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CHAPTER 1. GENERAL INTRODUCTION 

 

 

Literature Review 

1. Soybean and processing 

Soybeans are one of the most valuable and economical agricultural commodities in the 

world. Soybeans are not only a valuable source of edible oil, but also a very good source of 

proteins. Soybeans contain about 20% oil, the second highest among all food legumes, and 

about 40% protein, the highest among cereals and other legumes (Liu, 1997). Soy protein is a 

very good amino acid source for humans, especially for vegetarians, because its amino acid 

composition is similar to animal proteins, such as meat protein, and contains all the essential 

amino acids for humans. Soy protein is very high in lysine, which is deficient in most cereal 

proteins, but low in methionine (Liu, 1997). Soy protein is also known to have many beneficial 

health effects, for example, lowering plasma cholesterol and triacylglycerol (Baba et al., 2004), 

preventing cancer (Wu et al., 1998), diabetes, and obesity, protecting healthy digestive tract, 

and protecting bone, and kidney from irritants (Friedman and Brandon, 2001). In 1999, the 

FDA authorized the labeling on soy foods allowing a claim that soy protein reduces the risk of 

coronary heart disease. Soybeans are widely used in human and animal diets, including infant 

formulas, flours, protein isolates and concentrates, and textured fibers. There are also many 

soy foods available in market, for example soymilk, tofu, miso, natto, roasted soybeans, 

soybean sprouts, and vegetarian meat substitutes. New soy foods are continuously being 

developed (Friedman and Brandon, 2001). 

 

Soy proteins 
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Soy proteins can be classified in different ways. Based on biological functions in plants, 

they can be divided into metabolic and storage proteins. Metabolic proteins are typically 

enzymes and structural proteins, whereas storage proteins are used in seed germination to 

provide sources of nitrogen and carbon skeletons for developing seedlings. The majority of soy 

proteins are storage proteins. Based on solubility, soy proteins can be classified as albumins, 

which are soluble in water, and globulins, which are soluble in salt solution. The most common 

classification is to separate the proteins based on their sedimentation coefficients using 

ultracentrifugation under appropriate buffer conditions. The protein fractions are known as 2S, 

7S, 11S, and 15S (Liu, 1997). The 2S fraction consists of a number of enzymes, including 

trypsin inhibitors. The 7S fraction contains enzymes, lectin, and a major storage protein 

β-conglycinin or 7S globulin. The 11S fraction is the largest single fraction of total seed protein, 

which is composed of a major storage protein glycinin or 11S globulin. The 15S fraction 

contains urease and a dimer of glycinin (Liu, 1997).   

There are three major soy protein products mainly used for food: defatted soy flours, 

soy protein concentrates, and soy protein isolates. Defatted soy flours are made by grinding the 

dehulled, defatted soybean flakes. They have about 45-50% protein and have other 

components such as carbohydrates. Soy protein concentrates (SPC) are further depleted of 

soluble carbohydrates by alcohol or acid precipitation of protein, and have at least 65% protein 

on moisture-free basis. Soy protein isolates (SPI) have more than 90% protein on dry-weight 

basis. SPI is extracted with water under alkaline conditions followed by acid precipitaton; 

however, the alkali extraction process destroys lysine and cysteine (Lusas and Rhee, 1995). 

Another major application for soy is using the soybean meal (SBM) for animal feeding, with 

dehulled and solvent-extracted meal being most widely used. SBM contains 44-50% protein 
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and has excellent amino acid quality. In the United States, more than 50% of the SBM is used 

for poultry feeding and 26% is used for swine feeding. The rest is used in diets for ruminants, 

dogs, cats and others (Stein et al., 2008). 

 

Anti-nutritional factors in soy protein products 

Despite the beneficial health effects and wide use of soy proteins for food and feed, 

special attentions must be paid to the anti-nutritional factors in soybean. The major two 

anti-nutritional factors are trypsin inhibitors (TIs) and lectins. There are two types of trypsin 

inhibitors, the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI). KTI 

inhibits trypsin, whereas BBI inhibits both trypsin and chymotrypsin. The inhibition of 

digestive enzymes reduces the digestibility of the proteins. In addition, TIs can cause excessive 

secretion of cholecystokinin, which in turn leads to excessive secretion of pancreatic enzymes, 

thus causing pancreatic hypertrophy and hyperplasia (Yanatori and Fujita, 1976). Some 

hypothesized that the growth inhibition effect of TIs was due to the loss of amino acids from 

excessive secretion of pancreatic enzymes (Booth et al., 1960; Lyman and Lepkovsky, 1957). 

Native lectin is resistant to digestive enzymes and binds to the small intestinal brush boarder, 

causing increased weight of the small intestine and pancreatic hypertrophy.  

Heat treatment is commonly used for deactivating anti-nutritional factors in soybeans. 

Lectin is readily eliminated by moist heat treatments, however, TIs are more resistant to heat. 

Heating at 120 °C for 30 min totally destroyed BBI activity, but left 20% of KTI activity 

(Friedman et al., 1991). In addition, excessive heat treatment can cause loss of essential amino 

acids in soy protein such as cysteine, lysine, and arginine. Other methods have been used to 

deactivate TIs. Sulfur-containing compounds, such as cysteine, N-acetyl-cysteine, glutathione, 
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and sodium sulfite, are effective in facilitating inactivation of TIs at lower temperature. The 

reason is that TIs contain substantial disulfide bonds; destroying them by sulfur-containing 

compounds would facilitate their deactivation (Herkelman et al., 1991; Wang et al., 2009).  

 

Aqueous extraction processing and solvent extraction 

Commercial soy oil is produced by solvent extraction, normally a mixture of hexanes. 

The solvent extraction process has high oil yield (99%) and high solvent recovery (over 95%). 

The relatively low cost makes the process much more commercially feasible than the aqueous 

extraction processing (AEP) (Rosenthal et al., 1996). Solvent extraction, however, is 

associated with environmental problems. Hexane contributes to the industrial emissions of 

volatile organic compounds (VOCs). Hexane reacts with pollutants, such as nitrogen oxides, to 

form ozone and other photochemical oxidants under sunlight. Excess ozone is undesirable at 

ground level, causing damage to crops (Rosenthal et al., 1996). In addition, hexane is highly 

flammable and has the danger for fire and explosion. Elaborate precautions needs to be paid to 

avoid these dangers, which is very costly (Erickson, 1980). Furthermore, solvent extraction 

involves a large amount of heat treatment for removing the solvent, which reduces the quality 

of both oil and remaining proteins (Rosenthal et al., 1996).  

AEP is a more environmentally favorable process. The process uses water as the 

extraction medium and is based on the insolubility of oil in water than on the dissolution of oil 

(Johnson and Lusas, 1983). Generally, the oil seed is ground or extruded and extracted in water. 

Enzymes, such as cellulase and protease, can be used to improve the oil yield (Lamsal et al., 

2006) and facilitate the de-emulsification step (Jung et al., 2009; Wu et al., 2009). After 

centrifugal separation, three phases form: insoluble fiber fraction, protein-rich skim, and cream 
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and free oil. The two-stage countercurrent enzyme-assisted aqueous extraction processing was 

developed to achieve higher oil, protein, and solids extraction yields with one-half the amount 

of normal water usage. In this process, the insoluble fraction undergoes a second extraction 

stage, which is very similar to the first extraction. Similarly, after centrifugal separation, three 

fractions are obtained. The creams from two extractions are then demulsified to form crude oil, 

the skims are used for protein recovery, and the insolubles are used for ethanol production or 

dried for feeding (de Moura and Johnson, 2009; de Moura et al., 2009). The AEP process 

enables the simultaneous recovery of oil and protein (Cater et al., 1974) and the water-washed 

oil requires little further treatment before refining (Dominguez et al., 1995). Phospholipids are 

separated from the oil during AEP, therefore, degumming is not required for oil refining 

(Bocevska et al., 1993). In addition, AEP does not involve excessive heat treatment, avoiding 

damage to the proteins ensuring better functionality and nutritional value of the protein (Cater 

et al., 1974). Furthermore, AEP does not use organic solvents, which lowers the risk of fire and 

explosion and is less hazardous to humans and the environment (Rosenthal et al., 1996). 

Although has many benefits, the AEP is not yet used commercially. The oil yield is lower than 

solvent extraction and de-emulsification is required for oil recovery. The lack of heat treatment 

also preserves anti-nutritional factors in the soy protein, which need to be deactivated before 

human or animal consumption. AEP is more environmentally favorable, however, more 

research needs to be done to lower the processing cost, so that AEP can be used in industry. 

 

2. Lectins 

Lectins are a group of proteins widely distributed in almost all organisms, including 

plants, animals, bacteria, and viruses (Sharon and Lis, 2003a). Plant lectins are mainly located 
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in seeds but are also found in roots, stems, and leaves (Moreira et al., 1991). The seed lectins 

are located in the cotyledons (e.g., in legumes) or in the endosperm (e.g., castor bean), or in the 

primary axis (e.g., in wheat) (Damme et al., 1998). Lectins have unique properties of binding 

to specific carbohydrates with different affinities. In plants, lectins mainly participate in plant 

defense against the attacking of microorganisms or insects, as well as in physiological 

functions involving cell recognition (Sharon and Lis, 2003b).  

 

General structure of soybean agglutinin 

Soybean lectin, also known as soybean agglutinin (SBA), is a glycoprotein, and forms 

tetramer with 30-KDa subunits. Each subunit carries an N-linked carbohydrate unit 

Man9(GlcNAc)2 attached to Asn-75, with molecular weight of 1866 Da. In addition, each 

subunit has a carbohydrate binding site, with highest affinity for N-acetyl-D-galactosamine 

(GalNAc) and second for galactose. GalNAc specifically inhibit the hemagglutination activity 

of SBA (Sharon and Lis, 2003c). Upon binding of oligosaccharides with terminal GalNAc or 

Gal residues, SBA forms unique cross-linked lattices with these oligosaccharides, which might 

be the bases for its ability to agglutinate cells (Olsen et al., 1997). Each subunit of SBA has 

tightly bound Ca
2+

 and Mn
2+

 ions or other transition metal ions, which are required for their 

carbohydrate binding activity of SBA (Jaffe et al., 1977). The structure of SBA monomer is 

shown in Fig. 1 (Dessen et al., 1995). For biosynthesis, a pre-SBA (285 amino acids) is first 

expressed from the gene. The pre-SBA then undergoes N-terminal truncation to form the 

mature SBA (253 amino acids), which is further truncated at the C-terminal to form isolectins 

with 240, 243, 246, and 252 amino acids, respectively (Sharon and Lis, 2003a). The isolectins 

have very similar properties and are immunochemically indistinguishable (Liener, 1994). This 
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might contribute to the multiple bands on the SDS-PAGE gel for SBA extract.   

 

Anti-nutritional effects of lectins 

Lectins are present in many edible plants, for example, legumes, such as soybeans, kidney 

beans, and lima beans, cereals, such as oats, barley, and rice, vegetables, such as celery, 

asparagus, potato, and tomato, fruits, such as banana, papaya, and apple, and others, such as 

coconut, mushroom, and garlic (Sharon and Lis, 2003d). Lectins are generally considered 

anti-nutritional factors, because they can survive the gastrointestinal (GI) tract and cause 

malfunctions. For example, Pusztai and Bardocz (1995) found that 50-90% concanavalin A 

(Jack bean agglutinin), PHA (kidney bean agglutinin), or WGA (wheat germ agglutinin) was 

recovered 1 h after intragastrically administered into rats. SBA and tomato lectin can also be 

recovered with lower yields. Intact lectins were found in the circulatory system with intact 

hemagglutinating and immunological activities in humans after consuming lectin-containing 

foods, for example, tomatoes (Kilpatrick et al., 1985), red kidney beans (Pusztai et al., 1989), 

and peanuts (Wang et al., 1998), indicating that these lectins have survived the acidity and 

digestive enzymes in the GI tract. Antibodies were also found in human serum for the lectins in 

peanuts, soybeans, and wheat germ (Tchernychev and Wilchek, 1996). There have been some 

cases of food poisoning that caused by consuming insufficiently cooked beans which had 

lectin in them. The person who ate uncooked kidney beans became acutely nauseated within 1 

to 1.5 h and began to vomit, followed by diarrhea. After hospitalization, the recovery was rapid 

(Sharon and Lis, 2003d).   

Native soybean agglutinin is resistant to digestive enzymes in the GI tract and has a 

unique property to bind to carbohydrate-containing molecules. As a result, SBA can survive 
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intestinal transit and bind to the intestinal epithelium, which in turn causes disruption of the 

brush boarder, atrophy of the microvilli and reduction in the viability of the epithelial cells. 

Because of the interaction with the epithelial surface of the small intestine, SBA can also cause 

hyperplasia of the crypt cells, thus increasing the weight of the small intestine in rats (Grant et 

al., 1987). The increasing in weight may be due to the accumulation of polyamines, mostly 

spermidine, which could stimulate cell proliferation (Deaizpurua and Russelljones, 1988). 

SBA can stimulate a peptide hormone cholecystokinin (CCK) release and pancreatic protein 

output in rats. CCK is a hormone secreted by the I-cells of the proximal small intestine, and 

causes secretion of digestive enzymes from pancreas and release of bile from gallbladder. As a 

result, prolonged excessive release of CCK causes pancreatic growth and enlargement of the 

pancreas (Grant et al., 1988; Jordinson et al., 1997). Some lectin can even cross the gut wall 

into circulation, generating antilectin antibodies (Deaizpurua and Russelljones, 1988). In 

addition, SBA can inhibit the disaccharidases and proteases in the intestines, interfere with the 

absorption of nonheme iron (Hisayasu et al., 1992) and lipid from the diet, lower the 

circulating insulin level and cause degenerative changes in the liver and kidneys (Liener, 

1994).  

 

SBA stability 

Different lectins have different stabilities, but they are generally resistant to digestive 

enzymes. Lectins normally can be deactivated by moist heat treatment, but inadequate 

temperature leads to incompletely inactivated lectins. For example, slow cooking of kidney 

beans at 82 °C for 11 h or 91 °C for 5 h could not fully inactivate lectin (Sharon and Lis, 2003d). 

Lectins have been detected in roasted peanuts purchased from a local market (Wang et al., 
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1998). 

SBA is resistant to inactivation by dry heat treatment (Demuelenaere, 1964) but can be 

deactivated by moist heat treatment (Liener and Hill, 1953). The inability of dry heat treatment 

to fully deactivate SBA might account for detectable SBA activity in certain soy containing 

products (Delabarca et al., 1991). This low concentration of SBA might not be a risk to human 

health (Liener, 1994). For example, compared to 3600 ug/g lectin in raw soybeans, textured 

soy protein had 3.75 ug/g lectin (0.08% of original), milk substitute had 6.91 ug/g lectin (0.56% 

of original), cookies had 2.51 ug/g lectin (6.97% of original), whole wheat bread had 5.68 ug/g 

lectin (7.89% of original) (Delabarca et al., 1991). Demuelenaere (1964) found that dry heat at 

100 °C for 30 min did not significantly reduce SBA activity, whereas autoclaving at 100 °C for 

30 min fully deactivated SBA. Dai et al. (2003) found that after dry heat treatment at 120 °C for 

60 min, SBA still had considerable activity, whereas moist heat treatment of 95 °C for 30 min, 

100 °C for 20 min or 105 °C for 10 min was enough to fully deactivate SBA. Moist heat 

deactivates both SBA and trypsin inhibitors, and the hemagglutination activity can be used to 

measure the improvement in nutritional value of the soy protein (Liener and Hill, 1953). 

Readily deactivated by moist heat treatment, SBA is not a concern in the properly processed 

soy foods.  

Liener and Wada (1956) made several chemical modifications of SBA. They found that 

modifying the α-amino groups only slightly reduced activity of SBA, whereas modifying the 

ε-amino groups (such as in lysine) resulted in significant loss of activity. In addition, the 

modification of phenol groups (such as in tyrosine) caused considerable loss in activity. 

Furthermore, the removing of the C-terminal amino acids by carboxypeptidase did not 

decrease SBA activity. They concluded that ε-amino and phenolic groups of SBA played 
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important roles in activity.  

The literature showed contradictory results about the effect of deglycosylation on the 

activity of SBA. Nagai and Yamaguchi (1993) found that the intramolecular high-mannose 

oligosaccharide chains were essential for proper folding and activity of SBA. On the other 

hand, Adar et al. (1997) found that the SBA expressed by Escherichia coli, which lacks the 

ability to glycosylate proteins, had the same activity as native SBA and the SBA still formed a 

tetramer.  

Bajpai et al. (2005) used zinc alginate beads to remove SBA and trypsin inhibitors from 

an aqueous extract of soy flour, and obtained 94 and 95% removal of SBA and trypsin 

inhibitors, respectively. The mechanism of the removal was immobilized metal affinity 

chromatography (IMAC) based on the special coordinate covalent bond of metal ions to amino 

acids such as histidine and cysteine. 

 

Carbohydrate binding specificity for SBA 

Researchers have studied the carbohydrate (CHO) binding specificity of SBA. SBA 

has highest affinity for N-acetyl-D-galactosamine (GalNAc) and glycosides and 

oligosaccharides containing terminal GalNAc. SBA also binds galactose (Gal) and derivatives 

of Gal with less affinity (Pereira et al., 1974). Hammarstrom et al. (1977) used CHO-protein 

conjugates for precipitation analysis and simple sugars for inhibition of precipitation to study 

the binding affinities of different carbohydrates to SBA. They had similar results as Pereira et 

al. (1974). In addition, SBA did not bind N-acetyl-D-glucosamine (GlcNAc) at all, and weakly 

bound other sugars like raffinose, stachyose, lactose, D-fucose and L-arabinose. Hammarstrom 

et al. (1977) also used monosaccharides derivatives to study the binding sites for sugar. They 
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found that sugar must be in the pyranose form and probably at 
4
C1 chair conformation to have 

binding affinity. In addition, C-2 hydroxyls played an important role in the interaction between 

SBA and sugar. SBA has slow kinetics for CHO binding (slow binding and dissociation). The 

low dissociation rate of SBA–CHO complex might be favorable for the binding of SBA to 

multiple cells, causing topological reorganization and agglutination of the cells (De Boeck et 

al., 1984; Swamy et al., 1986). The interaction between lectin and monosaccharide is relatively 

weak and often not as specific as enzyme-substrate interactions. Higher binding affinity and 

specificity were observed for binding of lectin to oligosaccharides of cell surface glycoproteins 

and glycolipids, which might be due to multiple binding of lectin to different branch chains of 

the oligosaccharides. This higher binding affinity might account for proper recognition and 

binding of lectins to their receptors on cell surfaces in the biological processes (Sharon and Lis, 

2003c).  

 

Analytical methods for testing the activity of lectin 

The activity of lectin can be tested by using different methods, all based on the CHO 

binding property. The most commonly used method is hemagglutination assay, which is based 

on the ability of lectin to agglutinate erythrocytes (Liener, 1994). In this method, lectin 

samples are serially diluted and mixed with erythrocytes from different species based on the 

specificity of a certain lectin. In the case of SBA, the most frequently used erythrocytes are 

from rabbit. The end point is given by the highest dilution of lectin that still causes clumping of 

the cells, which can be tested visually (Liener and Hill, 1953), by photometric measurement 

(Liener, 1955), or by examination under a microscope (Pennell et al., 1984). The visual test 

directly tells the end point, which is easy but subjective. The photometric measurement 
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measures the density of the layer of unsedimented red blood cells. The method is objective but 

can be influenced by the adhesion of cells to the glass tube wall and is more tedious than the 

visual test. Examination by microscopy is similar to the visual test, but is more tedious. 

The erythrocytes can be treated with different enzymes or chemicals to improve the 

sensitivity of the test. Trypsin and papain are commonly used enzymes in the case of testing 

SBA (Liener, 1994), and glutaraldehyde is an example of a chemical used for treating 

erythrocytes (Turner and Liener, 1975). In addition to increased sensitivity, glutaraldehyde 

also permits the storage of blood cells for long periods of time.  

The CHO- or glycoprotein-bound polystyrene latex beads is a substitute for the red 

blood cells. This method uses similar method as the hemagglutination assay and also uses 

visual inspection of the end point. This method avoids the use of fresh blood, which may not 

always be available (Kaul et al., 1991). For SBA, the covalent coupling of the latex beads to 

GalNAc or lactosamine is the most commonly used method. The replacement of blood 

obviates the influence of the age of the blood, the activity of the enzymes used to treat red 

blood cells, but introduces the inconsistency of the coupling procedure.  

Several ligand blotting methods have also been developed for assessing lectin activity. 

Typically, lectin is blotted onto a membrane, such as polyvinylidene difluoride (PVDF), either 

by dot-blotting or by electroblotting after SDS-PAGE; a probe is then used to detect the lectin. 

