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GENERAL INTRODUCTION 

Freeze concentration of aqueous solutions has become an alternative energy sav

ing technique for concentration in a variety of chemical processes. Three applications 

seem to get the most attention: 

1. Treating hazardous wastes (environmental concern); 

2. Concentrating fruit juices (food industry); 

3. Purifying organic chemicals (pharmaceutical industry). 

Basic techniques used are as follows: a solution is cooled to below its freezing 

point and pure ice is formed, concentrating the solution. Depending on the degree of 

concentration the process may result in precipitation of dissolved salts. 

The advantage of the freezing concentration technique is that it is an energy-

saving process. The energy involved in freezing one pound of water is of the order of 

150 BTU, for boiling is of the order of 1,000 BTU. Furthermore, corrosion problems 

are minimized since it operates at low temperatures. As an example, CBI Freeze 

Technologies, Inc., Plainfield, 111., developed the first FC unit for treating hazardous 

wastewater in early April, 1988. The process is capable of treating aqueous wastes 

containing reactive ions, metals, and organics with 1 - 10 wt% solids. The wastewater 

is precooled to the freezing point. The ice in the concentrated slurry is separated 
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and melted to produce pure water. The remaining liquor is either recycled for more 

ice formation or removed as a concentrated stream. If concentration is such that it 

becomes supersaturated in its solutes, provision is made to cause crystallization to 

take place separately from the ice formation. 

The thermodynamic basis of those crystallization processes is the phase equilib

rium. Since the phase diagrams of multicomponent systems are usually not available 

and experimental determination is extremely tedious, a computer simulation scheme 

is employed. It is based on the thermodynamic theory that states that the Gibbs free 

energy of the system at equilibrium is at its minimum value. 

From the above discussion, it is clear that an accurate thermodynamic model 

for predicting the Gibbs free energy of the system and an effective mathematical 

procedure for finding the minimum of the Gibbs free energy is necessary so that the 

computer simulation of the system phase equilibrium can be carried out. The liter

ature review of the thermodynamic models and the phase equilibrium computation 

algorithms is given below. 

Review Of the Thermodynamic Model for Gibbs Free Energy and 

Activity Coefficient Of Concentrated Electrolyte Solutions 

The peculiarities of strong electrolyte solutions were a major puzzle to physical 

chemists in the first two decades of this century. In 1923 Debye and Huckel proposed 

their solution theory and obtained the simple limiting law that resolved the primary 

puzzle (see Appendix A.). The complete Debye-Huckel model is useful up to ionic 

strength of 0.1 m with one adjustable parameter. An empirical linear form in ionic 

strength can be added and the modified model can obtain good representation up to 
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2 m with two adjustable parameters. 

It was not until the last two decades, owing to the development of molecular ther

modynamics, that the prediction of thermodynamic properties of mixed electrolyte 

solutions at high concentrations became possible. Among those, the following four 

models have gained success in different applications: 

• The extended Pitzer's model (Virial form) (Pitzer, 1973); 

• The NRTL model of Cruz and Renon (Cruz and Renon, 1978); 

• The NRTL model of Chen (Chen et al., 1982); 

• The UNIQUAC model of Sander (Sander et al., 1986a,b). 

Generally speaking, all solution models assume certain forms of excess Gibbs 

free energy. The thermodynamic properties of the solution can then be obtained 

from derivatives of the excess Gibbs free energy. The excess Gibbs free energy of the 

electrolyte solutions is usually assumed to be the summation of the excess Gibbs free 

energy of different contributions: 

1. Long-range interactions; 

2. Short-range interactions; 

3. The concentration dependence of dielectric constants. 

The four models mentioned above also can be called primitive models because 

they all use an extended Debye-Huckel model to express long-range interactions. The 

different contributions of these four models are compared in Table 1. The equation 

of state model (a nonprimitive model), will be discussed later. 



Table 1: Comparison of different models 

Model Long-range Short-range Dielectric constant 

Pitzer Extended DH 
(Pitzer, 1973) 
Extended DH 

Virial No 

Renon NRTL Debye-McAulay 
(Earned and Owen,1958) 

No 
No 

Chen 
Sander 

(Fowler and Guggenheim, 1956) 
Extended DH as Pitzer 

Extended DH 
(Sander et al., 1986a) 

NRTL 
UNIQUAC 

Pitzer's Model 

Since Pitzer and his coworkers proposed the extended virial model in 1973, it 

has been applied to predict various thermodynamic properties of electrolyte systems. 

The simple analytical form of the equation gives a quantitative representation of 

all reliable and available activity and osmotic coefficient data of strong electrolytes. 

The accuracy is usually good up to 6 molality. The model can be readily extended 

to complex electrolyte mixtures using binary and common-ion ternary parameters. 

Pitzer (1979) compiled an extensive database for the 25^C binary and ternary model 

parameters. The first-order temperature derivatives of the binary parameters were 

also listed for many systems. However, the model assumes complete dissociation of 

the solute, water as the major solvent. Two extensions of the Pitzer's model have 

been made by Beutier and Renon (1978) and Chen et al. (1979) for the calculation 

of vapor-liquid equilibrium involving molecular solutes. 

Some problems have been discovered in determining density with this model. 

Fitting density data of the CaCl2, NaCl and their mixture, Kumar et al. (1983) 
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found that fit for CaCl'2 was distinctly inferior. This problem has also been observed 

in fitting the activity coefficients of CaCl2 above 5 molal (Phutela and Pitzer, 1983). 

This is due to the fact that the hydration sphere of the ion is changing in the 

concentration range above 1 m. There is no simple way this can be accommodated in 

the theory. Actually, Pitzer did not distinguish the hard-core effect and the hydration 

effect that made the model very empirical. 

Despite some limitations, Pitzer's model remains the most widely used. Harvie 

and Weare (1980) applied Pitzer's model to the prediction of mineral solubilities in 

natural waters at 25°C with great success. Following their work, a series of articles 

have been published that predict mineral solubilities within temperature ranges of - 54 

to 250°C and at pressures up to 1 kbar (Harvie, Moller and Weare, 1984; Felmy and 

Weare, 1986; Pabalan and Pitzer, 1987; Moller, 1988; Greenberg and Moller, 1989; 

Spencer, Moller and Weare, 1990; Monnin, 1990). Monnin (1989) applied Pitzer's 

model to calculate density and partial molal volumes of natural waters. The author 

concluded that the Pitzer model gave good accuracy at moderate concentration using 

only the binary parameters. The accuracy decreased at higher concentration because 

ternary parameters could not be obtained with reasonable confidence and therefore 

were not used. 

The Pitzer model has also been used to calculate the activity coefficients of 

the supersaturated solutions (Sohnel, Garside and Jancic, 1977; Sohnel and Garside, 

1979) with the assumption that there is no discontinuity in water activity between 

the saturation and the supersaturation region. 

These applications demonstrated the capability of the Pitzer model. It is proba

bly the most suitable model for engineers dealing with aqueous electrolyte solutions. 
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NRTL (Non-Random Two Liquid) Model 

All parameters in the Pitzer's model are empirical. Binary parameters are em

pirical functions of ionic strength and ternary parameters are necessary at high con

centration and for mixtures. Since Pitzer's model is based on a virial expansion, it 

is subject to all the limitations of a virial model. Pitzer's equation cannot be used 

for a mixed solvent system because its parameters are unknown functions of solvent 

composition. 

To apply the thermodynamic model to a mixed solvent and a system involving 

molecular species, another approach was proposed based on the NRTL model of 

nonelectrolyte solutions (Cruz and Renon, 1979; Chen et al., 1982). 

Although both models use the NRTL approach for short-range interactions, the 

difference between the work of the two is that different assumptions were used. Cruz 

and Renon assumed the complete solvation of all solutes; Chen et al. adopted Bron-

sted's principle of specific interaction, which states that there would be specific inter

actions only between ions of the opposite sign (like-ion repulsion), and the distribution 

of anions and cations around a neutral molecule is such that the net charge is zero. 

As for long-range interactions, Chen used the same extended Debye-Huckel 

model as Pitzer did. Cruz and Renon followed the extension of Debye-Huckel model 

made by Fowler and Guggenheim (1956), and considered the concentration depen

dence of the dielectric constant. The concentration dependence of the dielectric 

constant is expressed as Born or Debye and McAulay theory (Harned and Owen, 

1958). 



The comparison of Pitzer equation to Chen's NRTL and modified Cruz and 

Renon's NRTL was given by Ball and Renon (1985). In both single electrolyte and 

mixture cases (single solvent water), best fit was achieved with Pitzer's model (trun

cated with only binary parameters used). Both NRTL models gave similar accuracy. 

The advantage of NRTL models, however, is that they are more flexible and easy to 

handle mixed solvents and systems including molecules as well as ions. Chen and 

coworkers have applied Chen's NRTL model to calculate the phase equilibrium of 

amino acids (Chen et al., 1989) and antibiotics (Zhu et al., 1990) with success. 

In 1989, Liu et al. (1989a,b) proposed an activity coefficient model for electrolyte 

solutions, which goes beyond previous models because it is based on a theoretically 

improved combination of the Debye-Huckel theory and the local-composition (NRTL) 

concept. Recall that all the models consider the long-range and short-range interac

tions independent of each other. The new model gives appropriate attention to the 

effect of the short-range interaction on long-range interaction and vice versa. The 

parameters are ion-specific, not electrolyte-specific. The unique feature of the Liu et 

al.'s model is their modification of the Debye-Huckel expression. The Debye-Huckel 

expression used in previous models gives the interactions between each central ion 

and all the other ions in the solution. The Debye-Huckel expression of Liu et al. 

gives only the interactions between each central ion and ions outside the first coordi

nation shell. The interactions of ions inside the first coordinate shell are considered 

in the NRTL expression (see Figure 1). The dielectric constant, D, of the solution is 

assumed to be a function of the water mole fraction 

D = 31.65 + 46.65a;ti) 

The disadvantage of NRTL model is that the parameters are not in linear form. 
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O  

Boundary of the first 

coordination shell 

Figure 1: Long-range and short-range interaction in Liu et al. model 

This leads to some difficulties in data treatment. The parameters are generally 

strongly correlated; the initial values may influence the final correlation; and mul

tiple roots exist. Therefore there is some uncertainty about the best values of the 

parameters. 

