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Abstract

Availability of an explainable deep learning model that can be applied to practical
real world scenarios and in turn, can consistently, rapidly and accurately identify
specific and minute traits in applicable fields of biological sciences, is scarce. Here
we consider one such real world example viz., accurate identification, classification
and quantification of biotic and abiotic stresses in crop research and production.
Up until now, this has been predominantly done manually by visual inspection and
require specialized training. However, such techniques are hindered by subjectivity
resulting from inter- and intra-rater cognitive variability. Here, we demonstrate
a machine learning framework’s ability to identify and classify a diverse set of
foliar stresses in the soybean plant with remarkable accuracy. We also present
an explanation mechanism using gradient-weighted class activation mapping that
isolates the visual symptoms used by the model to make predictions. This un-
supervised identification of unique visual symptoms for each stress provides a
quantitative measure of stress severity, allowing for identification, classification
and quantification in one framework. The learnt model appears to be agnostic to
species and make good predictions for other (non-soybean) species, demonstrating
an ability of transfer learning.

1 Introduction

Typical plant stress identification and classification has invariably relied on human experts identifying 
visual symptoms as a means of categorization [1]. This process is admittedly subjective and error-
prone. Computer vision and machine learning have the capability of resolving this issue and enable 
accurate, scalable high-throughput phenotyping. Among machine learning approaches, deep learning 
has emerged as one of the most effective techniques in various fields of modern science such as 
medical imaging applications that have achieved dermatologist level classification accuracies for skin 
cancer [2], in modeling neural responses and population in visual cortical areas of the brain [3] and 
in predicting sequence specificities of DNA- and RNA-binding proteins [4]. Similarly, deep learning
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based techniques have made transformative demonstration in the context of performing complex
cognitive tasks such as achieving human level or better accuracy for playing Atari games using Deep
Q network [5] and even beating a human expert in playing the Chinese game of Go [6].

Figure 1: DCNN architecture used.

Figure 2: This table presents leaf image examples for each soybean stress identified and classified by
the DCNN model. The Grad-CAM framework was applied to highlight regions of interest (symptoms)
extracted by the DCNN model. These automatically extracted symptoms were compared against
versions of images with symptoms that were marked manually by expert raters.

We start by building a deep learning model that is exceptionally accurate in identifying a large class
base (9 classes) of soybean stresses from RGB images of soybean leaves. However, this type of model
typically lack “explainability” which presents a major bottleneck to their widespread acceptance [7].
Here, we sought to explore the trained model to explain each identification and classification decision
made by extracting the visual cues or features responsible for a particular decision and determining
which region of the leaf image is used by the DCNN model to make a decision and whether this
region is correlated with the human-identified symptoms of a particular disease. Our explanation
framework is based on concepts of gradient-weighted class activation mapping (Grad-CAM) [8] [9],
which queries each prediction of the trained model to extract visual cues (see Figure 1). Figure 2
illustrates the results from this explanation framework with representative examples from each stress.
The trained DCNN correctly identified each stress (top row) on the basis of the input image (second
row). The explanation framework then (without any supervision) isolated the visual cues (i.e., most
important pixels) used by the DCNN for stress identification. These regions are highlighted in red in
row 3. With statistical significance, the visual cues identified by the explanation framework correlated
with the regions exhibiting visual disease symptoms, as assessed by an expert plant pathologist.
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Figure 3: (a) This confusion matrix shows the stress classification results of the DCNN model for
eight different stresses and healthy leaves. (b) shows a scatter plot comparing the severity ratings of
the same images between two raters for four stresses (IDC, SDS, potassium deficiency and Septoria
brown spot) that were pooled and solid red line is the 45o line. The results indicated high inter-rater
variability between experienced raters, especially as the stress severity of leaf images increase.

Figure 4: These figures (a, b, c) details the comparison between human and machine learning-based
severity ratings for three previously mentioned stresses [(a) Septoria brown spot, (b) IDC, and (c)
Sudden Death Syndrome]. The severity comparison using a standard discretized severity scale (0-15%:
resistant, 15-30%: moderately resistant, 30-45%: moderately susceptible, 45-75%: susceptible, and
75-100%: highly susceptible) shows the success of the DCNN-based severity estimation framework
to correctly quantify symptoms for these stresses.

