitted to the Transactions of the American Society of Agricultural 
Engineers (ASAE) 

Rukunudin, I. H., C. J. Bern, and M. K. Misra 

ABSTRACT 

A study was conducted on carbon dioxide evolution from stored soybeans using fresh 

and preserved soybean samples, manually and mechanically harvested. Preservation of 

samples was accomplished by holding 22 and 9% moisture content soybeans at -18 and 10°C 

for 26 and 48 weeks. The carbon dioxide produced during storage as a result of deterioration 

was recorded and the rate of deterioration was established as the number of days of storage 

before the sample lost 0.5 and 1.0% of its dry matter. Methods of harvesting and moisture 

content at harvest influenced the rate of deterioration during storage. Fresh machine-

harvested soybeans at 13% moisture content, required 22.5 days to lose 0.5% dry matter, 

compared to about 11.5 days for the 22% moisture content sample. Fresh soybeans manually 

harvested at 20% moisture content took about 26.2 days to lose 0.5% dry matter. Preservation 

of soybean samples resulted in faster rates of deterioration during storage compared to fresh 

samples. The decline in the rate of deterioration as a function of preservation period can be 

explained by a linear model. Machine-harvested soybeans preserved at 9% moisture content 

lose 0.5% its dry matter during storage by about 0.21 ± 0.043 days per week of preservation. 
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Soybeans preserved at 22% almost maintained a uniform rate of deterioration throughout the 

preservation period. 

INTRODUCTION 

At the time an oilseed reaches physiological maturity, it is considered to be at its 

prime state in every aspect of quality. It then begins to deteriorate with time, slow at low 

moisture contents and temperatures but very rapid when they are high. Deterioration of most 

biological material is associated with the decomposition of carbohydrates as a result of 

respiration. The selective respiratory utilization of carbohydrates in soybeans is assumed to 

be similar to the oxidative combustion of typical carbohydrates such as hexose sugars 

(Ramstad and Geddes, 1942). Hexose sugars, or 6-carbon sugars, are monosaccharides or 

simple sugars. Examples of hexose sugars are glucose (also known as dextrose or glucose), 

fiiictose and galactose. 

Carbohydrate decomposition during deterioration of soybeans is discussed by Mibier 

and Geddes (1946a). They found that during this biological phase of respiratory behavior of 

seeds, the increased rate of respiration, a symptom of deterioration, was accompanied by a 

decrease in both reducing and nonreducing sugars. There was no change in the fat content 

during this phase. The protein content has been found to be slightly increased, but was not 

speculated to have any role during the decomposition process. The increase was, in fact, 

attributed to the decrease in the sample dry matter. A similar reduction in the sugar content of 

soybeans was observed by Howell et al. (1959) when they studied the respiration of ripening 
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soybean seeds. Wilson (1995) reported similar changes in protein and carbohydrates in 

fungus-damaged soybeans, but either no change or an increase in the oil concentration was 

observed. 

The decomposition process which results in the loss of dry matter is usually modeled 

as a breakdown of simple sugars represented by the following equation: 

QHijOfi + 6O2 -> 6CO2 + 6H2O + 2,835 kJ [1] 

Following this equation, the evolution of 14.7g of carbon dioxide (CO2) per kg dry matter is 

equivalent to a loss of 1.0% carbohydrate (dry matter). 

Muir et al. (1985) treated the rising concentration of CO2 in interseed air of stored 

wheat, rapeseed, barley and com as a measure of quality. The analysis of samples from the 

locations that registered high CO2 concentration indicated that the kemels had undergone 

spoilage. 

But is was Steele et al. (1969) who demonstrated that decomposition of dry matter 

during deterioration of shelled com can be determined by measuring the CO2 produced. An 

equivalent dry matter loss was then calculated based on equation [1]. In the case of 

commercial soybeans, the loss of dry matter may result in a loss of grade, as is evident in the 

case of stored shelled com (Saul and Steele, 1966). They evaluated the length of time that 

shelled com can be stored before 0.5% of its dry matter is lost. The 0.5% was considered the 
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threshold value of dry matter loss in shelled com before the grade is lowered because of an 

increase in total damaged kernels. 

From the pioneering work of Steele et al. (1969), several com storage experiments 

were later conducted using CO2 evolution as a measure of quality (Fernandez et al., 1985; 

Friday et al., 1989; Al-Yahya et al., 1993; Aljinovic et al., 1995; Dugba et al., 1994). One of 

the useful contributions made from these studies was the development of an allowable 

storage time (AST) table for different combinations of com moisture content and storage 

temperature range (MWPS, 1980). 

This type of table would be valuable in understanding and minimizing losses during 

handling and storage of soybeans. But before such a table can be developed, several tests 

need to be conducted. The limitation of a laboratory setup to conduct such experiments 

requires that soybeans be preserved at harvest for later testing. Any changes in the 

characteristics of the state of soybeans during preservation which influences the CO2 

evolution during a test, if it is not accounted for, can introduce error in the final analysis. 

In the case of shelled com there was no significant difference in the CO2 evolution for 

samples preserved at -10°C and 22% moisture content for a period of 100 days when 

compared to fresh harvested com (Femandez et al., 1985). Seeds preserved at low 

temperature, particularly at subfreezing temperatures, have been known to retain viability for 

several years. 

Knowles (1967) presents a review of a few experiments on seed preservation at 

between -7 to -20 ° C. Soybean seeds, preserved at -10 ° C with 8 to 9% moisture content, still 
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germinate after 10 years of storage. Conifer seeds preserved better at -18 than -11 or-4°C. 

Viability of vegetable and flower seeds was foimd to be higher at -20 than at 0 °C. Grass 

seeds had better retention of viability at -18 than at 1 or 20 °C. 

Most of the studies looked only at the viability of particular seeds when they were 

allowed to germinate under laboratory conditions after a specific period of preservation. 

Better germination rates were reported from seeds preserved at lower temperatures. The 

effects of temperature and moisture content in maintaining the quality of stored soybeans, in 

terms of CO2 evolution during the deterioration process when held near ambient air 

conditions, were not found in the literature. 

OBJECTIVES 

This study is therefore undertaken to define the impact of preservation in maintaining 

the initial freshness of soybeans as measured from CO2 evolution. 

The specific objectives of the study are: 

1. to determine the effect of harvesting practices on the rate of CO2 evolution in 

freshly harvested soybeans 

2. to compare the effects of preservation temperatures on CO2 evolution during 

storage 

3. to compare the effects of preservation moisture contents on CO2 evolution during 

storage 

4. to compare the effect of preservation period on CO2 evolution 



72 

MATERIALS AND METHODS 

Soybeans 

The soybeans used in the study were Kruger 2555^ grown at the Iowa State 

University Agronomy and Agricultural Engineering Research Center, 15 km West of Ames. 

The soybean lots were combine or hand harvested in September 1995 at 22 to 20% (high) or 

8 to 13% (low) moisture contents. The lots were cleaned by the use of a Dockage Tester 

(Carter Day Model XT35). The cleaning was accomplished using a 13-mm (0.5-in.) square-

hole, 8.5-mm (20/60-in.) round-hole and 7.9-mm x 19.1-mm (20/64-in. x 3/4-in.) slotted 

sieves. The slotted sieve removes splits from the whole soybean lot. 

Preservation of soybean samples 

Preservation of soybean lots at -18 and 10 ° C involved only the machine-harvested 

soybean lots, harvested at 22 and 13% moisture contents. The cleaned soybean lot, machine-

harvested at 22% (high moisture content), was packed in a polyethylene bag and preserved 

only at one temperature, -18 ° C. High moisture soybeans were not preserved at 10 ° C 

because they would become moldy in a short period of time. The 13% moisture content 

soybean lots were air dried to 9 to 10% moisture content before being preserved at -18 or 10° 

C. Each bag contained about 1200g. 

' The mention of trader or manufacturer names is for the benefit of the readers only and does not imply an 
endorsement, recommendation, or exclusion by Iowa State University over other furos or similar products not 
mentioned. 
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For each of the preservation temperatures, three different freezer or cold room 

chambers were used, representing three replications. A total of six chambers were used and 

six bags of cleaned soybean samples were preserved in each of the chambers. 

The three freezers (at -18°C) were located in the Davidson Hall Biomaterials 

Laboratory. The three lO^C cold rooms used were located at the Seed Science Center, the 

Agronomy Building and the Community for Agricultural Development (CAD) warehouse, 

respectively. The soybeans were preserved for a period of more than a year, with sampling 

done at 0,26 and 48 weeks after harvest. 

Carbon dioxide measuring system 

A CO2 measuring system (figure 1) similar to that described by Aljinovic et al. (1995) 

and Dugba et al. (1996) was used. A second solenoid valve was added to accommodate four 

more storage tubes to make a total of 12 tubes. 

During the study, carbon dioxide produced by 1-kg soybean samples stored under 

constant aerated storage conditions was measured. The storage condition was 26 ° C, 95% 

relative humidity and 0.45 m^/min/Mg aeration. Compressed air which has been filtered, 

stripped of CO2 and conditioned to 95% relative humidity and 26°C was forced through the 

3-foot soybean columns in recyclable glass tubes. Recycling was accomplished by 

autoclaving at 120 °C for 20 minutes before reuse. It should not be assumed that 26 ° C and 

95% relative humidity is a recommended storage conditions for soybeans. This condition was 

chosen to accelerate the process of soybean deterioration during storage study. 
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The CO2 produced by the soybean samples while in storage was trapped by the COi 

absorbing section of the system (figure 1). The sulaimanite CO2 absorbent agent (Al- Yahya. 

1991), was packed in plexiglass tubes. The weight gain recorded every 24 hours was a 

measure of the amount of CO2 produced during the period. The weight of the COt gained 

was corrected to account for the residual CO2 present in the air stream (refer to Appendix C 

for the equation). The tubes were changed when either the color of the sulaimanite changed 

from the initial dark gray to light gray or the indicating drierite packed at the far end of the 

tube changed to pink. Sulaimanite is a powdery mixture of vermiculite particles impregnated 

with potassium hydroxide solution and vacuum dried at 172.4 kPa, 80 ° C for 12 hours to a 

dry state (Al-Yahya, 1991). 

The 93.08 ± 2.7% relative himiidity air was maintained by bubbling the incoming air 

stream through a 30-nim-long water column. The storage temperature of 25.82 ± 0.38°C was 

achieved by use of an air conditioner and a space heater. 

The airflow rate through each tube was adjusted to 0.45 m^/min/Mg (0.4 cfin/bu) by 

the use of individual valves and monitored by flowmeters (Matheson Model PM-10226). 

Experiment I; Fresh soybeans 

The soybeans used in the experiment 1 were freshly harvested under two modes of 

harvesting and at two moisture contents. Harvesting was carried out manually, (hand 

' The mention of trader or manufacturer names is for the benefit of the readers only and does not imply an 
endorsement, recommendation, or exclusion by Iowa State University over other firms or similar products not 
mentioned. 
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harvesting followed by handshelling), and by combine. A total of 4 treatments were used 

(table 1). 

Before the start of the experiment, the low moisture soybean samples were raised to 

about 21% moisture content by direct addition of calculated weight of distilled water. The 

approach used was quite similar to the method described by Milner and Geddes (1945), 

although Ramstad and Geddes (1942) earlier found this to be unsatisfactory with soybeans. 

They noted the problem in ensuring uniform distribution of moisture as some of the beans 

swelled very greatly and seed coats loosened. To ensure minimum swelling of the beans and 

uniform distribution of water, the addition of water to a particular bag of soybean was 

accomplished by use of a spray bottle. Then the bag was rotated by hand for 2 to 3 minutes to 

uniformly distribute the water. The water was added in 3 or 4 stages. Each stage is separated 

by storing the bags in a 4 to 5° C cold room for 6 to 12 hours. This prevented a sudden 

swelling of the beans. Samples were then kept at room temperature for about 12 hours before 

being used in the experiment. Most of the beans soon presented a normal appearance as the 

water was taken up by the cotyledon. The reconstitution of moisture was to ensure that 

measiarement of CO2 was made from the soybean samples with the same initial moisture 

content. No assumption had been made on the behavior of rewetted soybeans during storage 

to represent the naturally wet soybeans. The soybean samples were poured into the glass 

storage columns which were arranged randomly in the CO, measuring system. 
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Experiment 11; Preservation of soybean samples 

This experiment investigated the effects of moisture content, preservation 

temperatures and period of preservation on CO2 evolution during storage at 26°C and 95% 

relative humidity conditions. There were three treatments: 

1. Machine harvested at 21% moisture content and preserved at -18''C 

2. Machine harvested at 13% moisture content, air dried to 9 to 10% moisture content 

and preserved at -18°C 

3. Machine harvested at 13% moisture content, air dried to 9 to 10% moisture content 

and preserved at 10°C 

Samples were drawn at 26 and 48 weeks after preservation and used in the CO2 

evolution studies. 

The process of deterioration during storage was monitored by measuring CO2 

produced while samples were stored at a constant laboratory condition of 26°C and 95% 

relative humidity. The fresh soybeans combine harvested at 21% and 13% moisture content 

represented two types of control. The low moisture content soybeans were reconstituted with 

water to about 21% as described above before being used in the study. The soybeans were 

poured into the storage columns and arranged at random in the CO2 measuring system. 

Statistical analysis 

Each treatment was replicated three times in a restricted randomization design. 

Complete randomization of the environmental chambers to each temperature could not be 
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achieved. Statistical analysis on the data was carried out using the Statistical Analysis 

Software (SAS Institute, 1990). Polynomial regression models to describe the COj evolution 

with time of storage were established using the General Linear Model Procedure (Proc GLM) 

to the third order with zero intercept. The coefficients of the terms were included in the 

model if they were significant as indicated by t-statistics. Comparisons of the rates of 

deterioration between treatments were made by means of the Analysis of Variance (ANOVA) 

where the measurement for the sample preserved 26 and 48 weeks were considered repeated 

measures. Significance was established by calculating the least significant different (LSD) 

between the means (Steel et al., 1997). Unless otherwise stated, the significance was 

established at P < 0.05. Visible microbial growth and development during storage was also 

noted. 

RESULTS AND DISCUSSION 

Effect of harvesting practices on the C0-» evolution from fresh soybeans 

Machine harvested 

Soybeans are usually harvested after field drying to about 13% moisture content or 

below and harvest at higher moistures is uncommon. The risk that soybeans will sustain 

mechanical damage at high moisture content is high. For comparison, figure 2 shows a 

family of curves describing the CO2 evolution from fresh soybeans harvested mechanically at 

high (22%) and low (13%) and held at-18°C and 22% moisture. The curves were derived 

from third order polynomial regressions on the data of three replications (Appendix D). The 
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coefficients of the terms (table 2) were only considered as part of the model if their respective 

t-statistics were shown to be significant. 

Table 3 shows the respective average storage times, defined as the number of days of 

aerated storage before soybeans lost 0.5% and 1.0% of their dry matter. LSDs of two 

treatment means were established at the two dry matter loss levels. Soybeans machine-

harvested at high moisture content were found to lose 0.5% of its dry matter at twice the rate 

of soybeans harvested at low moisture content. Severe mechanical damage, as expected from 

combining high moisture content soybeans, no doubt contributed to the faster rate of 

deterioration. The rate of deterioration of soybeans harvested at 13% moisture content, which 

is within the range of 11 to 14% moisture content associated with optimum toughness 

(Paulsen, 1977), would therefore demonstrate the minimum rate of deterioration that could be 

achieved when soybeans are mechanically harvested. At 13% moisture content, it took 22.5 

days for samples to lose 0.5% dry matter. 

Hand harvested 

The experiment also tracked the deterioration of hand-harvested soybeans at high 

(20%) and low (9%) moisture contents (Appendix D). The plots of CO2 evolution measured 

during storage for the two treatments are shown in figure 2 with the equation of the models 

described in table 3. Soybeans at high moisture content took about 26.2 days before losing 

0.5% dry matter (table 3). Soybean quality is considered at its prime level at physiological 

maturity, which is usually at 50 to 60% moisture content (Howell et al., 1959; Rose 1979). 
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According to Howell et al. (1959), and Hurburgh and Benson (1995), full maturity, that is 

when the pods are brown in color and ready to harvest, is reached at about 18 to 20% 

moisture content. However the practical harvesting moisture content is about 13% or below. 