UNIQUAC (Universal Quasi Chemical Theory) Model 

An interesting fact drawn from the above discussion of the different kind of 

models is that the major distinction between them is the way short-range interactions 

are handled, which is related to the interactions within the non-electrolyte system. 

The basis of the virial or NRTL idea is really taken from non-electrolyte VLE (Vapor-
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Liquid Equilibrium) predictions. All the successful VLE models can be incorporated 

into the electrolyte system in a suitable way. 

In 1986, Sander et al. (1986a) proposed the UNIQUAC model. The excess Gibbs 

function is assumed to be the sum of two contributions, the Debye-Huckel type for 

long-range and modified UNIQUAC for short-range interactions. The Debye-Huckel 

equation was generalized to handle mixed solvents. The application to the VLE and 

SLE (A"^ — Mg^'^ — — H2O phase equilibrium) yields good results 

(Sander et al., 1986b). The extension of the UNIQUAC model has been made by 

Rennotte et al. (1988, 1989). The Debye-McAulay theory was added and a new 

correlation of the concentration dependence of dielectric constant is proposed: 

A + DiuY 

with A — 2/3(Dw — jDqj), is a constant and Dw is dielectric constant of pure 

water. 

Equation of State for Electrolyte Solutions 

The most recently published thermodynamic model for aqueous electrolyte so

lutions containing multiple salts is an equation of state model by Jin and Donohue 

(1991). Unlike the previous models, this equation of state model uses only one ad

justable parameter for each ion that must be determined from all available binary 

activity coefficient data concerning each ion. 

One unique feature of this equation of state model is that it is based on the 

perturbation theory, a nonprimitive model. All the above models are extensions of 

the Debye-Huckel model, a primitive model. The distinction between the primitive 

and nonprimitive models is that the primitive model treats the solvent as a continuous 
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medium with a certain dielectric constant; the nonprimitive model treats the solvent 

as a discrete medium, and no dielectric constant is used. This is further illustrated 

in Figure 2. 

Jin and Donohue claimed in their paper that their model gave better results than 

Pitzer's model for the prediction of solubilities. One example was the comparison 

of the calculated phase diagram of NaCl-Ca504 — H2O system at 25°C using the 

equation of state model and Pitzer model. However, the calculated phase diagram 

given by Jin and Donohue using Pitzer's model was quite different from that given by 

Harvie and Weare (1980). Harvie and Weare reported excellent agreement between 

experimental data and the Pitzer model prediction. This leads to another problem in 

the phase equilibrium simulation, i.e., the accuracy of the numerical solutions. The 

following review addresses this problem. 

Review Of the Phase Equilibrium Computation 

The phase equilibria problem includes vapor-liquid, liquid-liquid, solid-liquid, 

vapor-liquid-liquid, etc. equilibria. Since the primary interest of this study is the 

crystallization process, only solid-liquid equilibria will be considered. The condensed 

phases are assumed to be pure solid phases. All computation methods reviewed below 

will be discussed with respect to those aspects. 
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The mathematical equivalent form of the phase equilibrium problem is: 

M in G = 

i 
s.t .  i4n = b 

n > 0 

where G is Gibbs free energy, and are mole number and chemical potential of 

species i, respectively. The linear constraints are the mass and charge balance. 

As mentioned before, the difficulty with the phase equilibrium problem is that the 

phases precipitated at equilibrium are not known a priori. Although the maximum 

number of phases precipitated at equilibrium is restricted by the Gibbs phase rule, 

there may still be many possibilities that must satisfy the phase rule. Suppose that a 

maximum of 2 solid phases can exist out of 4 possible ones and there are 10 possible 

combinations as shown in Figure 3. 

In general, there are two different approaches to solve this problem. One is 

solving for all the combinations and choosing the one with the lowest free energy 

value. The other is solving the minimization problem with all four possible solid 

phases. It is expected that the concentrations of non-existing phases are zero at the 

minimum point. The first approach is usually called •phase-splitting approach and the 

second one phase-eliminating. 

The phase-splitting approach was first proposed by Gautam and Seider (1979). 

To reduce the number of combinations that actually need to be solved, the ther

modynamic stability criteria were used. Although the original applications of this 

method were the solving of vapor-liquid, liquid-liquid equilibria problems, the solid-

liquid equilibrium problem is discussed below. The most recent applications of this 
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Solution Phase 

Phase Combinations 

Figure 3: Possible combinations of phase assemblage 

approach have been done by Sander et al. (1986b) for solving the solid-liquid equilib

rium problem and Walraven and Romp ay (1988) for suggesting an improved phase-

splitting method. 

First, locate a source phase, for instance a solution phase. The thermodynamic 

stability criteria are then used to identify unstable components within the source 

phase. Split the unstable component from the source phase to form a trial phase 

followed by the minimization procedure for obtaining the compositions in both source 

and trial phases. If the quantity of the trial phase is large (larger than the pre-
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Source Phase 

Phase-Splitting Approach Yes Stable ? Stop 
No 

Phase Split 

Trial 1 Trial 2 Source Trial S 

Min 

Accept ? ^ Min 
No 

Yes 

^ Accept 7 Min 

Min 

Accept ? 

Figure 4: Phase-splitting approach 

specified trace amount), the trial phase is accepted. The similar procedure is carried 

out for other unstable components. The procedure is illustrated in Figure 4. Clearly 

several minimization procedures should be carried out. 

For a complex multicomponent system, the -phase-splitting procedure might have 

to deal with many possible subsystems. Castillo and Grossmann (1981) proposed an 

alternative approach based on a phase-eliminating procedure. The phase equilibrium 

problem was solved with nonlinear programming techniques. All possible phases were 
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Solution Solid 1 Solid S Solid 2 

Nonlinear Programming 
Minimization 

Pbase-Elljninating Approach 

Optimum Solution 

Analyzing the 
Optimum Solution 

Phase Equilibrium 

Figure 5: Phase-eliminating approach 

assumed. No thermodynamic criterion was used. The equilibrium phase assemblage 

was obtained simply by analyzing the optimum solution. The zero mole number cor

responded to non-existing component. Since the chemical potential was undefined 

at zero concentration, precautions were used. An arbitrary small positive value was 

used for variable constraints instead of zero. The phase-eliminating procedure is il

lustrated in Figure 5. Neither the phase-splitting nor the phase-eliminating procedure 

so used can guarantee that the Gibbs phase rule is satisfied at the optimum solution. 



Since the phase equilibrium problem is a constrained minimization problem, 

modern optimization techniques are applicable. The phase selection criteria can be 

incorporated in the minimization algorithm by carefully analyzing the optimization 

theorem (Kuhn-Tucker conditions). 

The constrained minimization algorithms can be categorized as primal methods, 

penalty methods and dual methods. Various attempts have been made by several 

authors to solve the equilibrium problem by using different methods. The detailed 

nonlinear programming techniques were described by Luenberger (1984). 

Harvie and Weare (1980) solved the phase equilibrium problem for the Na — K — 

M g — C'a — Cl — SO^ — H2O system by using the dual and cutting plane method. 

The derivation of the dual problem was given in detail by Greenberg (1986). The 

minimization problem was transformed into a maximization problem (dual problem) 

with nonlinear constraints. The phase selection procedure was easy to implement. 

The Gibbs phase rule was guaranteed. The disadvantage was that this method was 

initial value sensitive and suitable initial point was not easily found. 

Primal methods also can be employed because the phase equilibrium problem is 

linearly constrained. The whole class of linearly constrained nonlinear minimization 

methods was discussed by Gill et al. (1981). The algorithm most often used is 

SQP (Sequential Quadratic Programming). Harvie, Greenberg and Weare (1987) 

described the application of the SQP method for solving highly non-ideal multiphase 

equilibrium problems. But the phase selection procedure was very complicated and 

it was hard to guarantee that the Gibbs phase rule would be satisfied. A similar 

algorithm was used by Castier, Rasmussen and Fredenslund (1989). A stability test 

was also used to identify unstable phases. 
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As an alternative to the primal and dual methods, the penalty method was sug

gested by Lantague, Marcos and Cayrol (1988). The phase-eliminating approach was 

used. The original constrained minimization problem was transformed into uncon

strained minimization problem by using penalty functions. Again, the Gibbs phase 

rule could not be guaranteed. The efficiency of the method depended drastically 

upon the choice of the penalty parameters. 

Of all the existing methods for the chemical and phase equilibrium computa

tion discussed above, the phase stability test and mathematical programming are 

considered separately. By carefully analyzing the optimization algorithm it will be 

shown that there is a more unified approach toward this problem. The mathematical 

condition for optimization is identical with the thermodynamic stability criterion. 

The phase selection procedure based on thermodynamic criteria is the same as the 

mathematical considerations toward finding the optimum solution. The optimum so

lution will always satisfy Gibbs phase rule. The algorithm is based on the large-scale 

optimization technique developed by Murtagh and Saunders (1978). The reason for 

using this method is not because problem is large, but because it offers the desired 

properties. Clearly, this algorithm has advantages over other algorithms for very 

large problems. The source program is provided in Appendix B. It was written in 

FORTRAN 77 and run on the NAS/9180 mainframe at the Iowa State University 

Computation Center. 