Commonly used probes are horseradish peroxidase (HRP)-glycoproteins (Ueno et al., 1991) 

and CHO-conjugated biotinylated polyacrylamide-type probes (Kamemura and Kato, 1998) 

which has higher specificity. This method is more sensitive than the hemagglutination assay, 

but is much more tedious. After SDS-PAGE, the lectin is denatured, which might influence the 

CHO binding activity. Based on the ability of lectins to bind to CHO, other methods were also 
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developed. CHO-protein conjugates were used to precipitate lectins, and the protein content in 

the precipitate was tested (Hammarstrom et al., 1977). Surface plasmon resonance (SPR) was 

used to detect the binding affinity of CHO to lectins (Paidassi et al., 2008). 

Carbohydrate-coupled affinity chromatography (Itin et al., 1996) and enzyme-linked 

solid-phase assays (Duk et al., 1994) were also used.  

Although these in vitro detection methods are normally easy and quick, they might not 

truly reflect the in vivo binding of lectins to the intestinal epithelial cells. Hendriks et al. (1987) 

purified bovine small intestinal brush boarder membranes, and coated them to the bottom of a 

microtiter plate. The lectin was conjugated with peroxidase, and the binding of lectin to brush 

boarder was quantified by the peroxidase activity; however, this method cannot be used for the 

crude extract of lectin.  

Animal feeding studies were also used to assess the improvement in nutritional quality 

of protein. Broiler chicks are normally fed treated soy protein for a certain length of time and 

different parameters are tested and compared to commercial soy flour and raw soy flour. For 

example, body weight gain and feed intake were improved for the heat-treated soybean meal 

compared with raw soybean meal (Liener and Hill, 1953; Liener, 1953). Marsman et al. (1997) 

found that extrusion significantly improved feed conversion ratio and apparent ileal 

digestibilities of crude protein and nonstarch polysaccharides when compared with toasting. 

Higher extrusion rate resulted in increase in water-holding capacity, chyme viscosity, and the 

concentration of soluble nonstarch polysaccharides in chyme. The intestine weight and 

pancreas weight were higher in rats fed with kidney bean lectin (PHA) transgenic rice than the 

normal rice (Poulsen et al., 2007). However, all these treatments have interferences. The heat 

treatments deactivated both SBA and trypsin inhibitors, and the detection methods did not tell 
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how much improvement was due to SBA deactivation. Fasina (2004) solved this problem by 

feeding turkey poults with a corn starch-casein based lectin-free diet with different amounts of 

SBA added. They found that adding 0.024% of SBA did not have any significant detrimental 

effects on turkey growth, pancreatic weight, activity of brush boarder enzymes, and they did 

not find any SBA antibody in circulation. Adding 0.048% SBA gave inconsistent results for 

feed efficiency and brush boarder enzyme levels.  

 

Applications of lectins 

Despite the anti-nutritional effects, lectins have many beneficial effects and can be used 

in certain areas. The applications are mainly based on the CHO-binding property of lectins.  

Lectins can be used in cancer treatments. The mechanism of the anti-tumor effect of 

lectin is not clear, but there are several hypotheses. The surface glycosylation of tumor cells are 

different from normal cells, and certain CHOs on primary cancer cells are associated with 

metastasis. The specific binding of lectins to certain carbohydrates enables differentiation and 

specific binding of lectin to tumor cells other than normal cells. Thus, lectins can be used as 

prognostic markers for different types of cancers. In addition, lectins can also decrease protein 

synthesis and induce apoptosis, thus causing cytotoxicity to tumor cells, reduce cell 

proliferation, and stimulate the immune system (De Mejia and Prisecaru, 2005). Some lectins 

have also been shown to have mitogenic activity, that is, induce quiescent lymphocytes to grow 

and divide, which might be a reason for their stimulation of the immune system. The mitogenic 

activity is hypothesized to happen in two steps, binding of lectin to T-cell antigen receptor 

complex, and activating a signal transduction pathway (Rhodes and Milton, 1998).  

Lectin can be used in cell identification and separation. Different lectins can recognize 
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cells with different surface glycosylation. In addition, the binding of lectins to cells is 

reversible, which enables the undamaged recovery of both lectin-binding and non-binding 

cells, with high vitality and yield (Sharon and Lis, 2003e). For example, SBA is used in clinical 

bone marrow transplantation for fractionation of bone marrow cells. SBA specifically binds to 

bone marrow mononuclear cells, whereas leaving human hematopoietic cells intact, thus 

enabling a simple and efficient way of enriching CD34
+
 hematopoietic progenitor cells (Nagler 

et al., 1999). SBA also specifically binds to leukemic T-cells and leaves normal lymphocytes 

intact. Bakalova and Ohba (2003) used SBA affinity chromatography to separate leukemic 

T-cells from normal lymphocytes.  

Lectins can be used as detection tools. They can be used for detection, isolation, and 

structural studies of glycoproteins and glycolipids; as histochemistry and cytochemistry tools 

to study the carbohydrates on cells or subcellular organelles; mapping the neuronal pathways, 

and studying protein glycosylation. Lectins also have some clinical uses, such as blood typing, 

evaluation of immunocompetence, karyotyping, and enzyme replacement therapy (Sharon and 

Lis, 2003e). 

 

3. Bioactive peptides from soybean 

Bioactive peptides in foods have been studied extensively. These peptides normally 

contain 2 to 9 amino acids (Kitts and Weiler, 2003), but can be extended to 20 or more 

(Korhonen and Pihlanto, 2003). There are also some exceptions such as lunasin from soybean 

that contains 43 amino acids with a molecular weight of 5.4 KDa (Jeong et al., 2002). Dairy 

products are the most extensively studied source of bioactive peptides (Floris et al., 2003), 

however, other foods are also good sources, such as eggs, fish, oysters, cereal, soybeans, and 
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radish seeds (Wang and De Mejia, 2005). Bioactive peptides from soybean have also been 

extensively studied. 

 

Antihypertensive peptides 

Extensive studies have been published about the antihypertensive peptides in foods. 

The peptides carry out their functions by inhibiting the angiotension-converting enzyme 

(ACE). This enzyme converts angiotensin I to angiotensin II, a potent vasoconstrictor, thus 

causing antihypertensive effect. ACE also inactivates a vasodilator bradykinin, thus increasing 

blood pressure. The antihypertensive peptides inhibit the activity of ACE, so that reduce of 

blood pressure (Shahidi and Zhong, 2008).  

Several antihypertensive peptides have been found in soybeans. Chen et al. (2002, 

2004) separated four ACE inhibition peptides from pepsin digested soy proteins: Ile-Ala, 

Tyr-Leu-Ala-Gly-Asn-Gln, Phe-Phe-Leu, and Ile-Tyr-Leu-Leu. They were orally given to 

spontaneously hypertensive rats (SHR) and they lowered blood pressure. Wu and Ding (2001) 

separated antihypertensive peptides from alcalase digests of soy protein. They were effective 

in decreasing blood pressure of SHR, but not the normotensive rats. Kodera and Nio (2002) 

digested soy proteins with protease D3 and obtained five peptides with ACE inhibition activity 

and favorable taste of the hydrolysates. In addition to the natural antihypertensive peptides in 

soybean, an artificial peptide was introduced into three homologous sites in α’ subunit of 

soybean β-conglycinin by site-directed mutagenesis. This introduction of peptide enhanced the 

antihypertension activity of the α’ subunit (Yoshikawa et al., 2002). Fermented soy products 

also have ACE inhibitory peptides, for example, soybean paste (Shin et al., 2001), soy sauce 

(Okamoto et al., 1995), natto and tempeh (Gibbs et al., 2004). 
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Hypocholesterolemic peptides  

Soybeans have long been known for their cholesterol-lowering effects. As a result, the 

U.S. Food and Drug Administration (FDA) recommended a daily intake of 25 g of soy protein 

for lowering cholesterol and reducing of the risk of cardiovascular disease (Shahidi and Zhong, 

2008). This activity was first attributed to isoflavones because the removal of isoflavones from 

soy protein isolate by alcohol washing decreased the atherosclerosis inhibition effect (Adams 

et al., 2002). Fukui et al. (2002), however, found no cholesterol-lowering effect for isoflavones 

alone. As a result, it was hypothesized that the interaction between isoflavones and soy 

proteins is responsible for this activity (Hsu et al., 2001).  

Soy protein peptic hydrolysate (SPH) has stronger cholesterol-lowering effects in rats 

than intact soy protein (Sugano et al., 1990). This effect might be due to the binding of the 

peptides to bile acids, thus suppressing micellar solubility of cholesterol, which leads to 

decreased absorption of cholesterol (Nagaoka et al., 1999). In addition, soy peptides might 

bind to phospholipids and lower cholesterol absorption in humans (Hori et al., 2001). The α 

and α’ subunits of β-conglycinin are more effective than glycinin in regard to the LDL receptor 

up-regulation effects in human hepatoma cells (HepG2) (Lovati et al., 1992). A synthetic 

peptide from β-conglycinin (LRVPAGTTFYVVNPDNDENLRMIA) was found to increase 

LDL uptake and degradation in HepG2 cells (Lovati et al., 2000). A peptide from glycinin 

(LPYPR) was also found to decrease serum cholesterol after oral administration to mice. This 

peptide is homologous to enterostatin, which also has hypocholesterolemic activity 

(Yoshikawa et al., 2000).  
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Antioxidative peptides 

Some proteins, peptides and amino acids are considered to be antioxidants. Saito et al. 

(2003) studied the antioxidative properties of series of tripeptide libraries. They examined the 

antioxidative activity against linoleic acid peroxidation, free radical scavenging activity, 

reducing activity, and peroxynitrite scavenging activity. They found that peptides having Trp 

or Tyr at the N-terminus had strong radical scavenging activities, and synergistic effects were 

observed for peptides with other antioxidants such as phenolic compounds. It was also 

hypothesized that the His-containing peptides may act as metal ion chelators, active-oxygen 

quenchers, and hydroxyl radical scavengers (Saito et al., 2003).  

Soy peptides have higher antioxidant activity than soy protein (Chen et al., 1998) and 

heating did not change the activity of the proteins carrying such peptides. This result indicates 

that peptide release is more critical than maintaining protein structure, and after hydrolysis, 

more active side chains of amino acids are exposed, which results in increased activity. 

Pena-Ramos and Xiong (2002) studied the inhibitory activity of soy peptides against formation 

of thiobarbituric-acid-reactive substances (TBARS) in a liposome-oxidation system. They 

used pepsin, papain, chymotrypsin, Alcalase®, Protamex®, and Flavourzyme® to hydrolyze 

native or heated soy protein isolate to different degree of hydrolysis, and the resulting peptide 

mixtures showed different antioxidant properties. This result indicates the important role of 

hydrolysis condition. 

 

Antiobesity peptides 

Soybeans are normally considered to be beneficial in the management of obesity. 

Soybean might carry out this function by appetite control, increasing metabolic rate, inhibiting 
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the absorption of dietary lipids, accelerating lipid metabolism, and decreasing body fat, which 

lead to weight loss, and decreased plasma and hepatic triacylglycerols (Shahidi and Zhong, 

2008; Wang and De Mejia, 2005). Zhang et al. (1998) found the soy protein hydrolysates from 

an alkaline protease decreased blood lipids and body weight. A peptide from soy glycinin 

A5A4B3 subunit with the sequence of LPYPR was identified as having anorectic activity (the 

ability of reducing food intake) (Takenaka et al., 2000). Peptides with anorectic activity were 

shown to decrease food intake, fat, and body weight (Challis et al., 2004). Soy β-conglycinin 

pepsin hydrolysates were shown to directly act on rat small intestinal mucosal cells, thus 

suppressing food intake and gastric emptying (PupoVac and Anderson, 2002). The inhibition 

of food intake was also observed by Nishi et al. (2003b), and the inhibition can be abolished by 

devazepide, a selective peripheral CCK receptor antagonist, indicating the role of CCK in the 

inhibition effect. They also identified the β 51-63 fragment of β-conglycinin to have appetite 

control activity (Nishi et al., 2003a).  

 

Anticancer peptides 

The anticancer activities of soy protein and peptides are not well established, however, 

there is evidence for anticancer peptides from soybeans (Wang and De Mejia, 2005). Peptides 

purified from a thermolase hydrolysate of defatted soybean meal were shown to have in vitro 

cytotoxicity on mouse monocyte macrophage cell line, and the peptides arrested cells in G2/M 

phases of the cell cycle (Kim et al., 2000). Glycopeptides from bromelain-hydrolyzed soy 

protein have strong cytotoxic activity against P388D1 mouse lymphoma cells. Lunasin is a 

well-studied natural peptide from soybeans, which is in the 2S fraction of soy protein. Lunasin 

can bind to non-acetylated H3 and H4 histones and prevent their acetylation (de Lumen, 2005). 
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In addition, lunasin can suppress carcinogenic transformation induced by chemicals in 

mammalian cells (Lam et al., 2003).  

 

Immunomodulatory peptides 

Certain peptides from enzyme digests of soy protein prevent alopecia (hair loss) 

induced by cancer chemotherapy (Wang and De Mejia, 2005). Several peptides isolated from 

trypsin digests of soy proteins were found to have phagocytosis-stimulating activity, for 

example, a peptide from the α’ subunit of β-conglycinin with the sequence of 

MITLAIPVNKPGR (Maruyama et al., 2003).  

In summary, soy protein is a good source for bioactive peptides that have diverse 

functions; however, the study is not as thorough as for the dairy protein. More research still 

need to be conducted to elucidate the sources, functions, and mechanisms of active peptides. 

 

Thesis Organization 

This thesis contains a general introduction chapter, followed by three research papers 

and a general conclusion chapter. The papers are in the journal format required by Journal of 

Agricultural and Food Chemistry. 
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Figure 1. Schematic ribbon diagram of the SBA structure with bound Ca
2+

 (yellow), Mn
2+

 (red), 

one LacNAc arm of the noncovalent sugar (green), and the two GlcNAc moieties of the Man9 

chain (red) covalently bound to Asn 75 (yellow). The blue arrows are β-sheets. Source: Dessen 

et al., 1995 
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CHAPTER 2. DEACTIVATION OF SOYBEAN AGGLUTININ USING 

NON-THERMAL TREATMENTS 
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Abstract 

A series of experiments was conducted to eliminate the hemagglutination activity of 

the anti-nutritional factor, soybean agglutinin (SBA). Deglycosylation decreased activity of 

SBA by 21%, but not as much as denaturation by heat or denaturing reagents (47-77% residual 

activity). Single enzymes, such as trypsin, chymotrypsin, thermolysin and Endoproteinase 

Glu-C, did not hydrolyze native SBA, but hydrolyzed heat- or organic solute-denatured SBA. 

Even after hydrolysis, activity of SBA still was not fully eliminated (44-62% residual activity). 

Combinations of enzymes with thermolysin fully deactivated heat- or organic solute-, such as 

guanidine hydrochloride and urea, treated SBA. Pepsin and pancreatin hydrolysis fully 

deactivated native SBA. Tea polyphenols, metal ions, and chelating agents were also tested, 

and they showed no significant effect in SBA activity. N-acetyl-galactosamine-agrose beads 

specifically removed SBA from protein mixture, but not fully and the activity was not fully 

eliminated. In conclusion, SBA needs to be denatured first for enzyme hydrolysis and multiple 

enzymes are needed to fully deactivate SBA. 
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Introduction 

Soybeans contain anti-nutritional factors. If soybeans are consumed by humans and 

animals without heating, they can cause growth depression, and pancreatic hypertrophy, and 

hyperplasia and adenoma can occur in some animal species (1). There are also reports that 

some soy protein causes allergies in human (2). The most prominent anti-nutritional factors are 

the trypsin inhibitors and lectin (3). It was estimated that the trypsin inhibitors accounted for 

about 40% of the growth inhibition of raw soybeans, while the lectin was responsible for 50%. 

The remaining 10% is likely due to the incomplete digestion of the undenatured protein (4).  

Lectin is a group of proteins that participate in plant defense. In soybean, lectin is called 

soybean agglutinin (SBA). SBA is a glycoprotein and forms tetramer with 30-KDa subunits. 

Each subunit carries an N-linked carbohydrate unit Man9(GlcNAc)2 attached to Asn-75, with a 

molecular weight of 1866 Da. In addition, each subunit has a carbohydrate binding site, with 

the highest affinity for N-acetyl-D-galactosamine (GalNAc), which specifically inhibits 

hemagglutination activity of SBA, and second highest affinity for galactose (5). Each subunit 

of SBA has tightly bound Ca
2+

 and Mn
2+

 ions or other transition metal ions that are required for 

their carbohydrate binding activity (6). SBA exists in different forms are called isolectins. In 

soybeans, four truncated forms, with 240, 243, 246, and 252 amino acids, were identified, in 
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addition to the native form with 253 amino acids (7). The isolectins have very similar 

properties and are immunochemically indistinguishable (3). These isolectins might contribute 

to the multiple bands of SBA extract on SDS-PAGE gels.  

Native SBA is resistant to digestive enzymes in the gastrointestinal (GI) tract, and has a 

unique property of binding to carbohydrate-containing molecules. SBA is generally considered 

as an anti-nutritional factor because it can survive intestinal transit and bind to the intestinal 

epithelium, which, in turn, causes disruption of the brush border, atrophy of the microvilli, 

reduced viability of the epithelial cells, increased intestine weight (8), and pancreatic 

hypertrophy (9,10). Some of the lectin can even cross the gut wall into circulation, generating 

antilectin antibodies (11). SBA can also inhibit the disaccharidases and proteases in the 

intestine, interfere with the absorption of nonheme iron (12) and lipid from the diet, lower the 

circulating insulin concentration, and cause degenerative changes in the liver and kidney (3).  

Different methods have been used to deactivate SBA, with heat treatment being the 

most commonly used one. Dry heat treatment is not effective in deactivating SBA (13), but 

moist heat treatment is (14). Demuelenaere (13) found that dry heating at 100 °C for 30 min did 

not significantly decrease activity of SBA, whereas autoclaving at the same conditions fully 

deactivated SBA. Dai et al. (15) found that, after dry heat treatment at 120 °C for 60 min, the 

SBA still had considerable activity, whereas moist heat treatment of 95 °C for 30 min, 100 °C 

for 20 min or 105 °C for 10 min was enough to fully deactivate SBA. Chemical modifications 

have been used to study the crucial amino acids for activity of SBA. Liener and Wada (16) 
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found modifying α-amino groups and removing the C-terminal amino acids by using 

carboxypeptidase did not decrease activity of SBA, whereas modifying the ε-amino groups 

(such as in lysine) and phenol groups (such as in tyrosine) caused significant loss in activity. 

Dai et al. (15) added different metal ions to SBA and observed reduced SBA activity for some 

of the metal ions, such as Th(NO3)4, AlCl3, Fe(NO3)3, Pb(NO3)2, FeSO4, and AgNO3. Bajpai et 

al. (17) used zinc alginate beads to remove SBA and trypsin inhibitors from an aqueous extract 

of soy flour, and obtained 94 and 95% removal of SBA and trypsin inhibitors, respectively. The 

literature reports contradictory results about the role of the carbohydrate moiety in SBA. Nagai 

and Yamaguchi (18) found that the intramolecular high-mannose oligosaccharide chains were 

essential for proper folding and activity. On the other hand, Adar et al. (19) found that the SBA 

expressed by Escherichia coli, which lacks the ability to glycosylate proteins, still had the 

same activity as native SBA, and SBA still formed a tetramer. 

Recently, there have been on-going efforts to develop aqueous extraction process using 

water to replace hexane to extract oil from soybeans (20). This process uses much less heat 

than the traditional process; therefore, protein functionality is preserved. However, such 

nonthermal processes do not deactivate SBA. Our main research objective was to find practical 

methods to deactivate SBA with minimum heating. Our ultimate goal was to use non-thermal 

treatments to improve feeding quality of soybean for animals.  

Despite all the contradictory data about the effects of deglycosylation on activity of 

SBA as mentioned earlier, the carbohydrate unit of SBA may play some role in the activity. We 
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wanted to deglycosylate SBA and test whether this deglycosylation is an effective way to 

deactivate SBA with minimum heating. In addition to deglycosylation, we also tested other 

factors that contribute to activity of SBA, such as protein structure, hydrolysis, polyphenols, 

and metal ions.  

The activity of lectin can be tested by different methods, all based on the carbohydrate 

binding property. The most commonly used method is the hemagglutination assay, which is 

based on the ability of lectin to agglutinate erythrocytes (3). The end point is given by the 

highest dilution of lectin that still causes clumping of cells, which can be tested visually (14), 

by photometric measurement (21), or by examination under the microscopy (22). In this study, 

we chose to use trypsin-treated rabbit red blood cells for the hemagglutination assay and visual 

examination of the end points. 

  

Materials and Methods 

Materials. Soy white flake was obtained from Cargill (Minneapolis, MN) and was 

produced by hexane extraction of the oil and then flash-desolventing to achieve soy protein 

with ≥ 85% dispersibility in water. Rabbit blood in Alsever’s solution was obtained from 

Hemostat Laboratories (Dixon, CA) and used within two weeks. Endoglycosidase Hf (Endo 

Hf), glycoprotein denaturing buffer, and G5 reaction buffer were purchased from New England 

Biolabs (Ipswich, MA). Tea polyphenols were obtained from MP Biomedicals (Solon, OH). 