Thus the deterioration curve of hand harvested soybeans at 20% may be for soybeans near 

highest quality. 

Hand harvested soybeans at low (9%) moisture content, as expected, exhibited a 

significantly faster rate of deterioration than soybeans at high moisture content, losing 0.5% 

dry matter in 19.8 days. These aerated storage times, however, were also found to be 

significantly less than for soybeans mechanically harvested at 13%. This may be attributed to 

the low moisture content at harvest (9%) and delayed harvesting which may have been 

detrimental to quality. Prolonging field drying after soybeans have reached harvest moistiu-e 

content (13%) should be viewed with caution. Any cracks due to overdrying developed in the 

hulls of those lots would render them more susceptible to microbial attack. According to 

Milner and Gedde's (1946a), damaged seeds present a more hospitable medium for mold 

mycelial penetration and growth of microorganisms than undamaged beans. It is in these 

cracks and broken parts of the beans that mold growth first appears. 

Carbon dioxide evolution curves of preserved samples 

Polynomial regression analysis between the amount of carbon dioxide evolved per kg 

dry matter loss and storage time for the preserved samples yielded curves as shown in figure 
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3. (see Appendix D for complete data). The models describing the respective relationships are 

listed in table 4. 

Effect of -18 and 10^ preservation temperatures on COt evolution 

In an attempt to determine how preservation temperatures affect the CO2 evolution, 

soybeans machined harvested at low moisture content (9%) were preserved in -18 and 10°C 

chambers. Soybeans were taken out of the chambers after 26 and 48 weeks of preservation 

and were used in the aerated storage tests. Based on the corresponding carbon dioxide 

evolution curves, the average times for soybeans to lose 0.5 and 1.0% dry matter are 

summarized in table 5. 

Analysis of variance (table 6) shows that aerated storage times of samples, averaged 

over preservation period for the two temperatures, shows no significant difference (P>F= 

0.45). There is, however, a high level of significance of the effect of preservation period on 

the aerated storage times, averaged over temperatures, when the sample was used in the 

storage studies (P>F=0.00). No preservation period-by-temperature interaction effect can be 

detected (P>F= 0.64). Analysis of the linear component of the preservation period source of 

variance shows that the rate of deterioration, averaged over temperatures, is affected by the 

period (P>F= 0.00). The linear by temperature variance shows that the slopes between 

temperatures do not differ (P>F= 0.5), implying that a common slope is sufficient to explain 

the variation in the rate of deterioration in the 9% moisture content sample persevered at -18 

and 10°C with reservation period. Although the deviation or the lack of fit component is 



81 

significant (P>F=0.1), the larger mean square (320.3) of the linear compared to the deviation 

(2.3), shows that a straight line is sufficient to explain the relationship. 

A linear relationship between storage time, averaged over temperatures, and 

preservation period was established with a coefficient of determination, R^, of 0.95, a slope 

of -0.214 ± 0.025 and an intercept of 22.8 (figure 4). 

Generally, samples preserved at -18°C either at 26 or 48 weeks were found to have 

longer storage times to both levels of dry matter loss than samples preserved at 10°C (table 

5). However the differences between the pairs were not significant as indicated by the LSDs 

(table 5). For an example, the 26 weeks samples preserved at -18°C deteriorated to 0.5% in 

18.4 days as compared to 17.7 days at 10°C. The difference, 0.7 days, was insignificant since 

the LSD for this comparison is 1.34 days. The same observation can be made with 48 weeks 

samples. Clearly, the findings indicate that there was no significant effect on the rate of 

deterioration between 9% moisture content soybean preserved at -18 or 10°C. Preserving 

soybeans at -18°C, therefore, does not maintain fi-eshness better than preservation at 10°C. 

Effect of moisture contents during preservation in -18^ on CO-> evolution 

The effect of moisture contents during preservation in maintaining the freshness of 

soybeans was investigated by comparing soybean samples at 22 and 9% when preserved at 

-18''C (see Appendix D). 

Based on the carbon dioxide evolution curves, the average deterioration times are 

summarized in table 7. Analysis of variance on the data at 0.5% dry matter loss (table 8) 
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shows there was a significant effect of soybean moisture content during preservation (P>F= 

0.004) on the rate of deterioration, averaged over period, during the storage studies. There 

were also significant effects of preservation period (P>F= 0.00) and preservation period by 

moisture (P>F= 0.00) on the deterioration times for the samples. Analysis of the linear 

component averaged over all moisture contents indicated that the slope differs from zero 

(P>F= 0.0001) and linear by moisture component of (P>F= 0.0001) implies that slopes differ 

among moisture contents. Although the deviation from a straight line clearly do not fit to 

weekly average over the two moistures, as P>F= 0.6, the larger mean square for linear effect 

(72.5) compared with the deviation effect (0.2) justifies use of a straight line to explain the 

relationship between the rate of deterioration during storage and preservation period. 

Regression analysis between rates of deterioration and preservation period shows a 

high coefficient of determination (R =0.95) for the 9% soybean samples, with a negative 

slope of -0.21 ± 0.043 days per week of preservation period and an intercept of 22.9 (figiire 

4). The linear characteristic is almost the same as rate averaged over temperatures. For 22% 

moisture content soybeans, there is almost no change in the rate for between fresh soybeans 

and those preserved for 48 weeks. 

Soybeans with a low moisture content, therefore, demonstrated a decrease in rate 

throughout the preservation period. At 48 weeks, the rate was almost as high as for soybeans 

harvested at high moisture content. While the rate was maintained in soybean with high 

moisture content, preservation of low moisture bean resulted in a drastic impact on its ability 

to maintain initial rate of deterioration. 
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Observation on microbiai growth 

During the storage study, observations were made on the growth and development of 

visible fungi on the soybeans. Mycelial growth was visible after 4 to 13 days of storage. The 

growth was first spotted on soybeans at the bottom of the storage unit, at the end where the 

air enters. The range depends on the history of the sample. Samples preserved and machine 

harvested at high moisture were found to show faster visible mold growth than hand 

harvested at high moisture samples. The first and predominant mold to appear the during 

storage was the grayish growth of Penicillium spp. Penicillium spp. are common storage 

fvmgi which require relative humidity in the range of between 85 to 90% for minimimi 

growth (Christensen and Saur, 1982). The dominance of the species is expected as the storage 

condition in the studies was maintained at 95% relative humidity. In the fresh samples, there 

were also visible spots of whitish cotton-like mold growing along side the grayish mold 

especially at the bottom section of the storage unit They can either be Fusarium or/and 

Phombosis spp., both of which belong to a group of fungi collectively known as field flmgi. 

Growth of the grayish mold intensified within the 200 mm bottom portion of the 

storage unit at the initial storage, but eventually spread all over the entire storage unit. 

Depending on the history of the soybean, it took between 12 to 24 days to cover the entire 

storage unit. It was during this phase that spots of orange mycelial growth of Aspergilus spp. 

also became visible. In tubes containing fresh soybeans, there were also spots of black mold 

growth resembling of those of Chaetomiun spp., another field flmgi. 
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CONCLUSIONS 

Based on the results of this studies, the following conclusion could be made: 

1. Moisture content of soybeans during harvest has the greatest impact on the rate of 

deterioration during storage. A moisture content of 13% can be considered best for harvest, in 

terms of deterioration. Even soybeans manually harvested at 8% exhibited a higher rate of 

deterioration than the 13% machine-harvested sample. 

2. Soybeans with a moisture content of 9%, when preserved at -18°C, had a slower 

rate of deterioration than soybeans preserved at 10°C. The difference in the rate, however, 

was not significant. 

3. Soybeans at 20% moisture content maintained the same rate of deterioration as 

fi-esh beans when preserved at -18°C. 

4. The rate of deterioration of soybeans at 9% moisture content preserved in -18°C 

and 10°C environments increases linearly with period of preservation. The rate is faster in 

soybeans preserved in a 10°C environment. 
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Table I. Treatments for experiment 1 

Treatment # History of sample 

1 Machine harvested at 21 % MC 
2. Machine harvested at 13% MC 
3. Hand harvested at 20% MC 
4 Hand harvested at 9% MC 

MC = moisture content 
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Table 2. Regression models for CO2 evolution from fresh soybean samples 

General model: Y, g C02/kg dm = c, t + C2+ C3 
Treatment Coefficients of the polynomials 

Ci C2 C3 

Machine-harvested/high MC 0.195 ns 0.038 
Machine-harvested/low MC. ns 0.012 0.0001 
Hand-harvested/high MC 0.034 0.006 0.0001 
Hand-harvested/low MC ns 0.018 ns 

MC =moisture content; t = number of days, ns = not significant 
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Table 3. Average aerated storage times of freshly harvested soybeans 

Number of days to reach the respective percentage of DML' 

Combine Hand 
Harvest Harvest 

Moisture DML 
at Harvest 0.5% 1.0% 0.5% 1.0% 

High 11.5 17.8 26.2 37.1 
Low 22.5 31.2 19.8 28.1 

Mean from three replicates; 
LSD„=O.OS @ 0-5% DML = 2.134, LSD„=o.o5 @ 1-0% DML = 2.69 
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Table 4. Regression models for CO2 evolution from preserved soybean samples 

General model: Y, g C02/kg dm = Ci t + C2+ C31^ 
Model Coefficients of the polynomials 

Ci C2 C3 

22%MC,-18°C,26 weeks ns 0.056 0.001 
9%MC,-18°C,26 weeks ns 0.014 0.0003 
9%MC, 10°C,26 weeks ns 0.014 0.0005 

22%MC,-18°C,48 weeks ns 0.057 -0.001 
9%MC,-18°C,48 weeks 0.244 0.026 ns 
9%MC, 10°C,48 weeks 0.258 0.028 ns 

MC=moisture content; t = number of days, ns = not significant 
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Table 5. Average aerated storage times of combine-harvested soybeans preserved at 9% MC 

Number of days to reach the respective % DML 
0.5% 1.0% 

Preservation 9% MC 9% MC 9% MC 9% MC 
Period in-18°C inlO°C in-18°C inlO°C 

(Weeks) 

0 22.5 22.5 31.2 31.2 
26 18.4 17.9 23.9 22.9 
48 12.4 11.8 18.8 17.8 

' Mean from three replicates; LSD(i=o.o5 @ 0.5% DML= 1.34 ; 
LSDo,=o.o5 @ 1.0% DML = 1.62 
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Table 6. ANOVA on the aerated storage times of 9% soybean samples preserved in -18 and 
10°C environments 

Source DF MS F P>F 

6. (a) Main ANOVA 

Temperature,T 1 0.9 0.7 0.45 
Chamber (T) 4 1.32 
Period, P 2 161.3 320.0 0.0 
P*T 2 0.24 0.5 0.6 
P*C(T) 8 0.5 

17 
6. rb) Subdivision of linear 

Linear, Lin 1 320.3 616.0 0.00002 
Lin*T 1 0.3 0.5 0.5 
Lin*C(T) 4 0.52 

6. (c)  Subdivision of deviation components 

Deviation, Dev 1 2.3 4.6 0.1 
Dev*T 1 0.22 0.45 0.5 
Dev*C(T) 4 0.5 
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Table 7. Average aerated storage times of combine-harvested soybean preserved at 22 and 
9% MC in -18°C environments 

Number of days to reach the respective % DML 
0.5% 1.0% 

Storage 22% MC 9% MC 22% MC 9% MC 
Period in-18°C in 10°C in-18°C in 10°C 
(Weeks) 

0 11.5 22.5 17.8 31.2 
26 10.1 18.4 14.4 23.9 
48 11.6 12.4 18.0 18.3 

' Mean from three replicates; MC=moisture content; 
LSDa=o.o5 @ 0.5% DML= 0.86 ; LSDtt=o.o5 @ 1-0% DML =1.18 
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Table 8. ANOVA on the aerated storage times during storage from 22 and 9% soybean 
samples preserved in -IS^C environment 

Source DF MS F P>F 

8. (a) Main ANOVA 

Moisture, M 1 203.35 251.0 0.004 
Chamber, C 2 0.8 1.0 0.5 
C*M 2 0.8 
Period, P 2 36.4 173.1 0.0 
P*M 2 42.2 200.9 0.0 
P*C*M 8 0.21 

17 
8. fb) Subdivision of linear 

Linear, Lin 1 72.5 72.5 0.0001 
Lin*M 1 78.5 78.5 0.0001 
Lin*C*M 4 0.26 

8. (c) Subdivision of deviation components 

Deviation, Dev 1 0.2 0.3 0.6 
Dev*M 1 5.8 8.5 0.04 
Dev*C*M 4 0.69 
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EFFECTS OF PRESERVATION ON QUALITY OF SOYBEAN DURING 
STORAGE 

A paper to be submitted to the Transactions of the American Society of Agricultiu-al 
Engineers (ASAE) 

Rukunudin, I. H., C. J. Bern, T. B. Bailey, and L. A. Johnson 

ABSTRACT 

Fresh soybean and soybean samples preserved at 22 and 9% moisture content in -18 

and 10°C environments were used in the study of carbon dioxide evolution during storage. 

The effect of preservation on the quality of soybean were evaluated based on % free fatty 

acid (FFA) content and damaged kernels total (DKT). Soybeans preserved at 22% moisture 

content in -18°C exhibited a linear increase in the FFA with preservation period at a rate of 

increase 0.007 ± 0.004 % FFA per week of preservation with a coefficient of determination 

= 0.7. There was no effect of preservation temperature on the 9% moisture content 

soybeans. There was no clear evidence to indicate that the DKT is affected by preservation. 

The use of preserved soybean sample in carbon dioxide evolution studies were found to 

affect the % FFA development and DKT. Soybeans preserved at 22% moisture content and 

-18°C had a linear rate of % FFA increase during carbon dioxide evolution studies (R^=0.82) 

at 0.02 ± 0.008 % FFA per week of preservation. Soybeans preserved at 22 and 9% moisture 

showed little variation in DKT through out the preservation period. There was however a 

tendency for the damage level to increase slightly during storage from samples preserved 
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over a long period of time. The slightly relationship between FFA and dry matter loss (DML) 

can be described by a straight line with R^=0.8 and with a rate of increase (slope) of 0.72 ± 

0.08 % FFA per unit of DML and an intercept of 0.15. The relationship between DKT can 

also be expressed by a straight line (R^=0.7) with a rate of increase (slope) of 3.52 ± 0.5 % 

DKT per % unit DML. 

INTRODUCTION 

Deterioration of grain during handling and storage is associated with a loss of dry 

matter. Direct measurement of carbon dioxide produced as grain deteriorates during 

laboratory scale storage test can be related to dry matter loss (DML). Steele (1967) was one 

of the earlier researchers to use DML as a variable in a deterioration model developed for 

stored shelled com. The amount of DML during deterioration of com has also been linked 

with a decrease in the market grade of com. A loss of more than 0.5% dry matter of shelled 

com has found to lower the grade by one grade (Saul and Steele, 1969). The 0.5% DML 

becomes a threshold value and has been adapted as a basis of the widely used Allowable 

Storage Time (AST) table was formulated for com (MWPS, 1980). 

Different crops require the use of different sets of values and information before such 

tables can be developed. Paper 2 in the thesis reported the results of a study conducted to 

define the process of deterioration of soybeans as measured by the amount of carbon dioxide 

produced during laboratory storage of freshly harvested soybeans and soybeans that were 

preserved for a period of time before use in the storage studies. 



101 

The most direct and significant impact of deterioration during handling and storage of 

soybeans is the implication on the soybean marketable grade. While 0.5% DML level was 

established for shelled com, the value carmot be directly applied to soybean. Further 

observation of com after it has sustained a loss of 1% DML showed that it had became 

almost sample grade (Saul, 1967). Specific DML values and the grades associated with them 

are required to be developed for soybeans. 

Since quality attributes of oilseeds also depend on end-use, the impact of deterioration 

on other important quality parameters relevant to the industry need to be evaluated 

concurrently. In the soybean industry, where the main products are oil and high protein meal, 

the maintenance of high quality soybeans is more critical in oil processing industry than in 

meal production. One of the few important quality attributes of oil highly regarded by the 

soybean oil industry is the free fatty acids (FFA) content of the oil. Low FFA content is 

correlated with high quality oil. Zeleny and Coleman (1938) found that fat acidity can be 

used as an index of deterioration of com. They determined fat acidity in 252 com samples 

and plotted the average percentage increase in fat acidity against the corresponding com 

grades. FFA appeared to be a reliable index of soundness of grain. 