Explanation of Dissertation Format 

This dissertation consists of three parts, each written in a form suitable for 

publication in a scientific journal. A general introduction has been included to give a 
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general review of the relevant work done by various scientists. References cited in the 

general introduction are given at the end of the dissertation. The research presented 

in each part represents the author's original work. 
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PART I. 

ACTIVITY COEFFICIENT MODEL OF CONCENTRATED 

ELECTROLYTE SOLUTIONS 
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1. INTRODUCTION 

Since Debye and Huckel proposed their simple limiting law predicting the activity 

coefficients of dilute electrolyte solutions, there have been many attempts to extend 

their theory to solutions of high concentration. Little success had been achieved until 

the last two decades during which a number of models utilizing methods of statistical 

mechanics were developed. The most successful of these are the virial model of Pitzer 

(1973), the NRTL (Non-Random Two Liquid) model of Cruz and Renon (1978), the 

NRTL model of Chen et al. (1982) and the UNIQUAC model of Sander et al. (1986). 

Generally speaking, the development of these models is based on the summation 

of the excess Gibbs free energy of the electrolyte solution coming from the following 

contributions: 

a) Long-range interactions or electrostatic interactions, 

b) Short-range interactions (Virial, NRTL, or UNIQUAC model), 

c) Concentration dependence of dielectric constants. 

In all of the four above mentioned models the long range and short range inter

actions are taken as independent, i.e., they assume that long range interactions have 

little effect on short range interactions and short range interactions have little effect 

on long range interactions. 
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Liu et al. (1989a) proposed a different approach. Their model was based on 

the assumption that long range and short range interactions would interact. The 

local composition, NRTL model was used to accommodate these effects. The NRTL 

model they used abandoned the "local electroneutrality" assumption that was made 

by Chen and coworkers. In addition all the model parameters used were ion specific. 

The main limitation of the Liu et al.'s model is lack of extensive model pa

rameter database. Using the "ion-specific" parameter has the advantage that no 

additional parameter is needed to extend the activity coefficient model for multicom-

ponent prediction. But from a practical point of view, the disadvantage of ion-specific 

parameters is that they are difficult to correlate from experimental data since the ion-

solvent energy parameters would tend to have different values when correlated with 

different salts with common ions. Even if it were possible to correlate the experi

mental activity coefficient data from a large number of salts with the same ion at 

the same temperature so that universal ion- solvent interaction parameters could be 

obtained, it would not be practical at temperatures other than 25^C due to lack of 

extensive experimental data. From a theoretical point of view, the same ion- solvent 

interaction might have different values in different environments since all ions are not 

acting independently. 

A new method of correlating data using the Liu et al.'s NRTL model (Liu et 

al., 1989a) was used in this analysis. The parameters of this analysis are electrolyte-

specific rather than ion-specific, making the model more practical to use. The re

lationship between the proposed electrolyte-specific parameter and the ion-specific 

parameter is given. The salt-salt interaction parameters in the multicomponent pre

diction can be obtained from the corresponding binary parameters. 
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2. MODIFIED LIU, HARVEY AND PRAUSNITZ NRTL MODEL 

The modification of Liu et al.'s NRTL model is in the formulation of the energy 

parameter in the original model. The structure of Liu, Harvey and Prausnitz NRTL 

model is left unchanged. Four new parameters Tit},ca^Tca,w^^w,ca ^nd 

defined, which are electrolyte-specific instead of ion-specific. The new parameters 

and the equations for calculating activity coefficients are defined as follows. 

The Long-range interaction contribution is obtained by modifying the original 

Debye-Huckel model. It is the combination of classical Poisson-Boltzmann theory 

and the local-composition concept. 

The activity coefficients of cation and anion due to long-range interaction 

are given as (Liu et al., 1989b): 

2.1 Long-range interaction contribution 

exp[K{r '^ .  -  rcj)]  

(1 + 
(2 .1)  

, _ e 
^fai ,LR 2DkT 

exp[K{rl .  - ra^)]  

(1 + Krgj) 
(2.2) 
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where 

Xa-c:  
J *  x i i ,Giuci ,a jCi  + y,af^Gaf^ci ,a jCi  

X C j  
Zcva, " 

iuai ,c ja i  +  Gci^a- ,Cjai  

Ecj  >^CjrcjXcj  

Ea Ao ro-za . 

9 
2 47re ^ o 9 , 

2.2 Short-range interaction contribution 

The short-range interaction contribution is based on the local- composition con

cept. It is similar to Chen's NRTL model except "local electroneutrality" is not 

assumed. 

The activity coefficients of cation c,j and anion due to short-range interaction 

are given as (Liu et al., 1989b): 

7 ( 
7ci,Sfl = -x(^ 

XwGc:W.WW 

Xw + xcjGcjw,ww + ̂aj  xajGajW,ww 



24 

+ 
2 

"k  

xwGxoa^^c^a^  + Zcj -tc^GC^O^^^ 

OA (1 - Eaj Xaj)Gwai^,ciaf^ 

+ ^ zc f ^ '^ i ' ^k^ '^k '^k  ]_ 
Ck  \x ivGwaj^^ci^ai^  + Ecj  XcjGcjaf^ ,c f ,a f^  1  -  Eaj  ^aj  

(2.3) 

I  _ I  XwGa'w,ww 

ai ,SR 2 yx-w + y,c j  xc jGcj iv ,ww + y,aj  xajGajw,ww 

-  Ga -w,ww + l )  -  2 _ a .g  .  ̂ ^Cf^ ln-
J y 

+ 2 E '^'ck^cf. 
^i lZajXaj)  Cf^ 

^ak^aj^ ln  

In  

(1 - T.aj  Xaj)Gtua- ,Cf^ai  

xwGwcf^ ,a j jCj^  + Eaj  Xg-Ga-cj^^qj^c^^  

{ l -y:c jXc^)Gwcj^ ,a i^c i^  

xwGwcf^ ,a iC}^  + Eaj  xq-Gg-cj^^a^cj^  

{ '^— T.c jXcj)Gwck,aiCk 

1 

^ S + Eay 1 - Zc^- a^Cj 

Then the activity coefficient for salt c^-aj is obtained as: 

(2.4) 

The model parameter Gj^ is defined as: 

^j i ,k i  id j i  9ki) /^ '^ ]  

where the energy parameter gj^ accounts for the interaction between two species i  

and j .  
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Here we define the following relations: 

[Qwc ~  9ac ) /RT  =  Tw^ca  (2.5) 

(Çwa  — 9ca ) /RT  =  Tw^ca  (2-6)  

[gciv  — g ivw)/RT = Tca,w (2.7) 

{ gaw  — 9ww) l  RT  =  TQa,w  (2.8) 

where r and r' are the new parameters, which are electrolyte-specific. And the 

following relation holds: 

~ (2.9) 

Those relations differ from Chen's NRTL in the sense that the following relations 

do not necessarily hold: 

9wc  =  9 i va  =  9ca  

and 

9cw  — 9aw  9ww 

which are the results of the local electroneutrality assumption. This is reflected by 

the fact that r does not have the same values as r'. 

If we assume g^w — 0, we have the following equations: 

9cw  /  RT  =  Tca^w  (2.10) 
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Çaïul  RT — ( 2 . 1 1 )  

Qad RT =  Tca ,w  — ' ^w ,ca  ( 2 . 1 2 )  

which relates the proposed electrolyte-specific parameters to the ion-specific param

eters. 
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3. BINARY SOLUTIONS 

The parameters of the modified Liu, Harvey and Prausnitz NRTL model rw,cai 

Tca^wi Tw,ca (ind Tca^w obtained by least-square analysis on deviations between 

calculated and experimental values: 

i  

where the experimental activity coefficient data are taken from Robinson and Stokes 

(1970). 

The conversion of the values of the activity coefficients between true-mole-

fraction scale, which is the scale of the current model, and the molality scale, which 

is the scale of the experimental data, is given as follows: 

W±,m = ^"•7±,a: " '"(1 + Mwivc + z/a)m/1000) 

where Mm is the molecular weight of water. 

The concentration dependence of the dielectric constant is: 

D = 31.65 -}- 46.65a;u, 

following the suggestion by Liu et al. (1989b). 

The densities of the electrolyte solutions used in this analysis were the density of 

pure water instead of the real densities of the solutions that are usually not available. 

The density of pure water at 25°C is 0.9970449 g/cm^ (Kell, 1975). 
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It has been customary to use crystal ionic radii as the actual ionic radii in the 

solution since the latter are not known. Several sets of ionic radii are available. The 

s e t  u s e d  i n  t h i s  s t u d y  i s  b a s e d  o n  M a r c u s  ( 1 9 8 3 ) .  T h e  r a d i u s  o f  —  0 . 7  A) 

is obtained from the fit of the activity coefficient data since its radius is not available. 

All coordination numbers are fixed as 6. 

