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Abstract

Recurrence data are collected to study the recurrent events on biological, physical, and other sys-

tems. Quantities of interest include the mean cumulative number of events and the mean cumulative

cost of events. The mean cumulative function (MCF) can be estimated with nonparametric meth-

ods or by fitting parametric models, and many procedures have been suggested to construct the

confidence interval (CI) for the MCF. This paper summarizes the results of a large simulation study

that was designed to compare five CI procedures for both the nonparametric and parametric esti-

mation. When doing parametric estimation, we assume the power law non-homogeneous Poisson

process (NHPP) model. Our results include evaluation of these procedures when they are used for

window-observation recurrence data where recurrence histories of some systems are available only

in observation windows with gaps in between.

KEY WORDS: Mean cumulative function; MCF; Nonhomogeneous Poisson process; Nonparamet-

ric estimation; Recurrence data.
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1 INTRODUCTION AND BACKGROUND

1.1 Background and Motivation

Recurrence data arise in many applications, including business processes, medical statistics, and

repairable system reliability. Both nonparametric and parametric methods are available to estimate

the mean cumulative function (MCF). Although many important questions can be answered by

using nonparametric methods, in some applications, parametric models are needed. Nelson (2003)

presents graphical and nonparametric statistical methods for recurrence data and describes many

applications. Cook and Lawless (2007) provide a comprehensive account of statistical methods

to analyze recurrent event data. They describe nonparametric, parametric, and semipamametric

methods, give mathematical and statistical background, and also present many applications.

There are several procedures that can be used to construct approximate confidence intervals

(CIs) for the MCF. Normal approximation CIs are relatively easy to implement and compute. With

modern powerful computers, bootstrap or simulation-based procedures can also be used.

The adequacy of approximate CI procedures depends on the underlying model as well as the

number of units and the length of time that each unit is observed. With constraints on resources

to observe the process and collect the data, however, it may be difficult to have data with both a

large number of observational units and a long time of observation. To help explore the impact of

various factors on the performances of CI procedures, we carried out an extensive simulation study

to compare five CI procedures. Two of these procedures are normal approximation procedures, and

the other three are bootstrap-based procedures. Section 3 gives technical details on how to compute

the intervals.

1.2 Window-Observation Data

In some applications, window-observation recurrence data arise because recurrence history of some

units are observed in disconnected windows with gaps between the windows. Nelson (2003, page

75) describes an example. Zuo, Meeker and Wu (2008) provide more examples, and extend some

nonparametric (NP) and parametric estimation methods to window-observation recurrence data. If

there are intervals of time over which the size of the risk set is zero, the NP method can be seriously

biased. For such scenarios, Zuo, Meeker and Wu (2008) describe two hybrid MCF estimators that

help correct the bias. In this paper, we evaluate CI procedures for both complete and window-

observation data.
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1.3 Other Previous Related Work

Cook and Lawless (2007) describe different approaches to the modeling of recurrent events such as

models based on counts of events, intensity, and time between events. Many publications provide

descriptions of analysis and modeling of counting processes, such as Cox and Lewis (1966) and

Andersen, Borgan, Gill and Keiding (1993).

There are a number of useful text books that describe bootstrap procedures for computing CIs.

For example, Efron and Tibshirani (1993) present basic background of bootstrap methods and many

applications to statistical procedures. More specifically, Chapters 12 to 14, and 22 in Efron and

Tibshirani (1993) present bootstrap procedures to construct CIs. Hall (1992) interweaves the topics

of bootstrap and Edgeworth expansion, and applies Edgeworth expansion methods to characterize

the performance of some bootstrap methods.

1.4 Overview

The remainder of this paper is organized as follows. Section 2 describes the model and estimation of

the MCF. Section 3 explains the five CI procedures in the simulation study, and Section 4 outlines

the details of the simulation study. Section 5 shows the impact of the recurrence rate function

on the performances of the CI procedures. Sections 6 to 8 summarize the performances of the

CI procedures for the NP estimator, the power law NHPP estimator, and the hybrid estimators,

respectively. Concluding remarks and areas for future research are outlined in Section 9. The

appendices present some necessary technical details for the NP and NHPP estimators.

2 MODEL AND ESTIMATION

In this section, we describe briefly the recurrence data model and provide formulas for point esti-

mators.

2.1 Notation and Acronyms

We will use the following notation:

• n: the number of units under observation

• tendobs: the pre-specified end-of-observation time for the observational units in the simulation.

For the simulation study, recurrences and observation windows up to this time point are

recorded in the data
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• E(r): expected total number of observed recurrences for all n units over the time range (0,

tendobs)

• RSSZ: risk-set-size-zero

• RSSONE: risk-set-size-one

• RSSP: risk-set-size-positive

• NP: nonparametric

• NHPP: non-homogeneous Poisson process

• CP: coverage probability

2.2 Model

The models in our study are based on counts of events (i.e., the number of events in some time

range of interest, say [0, t]). Let N(t) denote the number of events in the time range [0, t]. Then

one statistic of interest is μ(t), the expectation of N(t), which is also known as the mean cumulative

function (MCF). Our goal is to estimate the MCF.

If the MCF is differentiable, then ν(t) = dμ(t)/dt is the recurrence rate and ν(t) × Δt can

be interpreted as the approximate expected number of events to occur during the next short time

interval (t, t + Δt).

The nonparametric approaches do not make assumptions about the form of the recurrence pro-

cess, while the parametric ones do. Model assumptions for the nonparametric estimation methods

are stated in Nelson (2003) and Zuo, Meeker and Wu (2008). Model assumptions for the NHPP

parametric estimation methods are given in Rigdon and Basu (2000).

2.3 Estimation for the Nonparametric Model

Detailed descriptions of nonparametric MCF estimation methods are available in Nelson (1988),

Lawless and Nadeau (1995), Chapter 16 of Meeker and Escobar (1998), and Chapters 3 to 5 of

Nelson (2003). Zuo, Meeker and Wu (2008) extend the nonparametric method to window-observation

recurrence data.

Let m denote the number of unique event times. Also, let t1, ..., tm be the unique event times.

Then the nonparametric estimator of the population MCF is

̂MCFNP (tj) =
j∑

k=1

[∑n
i=1 δi(tk) × di(tk)∑n

i=1 δi(tk)

]
=

j∑
k=1

d.(tk)
δ.(tk)

=
j∑

k=1

d̄(tk), j = 1, ..., m, (1)
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where di(tk) is the number of events recorded at time tk for unit i, and

δi(tk) =

⎧⎨⎩ 1 if unit i is under observation in a time window at time tk,

0 otherwise.

