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We calculate the viscous pressure tensor of the quark-gluon plasma in strong magnetic field.

It is azimuthally anisotropic and is characterized by five shear viscosity coefficients, four of

which vanish when the field strength eB is much larger than the plasma temperature squared.

We argue, that the azimuthally anisotropic viscous pressure tensor generates the transverse

flow with asymmetry as large as 1/3, even not taking into account the collision geometry.

We conclude, that the magnitude of the shear viscosity extracted from the experimental data

ignoring the magnetic field must be underestimated.

I. INTRODUCTION

Strong magnetic field produced in relativistic heavy-ion collisions [1, 2] has a strong impact

on phenomenology of the quark-gluon plasma (QGP). It induces energy loss by fast quarks and

charged leptons via the synchrotron radiation [3] and polarization of the fermion spectra [3]. It

contributes to the enhancement of the dilepton production [4] and azimuthal anisotropy of the

quark-gluon plasma (QGP) [5]. It causes dissociation of the bound states, particularly charmonia,

via ionization [6, 7]. Additionally, the magnetic field drives the Chiral Magnetic Effect (CME)

[1, 8–11], which is the generation of an electric field parallel to the magnetic one via the axial

anomaly in the hot nuclear matter.

It has been argued recently in [5] that the magnetic field of strength eB ' m2
π [1, 2] is able to

induce the azimuthal anisotropy of the order of 30% on produced particles. This conclusion was

reached by utilizing the solution of the magneto-hydrodynamic equations in weak magnetic field.

In this paper we discuss the magneto-hydrodynamics of the QGP in the limit of strong magnetic

field. Our goal is to calculate the effect of the magnetic field on viscosity of the plasma. It is well-

known that the viscous pressure tensor of magnetoactive plasma is characterized by seven viscosity

coefficients, among which five are shear viscosities and two are bulk ones. Generally, calculation

of the viscosities requires knowledge of the strong interaction dynamics of the QGP components.

However, in strong enough magnetic field these interactions can be considered as a perturbation and

viscosities can be analytically calculated using the kinetic equation. Application of this approach
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to the non-relativistic electro-magnetic plasma is discussed in [12]. A general relativistic approach

was developed in [13]. We apply it in Sec. II to derive the viscosity coefficients of QGP, which are

given by (22) and (33). As in the non-relativistic case, we found that four viscosities vanish as the

magnetic field strength increases.

A characteristic feature of the viscous pressure tensor in magnetic field is its azimuthal

anisotropy. This anisotropy is the result of suppression of the momentum transfer in QGP in

the direction perpendicular to the magnetic field. Its macroscopic manifestation is decrease of

the viscous pressure tensor components in the plane perpendicular to the magnetic field, which

coincides with the “reaction plane” in the heavy-ion phenomenology. Since Lorentz force vanishes

in the direction parallel to the field, viscosity along that direction is not affected at all. In fact,

the viscous pressure tensor component in the reaction plane is twice as small as the one in the

field direction. As the result, transverse flow of QGP develops azimuthal anisotropy in presence of

the magnetic field. Clearly, this anisotropy is completely different from the one generated by the

anisotropic pressure gradients and exists even if the later are absent.

In Sec. III we discuss QGP transverse flow in strong magnetic field using the Navie-Stokes equa-

tions. At later times after the heavy-ion collision, flow velocity is proportional to η−1/2, see (40a)

and (40b). If the system is such that in absence of the magnetic field it were azimuthally symmet-

ric, then the magnetic field induces azimuthal asymmetry of 1/3, see (44). This is surprisingly close

to the weak field limit recently reported in [5]. The effect of the magnetic field on flow is strong

and must be taken into account in phenomenological applications. Neglect of the contribution by

the magnetic field leads to underestimation of the phenomenological value of viscosity extracted

from the data [14–16]. In other words, more viscous QGP in magnetic field produces the same

azimuthal anisotropy as a less viscous QGP in vacuum.