The correlation results are given in Table 3.1 and Table 3.2. The size constants, 

A, used were: 1.5 for cation, except for A'"'" and Nthat were 1.1; 1.1 for anion 

except for Cl~ that was 1.5. It seemed that the X tended to have small values for 

large ions. The parameters corresponding to the cation-water interaction, Tca,wi 

had negative values, while parameters corresponding to the anion-water interaction, 

Tca,w ! had positive values. This trend was also observed from the correlation of the 

H'^ — K'^ — Li'^ — Br~ — Cl~ — H2O binary parameters by Liu et al. (1989b). 
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Table 3.1: Parameters for 1-1 type electrolyte at 25°C. (Experimental data from 
Robinson and Stokes, 1970) 

Salt Tca,w '^w,ca Max m ' ^ In f  
HBr -1.7797 -1.0630 0.2715 0.9881 3.0 0.010 
HCl -0.7649 -1.4127 1.6674 1.0196 6.0 0.002 
HI -0.9262 -1.0722 0.5215 0.3755 3.0 0.011 
HNO^ -0.8164 -0.7205 0.6033 0.6992 3.0 0.007 
KBr -1.0952 -1.1504 1.5313 1.4761 5.5 0.011 
KCl -1.2436 -1.5801 1.9821 1.6457 6.0 0.000 
KI -1.5565 -1.3583 1.6087 1.8060 4.5 0.002 
KNO^ -0.0840 -1.7639 2.5079 0.8280 3.5 0.010 
LiBr ' -2.1481 -0.8308 0.2660 1.58.33 6.0 0.009 
LiCl -0.8052 -0 .9061 1.1960 1.0951 6.0 0.002 
LiNO^ -0.8982 -0.7323 0.5998 0.7657 6.0 0.008 
NaBr -0.8455 -1.47.58 1.9201 1.2899 4.0 0.000 
NaCl -1.0511 -1.4521 1.8366 1.4356 6.0 0.002 
Nal -2.7038 -1.0488 1.15.56 2.8107 3.5 0.006 
NaNO;^ -0.9565 -1.4924 2.0043 1.4684 6.0 0.005 
NH^c' l  -3.8275 -0.8782 1.1434 4.0927 6.0 0.023 
NH^NO^ -12.0185 -1.8198 2.4882 12.6869 6.0 0.007 

Table 3.2: Parameters for high valence electrolyte at 25^C. (Experimental data from 
Robinson and Stokes, 1970) 

Salt Tw,ca Tca^w ''"w^ca '''ca,w Max m 

M g Br  2  -0.1564 -1.0089 1.6597 0.8072 5.0 0.019 
MgCl2 0.3886 -1.5094 2.6870 0.7891 5.0 0.183 
Mglo 0.1246 -0.4527 2.0752 1.4979 5.0 0.036 
Mg(N0^)2 0.1361 -1.7172 2.3617 0.5084 5.0 0.070 
CaBr2 -0.8806 -0.7248 1.2933 1.4492 6.0 0.040 

CaC/2 0.0066 -1.9034 2.4935 0.5767 6.0 0.026 
Cal2 -0.4501 -0.1280 1.6972 2.0193 2.0 0.009 
Ca{N 0:^)2  -0.3779 -0.7421 1.9126 1.5484 6.0 0.020 

^2^04 -0.9120 -1.1784 2.5549 2.2885 0.7 0.008 
Li2S0^ -0.2089 -0.6220 2.4055 1.9922 3.0 0.063 
Na2S0^ -0.4884 -0.5596 2.4056 2.3315 4.0 0.047 
MgSO^ 0.7006 -0.9831 3.6784 1.9948 3.0 0.317 
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4. MULTICOMPONENT SOLUTIONS 

The parameters for calculating multicomponent solutions activity coefficients are 

further defined as: 

G c ^ x v ^ i u w  =  ̂  . e z p ( — -  u , ) /  ̂  .  ( 4 . 1 )  
a j  a j  

Gajw,ww = ^ (4-2) 
J Cf J c; . 

To characterize the mixture activity coefficients, the salt-salt interaction pa

rameters are necessary. The salt-salt interaction parameters are Gcj^aj,Cf,aj and 

Gc^aj,Cj^af^i which can be directly calculated from the binary parameters. 

If we assume gww = 0, then: 

Gc^aj ,Cj^aj  — ^xp[—{9c^aj  — 9cj^aj ) l  RT]  

= exp[{Tcj^aj,w — Tw^Cj^aj) — {Tc^ajjW — Tw,c^aj)] (4.3) 

Gc^aj^c^aj^  = ^^ 'p[—{9ciaj—gc^a^)IRT] 

= exTp[{Tc^aj^,w — TWjCjaj^) - [Tc^aj^w - T-w^c^aj)] (4.4) 

The activity coefficients of HCl and HBr in halide solutions at 25°C were then 

calculated. The results were shown in Figure 4.1 to Figure 4.5. The experimental 

data were taken from Earned and Owen (1958). 
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Figure 4.1; Activity coefficient of HCl in NaCl at 298.15 K (HCl - 0.01 m) 
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Figure 4.2: Activity coefficient of HCl in KCl at 298.15 K (HCl — 0.01 in) 
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Figure 4.3: Activity coefficient of HCL in LiCl at 298.15 K (HCl = 0.01 m) 
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Figure 4.4: Activity coefficient of HBr in NaBr at 298.15 K (HBr = 0.01 m) 



1.5 

1.0 

4-) 
C 
(D 

•iH 
o 

• f-l 
(w 
t*-, 

CD 
O 
O 
% 

•+-> 

•pH 

s 0.5 
o 

+ Experimental Data 
Liu's Model Fit 

0.0 -J L ' ' 

0 1 2 
KBr, Molality 

3 

Figure 4.5; Activity coefficient of HBr in KBr at 298.15 K (HBr — 0.01 m) 
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5. CONCLUSION 

The modified Liu et al.'s NRTL model gave a practical method for correlating 

the model parameters from the available binary experimental data. No additional 

parameters were needed for predicting the activity coefficients of the multicomponent 

solutions. The salt-salt interaction parameters were directly calculated from the 

binary parameters. 

It is worth pointing out that the model parameters, as well as the A values 

given in this study may not be the best ones because multiroots exist for this highly 

nonlinear least square analysis. The best values should be selected in light of the 

multicomponent experimental data. 
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6. NOMENCLATURE 

C = coordination number, 

D — dielectric constant, 

G = Gibbs free energy, 

— defined quantity, 

R = gas constant, 

T — temperature (K), 

e = protonic charge, 

gjl = interaction energy parameter of j-i pair, 

k = Bolzmann constant, 

m — molality, 

— number density of species i, 

rc, rg = ionic radius of cations, anions, 

.Tj — true mole fraction of species i based on all species (ionic and molec

ular), 

~c,~a = algebraic valences of cations and anions, respectively. 

Greek Letters 

a = defined quantity, 
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7 = activity coefficient, 

X =  size constant, 

cr — standard deviation of the correlation, 

Vc, i^a = number of cations and anions, respectively, produced by the 

complete dissociation of one electrolyte molecule. 

r, T' = defined quantities. 

Superscripts 

cal. = calculated value, 

exptl — experiment value. 

Subscripts 

a = anion, 

c = cation, 

ca = electrolyte ca, 

LR — long-range interaction, 

SR = short-range interaction, 

w = water. 
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PART II. 

PHASE EQUILIBRIUM CALCULATION BY USING LARGE-SCALE 

OPTIMIZATION TECHNIQUE 
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1. ABSTRACT 

A new multicomponent solid-liquid phase equilibrium calculation algorithm is 

described. The algorithm has the following features: (1) the phase selection procedure 

is easy. No stability test is needed; (2) the optimum solution satifies Gibbs phase 

rule; and (3) the mathematical procedures have thermodynamic meanings. Numerical 

examples for NaCl—KCl—MgCl2~^''^^^2~^2^ quinary system and its quaternary 

subsystems illustrate the capability of this algorithm. The comparison between this 

a lgor i thm and the  SQP (Sequent ia l  Quadrat ic  Programming)  method for  NaCl — 

KCl — MgCl2 — H2O system at 298.15 K and 273.15 K demonstrates the advantage 

of the new algorithm over SQP method. 



43 

2. INTRODUCTION 

The use of optimization techniques has been of considerable value in chemi

cal and phase equilibria calculations. One of the early applications of optimization 

procedure for equilibrium calculations was proposed by White, Johnson and Dantzig 

(1958). They used the efficient linear programming (LP) technique, in particular, the 

Simplex method, developed by George B. Dantzig in 1947. The method was limited 

by the necessary of prior knowledge of the phases presented at equilibrium before 

the phase compositions could be determined. In order to circumvent this limitation 

many other optimization techniques have been employed. Most of them involve non

linear programming (NLP) since the Gibbs free energy is nonlinear in nature. These 

techniques are fully reviewed by Luenberger (1984), Van Zeggeren and Storey (1970) 

and Smith and Missen (1982). 

The equilibrium problem is generally not well defined in the sense that the actual 

phases exist at the equilibrium are not known at the start of the calculations. The 

mathematical procedures are designed to search among all the possible phases in 

some systematic way. 

In the "phase-splitting" method proposed by Gautam and S eider (1979), a small 

number of phases is assumed at the beginning of the calculation. The candidate 

phases are tested against the stability criterion. If the phases are stable and including 
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them will lower the Gibbs free energy of the whole system, they are included in the 

phase assemblage. This "phase-splitting" approach, based on the stability test, has 

been used by several authors (Sander et al., 1986; Walraven and Rompay, 1988). 

An alternative approach was used by Castillo and Grossmann (1981), which is 

a "phase-elimination" method. All possible phases were assumed at the beginning 

of the calculation. The equilibrium compositions were obtained by analyzing the 

optimal solution. For the non-existing phases or species the corresponding mole 

number is zero. Unlike the "phase-splitting" method, the nonlinear programming 

problem was solved once and the stability test was not used. The algorithm used was 

the variable metric projection method of Sargent and Murtagh (197.3). 

Harvie and Weare (1980) solved the dual problem of the general chemical and 

phase equilibrium problem for the Na — K — Mg — Ca — CI — SO^ — H2O system. 