During storage of soybeans, minimizing the loss of quality of soybean as they 

deteriorate in storage has to be achieved consistently, through minimum fluctuation in the 

damaged level and other quality parameters. Oil quality continues to decline during storage 

of soybeans, at a rate measured by an increase in FFA. The rate of increase in FFA content 

during storage of soybean was found to be higher in damaged than in sound soybeans 
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(Urbanski et al., 1980). Relating DML in soybeans to the FFA content in the oil may be 

useful in interpreting soybean quality. 

It is a common practice to preserve samples in low temperature environments as 

storage experiments cannot be conducted all at the same time due to physical constraints or 

storage treatments requiring a different time frame. For shelled com, preserving at -10°C 

freezer has been found to maintain freshness, in terms of its rates of deterioration (measured 

by the amount of carbon dioxide evolved per kg of DML), as a freshly harvested soybeans 

(Femandez et al., 1985). Carbon dioxide production by samples preserved at 22% moisture 

content and 3°C environment for 70 days was significantly higher than fresh 22% moisture 

content com. No information is available on the effect of preserved soybean samples on 

%FFA development when samples are used in carbon dioxide evolution studies. 

The argument is that soybean may have been damaged somewhat during preservation 

and thus may have different rates of FFA development during storage than fresh soybeans 

and samples held at a shorter periods. There is therefore a need to establish the effect of 

preservation on the development of FFA during storage and how preservation itself, affects 

damage and FFA content in the preserved sample. 

OBJECTIVE 

This paper describes a study conducted to define the deterioration of soybeans, as 

measured by its DML, damage level and oil quality parameter. The specific objectives of the 

study are to determine: 
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1. the effect of preservation on FFA content 

2. the effect of preservation on the damaged kernels totals (DKT) 

3. the effect of fresh and preserved soybean on the FFA development during storage 

4. the effect of fresh and preserved soybean on the DKT dxaring storage 

5. to define the equivalent soybean grades on the basis of its DML and FFA content 

MATERIALS AND METHODS 

Soybeans 

The soybeans sample used in the study were Kruger 2555'^ variety. The samples were 

combine or hand harvested at high (20 - 22% moisture contents) and low (8 -13%) moisture 

contents at the Iowa State University Agronomy and Agricultural Engineering Research 

Center, 15 km west of Ames. They were cleaned by using a Carter day Model XT 3 Dockage 

Tester^. The cleaning was done with 12.2 mm (0.5 in) square hole, 0.25 mm (20/60 in) round 

hole and 7.94 X 1.91 mm (20/64 X 3/4 in) slotted sieves. The composition of oil, protein and 

fiber of the soybeans, determined by a Near InfiBred Reflectance (NIR), were 18.8%±0.3, 

34.55%±0.4 and 4.8%±0.3, respectively. 

' Mention of trader or manufacturer names is for the benefit of the readers only and does not imply an 
endorsement, recommendation, or exclusion by Iowa State University over other firms or similar products not 
mentioned. 
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Preparation of samples 

Fresh soybeans 

Fresh soybeans, machine and hand harvested at high and low moisture contents were 

subjected to the laboratory storage tests. The experiment consisted of two treatments, each 

replicated three times. A carbon dioxide measuring system developed at the Department of 

Agricultural and Biosystems Engineering, Iowa State University (Dugba et al., 1996) was 

used. 

The evolution of carbon dioxide was measured during storage of soybeans in an 

aerated units with air at 95% relative humidity and 26°C. The amount of carbon dioxide 

evolved during storage, in g of carbon dioxide per kg dry matter, was recorded on a daily 

basis until the experiment was terminated either at 14.5 g/kg (1% DML), 22.05 g/kg (1.5% 

DML) or at 29.4 g/kg dry matter (2.0% DML) and samples were taken. The allocation of the 

soybean samples to each storage unit in the carbon dioxide measuring system was made at 

random. 300 g samples were first withdrawn fi-om the storage studies when an estimated 7.35 

g per kg DML (0.5% DML) was produced. The remainder of the soybean sample was left in 

the storage unit until termination The samples at the two DML levels firom the four 

treatments were analyzed for total damage kernels and FFA content. 

Preservation of soybean samples 

The scope of the storage experiment required that samples for subsequent 

experiments be preserved as all experiments could not be conducted at once. 
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Preservation of soybean samples were accomplished by packing them in sealed 

plastic bags at 22 and 9% moisture content in a -18°C environment (freezer) and at 9% 

moisture content in a 10°C envirormient (cold room). Three freezers and three cold rooms, 

representing three replicates of preservation temperatures, were used to hold samples. The 

initial damage levels, FFA contents and moisture contents were determined before the 

samples were placed in the environmental chambers. When samples were ready to be taken 

out for the storage experiment, the damage level, FFA content and moisture contents were 

again measured. 

Preserved sample 

During preservation, soybean samples were taken after 26 and 48 weeks of 

preservation and were subjected to storage experiments as described for fresh samples. 

Samples were withdrawn first at the equivalent 0.5% DML and later when the 

experiment was terminated. Damage level and FFA content were determined. The data were 

compared with those of the fresh soybeans. 

Damaged kernels total 

Whole soybean samples of 160 g at the two DML levels were bagged, labeled and 

sent to the Central Iowa Grain Inspection Services, Inc., Des Moines, Iowa for damage 

testing. The damage test results were reported as DKT. 



106 

FFA analysis 

Oil was extracted from each sample by using ethyl alcohol as described in AOCS 

Official Method (1989) Aa 4-38. The FFA content in the crude oil was determined by 

titration with a standard solution of NaOH according to a modified version of the AOCS 

official Method Ca 5a-40 (paper 2 of this thesis). 

Moisture content 

Soybean moisture contents were determined by the oven method. A 10 g whole 

soybean sample was heated in a forced draft oven for 4 hr at 130°C. Moisture content was 

expressed as percentage on wet basis, unless otherwise stated. 

Statistical analysis 

The data were subjected to analysis of variance (ANOVA) and general linear model 

(GLM) procedures of the Statistical Analysis Software (SAS Institute, 1990). Observations 

made on the samples at different time periods during preservation were treated as repeated 

measures. Corresponding testing of linearity and lack of fit were made to summarize the 

information. Specific differences between treatments were determined by means of either an 

F test or least significant different (LSD) with significance established at P > F =0.05. 

Whenever appropriate, regression analyses were also carried out on the data to establish the 

relationship pattems between variables. 



107 

RESULTS AND DISCUSSION 

Soybean quality during preservation 

During the preservation of soybean samples, the influence of soybean moisture 

content and preservation temperatures on %FFA content, damage level and final moisture 

were monitored (see Appendix E for complete data). 

Effects of moisture content and preseryation temperature on FFA content 
during preseryation 

Effect of moisture content. The effect of initial moisture content of soybeans on the 

fmal FFA during preservation was determined by measuring FFA contents in the 22 and 9% 

moisture content soybean samples preserved at -18°C. The initial FFA content was 

determined and compared with FFA content from 26 and 48 week-old sample after 

preservation. 

Linear regression analysis of FFA contents with preservation period for the two soybean 

moisture contents yielded slopes, intercept and coefficient of determination, R^, shown in 

table 1. While the increase in the FFA content in the 22% moisture content samples during 

preservation can be best described by a straight line (R^=0.73), the same is not true for 

soybean samples preserved at 9% moisture content. 

ANOVA showed that there was not only a significant effect of moistures content (22 and 

9%) on the FFA content during preservation at -18°C, with P>F = 0.001 (table 2a), but the 

preservation period and preservation period by moisture interaction effects were also 
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important (P>F = 0.00007 and P>F = 0.0001 respectively). Subdivision of the preservation 

period effect into linear components (table 2b) showed that FFA content averaged over 

moisture content had a slope that differs from zero (P>F = 0.009). Also, the slopes for the 

two moisture contents differed, as indicated by the linear by moisture P>F = 0.01. The 

implication of different slopes is that preservation period affects %FFA content in soybeans. 

It is clear from the level of significance of deviation changes, P>F = 0.004 (Table 2c), that 

most of the changes over preservation period is explained by the straight line and deviation 

from the straight line is minor by comparison. The deviation by moisture source measures the 

pattern deviation from one moisture to another. Since P>F = 0.009, the relationship between 

FFA and preservation period for individual moisture therefore can be expressed as a straight 

line. This was especially true with the 22 % moisture content sample where the coefficient of 

determination, = 0.7, and the rate of increase in FFA during preservation is about 0.007 ± 

0.004 % of FFA per week of preservation and an intercept of 0.08. The 9% moisture content 

relationship is not only poorly explained by a linear model (R^=0.06), but the rate of increase 

of 0.0004 was too small to have any influence on the overall soybean oil quality. Preserving 

soybeans at 9% moisture and in -18°C could be considered to have no influence on final FFA 

content. 

Table 3 shows the mean FFA content of the soybean samples preserved at the two 

moisture contents and -18°C preservation chambers averaged over the preservation period. 

The % FFA, averaged over preservation period, for high and low preserved moisture content 
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soybean samples are 0.25 and 0.14%, respectively. The mean initial FFA content of the 

sample was about 0.17%. 

Effect of preservation temperature. The effect of preservation temperature on the 

initial and final FFA was determined by analyzing FFA content in soybean samples 

preserved at 9% moisture content and -18 and 10°C preservation temperatures. ANOVA 

indicates that there was no significant difference (P>F = 0.62) in the FFA content for 9% 

moisture content soybeans when preserved at the two temperatures. The effects of 

preservation period and preservation period by temperature interaction were also not 

significant with p>F = 0.2 and 0.7, respectively. Preserving soybeans at 9% moistxire content 

and either -18 or 10°C environment results in a minimal change in the FFA content over 48 

weeks. The summary of the mean FFA content, averaged over preservation temperature for 

the three preservation periods is given in table 4. FFA content was found to increase firom 

0.133 to 0.17 % over 48 weeks of preservation. The LSD indicates that that there was no 

marked variation in FFA content during preservation. 

Effects of moisture content and preservation temperature on DKT of soybean 
during preservation 

Effect of moisture content. The level of DKT of the samples after preservation were 

compared based on the values determined by the Central Iowa Grain Inspection Service, Inc., 

Des Moines on 150-g samples. Total damage is assumed to reflect a determination of 

soybean quality that carried over into the processed oil. 
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The effect of moisture content of soybeans at 22 and 9% during preservation on DKT 

was found to be significant (P>F=0.008) when held at -18°C temperature. However, careful 

examination of the data revealed that the statistical significance should be viewed with 

caution (table 5). The bulk of the variation came from soybeans at 22% moisture content after 

26 weeks of preservation, where the average damaged value was 0.47%, the initial was 0%. 

The mean value of damaged kernels from the same sample but after 48 weeks was 0.03%, 

and two of the three replicates had zero damage levels. Being a subjective measurement, the 

significant effect of moisture contents on the DKT during preservation may have been due to 

a human error and not a result of the treatment. It has been observed visually that soybean 

samples at high moisture content after 26 and 48 weeks of preservation had hulls slightly dull 

in color as compared to bright hull color for soybeans at 9% moisture. This dull color may 

have deceived the operator to treat the sample as damaged. 

Effect of preservation temperature. The effect of preservation temperatures (-18 

and 10°C) on DKT in samples preserved at 9% moisture content was not significant, P>F= 

0.21. Although the period effect was significant, the slope of the line does not differ from 

zero (P>F= 0.37). The increase in FFA averaged over temperatures was not significant. The 

mean DKT levels averaged over temperature during preservation period is shown in table 6. 

Therefore, DKT did not change during preservation at either 22 or 9% moisture 

content in an -18 or 10°C. 
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Effect of preservation on moisture content of soybean 

The initial and final moisture content of soybeans before and after preservation were 

also monitored to determine if there was any variation in moisture content during 

preservation. ANOVA was performed only on data for 9% moisture content soybeans 

preserved at -18 and 10°C. There was no significant change in moisture content during 

preservation averaged over the two temperatures (P>F =0.83). There was a significant 

decrease in moisture content averaged over temperatures during the preservation period 

(P>F= 0.007), but evidence (P>F for linear by moisture interaction = 0.7) indicates that a 

common slope (P>F= 0.03) was sufficient to capture the preservation period effect. However 

a small slope (-0.01) and a coefficient of determination R of 0.4 indicated that the increase 

was too small and a linear model would be inadequate to summarize the decrease in the 

moisture content during preservation. Table 7 shows the mean moisture content values 

averaged over temperatures for the three preservation periods. Observation of the high 

moisture content soybeans at -18°C showed very slight variation (0.8%) in the value over 

time from the initial. At 48 weeks moistures were at 22.32 and 22.5%, respectively. 

Use of preserved soybean in storage studies 

FFA and DKT development during storage studies were evaluated using fresh 

soybeans and soybeans after 26 and 48 weeks of preservation. Soybean samples were taken at 

different levels of DML during the carbon dioxide evolution studies and analyzed for FFA 

and DKT (Appendix E). 
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Effects of preservation on FFA development during soybean storage 

Effect of moisture content. The effect of moisture content of soybeans during 

preservation on FFA development during storage was determined by analyzing stored 

soybean samples (fresh, and preserved 26 and 48 weeks) after about 0.5% of its dry matter 

was lost. 

ANOVA (table 8) shows that there was a significant effect of preserved soybean 

moisture contents on the FFA when soybeans were used during storage studies (P>F = 

0.005). There were also significant preservation period and preservation period by moisture 

effects on the FFA development while soybeans were in storage. The linear components of 

the preservation period effect shows that the slope of the line of FFA, averaged over 

moisture, with preservation period differs from zero at P>F = 0.003. The significance of the 

linear by moisture interaction, P>F = 0.001, indicates that the slopes between the two 

moistures (22 and 9%) differs. Although the significant level of deviation or lack of fit is big 

(0.06), it was sufficient to describe the increase in FFA during storage as a straight line model 

as the mean square of the linear (0.48) is very much higher than the deviation (0.09). 

Separate regression analysis on the FFA content with preservation period from 22 and 

9% stored soybean samples gave an output as shown in table 9. With R"=0.82, a linear model 

with a slope of 0.02 ± 0.008 and intercept of 0.24 is sufficient to summarize the increase in 

the FFA during the storage experiment for samples preserved at 22%. The longer soybeans 

are preserved at 22% moisture content, the higher the % FFA content of the sample at 0.5% 

DML. 
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The value (R^=0.6) for the 9% moisture content sample could explain a linear 

variation in 9% moisture content soybean where % FFA per week of preservation was found 

to decrease (slope = - 0.003), but is too small for consideration. The mean FFA content at 

0.5% DML for 9% moisture content soybean samples at 26 and 48 weeks samples were 

0.252 and 0.244%, respectively compared to 0.367% when fresh. 

Effect of preservation temperature. The effect of preservation temperature (-18 and 

lO^C) on the rate of hydrolysis during storage was determined by analyzing FFA contents in 

the 9% moisture content samples. ANOVA shows that there was significant temperature 

effect, P>F = 0.03, on FFA content during storage when soybeans were preserved at 9% at -

18 and 10°C (table 10). There was enough evidence (P>F =0.04) to show that the % FFA 

during storage averaged over temperatures was also affected by length of preservation. The 

interaction of preservation period by temperatures effect on FFA was too low to be of any 

significance (P>F= 0.06). Examination of the P>F for linear (0.01), linear by temperature 

(0.26) and lack of fit (0.32) indicate that there is lack of evidence to summarize the 

•y 

relationship linearly. In fact, regression analysis for a common slope yields a low R value 

(0.2). Table 10 shows the variation in the FFA after storage between fresh and preserved 

samples. There is no increase in FFA after 26 weeks of preservation (0.37%) from the initial 

value (0.37%), but the value tended to decline after 48 weeks of preservation (0.26%). 
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Effects of preservation on DKT during soybean storage 

Effect of moisture content. Similar analysis was also performed on the DKT of 

soybeans during storage (table 11). There was a significant effect of preserved soybean 

moisture content (P>F = 0.04) on the DKT (averaged over preservation period) during the 

storage studies. The preservation period and preservation period by moisture content 

interaction effects also were not significant (P>F= 0.17 and 0.81 respectively). The level of 

significance of the linear component shows that DKT does not vary with preservation period. 