Details on estimators of Var[̂MCFNP (tj)] are available in Nelson (1995), Lawless and Nadeau (1995),

and Zuo, Meeker and Wu (2008).

2.4 Estimation for the NHPP Parametric Model

NHPP models and estimation methods for recurrence data are described, for example, in Rigdon

and Basu (2000, Chapter 2) and Meeker and Escobar (1998, Chapter 16). Zuo, Meeker and Wu

(2008) extend the NHPP estimation methods to window-observation recurrence data. Given the

maximum likelihood (ML) estimates of the model parameters θ̂, the ML estimator of the NHPP

MCF is

̂MCFNHPP (t) =
∫ t

0

ν(x; θ̂)dx. (2)

With the estimate of the variance-covariance matrix of θ̂, the delta method can be used to estimate

Var[̂MCFNHPP (t)]. Zuo, Meeker and Wu (2008) give more details, using the power law NHPP

model as an example.

2.5 Hybrid MCF Estimators for Window-Observation Recurrence Data

Zuo, Meeker and Wu (2008) introduce two hybrid MCF estimators for window-observation recurrence

data – the local hybrid estimator and the NHPP hybrid estimator. Such estimators are needed

because the existence of RSSZ intervals can cause ̂MCFNP (t) to be seriously biased.

The local hybrid estimator is ̂MCFLH(t) = d̄·(t) + d‡· (t), where d̄·(t) is the nonparametric

estimator of the increase in the MCF from RSSP intervals, while d‡· (t) is the estimator of the

increase in the MCF from RSSZ intervals, assuming the recurrence rate of the RSSZ interval is the

weighted average of the recurrence rates of the two neighboring RSSP intervals.

The NHPP hybrid estimator is ̂MCFNHPPH(t) = d̄·(t) + d†· (t), where d†· (t) is the estimator

of the increase in the MCF from RSSZ intervals, assuming the counts of recurrences in the RSSZ

intervals follow an NHPP model. The NHPP model is estimated with the data in the RSSP intervals.

2.6 Recommendations on Selection of MCF Estimators

Zuo, Meeker and Wu (2008) present a brief summary from a simulation study that compared the

NP estimator, the power law NHPP estimator, the local hybrid estimator, and the NHPP hybrid
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estimator. The nonparametric approaches, such as the NP estimator and the local hybrid estimator,

generally have little or no bias, but might have a large variance. On the other hand, more parametric

based approaches generally have small variance, but could be seriously biased if the assumed model

form is very different from the true model. Therefore, selection among different MCF estimators

becomes a bias-variance tradeoff, and model assumption diagnosis is important in the model selection

and estimation process. This paper presents the results of a much more extensive simulation to

compare the properties of CI procedures based on the same estimators.

3 CONFIDENCE INTERVAL PROCEDURES

In this section, we outline two normal approximation CI procedures and three bootstrap CI proce-

dures. These five CI procedures are evaluated in our simulation experiments, and applied to the

four MCF estimators described in Section 2. We use the following general notation.

• ̂MCF : estimate of the MCF from the original data.

• ŜE
̂MCF

: standard error of ̂MCF (i.e., estimate of the standard deviation of ̂MCF ) from the

original data.

• ̂MCF
∗
: estimate of the MCF from the bootstrap re-sampled data.

• ŜE
∗
̂MCF : standard error of ̂MCF (i.e., estimate of the standard deviation of ̂MCF ) from the

bootstrap re-sampled data.

• t∗: t-like ratio from the bootstrap re-sampled data, computed as t∗ =
(

̂MCF
∗ − ̂MCF

)
/ŜE

∗
̂MCF .

Only the ̂MCF and the ŜE
̂MCF

are needed to construct normal approximation CIs. There are

many possible normal approximation CI procedures, depending on the transformation used. The

two normal approximation procedures a) and b) below are from Meeker and Escobar (1998, Chapter

16, page 400). In the formulas, z(1−α/2) is the (1−α/2) quantile of the standard normal distribution.

Efron and Tibshirani (1993) describe various bootstrap procedures. The common first step in any

bootstrap procedure is to generate bootstrap samples from the original data, and these bootstrap

samples are used to calculate ̂MCF
∗

and ŜE
∗
̂MCF and, for the bootstrap-t procedures, t∗. To

construct a bootstrap interval, we repeat the sampling and estimation process a large number of

times (say B times), and sort ̂MCF
∗

or t∗ values (depending on the procedure). Let k be the

largest integer less than or equal to (B + 1)α/2, where α is the complement of the desired nominal

CP. The three bootstrap CIs can be obtained by c), d), and e) below, where y(k) indicates the kth
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ordered value in a sequence where y has been ordered from smallest to largest. Specifically, the five

CI procedures that we evaluate in our simulation are

a) Normal Approximation (NORMA): ̂MCF ± z(1−α/2)ŜE
̂MCF

;

b) Lognormal Approximation (LNORMA):
[

̂MCF/w, ̂MCF × w
]
, where w = exp

[
z(1−α/2)ŜE

̂MCF
/ ̂MCF

]
;

c) Bootstrap Percentile (BootP):
[

̂MCF
∗
(k), ̂MCF

∗
(B+1−k)

]
;

d) Bootstrap-t (Boott):
[

̂MCF − t∗(B+1−k)ŜE
̂MCF

, ̂MCF − t∗(k)ŜE
̂MCF

]
, where t∗ = ̂MCF

∗−̂MCF

ŜE
∗
̂MCF

;

e) Bootstrap-t Based on Log Transformation (LBoott):
[

̂MCF

exp
(

t∗(B+1−k)ŜE
̂MCF

/ ̂MCF
) ,

̂MCF

exp
(

t∗(k)ŜE
̂MCF

/ ̂MCF
) ],

where t∗ =
(
log(̂MCF

∗
) − log(̂MCF )

)
/ŜE

∗
log( ̂MCF ) and ŜE

∗
log( ̂MCF ) = ŜE

∗
̂MCF / ̂MCF

∗
.

For simplification, we use the acronyms in the parentheses to represent the five CI procedures.

4 SIMULATION EXPERIMENTAL DESIGN

4.1 Factors and Factor Levels

In previous simulation experiments to study confidence interval properties for censored lifetime data

(e.g., Jeng and Meeker 2000), it was shown that the adequacy of asymptotic approximations tend

to depend on the number of failures, rather than the sample size. Thus, an important experimental

factor in our simulation experiment is the expected number of events, E(r), with four factor levels

at 10, 20, 50, and 100. E(r) is, however, affected by the following factors:

• The pattern of the observation windows for the units in the data set (Window

Schemes). Three window schemes, corresponding to data sets analyzed in Zuo, Meeker and

Wu (2008), are used in our study, and they are

1. Complete data: All units in the data are observed continuously in the same single window

[0, tendobs].