The cutting plane algorithm (Kelley, 1960) was used. The derivation of the dual 

problem was given in detail by Greenberg (1986). By transforming to the dual prob

lem the objective function becomes linear while the constraints are the minimization 

subproblem for the solution phase. 

Geometric programming approach was proposed by Ohanomah and Thompson 

(1984). In this method the free energy minimization was transformed to a set of 

nonlinear equations, which were solved by the classical Newton-Raphson method. 

Since the chemical and phase equilibrium problem is linearly constrained, direct 

minimization also can be performed (Harvie, Greenberg and Weare, 1987; Castier, 

Rasmussen and Fredensland, 1989). The whole class of linear constrained linear 

and nonlinear minimization methods are discussed by Gill et al. (Gill, Murray and 

Wright, 1981). The algorithm most often used is the SQP (Sequential Quadratic Pro



gramming) algorithm. An alternative approach to solve the constrained minimization 

problem is penalty function method, which transforms the constrained problem into 

an unconstrained problem. The comparison study using the penalty function method 

and the SQP method was given by Lantagne, Marcos and Cagrol (1988). 

Of all the existing methods for the chemical and phase equilibrium computation 

discussed above, the phase stability test and mathematical programming are consid

ered separately. By carefully analyzing the optimization algorithm it can be shown 

that there is a more unified approach toward this problem. The mathematical con

dition for optimization is identical with the thermodynamic stability criterion. The 

phase selection procedure based on thermodynamic criteria is the same as the math

ematical considerations that find the optimum solution. The optimum solution will 

always satisfy Gibbs phase rule. The algorithm is based on the large-scale optimiza

tion technique developed by Murtagh and Saunders (1978). The reason for using this 

method is not because the problem is very large, but because it offers the properties 

discussed above. Clearly, this algorithm has advantages over other algorithm for a 

very large problems. 
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3. SOME TERMINOLOGY OF LINEAR PROGRAMMING (LP) 

3.1 Basic Solution 

Consider the system of equalities: 

Ax = b 

where A is a m x n matrix, x is a vector with dimension n, and n > m. 

Let B be any m x m nonsingular matrix made up of columns of A. Then, if 

all (n - m) variables x not associated with B are set to be zero, the solution to the 

resulting set of equations is said to be a basic solution with respect to the basis B. 

The variables of x associated with the basis are called basic variables while the rest 

are called nonbasic variables. 

3.2 Basic Feasible Solution of Linear Programming (LP) 

Now consider the system of equations: 

Ax = b 

x > 0. 

that made up of the constraints of the LP problem. If a vector x satisfies the above 

constraints and is basic, it is called basic feasible solution. 
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3.3 Simplex Method 

The basic idea of the simplex method is that one proceeds from one basic fea

sible solution to another so that the objective function value will be decreased (or 

increased) until the minimum (or maximum) is reached. 

3.4 Revised Simplex Method 

The revised simplex method is actually the simplex method in matrix form. 

Consider the linear programming problem of the standard form: 

where A is a m x matrix, m is the number of constraints and n is the number of 

variables. Assume B consists of the first m columns of A and forms a basis. Then by 

rp 

Min c X 

s.t .  i4x = b (3.1) 

X > 0 

partition A,x and as: 

A = ^ [ B  D ]  

x - ( x 5  X £ ) )  c ^  =  ( c j  e g )  

where subscripts B and D denote basis and nonbasis, respectively. 

Then the linear programming problem becomes: 

rp rp 

Min Z — CQ-X.Q + c^xjrp 

s.t .  Bxg + Dx^) = b 

>  0  ,  x p > 0  

(3.2) 
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The basis feasible solution of the LP can be expressed as: 

•kq = B~^h - B~^D-X.J) (3.3) 

Substitution into the objective function yields: 

- = 

- cgB-lb + (c^-cgB-lD)x^ (3.4) 

Equation 3.3 and Equation 3.4 express the variable x and objective function 

value z in terms of x^). The term 

> ' 1  = D  

is called the reduced cost vector ( nonbasic variables ). 

3.5 Duality of LP 

The dual of problem (1) is defined as follows 

T 
Min TT b 

s.t .  -K^A < (3.5) 

where tt is the dual variables. 

By the duality theorem of LP, if either of the Equation 3.2 and Equation 3.5 has 

a finite optimal solution, so does the other, and the corresponding optimal objective 

function values are equal. 

It can be shown that tt^ = which is called the pricing vector. Thus the 

reduced cost vector can also be written as: 
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3.6 Optimal!ty Conditions 

If for some basic feasible solution, > 0 , then that solution is optimal. This 

is the direct result of Equation 3.4: 

: - c^5-lb + 

since if A^ < 0, it is still possible to increase xp so that the value of the objective 

function is decreased. For some basic feasible solution with Ajr) > 0, the optimal 

solution is found as: 

z* = = 7r*^b = c^x* 

X* =  (x^ 0) 
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4. OPTIMIZATION CONDITIONS FOR PHASE EQUILIBRIUM 

PROBLEM 

The Gibbs free energy of a closed system at constant pressure and temperature 

can be expressed as: 

N S P  

i=l 

where 

NSP = total species in the system, 

Tij- — mole number of species i, 

in = chemical potential of species i, or 

The phase equilibrium problem then can be expressed as the following minimiza

tion problem: 

N S P  
M in G = ^  

i=l 
s.t .  .4n = b (4.1) 

n > 0 

The linear constraints are the charge and mass balance. From numerical calculation 

point of view, the rows of matrix A should be linearly independent. 
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For the electrolyte solid-liquid phase equilibrium with NS solid phases and NI 

completely dissociated ionic species in the aqueous solution phase, Equation 4.2 may 

be rewritten as (assume pure solid phases): 

N I + 1  N S P  
M in G = Y, "i/'î + 

i=l i—NI+2 
s.t .  .4n = b (4.2) 

n > 0 

where NSP = NS + NI + 1, /i® = the standard chemical potential of the solid phase 

i which is assumed to be pure and one represents the solvent water. 

4.1 First-Order Necessary Conditions (Kuhn-Tucker Conditions) 

Suppose the constraints of Equation 4.3 are linearly independent. Let n* be a 

local minimum point for Equation 4.3. Then there is a vector t t  and a vector A > 0 

such that: 

VG(n*) + (A^ I )  
-A' 

= 0 

A*^n* = 0 (4.3) 

Equation 4.3 has significant consequences. It states: 

•  X j  >  0, if jth solid phase does NOT exist at equilibrium; 

•  X j  =  0, if jth solid phase exists at equilibrium. 
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4.2 Second-Order Conditions 

If n* is a local minimum point of Equation 4.3, then the Hessian: 

\dnidnj j  rp^p 

of Gibbs free energy is positive semidefinite.  
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5. UNIQUENESS OF CHEMICAL AND PHASE EQUILIBRIUM 

PROBLEM 

The uniqueness of chemical and phase equilibrium problem defined by Equa

tion 4.2 or Equation 4.3 is related to the conditions of finding the global minimum 

of Equation 4.2 or Equation 4.3. The optimality condition discussed in last section 

are all local properties. The only assurance of the global optimality of Equation 4.2 

or Equation 4.3 is by the theorem which states that if a function is a convex func

tion defined on convex set, then any local minimum of the function is also a global 

minimum. 

The thermodynamic models (empirical or semi-empirical) of the Gibbs free en

ergy available may not be convex functions. Thus the global minimum may or may 

not be found during the optimization processes. It has been proved that the unique 

solution exists for a single ideal-solution phase system (Shapiro and Shapley, 1965). 

The non-uniqueness for nonideal system has been discussed by many authors (0th-

mer, 1976; Caram and Scriven, 1976; Heidemann, 1978). 

It can be shown, however, that the local minimum of the Equation 4.3 corre

sponds to a stable phase assemblage. This is the result of the second-order optimality 

condition and the stability criteria. The proof is given in Appendix A. 
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6. PHASE EQUILIBRIUM ALGORITHM USING LARGE-SCALE 

OPTIMIZATION TECHNIQUES 

The motivation of the development of a large-scale optimization technique arises 

because in many nonlinear problems only a small percentage of the variables are in 

the nonlinear part of the objective function. This is the case for the solid-liquid 

equilibrium problem. The nonlinear portion of the Gibbs free energy arises from the 

solution phase only, which consists of a predetermined small number of ionic species 

and solvent, water. The remaining parts of the Gibbs energy arise from pure solid 

phase, which has a linear form. It is not known a prion how many of the possible solid 

phases are present at equilibrium. The actual number of solid phases is determined by 

the Gibbs phase rule, and will not exceed the number of ionic species or the number 

of constraints. 

Almost all the practical large-scale optimization techniques utilize linear pro

gramming as part of their procedures. Griffith and Stewart (1961) proposed the 

Approximation Programming, in which they linearized the nonlinear part of the ob

jective function and the nonlinear constraints, then solved the posed problem with a 

LP procedure. An iteration method is performed in order to get the desired accuracy. 

Taking a second order approximation of the nonlinear part of the objective func

tion, another method was proposed by Murtagh and Saunders (1978). Although 
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it was originally intended for linealy constrained problems, it has been generalized 

to handle nonlinear constraints as well (Murtagh and Saunders, 1987). It is the 

combination of the revised simplex method of LP and the quasi-Newton method of 

unconstrained NLP. 

Since the chemical potential of species i is defined as: 

H = /if + RTXn-^imi 

where 7j, and mj are activity coefficient and molality of i. 