Other reagents were purchased from Fisher Scientific (Pittsburg, PA) or Sigma-Aldrich (St. 
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Louis, MO). 

 

Extraction and purification of SBA. The procedure described by Lis and Sharon (23) 

was used. Generally, 1 Kg of soy flake was dispersed in 12 L of distilled water and the pH was 

adjusted to 4.6 with concentrated HCl and the dispersion was incubated overnight at 4 ºC to 

precipitate the major storage proteins. Most of the supernatant fluid was poured out and 

collected, and the remaining supernatant obtained by centrifugation (3020 x g, 15 min) was 

saved. Ammonium sulfate, 300 g, was added to each L of supernatant to precipitate other 

proteins. Vacuum filtration was used to remove the precipitate. To each L of filtrate, 270 g of 

ammonium sulfate was added while stirring and the mixture was incubated overnight at 4ºC to 

precipitate the crude SBA. The precipitate was then collected by centrifugation and 

resuspended in 200 mL of water and dialyzed against water for 24 h at 4ºC with two changes of 

water. Any insoluble material, which was present after dialysis, was removed by centrifugation 

and discarded. A second precipitation of SBA was done by adjusting the pH of the solution to 

4.6 with 1 N HCl and adding ammonium sulfate (56 g/100 mL of solution). The precipitate was 

collected by centrifugation (3020 x g, 15 min) and redissolved in 100 mL of 0.05 M phosphate 

buffer, pH 6.1. The SBA solution was dialyzed against water for 24 h at 4ºC and then 

lyophilized. The different isolectins were not separated, and the SBA was not further purified.  

 

Deglycosylation of SBA using enzyme Endo Hf. Deglycosylation of SBA by EndoHf 
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was done according to the protocol in the product information sheet provided by New England 

Biolabs. It was recommended that the protein be denatured with glycoprotein denaturing 

buffer and heat treated before deglycosylation. To identify the best condition for 

deglycosylation of SBA with Endo Hf and test the effects of denaturing buffer and heating on 

deglycosylation, SBA samples were treated as shown in Table 1. SBA (8 mg/mL in 0.9% saline) 

was mixed with or without 10 x glycoprotein denaturing buffer (5% sodium dodecyl sulfate 

(SDS), 0.4 M dithiothreitol (DTT)), then subjected to heat treatment or not. Then 20 μL of 10 x 

G5 buffer (0.5 M sodium citrate, pH 5.5), 20 μL of ddH2O and 10 μL of Endo Hf (1,000,000 

U/mL) were added. The samples were then incubated overnight (18 h) at 37ºC and then stored 

at -20ºC until hemagglutination assay. 

 

Effect of pH on activity of SBA. Hydrochloric acid or sodium hydroxide was used to 

adjust pH of SBA solutions to 1-13 on 0.5 intervals. The samples were stored at 4 ºC overnight 

before further testing. Dai et al. (15) found that red blood cells would lyse when pH < 5. So, 

samples that have pHs lower than five were separated to two parts: one was adjusted to pH 5-6 

using 10 x PBS buffer (phosphate-buffered saline, 0.1 M phosphate, 0.9% saline, pH 8.0), the 

other was subjected to hemagglutination assay directly.   

 

Effects of denaturing agents on activity of SBA. Sodium dodecyl sulfate was added to 

SBA to make a final concentration of 0.5%. After incubating at ambient temperature for 18 h, 
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the sample was subjected to the hemagglutination assay. Organic solutes, 8 M urea or 6 M 

guanidine hydrochloride (GuHCl), was added to SBA (1 mL, 8 mg/mL) and the pH was 

adjusted to 10. After incubating at ambient temperature for 18 h, half of the solution was 

dialyzed against water for two days to remove urea or GuHCl. The samples with SDS, GuHCl 

or urea were subjected to the hemagglutination assay to examine the effects of the denaturing 

agents on SBA activity. The samples with or without GuHCl or urea removed were also 

subjected to enzyme hydrolysis.  

 

Enzyme hydrolysis of SBA to reduce hemagglutination activity. All enzyme 

treatments were carried out according to the product information sheet provided by 

Sigma-Aldrich (St. Louis, MO) and the information of enzymes is summarized in Table 2. 

Native SBA, SBA treated with heat, autoclaving, and organic solutes (with or without removal) 

were subjected to the same enzyme hydrolysis procedure. For Endoproteinase Glu-C (Glu-C) 

hydrolysis at the Glu site, 3.2 mg SBA protein was treated in 0.1 M ammonium bicarbonate pH 

8.0 (buffer 1) with enzyme:protein ratio of 3:80 for 18 h at 37 ºC. For Glu-C hydrolysis at the 

Glu and Asp site, the same treatment was done except the buffer was 0.1 M sodium phosphate 

buffer, pH 7.8 (buffer 2). The chymotrypsin treatment was done by treating 3.2 mg SBA 

protein in 100 mM Tris-HCl, 10 mM CaCl2, pH 7.8 at enzyme:protein ratio of 1:64 for 24 h at 

30 ºC. The thermolysin treatment was done in the same buffer as chymotrypsin with 

enzyme:protein ratio of 1:100 for 24 h at 70 ºC. For trypsin hydrolysis, 3.2 mg SBA protein 
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was treated in PBS (phosphate-buffered saline, 10 mM phosphate, 0.9% saline), pH 8.0 with 

enzyme:protein ratio of 1:16 at 37 ºC for 24 h. Pancreatin hydrolysis was carried out by 

treating 3.2 mg SBA protein in the same buffer as chymotrypsin, and enzyme:protein ratio of 

1:25 for 24 h at 37 ºC. For pronase hydrolysis, 3.2 mg SBA protein was treated in 50 mM 

ammonium bicarbonate buffer (pH 8.0) with enzyme:protein ratio of 1:50 at 37 ºC for 24 h.   

For multi-enzyme hydrolysis, 400 μL SBA protein (3.2 mg) was mixed with 1 M 

Tris-HCl containing 100 mM CaCl2, and then different combination of enzymes were added. 

For the combination of trypsin + thermolysin, trypsin + chymotrypsin + thermolysin, pronase 

+ pancreatin + thermolysin, and pancreatin + thermolysin, the mixture was incubated at 37 ºC 

for 22 h and then 70 ºC for 2 h. For the combination of trypsin + chymotrypsin, the mixture was 

incubated at 37 ºC for 24 h. For the combination of chymotrypsin + thermolysin, the mixture 

was incubated at 30 ºC for 22 h and then 70 ºC for 2 h. 

For pepsin followed by pancreatin hydrolysis, 400 μL SBA protein (3.2 mg) was mixed 

with 10 μL 1 M HCl to adjust pH to 2.0; then pepsin was added to make enzyme:substrate ratio 

of 1:5. The mixture was incubated at 37 ºC for 2 h. Tris-HCl (1 M) was then added to adjust pH 

to 7.5, and pancreatin was added to make enzyme:substrate ratio of 1:50. The mixture was then 

incubated at 37 ºC for 22 h. All samples were heated 100 ºC for 10 min to deactivate the 

enzyme and stored at -20 ºC until the hemagglutination assay.  

 

Effect of tea polyphenols on activity of SBA. Tea polyphenols had 65.4% 
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epigallocatechin gallate (EGCG), 82.8% catechins, 1.2% caffeine, and other components such 

as moisture and ash. Different volumes of 100 mg/mL tea polyphenols were added to 400 μL of 

SBA protein (3.2 mg), and the final concentration of polyphenols was from 2.5 to 20 g/L, with 

concentration intervals being 2.5 g/L. The mixtures were incubated at room temperature for 

about 1.0 h and either subjected to hemagglutination assay directly, or centrifuged (12,395 x g 

for 2 min) to obtain the supernatant for the hemagglutination assay.  

 

Effect of metal ions on activity of SBA. Different metal ions (Fe2(SO4)3, FeSO4, 

MgSO4, CaCl2, ZnSO4, CuSO4 and AlCl3) were added to the SBA samples to make a final 

concentration of 0.01 M. Fe2(SO4)3 was added to SBA samples to various final concentrations 

(0.25, 0.2, 0.1, 0.05, and 0.01 M). The samples were incubated at 4 ºC overnight before 

assaying for hemagglutination activity. 

 

Effect of chelating agents on activity of SBA. Different chelating agents (1 M, pH 4.0: 

citric acid, acetic acid, phosphoric acid) were added to SBA to make final concentrations of 0.5, 

0.4, 0.3, 0.2, and 0.1 M. Ethylenediaminetetraacetic acid (EDTA, 1 M, pH 8) was added to 

SBA to make the same final concentrations and the pH was adjusted to 4.0 by HCl. The 

samples were incubated in 4 ºC for 24 h before assaying for hemagglutination activity. 

 

Effect of removing of SBA from SBA extract using GalNAc-agarose beads. To 
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remove SBA from the extract, SBA (500 μL, 8 mg/mL) was mixed with different amount of 

GalNAc-agarose beads, gently mixed at 4 ºC overnight, then centrifuged (850 x g for 1 min) to 

obtain the supernatant for the hemagglutination assay.  

 

Effect of removing SBA from isoelectric extract using GalNAc-agarose beads. To test 

the specific binding of GalNAc-agarose beads to SBA in a mixed system, pH 4.6 isoelectric 

extract was used, assuming the isoelectric extract has concentrated SBA and other proteins. 

Soy white flake (5 g) was dispersed in 50 mL of 0.9% NaCl solution and the pH was adjusted 

to 4.6 using 2 M HCl to make a 10% (w/v) soy dispersion and the mixture was incubated 

overnight at 4 ºC. The dispersion was then centrifuged for 10 min at 3000 x g to make an 

isoelectric soluble protein extract (10%, 100 mg/mL). The extract was then incubated with 1 

mL GalNAc-agarose beads 4 ºC overnight and then centrifuged (850 x g for 1 min) to obtain 

the supernatants for the hemagglutination assay.  

 

Hemagglutination assay. The hemagglutination assay was performed according to a 

method of Lis and Sharon (23) with some modification. Briefly, rabbit red blood cells collected 

in Alsever’s solution were centrifuged for 5 min at 410 x g. After estimating the volume of the 

cells, 5 mL of 0.9% saline per mL of cells was added to wash the cells. Centrifugation was used 

to collect the cells. After washing for three times, red blood cells were suspended at 4% (v/v) in 

10 mM phosphate-buffered 0.9% saline (pH 7.4) (PBS), then one volume of 1% trypsin (w/v) 



42 

 

 

 

in PBS was added to 10 volumes of this suspension and the mixture was incubated for 1.0 h at 

37ºC to increase the sensitivity of the assay. The red blood cell suspension was then washed 

four times with 0.9% saline, and finally cells were resuspended at 3% (v/v) in 0.9% saline.   

Protein samples were serially diluted with two-fold dilution in a 96-well round bottom 

plate with saline to give a final volume of 0.1 mL. Then, 0.1 mL of 3% trypsinized red blood 

cells was added to each well. The plates were placed in 37 ºC for 2.0 h for agglutination to 

occur. The plates were then tilted about 45°, the samples with erythrocytes streamed in a 

“tear-drop” fashion were considered negative and the ones did not form “tear-drop” were 

considered positive. The hemagglutination units (HU) per g of sample were determined by 

using the equation (14): 

V

SDD
gHU BA 
  

where DA is the dilution factor of the first well, DB is the dilution factor of the well 

containing 1 HU (the last dilution that causes cell agglutination), S is the mL of extract per 

gram of sample (inverse of the initial concentration), and V is the volume of extract added. 

Each sample was done in duplication. The HU/g values were then expressed as log (HU/g)/log 

2 to normalize the data for the two-fold dilution. Because the results may be affected by age of 

the blood, the activity of the trypsin and other factors, SBA was used as a standard in every set 

of treatments. The results were expressed as relative activity to SBA to eliminate the influence 

of experimental conditions.  
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Statistical analysis. The data were analyzed by Analysis of Variance (ANOVA) and 

General Linear Model (GLM), and the Least Significant Differences (LSD) were calculated at 

the 5% level to compare treatment means using the SAS system (version 9.1, SAS Institute Inc., 

Cary, NC).  

 

Results and Discussion 

Lectin activity assay  

Various methods for testing activity of lectin have been used, and hemagglutination 

assay is the most commonly used one. Variations to this method exist, for example, the 

erythrocytes can be treated with different enzymes or chemicals to improve the sensitivity of 

the test. Trypsin and papain are commonly used enzymes for SBA testing (3), and 

glutaraldehyde is an example of a chemical used for treating erythrocytes (24). The 

carbohydrate or glycoprotein-bound polystyrene latex beads is a substitute for the red blood 

cells. This method uses similar method as the hemagglutination assay and also uses visual 

inspection of the end point. This method avoids the use of fresh blood, which may not always 

be available (25). For SBA, the covalent coupling of the latex beads to GalNAc or lactosamine 

is commonly used. The replacement of blood obviates the influence of the age of the blood and 

the activity of the enzymes, but it introduces inconsistency of the coupling procedure. There 

are also other methods used to detect activity of lectin. Carbohydrate-protein conjugates were 
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used to precipitate lectins, and the protein content in the precipitate was tested (26). Surface 

plasmon resonance (SPR) was used to detect the binding affinity of carbohydrates to lectins 

(27). Ligand blotting method (28), carbohydrate-coupled affinity chromatography (29) and 

enzyme-linked solid-phase assays (30) were also used. All of the methods are much more 

tedious than hemagglutination assay. Although these in vitro detection methods are normally 

easy and quick, they might not truly reflect the in vivo binding of lectins to the intestinal 

epithelial cells. Hendriks et al. (31) purified bovine small intestinal brush boarder membranes 

and coated them to the bottom of a microtiter plate. The lectin was conjugated with peroxidase, 

and the binding of lectin to brush boarder was quantified by the peroxidase activity. However, 

this method cannot be used for the crude extract of lectin. Among all these methods, the 

hemagglutination assay is the most commonly used and easiest test for lectins. We need to do a 

large number of treatments for SBA, which requires an efficient analysis method to carry out 

the activity test, so we chose hemagglutination assay. 

 

Effect of deglycosylation on activity of SBA 

Endo Hf is an enzyme that specifically cleaves high mannose and certain hybrid types 

of N-linked carbohydrates on proteins and leaves an GlcNAc residue on the protein. SBA has a 

Man9(GlcNAc)2 chain attached to Asn-75 of each subunit with N-linkage; so, SBA is substrate 

for Endo Hf. The SBA monomer is about 30 KDa, and the carbohydrate chain is about 1.9 KDa. 

After deglycosylation, SBA should have a molecular size of 28.1 KDa. Fig. 1 shows that 
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deglycosylated SBA was present in all the samples. Samples in lanes 3 and 5, which were 

treated with denaturing buffer and with or without heating, were fully deglycosylated. The 

ones without denaturing buffer and with or without heating (Lane 4 and 6) had both 

deglycosylated and native SBA, which indicated that SBA was not fully deglycosylated. These 

results indicate that heat treatment is not an effective pretreatment for deglycosylation of SBA 

by Endo Hf; however, the denaturing buffer containing SDS and DTT is an effective 

pretreatment for the hydrolysis reaction to complete. Therefore, we treated SBA with 

denaturing buffer before Endo Hf hydrolysis in all subsequent experiments.  

Even fully deglycosylated by Endo Hf, SBA still had 79% activity, which was higher 

than for the heat treatment alone (56%) (Fig. 2). The activity is expressed as relative activity to 

native SBA, that is, the log (HU/g)/log 2 value of the sample divided by the value for native 

SBA. This result indicates that the carbohydrate part may not play a crucial role in activity of 

SBA, because removal of this part does not fully decrease activity. This result is partially in 

agreement with Adar et al. (19) who found that the SBA expressed by Escherichia coli, which 

lacked the ability to glycosylate proteins, still had the same activity as native SBA. The 

reduction in activity of the Endo Hf deglycosylated SBA may also be due to the denaturing step 

before deglycosylation. These results lead to the proposal that proper three-dimentional 

structure of SBA may be crucial for its activity. 

     

Effect of pH and denaturing agents on activity of SBA 
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Protein structure plays important roles in the function. An improperly folded protein 

has no function, or functions abnormally. For example, improper folding of a protein called 

prion causes various types of transmissible neurodegenerative spongiform encephalopathies in 

animals and human (32). Protein function could be lost when its secondary, tertiary or 

quarternary structure is changed (33). There are many methods to denature protein, for 

example, heat treatment, organic solutes, detergents, and extreme pHs. Proteins tend to unfold 

at very high or low pH, because of the strong repulsion between like charges (33). Heat can 

destabilize major noncovalent interactions, causing protein denaturation. Detergents, such as 

sodium dodecyl sulfate (SDS), bind to protein, causing a shift in equilibrium between the 

native and denatured states. SDS binds so tightly that denaturation is irreversible. Organic 

solutes, such as urea and GuHCl, solubilize hydrophobic amino acid residues by breaking the 

hydrogen bonded structure of water, making it a better solvent for nonpolar residues. At low 

concentration, this denaturation is reversible (33). In fact, urea and GuHCl are used for 

solubilizing and refolding of inclusion bodies, which is produced by over expression of protein 

in bacteria. GuHCl and urea can denature and solubilize the proteins, and upon removal, the 

proteins can fold back to original form (34). GuHCl is a more powerful denaturant than urea 

because it is ionic, which binds to protein easier (33). We wanted to examine whether these 

protein denaturation methods could fully deactivate SBA.  

In order to determine the susceptibility of SBA to pH and determine whether extreme 

pHs can deactivate SBA, we tested the activities of SBA under different pHs. High or low pH 
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caused red blood cells (RBCs) to lyse; however, as samples were diluted, the cells were not 

lysed. Typically, after four to six dilutions, the cells were normal, and SBA agglutinated RBCs 

occurred after about 15 dilutions, so the effect of pH on the hemagglutination assay can be 

disregarded. In addition, the samples with low pH were tested twice, either adjusted back to pH 

6 or tested directly, and the two samples showed similar activities, which was additional 

evidence that the effect of pH on this assay was little. After several dilutions of a sample or 

when the pH of a sample was adjusted back to 6, however, the pH of the sample was no longer 

the ones we intended to test. This might be a concern about whether the results showed true pH 

effects. Fig. 3 shows that activities of SBA did not decrease in the low pH range, whereas the 

activity decreased in the high pH range. This observation is not surprising because SBA can 

survive the very acidic environment in the stomach and the acidic condition only caused 

reversible structure change. On the contrary, high pH may cause the SBA tetramer to 

irreversibly dissociate and/or cause SBA monomer to partially unfold, thus decreasing activity; 

however, even at pH above 11, SBA still showed > 40% activity. Extremely high pH cannot be 

used in food system because high pH may destroy the nutritional value of food, for example, 

the formation of lysinoalanine at high pH lowers nutritional value of protein and causes kidney 

disease in rats (35). Changing pH is not suitable for practical use.     

Heat treatment and three denaturing reagents, SDS, urea and GuHCl were expected to 

fully destroy the quaternary, tertiary and secondary structure of SBA, leaving unfolded protein. 

Fig. 4 shows that all these treatments decreased activity of SBA, but to different extents. This 
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result indicates that structure plays an important role in activity of SBA. Even after 

denaturation, however, SBA still had at least 47.1% activity (the 100 °C for 20 min). Therefore, 

denaturation alone is not effective to fully deactivate SBA.  

 

Effect of enzyme hydrolysis on activity of SBA 

From previous results, we found that the carbohydrate part and protein structure both 

play some roles in activity of SBA; however, neither of the modifications are fully responsible 

for activity of SBA. There may be other factors influencing activity of SBA. Protein functions 

as a whole unit, and destroying the protein may decrease the activity. Therefore, we tried 

destroying SBA by cutting it into small pieces. Four main hydrolytic enzymes were chosen 

from various sources. Trypsin is one of the most commonly used enzyme, and is readily 

available. This enzyme specifically hydrolyzes peptide bonds at the carboxyl side of arginine 

or lysine residues. The hydrolysis rate decreases if there is an acidic residue present on either 

side of the cleavage site. If a proline residue is on the carboxyl side of the cleavage site, 

hydrolysis will not occur (36). There are some consensus sequences in legume lectins (37), 

which might be important for their activities, so we chose three additional enzymes to target 

these sequences: Glu-C from Staphylococcus aureus V8, α-chymotrypsin from bovine 

pancreas, and thermolysin from Bacillus thermoproteolyticus rokko. Glu-C hydrolyzes peptide 

bonds at the carboxyl side of glutamyl and aspartyl residues. In ammonium acetate (pH 4.0) or 

ammonium bicarbonate (pH 8.0), the enzyme preferentially cleaves glutamyl bonds, whereas 
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in phosphate buffer (pH 7.8) the enzyme cleaves at either glutamyl or aspartyl sites. When 

proline is on the carboxyl side, no cleavage will occur (38). Glu-C will not cut the protein too 

short, but can cut at the consensus sequence, so the enzyme is perfect to explore the influence 

of consensus sequences on activity of SBA. Liener and Wada (16) found that the modification 

of tyrosine decreased activity of SBA significantly, which indicated the possible involvement 

of tyrosine residue in activity of SBA, so we also chose chymotrypsin. Normally chymotrypsin 

hydrolyzes peptide bonds on the C-terminal side of tyrosine, phenylalanine, tryptophan, and 

leucine; but, secondary hydrolysis can also occur on the C-terminal side of methionine, 

isoleucine, serine, threonine, valine, histidine, glycine, and alanine (39). Thermolysin 

hydrolyzes protein bonds on the N-terminal side of hydrophobic amino acid residues, with 

preferential cleavage as follows: X-(cleavage site)-Y-Z, where X is any amino acid, Y is Leu, 

Phe, Ile, Val, Met or Ala, Z is any amino acid other than Pro. Because of the low substrate 

specificity, thermolysin can cut the protein into very small pieces. Also, thermolysin is active 

in a wide pH range (pH 5 - 9.5) and high temperature (optimal 70 ºC), which is important in 

order to hydrolyze a tough protein like SBA. Another enzyme, pronase, from Streptomyces 

griseus, is a mixture of at least 10 proteases and is very nonspecific (39). We included pronase 

as a mixture of enzymes, trying to fully hydrolyze SBA and eliminate the activity. In addition 

to these enzymes, we also used pancreatin from porcine pancreas as a mixture of pancreatic 

enzymes.  
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Effect of single enzyme hydrolysis on activity of native SBA. Fig. 5 shows that after 

hydrolysis of native SBA, there were still SBA bands on the gel, which indicates that none of 

the hydrolytic enzymes we used can fully hydrolyze native SBA. The activities of 

enzyme-treated SBA did not decrease (Table 3). These results indicate that native SBA is 

resistant to hydrolytic enzymes. SBA has a very compact structure, which inhibits the access of 

enzymes to the cleavage site. We hypothesized we may need to destroy this structure before 

hydrolysis. 