A summary of DKT is shown in table 11. Soybeans preserved at 22% moisture content 

results in 3.5% DKT compared to 2.8% fi'om the fresh sample. For 9% moisture soybeans, 

the range in DKT is 0.6 and 1.3% for fresh and preserved samples, respectively. There is a 

trend, though small, that the longer soybeans are preserved, the higher the DKT will be when 

it is used in the storage studies. 

Effect of preservation temperature. The temperatiore (-18 and 10°C) during 

preservation of 9% moisture soybeans had no significant effect on DKT in the samples 

during storage (P>F= 0.9). There were also no evidence to say that preservation period and 

preservation period by temperature has any influence on the DKT during storage (P>F = 0.5 

and 0.9, respectively). Examination of the raw data (table 12) shows that DKT at 0.5% DML 

from fresh soybean is 0.73 and 1.62% from preserved sample. The longer soybeans are 

preserved, the higher the DKT level after storage. 
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Relationship between FFA and DML 

The FFA content at two DML levels were regressed with the corresponding DML. 

The relationships between FFA content and DML were established for fresh, 26- and 48-

week preserved soybean samples by linear regression. The FFA content from the high 

moisture content sample at 48 weeks was first adjusted to accoimt for the effect of 

preservation. Figure 1 shows the linear plot of the regression model describing the increase in 

the FFA content of fresh and samples preserved for 26- and 48-weeks with DML. The 

models were found to be sufficient to explain the increase in the FFA content with the DML 

with values of 0.7, 0.9 and 0.8 for fresh, 26- and 48-weeks samples respectively (table 13). 

The slopes of the lines indicate the rate of increase in FFA per imit change in DML. Fresh 

soybeans exhibited a slightly faster rate of increase in FFA (0.8) among three samples. Fresh 

soybeans may have carried a higher microbial load and wider range of fimgi species than 

preserved samples. Being fresh from the field, the flmgi were still thriving on the substrate 

and continued to thrive when the samples were put in the storage unit. Soybean highly 

infected with fungi are typically known to produce oils with higher FFA content (Wilson et 

al., 1995). The preserved samples have a rate of increase between 0.7 to 0.72%. 

Relationship between DKT and DML 

DKT was regressed with DML for each set of the data obtained from fresh, 26- and 

48-week samples by using linear regression analysis. Since the DKT at zero DML is zero, the 
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regression analysis with no intercept option was performed. Figure 2 shows the linear plots of 

DKT against DML of the three models. 

The coefficient of determination (R^) of 0.52 for the fresh sample shows that linear 

correlation for the two variables can be considered as barely sufficient (table 13). Most of the 

observations of DKT data for the fresh sample at particular DML levels, were distinctly 

scattered below the 4% DKT level except three observations that had DKT values of more 

than 11.8%. The three observations represented soybean samples machine harvested at high 

moisture content (22%). Harvesting operations may have damaged the beans so badly that 

even though the samples were initially clean and splits were separated, the cracks and the 

bruises may have encouraged rapid growth of microflora, which was enough to inflict 

excessive kernel damage during deterioration. Regression analysis on the same data 

excluding the data for soybeans that were machine harvested at high moisture content 

improved the by about 30% (R^= 0.67). 

For the 26- and 48-week preserved samples, the total kernel damage were highly 

correlated with DML, with regression analysis yielding R^ values of 0.85 and 0.71%, 

respectively. Considering the subjectivity of the total kernel damage determination, the 

coefficient of determination obtained can be considered high. 

Examination of the slopes of the regression models indicated that the rate of increase 

in the damage for every unit of dry matter soybean losses was slower in fresh samples than in 

the preserved soybean samples. The rates of increase are 3.1 ± 1.2, 3.6 ± 0.62 and 3.9% ± 1.0 
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for fresh and 26- and 48-week preserved samples, respectively. The rate of increase in DKT 

shows an increasing trend as preservation period increases. 

Interpretation of grade from DKT and FFA 

DKT is one of the factors in the Official US Standards for soybeans that defines 

marketable grade for whole soybean. Table 14 shows the maximum levels of DKT allowed 

for a particular soybean grade. 

Determination of DKT is to reflect deterioration of soybean quality at a level that is 

detrimental to the quality of the processed oil. The method is based on 'interpretive line 

slides', phocographic illustration of the intensity of surface mold damage or discoloration to 

designate soybeans as damaged. The assessment is, however, less-than-perfect reflection of 

the inherent value of soybeans for processing into oil and meal. To correlate DKT, a 

subjective evaluation, to DML so as to provide a useful and comprehensive relationship 

would require as many observations as one could possibly obtain and from condition ranging 

as widely one would expect soybean to be exposed to. The scope of this research would not 

permit the gathering of such data possible, but considering the limited data currently 

available from the study, comments would still be appropriate. 

Figure 3 is a repetition of the scatter plot of DKT (primary Y-axis) against DML, but 

superimposed with lines representing the minimum requirement of damage level for the four 

grades. The line passing diagonally through the points in the plot is a regression line of the 
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DKT versus DML using all observations irrespective of their initial background. The model: 

DKT, % = (3i • DML [1] 

where: DKT = % damaged kernels total 
DML = % dry matter loss 
p = 3.52 ± 0.5 

was found to have a high coefficient of determination, R^, of 0.7. 

The rate of change of DKT with DML, the slope of the above model, shows that one 

depreciation of grade is likely to occur for every 0.5% increase in the DML, the same 

observation established for com (Saul and Steele, 1969). The pattern can be clearly 

demonstrated as shown by the vertical dotted lines (fig 3). 

The regression line of FFA (on secondary Y-axis) against DML (fig 3)was also 

established using all observations. The general model, with of 0.79, can be described as: 

FFA, % = Po + Pi . DML [2] 

where: FFA = % free fatty acids 
DML.= % dry matter loss 
po =0.15 ±0.1 
pi = 0.72 ± 0.08 

Dropping vertical lines fi-om the DKT model, at the respective points of intersection 

with the damaged lines, to the FFA model enables reading of corresponding FFA off the 

secondary Y-axis for each soybean grades. Column 3 of table 14 shows the FFA values at the 
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four damaged levels using the above relationships. Grade 1 and 2 would have FFA values of 

less than 0.8% and grades 3 and 4 are between 1 and 2%. 

Iverson and Koeltzow (1986) established a relationship between FFA content in 

soybean oil with damage level. The equation: 

%FF A = 0.159 (%DKT) + 0.915 [3 ] 

predicted the values of FFA for the four soybean grades (column 4 of table 14). Grades 1 and 

2 have FFA values of less than 1.0% while grades 3 and 4 are between 1 to 1.5% FFA 

content. The use of DML underestimates the FFA level of soybeans in grades 1 and 2, but 

overestimates in grades 3 and 4. 

CONCLUSIONS 

Based on the results of the study, the following conclusions are drawn: 

1. There is a significant increase in FFA during preservation of 22% moisture soybean 

at -18 environment. The rate of increase was about 0.007% FFA per week. 

2. Preserving soybean samples at 9% moisture content and -18 and 10°C has no effect 

on FFA content. 

3. There is no clear evidence to show any difference in DKT in soybeans preserved at 

22 and 9% moisture at -18''C. However, DKT of soybean preserved at 9% moisture content 

does not vary. 
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4. There is a 5% decrease in 9% moisture content soybeans during preservation 

between the initial and the 48-weeks sample. 

5. Preserved soybeans at 22% moisture content at -18°C environment gives higher 

FFA content in soybeans than soybeans preserved at 9% moisture content. 

6. Soybeans preserved at 22% moisture content in -18°C will result in higher DKT 

during storage studies than 9% moisture content soybean. 

7. There is a positive linear correlation between FFA and DML and DKT and DML 

during storage of soybean. 

8. Based on DML, the FAA content for grades 1 and 2 soybeans is less than 0.8% and 

between 1 to 2% for grades 3 and 4. 
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Table 1. Characteristics of linear relationship between FFA during preservation and 
preservation period of samples preserved at 22 and 9% MC in -18°C environment 

MC Slope Intercept 
(%) 

22 0.007±0.004 0.08±0.13 0.73 
9 0.0004 0.1 0.06 

MC=moisture content 
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Table 2. ANOVA of FFA during the preservation of 22 and 9% MC soybean samples in 
-18°C environment 

Source DF MS F P>F 

2. Ca") Main ANOVA 

Moisture, M 1 0.054 771.4 0.001 
Chamber, C 2 0.003 42.9 0.02 
C*M 2 0.00007 
Period, P 2 0.059 23.6 0.0004 
P*M 2 0.044 17.6 0.001 
P*C*M 8 0.0025 

17 
2. rb) Subdivision of linear 

Linear, Lin 1 0.092 23.0 0.009 
Lin*M 1 0.07 17.5 0.01 
Lin*C*M 4 

2. fc) Subdivision of deviation components 
Deviation, Dev 1 0.027 37.3 0.004 
Dev*M 1 0.017 22.7 0.009 
Dev*C*M 4 0.00075 

MC=moisture content; 
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Table 3. FFA content during the preservation of 22 and 9% MC soybean samples in -18°C 
environment, averaged over period 

MC FFA 
(%) (%) 

22 0.248 
9 0.138 

MC=moisture content; LSDa^o5 = 0.03 

Table 4. FFA content during the preservation of 9% MC soybean samples in-18 and 10°C 
environments, averaged over temperature 

Preservation FFA 
period (%) 

(Weeks) 
-18°C 10°C Average over 

temperature 

0 0.133 0.133 0.133 
26 0.27 0.133 0.13 
48 0.155 0.189 0.17 
LSDQ^OS - - 0.07 

MC=moisture content 
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Table 5. DKT during the preservation of 22 and 9% MC soybean samples in -18°C 
environment, averaged over MC 

Preservation DKT 
period (%) 

(Weeks) 
22%MC 9%MC Average over 

MC 

0 0.00 0.0 0.00 
26 0.47 0.1 0.283 
48 0.03 0.03 0.032 
LSDQ^OS - - 0.1 

MC=moisture content 

Table 6. DKT during the preservation of 9% MC soybean samples in-18 and 10°C 
environments 

Preservation DKT 
period (%) 

(Weeks) 
-18°C \o°c Average over 

temperature 

0 0.00 0.00 0.00 
26 0.10 0.17 0.133 
48 0.00 0.07 0.033 
LISDQ(^05 - - 0.16 

MC=moisture content 
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Table 7. Soybean MC during preservation at -18 and 10°C environments 

Preservation Moisture content 
period (%) 

(Weeks) 
-18°C 10°C Average over 

temperature 

0 8.52 8.53 8.53 
26 8.35 8.38 8.36 
48 8.10 7.95 8.02 
LSDC[«0 05 - - 0.38 

MC=moisture content 
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Table 8. ANOVA of FFA content after storage to 0.5% DML from soybean samples 
preserved at 22 and 9% MC 

Source DF MS F P>F 

8. (a) Main ANOVA 

Moisture, M 1 0.86 215.0 0.005 
Chamber, C 2 0.012 3.0 0.25 
C*M 2 0.004 
Period, P 2 0.28 28.0 0.0002 
P*M 2 0.46 46.0 0.00003 
P*C*M 8 0.01 

17 
8. (h) Subdivision of linear 

Linear, Lin 1 0.48 38.4 0.003 
Lin*M 1 0.88 70.4 0.001 
Lin*C*M 4 0.0125 

8. fcl Subdivision of deviation components 
Deviation, Dev 1 0.09 7.2 0.06 
Dev*M 1 0.03 2.4 0.2 
Dev*C*M 4 0.0125 

MC=moisture content; 
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Table 9. Characteristics of linear relationship between FFA during storage and preservation 
period 

Moisture Content Slope Intercept 
(%) 

22 0.02±0.008 0.24 0.82 
9 -0.003±0.002 0.36 0.60 

Table 10. FFA content at 0.5% DML from 9% MC soybean samples preserved at -18 and 
10°C environments 

Preservation FFA 
period (%) 

(Weeks) 
-18°C 10°C Average over 

temperature 

0 0.37 0.37 0.37 
26 0.252 0.48 0.37 
48 0.224 0.291 0.26 
LiSOa^o5 - - 0.13 

MC=moisture content 
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Table 11. Mean DKT at 0.5% DML for samples preserved in -18 and 10°C. 

Preservation % DKT in 
period 
(%) 22% MC 9%MC Averaged 

over MC 

0 2.3 0.6 1.45 
26 4.7 1.9 3.3 
48 3.5 2.4 1.3 

LSDot^oos - - 2.9 

MC=moisture content; 

Table 12. DKT during storage studies from sample preserved at 9% moisture content. 

Preservation period Mean DKT 
(weeks) (%) 

0 0.733 
26 1.70 
48 1.62 

LSDa^os 2.76 
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Table 13. Characteristics of linear relationship between FFA and DML 

Preservation period Slope Intercept ^ 
(weeks) 

a). FFA 

0 0.8±0.22 0.13±0.25 0.70 
26 0.7±0.1 0.14±0.13 0.90 
48 0.72±0.15 0.14±0.10 0.79 

b). DKT 

0 3.1±1.2 0.0 0.50 
26 3.6±0.62 0.0 0.85 
48 3.9±1.0 0.0 0.70 

Table 14. Minimal damage levels for soybean grades and the predicted FFA content 

Grade Minimal damage level FFA FFA 
Cnrrent line' 

(%) (%) 

1 2 0.54 0.90 
2 3 0.76 0.97 
3 5 1.16 1.12 
4 8 1.79 1.34 

' Iverston and Koeltzow (1986) 
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GENERAL SUMMARY 

A modified method for determining free fatty acid (FFA) in crude and refined 

soybean oils firom 0.3 to 6.0 g oil sample size was developed. Good correlation between the 

modified and official methods was established for crude and refined soybean oils with of 

0.9995 and 0.997, respectively. The correlations were explained by linear relationship with a 

slope of 1.01 and 0.99 for the crude and refined oil, respectively. 

The number of days soybean lost 0.5 and 1.0% dry matter, for low and high harvest 

moisture content (MC) soybeans both mechanically and manually harvested, were 

determined. Soybeans at two different MC's were preserved at two low temperature 

environments and effects of preservation on the CO2 evolution were established. Polynomials 

models describing the respective CO2 evolution with storage time were obtained. Soybeans 

manually harvested at 20% MC were found to have the slowest time of deterioration (26.2 

days) while machine harvested soybeans at the same MC were more than 50% faster. At 

optimum harvest MC (13-14%) where soybeans are considered to have high degree of 

toughness, 0.5% dry matter was lost in 22.5 days. This could be the slowest possible rate of 

deterioration that soybeans would have under normal harvesting operation as even manually 

harvested soybean at 8% MC have a faster rate of deterioration. 

Preserved soybeans generally have a higher rate of deterioration during storage than 

fi-esh one. The decline in the rate of deterioration during storage for the 9% MC soybeans can 

be linearly described as a function of the preservation period, with rate declining at 0.21 day 

per week of preservation. There was however little variation in the 22% MC sample. 
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The effects of preservation on %FFA and damaged kernels total (DKT) during 

storage was also evaluated. Soybeans preserved at 22% MC at -18°C temperature 

exhibited a linear increase in the rate of %FFA content during storage with a slope of 0.2. 

There was no significant increase in the 9% preserved sample when averaged over the 

preservation temperatures. DKT during the storage of 22 and 9% preserved samples were not 

influenced by preservation, but there was a trend of increasing damaged levels, small though, 

in soybeans preserved for a longer period of time. 

A relationship between %FFA content and DKT with dry matter loss (DML) during 

storage were also established. The variation can be summarized as linear functions, with R 

of 0.8 and 0.7 for the %FFA and %DKT, respectively. The rates of increase in %FFA and 

DKT were 0.72 and 3.53 % per unit DML, respectively. The combination of the DKT and 

FFA models as a flmction of DML characterized grades 1 and 2 soybeans to have less than 

0.8% FFA and between 1 and 2% for grades 3 and 4. 
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RECOMMENDATIONS FOR FUTURE WORK 

The following list are areas of recommendation for future study: 

1. A study on the effects of different breakage levels in soybean on the rate of carbon 

dioxide production during deterioration of stored soybean. 

2. A study on the effects of different breakage levels on the development of 

percentages FFA content and DKT during deterioration of stored soybean. 