Rearrange Equation 4.3 as follow: 

N S P  
M in G = F{ n )  +  ^  

s.t An — b (6.1) 

n > 0 

The nonlinearity is due to the logarithm in the chemical potential of the solution 

phase which is represented as function F(n). The number of nonlinear variables is 

(NI+1), corresponding to the number of dissolved ionic species in the solution plus 

water. 

Similar to the LP case, we partition the variables into basic, superbasic and 

nonbasic variables. The basic and nonbasic variables have the same definition as in 

LP. The superbasic variables are the variables that lie between their bounds. The 

introduction of the notion of superbasic variables came from the knowledge that the 

optimum point is not a basic solution in NLP but it is "rather near" basic by realizing 

the number of nonlinear variables is small. 

In the solid-liquid phase equilibrium situation, it seems reasonable to assume that 

the basic variables consist the moles of ionic species and moles of water since they 
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are usually not zero at equilibrium. The variables corresponding to the precipitated 

solid phase are superbasic variables and the non- precipitated solid phase are nonbasic 

variables. 

We now partition the constraints as follows: 

.4n ^ [ B  S  N ]  

"5 

nyv 

where 

(6.2) 

B is m X m non-singular basic matrix, 

S is m X 5 superbasic matrix, 

N is m X ( N S P  —  m  —  s )  nonbasic matrix. 

Consider the Taylor series of the Gibbs free energy 

G(n 4- An) = G(n) + /i^An + ̂ An^H(n + 0An)An 

where 0 < 0 < 1, and H is the Hessian matrix. 

Then we have the following properties: 

Property 1 (Feasible Direction): 

B S N  

0 0 7 

Aub 

Ans = 0 (6.3) 

Property 2 (Kuhn-Tucker Condition): 
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For A > 0, 

/'5 Ane '  B T o '  

+  H  Ans - sT 0 

. . 
A n N  I  

TT 

A 
(6.4) 

where tt and A are the Lagrangian multipliers corresponding to general linear con

straints and variable constraints, respectively. 

From Property 1, we obtain: 

An j\[ = 0 

1 -An ̂  — — B  S A n g  

Let W  =  B  ^5, then: 

An = 

'  - W  ^  

\ 0 / 

An^ (6.5) 

which impUes that only superbasic variables n^ are independent variables. 

Multiplying Equation 6.4 by the matrix: 

I  0 0 

- w ^  I  0 

0 0 I  

yields: 

B  X  =  +  [ I  0 0] 

- W  

I  

0 

An B  
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A — /Ijy — # TT + [0 0 I \ H  

- W  

I  

0 

An< 

At stationary point where ||An^|| = 0, we have: 

B'^tt = fig (6 .6)  

Or 

TT^ = l-igB ^ 

\  = -  N^ir = fi.N -  N'^{B'^) (6.7) 

It is not difficult to realize from the previous LP discussion that tt is the pricing 

vector and \ is reduced cost vector. The only difference is that the derivatives of 

the objective function with respect to basic and nonbasic variables, f-ig and 

are not constant. The significant impact of these two equations. Equation 6.6 and 

Equation 6.7, will be clearer in the following discussion. 

The third result obtained from the multiplication is: 

- W  

-W-^ I  0 H I An5 = -h (6.8) 

0 

where 

h = \-W^ I  0 ] i J ,  =  n g  =  I i g  -  s ' ^ i r  (6.9) 

Now ||/i|| = 0 becomes the necessary condition for the stationary point || An|| = 0 

for the current basis and superbasis. Note that the Equation 6.8 gives a Newton step 

with respect to superbasic variables, n^. 
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The thermodynamic implication of Equation 6.7 and Equation 6.9 are rather 

significant. By thermodynamic principles, the chemical potential of the pure solid 

phases should have the following relations at the equilibrium 

f^ 'Solid ~ precipitated phases (6 .10 )  

i  

and 

l-^%olid^ ^^^il^i for nonexisting phases ( 6 . 1 1 )  

i  

where v is the stoichiometric coefficients for the solid formation reaction. 

The Equation 6.10 is the necessary condition for stationary point. Also Equa

tion 6.10 and Equation 6.11 are the Kuhn-Tucker conditions for Lagrangian multiplier 

A (A = 0 for precipitate phases and A > 0 for not precipitated phases). This in turn 

is the counterpart of the LP optimality conditions. 

In the case of A < 0, or 

i  
this suggests that the solid phase is more stable than solution phase, thus the corre

sponding solid should precipitate, i.e. add a new element to the superbasis. This is 

exactly the simplex procedure. 

It can also be shown mathematically that if NL is the number of nonlinear 

variables in the objective function, there is at most NL superbasic variables at optimal 

(Lasdon and Waren, 1978). Thermodynamically, this is nothing but the Gibbs phase 

rule for solid-liquid equilibrium. 

Based on the above discussion, the numerical algorithm is summarized as follows: 

STEP 1 : Convergence Test (||h|| =0). If no, go to STEP 3. (In terms of thermody

namics, solve for the compositions of each phase for current phase assemblage.) 
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STEP 2 : Phase selection (Revised simplex procedure). Select the most negative A, 

add to the current superbasis. If all A > 0, stop. Optimal found. 

STEP 3 : Direction search (Quasi-Newton step) Compute An. 

STEP 4 : Linear Search (Optimal step size) Find step size a , which solves 

M in G(n + aAn) 

for 0 < a < OLmaxi ctmax is the largest a value for which (n + aAn) is feasible. 

If a < a-maxi go to STEPl. If a > amaxi change basis or superbasis according 

to the actual situation. Go to STEP 1. 
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7. NUMERICAL EXAMPLES 

The solubilities of NaCl — KCl — MgC/g — CaCl2 — H2O system have been 

measured over the years by many authors. Among recent studies, Motayama et al. 

(1972, 197.5) reported extensive experimental results for this system as well as ternary 

and quaternary subsystems. Therefore we take this system as as example to show 

our computation scheme and compare our calculation results with the experimental 

data. The nonideality of the electrolyte solution was calculated by using Pitzer's 

model (Pitzer, 1973). The equations for calculating activity coefficients of ionic 

species and the osmotic coefficient of water are given in Appendix B. The Pitzer 

model parameters and the standard chemical potentials of ion, water and the pure 

solid phases at 25°C and 0°C were taken from Harvie and Weare (1980) and Spencer, 

Moller and Weare (1990), respectively. The "computer experiments" were performed 

by gradually removing water so that uni variant lines and invariant points could be 

found. The simulation results for different systems at 25^C and O^C were then plotted 

to show the corresponding phase diagrams. 

As from the numerical consideration, a low bound for each mole number of ionic 

species was given since the chemical potential is not defined at zero concentration. 

The low bound of 10"'^ or less is found appropriate. 

The minimization problem was set up by assuming all the possible phases with
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out considering the Gibbs phase rule at the beginning of the calculation. The actual 

phase(s) presented at the equilibrium were then obtained through the optimization 

procedure discussed in previous section. If certain possible phases are not considered 

at the beginning of the computation, a correct answer can be obtained only if those 

phases are really absent from the phase assemblage at the equilibrium. 

It is worth pointing out that deleting or adding a phase to the phase assemblage 

during the optimization procedure is based on the revised simplex method, which is 

also identical to the thermodynamic criteria. Therefore, it is expected that the phase 

selection procedure will be stable and accurate. Comparing with the SQP method, 

SQP is active working set method. It deletes or adds a phase to the phase assemblage 

by examining the estimated corresponding Lagrangian multiplier value. A phase is 

deleted or added if the corresponding Lagrangian multiplier,A, is positive or zero, 

respectively. An inaccurate estimate of the Lagrangian multiplier values might cause 

incorrect deleting or adding a phase (Gill et al., 1981). Therefore, extra care is needed 

for the SQP calculations. 

7.1 NaCl — KCl — MgCl2 -  H2O system at 298.15 K and 273.15 K 

The problem was set up by assuming the following possible solid phases: Halite 

(NaCl), Sylvite (KCl), Bischofite {MgCl2-^H20) and Carnallite {KMgCl^.6H20). 

According to the Gibbs phase rule, at most three out of those four solids can 

precipitate at the same time. 

As discussed in previous section, the phase selection criteria for all four possible 

solid phases are: 

^'NaCl < ^' 'Na+ + 
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Table 7.1: Invariant points of NaCl — KCl — MgCl2 — H2O at 298.15K. Molality 

NaCl KCl M gCli Solid Phase 
(1) 0.49 0.56 4.05 
(2) 0.49 0.56 4.05 NaCl + KCl + KMgCl^.6H20 
(3) 0.52 0.65 3.94 
(1) 0.09 0.02 5.70 
(2) 0.003 0.08 2.47 NaCl + MgCl2-QH20 + KMgCl^.6H20 
(3) 0.09 0.03 5.84 

where ( 1 ) = This work, (2) = SQP method, (3) = Experimental data. 

Table 7.2: Invariant points of NaCl -  KCl -  MgCl2 -  H2O at 273.15 K. Molality 

NaCl KCl MgCl2 Solid Phase 
(1) 0.58 0.43 3.62 
(2) 0.79 0.63 3.39 NaCl + KCl + KMgCl^.6H20 
(3) 0.49 0.43 3.59 
(1) 0.056 0.008 5.52 
(2) 0.052 0.015 5.59 NaCl + MgCl2-QH20 + K MgCl^.6H20 
(3) 0.052 0.010 5.36 

where (1) — This work, (2) = SQP method, (3) = Experimental data. 

t^KCl < ^C7-

^'%IgCl2.6H20 < ^Mg^+ + ̂ ^67" + 

^KMgCl^.QH20 < ^^K+ + ̂Mg^+ + + ̂^H20 

If any of above four inequalities hold, the corresponding solid phases will precip

itate out and the inequalities become equality after the algorithm converges to the 

optimum solution (Equation 6.9 or Equation 6.10). 