2. Window1 data: There are some gaps between the observation windows for each unit.

Length of the observation window follows a uniform distribution between 0.08 and 0.12,

while length of the gap follows a uniform distribution between 0.12 to 0.28. Whether a

unit begins with a window or a gap follows a Bernoulli (0.5) distribution.
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3. Window2 data: Similar to Window1 data, except that the length for gap i is simulated

from a uniform distribution between 0.04×2(i−1) and 0.08×2(i−1). Therefore, for units in

a Window2 data set, as time gets larger, the probability of observing a given recurrence

gets smaller.

We did simulations using all three window schemes. However, the results of Window1 data

are similar to those of Complete data, mainly because the percentage of times with RSSZ and

RSSONE is zero or very small. Therefore, we focus on the results from the Complete data and

Window2 data.

• Number of Units: n, with five levels at the values 10, 20, 50, 100, and 200 units being

observed.

• Form of the MCF of the recurrence process. We use the power law NHPP model with

the recurrence function as

ν(t; β, η) =
β

η

(
t

η

)β−1

, β > 0, η > 0. (3)

Without loss of generality, we use η = 1. For the shape parameter β, there are four levels at

values 0.8 (decreasing recurrence rate), 1 (constant recurrence rate), 2 (moderately increasing

recurrence rate), and 3 (rapidly increasing recurrence rate).

Note that when Window Schemes, Number of Units, and Form of the MCF are given,

tendobs depends only on the value of E(r).

4.2 Simulation Algorithm

Given a set of factor levels from our simulation design, the following procedure was carried out to

estimate the CPs of the five CI procedures.

1. Generate simulated data based on the inputs for the window scheme, n, β, and tendobs.

2. If the window scheme is Window1 or Window2, use the simulated data to compute the ̂MCF

at tendobs for the four different estimators – the NP estimator, the power law NHPP estimator,

the local hybrid estimator, and the power law NHPP hybrid estimator. For the Complete

data case, we compute only the NP estimator and the power law NHPP estimator. We also

compute the corresponding standard errors.

3. Compute the NORMA and the LNORMA CIs described in Section 3.
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4. Generate bootstrap samples, and construct the BootP, the Boott, and the LBoott CIs described

in Section 3. In our simulation study, we used simple random sampling with replacement

(SRSWR) to draw the whole history of a unit and thus created bootstrap re-sampled data

that had the same number of units in the original data. We used B = 2000 bootstrap samples.

5. Check whether the five CIs obtained in Steps 3 and 4 capture the true MCF at tendobs, assign

to coverage indicator a value of 1 if the true MCF is in the CI and a value of 0 otherwise.

6. Repeat Steps 1 to 5 a large number of times (5000 in our simulation study) and then calculate

the average of coverage indicators as the estimate of the CP for each of the five CI procedures.

When the number of observed recurrences is small (e.g., 4 or fewer), MCF estimates are poor

and there can be estimation problems (e.g., θ is not estimable if the dimension of θ is larger than

the number of observed recurrences for ̂MCFNHPP , or some components of the variance estimator

of ̂MCFNP are not estimable if fewer than two units are being observed for the time with observed

recurrences). Thus we used only simulated data sets with 5 or more distinct recurrence times, as

well as bootstrap re-sampled data with 3 or more distinct recurrence times, to estimate CP of the

MCF estimators. That is, our simulation results are conditional on
∑n

i=1 Xi ≥ 5, where
∑n

i=1 Xi

is the total number of observed recurrences among all n units. As described in Appendix A.1, the

values of Pr (
∑n

i=1 Xi ≤ 4) are 0.0293, 1.69 × 10−5, 5.45 × 10−17, and 1.61 × 10−37 respectively for

E(r) = 10, 20, 50, and 100. Therefore, when E(r) = 20, 50, and 100, the conditional probabilities

are close to 1.

5 THE EFFECT THAT THE RECURRENCE RATE SHAPE

HAS ON CI PROCEDURES

In our simulation study, we assume that the true model is the power law NHPP model. For a power

law NHPP model, the value of β determines whether the recurrence rate is increasing (for β > 1),

constant (for β = 1), or decreasing (for β < 1). One question of interest is how the shape of the

recurrence rate across time affects the performances of the five CI procedures. In particular, we will

study whether the estimated CP values are approximately the same or have some pattern across

the different values of β in this section, and we will discuss the comparisons among the five CI

procedures in Sections 6 to 8.

In order to graphically show the impact of n and E(r), there are six plots for each of the estimators

in Figures 1 to 6, arranged in three rows and two columns. In rows 1 to 3, n is 10, 20, and 50,

respectively. E(r) is 10 on the left and 20 on the right.
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5.1 Results from Complete Data

First we describe the simulation results based on Complete data, where each unit in the data is

observed from time zero to tendobs. Because there are no observation gaps for the Complete data,

we only need to compare CI procedures for the NP method and the power law NHPP method.

Figures 1 and 2 are for the NP estimator and the power law NHPP estimator respectively, and some

noticeable patterns for both estimators are:

• CP values are about parallel across the four values of β for each of the five CI procedures, and

a parallel pattern exists for all n and E(r) values.

• At each n level, when E(r) increases from 10 to 20, differences among the five CI procedures

get smaller and the CP values are more closely clustered around the nominal value 0.95. This

trend continues with higher E(r) values, and thus plots with E(r) ≥ 50 are not shown.

• For E(r) = 20, differences among the five CI procedures get smaller when n increases. However,

when E(r) = 10, the maximum distance among the CP values of the five CI procedures does

not get smaller when n increases. This indicates that E(r) must be in the order of 20 for the

large sample approximations to be adequate, even if n is large.

The explanation for the observed parallel patterns in Figures 1 and 2 is that ̂MCFNP (tendobs) =

̂MCFNHPP (tendobs) =
∑n

i=1 Xi/n, where Xi is the number of observed recurrences for unit i

and
∑n

i=1 Xi follows a Poisson distribution with λ = E(r), as shown in Appendix A. Therefore,

̂MCFNP (tendobs) and ̂MCFNHPP (tendobs) are proportional to a Poisson random variable with a

mean λ = E(r), not depending on the value of β. Appendix A also shows that the distributions of

V̂ar[̂MCFNP (tendobs)] and V̂ar[̂MCFNHPP (tendobs)] depend only on E(r) and n as well. Therefore,

how the recurrences are distributed across time (more clustered at the beginning of life for β < 1,

equally likely across time for β = 1, and with higher density as time increases for β > 1) does not

have a strong effect on the performances of the CI procedures and MCF estimators, as long as the

expected number of recurrences for the time of estimation is the same.

