

Human population is increasing...

- Increased urban growth
 - increased habitat fragmentation
- Challenges primate movement
 - Animal-Vehicle collisions
 - Electrocutions
 - Dog attacks

One possible solution: crossings structures

 Crossing Structures (CS) provide a safer travel option

 Have been installed by conservationists all over the world

The research problem

- We installed crossing structures
- Bridges appear to be helping many arboreal mammals but our target species are primates.
- Primates do not use the crossing structures as expected.

The bridge models:

1.The twisted liana

The bridge models:

2. The parallel vertical

The bridge models:

3. The horizontal ladder

Crossing structure research design

- Materials had similar properties and amount
- Study subjects were given
 exclusive access to one bridge
 for a 3 day period
- CS were rotated in a 3 day
 cycle and repeated for 21 days

- Standard sampling methods from Altmann, 1974
- Subjects' behavior assessed for CS model preference
 - Focal individual sampling with instantaneous recording at 1minute time points
 - Group scan every 2 minutes
 - Individuals on/off CS
- Potential CS design strengths or weaknesses as indicated by study subjects' behavior
 - Individuals' time on structure
 - All occurrences of:
 - Missteps and falls
 - Locomotor and postural behavior
 - Fear and agonism

Results: reaction to CS design

 No significant difference in frequency of use among models

 48% of cases (n=13) study subjects exhibited difficulty and/or fear traveling across the crossing structures.

 62% of crossing problems were associated with the twisted liana model.

Result: Subjects spent more time crossing the ladder model

Result: 62% of crossing problems were associated with the twisted liana model.

Result: Adults utilized CS more than juveniles

Percent of crossings by age

Summary

- Q: What is the most effective design for primate crossing?
 - A: Parallel liana and ladder models performed well
 - Fewer missteps
- Q: What is most comfortable CS design?
 - A: They seemed more relaxed in ladder bridge
- Q. Do primate age groups utilize CS differently?
 - A. Juveniles did not use CS as much as adults

What's next?

 Can we find a better balance between CS stability and material flexibility?

Does adding natural vegetation improve CS effectiveness?

Are there differences in CS use among primate species?

Acknowledgements

- Jaguar Rescue Center & staff
- Jason Elliot and Annee Caron
- Jill Pruetz
- Support provided in part by American Society of Primatologists, International Primatological Society and Northwest Primate Conservation Society
- Thanks to our generous contributors via the Indiegogo fundraising campaign, Connecting Primates to Places with Wildlife Bridges