3. A study on the effects of different storage conditions (temperatures and relative 

humilities) on the rate of carbon dioxide production during deterioration of stored soybean. 

4. A study on the relative rates of carbon dioxide production between naturally and 

artificially wet soybean samples. 

5. Microbiological study during deterioration of stored soybean. 

6. Adaptation of the modified method for determining FFA in other oilseeds. 

7. Exploring the possible use of DML to develop a new interpretative damage lines 

for determining soybean grades. 
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APPENDIX A. AOCS OFFICIAL METHODS 
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AOCS Official Method Ca 5a-40 
Reapproved 1977 

Revised 1987 
Reapproved 1989 

Free Fatty Acids 

Definition: This method detennine the fatty acids existing in the sample 

Scope: Applicable to all crude oil and refined vegetable oil, marine oils and animal fats. 

Apparatus: 

1. Oil sample bottles, 115 or 230 mL (4 or 8 oz) or 250 mL Erlenmeyer flasks. 

Reagents: 

1. Ethyl alcohol, 95% (U.S.S.D. Formiila 30 and 3 A are permitted). See Notes, 1. The 
alcohol must give a definite, distinct and sharp end-point with phenolphthalein and 
must be neutralized with alkali to a faint, but permanent pink color just before using. 

2. Phenolphthalein indicator solution, 1% in 95% alcohol. 

3. Sodium hydroxide solution, accurately standardized. See AOCS Specification H 12-52. 
See Table 1 for the appropriate normality (N) of the sodium hydroxide solution, 
depending on the expected free fatty acid (FFA) concentration range in the sample. 

Procedure: 

1. Samples must be well mixed and entirely liquid before weighing, however, do not heat 
the sample more than 10°C over the melting point. 

2. Use Table I above to detennine the sample weight for various ranges of fatty acids. 
Weigh the designated sample size into an oil sample bottle or Erlenmeyer fl (see 
Notes, 2). 

3. Add the specified amount of hot neutralized alcohol and 2 mL of indicator. 

4. Titrate with standardized sodium hydroxide, shaking vigorously until the appearance of 
the first permanent pink color of the same intensity as that of the neutralized alcohol 
before the addition of the sample. The color must persist for 30 seconds. 
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Calculations: 

1. The percentage of free fatty acids in most types of fats and oils is calculated as oleic 
acid, although in coconut and palm kernel oils it is frequently expressed as lauric acid 
and in palm oil in terms of palmitic acid. 

. . „ . .. , • n/ niL of alkali x N x 28.2 
(a) Free fatty acids as oleic, % = 

Weight of sample 

mL of alkali x N x 20.0 
(b) Free fatty acids as lauric, % = 

(c) Free fatty acids as palmitic, % = 

Weight of sample 

mL of alkali x N x 25.6 

Weight of sample 

2. The free fatty acids are frequently expressed in terms of acid value instead of % free 
fatty acids. The acid value is defined as the number of mg of KOH necessary to 
neutralized 1 g of sample. To convert % free fatty acids (as oleic) to acid value, 
multiply the % free fatty acids by 1.99. 

Notes: 

1. Isopropanol, 99%, may be used as an alternate solvent with crude ands refined 
vegetable oils. 

2. Cap bottle and shake vigorously for one minute if oil has been blanketed with carbon 
dioxide gas. 

3. See JAOCS 59:658 (1976) regarding the ruggedness of this method. 
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Table Al. FFA range, alcohol volume and strength of alkali. 

FFA range, % Grams of sample ml of alcohol Strength of alkali 

0.00 to 0.2 56.4 ±0.2 50 0.1 N 
0.2 to 1.0 28.2 ±0.2 50 0.1 N 
1.0 to 30.0 7.05 ±0.05 75 0.25 N 

30.0 to 50.0 7.05 ±0.05 100 0.25 or 1.0 N 
50.0 to 100.0 3.525 ±0.2 100 1.0 N 
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AOCS Specification H 12-52 
Amended 1988 

Rcapproved 1989 

Standard sodium hydroxide solution 

Apparatus: 

1. Erlenmeyer flask, 300 mL capacity. 

2. Burette, accurately calibrated to meet National Bureau of Standards specifications. 
Because alkali will dissolve glass, to avoid volumetric errors it should not be stored in 
calibrated apparatus. Burettes used continuously should be recalibrated periodically. 

3. Absorption tower or drying tube of adequate capacity packed with efficient absorbent 
for carbon dioxide such as Ascarite or soda lime. 

Reagents: 

1. Carbon dioxide free distilled water, prepared by one of the following methods. 

(1) Boil water for 20 minutes and cool with absorption tower protection against COj 
absorption; 
(2) bubbles a vigorous stream of air, freed from CO2 by passing through a tower with 
Ascarite or soda lime, through water for 12 hours (see Notes, 1). 

2. Sodium hydroxide (1 + 1). To one part by weight of NaOH (containing less than 5% 
Na2C03) in an alkali resistant flask or bottle add one part of H2O. Swirl until solution 
is complete. Close the container tightly with a rubber stopper. Set aside until Na2C03 
has settled, leaving perfectly clear supernatant liquid (see Notes, Caution). 

3. Acid potassium phthalate, KHC8H4O4, National Bureau of Standards standard sample 
for acidimetry. Crush sample to a fineness of approximately 100 mesh and dry for 2 
hours at 120 C. Allow to cool in an efficient dessicator. 

4. Ethyl alcohol, 95% by volume (U.S.S.D. Formula 30 or 3 A is permitted). 

5. Phenolphthalein indicator. Dissolve 1.0 gram of phenolphthalein in 100 ml of alcohol. 
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Procedure: 

1. The following table gives the approximate quantities of NaOH solution (1+1) 
necessary to make 10 liters of standard solution of the indicated normality: 

2. Add the required quantity of NaOH solution (1+1) to enough CO2 free distilled water 
to give a total volume of 10 liters and mix well. Protect the solution from CO2 by 
stoppering tightly or by means of absorption tube or tower. 

3. Weigh accurately sufficient dried KHC8H4O4 to require 40 mL of the sodium 
hydroxide solution to be standardized and transfer it to a 300 mL flask that has been 
swept free from CO2. Add 50 mL of cool CO2 free H2O. Stopper the flask and swirl 
gently until the BCHCgH404 is dissolved. 

4. When the KHCgH404 is in solution, add 3 drops of phenolphthalein indicator and 
titrate to the first persistent faint pink color with the solution to be standardized taking 
precautions to exclude CO2 

5. Determine the quantity of sodium hydroxide solution by the following equation: 

Approximate 
normality 

Sodium hydroxide solution to be 
diluted to 10 liters 

Milliliters Grams 

O.IN 
0.25N 
0.5N 
l.ON 

54 
135 
270 
540 

82 
205 
410 
820 

Nomiality, N = 
Grams of KHCgH404 

mL of NaOH • 0.20444 
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Notes; 

Caution 

As an alternate method for removing carbonate, a barium hydroxide solution may be 
added to the undiluted sodium hydroxide solution. If the bariimi hydroxide solution is 
used, make certain that the sodium hydroxide solution is cooled prior to the addition 
of barium hydroxide. Failure to do so will result in a violent splattering of the sodium 
hydroxide solution and could result in serious injury. See the Laboratory Safety 
section at the beginning of this Edition for precautions regarding the handling of 
strong alkalis. 

Numbered Notes 

1. When the standard sodium hydroxide is prepared as directed it is essentially free of 
carbon dioxide. It is therefore possible to correct for the amount of alkali required to 
produce the end point with phenolphthalein as described in the method. The resulting 
solution is expected to have true normality with respect to the hydrogen ion 
concentration. 
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APPENDIX B. RAW DATA ON DEVELOPMENT OF A MODIFIED METHOD 
FOR FFA DETERMINATION AND DATA ANALYSIS 
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Table Bl. Raw data from free fatty acid analysis using AOCS Official Method and 
modified method on refined soybean oil 

Obs Rep Cone Meth NAOH Sample Alcohol Titre FFA 
Normality weight volume volume 

(N) (g) (mL) (mL) (%) 

1 1 1 1 0.0987 56.29 50.0 2.04 0.10 
2 I 1 2 0.0125 5.66 5.0 1.58 0.098 
3 1 5 1 1.01059 3.76 100.0 9.30 70.49 
4 1 4 2 0.12274 0.74 10.0 10.62 49.67 
5 1 3 2 0.032 0.78 7.5 11.41 13.19 
6 1 2 1 0.0987 28.3 50.0 6.10 0.60 
7 1 4 1 1.01059 7.0 100.0 12.55 51.09 
8 1 5 2 0.1227 0.3 10.0 6.60 76.15 
9 1 3 1 0.25594 7.31 75.0 15.70 15.50 
10 1 2 2 0.0138 2.88 5.0 4.38 0.59 
11 2 4 1 1.01059 7.07 100.0 13.05 52.60 
12 2 2 2 0.0125 2.77 5.0 4.75 0.54 
13 2 5 2 0.12274 0.36 10.0 7.4 71.15 
14 2 I 2 0.0125 5.69 5.0 1.38 0.09 
15 2 3 2 0.03197 0.81 7.5 12.95 14.41 
16 2 2 1 0.09871 28.34 50.0 6.2 0.61 
17 2 1 1 0.09871 56.50 50.0 2.1 0.10 
18 2 5 1 1.01059 3.71 100.0 9.15 70.29 
19 2 4 2 0.12274 0.75 10.0 10.55 48.69 
20 2 3 1 0.25594 7.10 75.0 15.40 15.65 
21 3 4 2 0.12274 0.79 10.0 11.15 48.85 
22 3 2 2 0.0138 2.88 5.0 4.38 0.59 
23 3 2 1 0.09871 28.10 50.00 6.10 0.60 
24 3 1 1 0.09871 56.10 50.0 2.15 0.11 
25 3 1 2 0.0138 5.65 5.0 1.62 0.11 
26 3 4 1 1.01060 7.03 100.0 12.50 50.67 
27 3 3 2 0.03197 0.73 7.5 10.95 13.52 
28 3 3 1 0.25594 7.27 75.0 15.75 15.64 
29 3 5 2 0.12274 0.42 10.0 9.1 74.99 
30 3 5 1 1.0106 3.48 100.0 8.8 72.07 

Obs=Observation; Rep=Replication; Conc=Concentration; Meth=Method (I=AOCS, 2=Modified) 
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Table B2. Raw data from free fatty acid analysis using AOCS Official Method and 
modified method on crude soybean oil 

Obs Rep Cone Meth NAOH Sample Alcohol Titre FFA 
Normality weight volume volume 

(N) (g) (mL) (mL) (%) 

1 1 5 2 0.124 0.32 10.0 6.25 71.53 
2 1 2 1 0.101 28.57 50.0 8.5 0.85 
3 1 3 2 0.028 0.66 7.5 12.6 15.09 
4 1 4 2 0.124 0.75 10.0 10.65 50.06 
5 1 3 1 0.247 7.05 75.0 16.05 15.85 
6 1 2 2 0.011 2.45 5.0 7.8 0.96 
7 1 4 1 0.99 7.12 100.0 13.15 51.58 
8 1 5 1 0.99 3.13 100.0 7.9 70.50 
9 2 5 I 0.99 3.71 100.0 9.65 72.57 
10 2 2 1 0.101 28.72 50.0 9.15 0.91 
11 2 3 2 0.028 0.66 7.5 13.85 16.49 
12 2 4 2 0.124 0.77 10.0 11 50.36 
13 2 4 1 0.99 7.20 100.0 13.05 50.62 
14 2 5 2 0.124 0.51 10.0 10.25 70.85 
15 2 3 1 0.247 7.06 75.0 15.9 15.68 
16 2 2 2 0.011 2.34 5.0 7.15 0.92 
17 3 4 1 0.99 7.26 100.0 13.5 51.94 
18 3 5 2 0.124 0.47 10.0 9.6 71.54 
19 3 3 2 0.028 0.73 7.5 15.05 16.19 
20 3 2 I O.IOl 28.57 50.0 8.9 0.89 
21 3 2 2 0.028 2.451 5.0 7.4 0.91 
22 3 3 1 0.247 7.07 75.0 15.9 15.66 
23 3 4 2 0.124 0.75 10.0 10.6 49.82 
24 3 5 1 0.99 3.18 100.0 8.25 72.48 

Obs=Observation; Rep=Replication; Conc=Concentration; Meth=Method (1=A0CS, 2=Modified) 
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Table B3. Analysis of Variance of the two methods based on refined soybean oil 

Source df SS MS F P 

Rep 2 0.68 0.34 0.33 0.72 
Trt 9 25139.5 2793.3 2741.0 0.0001 
Cone 4 (25110.7 ) ( 6277.7 ) ( 6160.0 ) 0.0000 
Method 1 ( 0.4) ( 0.4) ( 0.4) 0.54 
Conc*Method 4 ( 28.4) ( 7.1) ( 7.0) 0.0014 

Error 18 18.3 1.02 

Total 29 25158.5 

Table B4. Analysis of Variance of the two methods based on crude soybean oil 

Source df SS MS F P 

Rep 2 0.585 0.29 0.88 0.433 
Trt 7 18693.9 2670.6 8092.73 0.0000 
Cone 3 (18690.9 ) ( 6230.3 ) (18879.7 ) 0.0000 
Method 1 ( 0.96) ( 0.96) ( 2.91) 0.110 
Conc*Method 3 ( 2.07) ( 0.69) ( 2.09) 0.147 

Error 14 4.65 0.33 

Total 23 18699.2 
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Table B5. ANOVA procedure class level -experiment one 

Class Level Value 

TRT 10 123456789 10 

REP 3 12 3 

CONC 5 12 3 4 5 

METHOD 2 1 2 

Table B6. Mean values at treatment level-experiment one 

Level of FFA 
TRT N Mean SD 

(%) 

1 3 0.103 0.0058 
2 3 0.099 0.0101 
3 3 0.603 0.0058 
4 3 0.573 0.0289 
5 3 15.597 0.0839 
6 3 13.707 0.6311 
7 3 51.453 1.0150 
8 3 49.070 0.5257 
9 3 70.950 0.9751 

10 3 74.096 2.6170 
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Table B7. Mean values at concentration level-experiment 

Level of FFA~ 
CONC N Mean 

(%) 
SD 

1 6 0.101 0.008 
2 6 0.588 0.025 
3 6 14.652 1.111 
4 6 50.262 1.492 
5 6 72.52 2.468 

Table B8. Mean values at method level-experiment one 

Level of -FFA-
METHOD N Mean SD 

(%) 

1 15 27.741 29.563 
2 15 27.509 30.382 

Table B9. ANOVA procedure class level- experiment two 

Class Levels Values 

TRT 8 12345678 
REP 3 12 3 
CONC 4 12 3 4 
METHOD 2 12 
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Table BIO. Mean values at treatment level- experiment two 

Level of - FFA-
TRT N Mean 

(%) 
SD 

1 3 0.883 0.031 
2 3 0.930 0.026 
3 3 15.730 0.104 
4 3 15.923 0.737 
5 3 51.380 0.682 
6 3 50.080 0.271 
7 3 71.850 1.170 
8 3 71.301 0.396 

Table B11. Mean values at concentration level- experiment two 

Level of — FFA 
CONC N Mean 

(%) 
SD 

1 6 0.907 0.036 
2 6 15.827 0.483 
3 6 50.730 0.850 
4 6 71.578 0.836 

Table B12. Mean values at method level- experiment two 

Level of FFA 
METHOD N Mean SD 

(%) 

1 12 34.961 29.37 
2 12 34.560 28.94 
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APPENDIX C. CALIBRATION OF CARBON DIOXIDE MEASURING SYSTEM 
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CALIBRATION OF CARBON DIOXIDE MEASURING SYSTEM 

Rukunudin, I. H., and C. J. Bern 

ABSTRACT 

Verification of the level of carbon dioxide in the air entering the soybean storage units 

is an essential step to ensure correct estimation in the loss dry matter during storage of 

soybean. The rate of carbon dioxide accumulation from the residual carbon dioxide still 

presence in the air after passing through the gas generator was about 0.0276391 gm per day. 

The recorded carbon dioxide accumulation in the sulaimanite tube for a specific period of 

time therefore needs to be corrected. 