5.2 Results from Window2 Data

Figures 3 to 6 show the plots of simulation results using Window2 data, for the four estimators,

organized as in Figure 1. The main observations from the four sets of plots are:

• For the NHPP estimator in Figure 4, there is again a parallel pattern across the values of β

for all six plots.
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Figure 2: Comparison of 4 β Values: NHPP Estimator for the Complete Data



13

Beta Value

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

1

1.NACI

0.8 1 2 3

2

2 2

2.NALogCI

0.8 1 2 3

3

3

3.BPCI

0.8 1 2 3

4 4
4 4

4.BTCI

0.8 1 2 3

5
5

5 5

5.BTLogCI

0.8 1 2 3

Beta Value

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

1.NACI

0.8 1 2 3

2.NALogCI

0.8 1 2 3

3.BPCI

0.8 1 2 3

4

4

4 4

4.BTCI

0.8 1 2 3

5

5

5 5

5.BTLogCI

0.8 1 2 3

(a) n = 10 and E(r) = 10 (b) n = 10 and E(r) = 20

Beta Value

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

1
1

1 1

1.NACI

0.8 1 2 3

2
2

2 2

2.NALogCI

0.8 1 2 3

3
3 3

3

3.BPCI

0.8 1 2 3

4
4 4

4

4.BTCI

0.8 1 2 3

5
5 5 5

5.BTLogCI

0.8 1 2 3

Beta Value

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

1
1

1 1

1.NACI

0.8 1 2 3

2
2

2 2

2.NALogCI

0.8 1 2 3

3
3

3 3

3.BPCI

0.8 1 2 3

4 4

4 4

4.BTCI

0.8 1 2 3

5 5

5 5

5.BTLogCI

0.8 1 2 3

(c) n = 20 and E(r) = 10 (d) n = 20 and E(r) = 20

Beta Value

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

1 1

1

1

1.NACI

0.8 1 2 3

2 2 2

2

2.NALogCI

0.8 1 2 3

3 3
3

3

3.BPCI

0.8 1 2 3

4 4 4 4

4.BTCI

0.8 1 2 3

5 5
5 5

5.BTLogCI

0.8 1 2 3

Beta Value

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

1 1 1
1

1.NACI

0.8 1 2 3

2 2 2 2

2.NALogCI

0.8 1 2 3

3 3
3 3

3.BPCI

0.8 1 2 3

4 4 4 4

4.BTCI

0.8 1 2 3

5 5 5 5

5.BTLogCI

0.8 1 2 3

(e) n = 50 and E(r) = 10 (f) n = 50 and E(r) = 20

Figure 3: Comparison of 4 β Values: NP Estimator for the Window2 Data
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Figure 4: Comparison of 4 β Values: NHPP Estimator for the Window2 Data
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Figure 5: Comparison of 4 β Values: Local Hybrid Estimator for the Window2 Data
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Figure 6: Comparison of 4 β Values: NHPP Hybrid Estimator for the Window2 Data
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Table 1: RSSZ and RSSONE for Window2 Data with n = 10, E(r) = 10, and Number of Simulations = 5000

Average Percentage of time relative to tendobs

β tendobs RSSZ RSSONE RSSZ RSSONE RSSZ+RSSONE

0.8 6.83 1.29 2.01 18.9% 29.5% 48.3%

1 4.30 0.60 1.07 14.0% 24.9% 38.8%

2 1.95 0.15 0.30 7.5% 15.4% 22.9%

3 1.53 0.09 0.20 5.6% 12.9% 18.5%

• For the NP estimator and the two hybrid estimators, in Figures 3, 5 and 6 respectively, CP

values are close to parallel across the β values when n = 20 and E(r) = 10 or when n = 50.

When n = 10, or n = 20 and E(r) = 20, there is noticeable increasing or decreasing trend

of the CP values as β changes, indicating that the asymptotic approximations are far from

adequate.

One important difference between the Complete data and the Window2 data is that it is possible

to have a high percentage of time with RSSZ and RSSONE for the Window2 data. For the Complete

data, there is no RSSZ or RSSONE. As observed in Figures 1 and 2, the performances of the CI

procedures do not depend on the β values when there is no RSSZ or RSSONE, for the Complete data

case. For the Window2 data, the percentage of time with RSSZ and RSSONE is zero or negligible

when n = 50, and is somewhat close to 5% for all four β values when n = 20 and E(r) = 10. This

percentage is, however, relatively large and different among the four β values when n = 10, as well

as n = 20 and E(r) = 20. Therefore, the existence of RSSZ and RSSONE is the main reason that

CP depends strongly on β in Figures 3, 5 and 6. For example, Table 1 shows, for E(r) = 10 and

n = 10, the percentage of time with RSSZ and RSSONE increases as β decreases.

Among the four estimators, the NHPP estimator is robust to having a high percentage of time

with RSSZ, as observed by the parallel patterns in Figure 4. This nice property is, however, based

on the condition that the assumed NHPP model adequately describes the true process.

Based on the results of the Complete data and Window2 data in this section, the performances

of the CI procedures for each of the four MCF estimators depend more on the existence of RSSZ

and RSSONE rather than on the value of β. On the other hand, we carried out simulations on all

four β values, but did not find special patterns that depend solely on the value of β. Therefore, in

the subsequent sections on the CI performances for each of the MCF estimators, we will focus on

the simulation results for β = 1, and discuss the impact of n, E(r), and the existence of RSSZ and

RSSONE in more detail.
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6 PERFORMANCES OF THE CI PROCEDURES BASED

ON THE NP ESTIMATOR

This section summarizes the simulation results for the NP estimator, and makes some recommen-

dations. Figure 7 shows six plots for the NP estimator, with factor E(r) as the x-axis in each plot.

From top down, n increases from 10 to 20 and then to 50, and plots on the left are for Complete

data while those on the right are for Window2 data.

6.1 Comparison of Results from Complete Data

The main observations from the three plots for the Complete data results, shown in Figures 7 (a),

(c) and (e), are:

• For each n value, CP values stabilize when E(r) ≥ 20, and over the parallel part, the Boott

and LBoott procedures consistently have CP values that are very close to the nominal value.