2 The proposed architecture: An explainable Deep Learning Framework

A CNN-based supervised classification framework was developed to identify and classify stresses
(Figure 1 (a) and (b)). DCNNs have shown an extraordinary ability [2–6, 10, 11] to efficiently extract
complex features from images and function as a classification technique when provided with sufficient
data. We associate this classification ability with the hierarchical nature of this model [12], which is
able to learn “features of features” from data without the time-consuming hand-crafting of features.
We then use the Grad-CAM algorithm [8] to generate heat maps on a test leaf image that signifies the
leaf region the DCNN model is focusing on to perform the classification.

2.1 The CNN Model

The network architecture (shown in Figure 1) consists of 5 convolutional layers (128 feature maps of
size 3X3 for each layer), 4 pooling layers (down sampling by 2X2 max-pooling), 4 batch normal-
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ization layers and 2 fully connected (FC) layers with 500 and 100 hidden units each, sequentially.
Training was performed on a total of 53,265 samples (with an additional 5,919 validation samples),
and testing was performed on 6, 576 samples. The learning rate was maintained at 0.1. The Rectified
Linear Unit (ReLU ) function is used as the activation function. To address overfitting issues, we add
dropout [13] layers in between the fully-connected (FC) layers. The percentage of dropouts used was
50% after each of the fully-connected layers (namely, FC1 and FC2, as shown in Figure 1). After
every convolutional layer, batch normalization was performed to remove internal covariate shift [14].
The network was trained for approximately 100 epochs on the 53,265-image training set to reach the
desired accuracy (94%). The crossentropy (categorical) loss (or cost) function along with the Adam
optimizer [15] was used to minimize the error.

2.2 Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM increases the transparency of CNN based models and explainability by visualizing the
input regions that are more important than others; on this basis, the DCNN then makes predictions.
Detailed mathematical formulations and algorithm descriptions can be found in [8]. Grad-CAM
follows the CAM approach to localization [16] and enables modification of image classification CNN
architectures, in which FC layers are replaced with convolutional layers. Subsequent global-average
pooling [17] yields class-specific feature maps. Grad-CAM circumvents issues of CAM by combining
feature maps that do not require any modification in the network architecture. This method uses a
gradient corresponding to a certain class that is fed into the final convolutional layer of a DCNN to
produce an approximate localization (heat) map of the important regions in the image for each class.

3 Results

3.1 Plant Disease Classification and Identification

Figure 2 presents the qualitative results of deploying the trained DCNN for disease detection and
classification. Figure 3 and Figure 4 detail the quantitative results over all test images. We found a
high overall classification accuracy (94%) using a large and diverse dataset of unseen test examples
(approximately 6000 images, i.e., approximately 600 examples per foliar stress). The confusion
matrix revealed that erroneous predictions were predominantly due to confounding disease symptoms
that cause confusion even for expert raters (Figure 3b). For example, the highest confusion (17.6% of
bacterial pustule (class 7) test images predicted as bacterial blight (class 0) and 11.6% of bacterial
blight test images predicted as bacterial pustule) occurred between bacterial blight and bacterial
pustule. Discriminating between these two diseases is challenging even for expert plant pathologists
[18].

3.2 Explaining the symptoms and estimating disease severity

In conventional disease-scouting scenarios, the ratings of even the same expert rater may change
depending on various factors (intra-rater variability), such as illumination and human fatigue. More-
over, different human raters often tend to disagree (inter-rater variability), owing to the subjective
quantification of the extent of symptoms expressed on a leaf [1, 19]. In contrast, the trained DCNN
provides a consistent approach for severity estimation. Specifically, the spatial spread of the au-
tomatically identified symptoms allows for estimation of the severity of the classified disease in
each leaflet. We computed the severity as the area fraction of identified symptoms and compared
it with the severity estimated by an expert human rater. While the algorithm identified symptoms
extremely precisely (at a pixel level), the expert human rater estimate was much more qualitative.
Instances of inter-rater variability is presented in Figure 3 (b). Figure 4 (a, b, c) shows a comparison
of the machine learning-based ratings and human ratings based on a typical discretized severity
scale (as mentioned in Figure 4). Furthermore, these rating results demonstrated the efficacy of the
DCNN-based severity estimation framework, which identifies the disease symptoms in a completely
unsupervised manner. We observed that the few deviations in these results were primarily due to
the low quality of the corresponding images, which exhibited shadows, low resolution and a lack of
focus.
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