INTRODUCTION 

The development of an index of deterioration during storage of soybeans is built 

around the premise that the CO2 produced from the stored soybeans is a measiu-e of the loss 

in its dry matter. The CO2 measuring system used in the study, as shown in figure 1 of paper 

number 2 of this thesis, requires that air from a compressor be filtered and free of CO2 before 

being conditioned and passed through the stored soybean. Any CO2 presence in the inlet air 

prior to passing through the store soybean mass would contributed to an erroneous reading of 

the index. 
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Similar but earlier studies on measuring CO2 production during the storage of shelled 

com (Steele, 1967; Femandez et al., 1985; Al- Yahya et al., 1993) used potassium hydroxide 

(KOH) in solution as a medium to remove CO2 from the air before passing through the 

storage unit. According to Al-Yahya (1991), the use of 25% KOH solution was found to be 

sufficient to removed CO2 from the air as evident from the gas chromatography (GC) 

analysis of the air sampled from the system. 

In a later CO2 measuring system developed for shelled com storage study (Dugba et 

al., 1994), a purge gas generator was used in place of the KOH solution to strip the CO2 from 

the air. The manufacturer's specification claimed that the condition of the outlet air from the 

unit is CO2 free. 

OBJECTIVE 

The objective of this experiment therefore is to verify the CO2 level in the air leaving 

the gas generator unit and to propose a correction procedure if there appears to be some 

residual CO2 left in the system. 

MATERIALS AND METHODS 

Purge Gas Generator Unit 

The complete Purge Gas Generator unit consists of two dust filters cormected in series 

and an FTIR purge gas generator model 74-45 (manufactured by Balston Inc.). The function 
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of the two filters is to remove dirt particles, oil and moisture from the air stream before it 

enters the imit. In the generator the air is dried and filtered off from any COi is removed. 

Experimental set-up 

Figure 2 shows the set up of the experiment where sulaimanite tubes are connected in 

parallel to the air stream leaving the gas generator unit. Sulaimanite is a CO2 absorbing agent 

made up of vermiculite particles impregnated with KOH. The material has the ability to 

absorb 100% of the CO2 from the air stream (Al-Yayha, 1991). 

During the experiment, the weight of the sulaimanite tube is weighed at about every 

24 hours for eight days. Any weight gained by the tube is considered to be the amount of 

residual CO2 still present in the air. The airflow was maintained at 0.45 m^/min./ton (0.9 

standard cubic feet per hour - scfli) throughout the experiment. Three replicates of 

sulaimanite tube are used in the experiment and are arranged at random. 

RESULTS AND DISCUSSION 

Table 1 shows the cumulative weight gained in the weight of the sulaimanite tubes as 

recorded in period of 8 days. 

Linear regression through the origin is performed on the data to get the best fit model. 

A linear model is found to be sufficient, with an of 0.997, to represent the relationship 

between the CO2 concentration (by weight) in the air leaving the generator and time. Figure 2 

is the plot of the above model superimposed on the experimental data against time. 
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The model that best described the relationship at 0.45 m^/min ton is: 

CO2, g = 0.0276391 » day 

CO2, g = g of CO2 at any number days 

day = number of days 

CONCLUSIONS 

There is still a trace of CO2 in the air leaving the purge gas generator unit as indicated 

by the weight gained by the sulaimanite tube. The amount is therefore must be subtracted 

from the weight gained by the sulaimanite tube at any particular time during a storage study 

by an amount that is given by the model. 

REFERENCES 

Al-Yahya, S. 1991. Fimgicide treatment of high-moisture com. Unpubl. Ph.D. diss., 
Iowa State University, Ames, lA. 

Al-Yahya, S. A. Bern,. J., M. K. Misra, and T. B. Bailey. 1993. Carbon dioxide evolution of 
fungicide-treated high-moisture com. Transaction of the ASAE 36(5): 1417-1422. 

Dugba, P. N., C. J. Bern, I. Rukimudin, M. K. Misra, and T. B. Bailey. 1996. 
Preservative effects of Iprodine on shelled com. Transaction of ASAE 39(5): 
1751-1756. 

Fernandez, A., R. Stroshine, and J. Tuite. 1985. Mold growth and carbon dioxide evolution 
during storage of high-moisture com. Cereal Chem. 62(2.): 137-144. 

Steele, J. L. 1967. Determination of damaged shelled com as measured by carbon dioxide. 
Unpubl. Ph.D diss., Iowa State University, Ames, lA. 



156 

Table CI. Cumulative weight gained of the COj absorbing agent with time 

Cum time Cum wt Cum wt Cum wt Avg. Cum 
Rep 1 Rep 2 Rep 3 

(hr) (g) (g) (g) (g) 

0.00 0.00 0.00 0.00 0.000 
0.23 0.02 0.03 0.02 0.023 

42.25 0.03 0.03 0.04 0.033 
72.75 0.07 0.08 0.08 0.077 

103.25 0.11 0.11 0.11 0.110 
125.25 0.16 0.14 0.17 0.157 
149.00 0.17 0.17 0.18 0.173 
172.75 0.2 0.19 0.21 0.200 
199.00 0.23 0.22 0.24 0.230 
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APPENDIX D. RAW DATA AND DATA ANALYSIS ON CARBON DIOXIDE 
EVOLUTION DURING AERATED STORAGE 
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Table Dl. CO2 raw data from Experiment I treatment 1 

Hour Rep I Rep II Rep in 

0.00 0.00 0.00 0.00 
20.76 0.32 0.34 0.33 
38.75 0.49 0.59 0.46 
62.75 0.72 0.75 0.71 
87.75 1.00 1.07 0.97 

114.50 1.41 1.47 1.36 
137.00 1.91 2.00 1.88 
157.00 2.49 2.59 2.50 
183.50 3.52 3.69 3.55 
206.75 4.49 4.75 4.52 
225.00 5.22 5.57 5.30 
251.00 6.21 6.62 6.30 
276.25 7.15 7.67 7.29 
302.25 8.10 8.74 8.26 
322.00 9.02 9.70 9.16 
347.25 10.24 11.14 10.40 
374.50 11.57 12.65 11.75 
393.50 12.44 13.63 12.69 
424.50 14.04 15.34 14.34 
447.25 15.35 1668 15.70 
467.25 16.54 17.90 16.88 
492.75 18.17 19.59 18.52 
514.75 19.60 21.07 19.98 
540.25 21.36 22.86 21.77 
562.75 23.05 24.50 23.43 
594.50 25.57 27.09 25.98 
610.50 26.86 28.42 27.29 
633.25 28.76 30.40 29.21 

Rep=Replicate 
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Table D2. CO2 raw data from Experiment I treatment 2 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
22.75 0.05 0.05 0.05 
42.75 0.15 0.13 0.12 
68.25 0.29 0.21 0.25 
90.25 0.40 0.30 0.33 

115.75 0.57 0.41 0.47 
138.25 0.67 0.51 0.59 
170.00 0.89 0.68 0.83 
186.00 1.00 0.77 0.91 
208.75 1.18 0.91 1.07 
235.50 1.43 1.11 1.30 
257.25 1.64 1.31 1.52 
268.25 1.73 1.41 1.67 
290.50 1.98 1.65 1.90 
303.75 2.10 1.76 2.02 
334.00 2.62 2.14 2.44 
359.25 3.20 2.52 2.90 
378.75 3.66 2.85 3.28 
403.80 4.29 3.34 3.83 
410.25 4.46 3.46 3.99 
431.50 5.03 3.94 4.52 
456.00 5.71 4.51 5.17 
484.25 6.54 5.16 5.99 
504.25 7.14 5.65 6.55 
528.25 7.89 6.28 7.27 
546.00 8.60 6.79 7.87 
573.50 9.42 7.38 8.57 
593.00 10.04 7.85 9.13 
619.75 10.96 8.53 10.01 
642.80 11.79 9.20 10.87 
665.00 12.66 9.92 11.74 

Rep=Replicate 
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Table D2. (continue) 

Hour Rep I Rep II Rep III 

689.25 13.69 10.69 12.79 
714.25 14.84 11.52 13.86 
723.50 15.31 11.84 14.31 
738.25 16.05 12.38 14.96 
763.50 17.02 13.35 16.22 
785.95 18.30 14.27 17.39 
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Table D3. COj raw data from Experiment I treatment 3 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
22.50 0.12 0.12 0.12 
42.50 0.18 0.19 0.16 
69.00 0.29 0.31 0.27 
92.25 0.39 0.41 0.36 

110.50 0.45 0.48 0.42 
136.50 0.53 0.56 0.50 
161.75 0.63 0.66 0.59 
187.75 0.77 0.80 0.71 
207.50 0.89 0.92 0.83 
232.75 1.07 1.10 1.01 
260.00 1.25 1.29 1.19 
279.00 1.35 1.38 1.29 
310.00 1.55 1.62 1.49 
332.75 1.74 1.84 1.68 
352.75 1.91 2.05 1.88 
378.25 2.20 2.38 2.18 
400.25 2.46 2.65 2.43 
425.75 2.82 3.05 2.75 
448.25 3.18 3.44 3.07 
480.00 3.79 4.13 3.64 
496.00 4.15 4.49 3.94 
518.75 4.67 5.07 4.45 
545.50 5.37 5.80 5.10 
567.25 5.90 6.38 5.62 
578.25 6.41 6.72 5.99 
600.50 6.94 7.42 6.64 
613.75 7.52 7.86 6.80 
644.00 7.87 8.40 7.32 
669.25 8.48 9.02 7.94 
688.75 8.99 9.51 8.40 
713.80 9.68 10.14 9.04 
720.25 9.92 10.33 9.21 
741.50 10.49 10.90 9.78 

Rep=Replicate 
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Table D3. (continue) 

Hour Rep I Rep II Rep III 

766.00 11.14 11.58 10.44 
794.25 11.89 12.33 11.20 
814.25 12.45 12.98 11.76 
838.25 13.16 13.76 12.46 
856.00 13.78 14.45 13.05 
883.50 14.76 15.61 13.99 
903.00 15.58 16.36 14.74 
929.75 16.81 17.45 15.82 
953.00 17.92 18.48 16.85 
975.00 19.07 19.56 17.88 
998.95 20.50 21.20 19.11 

1024.25 22.07 23.00 20.44 
1033.50 22.72 23.69 20.95 



165 

Table D4. CO2 raw data from Experiment I treatment 4 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
22.75 0.11 0.10 0.13 
49.50 0.28 0.23 0.29 
71.25 0.38 0.33 0.39 
82.25 0.45 0.40 0.42 

104.50 0.53 0.70 0.79 
117.75 0.54 0.71 0.80 
148.00 0.70 0.86 0.98 
173.25 0.91 1.05 1.18 
192.75 1.04 1.19 1.38 
217.80 1.24 1.40 1.60 
224.25 1.32 1.46 1.67 
245.50 1.50 1.66 1.95 
270.00 1.80 1.91 2.37 
298.25 2.20 2.24 2.74 
318.25 2.54 2.55 3.12 
342.25 3.03 2.99 3.65 
360.00 3.46 3.37 4.16 
387.50 4.22 3.96 5.02 
407.00 4.79 4.47 5.73 
433.75 5.63 5.25 6.83 
457.00 6.39 5.96 7.85 
479.00 7.18 6.69 8.88 
503.25 8.12 7.58 10.09 
528.25 8.81 8.24 11.14 
537.50 9.88 9.38 12.18 
552.25 11.11 10.61 13.36 
577.50 12.33 11.58 14.83 
599.95 13.81 12.81 16.31 
627.25 15.18 14.03 17.78 
648.50 16.55 15.20 19.25 
676.50 18.17 16.52 20.82 
695.25 20.20 18.20 23.00 
724.50 21.97 20.67 24.97 

Rep=Replicate 
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Table D5. CO2 raw data from Experiment 2 treatment 1 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
20.75 0.32 0.34 0.33 
38.75 0.49 0.59 0.46 
62.75 0.72 0.75 0.71 
87.75 1.00 1.07 0.97 

114.50 1.41 1.47 1.36 
137.00 1.91 2.00 1.88 
157.00 2.49 2.59 2.50 
183.50 3.52 3.69 3.55 
206.75 4.49 4.75 4.52 
225.00 5.22 5.57 5.30 
251.00 6.21 6.62 6.30 
276.25 7.15 7.67 7.29 
302.25 8.10 8.74 8.26 
322.00 9.02 9.70 9.16 
347.25 10.24 11.14 10.40 
374.50 11.57 12.65 11.75 
393.50 12.44 13.63 12.69 
424.50 14.04 15.34 14.34 
447.25 15.35 16.68 15.70 
467.25 16.54 17.90 16.88 
492.75 18.17 19.59 18.52 
514.75 19.60 21.07 19.98 
540.25 21.36 22.86 21.77 
562.75 23.05 24.50 23.43 
594.50 25.57 27.09 25.98 
610.50 26.86 28.42 27.29 
633.25 28.76 30.40 29.21 

Rep=Replicate 
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Table D6. CO2 raw data from Experiment 2 treatment 2 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
22.75 0.05 0.05 0.05 
42.75 0.15 0.13 0.12 
68.25 0.29 0.21 0.25 
90.25 0.40 0.30 0.33 

115.75 0.57 0.41 0.47 
138.25 0.67 0.51 0.59 
170.00 0.89 0.68 0.83 
186.00 1.00 0.77 0.91 
208.75 1.18 0.91 1.07 
235.50 1.43 1.11 1.30 
257.25 1.64 1.31 1.52 
268.25 1.73 1.41 1.67 
290.50 1.98 1.65 1.90 
303.75 2.10 1.76 2.02 
334.00 2.62 2.14 2.44 
359.25 3.20 2.52 2.90 
378.75 3.66 2.85 3.28 
403.80 4.29 3.34 3.83 
410.25 4.46 3.46 3.99 
431.50 5.03 3.94 4.52 
456.00 5.71 4.51 5.17 
484.25 6.54 5.16 5.99 
504.25 7.14 5.65 6.55 
528.25 7.89 6.28 7.27 
546.00 8.60 6.79 7.87 
573.50 9.42 7.38 8.57 
593.00 10.04 7.85 9.13 
619.75 10.96 8.53 10.01 
642.80 11.79 9.20 10.87 
665.00 12.66 9.92 11.74 

Rep=Replicate 
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Table D6. (continue) 

Hour Rep I Rep II Rep III 

689.25 13.69 10.69 12.79 
714.25 14.84 11.52 13.86 
723.50 15.31 11.84 14.31 
738.25 16.05 12.38 14.96 
763.50 17.02 13.35 16.22 
785.95 18.30 14.27 17.39 
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Table D7. CO2 raw data from Experiment 2 -22% MC, -18°C, 26 weeks 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
20.00 0.19 0.20 0.24 
44.00 0.45 0.44 0.49 
66.00 0.87 0.86 0.94 
91.00 1.23 1.09 1.22 

114.00 1.72 1.51 1.71 
133.25 2.25 1.99 2.29 
163.75 3.55 3.13 3.62 
185.75 4.77 4.11 4.70 
209.50 6.29 5.28 5.88 
233.25 7.09 6.43 7.01 
259.50 8.88 7.64 8.30 
281.50 10.55 8.85 9.46 
306.50 11.27 10.04 10.61 
333.00 13.91 12.50 12.96 
349.00 16.57 14.97 15.31 
380.25 19.20 17.42 17.65 
402.50 21.85 19.88 19.99 
429.25 24.49 22.34 22.34 
453.50 27.14 24.80 24.68 
473.00 29.79 27.26 27.03 
493.00 32.44 29.73 29.38 

Rep=Replicate 
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Table D8. CO2 raw data from Experiment II - 9% MC, -18°C, 26 weeks 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
20.50 0.06 0.03 0.09 
47.50 0.26 0.17 0.19 
68.00 0.29 0.20 0.23 
94.25 0.35 0.32 0.35 