• When E(r) ≥ 20, with the increase of n, the performances of the NORMA procedure, the

LNORMA procedure, and the BootP procedure improve, with CP values getting closer to the

nominal value.

• When E(r) = 10, increasing the value of n does little to help decrease the differences among

the five CI procedures, and which CI procedures to use depends on the value of n. When

n = 10, the BootP procedure has the best CP, while the other four CI procedures have CP

values that are less than the nominal 0.95 value. When n ≥ 20, the NORMA procedure

generates the best CP, followed by the LNORMA procedure (with a CP that is larger than

the nominal 0.95). For all the n values, the LBoott procedure severely underestimates the

CP, an indication that when E(r) is small and thus there is smaller variation in the bootstrap

re-samples, the log-transformation is a less appropriate choice.

For the two normal approximation procedures, Appendix A.2 shows that, when n = 10, the CP

values are close to 0.9 for E(r) = 10, 20, 50, and 100, even though the nominal CP is 0.95. Therefore,

it is somewhat surprising to observe CP at about 0.92 when E(r) = 10 in Figure 7 (a). The reason

for this behavior is that the CP values in our simulation study are conditional on
∑n

i=1 Xi ≥ 5.

The impact of this condition is very small for E(r) ≥ 20; therefore the conditional CP values are

close to 0.9 as well when E(r) ≥ 20. However, when E(r) = 10, Pr (
∑n

i=1 Xi ≤ 4) = 0.0293 is not

negligible. There are 12 distinct scenarios that have
∑n

i=1 Xi ≤ 4 when n = 10, such as none of

the 10 units have a recurrence, as well as 1 unit has 4 recurrences and 9 units have no recurrences.
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(c) Complete Data with n = 20 (d) Window2 Data with n = 20
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(e) Complete Data with n = 50 (f) Window2 Data with n = 50

Figure 7: CP Plots for NP Estimator with β = 1
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Among these 12 scenarios, there is only one case for which the CI captures the true MCF – one unit

has 4 recurrences and 9 units have no recurrences, and the corresponding probability for this case is

1.89×10−5. As a result, the conditional CP given
∑n

i=1 Xi ≤ 4 is 1.89×10−5/0.0293 = 6.45×10−4.

With Pr(MCF ∈ CI) = 0.89415 from Table 3 in Appendix A.2, we have

Pr(MCF ∈ CI|
n∑

i=1

Xi ≥ 5) =
Pr(MCF ∈ CI) − Pr(MCF ∈ CI|∑n

i=1 Xi ≤ 4)
1 − Pr(

∑n
i=1 Xi ≤ 4)

= 0.92.

This explains why in Figure 7 (a), the CP for the NORMA and LNORMA procedures are about

0.92 when E(r) = 10, while about 0.90 when E(r) ≥ 20.

6.2 Comparison of Results from Window2 Data

Compared to the Complete data, outcomes for the Window2 data are more complicated, because

the amount of time with RSSZ and RSSONE depends on the simulation experiment factor levels.

Table 2 shows the average length in time of RSSZ and RSSONE, as well as the corresponding

ratios to tendobs, for n = 10, 20, and 50. Even though the NP estimator is biased when there are

times with RSSZ, we still summarize below all the results that we have observed, because some

CI procedures are relatively robust to the existence of RSSZ and RSSONE, and sometimes the NP

estimator might be the only applicable option to use. Recommendations, including the scenario that

the NP estimator should not be used, are outlined in Section 6.3.

• Consider Figure 7 (b), when n = 10. All five CI procedures perform poorly when the amount

of time with RSSZ and RSSONE is large, especially the NORMA, the LNORMA, and the

BootP procedures. These three CI procedures generate CP values that are below 0.75 even

when E(r) = 10, and the CP values deteriorate fast to 0 when E(r) ≥ 50, and thus no lines

are shown for these three procedures in the plot. By comparison, the Boott and the LBoott

CI procedures have better performance, and their CP values, even though still well below the

nominal value at 0.95, are much higher, especially when E(r) ≤ 20. Table 2 shows that, when

n = 10, the percentage of time with RSSZ ranges from 14% to 74.3%, and as E(r) increases,

the time with RSSZ and RSSONE becomes more dominant.

• Consider Figure 7 (d), when n = 20. The Boott and the LBoott CI procedures show strong ro-

bustness to the existence of RSSZ and RSSONE, with all CP values above 0.85. The NORMA,

the LNORMA, and the BootP procedures still perform poorly when E(r) ≥ 20, but the BootP

procedure has CP value that is closest to the nominal value when E(r) = 10. Table 2 shows

that, when n = 20, the percentage of time with RSSZ ranges from 1.2% to 35.4%.
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Table 2: RSSZ and RSSONE for Window2 Data with β = 1 and Number of Simulations = 5000

Average Percentage of time relative to tendobs

n E(r) tendobs RSSZ RSSONE RSSZ RSSONE RSSZ+RSSONE

10 10 4.30 0.60 1.07 14.0% 24.9% 38.8%

10 20 14.58 4.31 4.98 29.6% 34.2% 63.7%

10 50 81.42 46.65 24.42 57.3% 30.0% 87.3%

10 100 312.91 232.63 65.19 74.3% 20.8% 95.2%

20 10 1.40 0.02 0.05 1.2% 3.8% 5.0%

20 20 4.30 0.14 0.42 3.1% 9.6% 12.8%

20 50 21.97 3.37 5.92 15.3% 26.9% 42.3%

20 100 81.42 28.80 27.65 35.4% 34.0% 69.3%

50 10 0.38 0.00 0.00 0.0% 0.0% 0.0%

50 20 1.00 0.00 0.00 0.0% 0.1% 0.1%

50 50 4.30 0.00 0.02 0.1% 0.4% 0.5%

50 100 14.58 0.09 0.44 0.6% 3.0% 3.6%

• Consider Figure 7 (f), when n = 50. All CI procedures have performances that are much closer

to those of the Complete data. This agrees with what is shown in Table 2 that the amount of

time with RSSZ is zero or negligible when n = 50. The CP values, however, show some drop

from E(r) = 50 to 100, and one contributing factor is the existences of RSSONE and intervals

with relatively small size of the risk set. As shown in Table 2, the percentage of time with

RSSONE is 3% when E(r) = 100. As for the comparisons among the five CI procedures, when

E(r) = 10, the NORMA, the LNORMA, and the BootP procedures have CP that are closer

to the nominal value, while the Boott and the LBoott CI procedures have CP values that are

farther away and lower than the nominal value. When E(r) ≥ 20, however, the Boott and the

LBoott CI procedures have CP values that are very close to the nominal value, while the other

three procedures are not as good.