 

Effect of single enzyme hydrolysis on activity of heat treated SBA. In order to enable 

the access of enzymes to active sites in SBA, we heated at 100 ºC for 20 min or autoclaved at 

121ºC for 30 min to denature SBA first and then we treated the protein with different enzymes. 

Fig. 6 shows that after trypsin, chymotrypsin, or thermolysin hydrolysis of heat-treated SBA, 

there were no SBA bands on the gel, indicating that SBA was fully hydrolyzed. Glu-C cannot 

fully hydrolyze heated SBA in both buffer 1 (0.1M ammonium bicarbonate, pH8.0, hydrolyzes 

at the carboxyl side of glutamyl residue) and buffer 2 (0.1M sodium phosphate buffer, pH 7.8, 

hydrolyzes at the carboxyl side of either glutamyl or aspartyl residue). However, even after 

being hydrolyzed, activity of SBA did not further decrease and the residue activity was still 

similar to the heat treatment alone (Table 3). Single enzyme hydrolysis was not sufficient to 

fully deactivate SBA. In addition, there was no significant difference between the two heat 

treatments (moist heat and autoclave), so we used 100 ºC for 20 min in future treatments. 
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Effect of single enzyme hydrolysis on activity of organic solutes treated SBA. We 

demonstrated that after denaturing with heat, SBA can be hydrolyzed by proteases; however, 

we want to avoid heat treatment of the proteins. Organic solutes such as GuHCl and urea can 

also denture SBA and decrease the activity to similar extent (Fig. 4), so we treated SBA with 

organic solutes including urea or GuHCl, and then with proteases. From previous results, we 

found SBA was more susceptible to basic conditions, so we conducted the urea or GuHCl 

treatment at pH 10, where SBA was more likely to unfold. Organic solutes cannot be left in 

food, so they were removed by dialysis against water before enzyme hydrolysis. We found 

single enzyme hydrolysis after GuHCl treatment (either with GuHCl removed or not) did not 

fully deactivate SBA (Table 4). They all had similar activities as GuHCl treatment alone, 

which was in agreement with the heat treatment data (Table 3). Removing GuHCl or not did 

not affect the activities. Urea treatment displayed a similar pattern. After enzyme hydrolysis, 

they had similar activities with urea treatment alone (Table 4); however, there was significant 

difference between the urea removal or not, which was different from the GuHCl treatment. 

These results indicate that GuHCl and urea could replace heat treatment to denature SBA 

before enzyme hydrolysis.  

 

Effect of multiple enzymes hydrolysis on activity of SBA. After single enzyme 

hydrolysis, SBA was not fully deactivated, so we tried to cut SBA into smaller pieces by using 
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a mixture of multiple enzymes. A combination of enzymes cannot hydrolyze native SBA, and 

the activity did not decrease (Table 5), which again proved that native SBA is resistant to 

hydrolytic enzymes. A combination trypsin, chymotrypsin and thermolysin, however, fully 

deactivated heat-treated SBA (Table 5). This indicates that after being cut into smaller pieces, 

SBA can be fully deactivated. In addition, any combination of enzyme treatments with 

thermolysin could fully deactivate SBA. This result indicates that thermolysin might cut the 

crucial sites for activity of SBA. However, thermolysin alone did not fully deactivate SBA, 

indicating that trypsin and chymotrypsin also cut at crucial sites, although not completely. This 

result was in agreement with the result that combination of trypsin and chymotrypsin did not 

fully deactivate SBA. Furthermore, pancreatin, which contains trypsin and chymotrypsin, did 

not fully deactivate SBA. This further supported the result that combination of trypsin and 

chymotrypsin could not fully deactivate SBA.  

To fully deactivate SBA with minimum heating, GuHCl or urea were used to replace 

heat treatment. Before removing GuHCl, a combination of three enzymes (trypsin, 

chymotrypsin, and thermolysin) did not fully deactivate SBA. After GuHCl treatment and 

removal, the combination of the three enzymes fully deactivated SBA (Table 5). These results 

indicate that GuHCl may denature both SBA and the enzymes, so that GuHCl interfered with 

enzyme hydrolysis. In addition, GuHCl can irreversibly denature SBA, so after removal, SBA 

did not fold back to the original configuration, which enabled the enzyme hydrolysis that led to 

full deactivation of SBA. Urea behaved differently. After removal of urea, combination of 
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three enzymes still cannot fully deactivate SBA, which indicates that urea may not irreversibly 

denature SBA. After removal, some SBA folded back to original structure; thus, hydrolysis 

and deactivation were not as complete. This result also can explain the data in Tables 4 and 5. 

After removal of urea, activity of SBA was higher than before removal. In addition, single 

enzyme hydrolysis of SBA after removal of urea displayed higher activities than before 

removal. The decrease of activity for single enzyme hydrolysis in the presence of urea might 

be due to the denaturation of SBA, not hydrolysis. After removal of urea, some SBA folded 

back, inhibiting enzyme hydrolysis, so the activities were higher than SBA that denatured by 

urea (Table 4). 

Table 6 shows the effects of other enzymes on SBA activity. Although pronase is 

capable of hydrolyzing casein into more than 70% amino acids (39), it did not fully deactivate 

the heated SBA (Table 6). This result indicates the inability of pronase to cut the active sites of 

SBA. The combination of pronase, pancreatin and thermolysin fully deactivated heated SBA, 

which was in agreement with our earlier results that thermolysin was able to cut the active sites 

of SBA. 

Although treating with GuHCl and multiple enzymes can fully deactivate SBA with 

minimum heating, it is not a feasible way to treat large amounts of material for feeding trials. 

We want to identify other more practical ways to denature SBA. Low and high pHs can 

denature SBA. However, enzymes are also denatured at extreme pHs. There are several 

exceptions and pepsin is one. The optimal pH for pepsin is 2 to 4, in which SBA might be 
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denatured. Pepsin preferentially cleaves C-terminal to Phe, Leu and Glu, and does not cleave at 

Val, Ala or Gly. Pepsin cannot cleave the protein into very small peptides. We then included 

another non-specific enzyme pancreatin to hydrolyze SBA into small pieces. After hydrolysis 

with pepsin followed by pancreatin, the SBA band disappeared on SDS-PAGE (Fig. 7) and the 

activity of both native and heat-treated SBA was reduced to zero (Table 6). Pepsin and 

pancreatin are enzymes available in large quantity and low price, so it is feasible to use this 

combination to treat soy white flakes (SWFs) and generate feeding materials.  

From the results above, we learned that altering SBA structure could decrease its 

activity. Native SBA was resistant to proteases, but when denatured first, either by heating or 

denaturing reagents, SBA can be hydrolyzed. Even after being hydrolyzed by individual 

enzymes, SBA still had some activity, whereas hydrolyzing by using multiple enzymes could 

fully deactivate SBA. Thus, we proposed our active peptide hypothesis: aative SBA is a 

tetramer, having full activity; denatured SBA cannot form tetramer, so activity is reduced; 

single enzyme hydrolyzes SBA into small peptides, but some of the peptides still have activity; 

multiple enzymes hydrolyze SBA into even smaller peptides and destroy the active peptides, 

so SBA is fully deactivated. Fig. 8 illustrates the bioactive peptide hypothesis. 

 

Other treatments used to decrease activity of SBA 

In addition to the enzyme hydrolysis of SBA, we also considered some non-destructive 

methods, so that we may avoid the problem of trying to destroying the compact structure of 
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SBA. 

 

Effect of tea polyphenols on activity of SBA. Tea polyphenols (TPs) are extracts from 

the green tea. They have been shown to complex with proteins (40) and influence their 

activities. Protein and polyphenols can form soluble complexes, which can grow to colloidal 

size and form haze, and if the complexes grow larger, can precipitate out of the solution. 

Hydrophobic interactions play important roles in this complexation, and proline is also shown 

to be crucial (40). TPs were shown to inhibit α-amylase and α-glucosidase (41), reduce 

activities of trypsin inhibitors (42), bind to and precipitate salivary proteins to cause the 

perception of astringent flavor (43). TPs carry out the function by forming networks (40), thus 

changing secondary structure of proteins (42). Zhu and Wang (44) found that the addition of 

tea polyphenols to concanavalin A (Jack bean agglutinin) decreased its activity. In this study, 

we tested the effect of TPs on SBA. 

After adding TPs to SBA solution, they formed a complex with the protein and the 

complex precipitated out of solution. We found that the activities of precipitate and supernatant 

mixtures did not decrease, they even slightly increased at some TP concentrations (Table 7). 

We then tested the supernatant alone and found the activities decreased but not in responding to 

TP doses (Table 7). These results indicate that the effect of tea polyphenols on SBA is simply 

removing SBA from the mixture and such interaction may not be specific and strong. Such 

treatment is not practical because TP may not distinguish SBA from other soy proteins, 
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therefore, the addition of TP would precipitate all types of soy proteins, decreasing nutritional 

value of soy protein.  

 

Effect of metal ions on activity of SBA. Jaffe et al. (6) found that the tetramer of SBA 

had four transition metal sites, with Mn
2+

 bound to them and Mn
2+

 is required for activity of 

SBA. In addition, the exchange of Mn
2+

 with Co
2+

 and Cd
2+

 did not influence activity of SBA, 

whereas the exchange for Ni
2+

 significantly increased activity. Dai et al. (15) found that adding 

certain metal ions other than Co
2+

, Cd
2+

 and Ni
2+

 to SBA extraction solution could reduce 

activity, presumably by interfering with the binding of Mn
2+

 to SBA and the formation of the 

correct three-dimensional structure of SBA. Hisayasu et al. (12) found that SBA could 

complex with ferrous iron, thus inhibiting nonheme iron absorption in rats. We hypothesized 

that some divalent or trivalent metal ions could interfere with the binding of Mn
2+

 to SBA, thus 

decreasing the activity. These metal ions generally did not decrease activity of SBA 

considerably (data not shown). We then chose Fe2(SO4)3 and used higher concentration; 

however, the activity did not decrease at all (data not shown). The reason may be that Mn
2+

 

binds to SBA too tightly to allow the replacement of other ions.  

 

Effect of chelating agents on activity of SBA. In addition to the replacement of other 

metal ions, chelating agents can bind to metal ions, thus may be a possible way to remove Mn
2+

 

in SBA. Different chelating agents with various concentrations were tested. Jaffe et al. (6) did 
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extensive dialysis of SBA using acetic acid buffer and achieved 70-80% loss of activity, so we 

also included acetic acid. Table 8 shows that citric acid, acetic acid and phosphoric acid in any 

concentrations did not decrease activity of SBA. EDTA decreased activity of SBA, but not in a 

dose-dependent manner, and the remaining activity was still high. The results were different 

from Jaffe et al. (6), who achieved 70-80% and even full loss of precipitating activity by 

extensive dialysis of SBA against chelating agents. They used both precipitating activity test 

(the ability of SBA to precipitate hog gastric mucin) and hemagglutination test. In certain cases, 

they achieved 75% reduction in precipitating activity whereas only 30% loss in 

hemagglutination activity. They suggested that the binding of SBA to the Mn
2+

 leached from 

the erythrocytes restored activity during the hemagglutination assay. We did not use extensive 

dialysis, instead, directly added chelating agents into SBA. We wanted to find practical ways to 

inactivate SBA. After dialysis and if soy protein is mixed with other food components, SBA 

will bind to Mn
2+

 in other food again, which can be overcome by directly adding chelating 

agents. 

 

Effect of removing SBA from the protein mixture on activity. Different lectins bind to 

different carbohydrates with specificity. SBA binds to GalNAc with highest affinity. 

GalNAc-agrose beads have been used to purify SBA (23), because the beads can specifically 

bind SBA without binding to other soy proteins. We wanted to use GalNAc-agrose beads to 

specifically remove SBA from the soy protein mixture. We first tested this method with pure 
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SBA. As more beads were added, more SBA was removed from the mixture (Fig. 9), and the 

activity decreased more (Table 9). Even when as high as 1.5 mL beads were added, however, 

the activity was still 60%. The binding capacity of the beads was 6 mg/mL, 1.5 mL beads 

should be able to bind 9 mg SBA, there were only 4 mg SBA in the solution, so 1.5 mL beads 

was in large excess to bind all the SBA. The reason for the inability to remove all the SBA from 

the solution may be that the interaction or affinity between beads and SBA was not strong, so 

after centrifugation, some SBA dissociated from the beads. Then we tested removing SBA 

from a mixed system, the isoelectric extract. The activity of isoelectric extract decreased 28% 

after incubating with 1 mL of beads, when testing SBA alone, the activity also decreased 28%. 

So, other proteins in solution did not interfere with binding of SBA to beads. Although this 

method can specifically remove SBA, it is not effective to remove all the SBA.  

There are also other treatments we conducted but without positive results. SBA can 

bind to GalNAc with highest affinity that specifically inhibits activity of SBA (5). We 

hypothesized that by adding excessive amount of this monosaccharide, the carbohydrate 

binding sites of SBA can be saturated, so that will not bind to the cell surface. We added 

GalNAc into SBA solution with different molar ratios of SBA to GalNAc: 1:10, 1:50, 1:100, 

1:200, 1:300 and 1:400. We found the 1:10 ratio did not have any inhibition effect. When the 

ratio was equal to or above 1:50, the activity of SBA was inhibited, that is, the cells were not 

agglutinated. After serial dilution of the GalNAc-SBA sample, this inhibition effect 

disappeared, and the cells agglutinated again (data not shown). This indicates that the 
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interaction between GalNAc and SBA was not strong and they undergo 

association-dissociation equilibrium, and dilution shifted the binding equilibrium. This 

relatively weak binding of GalNAc to SBA cannot survive in the GI tract, so GalNAc is not a 

practical method for treating soy proteins.  

From previous results, we found destroying structure of SBA decreased activity of 

SBA. High pressure (HP) seems to be a good method for destroying protein structure. We 

treated SBA with 400 MPa pressure (4,000 times of atmosphere pressure) for 5 min at room 

temperature and found no change in activity. In addition, trypsin did not hydrolyze HP-treated 

SBA (data not shown), which indicates that SBA was not sufficiently denatured to allow 

trypsin hydrolysis and activity reduction. Although higher pressure and temperature might be 

able to deactivate SBA, it is not practical. 
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Table 1. Experimental condition for examining the effect of denaturing buffer and heat on 

deglycosylation of soybean agglutinin 

 

Sample 
Extract of SBA 

(μL) 

10X Glycoprotein 

Denaturing Buffer (μL) 
H2O (μL) Heat 

1 125  15 10 100ºC, 10 min 

2 125  0 25 100ºC, 10 min 

3 125  15 10 Unheated 

4 125  0 25 Unheated 

 

  



65 

 

 

 

Table 2. Enzymes used for hydrolysis of soybean agglutinin 

Enzyme Activity 
Optimum reaction 

conditions 
Source 

Endoglycosidas

e Hf 

Cleaves high mannose and some hybrid types of 

N-linked carbohydrates on a protein 

pH 5.5, 37 ºC, 1-5 μL 

of Endo Hf hydrolyzes 

1-20 μg of protein 

New 

England 

Biolabs 

Endoproteinase 

Glu-C 

Cleave peptide bonds at the carboxyl side of 

Asp and Glu residues or only Glu residues 

pH 4.0 to 8.0, 37 ºC, a 

ratio of 3/100 (w/w) of 

enzyme to substrate 

Sigma- 

Aldrich 

Chymotrypsin 

Hydrolyzes peptide bonds on the C-terminal 

side of tyrosine, phenylalanine, tryptophan, and 

leucine. A secondary hydrolysis occurs on the 

C-terminal side of methionine, isoleucine, 

serine, threonine, valine, histidine, glycine, and 

alanine 

100 mM Tris-HCl-10 

mM CaCl2, pH 7.8, 30 

ºC, a ratio of 1:60 

(w/w) of enzyme to 

substrate 

Sigma- 

Aldrich 

Thermolysin 

X-(cleavage site)-Y-Z, where X is any amino 

acid, Y is Leu, Phe, Ile, Val, Met or Ala, Z is any 

amino acid other than Pro 

pH 8.0, 70 ºC 
Sigma- 

Aldrich 

Trypsin 
Hydrolyzes peptide bonds at the carboxyl side 

of arginine or lysine residues 
pH 8.0, 37 ºC 

Sigma- 

Aldrich 

Pancreatin 

Mixture of enzymes from porcine pancreas, 

such as amylase, trypsin, lipase, ribonuclease 

and protease 

pH7.5, 40 °C for 

protein 

Sigma- 

Aldrich 

Pepsin 
Preferentially cleaves C-terminal to Phe, Leu 

and Glu; does not cleave at Val, Ala or Gly. 
pH 2-4, 37 ºC 

Sigma- 

Aldrich 

Pronase 
A mixture of at least 10 proteases, very 

non-specific 
pH 7-8, 37°C 

Sigma- 

Aldrich 
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Table 3. Effect of single enzyme hydrolysis of native or heated soybean agglutinin on hemagglutination 

activity 

 

 Enzyme 

treatments 
Native SBA 100ºC-treated SBA Autoclaved SBA 

No enzyme 100 a* 47.1 ± 2.8 bc 48.0 ± 2.5 c 

Glu-C 1 104.4  53.2 ± 5.6 bc 53.1 bc 

Glu-C 2 104.4  44.8 ± 2.5 bc 53.1 bc 

Trypsin 97.6  53.7 ± 4.1 bc 54.6 ± 3.8 bc 

Chymotrypsin 100.7  35.1 ± 32.4 c 51.7 ± 3.7 bc 

Thermolysin 95.5 ± 8.1  62.2 ± 1.4 b 59.0 ± 6.6 b 

LSD0.05 
 

17.2 

* The values are the relative activity to native SBA (%) of the samples. N=3. Data are presented as Mean ± 

SD. Different letters within the column of 100ºC treated and autoclaved SBA represent significant 

differences (P ≤ 0.05), and native SBA was used as a control. Glu-C 1: Endoproteinase Glu-C in 0.1 M 

ammonium bicarbonate pH 8.0; Glu-C 2: Endoproteinase Glu-C in 0.1 M sodium phosphate buffer, pH 7.8. 
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Table 4. Effect of single enzyme hydrolysis of organic solutes-treated soybean agglutinin 

 

 Enzyme 

treatments 

Native 

SBA 
GuHCl 

Remove 

GuHCl 
Urea Remove urea 

No enzyme 100.0 Aa* 52.8 ± 2.6 B 49.5 ± 13.9 B 48.7 ± 3.2 de 75.0 ± 26.1 bc 

Trypsin – 53.0 ± 2.8 B 54.5 ± 19.1 B 48.5 ± 2.1 de 88.3 ± 2.3 ab 

Chymotrypsin – 48.0 ± 8.5 B 59.5 ± 10.6 B 40.5 ± 2.1 e 89.7 ± 3.1 ab 

Thermolysin – 60.0 ± 2.8 B 62.0 ± 2.8 B 59.5 ± 2.1 cd 82.0 ± 1.7 ab 

LSD0.05 
 

18.1 18.3 

* The values are the relative activity to native SBA (%) of the samples. N=3. Data are presented as Mean ± 

SD. Different letters within the column of GuHCl and remove GuHCl, urea and remove urea represent 

significant differences (P ≤ 0.05), and native SBA was used as a control. GuHCl: GuHCl-treated SBA; 

Remove GuHCl: SBA treated with GuHCl then removal of GuHCl; Urea: urea-treated SBA; Remove urea: 

SBA treated with urea then removal of urea. 