110.00 0.42 0.40 0.43 
141.75 0.61 0.57 0.62 
166.00 0.82 0.75 0.80 
190.25 1.04 0.94 1.03 
214.50 1.31 1.22 1.30 
240.00 1.68 1.56 1.70 
262.75 2.08 1.98 2.10 
286.75 2.58 2.43 2.63 
312.50 3.17 3.00 3.22 
333.50 3.78 3.54 3.83 
357.00 4.51 4.12 4.50 
379.75 5.29 4.73 5.17 
410.50 6.55 5.67 6.28 
423.00 7.05 6.21 6.72 
442.75 7.81 6.94 7.61 
469.50 9.27 7.61 8.26 
495.50 10.91 8.43 8.90 
520.25 12.62 9.30 9.81 
531.25 13.36 9.69 10.85 
545.75 14.30 10.25 11.20 
566.75 15.70 11.03 11.73 
590.00 17.16 11.92 12.57 
613.50 18.84 12.81 13.55 
623.50 19.61 13.23 14.00 
638.00 20.74 13.68 14.46 
667.25 22.90 14.82 15.63 

Rep=Replicate 
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Table D8. (continue) 

Hour Rep I Rep II Rep III 

675.00 23.78 15.30 16.12 
697.25 25.81 16.31 17.19 
719.00 30.18 18.61 19.52 
737.25 31.94 19.57 20.48 
758.00 34.25 20.76 21.64 
782.25 37.24 22.59 23.07 



172 

Table D9. CO2 raw data from Experiment II - 9% MC, 10°C, 26 weeks 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
20.50 0.11 0.12 0.05 
47.50 0.20 0.21 0.19 
68.00 0.27 0.24 0.20 
94.25 0.38 0.35 0.27 

110.00 0.46 0.43 0.35 
141.75 0.65 0.59 0.50 
166.00 0.85 0.79 0.70 
190.25 1.07 1.01 0.91 
214.50 1.36 1.29 1.20 
240.00 1.74 1.70 1.59 
262.75 2.05 2.16 2.02 
286.75 2.63 2.94 2.62 
312.50 3.41 3.35 3.16 
333.50 4.18 4.00 3.83 
357.00 5.10 4.77 4.60 
379.75 5.99 5.52 5.35 
410.50 7.52 6.69 6.53 
423.00 8.13 7.15 6.98 
442.75 9.26 8.49 7.35 
469.50 10.82 9.95 8.70 
495.50 12.51 11.47 10.25 
520.25 14.23 12.98 11.64 
531.25 14.82 13.42 12.10 
545.75 15.88 14.33 12.96 
566.75 17.43 15.73 14.36 
590.00 19.30 17.06 15.69 
613.50 21.22 18.45 17.08 
623.50 22.16 19.32 17.95 
638.00 23.49 20.44 19.10 
667.25 26.25 22.51 21.14 
675.00 27.39 23.48 22.02 
697.25 29.99 25.47 24.04 
743.00 35.87 30.90 28.88 
761.25 36.02 32.41 30.00 
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Table DIO. CO2 raw data from Experiment II - 22% MC, -18°C, 48 weeks 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
22.75 0.26 0.29 0.17 
47.50 0.42 0.54 0.33 
68.25 0.64 0.76 0.51 
91.25 0.91 1.05 0.74 

116.25 1.17 1.39 1.02 
141.25 1.60 1.89 1.47 
165.75 2.22 2.57 2.06 
185.50 2.94 3.31 2.75 
206.25 3.91 4.22 3.62 
233.50 5.22 5.52 4.82 
259.00 6.60 6.78 6.01 
286.50 7.97 8.08 7.27 
306.25 9.02 9.00 8.10 
332.50 10.45 10.30 9.33 
355.25 11.38 11.13 10.11 
376.25 12.47 12.12 11.05 
406.25 14.38 13.82 12.56 
432.25 15.83 15.05 13.61 
454.50 17.18 16.15 14.55 
478.50 18.47 17.36 15.57 
502.00 19.92 18.67 16.65 
521.40 21.26 19.94 17.65 
550.25 23.54 21.87 19.37 
581.75 26.34 24.43 21.85 
590.25 27.11 25.13 22.58 

Rep=Replicate 
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DI2. COi raw data from Experiment II - 9% MC, IO°C, 48 weeks 

Hour Rep I Rep II Rep III 

0.00 0.00 0.00 0.00 
23.75 0.45 0.35 0.36 
45.75 0.69 0.59 0.67 
67.75 1.00 0.85 0.91 
76.75 1.21 0.99 1.05 
91.50 1.48 1.22 1.27 

115.50 1.90 1.33 1.39 
146.25 2.90 2.21 2.22 
162.75 3.38 2.71 2.69 
187.75 4.29 3.60 3.53 
209.50 5.43 4.81 4.77 
241.75 6.15 5.54 5.54 
261.50 6.90 6.22 6.32 
282.50 7.74 7.07 6.87 
287.75 7.90 7.26 7.07 
310.25 8.94 8.37 8.25 
314.25 9.11 8.55 8.53 
331.75 10.03 9.45 9.29 
360.50 11.57 10.74 10.38 
386.75 13.06 12.12 11.53 
414.25 14.53 13.49 13.16 
437.90 16.18 15.21 14.79 
453.75 17.67 16.52 15.80 
480.75 19.74 18.48 17.61 
505.75 21.73 20.40 19.39 
533.25 24.21 22.81 21.49 
548.75 25.90 24.24 22.78 

Rep=Replicate 
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Table D13. CO2 production at 0.5 and 1.0% dry matter loss of a freshly combine-
harvested soybean 

Number of days to reach 

0.5% Dry Matter Loss 1.0% Dry Matter Loss 

Rep Combine-harvested Combine-harvested Combine-harvested Combine-harvested 
at 22% MC at 13% MC at 22% MC at 13% MC 

1 11.7 21.3 18.1 29.6 
2 11.1 23.9 17.3 33.3 
3 11.5 22.2 17.9 30.6 

Avg 11.5 22.5 17.8 31.2 

Table D14. CO2 production at 0.5 and 1.0% dry matter loss of a freshly hand-harvested 
soybean 

Number of days to reach 

0.5% Dry Matter Loss 1.0% Dry Matter Loss 

Rep Hand-harvested Hand-harvested Hand-harvested Hand-harvested 
at20%MC atl3%MC at22%MC atl3%MC 

1 25.7 20.2 36.7 29.0 
2 25.02 20.7 35.9 30.0 

3 27.8 18.6 38.7 25.4 
Avg 26.2 19.8 37.1 28.1 
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Table D 15(a). CO2 production at 0.5% dry matter loss from 22 and 9% MC soybean 
when preserved at -18° C 

Number of days to reach 0.5% Dry Matter Loss 

At 0 week storage After 26 weeks storage After 48 weeks storage 

Rep Combine Combine Combine Combine Combine Combine 
harvested harvested harvested harvested harvested harvested 

at 22% MC at 13% MC at22%MC at 13% MC at22%MC at 13% MC 
and stored and stored and stored and stored 

at 9% MC at 9% MC 

1 11.7 21.3 9.8 18.0 11.5 12.0 
2 11.1 23.9 10.5 18.9 11.4 12.8 
3 11. 5 22.2 10.0 18.4 12.0 12.5 

Avg 11.5 22.5 10.1 18.4 11.6 12.4 

Table D 15(b). CO2 production at 1.0% dry matter loss from 22 and 9% MC soybean 
when preserved at -18° C 

Number of days to reach 0.5% Dry Matter Loss 

At 0 week storage After 26 weeks storage After 48 weeks storage 

Rep Combine Combine Combine Combine Combine Combine 
harvested harvested harvested harvested harvested harvested 

at 22% MC atl3%MC at 22% MC atl3%MC at22%MC at 13% MC 
and stored and stored and stored and stored 

at 9% MC at 9% MC 

1 18.1 29.6 14.1 23.0 17.2 18.4 
2 17.3 33.3 14.5 25.2 17.7 19.6 
3 17.9 30.6 14.3 23.5 19.0 18.5 

Avg 17.8 31.2 14.3 23.9 18.0 18.3 
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Table D 16(a). CO2 production at 0.5% dry matter loss of 9% MC soybean preserved in -
18° C and 10° C environments 

Number of days to reach 0.5% Dry Matter Loss 

At 0 week storage After 26 weeks storage After 48 weeks storage 

Rep Fresh Stored in -18°C Stored in 10° C Stored in -18° C Stored in 10° C 
Soybean with 9% MC with 9% MC with 9% MC with 9% MC 

1 21.3 18.0 17.0 12.0 11.3 
2 23.9 18.4 17.5 12.8 12.0 
3 22.2 18.9 18.5 12.5 12.2 

Avg 22.5 18.4 17.7 12.4 11.8 

Table D 16(b). CO2 production at 1.0% dry matter loss of 9% MC preserved in -18° C and 
10° C environments 

Number of days to reach 0.5% Dry Matter Loss 

At 0 week storage After 26 weeks storage After 48 weeks storage 

Rep Fresh Stored in-18°C Stored in 10° C Stored in-18° C Stored in 10° C 
Soybean with 9% MC with 9% MC with 9% MC with 9% MC 

1 29.6 23.0 22.0 18.4 17.3 
2 33.3 25.2 23.0 19.6 18.0 
3 30.6 23.5 23.8 18.5 18.2 

Avg 31.2 23.9 22.9 18.8 17.8 
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Table D17. ANOVA on aerated storage times of 22 and 9% preserved soybean samples 
at 0.5 % dry matter loss 

Source DF MS F P>F 

ra^ Main ANOVA 

Moisture, M 1 203.35 251.0 0.004 
Chamber, C 2 0.8 1.0 0.5 
C*M 2 0.8 
Period, P 2 36.4 173.1 0.0 
P*M 2 42.2 200.9 0.0 
P*C*M 8 0.21 

17 
rb) Subdivision of linear 

Linear, Lin 1 72.5 72.5 0.0001 
Lin*M 1 78.5 78.5 0.0001 
Lin*C*M 4 4.6 

(c) Subdivision of deviation components 

Deviation, Dev 1 
Dev*M 1 
Dev*C*M 4 

0.2 
5.8 
0.7 

0.3 
8.5 

0.6 
0.04 
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Table D18. Aerated storage time, averaged over period, of soybean preserved at -18°C 
environment at 0.5% dry matter loss 

Level of Storage time 
M N Mean SD 

(%) (days) 

22 9 11.1 0.776 
9 9 17.8 4.4 

Table D19. Aerated storage time, averaged over MC, of soybean preserved in -18°C 
environment at 0.5% dry matter loss 

Level of — Rate 
P N Mean SD 

(weeks) (days) 

0 6 17.0 6.1 
26 6 14.3 4.6 
48 6 12.0 0.5 



181 

Table D20. ANOVA on aerated storage times of 9% MC soybean samples preserved 
-18 an lO^C environments at 0.5% dry matter loss 

Source DF MS F P>F 

fa) Main ANOVA 
Temperature,T 1 0.9 0.7 0.45 
Chamber (T) 4 1.32 
Period, P 2 161.3 320.0 0.0 
P*T 2 0.24 0.5 0.6 
P*C(T) 8 0.5 

17 
fb) Subdivision of linear 

Linear, Lin 1 320.3 616.0 0.00002 
Lin*T 1 0.3 0.5 0.5 
Lin*C(T) 4 0.52 

(c) Subdivision of deviation components 

Deviation, Dev 1 2.3 4.6 0.1 
Dev*T 1 0.22 0.45 0.5 
Dev*C(T) 4 0.5 
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Table D21. Aerated storage time, averaged over period, of 9% MC soybean preserved 
-18 and 10 °C environments at 0.5% dry matter loss 

Level of Rate 
T N Mean SD 

CC) (days) 

-18 9 17.8 4.4 
10 9 17.3 4.7 

Table D22. Aerated storage time of soybean, averaged over MC, preserved in -18 and 
10°C environment at 0.5% dry matter loss 

Level of 
P 

(weeks) 
N Mean 

•Rate— 

(days) 
SD 

0 6 22.5 1.2 
26 6 18.1 0.7 
48 6 12.1 0.5 
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Table D23. Aerated storage time, averaged over period, of soybean preserved in -18°C 
environment at 0.5% dry matter loss 

Level of Rate 
M N Mean SD 

(%) (days) 

22 9 16.7 1.86 
9 9 24.6 5.49 
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Table D24. Aerated storage time, averaged over MC, of soybean preserved in -18®C 
environment at 0.5% dry matter loss 

Level of — Rate— 
P N Mean SD 

(weeks) (days) 

0 6 24.5 7.4 
26 6 19.1 5.3 
48 6 18.4 0.86 
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APPENDIX E. RAW DATA ON % FFA, DKT AND DATA ANALYSIS 
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Table El. FFA content in soybeans during preservation 

Rep Fresh 26 weeks 48 weeks 

Preservation temperature 
-18°C 10°C -18°C 10°C 

Moisture content 
22% 9% 9% 22% 9% 9% 

1 0.2 0.182 0.12 0.112 0.537 0.148 0.226 
2 0.2 0.137 0.132 0.183 0.291 0.124 0.181 
3 0.1 0.130 0.129 0.104 0.416 0.193 0.159 

Rep=replicate 

Table E2. DKT of soybean after preservation 

Rep Fresh 26 weeks 48 weeks 

1 0.0 0.4 0.0 
22% 2 0.0 0.4 0.0 

-18°C 3 0.0 0.6 0.1 

1 0.0 0.0 0.0 
9% 2 0.0 0.1 0.0 

10°C 3 0.0 0.2 0.0 

1 0.0 0.3 0.0 
9% 2 0.0 0.1 0.0 

10°C 3 0.0 0.1 0.2 

Rep=Teplicate 
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Table E3. Moisture content during soybeans preservation 

Rep MC Fresh 26 weeks 48 v^reeks 

Preservation temperature 
-IS^C 10°C -18°C 10°C 

Moisture content 
22% 9% 9% 22% 9% 9% 

I High 22.48 23.32 na na 22.6 na na 
2 High 22.57 23.53 na na 21.07 na na 
3 High 21.9 24.02 na na 23.93 na na 

1 Low 8.33 na 8.05 8.23 na 7.8 7.7 
2 Low 8.80 na 8.40 8.48 na 7.94 8.2 
3 Low 8.44 na 8.59 8.42 na 8.56 7.95 

Rep=replicate; MC=moisture content; na=not available 
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Table E4. FFA and DKT of fresh soybean samples during storage 

Obs Treatment Rep DML FFA DKT 
% % % 

1 Initial 1 0.00 0.1 0.00 
2 Initial 2 0.00 0.1 0.00 
3 Initial 3 0.00 0.2 0.00 
4 Initial 1 0.00 0.1 0.00 
5 Initial 2 0.00 0.1 0.00 
6 Initial 3 0.00 0.1 0.00 
7 Initial 1 0.00 0.2 0.00 
8 Initial 2 0.00 0.1 0.00 
9 Initial 3 0.00 0.2 0.00 

10 Initial 1 0.00 0.2 0.00 
11 Initial 2 0.00 0.1 0.00 
12 Initial 3 0.00 0.2 0.00 
13 Machine/High 1 0.49 0.30 1.40 
14 Machine/High 2 0.52 0.30 2.70 
15 Machine/High 3 0.50 0.40 2.80 
16 Machine/Low 1 0.59 0.30 0.80 
17 Machine/Low 2 0.46 0.40 0.70 
18 Machine/Low 3 0.54 0.40 0.30 
19 Hand/High 1 0.51 0.60 0.10 
20 Hand/High 2 0.53 1.00 0.50 
21 Hand/High 3 0.46 0.80 0.00 
22 Hand/Low 1 0.55 0.30 0.70 
23 Hand/Low 2 0.52 0.30 0.50 
24 Hand/Low 3 0.69 0.70 1.70 
25 Machine/High 1 1.96 1.20 11.80 
26 Machine/High 2 2.07 1.70 16.90 
27 Machine/High 3 1.99 1.40 12.30 
28 Machine/Low 1 1.24 0.80 2.50 
29 Machine/Low 2 0.97 1.00 1.30 
30 Machine/Low 3 1.18 1.60 0.80 
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Table E4. (continue) 

Obs Treatment Rep DML FFA DKT 
% % % 

31 Hand/High 1 1.55 2.20 1.60 
32 Hand/High 2 1.61 2.30 0.60 
33 Hand/High 3 1.43 1.10 2.00 
34 Hand/Low 1 1.49 1.00 1.10 
27 Hand/Low 2 1.41 1.30 0.00 
35 Hand/Low 3 1.70 1.30 0.70 

Obs=Observation; DML=Dry matter loss; Rep=RepIicate 
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Table E5. FFA and DKT of 26-week preserved soybean samples during storage 