6.3 Recommendations for the NP Estimator

Based on the simulation results, we recommend the following for the NP estimator. For Complete

data, or window data with very small percentage of time as RSSZ and RSSONE, we recommend:

1. When E(r) = 10 and n ≥ 20 (n ≥ 50 for Window2 data), one should use the NORMA

procedure, because of simplicity in calculation and because it has a CP that is close to the

nominal value.
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2. When both E(r) and n are small, the BootP procedure provides a CP that is closest to the

nominal value.

3. When E(r) ≥ 20, one can use either the Boott or the LBoott procedure to have a CP that is

close to the nominal value.

For window data with non-negligible amounts of time with RSSZ and RSSONE, we recommend:

1. When the amount of time with RSSZ and RSSONE is more than 70% of tendobs, the NP

estimator should not be used, because it is seriously biased, and none of the CI procedures

behave well.

2. When the amount of time with RSSZ and RSSONE is non-negligible but less dominating:

a When E(r) is 20 or more, the Boott and the LBoott procedures should be used because of

their robustness to the existence of RSSZ and RSSONE and because their CP values are

close to the nominal value.

b When E(r) is small, and the amount of time with RSSZ and RSSONE is about 5%, as in

the case of n = 20, the BootP procedure is recommended, because its CP values are

relatively close to the nominal values.

c When E(r) is small, yet the amount of time with RSSZ and RSSONE is relatively large, as

about 40% for the case of n = 10, the Boott and the LBoott procedures are recommended

because their CP values are relatively close to the nominal values.

7 PERFORMANCES OF THE CI PROCEDURES BASED

ON THE NHPP ESTIMATOR

This section summarizes the simulation results for the power law NHPP estimator, and makes some

recommendations. Figure 8 shows six plots for the NHPP estimator, similar to those in Figure 7 for

the NP estimator.

7.1 Comparison of Results from Complete Data and Window2 Data

From the plots in Figure 8, we have the following primary observations for the NHPP estimator:

• The two plots on the same row, left for the Complete data and right for the Window2 data,

are very similar. This indicates that the performances of the CI procedures for the NHPP

estimator is not strongly affected by the existence of RSSZ intervals.
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(a) Complete Data with n = 10 (b) Window2 Data with n = 10
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(c) Complete Data with n = 20 (d) Window2 Data with n = 20
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(e) Complete Data with n = 50 (f) Window2 Data with n = 50

Figure 8: CP Plots for the Power Law NHPP Estimator with β = 1
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• For each n value, CP values level off when E(r) ≥ 20.

• When E(r) ≥ 20, the two normal-approximation-based procedures have CP values that are

close to the nominal value. The three bootstrap methods, on the other side, are not as good

when n is small because of the discreteness in the re-sampling procedure. However, when n

increases, the performances of the three bootstrap methods improve, and they are close to the

two normal-approximation-based procedures when n = 50.

• When E(r) = 10, the NORMA procedure has a CP that is consistently close to the nominal

value. The LNORMA procedure has a CP that is consistently larger than the nominal 0.95,

while the Boott procedure has a CP that is smaller than the nominal value. The LBoott proce-

dure has a CP that is much smaller than the nominal value. When n increases, however, there

is only a small improvement in CI performances for the LNORMA and LBoott procedures,

and this differs from the observation when E(r) ≥ 20 that the CP values become closer to the

nominal value of 0.95 as n increases.

The simulation results suggest that the adequacy of the CI procedures for the NHPP estimator

depends mainly on E(r), and is relatively independent of n and tends to be robust to the existence

of RSSZ and RSSONE. When n is small, however, say 20 or smaller, the bootstrap procedures can

have CP values that are importantly less than the nominal value.

7.2 Recommendations for the NHPP Estimator

When the assumed NHPP model provides an adequate description of the underlying stochastic

process, the NORMA procedure would be a good choice, because of simplicity in calculation and

because the CP is close to the nominal value.

8 PERFORMANCES OF THE CI PROCEDURES BASED

ON THE HYBRID ESTIMATORS FROM WINDOW2

DATA

This section summarizes the simulation results for the local hybrid estimator and the power law

NHPP hybrid estimator for the Window2 data, and makes some recommendations. Figure 9 shows

six plots for these two hybrid estimators, with factor E(r) as the x-axis in each plot. From the top

down, n increases from 10 to 20 and then to 50, and the plots on the left are for the local hybrid

estimator while those on the right are for the power law NHPP hybrid estimator.
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(a) Local Hybrid Estimator with n = 10 (b) NHPP Hybrid Estimator with n = 10
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(c) Local Hybrid Estimator with n = 20 (d) NHPP Hybrid Estimator with n = 20
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(e) Local Hybrid Estimator with n = 50 (f) NHPP Hybrid Estimator with n = 50

Figure 9: CP Plots for the Hybrid Estimators for the Window2 Data with β = 1
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8.1 Comparison of Results – the Local Hybrid Estimator and the Power

Law NHPP Hybrid Estimator

As shown in Section 2.5, the local hybrid estimator and the power law NHPP hybrid estimator have

the same d̄·(t), the nonparametric estimator of the increase in the MCF from the RSSP intervals.

Thus, when there is no RSSZ (or the amount of time with RSSZ is small), the two hybrid estimators

are identical (or close) to the NP estimator. For example, there is hardly any differences observed in

Figure 9 (e) for the local hybrid estimator and Figure 9 (f) for the NHPP hybrid estimator, because

when n = 50, Table 2 shows that the percentage of time with RSSZ is less than 1%. Therefore,

meaningful comparisons come from the simulation settings where the time with RSSZ as a percentage

of tendobs is not negligible.

When n = 10, Table 2 shows that the average amount of time of RSSZ plus RSSONE as a percent-

age of tendobs increases from 38.8% to 95.2% when E(r) increases from 10 to 100. Correspondingly,

the differences among the two hybrid estimators also increase, as shown in Figure 9 (a) and (b). For

the local hybrid estimator, all five CI procedures, especially the three bootstrap-based procedures,

have better performances than those of the NP estimator, which are partially observable by compar-

ing Figure 9 (a) and Figure 7 (b). The CP values for the NORMA and LNORMA procedures are

all below 0.75 and fall to 0.49 when E(r) = 100, and thus are not shown in Figure 9 (a). One major

difficulty for the normal-approximation-based procedures is that the normal distribution assumption

is hard to satisfy when the size of the risk set is small. Compared to the local hybrid estimator, the

five CI procedures for the power law NHPP hybrid estimator have much better performances: the

CP values increase and get closer to the nominal value as E(r) increases. The increasing dominance

of RSSZ and RSSONE does not impair the performances of the CI procedures. The main reason is

that the increases in the MCF from the RSSZ intervals are estimated from the assumed power law

NHPP model, which is the correct model form that is used to generate the simulation data, and

which, as observed in Section 7, is robust to high percentage of time with RSSZ and RSSONE.