 



 

 

 

 

6
8
 

Table 5. Effect of combination of enzymes hydrolysis of differently treated soybean agglutinin 

 

Enzyme 

treatments 
Native SBA 100ºC 20 min GuHCl Remove GuHCl Urea Remove urea 

No enzyme 100.0 ± 0.0 Aa* 64.7 ± 7.8 c 52.8 ± 2.6 BC 49.5 ± 13.9 BC 48.7 ± 3.2 BC 75.0 ± 26.1 AB 

T+C – 51.0 ± 2.8 cd – – – – 

T+Th – 0.0 ± 0.0 e – – –  – 

C+Th – 0.0 ± 0.0 e – – –  – 

T+C+Th 97.0 a 0.0 ± 0.0 e 49.7 ± 5.9 BC 0.0 ± 0.0 D 41.5 ± 2.1 C 25.3 ± 43.9 CD 

P 92.0 ± 12.7 ab 45.3 ± 7.8 d – – – – 

P+Th 80.0 b 0.0 e – – – – 

LSD0.05 14.6 30.1 

* The values are the relative activity to native SBA (%) of the samples. N=3. Data are presented as Mean ± SD. Different letters within the column of 

native SBA and 100ºC 20 min, GuHCl and remove GuHCl and urea and remove urea represent significant differences (P ≤ 0.05), native SBA was used 

as a control for both. T: trypsin; C: chymotrypsin; Th: thermolysin. P: pancreatin. See table 4 for the abbreviations. 
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Table 6. Effect of multiple-enzyme hydrolysis of native or heated soybean agglutinin 

 

 Enzyme treatments Native SBA 100ºC 20 min 

No enzyme 100.0 ± 0.0 a* 65.5 ± 16.0 ab 

Pro 96.0 a 34.9 ± 30.3 bc 

Pep then P 0.0 ± 0.0 c 0.0 ± 0.0 c 

Pro+P+Th 80.7 a 0.0 c 

* The values are the relative activity to native SBA (%) of the samples. N=3. Data are presented as Mean ± 

SD. Different letters represent significant differences (P ≤ 0.05). LSD0.05 is 36.9. pro: pronase; pep: pepsin; P: 

pancreatin; Th: thermolysin. 
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Table 7. Effect of tea polyphenol on activity of soybean agglutinin 

 

Final tea polyphenol  

concentration (g/L) 

Supernatant + 

precipitate 
Supernatant 

0.0 100.0 ± 0.0 c* 100.0 

2.5 103.8 ± 0.2 bc 66.9 

5.0 122.7 ± 10.8 a 74.8 

7.5 115.0 ± 7.2 ab 76.8 

10.0 99.2 ± 10.7 c 68.9 

12.5 98.2 ± 1.5 c 68.9 

15.0 100.2 ± 6.4 c 77.2 

17.5 95.5 ± 0.2 c 73.2 

20.0 90.8 ± 3.5 c 65.7 

* The values are the relative activity to native SBA (%) of the samples. N=2 for mixture and N=1 for 

supernatant. Data are presented as Mean ± SD. Different letters represent significant differences (P ≤ 0.05). 

LSD0.05 is 13.9. 
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Table 8. Effect of chelating agents on activity of soybean agglutinin 

 

Final buffer 

concentration (M) 
citric acid acetic acid phosphoric acid EDTA 

0.1 108.1 ± 13.3 abc* 111.1 ± 3.0 abc 118.8 ± 7.9 ab 64.1 ± 3.0 f 

0.2 107.9 ± 6.3 abc 112.0 ± 3.0 abc 113.2 ± 4.8 abc 68.4 ± 3.0 ef 

0.3 107.7 ± 7.9 abc 104.3 ± 15.1 abc 115.0 ± 6.0 abc 67.9 ± 4.8 ef 

0.4 106.4 ± 7.3 abc 103.0 ± 12.1 bc 114.1 ± 6.0 abc 69.2 ± 9.1 ef 

0.5 105.6 ± 4.2 abc 105.6 ± 10.3 abc 120.5 ± 10.9 a 84.6 ± 3.0 de 

*The values are the relative activity to native SBA (%) of the samples. N=2. Data are presented as Mean ± 

SD. Different letters represent significant differences (P ≤ 0.05). LSD0.05 is 16.9. 
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Table 9. Effect of GalNAc beads on activity of soybean agglutinin  

 

Beads added (mL) 0 0.1 0.3 1 1.5 

SBA 100* 92 74 72 60 

Isoelectric extract 81 –   – 58  – 

*N=1. The values are the relative activity to native SBA (%) of the samples. 
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Figure 1. Deglycosylation of soybean agglutinin using enzyme Endo Hf. Lane 1, molecular weight marker; 

lane 2, SBA extract; lane 3, SBA treated with denaturing buffer and heating, then with Endo Hf; lane 4, SBA 

treated with heating then with Endo Hf; lane 5, SBA treated with denaturing buffer then with Endo Hf; lane 6, 

SBA treated with Endo Hf. 
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Figure 2. Effects of deglycosylation and heating on hemagglutination activity of soybean agglutinin. N=4. 

Data are presented as Mean ± SD. Different letters represent significant differences (P ≤ 0.05). Least 

significant difference at 95% confidence level (LSD0.05), is 3.8. 
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Figure 3. Effect of pH on hemagglutination activity of soybean agglutinin. N=2. Data are presented as 

Mean ± SD. 
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Figure 4. Effect of denaturation treatment on hemagglutination activity of soybean agglutinin. N=4. Data 

are presented as Mean ± SD. Different letters represent significant differences (P ≤ 0.05). LSD0.05 is 4.9. 
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Figure 5. Different enzyme hydrolysis of native soybean agglutinin. Lane 1, molecular weight marker; lane 

2, SBA extract; lane 3, SBA treated by endoproteinase Glu-C in buffer 1 (0.1 M ammonium bicarbonate, 

pH8.0); lane 4, SBA treated by endoproteinase Glu-C in buffer 2 (0.1M sodium phosphate buffer, pH 

7.8); lane 5, SBA treated by chymotrypsin; lane 6, SBA treated by thermolysin; lane 7, molecular weight 

marker; lane 8, SBA treated by trypsin. 
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Figure 6. Single enzyme hydrolysis of 100 ºC for 20 min-treated soybean agglutinin. Lane 1, molecular 

weight marker; lane 2, SBA extract; lane 3, SBA treated at 100 ºC for 20 min; lane 4, SBA treated at 100 ºC 

for 20 min then with Glu-C in buffer 1; lane 5, SBA treated at 100 ºC for 20 min then with Glu-C in buffer 2; 

lane 6, SBA treated at 100 ºC for 20 min then with chymotrypsin; lane 7, SBA treated at 100 ºC for 20 min 

then with thermolysin; lane 8, SBA treated at 100 ºC 20 min then with trypsin. 
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Figure 7. Effect of pepsin then pancreatin hydrolysis on activity of soybean agglutinin. Lane 1, molecular 

weight marker; lane 2, SBA extract; lane 3, native SBA treated by pepsin then pancreatin. 
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Figure 8. Bioactive peptide hypothesis. Native SBA forms tetramer, displaying full activity; heated SBA is 

denatured, the activity is reduced; When SBA is hydrolyzed by single enzyme, some active peptides have 

activity; after hydrolyzing by combination of enzymes, the active peptides are destroyed, showing no 

activity. The plate with red dots indicate blood agglutination. 
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Figure 9. Effect of GalNAc beads on soybean agglutinin removal. Lane 1, molecular weight marker; lane 2, 

SBA extract; lane 3-6: the remaining supernatant after being treated with different amounts of GalNAc 

beads: lane 3,100 μL; lane 4, 300 μL; lane 5, 1 mL; lane 6, 1.5 mL. Equal amount of samples were loaded on 

the gel. 
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CHAPTER 3. HEMAGGLUTINATION ACTIVITY OF β-CONGLYCININ AND 

GLYCININ AND FEEDING STUDY OF LECTIN-DEACTIVATED SOY WHITE 

FLAKES 
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Abstract 

The purpose of this study was to use non-thermal means to reduce hemagglutination 

activity of soy proteins and to improve the feeding quality of soy proteins. Two storage 

proteins in soybeans, β-conglycinin and glycinin, were shown to have hemagglutination 

activity. The activity of β-conglycinin was not reduced by hydrolysis with a single protease, 

but was fully eliminated by multiple enzymes; however, the activity of glycinin was not fully 

eliminated by either single or multi enzyme hydrolysis. Similarly, the hemagglutination 

activities of soy white flakes (SWFs) and soy protein isolate (SPI) were not reduced by single 

or combination of enzyme hydrolysis. Pepsin and pancreatin treatment, which was effective in 

eliminating hemagglutination activity of soybean agglutinin (SBA) with minimum heating, 

was used to generate a feed material for in vivo evaluation of nutritional quality. SBA in pepsin 

and pancreatin-treated SWF was deactivated at analytical scale, but not in the feed material. 
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Pepsin and pancreatin-treated SWF did not improve chick growth performance compared with 

the raw SWF. Chicks did not show any pancreas enlargement or intestine weight increase 

compared with the raw soy feed or a commercial diet, indicating deactivation of SBA. 

 

KEYWORDS: β-Conglycinin; enzyme hydrolysis; glycinin; hemagglutination activity; 

soybean agglutinin  

 

Introduction 

Organic solvents, such as hexanes, are commonly used for soybean oil extraction 

because of the high oil recovery and low cost; however, hexane has many drawbacks, such as 

flammability, solvent residual in the meal, and emission to the atmosphere (1). Aqueous 

extraction processing (AEP) uses water as medium to extract oil, which is more 

environmentally favorable (2). In this process, seed is ground in water, the oil is released and 

floats as emulsified or free oil (3). Although two-stage countercurrent enzyme-assisted 

aqueous extraction processing (EAEP) improved oil, protein and solids extraction yields than 

standard EAEP with less water usage (4,5), the process is still not as economically feasible as 

organic solvent extraction. The utilization of the remaining proteins after oil extraction can be 

a positive aspect of EAEP because they are subjected to minimal heat treatment, so they are not 

as damaged as that from commercial solvent extraction, therefore, the proteins may have better 

functionalities and nutritional values (2). Our research goal is to utilize such proteins as food or 
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feed with minimum heating. Although the protein can be used to produce soy protein products 

for human consumption, the major use is still expected to be for animal feeding. In the present 

study, we evaluated the feeding performance of such proteins alone and with additional 

treatments. We used defatted soy white flakes (SWFs) as a model, because SWF is subjected to 

minimal heat treatment.  

The minimal heating of the AEP process does not deactivate the anti-nutritional factors 

in soy protein: soybean agglutinin (SBA) and trypsin inhibitors (TIs). SBA can bind to the 

carbohydrate moiety of cell surfaces and cause the cells to agglutinate, and such activity is 

referred to as hemagglutination activity. SBA can also bind to the brush boarder, causing an 

increase in the intestine weight and pancreatic hypertrophy. We have previously used pepsin 

followed by pancreatin treatment to fully deactivate SBA with minimum heating (6). In this 

study, we wanted to use the same enzyme treatment for SBA to treat SWF, trying to eliminate 

hemagglutination activity of SWF.   

There are different proteins in SWF. Based on their sedimentation coefficients, they can 

be classified into four fractions known as 2S, 7S, 11S, and 15S (7). The 7S globulin or 

β-conglycinin and 11S globulin or glycinin are the two major storage proteins in soybean. The 

7S fraction comprises 35% of the soluble proteins with about 85% being β-conglycinin, and 

other proteins such as agglutinin and some enzymes. Glycinin makes up about 85% of the 11S 

fraction, which comprises 31 to 52% of the soluble soy protein. Due to high contents of 

β-conglycinin and glycinin, the main functionalities and nutritional values of soy protein come 
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from β-conglycinin and glycinin, so they are two important factors we also need to consider in 

testing hemagglutination activity. In the present study, we evaluated enzyme hydrolysis of the 

main protein fractions in SWF, and assessed the activities by using an in vitro 

hemagglutination assay and an in vivo feeding trial.  

In addition to SBA, soybean also has other anti-nutritional factor, trypsin inhibitors 

(TIs). There are two types of TIs: the Kunitz trypsin inhibitor (KTI) inhibits trypsin activity, 

while the Bowman-Birk trypsin inhibitor (BBI) inhibits both trypsin and chymotrypsin 

activities. The inhibition of digestive enzymes reduces the digestibility of the proteins. In 

addition, TIs can cause excessive secretion of the cholecystokinin, which in turn, leads to 

excessive secretion of pancreatic enzymes, causing pancreatic hypertrophy, and hyperplasia 

(8). Anti-nutritional effects of TIs will interfere with our feeding trial using SWF. TIs are rich 

in disulfide bonds and various thiol-containing compounds, such as cysteine, 

N-acetyl-cysteine, glutathione and sodium sulfite, were used to facilitate the inactivation TIs at 

lower temperature (9,10). Wang et al. (11) used sodium metabisulfite (SMBS) to inactivate TIs 

and improved the in vitro degree of hydrolysis of soy protein from 1.2 to 8.5%, which was even 

higher than for an autoclaved sample (7.9%). The gain:feed ratio and protein efficiency ratio 

(PER) increased 27 and 57%, respectively, compared with raw soy flour. In the present study, 

we used the same SMBS conditions to inactivate TIs first, then applied enzyme treatment to 

denature SBA and reduce hemagglutination activity of soybean storage proteins. 
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Materials and Methods 

 Materials. β-conglycinin- and glycinin-rich fractions were produced from the Center 

for Crops Utilization Research (CCUR) at Iowa State University. They were fractionated 

according to a two-step soy-protein fractionation procedure with 5 mM SO2 and 5 mM CaCl2 

(12). The glycinin-rich fractions contained 96% protein with 85% purity and 

β-conglycinin-rich fraction contained 90% protein and 81% purity. Soy protein isolate (SPI) 

was obtained from Archer Daniels Midland (Decatur, IL) with 92.8% protein (dry weight 

basis). Soy white flake was obtained from Cargill (Minneapolis, MN), and it was produced by 

hexane extraction of the oil and then flash-desolventing to achieve soy protein with ≥ 85% 

dispersibility in water. Rabbit blood in Alsever’s solution was obtained from Hemostat 

Laboratories (Dixon, CA) and it was used within two weeks. Other reagents were purchased 

from Fisher Scientific (Pittsburg, PA) or Sigma-Aldrich (St. Louis, MO).  

 

Enzyme hydrolysis of different soy proteins to reduce hemagglutination activity. All 

enzyme treatments were carried out according to the product information sheet provided by 

Sigma-Aldrich (St. Louis, MO). The chymotrypsin treatment was done by treating 8 mg 

β-conglycinin- or glycinin-rich fraction (native or heat treated) in 100 mM Tris-HCl, 10 mM 

CaCl2, pH 7.8 at enzyme:protein ratio of 1:80 for 24 h at 30 ºC. The thermolysin treatment was 

done in the same buffer as chymotrypsin with enzyme:protein ratio of 1:100 for 24 h at 70 ºC. 

For trypsin hydrolysis, 8 mg of β-conglycinin- or glycinin-rich fraction (native or heat treated) 
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was treated in PBS (phosphate-buffered saline, 10 mM phosphate, 0.9% saline), pH 8.0 with 

enzyme:protein ratio of 1:16 at 37 ºC for 24 h. Pancreatin hydrolysis was carried out by 

treating 8 mg β-conglycinin- or glycinin-rich fraction (native or heat treated) in the same buffer 

as chymotrypsin, and enzyme:protein ratio of 1:25 for 24 hours at 37 ºC. For pronase 

hydrolysis, 8 mg β-conglycinin-, glycinin-rich fraction, soy white flake saline extract (SWFE) 

or soy protein isolate (SPI) (native or heat treated) was treated in 50 mM ammonium 

bicarbonate buffer (pH 8.0) with enzyme:protein ratio of 1:50 at 37 ºC for 24 h.   

For multi-enzyme hydrolysis, 8 mg β-conglycinin- or glycinin-rich fraction (native or 

heat treated) was mixed with 1 M Tris-HCl containing 100 mM CaCl2, and then added 

different combination of enzymes. For the combination of trypsin + thermolysin, trypsin + 

chymotrypsin + thermolysin, pronase + pancreatin + thermolysin, pancreatin + thermolysin, 

the mixture was incubated at 37 ºC for 22 h and then 70 ºC for 2 h. For the combination of 

trypsin + chymotrypsin, the mixture was incubated at 37 ºC for 24 h. For the combination of 

chymotrypsin + thermolysin, the mixture was incubated at 30 ºC for 22 h and then 70 ºC for 2 

h. 

For pepsin followed by pancreatin hydrolysis, 8 mg β-conglycinin-, glycinin-rich 

fraction, SWFE, SPI or SWF (native or heat treated) was adjusted to pH 2.0 with HCl, then 

pepsin was added to make an enzyme:substrate ratio of 1:5. The mixture was incubated at 37 

ºC for 2 h. Tris-HCl (1 M) was added to adjust pH to 7.5, and pancreatin was added to make 

enzyme:substrate ratio of 1:50. The mixture was then incubated at 37 ºC for 22 h. For pepsin 
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then pronase + pancreatin + thermolysin hydrolysis, the procedure were essentially the same as 

pepsin then pancreatin treatment, except that pronase, pancreatin and thermolysin were added 

after adjusting pH to 7.5. All samples were heated 100 ºC for 10 min to deactivate the enzyme 

and stored at -20 ºC until hemagglutination assay.  

 

Effect of SMBS on hemagglutination activity of SWF. The SMBS treatment of SWF 

was done according to Wang et al. (11). Generally, 10% SWF was dispersed in 10 mM 

phosphate buffered 0.9% saline (pH 7.8), and 1.0 mmol/2 g SWF of sodium metabisulfite was 

added. The mixture was then stirred and incubated at 55 ºC for 1 h and dialyzed against water 

for 3 days, and subjected to enzyme hydrolysis or hemagglutination assay. 

 

Preparation of soy protein samples for feeding trial. Three treatments were carried 

out for SWF: (1) SMBS treatment of SWF: SWF, 500 g, was dispersed in 2.5 L of 10 mM 

phosphate buffered 0.9% saline (pH 7.5), and 47.5 g SMBS (equivalent to 1 mmol/2 g SWF) 

was added. The mixture was then incubated at 55 °C for 1 h, and dialyzed against water for 4 

days and lyophilized. (2) Enzyme-treated SWF: after treated by SMBS and dialysis, the pH of 

SWF was adjusted to 2.0, and pepsin was added to make substrate:enzyme ratio of 5:1 and 2 

ppm lactrol was added to inhibit the growth of microorganisms. The mixture was then 

incubated at 37 °C for 18 h and the pH was then adjusted to 7.5. Pancreatin, (100:1 

substrate:enzyme) was added and incubated at 37 °C for 20 h. The hydrolysate was then 
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lyophilized. (3) To produce autoclaved SWF, SWF was mixed with water (1:2) and autoclaved 

at 121 °C for 40 min. The mixture was then oven-dried at 50 °C, and used as a negative control 

for feeding. Commercial toasted soy flour was also used as a control. 

 

Extraction of SBA from the feed materials. The procedure described by Lis and 

Sharon (13) was used. Generally, 3 g of feed material was dispersed in 40 mL of distilled water, 

the pH was adjusted to 4.6 with concentrated HCl, and the dispersion was incubated overnight 

at 4 ºC to precipitate the major storage proteins. The supernatant was saved by centrifugation 

(3020 x g, 15 min). Ammonium sulfate, 0.3 g, was added to each mL of supernatant for 

precipitating other proteins. Vacuum filtration was used to remove the precipitate. To each mL 

of filtrate, additional 0.27 g of ammonium sulfate was added while stirring and the mixture was 

incubated overnight at 4 ºC to precipitate the crude SBA. The precipitate was then collected by 

centrifugation and resuspended in 1 mL of water and dialyzed against water for 24 h at 4 ºC 

with two changes of water. Any insoluble material, which was present after dialysis, was 

removed by centrifugation and discarded. A second precipitation of SBA was done by 

adjusting the pH of the solution to 4.6 with 1N HCl, and adding (NH4)2SO4 (0.56 g/ mL of 

solution). The precipitate was collected by centrifugation (3020 x g, 15 min) and redissolved in 

0.5 mL of 0.05 M phosphate buffer, pH 6.1. The SBA solution was dialyzed against water for 

24 h at 4 ºC and then lyophilized. The dried material was dissolved in 0.9% saline to make a 

final concentration of 6-17 mg/mL and subjected to assay for hemagglutination activity. 
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Hemagglutination assay. The hemagglutination assay was performed according to a 

method of Lis and Sharon (23) with some modification. Briefly, rabbit red blood cells collected 

in Alsever’s solution were centrifuged for 5 min at 410 x g. After estimating the volume of the 

cells, 5 mL of 0.9% saline per mL of cells was added to wash the cells. Centrifugation was used 

to collect the cells. After washing for three times, red blood cells were suspended at 4% (v/v) in 

10 mM phosphate buffered 0.9% saline (pH 7.4) (PBS), then one volume of 1% trypsin (w/v) 

in PBS was added to 10 volumes of this suspension and the mixture was incubated for 1 h at 37 

ºC to increase the sensitivity of the assay. The red blood cell suspension was then washed four 

times with 0.9% saline and finally cells were resuspended at 3% (v/v) in 0.9% saline.   