II. VISCOUS PRESSURE IN STRONG MAGNETIC FIELD

A. Kinetic equation

Kinetic equation for the distribution function f of a quark flavor of charge ze is

pµ∂µf = zeBµν ∂f

∂uµ
uν + C[f, . . . ] (1)

where C is the collision integral and Bµν is the electro-magnetic tensor, which contains only mag-

netic field components in the laboratory frame. Ellipsis in the argument of C indicates the distri-

bution functions of other quark flavors and gluons (we will omit them below). The equilibrium
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distribution:

f0 =
ρ

4πm3TK2(βm)
e−β p·U(x) (2)

where U(x) is the macroscopic velocity of fluid, pµ = muµ is particle momentum, β = 1/T and ρ

is the mass density. Since ∂f0
∂uµ ∝ uµ, the first term on the r.h.s. of (1) vanishes in equilibrium as

well as the collision integral. Therefore, we can write the kinetic equation as an equation for δf

pµ∂µf0 = zeBµν ∂(δf)

∂uµ
uν + C[δf ] (3)

where δf is a deviation from equilibrium. Differentiating (2) we find

∂µf0 = −f0
1

T
pλ∂µUλ(x) (4)

Since Uλ = (γV , γV V
¯

) and pλ = (ε, p
¯
) = (γvm, γvmv

¯
) it follows

p · U =
m√

1− v2
√

1− V 2
(1− v

¯
·V

¯
) (5)

Thus, in the comoving frame

∂µf0|V
¯
=0 = f0

1

T
pν∂µV

ν (6)

Substituting (6) in (3) yields

− f0
T
pµpνVµν = zeBµν ∂(δf)

∂uµ
uν + C[δf ] (7)

where we defined

Vµν =
1

2
(∂µVν + ∂νVµ) (8)

and used uµuν∂µVν = uµuνVµν .

Since the time-derivative of f0 is irrelevant for the calculation of the viscosity we will drop it from

the kinetic equation. All indexes thus become the usual three-vector ones. To avoid confusion we

will label them by Greek letters from the beginning of the alphabet. Introducing bαβ = B−1εαβγBγ

we cast (7) in the form

1

T
pαuβVαβf0 = −zeBbαβvβ

∂(δf)

∂vα

1

ε
− C[δf ] . (9)

The viscous pressure generated by a deviation from equilibrium is given by the tensor

−Παβ =

∫
pαpβ δf

d3p

ε
(10)
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Effectively it can be parameterized in terms of the viscosity coefficients as follows (we neglect bulk

viscosities)

Παβ =
4∑

n=0

ηn V
(n)
αβ (11)

where the linearly independent tensors V
(n)
αβ are given by

V
(0)
αβ = (3bαbβ − δαβ)

(
bγbδVγδ −

1

3
∇ ·V

¯

)
(12a)

V
(1)
αβ = 2Vαβ + δαβVγδbγbδ − 2Vαγbγbβ − 2Vβγbγbα + (bαbβ − δαβ)∇ ·V

¯
+ bαbβVγδbγbδ (12b)

V
(2)
αβ = 2(Vαγbβγ + Vβγbαγ − Vγδbαγbβbδ) (12c)

V
(3)
αβ = Vαγbβγ + Vβγbαγ − Vγδbαδbαγbβbδ − Vγδbβγbαbδ (12d)

V
(4)
αβ = 2(Vγδbαδbαγbβbδ + Vγδbβγbαbδ) . (12e)

For calculation of shear viscosities ηn, n = 1, . . . , 4 we can set ∇ ·V
¯

= 0 and Vαβbαbβ = 0.

Let us expand δf to the second order in velocities in terms of the tensors V
(n)
αβ as follows

δf =

4∑
n=0

gnV
(n)
αβ v

αvβ (13)

Then, substituting (13) into (11) and requiring consistency of (10) and (11) yields

ηn = − 2

15

∫
εv4gnd

3p (14)

This gives the viscosities in the magnetic field in terms of deviation of the distribution function

from equilibrium. Transition to the non-relativistic limit in (14) is achieved by the replacement

ε→ m [12].

B. Viscosity of collisionless plasma

In strong magnetic field we can determine gn by the method of consecutive approximations.

Writing δf = δf (1) + δf (2) and substituting into (9) we find

1

T
pαvβVαβf0 = −zeBbαβvβ

∂(δf (1) + δf (2))

∂vα

1

ε
+ C[δf (1)] . (15)

Here we assumed that the deviation from equilibrium due to the strong magnetic field is much

larger than due to particle collisions. The explicit form of C is determined by the strong interaction
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dynamics but drops off the equation in the leading oder. The first correction to the equilibrium

distribution obeys the equation

1

T
pαvβVαβf0 = −zeBbαβvβ

∂δf (1)

∂vα

1

ε
. (16)

Using (13) we get

bαβvβ
∂δf (1)

∂vα
= 2bαβvβ

4∑
n=0

gn V
(n)
αγ vγ (17)

Substituting (17) into (16) and using (12) yields:

ε

TzeB
pαvβVαβf0 = −2bβνvαvν [g1(2Vαβ − 2Vβγbγbα) + 2g2Vβγbγbα

+g3(Vαγbβγ + Vβγbαγ − Vγδbαbδ) + 2g4Vγδbβγbαbδ)] (18)

where we used the following identities bαβbα = bαβbβ = bαβvαvβ = 0. Clearly, (18) is satisfied only

if g1 = g2 = 0. Concerning the other two coefficients, we use the identities

bαβbβγ = bγbα − δαγb2 , (19a)

εαβγεδεζ = δαδ (δβεδγζ − δβζδγε)− δαε (δβδδγζ − δβζδγδ) + δαζ (δβδδγε − δβζδγδ) (19b)

that we substitute into (18) to derive

− ε

2TzeB
pαvβVαβf0 = g3[2Vαβbαbβ − 4Vαβvαbβ(b

¯
· v
¯
)] + 2g4Vαβvαbβ(b

¯
· v
¯
) . (20)

Since pα = εvα we obtain

g3 =
g4
2

= − ε2f0
4TzeB

(21)

Using (2), (21) in (14) in the comoving frame (of course ηn’s do not depend on the frame choice)

and integrating using 3.547.9 of [21] we get

η3 =
K3(βm)

K2(βm)

ρT

2zeB
(22)

The non-relativistic limit corresponds to m� T in which case we get

ηNR
3 =

ρT

2zeB
. (23)

In the opposite ultra-relativistic case m� T (high-temperature plasma)

ηUR
3 =

2nT 2

zeB
. (24)

where n = ρ/m is the number density.
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C. Contribution of collisions

In the relaxation-time approximation we can write the collision integral as

C[δf ] = −ν δf (25)

where ν is an effective collision rate. Strong field limit means that

ωB � ν (26)

where ωB = zeB/ε is the synchrotron frequency. Whether ν itself is function of the field depends

on the relation between the Larmor radius rB = vT /ωB, where vT is the particle velocity in the

plane orthogonal to B
¯

and the Debye radius rD. If

rB � rD (27)

then the effect of the field on the collision rate ν can be neglected [12]. Assuming that (27) is

satisfied the collision rate reads

ν = nvσt (28)

where σt is the transport cross section, which is a function of the saturation momentum Qs [19, 20].

We estimate σt ∼ α2
s/Q

2
s, with Qs ∼ 1 GeV and n = P/T with pressure α2

sP ∼ 1 GeV/fm3 we get

ν ∼ 40 MeV. Inequality (26) is well satisfied since eB ' m2
π [1, 2] and m is in the range between the

current and the constituent quark masses. On the other hand, applicability of the condition (27) is

marginal and is very sensitive to the interaction details. In this section we assume that (27) holds

in order to obtain the analytic solution. Additionally, the general condition for the applicability of

the hydrodynamic approach ` = 1/ν � L, where ` is the mean free path and L is the plasma size

is assumed to hold. Altogether we have rD � rB � `� L.

Equation for the second correction to the equilibrium distribution δf (2) follows from (15) after

substitution (25)

zeB

ε
bαβvβ

∂δf (2)

∂vα
= −νδf (1) (29)

Now, plugging

δf (1) = [g3V
(3)
αβ + g4V

(4)
αβ ]vαvβ , (30a)

δf (2) = [g1V
(1)
αβ + g2V

(2)
αβ ]vαvβ (30b)
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into (29) yields

2zeB

ε
{g1[2Vβαbαγvβvγ − 2Vβαbαγvβvγ(v

¯
· b
¯
)] + 2g2Vβαbαγvβvγ(v

¯
· b
¯
)}

= −νg3 {−2Vβαbαγvβvγ − 6Vβαbαγvβvγ(v
¯
· b
¯
)} (31)

where we used g4 = 2g3. It follows that

g1 =
g2
4

=
νγvg3
2ωB

(32)

With the help of (28),(2),(14) we obtain

η1 =
η2
4

=
8

5
√

2π

ρ2σt T
3/2

(zeB)2m1/2

K7/2(βm)

K2(βm)
(33)

III. TRANSVERSE FLOW

To illustrate the effect of the magnetic field on the viscous flow of the electrically charged

component of the quark-gluon plasma we will assume that the flow is non-relativistic and use the

Navie-Stokes equations that read

ρ

(
∂Vα
∂t

+ Vβ
∂Vα
∂xβ

)
= − ∂P

∂xα
+
∂Παβ

∂xβ
(34)

where Παβ is the viscous pressure tensor, ρ = mn is mass-density and P is pressure. We will

additionally assume that the flow is non-turbulent and that the plasma is non-compressible. The

former assumption amounts to dropping the non-linear in velocity terms, while the later implies

vanishing divergence of velocity

∇ ·V
¯

= 0 (35)

Because of the approximate boost invariance of the heavy-ion collisions, we can restrict our atten-

tion to the two dimensional flow in the xz plane corresponding to the central rapidity region.