When holding E(r) at the same values and increasing n from 10 to 20, the proportion of time

with RSSZ, as well as time with RSSZ and RSSONE, gets smaller. Thus we see better performances

of the CI procedures with this increase in the values of n. For the local hybrid estimator, despite the

different levels of improvement, the two normal-approximation-based procedures are still far from

being desirable, as shown in Figure 9 (c), and the CP values fall to 0.57 at E(r) = 100. For the

power law NHPP hybrid estimator, however, the BootP procedure is the only procedure that has

CP values closer to the nominal value for all four E(r) values, while the other four CI procedures

show different amounts of deterioration at E(r) = 50 and E(r) = 100, as observed by comparing

Figure 9 (b) and (d). One contributing factor for this behavior is the relatively large proportion
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of time with RSSONE. Even though the percentage of time with RSSZ and RSSONE gets smaller

when n increases from 10 to 20, Table 2 shows that the percentage of time with RSSONE only drops

slightly from 30% to 26.9% at E(r) = 50, and even inceases from 20.8% to 34% at E(r) = 100.

Covariances among the recurrence times over periods of time with RSSONE are not estimable, and

also covariances between RSSONE intervals and other time intervals are not estimable. Therefore,

the existence of a relatively large percentage of time with RSSONE has a negative effect on the

estimation of the variances of the MCF estimators. The BootP procedure only depends on the point

estimates of the MCF, and larger values of n ensure more randomized bootstrap re-samples, and

thus its performance improved.

8.2 Recommendations for the Hybrid Estimators

Among our simulation experiment factor levels, when n ≥ 50, the percentage of time with RSSZ

is zero or close to zero. In these cases, the hybrid estimators are the same as or close to the

NP estimator. Therefore, our observations and the recommendations below for the hybrid MCF

estimators mainly apply to data with relatively small n (e.g., ≤ 20) where there is a non-negligible

amount of time with RSSZ.

1. When the percentage of time with RSSZ and RSSONE is large, the differences in CI per-

formances between the local hybrid estimator and those of the NHPP hybrid estimator are

large. When there is no strong indication of model deviation from the NHPP model, the

NHPP hybrid estimator is preferred, because the variance estimate tends to be smaller in the

bias-variance tradeoff; otherwise, the local hybrid estimator is preferred.

2. For the NHPP hybrid estimator, assuming that the NHPP model provides a relatively good

description of the underlying point process,

• When the percentage of time with RSSZ is very large (e.g., 57.3% when E(r) = 50 and

n = 10 or 74.3% when E(r) = 100 and n = 10), the two normal-approximation-based

procedures are preferred, because their CP values are closer to the nominal value, and

they are simple to construct. For these cases, the NHPP hybrid estimator is close to the

NHPP estimator, and as shown in Section 7.2, the NORMA procedure is recommended

for the NHPP estimator.

• When the percentage of time with RSSZ is moderate (e.g., ≤ 15.3% for the cases of

E(r) <= 50 and n = 20, as well as E(r) = 10 and n = 10), the BootP procedure is

preferred, because its CP is the closest to the nominal value. The relative robustness
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to the existence of RSSONE is one contributing factor for the comparatively better

performance of the BootP procedure.

3. For the local hybrid estimator,

• When E(r) is small, for example around 10, the BootP procedure is preferred, because

its CP is the closest to the nominal value.

• When E(r) ≥ 20, the three bootstrap-based procedures generate similar CP results and

these results are substantially better than those of the two normal-approximation-based

procedures. Among the three bootstrap-based procedures, the BootP procedure might

be preferred because it is, by comparison, simpler to construct.

9 CONCLUDING REMARKS AND AREAS FOR FUR-

THER RESEARCH

In our simulation study, we have shown the performances of five of the commonly used CI procedures.

All five CI procedures perform well when both the number of units n and the expected number of

observed recurrences E(r) are reasonably large, and there is no time with RSSZ and RSSONE or the

percentage of time with RSSZ and RSSONE is small. However, when n is small, or E(r) is small, or

the percentage of time with RSSZ and RSSONE is not negligible, choices among the MCF estimators

and the CI procedures can lead to very different results. We have made some recommendations based

on the simulation results. There are, however, some important areas for further research.

• The five CI procedures in our simulation study are relatively simple and easy to construct.

With improvements in the computing power, more complicated bootstrap CI procedures could

be included in the comparison study. The BCa method and the ABC method described in

Efron and Tibshirani (1993) are both second-order accurate and transformation respecting,

and their finite-sample properties would be of interest.

• In addition to normal-approximation and bootstrap-based CI procedures, likelihood-based

methods could be used to construct CIs for the NHPP model. Similarly, empirical likelihood

methods could be used for the NP estimators to construct CIs. These likelihood and empirical

likelihood methods could also be extended to the hybrid estimators. In particular, methods

described in Owen (2001) could be extended for these cases.

• It is sometimes possible to obtain better estimation of the MCF by including the explanatory

variables in the model. Some such models are described in Lawless and Nadeau (1995), and



29

Cook and Lawless (2007). Confidence interval procedures for such models could also be studied.
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APPENDIX

A PROPERTIES OF THE COMPLETE DATA SIMULATED

FROM THE POWER LAW NHPP MODEL

A.1 Distribution of the Number of Recurrences

Let X1, X2, ..., Xn be the number of observed recurrences for the n units from a Complete data set

(i.e., no gaps), simulated from a power law NHPP model with a given value of E(r). Then X1, X2,

..., Xn are independent and identically distributed (iid) from a Poisson (E(r)/n) distribution. From

this, the probability mass function (pmf) of (X1, X2, ..., Xn) is

Pr (X1 = x1, X2 = x2, ..., Xn = xn) =
n∏

i=1

{
exp (−E(r)/n) × [E(r)/n]xi

xi!

}
. (4)

Because the sum of independent Poisson random variables is also a Poisson random variable,∑n
i=1 Xi follows a Poisson distribution with λ =

∑n
i=1 λi = E(r), where λi is the parameter for Xi.