Protein samples were serially diluted with two-fold dilution in a 96-well round bottom 

plate with saline to give a final volume of 0.1 mL. Then 0.1 mL of 3% trypsinized red blood 

cells was added to each well. The plates were placed in 37 ºC for 2 h for agglutination to occur. 

The plates were then tilted about 45°, the samples with erythrocytes streamed in a “tear-drop” 

fashion were considered negative and the ones did not form “tear-drop” were considered 

positive. The hemagglutination units (HU) per g of sample were determined by the equation 

(14): 

V

SDD
gHU BA 
  

Where DA is the dilution factor of the first well, DB is the dilution factor of the well 
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containing 1 HU (the last dilution that causes cell agglutination), S is the mL of extract per 

gram of sample (inverse of the initial concentration), and V is the volume of extract added. 

Each sample was done in duplicate. The HU/g values were then expressed as log (HU/g)/log 2 

to normalize the data for the two-fold dilution. Because the results may be affected by the age 

of the blood, the activity of the trypsin, and other factors, SBA was used as a standard in every 

set of treatments. The results were expressed as relative activity to SBA.  

 

Trypsin inhibitor activity test. TIs were assayed by Eurofins Scientific Inc. (Des 

Moines, IA). Briefly, the sample was extracted in a dilute NaOH solution, and centrifuged to 

obtain the supernatant. The sample was then reacted with acetic acid, trypsin solution, and 

benzoyl-L-arginine-p-nitroanilide hydrochloride (BAPA). The sample was then read versus a 

blank and TIU/g was calculated. TIU was defined as the amount of inhibitor required to inhibit 

one unit of trypsin activity. 

 

Animal feeding trial. To determine the digestibility of the treated soy proteins, 

7-day-old male chicks were used to determine the protein efficiency ratio (PER) using 

formulated diets with low protein content. PER was calculated as previously described (11). 

Ninety week-old male chicks (Ross x Ross 708) were weighed and blocked on initial body 

weight into 25 pens consisting of five pens per treatment (three chicks/pen). The treatments 

consisted of: (1) high protein control (CONT): 23% crude protein (CP) diet containing 
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commercial toasted defatted soy flour; (2) low protein control (LPC): 17.25% CP diet 

containing commercial toasted defatted soy flour; (3) low protein soy control (LPSC): 17.25% 

CP diet containing untreated SWF; (4) low protein SMBS soy (SMBS): 17.25% CP diet 

containing SMBS-treated SWF; and (5) low protein enzyme-treated SWF (ENZYME): 17.25% 

CP diet containing ENZYME-treated SWF. All diets were formulated to meet or exceed NRC 

(15) standards for vitamins and minerals, and the low protein diets were 75% of the NRC CP 

recommendations. The compositions of these diets are listed in Table 1. The diets were fed for 

nine days, all birds were euthanized by carbon dioxide asphyxiation and their pancreases and 

small intestines (pyloric sphincter to illeocecal valve) were removed and weighed. 

 

Statistical analysis. The data were analyzed by Analysis of Variance (ANOVA) and 

General Linear Model (GLM), and the Least Significant Differences (LSD) were calculated at 

the 5% level to compare treatment means using the SAS system (version 9.1, SAS Institute Inc. 

Cary, NC). Growth performance, PER, and pancreas and intestinal weights were analyzed by 

ANOVA using the PROC GLM procedure of SAS, with the experimental unit being a pen of 

three male chicks. 

 

Results and Discussion 

Effect of enzyme hydrolysis on activity of β-conglycinin. The β-conglycinin and 

glycinin we used were not pure, they were β-conglycinin- and glycinin-rich fractions. In the 
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results, we used the term β-conglycinin and glycinin for simplification. At the beginning, we 

planned to use β-conglycinin and glycinin as negative controls, which were not expected to 

have hemagglutination activity; however, we found they also had activity (Table 2). Our 

ultimate goal was to treat SWF to improve feeding quality, so we wanted to eliminate the 

hemagglutination activities from all the components in the SWF including β-conglycinin and 

glycinin. Therefore, both β-conglycinin and glycinin were treated with the similar treatment 

strategy as for SBA. 

Table 2 shows the tendency that heating reduced activity of β-conglycinin, single 

enzyme hydrolysis of β-conglycinin, either native or heated, did not fully deactivate it. This 

result was similar to enzyme hydrolysis of SBA (47.1% residual activity after heating and 

35-62% residual activity after heating and single enzyme treatment). However, the activities 

were similar for enzyme hydrolyzed native, heated or autoclaved β-conglycinin, which was 

different from SBA (enzyme could not hydrolyze native SBA), indicating that β-conglycinin 

was not resistant to enzyme hydrolysis, so native β-conglycinin was hydrolyzed similarly as 

the heated one. There were large variations in the data, which might be due to inconsistency of 

enzyme hydrolysis and the detection limit of the hemagglutination assay. In the 

hemagglutination assay, if the first dilution did not cause cell agglutination, the activity was 

considered to be 0, whereas if the first dilution caused cell agglutination and the second did not, 

the activity was about 40% (relative activity to SBA) depending on the starting concentration 

of the sample. For example, if two replications of a certain hydrolysis results are 0 and 40% 
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activity, the standard deviation was 28.3%, although the two results differed in one dilution. 

The enzyme hydrolysis was not consistent for some of the enzymes, so some of the data had 

high variation. Nonetheless, some general trends can be observed.  

SDS-PAGE also showed that enzymes can hydrolyze native β-conglycinin (Fig. 1A 

lane 4, B lane 3, 4). This indicates that enzyme hydrolysis might have released active peptides 

in β-conglycinin. This result also indicates that unlike SBA, β-conglycinin is not resistant to 

enzyme hydrolysis and cannot survive in the GI tract digestion, that is, as β-conglycinin passes 

through the GI tract, it becomes hydrolyzed and may not cause serious anti-nutritional effects 

as SBA, if there are no bioactive peptides released.   

After multi-enzyme hydrolysis, activity of native β-conglycinin did not reduce to zero 

(Table 3). Like SBA, multi-enzyme hydrolysis with thermolysin fully deactivated heated 

β-conglycinin. This difference between native and heated β-conglycinin indicates that heating 

facilitated the hydrolysis of β-conglycinin, and β-conglycinin may be cut into smaller pieces. 

This also indicates that like SBA, thermolysin might cut at the crucial sites for activity of 

β-conglycinin, and trypsin and chymotrypsin also played a role in reducing activity of 

β-conglycinin, although the enzymes were not as effective as thermolysin.  

In order to deactivate all SBA-like components in SWF, we used the same treatment as 

for SBA (6), which was pepsin followed by pancreatin hydrolysis of β-conglycinin (Table 4). 

Unlike SBA, the activity of β-conglycinin did not decrease, which indicated the inability of the 

two enzymes to cut active sites of β-conglycinin. Also like SBA, the pronase could not fully 
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deactivate β-conglycinin, nor could the combination of enzymes with pronase. Although in 

previous results we showed that β-conglycinin could be fully deactivated by pancreatin and 

thermolysin (Table 3), combination of pronase, pancreatin and thermolysin did not fully 

deactivate it, which indicates the possible interference of pronase to thermolysin hydrolysis.  

A common food protein, casein from bovine milk, was used as a negative control for 

the enzymatic treatments. Casein did not have any hemagglutination activity, nor did the 

enzyme hydrolysates of casein (Table 5) when the same conditions were used for hydrolysis. 

This indicates that the hemagglutination activity is indeed specific for soy protein.  

 

Effect of enzyme hydrolysis on hemagglutination activity of glycinin. Glycinin 

showed similar results as β-conglycinin in repose to single enzyme hydrolysis. Heating slightly 

reduced hemagglutination activity, however, after single enzyme hydrolysis, activity did not 

decrease (Table 2), some even increased. This result suggests that heating may cause protein to 

aggregate so that the active sites are buried and partial enzyme hydrolysis might have released 

the active peptides, thus increasing the hemagglutination activity. Again, the single enzyme 

hydrolyzed native, heated or autoclaved glycinin had the same activity. In addition, 

SDS-PAGE showed that like β-conglycinin, native glycinin can be hydrolyzed by enzymes 

(Fig. 1A lane 8). These results indicate that glycinin may not survive in the GI tract, but the 

peptides released from glycinin could potentially cause anti-nutritional effects. 

Unlike β-conglycinin, none of the multi-enzyme hydrolysis fully deactivated glycinin, 



96 

 

 

 

either native or heated (Table 3). This result indicates that these enzymes were unable to cut all 

of the active sites in glycinin; whereas for β-conglycinin, the extensive hydrolysis with the 

enzymes destroyed the active peptides. 

We also used the same enzyme treatments that were effective for SBA to treat glycinin. 

The results were all similar to the ones for β-conglycinin. Pepsin followed by pancreatin 

hydrolysis did not fully deactivate glycinin, pronase did not decrease activity of glycinin, and 

combination of other enzymes (pepsin then pronase, pancreatin and thermolysin) did not fully 

deactivate glycinin (Table 4). These results indicated that these enzymes were unable to cut all 

the active peptides in glycinin.  

 

Effect of enzyme hydrolysis on the hemagglutination activity of SWFE. The feed 

material was SWF, so the pepsin followed by pancreatin hydrolysis which was effective for 

inactivation of SBA was used for treating SWF saline extract. The extract contained the 

majority of the proteins in the SWF and was devoid of the insoluble components (fiber, 

undissolved proteins, and others), which was easier for treating with enzymes and assaying for 

hemagglutination activity. Similar to β-conglycinin and glycinin, pepsin and pancreatin 

treatment did not fully deactivate SWFE (Table 4), which was predictable because 

β-conglycinin and glycinin are two major components in SWFE and they were not fully 

deactivated by such treatment. Again like β-conglycinin and glycinin, pronase did not decrease 

activity of SWFE, and combination of pronase with other enzymes decreased activity of native 
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SWFE, but not the heated one. Unlike SBA, the activities of enzyme-treated native and heated 

SWFE were not significantly different, which was similar to the results for β-conglycinin and 

glycinin. All these similarities of the behavior of SWFE to β-conglycinin and glycinin may be 

due to the larger proportion of β-conglycinin and glycinin in the SWFE.  

 

Effect of enzyme hydrolysis on hemagglutination activity of SPI. SWF contains not 

only proteins, but also carbohydrates. In order to examine the effect of enzyme hydrolysis in a 

protein system without other interferences, we carried out enzyme hydrolysis on SPI. The 

effects of enzymes on SPI were similar to that of SWFE. None of the enzymes fully eliminated 

hemagglutination activity of SPI, and the enzyme-hydrolyzed native and heated SPI had 

similar activities (Table 4). These results indicate that the other components in SWF did not 

influence enzyme hydrolysis or the activity assay. 

 

Effect of enzyme hydrolysis on hemagglutination activity of SWF. We tried different 

enzymes, but still could not fully deactivate hemagglutination activity of SWF. Our previous 

results indicate that β-conglycinin and glycinin were not resistant to hydrolytic enzymes, so 

they could be hydrolyzed in the GI tract, which might not be a significant problem for human 

and animals to consume, if the hydrolyzed proteins do not have significant hemagglutination 

activities, or their activities are not high enough to cause apparent nutritional problems. SBA 

can survive the GI tract, so our goal was to fully deactivate SBA. Although pepsin and 
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pancreatin did not fully deactivate β-conglycinin and glycinin, the two enzymes fully 

hydrolyzed SBA, so this treatment was chosen as a non-thermal treatment for generating feed 

material from SWF. SWF, however, has trypsin inhibitors (TIs), which inhibit the activity of 

chymotrypsin and trypsin in animals. In addition, TIs also inhibit animal growth and cause 

pancreas enlargement, which interfere with our feeding evaluation. As a result, sodium 

metabisulfite (SMBS) was used for non-thermal deactivation of TIs, and then SWF was treated 

with pepsin and pancreatin. 

Fig. 2 shows that after SMBS treatment, hemagglutination activity of SWF reduced 

slightly, and the activity was not as low as pepsin and pancreatin treated one, which indicates 

that SMBS only had slight effect on SBA. The pepsin and pancreatin treatment significantly 

reduced activity of SWF, but not to zero. This result was expected because β-conglycinin and 

glycinin which composed of majority of the protein could not be deactivated by this treatment. 

Activity of heat-treated SWF significantly decreased. Heat followed by pepsin and pancreatin 

treatment of SWF had an increased activity, which may be due to the release of active peptides. 

In addition, after pepsin and pancreatin treatment, native or SMBS-treated SWF had similar 

activities. TIs inhibit trypsin in a competitive manner (16), as a result, excessive dose of 

enzyme may overcome the inhibition effect of TIs, causing the similar activities of 

enzyme-treated native or SMBS treated SWF.  

 

Activities of SBA extracted from SMBS and enzyme-treated SWF. Our goal was to 
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fully deactivate SBA; however, β-conglycinin and glycinin interfered with the 

hemagglutination test of SBA when testing the activity of the whole SWF. In order to evaluate 

whether SBA was fully hydrolyzed by enzyme treatment and eliminate the interference of 

β-conglycinin and glycinin, SBA was isolated from SWF. The activity of SBA extracted from 

pepsin- and pancreatin-treated native SWF was not the same as in the model pure SBA system, 

whereas the one from SMBS-treated SWF was the same (Table 6) as in the model system. This 

result indicates that after SMBS deactivation of TIs, SBA was more easy to be hydrolyzed by 

pepsin and pancreatin. For these two treatments, whole SWF had similar activities (Fig. 2), but 

the extracted SBA had different activities (Table 6). This might be due to the contribution of 

β-conglycinin and glycinin to the SWF than SBA. Although the activities of the SBA portion 

were different for these two samples, the activities generated by β-conglycinin and glycinin 

hydrolysates masked this difference, and made the activities of whole SWF the same in the two 

samples.  

For the feeding trial, we decided to treat SWF with SMBS and then pepsin and 

pancreatin to deactivate TIs and SBA; SMBS-treated SWF as a control for deactivating TIs but 

not SBA; and SWF as a control for untreated material. Herkelman et al. (9) found that heating 

at 121 ºC for 40 min of soybeans achieved maximum performance. We included this treatment 

as a control for the deactivation of all the anti-nutritional factors in SWF and maximum 

performance.  

Pepsin and pancreatin are naturally occurring enzymes in the GI tract of human and 
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animals, however, they cannot fully deactivate SBA in vivo. The amount of enzyme we used 

was much larger than that in GI tract. Different enzyme dosages were used to and pepsin:SBA 

ratio of 1:5 was the lowest that fully hydrolyzed SBA (data not shown), so that the pepsin in GI 

tract was not enough for deactivating SBA. In addition, SBA was consumed with other foods, 

which might bury SBA inside, so that SBA cannot be hydrolyzed by pepsin after entering the 

GI tract.  

 

Hemagglutination activities of feed materials. After preparing large quantities of feed 

materials, some key factors were tested. Fig. 3A shows that the hemagglutination activity of 

SMBS-treated SWF did not have significant difference from the native SWF, which indicates 

the inability of SMBS to deactivate SBA. The activity of enzyme-treated SWF was 

significantly reduced, which was consistent with the results in analytical scale. Similar as in 

analytical scale, the SBA extract from SMBS treated SWF still had similar activity as the one 

from SWF (Fig. 3B); however, the activity of SBA extracted from enzyme sample was not 

reduced to zero (Fig. 3B). This may be due to the incomplete hydrolysis of SBA in bulk 

materials, which may be a concern for treating large quantity of materials.  

   

Trypsin inhibitors activities in feed materials. The TIs activity in soy white flake was 

60,300 TIU/g; in SMBS was 2,800 TIU/g (4.6% residual activity); in the enzyme-treated 

sample was 3,900 TIU/g (6.5% residual activity); in autoclave was <2,000 TIU/g (<3.3% 
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residual activity). This result indicates that TIs were largely reduced in SMBS and 

enzyme-treated samples, and almost totally destroyed in autoclaved samples. Therefore the 

SMBS treatments were effective and TIs should not cause significant problems in the feeding 

evaluation. Autoclaving was a more effective way of destroying the TIs than the other 

treatments. 

 

Hemagglutination activity evaluated by animal feeding study. Raw soy protein in the 

LPSC diet reduced the growth performance of chicks as expected (Table 7). Both the average 

daily gain and average daily feed intake were reduced compared to the LPC diet. Gain:feed and 

PER, however, were not reduced compared to the LPC diet. The raw soy protein in the LPSC 

diet caused pancreatic hypertrophy due to TIs and SBA. Additionally, the LPSC diet caused 

increased intestinal mass as a percentage of body weight. This intestinal growth may be due to 

the need for increased absorption in a diet containing a nutritionally poor protein. 

The SMBS diet did not reduce the growth performance of chicks (Table 7). The 

average daily gain, average daily feed intake, and gain:feed were not different from chicks on 

the LPC diet. Additionally, the PER for chicks on the SMBS diet was not different from chicks 

fed the CONT diet. Furthermore, the SMBS diet did not promote any pancreas enlargement or 

increase in intestine weight. These results demonstrate that the SMBS treatment increased the 

nutritional value of the protein, as demonstrated previously (11).  

The growth performance of chicks on the ENZYME diet was not improved compared 
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to the LPSC (Table 7). Average daily gain, gain:feed, and PER were not different from the 

LPSC. The average feed intake of the enzyme sample, however, was also significantly lower 

than the other samples, which might be lead to the lower growth performance than the LPC and 

SMBS diets. In addition, similar as SMBS, ENZYME did not cause any pancreas enlargement 

or intestine weight increase, which indicated that the anti-nutritional factors in raw SWF were 

deactivated by this treatment, at least to a level that does not influence the normal condition of 

the pancreas and intestine. Comparing the differences of ENZYME sample on chick growth 

performance and pancreas and intestine weight, it seems that the growth inhibition can happen 

at a low level of SBA, whereas pancreas and intestine weight increase need higher levels of 

SBA to be affected. So the residual SBA in ENZYME sample was able to inhibit chick growth, 

but not cause pancreas enlargement and increased intestine weight. This result was in 

agreement with Fasina et al. (17) who incorporated 0.024 and 0.048% of SBA into diets of 

turkey poults and did not find any pancreatic hypertrophy, whereas the 0.048% diet showed 

inconsistent results for feed efficiency (FE). The 0.048% diet showed higher FE for the feeding 

of female day-old turkey poults (Hybrid Converter strain) from day 0 to 12, but lower for the 

Nicholas 88 strain. In addition, their results also showed that incorporating 0.024 or 0.048% 

SBA decreased feed intake.  

SMBS diet, which still had intact SBA but no TIs, performed as well as the control LPC 

diet. This suggests that SBA might not be a serious problem for chick growth compared to TIs. 

This makes it highly likely that the poor performance of the ENZYME sample was due to 
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inadequate feed intake of the chicks. This might be due to decreased palatability, such as 

unpleasant smell, texture or bitterness of the sample. The protein hydrolysates often have bitter 

taste, and especially these peptides containing neutral amino acids with large alkyl or aromatic 

side chains (18), which might be account for the decreased feed intake. In addition, the excess 

pepsin and pancreatin in the ENZYME sample might lead to dysfunction of the digestive 

system of the chicks, which might be another reason for limited feed intake. After hydrolysis, 

β-conglycinin and glycinin still had hemagglutination activity and this activity was similar to 

hydrolyzed native and heat-denatured β-conglycinin and glycinin. Humans and animals have 

consumed heated soybeans and soy protein products for thousands of years and do not have 

any problem, indicating that the active peptides released from β-conglycinin and glycinin by 

enzyme hydrolysis might not be a serious problem. As a result, this remaining activity of 

β-conglycinin and glycinin hydrolysates might not be the reason for growth inhibition. Indeed, 

the small amount of SBA in feed (0.024%) was tolerated by turkey poults as illustrated by 

Fasina et al. (17) who incorporated 0.024% SBA in diets for turkey poults and did not find any 

antinutritional effect. 

The autoclaved SWF was in large chunks and could not be finely ground, so the chicks 

picked through the diet and did not eat as much. This makes the results of autoclaved SWF 

unreliable, so the data for this sample was discarded. This observation is another indication 

that the texture of the feed material is important.  