Obs Treatment Rep DML Oil sample Titre Normality FFA DKT 
# (Temp, °CI 

MC, %) 
weight volume N 

% (g) (mL) % % 

1 -18/22 1 0 2.87 1.55 0.012 0.182 0.40 
2 -18/22 2 0 2.71 1.10 0.012 0.137 0.40 
3 -18/22 3 0 2.85 1.10 0.012 0.130 0.60 
4 -18/9 1 0 2.80 1.00 0.012 0.120 0.00 
5 -18/9 2 0 2.81 1.10 0.012 0.132 0.10 
6 -18/9 3 0 2.88 1.10 0.012 0.129 0.20 
7 10/9 1 0 3.01 1.00 0.012 0.112 0.30 
8 10/9 2 0 2.76 1.50 0.012 0.183 0.10 
9 10/9 3 0 2.92 0.90 0.012 0.104 0.10 

10 -18/22 1 0.72 2.75 5.75 0.012 0.704 3.10 
11 -18/22 2 0.61 2.66 4.40 0.012 0.557 4.90 
12 -18/22 3 0.65 3.03 3.45 0.012 0.383 6.20 
13 -18/9 1 0.53 2.70 2.35 0.012 0.293 1.20 
14 -18/9 2 0.47 2.76 5.00 0.011 0.246 2.10 
15 -18/9 3 0.52 2.60 5.35 0.012 0.217 2.30 
16 10/9 1 0.55 2.80 4.50 0.012 0.541 0.90 
17 10/9 2 0.49 2.62 2.70 0.012 0.347 2.50 
18 10/9 3 0.48 2.92 4.80 0.012 0.553 1.20 
19 -18/22 1 2.20 2.94 11.10 0.012 1.271 5.80 
20 -18/22 2 2.02 2.85 10.40 0.012 1.228 6.40 
21 -18/22 3 2.00 2.82 9.40 0.012 1.122 6.40 
22 -18/9 1 2.53 2.75 15.10 0.012 1.848 6.60 
23 -18/9 2 1.54 2.66 14.75 0.012 1.867 7.30 
24 -18/9 3 1.57 2.58 10.30 0.012 1.344 5.80 
25 10/9 1 2.45 2.88 22.57 0.011 2.363 15.50 
26 10/9 2 2.20 2.71 13.25 0.011 1.475 5.30 
27 10/9 3 2.04 2.78 12.65 0.012 1.532 5.50 

Obs=Observation; Temp=Temperature, MC=Moisture content; Rep=Replicate; 
DML=Dry matter loss; 
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Table E6. FFA and DKT of 48-week preserved soybean samples during storage 

Obs Treatment Rep DML Oil sample Titre Normality FFA DKT 
# (Temp, °C weight volume N 

MC, %) 
% (g) (mL) % % 

1 -18/22 1 0 2.94 2.00 0.028 0.537 0.00 
2 -18/22 2 0 2.98 1.60 0.028 0.431 0.00 
3 -18/22 3 0 2.85 1.50 0.028 0.416 0.10 
4 -18/9 1 0 2.66 0.50 0.028 0.148 0.00 
5 -18/9 2 0 2.86 0.45 0.028 0.124 0.00 
6 -18/9 3 0 2.86 0.70 0.028 0.193 0.00 
7 10/9 1 0 2.80 0.80 0.028 0.226 0.00 
8 10/9 2 0 3.28 0.75 0.028 0.181 0.00 
9 10/9 3 0 2.98 0.60 0.028 0.159 0.20 

10 -18/22 1 0.85 3.00 4.60 0.028 1.211 5.70 
11 -18/22 2 0.82 2.92 5.40 0.028 1.460 1.10 
12 3 0.76 3.03 4.40 0.028 1.147 3.80 
13 -18/9 1 0.57 2.87 0.75 0.028 0.206 3.00 
14 -18/9 2 0.51 2.71 1.00 0.028 0.291 0.50 
15 -18/9 3 0.54 2.94 0.65 0.028 0.175 0.50 
16 10/9 1 0.54 2.73 1.20 0.028 0.347 5.00 
17 10/9 2 0.50 2.75 1.00 0.028 0.287 0.10 
18 10/9 3 0.48 2.80 0.85 0.028 0.240 0.60 
19 -18/22 1 1.84 2.75 6.90 0.028 1.981 15.60 
20 -18/22 2 1.71 2.76 6.15 0.028 1.759 7.20 
21 -18/22 3 1.54 3.06 5.80 0.028 1.497 11.20 
22 -18/9 1 1.72 2.69 3.20 0.028 0.940 4.20 
23 -18/9 2 1.49 2.88 4.80 0.028 1.316 2.50 
24 -18/9 3 1.64 2.84 4.03 0.028 1.120 2.40 
25 10/9 1 1.76 2.76 4.35 0.028 1.193 6.70 
26 10/9 2 1.65 2.93 5.10 0.028 1.374 2.40 
27 10/9 3 1.55 2.85 4.42 0.028 1.251 5.40 

Obs=Observation; Temp=Temperature, MC=Moisture content; Rep=Replicate; 
DML=Dry matter loss; 



192 

Table E7. ANOVA of FFA content in 22 and 9% MC soybean samples in - 18°C 
environment 

Source DP MS F P>F 

fa) Main ANOVA 

Moisture, M 1 0.054 771.4 0.001 
Chamber, C 2 0.003 42.9 0.02 
C*M 2 0.00007 
Period, P 2 0.059 23.6 0.0004 
P*M 2 0.044 17.6 0.001 
P*C*M 8 0.0025 

17 
fb) Subdivision of linear 

Linear, Lin 1 0.092 23.0 0.009 
Lin*M 1 0.07 17.5 0.01 
Lin*C*M 4 

(c) Subdivision of deviation components 
Deviation, Dev 1 0.027 37.3 0.004 
Dev*M 1 0.017 22.7 0.009 
Dev*C*M 4 0.00075 
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Table E8. Mean FFA values in -18°C environment at moisture content level 

Level of FFA— 
Moisture N Mean SD 

(%) (%) 

22 9 0.248 0.167 
10 9 0.138 0.036 

Table E9. Mean FFA values in -18°C environment at period level 

Level of FFA 
Period N Mean SD 

(weeks) (%) 

0 6 0.133 0.051 
26 6 0.138 0.022 
48 6 0.308 0.174 
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Table ElO. ANOVA of FFA content of 9% MC soybean samples in -18 and lO^C 
environment 

Source DF MS F P>F 

(a) Main ANOVA 
Temperature,T 1 0.0008 0.3 0.62 
Chamber (T) 4 0.0027 
Period, P 2 0.003 2.1 0.2 
P*T 2 0.0005 0.6 0.7 
P*C(T) 8 0.0014 

17 

n?) Subdivision of linear 

Linear, Lin 1 0.0044 11.6 0.03 
Lin*T 1 0.0009 2.4 0.2 
Lin*C(T) 4 0.00038 

• (c) Subdivision of deviation components 
Deviation, Dev 1 0.0016 0.7 0.5 
Dev*T 1 0.0009 0.04 0.8 
Dev*C(T) 4 0.0024 
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Table Ell. Mean FFA values in -18 and lO^C environment at temperature level 

Level of FFA 
Temperature N Mean SD 

CC) (%) 

-18 9 0.138 0.036 
10 9 0.152 0.049 

Table E12. Mean FFA values in -18 and 10°C environment at period level 

Level of FFA 
P N Mean SD 

(weeks) (%) 

0 6 0.133 0.052 
26 6 0.130 0.028 
48 6 0.172 0.036 
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Table E13. ANOVA of DKT analysis in 22 and 9% MC soybean samples in -18° 
environment 

Source DF MS F P>F 

ramain ANOVA 

Moisture, M 1 0.067 119.6 0.008 
Chamber, C 2 0.0172 30.7 0.03 
C*M 2 0.00056 
Period, P 2 0.14 45.2 0.00004 
P*M 2 0.067 21.6 0.0006 
P*C*M 8 0.0031 

17 
rb") Subdivision of linear 

Linear, Lin 1 0.003 1.8 0.25 
Lin*M 1 0.0 0.0 1.0 
Lin*C*M 4 0.0017 

Cc) Subdivision of deviation components 
Deviation, Dev 1 0.29 111.5 0.0005 
Dev*M 1 0.134 51.5 0.002 
Dev*C*M 4 0.0026 
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Table El4. Mean DKT values in -18°C environment at moisture content level 

Level of - - -DKT-
MC N Mean SD 
(%) (%) 

22 9 0.167 0.235 
9 9 0.044 0.073 

Table El5. Mean DKT values in -18°C environment at period level 

Level of — DKT-
Period N Mean SD 

(weeks) (%) 

0 6 0.000 0.000 
26 6 0.283 0.223 
48 6 0.033 0.052 
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Table El 6. ANOVA of DKT analysis of 9% MC soybean samples in -18 and 10° 
environments 

Source DF MS F P>F 

Ta") Main ANOVA 
Temperature,T 1 0.009 2.25 0.21 
Chamber (T) 4 0.004 
Period, P 2 0.029 4.0 0.06 
P*T 2 0.0022 0.61 0.7 
P*C(T) 8 0.0072 

17 
rb) Subdivision of linear 

Linear, Lin 1 0.0033 1.0 0.37 
Lin*T 1 0.0033 1.0 0.37 
Lin*C(T) 4 0.0033 

Cc') Subdivision of deviation components 
Deviation, Dev 1 0.0054 0.49 0.5 
Dev*T 1 0.0011 0.1 0.8 
Dev*C(T) 4 0.011 
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Table El7. Mean DKT values in -18 and 10°C environments at temperature level 

Level of DKT 
Temperature N Mean SD 

rc) (%) 

-18 9 0.033 0.071 
10 9 0.078 0.109 

Table El 8. Mean DKT values in -18 and 10°C environments at period level 

Level of DKT 
Period N Mean SD 

(weeks) (%) 

0 6 0.000 0.000 
26 6 0.133 0.103 
48 6 0.033 0.082 
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Table El 9. ANOVA of moisture contents of 9% MC soybean samples preserved in -18 
and 10°C environments 

Source DF MS F P>F 

fa) Main ANOVA 
Temperature,T 1 0.0064 0.06 0.83 
Chamber (T) 4 0.115 
Period, P 2 0.4 10.0 0.007 
P*T 2 0.015 0.38 0.7 
P*C(T) 8 0.04 

17 
(h) Subdivision of linear 

Linear, Lin 1 0.77 10.4 
Lin*T 1 0.02 0.27 
Lin*C(T) 4 0.074 

(c) Subdivision of deviation components 
Deviation, Dev 1 0.02 * 
Dev*T 1 0.01 * 
Dev*C(T) 4 0.0 

0.03 
0.63 

* 

* 
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Table E20. Mean MC values in -18 and 10°C environments at temperature content level 

Level of MC— 
Temperature N Mean SD 

CQ (%) 

-18 9 8.323 0.330 
10 9 8.286 0.299 

Table E21. Mean MC values in -18 and 10°C enviroimients at period level 

Level of . - „MC~ 
Period N Mean SD 

(weeks) (%) 

0 6 8.528 0.166 
26 6 8.362 0.193 
48 6 8.023 0.308 
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Table E22. ANOVA of FFA contents in 22 and 9% MC preserved soybean samples 
during storage at 0.5% DML 

Source DF MS F P>F 

(a) Main ANOVA 

Moisture, M 1 0.86 215.0 0.005 
Chamber, C 2 0.012 3.0 0.25 
C*M 2 0.004 
Period, P 2 0.28 28.0 0.0002 
P*M 2 0.46 46.0 0.00004 
P*C*M 8 0.01 

17 
(b") Subdivision of linear 

Linear, Lin 1 0.48 38.4 0.003 
Lin*M 1 0.88 70.4 0.001 
Lin*C»M 4 0.0125 

(c) Subdivision of deviation components 
Deviation, Dev 1 0.09 7.2 0.06 
Dev*M 1 0.03 2.4 0.2 
Dev*C*M 4 0.0125 
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Table E23. Mean FFA values of 22 and 9% MC preserved sample at moisture content 
level during storage at 0.5% DML 

Level of FFA-
Moisture N Mean SD 

(%) (%) 

22 9 0.718 0.443 
9 9 0.281 0.080 

Table E24. Mean FFA values of 22 and 9% MC preserved sample at period level during 
storage 

Level of — FFA-
Period N Mean SD 

(weeks) (%) 

0 6 0.350 0.055 
26 6 0.400 0.193 
48 6 0.748 0.585 
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Table E25. ANOVA of FFA contents of 9% MC preserved soybean samples during 
storage at 0.5% DML 

Source DF MS F P>F 

fa) Main ANOVA 
Temperature,T 1 0.044 11.0 0.03 
Chamber (T) 4 0.004 
Period, P 2 0.024 4.8 0.04 
P*T 2 0.02 4.0 0.06 
P*C(T) 8 0.005 

17 
rb) Subdivision of linear 

Linear, Lin 1 0.036 18.0 0.01 
Lin*T 1 0.0034 1.7 0.26 
Lin*C(T) 4 0.002 

fc) Subdivision of deviation components 
Deviation, Dev 1 0.011 1.3 0.32 
Dev*T 1 0.038 4.5 0.1 
Dev*C(T) 4 0.0085 
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Table E26. Mean FFA values of 9% MC preserved sample at temperature level during 
storage at 0.5% DML 

Level of FFA-
temperature N Mean SD 

CQ (%) 

-18 9 0.281 0.080 
10 9 0.379 0.108 

Table E27. Mean FFA values of 9% MC preserved sample at period level during 
storage at 0.5% DML 

Level of 
Period 

(weeks) 

FFA-
N Mean 

(%) 
SD 

0 6 0.367 0.052 
26 6 0.367 0.147 
48 6 0.258 0.063 
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Table E28. ANOVA of DKT of 22 and 9% MC preserved soybean samples during 
storage at 0.5% DML 

Source DF MS F P>F 

(a) Main ANOVA 

Moisture, M 1 22.9 21.2 0.04 
Chamber, C 2 0.72 0.7 0.6 
C*M 2 1.08 
Period, P 2 5.14 2.2 0.17 
P*M 2 0.51 0.22 0.81 
P*C*M 8 2.3 

17 
fb) Subdivision of linear 

Linear, Lin 1 2.9 1.1 0.35 
Lin*M 1 0.19 0.07 0.8 
Lin*C*M 4 2.6 

(c) Subdivision of deviation components 
Deviation, Dev 1 7.4 3.8 0.12 
Dev^M 1 0.84 0.43 0.54 
Dev*C*M 4 1.94 
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Table E29. Mean DKT values of 22 and 9% MC preserved sample at moisture content 
level during storage at 0.5% DML 

Level of — -DKT-
Moisture N Mean SD 

(%) (%) 

22 9 3.522 1.790 
9 9 1.267 0.963 

Table E30. Mean DKT values of 22 and 9% MC preserved sample at period level during 
storage at 0.5% DML 

Level of - DKT-
Period N Mean SD 

(weeks) (%) 

0 6 1.450 1.067 
26 6 3.300 1.890 
48 6 2.433 2.103 
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Table E31. ANOVA of DKT for 9% MC preserved soybean samples during storage at 
0.5% DML 

Source DF MS F P>F 

(a) Main ANOVA 
Temperature,T 1 0.03 0.03 0.9 
Chamber (T) 4 0.92 
Period, P 2 1.71 0.8 0.5 
P»T 2 0.31 0.1 0.9 
P*C(T) 8 2.1 

17 
rb") Subdivision of linear 

Linear, Lin 1 2.34 1.0 0.37 
Lin*T 1 0.24 0.1 0.76 
Lin*C(T) 4 2.34 

c) Subdivision of deviation comoonents 
Deviation, Dev 1 1.1 0.56 0.5 
Dev*T 1 0.38 0.2 0.68 
Dev*C(T) 4 1.95 
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Table E32. Mean DKT values of 9% MC preserved sample at moisture content level 
during storage at 0.5% DML 

Level of DKT 
Moisture N Mean SD 
(%) (%) 

22 9 1.311 0.921 
9 9 1.389 1.505 

Table E33. Mean DKT values of 9% MC preserved sample at period level during 
storage at 0.5% DML 

Level of DKT 
Period N Mean SD 

(weeks) (%) 

0 6 0.733 0.052 
26 6 1.700 0.678 
48 6 1.617 0.959 
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