The calculated invariant points of the phase diagram for 298.15 K and 273.15 

K are listed in the Table 7.1 and Table 7.2 together with the results calculated by 

using SQP and the experimental values. All the experimental data are taken from 

Motoyama et al (1972, 1975). The calculated phase diagram is given in Figure 7.1 
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and Figure 7.2 

The results obtained by using described algorithm agrees with the experimental 

data very well. The result obtained from SQP method is far from satisfactory both 

at 298.15 K and 273.15 K. 

7.2 NaCl — KCl — CaCl2 — H2O system at 298.15 K 

The problem was set up by assuming the following possible solid phases: Halite 

(NaCl), Sylvite (KCl), Antarcticite {CaCl2-QH20). 

The precipitation criterion for antarcticite is: 

^'CaCl2.6H20 < ^'Ca2+ + + ^^^2^ 

Since the current form of Pitzer's model will not give reliable answer for the 

osmotic coefficients of CaCZg at concentration above 5 molal due to the possible 

structure change of the Ca^'^ in the solution (Phutela and Pitzer,1983), which is 

also illustrated in Figure 7.3, the calculation of the concentration region of CaCl2 

higher than 5 molal is not considered here. 

The calculated results and the experimental values were plotted in Figure 7.4 

for the uni variant line for the precipitation of halite and sylvite. Although there are 

not many experimental data available in this region, the calculated results seem to 

be reliable. 

7.3 NaCl — MgC'l2 — CaCl2 ~ H2O system at 298.15 K 

Again, the problem was set up by assuming the following pure solid phases: 

Halite (NaCl),Bischofite {MgCl2-^H20), Antarcticite {CaCl2-QH20) and Tachyhy-
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Figure 7.4: NaCl -  KCl -  C'aC'fg - EgO system at 298.15 K. Solid phase: NaCl 

+ KCl 



drite [Mg2CaClQ.l'2H20). 

The precipitation critrion for tachyhydrite is: 

/'Mg2GaC'/g.l2^20 ^^^^2+ + ̂ 'C'a2+ + 

The calculated univariant line (with the precipitation of halite and bischofite) 

is presented in Figure 7.5. The univariant line is almost a straight line because the 

concentrations of NaCl in solution phase are nearly unchanged (about 0.09 molal). 

The calculated results agree with the experimental observations quite well. 

7.4 KCl — MgCl2 -  CaCl2 — H2O system at 298.15 K 

There are more possible phases for this systems than previous ones. They 

are Sylvite (KCl),Bischofite (MgC'/2.6^"2O),Antarcticite {CaCl2-QH20), Carnallite 

{KMgCl^.6H20) and Tachyhydrite (Mg2C'aClQ.12H20). 

The solid phases precipitation criteria are the same as before. The calculated 

univariant line (with solid phases bischofite and carnallite) is given in Figure 7.6. 

The straight line is due to the constant KCl concentration in solution phase. 

7.5 NaCl -  KCl -  MgCl2 - CaCl2 - H2O system at 298.15 K 

For this quinary system, all the possible solid phases mentioned in previous cal

culation are assumed here. The equilibrium concentrations of the solution phase with 

the precipitation of halite, carnallite and bischofite were calculated. The calculated 

values were then compared with the experimental data of Motoyama et al. (1972) as 

well as the most recently published data of Korln and Roy (1988). The results were 

plotted in Figure 7.7. The agreement is quite good. 
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It should be pointed out that our assumption of the possible solid phases at 

the beginning of the calculation was based on the experimental results. For the 

actual prediction case when the phase equilibrium information is not available, all 

possible phases should be considered. Since the magnesium and calcium chloride 

crystallized in various forms, the following solid phases might also be considered: 

MgCl2.l2H20, MgCl2ÂH20, MgCl2.2H20, CaCl2AH20 and CaCl2.2H20. 

As the list of the possible solid phases goes on, the dimension of the optimization 

problem increases. But the nonlinear part of the Gibbs free energy, i.e. the solution 

phase, is left unchanged. The advantage of the large-scale optimization technique as 

described in this work is then fully realized. 



74 

8. CONCLUSIONS 

The phase equilibrium calculation algorithm described above combined the chem

ical thermodynamic principles with the mathematical procedures. By considering 

the maximum number of possible phases at the beginning of the calculation, the 

phase selection criteria are identical to the mathematical considerations towards min

imization. The Gibbs phase rule was satisfied by the mathematical theorem. The 

comparison between this algorithm and SQP method at 298.15 K and 273.15 K for 

NaCl — KCl — MgCl2 — H2O system demonstrated the advantage of this algorithm 

over the SQP method. For the complicated quinary system NaCl — KCl — MgCl2 — 

C'aC/2 — H2O at 298.15 K, the current algorithm gave accurate predictions. 
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9. NOMENCLATURE 

b = Right hand side; The initial system input, 

m = Number of constraints, 

TTij- = Molality of species i, 

n = Mole number, 

A = Coefficient matrix, 

B = Basis matrix, 

D = Non-basis matrix in LP, 

G = Gibbs free energy, 

I — Ionic strength, 

H = Hessian matrix, 

N = Nonbasis matrix in NLP, 

NI = number of dissolved ionic species in solution, 

NS — number of possible solid phases at equilibrium, 

NSP = total number of species (ion, molecular and solid) in solution, 

S = Superbasis matrix, 

W = defined quantity. 
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Greek Letters 

7 — Activity coefficients, 

(j) — Osmotic coefficients, 

A — Lagrangian multiplier for variable constraints, 

/i = Chemical potential, 

u = Stoichiometric coefficients for the solid formation reactions, 

TT = Lagrangian multiplier for linear constraints. 

Subscripts 

a, o' = anion, 

c, c = cation, 

ca = salt ca, 

B = Basis, 

M = cation, 

N — Nonbasis, 

S = Superbasis, 

X = anion. 

Superscripts 

T = Transpose, 

o = standard state, 

* = Optimum solution. 
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APPENDIX A. STABILITY AND OPTIMUM CRITERIA 

Let be the total internal energy of a system: 

= /(5, V>i,n2,...,"n) == /(x) 

where S and V are entropy and volume of the system,respectively. Then the necessary 

conditions for a stable system are: 

41'" > ». 

where 

^(t4-l)(A:+l) " A: - 1,2,...,A^5P + 1 

(6-1) (d^y(^-^y 
ykk = — 

(For more detail, see Mo dell and Reid (1983)) 

For k = 3, we have 

(2) 
'33 =3:2 > 0 

For k = 4, we have 

Vu = 

d^G d^G 
dnidn2 

d^G d^G 
^n2dni ^ 

52 G 
> 0 
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Thus 
d'^G d^G 

dnidn2 ôrî? 

It can be shown that: 

For k = n + 1 

dn  

d^G 

c)n2c)ni 

d^G 
dnidn2 

For k = n + 2 

dri^ 
d^G 

dnidn2 

d^G d^G 
dnn^n-^ dnndn2 

> 0 

dn^_ldni dn^_idn2 

d^G 
dnidnn_l 

d^G 
dn  n—1 

d^G 
dnidnn 

> 0 

= 0 

This also means that the Hessian of the Gibbs free energy should be positive semidef-

inite. 
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APPENDIX B. PITZER'S EQUATIONS 

The osmotic coefRcients <j) are calculated as follows 

{(j)  — I)  = (2/ + Yl y^_mcma{Bf(] + ZCça) 
i c a 

+ X/ ^ci 'Pccm) + ^ "'cV'cac ) 
c< c a a< a' c 

The activity coefRcients of cation M and anion X are 

ln7M = -mF + Y j  ̂ aC^^Ma + ̂ ^Ma) + Y  ̂ ci '^^Mc + Y l  ̂ a^'Mca) 
a c a 

+ Y Y + \~MI Y Y  ̂ cmaC'ca 
a< ai c a 

In^X = + Y  ̂ c{2B^x + ̂ ^cX) + Y "^a{2^Xa + Y  ̂ cl^cXa) 
c a c 

+ Y Y  ̂ cmai^cciX + IZIZ rncmaCca 
c< o c a 

where c and c are actions and a and a' are anions. The ion charges are indicated by 

zj^j and z^' 

The quantity Fis as follows: 

F = + 67^2) + (2/6)ln(l + 67^2)] 

+ YY T^cmaB'ca + Z! I]  mcmc-,^ca + YY  ̂ amai^aai 
c a c< c' a< ai 

where l is  the ionic strength, B's, C's $'s and tp^s are Pitzer model parameters, b is 

a model constant, 1.2. is Pitzer -Debye-Huckel limiting slope. The definitions of 

those parameters were given by Pitzer (1973). They are not repeated here. 
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PART III. 

PHASE EQUILIBRIUM OF THE Na-K-Mg-Cl-iV03-/^20 SYSTEM AT 

THE TEMPERATURES BELOW 25°C 
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1. ABSTRACT 

The phase equilibria of the Na — K — M g — Cl — NO^ — H2O system at the 

temperatures below 25were studied. The Pitzer model was used to calculate 

the activity and osmotic coefficients. The revised Helgeson, Kirkham and Flowers 

(revised HKF model) was used to calculate the standard state chemical potential 

of the aqueous ionic species. The standard state chemical potentials of the solids 

were correlated from the single salt solubility calculations. The multicomponent salt 

system phase equilibria were then calculated and compared with the experimental 

data when available. Reasonable agreements were obtained. 
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2. INTRODUCTION 

Many industrial process and waste streams consist of aqueous mixtures of chlo

ride, nitrate and sulfate salts of alkali metals and alkaline earths. Frequently these 

streams also contain dissolved organics. As a consequence these streams pose prob

lems in separation and these waste streams of this nature must be incinerated, a very 

expensive process considering that the streams are mostly water. An alternative pro

cess is the concentration of the streams by freezing out pure water. Often this results 

in the generation of supersaturated solutions with consequent precipitation or crys

tallization of the dissolved salt. Suitable techniques can be developed to produce the 

ice and salt crystals which then may be recovered. Such a process has a significant 

energy advantage over incineration. 