The viscous pressure tensor in vanishing magnetic field is isotropic in the xz-plane and is given

by

Π0
αβ = η

(
∂Vα
∂xβ

+
∂Vβ
∂xα

)
= 2η

 Vxx Vxz

Vzx Vzz

 (36)

where the superscript 0 indicates absence of the magnetic field. In the opposite case of very strong

magnetic field the viscous pressure tensor has a different form (11). Neglecting all ηn with n ≥ 1

we can write

Π∞αβ = η0

 −Vzz 0

0 2Vzz

 = 2η0

 1
2Vxx 0

0 Vzz

 (37)
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where we also used (35). Notice that Π∞xx = 1
2Π∞zz = 1

2Π0
xx indicating that the plasma flows in the

direction perpendicular to the magnetic field with twice as small viscosity as in the direction of

the field. The later is not affected by the field at all, because the Lorentz force vanishes in the

field direction. Substituting (37) into (34) we derive the following two equations characterizing the

plasma velocity in strong magnetic field

ρ
∂Vx
∂t

= −∂P
∂x

+ η0
∂2Vx
∂x2

, ρ
∂Vz
∂t

= −∂P
∂z

+ 2η0
∂2Vz
∂z2

(38)

Additionally we need to set two initial conditions

Vx
∣∣
t=0

= ϕ1(x, z) , Vz
∣∣
t=0

= ϕ2(x, z) (39)

The solution to the the problem (38),(39) is

Vx(x, z, t) =

∫ ∞
−∞

dx′ϕ1(x
′, z)G 1

2
(x− x′, t)− 1

ρ

∫ t

0
dt′
∫ ∞
−∞

dx′G 1
2
(x− x′, t− t′)∂P (x′, z, t′)

∂x′
(40a)

Vz(x, z, t) =

∫ ∞
−∞

dz′ϕ2(x, z
′)G1(z − z′, t)−

1

ρ

∫ t

0
dt′
∫ ∞
−∞

dz′G1(z − z′, t− t′)
∂P (x, z′, t′)

∂z′
(40b)

Here the Green’s function is given by

Gk(z, t) =
1√

4πa2kt
e−

z2

4a2kt (41)

and the diffusion coefficient by

a2 =
2η0
ρ

(42)

Suppose that the pressure is isotropic, i.e. it depends on the coordinates x,z only via the radial

coordinate r =
√
x2 + z2; accordingly we pass from the integration variables x′ and z′ to r in (40a)

and (40b) correspondingly. At later times we can expand the Green’s function (41) in inverse

powers of t. The first terms in the r.h.s. of (40a) and (40b) are subleasing and we obtain

Vx(x, z, t) ≈ −1

ρ

∫ t

0
ds

∫ ∞
−∞

dr
1√

2πa2s

∂P (r, t− s)
∂r

= −1

ρ

∫ t

0
ds

1√
2πa2s

[P (R(s), t− s)− P (0, t− s)] (43a)

and by the same token

Vz(x, z, t) ≈ −
1

ρ

∫ t

0
ds

1√
4πa2s

[P (R(s), t− s)− P (0, t− s)] (43b)

where R(t) is the boundary beyond which the density of the plasma is below the critical value. We

observe that Vx/Vz =
√

2. Consequently, the azimuthal anisotropy of the hydrodynamic flow is

V 2
x − V 2

z

V 2
x + V 2

z

=
1− 1

2

1 + 1
2

=
1

3
(44)

Since we assumed that the initial conditions and the pressure are isotropic, the azimuthal asym-

metry (44) is generated exclusively by the magnetic field.
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IV. SUMMARY

The structure of the viscous stress tensor in a very strong magnetic field (37) is general, model

independent. However the precise amount of the azimuthal anisotropy that it generates is of course

model dependent. We however draw the reader’s attention to the fact that analysis of [5] using

quite different arguments arrived at a very similar estimate. Although a more quantitive numerical

calculation is certainly required before a final conclusion can be made, it looks very plausible that

the QGP viscosity is significantly higher than the presently accepted value extracted without taking

into account the magnetic field effect [14–16] and is perhaps closer to the value calculated using

the perturbative theory [17, 18].
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