Collectively, these data suggest that while the SMBS-treated diet and the 
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ENZYME-treated diet protect against pancreatic hypertrophy and increased intestinal growth, 

and only the SMBS diet maintains the growth performance for the chicks when compared to 

the LPC diet. 
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Table 1. Composition of experimental diets for chicks 

 

Ingredient (%) 
High 

Protein 

Control 

(CONT) 

Low 

Protein 

Control    

(LPC) 

Low 

Protein 

Soy 

Control 

(LPSC) 

Low 

Protein 

SMBS 

Soy 

(SMBS) 

Low 

Protein 

Enzyme 

Soy 

(ENZYME) 

Corn 51.84 68.96 70.80 74.95 67.64 

Commercial Toasted Soy Flour 37.10 22.50 - - - 

Raw Soy Flour (Untreated) - - 20.95 - - 

SMBS Soy Flour - - - 17.47 - 

ENZYME Soy Flour - - - - 23.70 

Soybean Oil 6.67 4.07 3.79 3.14 4.25 

Di-Calcium Phosphate 1.98 2.07 2.08 2.10 2.06 

Limestone 1.15 1.22 1.22 1.24 1.21 

Vitamin Mix* 0.50 0.50 0.50 0.50 0.50 

Mineral Mix** 0.10 0.10 0.10 0.10 0.40 

Sodium chloride 0.40 0.40 0.40 0.40 0.10 

DL-Methionine 0.21 0.13 0.11 0.05 0.09 

Selenium 0.05 0.05 0.05 0.05 0.05 

Total 100.00 100.00 100.00 100.00 100.00 

Calculated Nutrient Content 

       Metabolizable Energy (kcal/kg) 3200.00 3200.00 3200.00 3200.00 3200.00 

  Crude Protein (%) 23.00 17.25 17.25 17.25 17.25 

  Methionine (%) 0.55 0.40 0.40 0.38 0.38 

  Methionine + Cysteine (%) 0.90 0.68 0.68 0.85 0.68 

  Lysine (%) 1.23 0.83 0.84 0.98 0.83 

*Composition of vitamin mix: vitamin A, D3, E, B12, riboflavin, niacin, and d-pantothenic acid.  

**Composition of mineral mix: calcium, copper, iron, manganese, zinc, and iodine. 
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Table 2. Effects of single enzyme hydrolysis on hemagglutination activity of β-conglycinin and 

glycinin 

 

Enzyme used None Trypsin Chymotrypsin Thermolysin LSD0.05 

β-cong

lycinin 

Native 61.7 ± 7.8 a* 60.6 ± 0.9 a 60.2 ± 5.1 a 51.2 ± 7.8 ab 

38.1 100 ºC 20 min 26.9 ± 25.4 ab 51.5 ± 8.9 a 34.6 ± 30.2 ab 38.6 ± 33.9 ab 

Autoclave 13.4 ± 23.2 b 46.5 ± 12.6 ab 24.1 ± 34.1 ab 26.4 ± 37.3 ab 

Glycini

n 

Native 40.1 ± 29.3 ab 57.2 ± 5.7 a 56.3 ± 0.5 a 45.2 ± 4.5 a 

29.4 100 ºC 20 min 14.8 ± 20.3 bc 63.7 ± 17.1 a 54.4 ± 2.3 a 43.6 ± 5.5 ab 

Autoclave 0.0 ± 0.0 c 68.4 ± 10.5 a 55.8 ± 5.7 a 50.3 ± 2.7 a 

*The values are the relative activity to native SBA (%) of the samples. N=3. Data are presented as Mean ± 

SD. Different letters within all treatments for each individual protein (native, 100ºC treated, and autoclaved) 

represent significant differences (P ≤ 0.05). 
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Table 3. Effects of multi-enzyme hydrolysis on activity of β-conglycinin and glycinin 

 

Enzyme 

used 

 β-Conglycinin Glycinin 

Native 100ºC 20 min Native 100ºC 20 min 

No enzyme 65.4 ± 3.0 a* 44.2 ± 9.1 b 38.7 ± 22.8 ab 16.8 ± 23.3 b 

T+C – 50.5 ± 2.8 ab – 55.9 ± 5.2 a 

T+Th – 0.0 ± 0.0 c – 54.0 ± 2.5 a 

C+Th – 0.0 ± 0.0 c – 33.4 ± 47.2 ab 

T+C+Th 54.1 ± 5.5 ab 0.0 ± 0.0 c 57.8 ± 1.9 a 58.5 ± 5.6 a 

P 54.7 ± 6.4 ab 11.6 ± 20.0 c 51.4 ± 3.1 a 53.1 ± 0.3 a 

P+Th 45.7±5.2b 0.0 ± 0.0 c 47.8 ± 8.1 ab 56.9 ± 0.0 a 

LSD0.05 15.2 32.5 

*The values are the relative activity to native SBA (%) of the samples. N=3. Data are presented as Mean ± 

SD. Different letters within all treatments for each individual protein (both native and 100ºC treated) 

represent significant differences (P ≤ 0.05). T: trypsin; C: chymotrypsin; Th: thermolysin. P: pancreatin. 
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Table 4. Effects of enzyme hydrolysis on activity of native or 100ºC for 20 min treated different soy proteins 

 

Enzyme used None Pep then P Pronase Pro+P+Th Pep then pro+P+Th LSD0.05 

β-Conglycinin 
Native 43.4 ± 2.3 abc* 35.6 ± 23.8 c 63.9 ± 3.2 a 55.8 ± 1.8 abc 56.2 ± 0.0 abc 

21.6 
100ºC 0.0 ± 0.0 d 38.0 ± 25.4 bc 64.7 ± 4.5 a 58.8 ± 6.0 ab 58.1 ± 2.7 ab 

Glycinin 
Native 63.2 ± 2.0 a 19.1 ± 22.2 b 43.2 ± 29.1 ab 22.6 ± 27.4 b 28.5 ± 24.7 b 

31.0 
100ºC 37.7 ± 3.2 ab 19.1 ± 22.2 b 41.8 ± 27.9 ab 22.6 ± 27.4 b 28.5 ± 24.7 b 

SWFE 
Native 85.6 ± 5.6 a 54.7 ± 10.0 b 73.1 ± 5.5 a 59.1 ± 11.1 b 48.3 ± 10.4 b 

13.8 
100ºC 50.4 ± 13.9 b 50.8 ± 9.1 b 58.8 ± 5.8 b 53.3 ± 6.9 b 49.6 ± 8.4 b 

SPI 
Native 43.5 ± 24.4 b 41.0 ± 7.3 b 73.6 ± 4.7 a 53.7 ± 7.1 ab 36.0 ± 31.1 b 

23.3 
100ºC 0.0 ± 0.0 c 43.4 ± 6.8 b 70.5 ± 3.6 a 53.8 ± 5.4 ab 35.2 ± 30.5 b 

*The values are the relative activity to native SBA (%) of the samples. N=4. Data are presented as Mean ± SD. Different letters within all treatments for 

each individual protein (both native and 100ºC treated) represent significant differences (P ≤ 0.05). pro: pronase; pep: pepsin; P: pancreatin; Th: 

thermolysin; SWFE: soy white flake saline extract; SPI: soy protein isolate. 

 



110 

 

 

 

Table 5. Effect of enzyme hydrolysis on the hemagglutination activity of casein 

 

Enzyme used none Trypsin Chymotrypsin Thermolysin Pep then P T+C+Th 

Relative activity 

to SBA (%) 
0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

N=2. T: trypsin; C: chymotrypsin; Th: thermolysin; Pep: pepsin; P: pancreatin. 
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Table 6. Activities of SBA extracted from differently treated SWFs at analytical scale 

 

SBA extraction from SWF Pepsin and pancreatin 

treated SWF 

SMBS then pepsin and 

pancreatin treated SWF 

Relative activity to SBA (%) 100 ± 0.0 a 36.4 ±1.1 b 0.0 ± 0.0 c 

N=2. Different letters designate significant differences (P ≤ 0.05). LSD0.05 is 1.9. 
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Table 7. Effects of diet containing SMBS and enzyme-treated soy protein on growth performance, 

protein efficiency ratio, and pancreas and intestinal weights 

 

  CONT LPC LPSC SMBS  ENZYME 

Average daily feed intake (g/d) 48.0a 42.2b 29.5c 38.6b 21.6d 

Average daily gain (g/d) 36.9a 23.3b 12.9c 24.3b 10.7c 

Gain:Feed 0.77a 0.55bc 0.43c 0.63b 0.49c 

Protein Efficiency Ratio (PER) 3.4ab 3.2ab 2.5b 3.7a 2.9b 

Pancreas weight (g/100 g BW) 0.37b 0.38b 0.86a 0.39b 0.41b 

Intestine weight (g/100 g BW) 7.01b 6.77b 8.03a 6.82b 7.10b 

N = 5 pens of 3 chicks per pen 

CONT, high protein control diet, 23% crude protein (CP); LPC, low protein control diet, 

17.25% CP; LPSC, raw soy control diet, 17.25% CP; SMBS, low protein-SMBS-treated raw 

soy diet, 17.25% CP; ENZYME, low protein diet SMBS-and-enzyme-treated raw soy diet, 

17.25% CP. Different letters in the same row represent significant differences (P ≤ 0.05). 
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Figure 1. Effects of different enzyme treatments of β-conglycinin and glycinin. A. Lane 1, molecular weight 

marker; lane 2, β-conglycinin; lane 3, β-conglycinin treated at 100 ºC for 20 min; lane 4, β-conglycinin 

treated with trypsin; lane 5, β-conglycinin treated at 100 ºC for 20 min, then by trypsin; lane 6, glycinin; lane 

7, glycinin treated at 100 ºC for 20 min; lane 8, glycinin treated with trypsin; lane 9, glycinin treated at 100 

ºC for 20 min, then by trypsin. B. Lane 1, molecular weight marker; lane 2, β-conglycinin; lane 3, 

β-conglycinin treated with chymotrypsin; lane 4, β-conglycinin treated with thermolysin; lane 5, 

β-conglycinin treated at 100 ºC for 20 min; lane 6, β-conglycinin treated at 100 ºC for 20 min then by 

chymotrypsin; lane 7, β-conglycinin treated at 100 ºC for 20 min then by thermolysin; lane 8, autoclaved 

β-conglycinin treated with chymotrypsin; lane 9, autoclaved β-conglycinin treated with thermolysin; lane 10, 

autoclaved β-conglycinin 
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Figure 2. Effects of SMBS and enzyme treatments of soy white flake. N=3. SMBS: sodium metabisulfite 

treated SWF; pep then P: pepsin then pancreatin treatments; data are presented as Mean ± SD. Different 

letters represent significant differences (P ≤ 0.05). LSD0.05 is 12.7. 
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 A. Whole feeding material                        B. SBA extract from feeding material 

  

 

Figure 3. Hemagglutination activity of feeding materials. A. Hemagglutination activity of the whole feeding 

materials. SWF: soy white flake; SMBS: sodium-metabisulfite-treated SWF; enzyme: pepsin and 

pancreatin-treated SWF; autoclave: autoclave (121 °C 40 min) treated SWF. Data are presented as Mean ± 

SD. Different letters represent significant differences (P ≤ 0.05). LSD0.05 is 8.9. B. Hemagglutination activity 

of SBA extracts from feeding materials. LSD0.05 is 18.5.  
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CHAPTER 4. PEPTIDES FROM SOYBEAN AGGLUTININ, β-CONGLYCININ, AND 

GLYCININ HAVE HEMAGGLUTINATION ACTIVITY 

 

A paper to be submitted to the Journal of Agricultural and Food Chemistry 

Yating Ma
1
 and Tong Wang

1,2
 

 

Abstract 

We previously demonstrated different enzyme hydrolysates of soybean agglutinin 

(SBA), β-conglycinin and glycinin had hemagglutination activities. In the present study, the 

three proteins were subjected to trypsin hydrolysis and N-acetyl-D-galactosamine (GalNAc) – 

agrose beads were used to isolate the active peptides. Matrix Assisted Laser 

Desorption/Ionization Time-of-Flight (MALDI-TOF) was used to identify the mass of the 

peptides and the masses were compared to the peptide profiles given by theoretical cleavage of 

the proteins, so that the peptides could be identified. Two peptides from SBA, 24 peptides from 

β-conglycinin and 16 peptides from glycinin were identified from the active peptide extracts. 

In addition, 2, 3 and 3 peptides from SBA, β-conglycinin and glycinin, respectively, were 

synthesized and their activities were assessed by using hemagglutination assay. These peptides 

had hemagglutination activity whereas a synthesized control peptide from SBA did not. These 

results confirmed our hypothesis that there are active peptides in soy proteins that have 

                                                        
1
 Department of Food Science and Human Nutrition, Iowa State University, IA 

2
 Corresponding author, 2312 Food Science Building, Ames, Iowa, 50011, tongwang@iastate.edu, 515-294-5448 
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hemagglutination activity. 

 

KEYWORDS: Active peptides; β-conglycinin; glycinin; hemagglutination activity; 

lectin; soybean agglutinin;  

 

Introduction 

Bioactive peptides in food have been extensively studied. Soybeans are considered 

embedding various active peptides. Soy protein hydrolysates by different enzymes have 

different activities, for example, inhibiting leukemia cells in vitro (1), inhibiting lipid 

accumulation in 3T3-L1 adipocytes in vitro (2), suppressing appetite by stimulating 

cholecystokinin release in rats (3), inhibiting fatty acid synthase and in vitro adipogenic 

response of human adipocytes (4), anti-oxidative activity (5), and suppressing of colon and 

liver tumorogenesis (6). The hydrolysates of glycinin also have bile acid-binding ability, which 

might partially account for the hypocholesterolemic effect of soy protein (6). Many peptides 

from soybeans have been identified, synthesized and shown to have different activities. For 

example, Chen et al. (7,8) identified four antihypertensive peptides: IA, GYLAGNQ, FFL, and 

IYLL. A peptide from glycinin (LPRPR) reduced serum cholesterol after oral administration to 

mice (9). Nishi et al. (10) identified the β 51-63 fragment (VRIRLLQRFNKRS) of 

β-conglycinin to have appetite control activity. A peptide from the α’ subunit of β-conglycinin 

with the sequence of MITLAIPVNKPGR has phagocytosis-stimulating activity (11). Although 
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soy protein hydrolysates have been extensively studied, none have lectin-like 

(hemagglutination) activity.  

Soybean agglutinin (SBA) belongs to the lectin family and has the unique property of 

binding to carbohydrates. SBA can bind to the carbohydrate moiety of cell surfaces and cause 

cells to agglutinate, and this activity is referred to as hemagglutination activity. SBA is 

normally considered to be an anti-nutritional factor due to the ability to bind to the brush 

boarder, causing increased intestinal weight and pancreatic hypertrophy (12). Lectins have also 

been shown to have potential in drug delivery due to the carbohydrate-binding specificity. 

There are problems associated with the use of lectins for drug delivery. Lectins usually have 

molecular weight of more than 10 KDa, which are likely to cause toxicity and immunogenicity 

(13). Small lectins might overcome this problem. Several small lectins have been found. 

Purified from Chinese bird spider Selenocosmia huwena, Selenocosmia huwena lectin-I is 

composed of 32 amino acids and has three disulfide bonds (14). θ-defensin is circular, 

tetracyclic peptides with three disulfide bonds and is purified from leukocytes and bone 

marrow of the rhesus macaque (Macaca mulatta) (15). θ-defensin has antimicrobial activity 

and protects cells from in vitro infection by HIV-1. Odorranalectin, which was purified from 

skin secretions of the frog Odorrana graham, is composed of 17 amino acids with the 

sequence of YASPKCFRYPNGVLACT (16). 

After heat denaturation, SBA had remaining 60% hemagglutination activity; after 

single enzyme hydrolysis, SBA still had 50-60% activity; and activity of SBA was fully 
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eliminated by multi-enzyme hydrolysis (17). We hypothesized that native SBA forms tetramer, 

displays full activity; heated SBA is denatured, the activity is reduced; when SBA is 

hydrolyzed by multiple enzymes, some active peptides still have some activity; after 

hydrolyzing by combination of enzymes, the active peptides could be fully destroyed (17). In 

the present study, we identified which peptide(s) may have this activity.  

SBA binds to the oligosaccharide moieties of cell surface glycoproteins to cause 

aggregation. This binding is carried out by the carbohydrate-binding sites in each subunit of 

SBA. These carbohydrate-binding sites have highest affinity for N-acetyl-D-galactosamine 

(GalNAc) (18). We hypothesized that the active peptides may have binding sites for GalNAc 

and these sites are responsible for the hemagglutination activity. In the present study, we used 

GalNAc-agrose beads to separate these peptides in trypsin hydrolysates from the unbound 

peptides, and used MALDI-TOF to identify the bound peptides. Once the peptide sequence 

was identified, we synthesized some of the identified peptides and tested activities of them.  

After single enzyme hydrolysis, β-conglycinin and glycinin did not show any reduction 

on the hemagglutination activity, and combination of enzyme hydrolysis fully deactivated 

β-conglycinin, but not glycinin (18). We also hypothesized that some peptides in β-conglycinin 

and glycinin have hemagglutination activity. Because β-conglycinin and hemagglutination 

activities of glycinin were also inhibited by GalNAc (data not shown), we used the same 

GalNAc-agrose beads to separate these peptides and used the same methods as for SBA to 

identify them, and synthesized the identified peptides for activity assay. 
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Materials and Methods 

Materials. β-conglycinin- and glycinin-rich fractions were produced from the Center 

for Crops Utilization Research (CCUR) in Iowa State University. They were fractionated 

according to a two-step soy-protein fractionation procedure with 5 mM SO2 and 5 mM CaCl2 

(20). The glycinin-rich fractions contained 96% protein with 85% purity and 

β-conglycinin-rich fraction contained 90% protein and 81% purity. Rabbit blood in Alsever’s 

solution was obtained from Hemostat Laboratories (Dixon, CA) and was used within two 

weeks. Other reagents were purchased from Fisher Scientific (Pittsburg, PA) or Sigma-Aldrich 

(St. Louis, MO).  

 

Extraction and purification of SBA. The procedure for extraction and purifying SBA 

described by Lis and Sharon (21) was used. Generally, 1 Kg of soy flake was dispersed in 12 L 

of distilled water and the pH was adjusted to 4.6 with concentrated HCl and the dispersion was 

incubated overnight at 4 ºC to precipitate the major storage proteins. Most of the supernatant 

fluid was poured out and collected, and the remaining supernatant was saved by centrifugation 

(3020 x g, 15 min). Ammonium sulfate, 300 g, was added to each L of supernatant to 

precipitate other proteins. Vacuum filtration was used to remove the precipitate. To each L of 

filtrate, additional 270 g of ammonium sulfate was added while stirring and the mixture was 

incubated overnight at 4 ºC to precipitate the crude SBA. The precipitate was then collected by 



121 

 

 

 

centrifuging and resuspending in 200 mL of water and dialyzed against water for 24 h at 4 ºC 

with two changes of water. Any insoluble material, which was present after dialysis, was 

removed by centrifuging and was discarded. A second precipitation of SBA was done by 

adjusting the pH of the solution to 4.6 with 1N HCl and adding ammonium sulfate (56 g/100 

mL of solution). The precipitate was collected by centrifugation (3020 x g, 15 min) and 

redissolved in 100 mL of 0.05 M phosphate buffer, pH 6.1. The solution was dialyzed against 

water for 24 h at 4 ºC and then lyophilized. The different isolectins were not separated, and 

SBA was not purified further.  

 

Enzyme hydrolysis of soy proteins. SBA treated at 100 ºC for 20 min, or 

β-conglycinin- or glycinin-rich fraction treated at 100 ºC for 5 min was subjected to trypsin 

hydrolysis in PBS (phosphate-buffered saline, 10 mM phosphate, 0.9% saline), pH 8.0 with 

enzyme:protein ratio of 1:16 at 37 ºC for 24 h. The hydrolysates were used for further 

separation of peptides. 

 

 Separation of peptides that bound to GalNAc-agrose beads. Trypsin hydrolyzed 

SBA, β-conglycinin- or glycinin-rich fractions (6.4 mg) were mixed with about 1 mL 

GalNAc-agrose beads, respectively, and incubated at 4 ºC overnight. The unbound peptides 

were collected by centrifuging the beads at 850 x g for 1 min. The beads were then washed 

twice with 0.9% saline. The bound peptides were eluted from the beads by using 600 μL of 25 
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mg/mL GalNAc in 0.9% saline. Both unbound and bound peptides of SBA were subjected to 

SDS-PAGE analysis, hemagglutination assay and MALDI-TOF. The bound peptides for 

β-conglycinin and glycinin were subjected to MALDI-TOF. 

 

Identifying the peptides using MALDI-TOF. MALDI-TOF was done in the protein 

facility of Iowa State University. Generally, the separated peptides were desalted and 

concentrated by ZipTip U-C18 from Millipore (catalog #ZTC18MO96). The peptides were 

then washed off the ZipTip by using 0.75 μL Matrix solution matrix 

(α-Cyano-4-hydroxycinnamic acid (ACH), 5 mg/mL), and loaded on the sample target of mass 

spectrometer. The remaining peptides were washed off the ZipTip by 0.5 μL 70% ACN 

(acetonitrile) with 0.1% TFA (trifluoroacetic acid) solution and dispensed onto the same 

sample target, which were dried at room temperature. The samples were then loaded into the 

mass spectrometer and analyzed. MALDI-TOF was performed on a PerSeptive Biosystems 

Voyager DE-PRO Biospectrometry Workstation equipped with a nitrogen laser (λ=337 nm). 

Measurement was carried out by delayed extraction and laser-desorbed positive ions were 

analyzed after accelerating at 20 kV in the linear mode. External calibration was performed 

with a mix of angiotensin I, adrenocorticotropic hormone clip 1-17, 18-39 and 7-38, and 

insulin. At least 50 laser shots were obtained for each spectrum and at least three positions on a 

spot were analyzed for each sample.  