Therefore, the probability of a simulated data set with x recurrences is

Pr

(
n∑

i=1

Xi = x

)
= exp (−E(r)) × [E(r)]x

x!
, (5)

which is a function of E(r) and x only. For the four values of E(r) in our simulation study, 10, 20,

50, and 100, the values of Pr (
∑n

i=1 Xi ≤ 4) are 0.0293, 1.69× 10−5, 5.45× 10−17, and 1.61× 10−37,

respectively.

Note that (4) and (5) depend only on E(r) and n, and thus results in this subsection apply not

only to the power law NHPP model, but also to NHPP model with other forms of the recurrence

functions.
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A.2 NP MCF Estimator

One interesting property of the NP method for the Complete data case is that both ̂MCFNP (tendobs)

and V̂ar[̂MCFNP (tendobs)], which are needed to construct the normal-approximation-based CIs, are

functions of X1, X2, ..., Xn and n, and do not depend on the observed times of the recurrences.

Then, for a given set of (x1, x2, ..., xn), we can construct the NORMA and the LNORMA CIs

and find out whether the CIs capture the true MCF at E(r)/n. By (4), we can also calculate

Pr (X1 = x1, X2 = x2, ..., Xn = xn). Therefore, if we can identify that part of the sample space

of (x1, x2, ..., xn) for which the constructed CIs capture the true MCF, and then the sum of the

corresponding probabilities is the actual CP of the CI procedure. Because xi can take the value of

any non-negative integer, for i = 1, ..., n, the complete sample space for (x1, x2, ..., xn) is countable,

but infinite. As a result, it is not possible to identify the complete set of (x1, x2, ..., xn) that we

want to identify to calculate the actual CP. However, a close approximation of the actual CP can

be obtained by using the following approach.

1. Select a finite number of combinations of (x1, x2, ..., xn) from the complete sample space such

that the sum of the corresponding probabilities is close to 1.

2. For each set of values of (x1, x2, ..., xn) in the selected sample space, calculate ̂MCFNP (tendobs)

and V̂ar[̂MCFNP (tendobs)], and construct a CI. If the CI captures the true MCF, then add

the corresponding probability of the set to CP.

The complement of the selected sample space provides a bound on the error for the actual CP.

Because the probability of getting large values of xi is very small, the sample space we chose is

[0, k] × [0, k] × ... × [0, k], where k is an integer large enough to keep the error bound small.

We now derive the expressions for ̂MCFNP (tendobs) and V̂ar[̂MCFNP (tendobs)]. For Complete

data, having a constant risk set size of n, (1) leads to ̂MCFNP (tendobs) =
∑n

i=1 Xi/n. Lawless and

Nadeau (1995) present the following formula (here with our notation), for data with all units having

the same end-of-observation times,

V̂ar[̂MCFNP (tendobs)] =
1
n2

n∑
i=1

[
Xi −

∑n
i=1 Xi

n

]2
.

Table 3 shows results for the approximate CP, which is the sum of the probabilities for the sets

of (x1, x2, ..., xn) that have the calculated CI capturing the true MCF, as well as the error bound,

for the NP estimator with n = 10. Two CI procedures are used, the NORMA and the LNORMA.

The approximate probability of not capturing the true MCF equal (1 − Prob. in CI − error bound).

Note that, the nominal coverage probability is 0.95, yet the probabilities with true MCF in the CI
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Table 3: Probability in CI and Error Bound for Complete Data at n = 10

NP Estimator Power Law NHPP Estimator

E(r)/n NA LOGNA Error Bound NA LOGNA Error Bound

1 0.89415 0.91038 1.11 × 10−6 0.92573 0.96262 7.98 × 10−8

2 0.89250 0.90384 2.07 × 10−6 0.94751 0.94428 4.83 × 10−9

5 0.89983 0.90550 1.40 × 10−5 0.94878 0.94440 1.57 × 10−10

10 0.90224 0.90510 7.65 × 10−6 0.94503 0.94912 7.08 × 10−11

for the two procedures are well below this nominal value. This shows that the normal approximation

procedures do not work well for the NP estimator when the sample size is small, and increasing the

expected number of observed recurrences for each unit does not help improve the CP. The LNORMA

CI procedure performs better than the NORMA procedure, because the number of recurrences is

non-negative.

A.3 The Power Law NHPP Estimator

Rigdon and Basu (2000, Section 5.4) present the likelihood function of n independent systems from

the same power law NHPP model, and point out that when all n systems are observed from time

zero to the same end-of-observation time tendobs, the Complete data scenario in our simulations,

there is an explicit solution for estimating the two model parameters,

β̂ =
∑n

i=1 Xi∑n
i=1

∑Xi

j=1 log(tendobs/tij)
(6)

η̂ =
n1/β̂tendobs

(
∑n

i=1 Xi)1/β̂
, (7)

where tij denotes the jth recurrence time for the ith system. With the power law recurrence rate

function (3), (2) can be simplified to

̂MCFNHPP (tendobs) = (tendobs/η̂)β̂ =
n∑

i=1

Xi/n.

This shows that ̂MCFNHPP (tendobs) = ̂MCFNP (tendobs) for the Complete data case and these

estimators only depend on the number of observed recurrences and the number of observational

units.

It can also be shown that,

V̂ar[̂MCFNHPP (tendobs)] =
n∑

i=1

Xi/n2 = ̂MCFNHPP (tendobs)/n.
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This result is not surprising, because for the Poisson distribution, the variance and the mean are the

same, and here we have n units to estimate the variance. However, this simple form is only available

for the Complete data case when all units are observed to tendobs. The main steps to derive this

result are listed below.

1. Derive the Hessian matrix by taking second derivatives of the likelihood function with β and

η.

2. Obtain variance-covariance matrix of β̂ and η̂ by evaluating the inverse negative Hessian matrix

at the MLEs β̂ and η̂.

3. Apply the delta method to get V̂ar[̂MCFNHPP (tendobs)].

We used the same approach described in A.2 for the NP estimator, and obtained the approximate

CP values and the error bound for the power law NHPP estimator in Table 3. Because both

̂MCFNHPP (tendobs) and V̂ar[̂MCFNHPP (tendobs)] depend only on the total number of observed

recurrences and the number of units in the data, we used (5) instead of (4) to simplify the calculation.

Compared to the NP estimator, the NORMA and the LNORMA procedures for the power law NHPP

estimator have CPs that are very close to the nominal value at 0.95.
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