Sequences of SBA, glycinin and β-conglycinin were obtained from ExPASy databases 
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(http://ca.expasy.org/). The sequence was subjected to a theoretical trypsin digestion using 

MS-Digest of University of California, San Francisco 

(http://prospector.ucsf.edu/cgi-bin/msform.cgi?form=msdigest). The m/z identified by 

MALDI-TOF were compared with the theoretical digestion peptides to obtain the peptides that 

have the same molecular weight, and gave the sequences of these peptides.  

  

 Hemagglutination assay. The hemagglutination assay was performed as previously 

described (17), according to the method of Lis and Sharon (21) with some modification. 

Briefly, rabbit red blood cells collected in Alsever’s solution were washed for three times using 

0.9% saline with two-fold dilution, and subjected to trypsin hydrolysis in 10 mM phosphate 

buffered 0.9% saline (pH 7.4) (PBS). The red blood cells were then washed four times using 

0.9% saline, and finally resuspended at 3% (v/v) in 0.9% saline. Protein samples were serially 

diluted in a 96-well round bottom plate with saline to give a final volume of 0.1 mL. Then 0.1 

mL of 3% trypsinized red blood cells was added to each well. The plates were placed in 37 ºC 

for 2 h for agglutination to occur. The hemagglutination units (HU) per g of sample were 

determined by the equation (22): 

V

SDD
gHU BA 
  

Where DA is the dilution factor of the first well, DB is the dilution factor of the well 

containing 1 HU (the last dilution that causes cell agglutination), S is the mL of extract per 
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gram of sample (inverse of the initial concentration), and V is the volume of extract added. 

Each sample was done in duplication. The HU/g values were then expressed as log (HU/g)/log 

2 to normalize the data for the two-fold dilution. Because the results may be affected by the age 

of the blood, the activity of the trypsin, and other factors, SBA was used as a standard in each 

set of assay. The results were expressed as relative activity to SBA. 

 

Slide agglutination test. The agglutination assay was done according to Pennell et al. 

(23). Generally, samples were serially diluted according to hemagglutination assay. Then 5 μL 

of each diluted sample was placed on a slide, followed by 5 μL of trypsin treated 3% rabbit red 

blood cells (the same red blood cells in hemagglutination assay). They were mixed with a 

pipette tip and rotated by hand for 10 to 20 sec. The mixture was then observed under 

microscope to examine hemagglutination. Saline was included as negative control. The 

samples with clumps of cells were considered positive and the ones with uniformly distributed 

cells were considered negative. The same calculation of HU as hemagglutination assay was 

used.  

 

Statistical analysis. The data were analyzed by Analysis of Variance (ANOVA) and 

General Linear Model (GLM), and the Least Significant Differences (LSD) were calculated at 

the 5% level to compare treatment means using the SAS system (version 9.1, SAS Institute Inc., 

Cary, NC).  
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Results and Discussion 

Activities of separated peptides from SBA. Trypsin is specific, only cleaves at the 

carboxyl side of arginine or lysine residues, and gives small number of peptides, which is 

easier to analyze. Therefore, trypsin was chosen to hydrolyze SBA as the starting peptide mix. 

Trypsin cannot hydrolyze SBA without heat treatment, so SBA was treated at 100 ºC for 20 

min. After trypsin hydrolysis of heated SBA, there were some precipitates. The supernatant 

and precipitate were separated and hemagglutination activities of them were tested. We found 

that the supernatant had activity whereas the precipitate did not, so the supernatant was used to 

bind to the GalNAc beads. We found that trypsin was not bound to the beads (Fig. 1), which 

indicated that GalNAc beads specifically bound to peptides. The unbound peptides showed no 

hemagglutination activity, which indicates that the other part (bound peptides) might have full 

activity. However, there was concentrated GalNAc in the bound peptides mix when the 

peptides were eluted from the beads, which inhibited activities of the peptides, so we were 

unable to assay the activity in them. 

 

   Activities of identified and synthesized peptides from SBA. After separating 

peptides bound or unbound to beads, MALDI-TOF was used to identify these peptides. 

Unbound and bound peptides gave different peptide profiles (Fig. 2), which indicated that 

GalNAc specifically bound to certain peptides. From the results of bound peptides, two 
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peptides belonging to SBA were identified. One is SBA 197-206, with the sequence 

KTSLPEWVRI, another is SBA 36-51 with the sequence KVDENGTPKPSSLGRA. The two 

peptides were then synthesized and activities of them were assessed. One peptide from 

unbound peptides: SBA 15-26 with the sequence QPNMILQGDA was also synthesized as a 

negative control. 

Fig. 3 shows that the positive control SBA (A) had clumps on the slide, whereas 

negative control saline (B) had uniformly distributed cells. For sample SBA 197-206, (C) 

shows the last dilution had activity, while the next dilution (D) did not. Similarly, E shows the 

last dilution for SBA 36-51, which had activity, and the next dilution (F) did not. G shows that 

a higher dilution of SBA 36-51 had more obvious clumps than E. On the other hand, the control 

peptide (SBA 15-26) did not have activity (H), which was just like saline (B). The activities of 

the peptides were calculated according the equation used in hemagglutination assay and 

summarized in Table 1. Both of SBA 36-51 and SBA 197-206 had activity, whereas the control 

peptide SBA 15-26 did not. This result confirmed our hypothesis that some active peptides in 

SBA have hemagglutination activity, and the activity is due to the binding of peptides to the 

carbohydrates on cell surfaces. Fig. 4 shows the relative position of the two active peptides in 

SBA sequence. Dessen et al. (24) cross-linked SBA with a synthetic biantennary analog of the 

blood group I carbohydrate antigen with structure of (β-LacNAc)2Gal-β-R, where R is 

-O(CH2)5COOCH3. They found the following amino acids interacted with the carbohydrate 

side chains: Phe 128, Ile 216, Leu 214, Ala 105, Ala 87, Asn 130, Asp 88, and Asp 215 (blue 
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letters in Fig. 4). None of the amino acids are in the two peptides we identified, probably due to 

the different carbohydrates and methods used for identifying the binding sites. 

 

   Activities of identified and synthesized peptides from β-conglycinin. Twenty-four 

peptides from β-conglycinin were identified that were bound to GalNAc beads and Table 2 

shows 11 of them. We selected three peptides which had the highest intensity and hitting times 

to synthesize: α’ chain amino acid 566 to 575 (Ba’ 566-575), α’ chain amino acid 24 to 31 (Ba’ 

24-31), and α chain amino acid 58 to 66 (Ba 58-66). The activities were tested using the slide 

agglutination test. Fig. 5 shows slide agglutination results for these peptides. For peptide Ba’ 

566-575, A is the last dilution that had the activity, whereas B is the next dilution that did not 

have activity. By similarity, C and E are the dilutions that Ba’24-31 and Ba 58-66 had activity, 

whereas D and F are the next dilutions the two peptides did not have activity. The 

hemagglutination activities of these peptides are summarized in Table 1. All three peptides 

from β-conglycinin have hemagglutination activity, confirming our hypothesis. 

 

   Activities of identified and synthesized peptides from glycinin. Sixteen peptides 

from glycinin bound to GalNAc beads and Table 3 shows eight of them. We selected three 

peptides for synthesis: subunit B2 1-13 (GB2 1-13) with sequence GIDETICTMRLRH; 

subunit A1a 101-114 (GA1a 101-114) with sequence RGQSSRPQDRHQKI; subunit A4 

236-242 (GA4 236-242) with sequence KKTQPRR. Fig. 6 shows the slide agglutination test 
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results. Fig. 6 A, C, and E are the last dilutions that GB2 1-13, GA1a 101-114, and GA4 

236-242 had activity, whereas B, D, and F are the next dilutions the three peptides did not have 

activity. The activities are calculated and summarized in Table 1. This result confirmed that 

glycinin also carries peptides that have hemagglutination activity. 

Nishi et al. (10) found that β 51-63 of β-conglycinin bound to the small intestinal brush 

boarder and stimulated cholecystokinin (CCK) release suppressing food intake. Peptides with 

arginine (R) and glycine (G) had strong affinity, but not single R. All the peptides we identified 

have R and G, but mostly in a single R format. We did not find any similarities between the 

peptides we identified. Although there might be some specific amino acids involved in the 

carbohydrate binding, we do not know exactly what the rule is.  

 

   Hemagglutination assay and slide agglutination test. When we used the typical 

hemagglutination assay to test activities of synthesized peptides, the peptides caused cell lysis, 

for reasons not known. We looked for alternative methods and the slide agglutination test 

seems to be a good one. For the positive samples, the cells formed clump almost immediately 

after getting in contact with the protein or peptide (Fig. 3A), while the negative control saline 

formed uniformly distributed cells on the slide (Fig. 3B), which was easy to distinguish. We 

tested the same sample (SBA) using both the hemagglutination assay and slide agglutination 

assay. We found the results only differ in one dilution, so that the hemagglutination unit 

differed in one unit. This result shows the consistent results and high correlation between the 
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two assays. The slide agglutination assay did not cause cell lysis, which may be due the short 

exposure time of samples to cells. The results were read very quickly after the sample was 

mixed with blood cells, so the cells may have agglutinated before lysed. The slide 

agglutination assay is very tedious, because we had to put every diluted sample onto a slide and 

mix with red blood cells. This method is not as convenient as the hemagglutination assay. 

When the samples do not cause any issue to the cells, the hemagglutination assay is a better 

choice. 

Although the peptides we identified had hemagglutination activity in vitro, we do not 

know how they would behave in vivo. Being able to bind to blood cells, there is a possibility 

that they can also bind to other cells, for example, the small intestinal brush boarder. This 

possible binding might cause anti-nutritional effects as SBA, but might also have other 

beneficial effects. Binding can be the first step for several activities. For example, the β 51-63 

fragment of β-conglycinin can bind to intestinal mucosal cells and stimulate cholecystokinin 

(CCK) release, thus suppressing appetite (10). Although extensive research about different 

functions of active peptides has been conducted, how the peptides interact with cells to trigger 

downstream signals is unknown. The ability for peptides to bind to the cells gives some 

indication of how the peptides carry out their functions, for example, bind to and enter the cells 

through endocytosis. More research needs to be done to study the in vivo effect of these 

lectin-like peptides and the possible links between the activity of binding to cells and other 

activities.  
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The potential use of these small lectin-like peptides in drug delivery needs to be further 

examined. Lectin-mediated drug delivery was discouraged due to the toxicity and 

immunogenicity of the lectins, which can be overcome by small lectins. The smallest peptide 

we identified only had seven amino acids, which was smaller than the smallest lectin peptides 

identified before (17 amino acids) (16) and easy to manipulate. The specificity of binding to 

GalNAc could be a potential for targeting special sites or cells.  
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Table 1. Activities of synthesized peptides from soybean agglutinin, β-conglycinin, and glycinin 

 

Origin Peptides Sequence 
Relative activity 

to SBA (%) 

Soybean agglutinin 
SBA 197-206 KTSLPEWVRI 38.1±3.7 

SBA 36-51 KVDENGTPKPSSLGRA 48.8±2.0 

β-Conglycinin 

Ba’ 566-575 KGPLSSILRA 40.5±1.7 

Ba’ 24-31 RQQHGEKE 40.1±1.7 

Ba 58-66 REEQEWPRK 47.2±2.0 

Glycinin 

GB2 1-13 GIDETICTMRLRH 46.1±0.0 

GA1a 101-114 RGQSSRPQDRHQKI 47.0±3.1 

GA4 236-242 KKTQPRR 45.2±3.1 

Unbound peptides SBA 15-26 QPNMILQGDA 0 

N=2. Data are presented as Mean ± SD. Ba’ 566-575: β-conglycinin α’ chain amino acid 566 to 575; Ba’ 

24-31: β-conglycinin α’ chain amino acid 24 to 31; Ba 58-66: β-conglycinin α chain amino acid 58 to 66; 

GB2 1-13: glycinin subunit B2 amino acid 1 to 13; GA1a 101-114: glycinin subunit A1a amino acid 

101 to 114; GA4 236-242: glycinin subunit A4 amino acid 236 to 242. 
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Table 2. Selected identified active peptides from soybean β-conglycinin 

 

Peptide Sequence 

α chain 367-373 KNPQLRD 

α chain 161-170 RSPQLQNLRD 

α chain 58-66 REEQEWPRK 

α chain 89-101 RQFPFPRPPHQKE 

β chain 395-401 KEEGSKGRK 

β chain 190-197 KEQIRQLSRR 

β chain 345-358 RNFLAGEKDNVVRQ 

α’ chain 401-407 RNPQLRD 

α’ chain 24-31 RQQHGEKE 

α’ chain 566-575 KGPLSSILRA 

α’ chain 58-66 KEEHEWHRK 

K: Lysine (Lys); N: Asparagine (Asn); P: Proline (Pro); Q: Glutamine (Gln); L: Leucine (Leu); R: 

Arginine (Arg); D: Aspartic Acid (Asp): S: Serine (Ser); E: Glutamic Acid (Glu); W: Tryptophan (Trp); 

F: Phenylalanine (Phe); G: Glycine (Gly); A: Alanine (Ala); V: Valine (Val); I: Isoleucine (Ile); Y: 

Tyrosine (Tyr); H: Histidine (His); T: Threonine (Thr).   
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Table 3. Selected identified active peptides from soybean glycinin 

 

Peptide Sequence 

Subunit B2 162-172 RQIKNNNPFKF 

Subunit B2 90-101 RVFDGELQEGRV 

Subunit B2 1-13 GIDETICTMRLRH 

Subunit A1a 282-287 RGSQSK 

Subunit A1a 101-114 RGQSSRPQDRHQKI 

Subunit A4 236-242 KKTQPRR    

Subunit A4 155-182 KWQEQQDEDEDEDEDDEDEQIPSHPPRR 

Subunit A2 242-250 RVTAPAMRK    
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1      2    3 

 

Figure 1. Separation of peptides from soybean agglutinin trypsin hydrolysates that were bound or unbound 

to GalNAc beads. Lane 1, SBA extract; lane 2, peptides that were unbound to beads; lane 3, peptides that 

were bound to beads. 

  

SBA 

trypsin 
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Figure 2. MALDI-TOF results for peptides from soybean agglutinin trypsin hydrolysates that were bound or 

unbound to GalNAc beads. A. Peptides that were bound to beads. B. Peptides that were unbound to beads.  

A. 

B. 
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  A. SBA (+)                          B. saline 

 

 C. SBA 197-206 (+)                  D. SBA 197-206 (-) 

 

E. SBA 36-51 (+)                      F. SBA 36-51 (-) 

 

G. SBA 36-51 (++)                     H. SBA 15-26 

                          

Figure 3. Hemagglutination activities of active peptides from soybean agglutinin. The pictures are 3% rabbit 

red blood cells mixed with: A. 2.5x10
-3

 mg/mL SBA; B. 0.9% saline; C. 26.8 mg/mL SBA 197-206; D. 13.4 

mg/mL SBA 197-206; E. 3.18 mg/mL SBA 36-51; F. 1.59 mg/mL SBA 36-51; G. 12.7 mg/mL SBA 36-51; H. 

24 mg/mL SBA 15-26.  
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10 20 30 40 50  

AETVSFSWNK FVPKQPNMIL QGDAIVTSSG KLQLNKVDEN GTPKPSSLGR  

60 70 80 90 100  

ALYSTPIHIW DKETGSVASF AASFNFTFYA PDTKRLADGL AFFLAPIDTK  

110 120 130 140 150  

PQTHAGYLGL FNENESGDQV VAVEFDTFRN SWDPPNPHIG INVNSIRSIK  

160 170 180 190 200  

TTSWDLANNK VAKVLITYDA STSLLVASLV YPSQRTSNIL SDVVDLKTSL  

210 220 230 240 250  

PEWVRIGFSA ATGLDIPGES HDVLSWSFAS NLPHASSNID PLDLTSFVLH  

      

 EAI      

 

Figure 4. Relative positions of the two active peptides from SBA in SBA sequence. The red letters are the 

two active peptides: SBA 36-51 and 197-206. The blue letters are amino acids that participate in 

carbohydrate binding according to Dessen et al. (24). 
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 A. Ba’ 566-575 (+)                           B. Ba’ 566-575 (-) 

 

 C. Ba’ 24-31 (+)                              D. Ba’ 24-31 (-) 

 

 E. Ba 58-66 (+)                               F. Ba 58-66 (-) 

 

 

Figure 5. Hemagglutination activities of active peptides from β-conglycinin. The pictures are 3% rabbit red 

blood cells mixed with: A. 12.5 mg/mL Ba’ 566-575; B. 6.25 mg/mL Ba’ 566-575; C. 13.62 mg/mL Ba’ 

24-31; D. 6.81 mg/mL Ba’ 24-31; E. 4.14 mg/mL Ba 58-66; F. 2.07 mg/mL Ba 58-66. 
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 A. GB2 1-13 (+)                                 B. GB2 1-13 (-) 

 

 C. GA1a 101-114 (+)                             D. GA1a 101-114 (-) 

 

 E. GA4 236-242 (+)                              F. GA4 236-242 (-) 

 

Figure 6. Hemagglutination activities of active peptides from glycinin. The pictures are 3% rabbit red blood 

cells mixed with: A.6.65 mg/mL GB2 1-13; B. 3.33 mg/mL GB2 1-13; C. 7.93 mg/mL GA1a 101-114; D. 

3.96 mg/mL GA1a 101-114; E. 5.49 mg/mL GA4 236-242; F. 2.74 mg/mL GA4 236-242.
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CHAPTER 5. GENERAL CONCLUSIONS 

Lectin is a group of protein that binds to carbohydrates. Soybean lectin, known as 

soybean agglutinin (SBA), causes growth inhibition, intestinal weight gain, and pancreatic 

hypertrophy, when consumed intact. SBA is readily deactivated by moist heat treatment, 

however, we want to utilize the protein fraction from the aqueous extraction process with 

minimum heating to preserve better functionality and nutritional quality of the soy proteins. In 

this study, a series of experiments was conducted to eliminate activity of SBA. 

Deglycosylation decreased activity of SBA by 21%, but not as much as denaturation (23-53%). 

Single enzymes did not hydrolyze native SBA, but hydrolyzed heat- or organic 

solutes-denatured SBA. Even after hydrolysis, activity of SBA still was not fully eliminated 

(44-62% residual). A combination of multiple enzymes with thermolysin fully deactivated 

heat- or organic solutes-treated SBA. Tea polyphenols, metal ions, chelating agents were also 

tested and had no significant effect on deactivating SBA. N-acetyl-galactosamine 

(GalNAc)-agrose beads specifically removed SBA from a protein mixture, but not fully and 

activity of SBA was not eliminated. Pepsin and pancreatin hydrolysis fully deactivated native 

SBA. This treatment uses minimum heating, as a result, it was chosen to treat soy white flake 

(SWF) for feeding trial to evaluate feeding quality. 

During the preparation of feeding material, we surprisingly found that the two storage 

proteins in soybean, β-conglycinin and glycinin, also had hemagglutination activity. The 

activity of β-conglycinin was not reduced by single enzyme hydrolysis, but was fully 
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eliminated by a combination of multiple enzyme treatments. Activity of glycinin was not fully 

reduced by either single or a combination of multiple enzyme hydrolysis. Similarly, the 

activities of SWF and soy protein isolate (SPI) were not fully reduced by single or combination 

of multiple enzyme hydrolysis. Although pepsin and pancreatin treatment did not fully 

deactivate β-conglycinin, glycinin, SWF and SPI, this method was used to generate feed 

material for in vivo evaluation of nutritional quality due to the ability to fully deactivate SBA. 

The in vitro study showed that the SBA in SWF was deactivated by this treatment, but did not 

improve chick growth performance compared to the raw SWF, however, the chicks did not 

show any pancreas enlargement or intestine weight increase compared to the raw soy feeding 

or a commercial diet, indicating the deactivation of SBA in the material. 

After enzyme hydrolysis, SBA, β-conglycinin and glycinin still had hemagglutination 

activity, this result caused us to hypothesize that certain peptides in these proteins had 

hemagglutination activity. In order to identify the active peptides, the three proteins were 

subjected to trypsin hydrolysis, and GalNAc-agrose beads were used to isolate the active 

peptides. MALDI-TOF (Matrix Assisted Laser Desorption/Ionization Time-of-Flight) was 

used to identify the masses of the peptides, and the masses were compared to the peptide 

profiles given by theoretical cleavage of the proteins, so that the peptides could be identified. 

Two peptides from SBA, 24 peptides from β-conglycinin and 16 peptides from glycinin were 

identified from the active peptide extracts. In addition, 2, 3 and 3 peptides from SBA, 

β-conglycinin and glycinin respectively were synthesized and their activities were assessed 
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using hemagglutination assay. These peptides have hemagglutination activity whereas a 

synthesized control peptide from SBA did not show any activity. This result confirmed our 

hypothesis that there are active peptides in soy protein that have hemagglutination activity. 
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