One of the problems associated with the development of such a process is the 

prediction of the composition of the remaining liquor and the quantity and compo

sition of the solids produced. As the process must be carried out at temperatures 

below the freezing point of water it is of interest to provide a means of determining 

the phase equilibrium of mixed aqueous salt solutions at temperatures below O^C. 

Little solubility data exists for pure salts at these temperatures and far less data are 

available for mixed salt phase equilibria. The following analysis provides a means 

for predicting the phase equilibria of aqueous mixed salt solutions of chloride and 
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nitrate salts of sodium, potassium and magnesium down to 0°C. One would expect 

for temperatures say 5° or 10° below 0°C that extrapolation of these results would 

provide usable information for design purposes. 

In general, the phase equilibrium problem can be formulated as the following 

minimization problem: 

N^P 
M in G = ^  i 

i—1 
s. t  An = nx (2.1) 

n > 0 

where the linear constraints are the charge and mass balance, NSP is the total number 

of species (ion and molecule) in the system and the chemical potential of species i, 

is defined as usual: 

N = + RTlnfim-

The following thermodynamic information is necessary so that the phase equi

librium calculation can be carried out. 

(1). A thermodynamic model for the activity coefficient calculation; 

(2). The model parameter values at the temperature and pressure con

cerned; 

(3). The standard state chemical potential of all the species (ion and 

molecule) in the system at the temperature and pressure concerned. 

During the past decade, many empirical or semi-empirical thermodynamic mod

els for calculating the activity and osmotic coefficients of electrolyte solutions have 

been proposed (Pitzer, 1973; Cruz and Renon (1978); Chen et al. (1982) and Sander 
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et al. (1986)). But Pitzer's model has remained the most widely used one. It has been 

used in predicting the mineral solubilities of natural waters with great success. Harvie 

and Weare (1980), Harvie, Moller and Weare (1984) calculated the phase equilibria of 

the Na-K-Mg-Ca-Cl-504-^2'^ and Na-K-Mg-Ca-H-Cl-504-0H-fl'C03-C'C)3-C'02-

H2O system at 2.5°C. The studies of the natural water systems at temperatures other 

than 25^C also can be found in Pabalan and Pitzer (1987), Moller (1988), Greenberg 

and Moller (1989) and Spencer et al. (1990). 

In this study, we calculated the phase equilibria of the electrolyte mixtures in

cluding ion, which is an important component in chemical industrial wastewa

ter and other systems. The Pitzer's model was used for the osmotic and activity co

efficients. The revised Helgeson, Kirkham, and Flowers (revised HKF model, Tanger 

and Holgeson, 1988) was used for the temperature dependence of the standard chem

ical potential of the aqueous ionic species. The solubilities were obtained through the 

minimization of the Gibbs free energy. The minimization procedure was described in 

detail in authors' previous publication (Song and Larson, in press). The calculated 

results were then compared with the experimental data, which showed satisfactory 

results. 



89 

3. GENERAL EQUATIONS FOR ACTIVITY AND OSMOTIC 

COEFFICIENTS (PITZER MODEL) 

The osmotic coefficients (f) are calculated as follows (Pitzer, 1973): 

i  c a 

+ yi + Yl fng^'cgg) (3.1) 
c< c a 

+ y^(^affl) + y^^c^aa'c) 
a< o' c 

The activity coefficients of cation M and anion X are: 

InTM = 4/^ + E"^a(2%/a + '^<^'Ma) + I]"^c(2$ji^c + E"'a^'Mca) 
a c a 

+ -^\^M\YlJl^cmaCca (3.2) 
o< a'  c a 

l n 7 X  =  + +  I ] " ^ o ( 2 $ X a  +  E ^ ^ c V ' c X a )  
c a c 

+ XlZ]"^c?nc'V'cc»X + (3.3) 
c< c c a 

where c and c are cations and a and a' are anions. The ion charges are indicated by 

zĵ j and z Y-

The quantity F is as follows: 

F = -A^[/1/2/(1 +6/1/2)+ (2/6)in(l  +6/1/2)] 

+ + J2Yl^cma^cc^+ Y^J2'^ama^^aa^ (3.4) 
c a c< Cl a< a'  
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where l is  the ionic strength, B's, C's are the binary model parameters and $'s and 

0's are the common-ion ternary model parameters, i is a fixed parameter, its value 

is assigned to be 1.2. is the Pitzer-Debye-Huckel limiting slopes for water, which 

is defined as: 

= l/3(27riVoc//1000)l/2[e2/(DA;r)]^/2 

where 

d = the density of pure water, 

NQ — Avogadro number, 

e = charge of electron, 

D = the dielectric constant of water, 

k — Boltzmann constant. 

The A^ values from 0 to lOO^C have been given by Ananthaswamy and Atkinson 

(1984). 

i  

The binary model parameters are defined as: 

^MX -

^'mX = 

where aj and «2 2.0, except for 2-2 type electrolytes that = 1.4 and 02 — 

12.0. 02 is zero for lower valence electrolytes. 
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The functions, g(x) and g^(x),  are defined as follows 

g(z) = 2[l-(l + j;)e-^]/z2 

g^{x) = -2[1 - (1 + a; + 

The ternary model parameter terms, $, which account for interactions between 

ions of like signs, are defined as follows: 

= "i; + 

where Oj^j is an adjustable parameter for each pair of cations or anions. The E^. ,(/) 

and Eq XI) terms are calculated as follows. 

'J) = - l/2Ji(a:,-,-)) 
i j  

where XJ^J — Qzj^ZjA^\/l. The function JQ{X) and Ji{x) are given as: 

JQ{X)  = + ~ JQ [1 -  exp{-^e~Y)]y'^ dy 

Jl ix)  = ja: -  -  [1 -  (1 + -e~y)exp{--e~y)]y^ dy 
^ X J[) y  y 

The integrals above were evaluated by using the NAG FORTRAN Library Rou

tine DOlAMF. 
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4. EQUATIONS OF STATE FOR THE STANDARD STATE 

CHEMICAL POTENTIAL OF AQUEOUS IONS 

Tanger and Helgeson (1988) published the equations of state for the standard 

state partial molar properties of the aqueous ions. The standard state properties of 

the aqueous ions were assumed to be the sum of two contributions, an intrinsic prop

erty and an électrostriction contribution. The électrostriction contribution accounts 

for the ion-solvent interactions. The equation for the calculation of the standard 

partial Gibbs free energy or standard state chemical potential of the aqueous ions are 

as follows: 

-Tr) -  ci[Tln{ — )-T+ Tr] +aiiP -  Pr) 

, + f , rr 1 1 T ,_,Tr{T-Q)^^ 
+ - <^2{[Y—Q -  _ 0)1} 

+ (ji _ 0)[®3(-P - Pr) + p^)] +'^(^ - 1) 

rr, lr  

where S'^ is the partial molar entropy. Pr and Tr are the reference pressure and 

temperature, which are taken as 1 bar and 298.15 K. c^, C2,a]^,a2,03 and 04 are 

the parameters, which are the properties of the individual aqueous ion. Those values 

were given in Table 3 (Tanger and Helgeson (1988)). 0 = 228 K, $ = 2600 bar and 

Yp^ Tr ~ • 5.81 xl0~5. D is the dielectric constant of water. The temperature and 
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pressure dependence of D is taken from Bradley and Pitzer (1979). For the jth ion 

u/j is calculated as 

=v[~j['>'j  + \-j \{f^= + 9)] ^ - ~j(3.082 + 5 )  

where 77 = 1.66027 x lO^A cal/mole, Zj and rj  correspond to the charge and the 

crystallographic radius of the ion, which are also given in the Table 3 (Tanger and 

Helgeson (1988)), fc- is equal to 0.94 A for cations and 0.0 A for anions. The function 

g is further defined as: 

g = 0.5[—6 + — 4c] 

where 

b = 3.72 - 2r] 
4 4-1 . . 

i=-lj=0 

-1 

c = 3.4571 - 3.727/ 
4 4-2 . ; 

i= — l j=Q 

In the above equations, d is the density of the water. The aj^j values were given 

in Table C-1 (Tanger and Helgeson (1988)). 
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5. RESULTS 

As pointed out in the Introduction, the temperature dependence of the Pitzer 

model parameters and the standard state chemical potential of all the species are 

needed to calculate the phase equilibrium of the Na-K-Mg-Cl-iV03-^2^ system from 

0 to 25^C. Pitzer (1979) published an extensive array of the 25°C model parameters 

and the first order temperature derivatives of the binary parameters. For the ternary 

parameters, Pabalan and Pitzer (1987) suggested that it would fit many systems 

with constant 0's at their 25*^0 values and ^'s at the corresponding temperatures. 

We adopted this philosophy in this study. The standard state chemical potential of 

aqueous ions were calculated by using the revised HKF model discussed above. 

Theoretically, the standard state chemical potentials of the pure solids at the 

temperature other than 25°C can be calculated if the temperature dependence of 

their heat capacities is known. Unfortunately, the heat capacities of many solids at 

the temperature below 25*^0 are not available. In this study, we chose to fit the 

standard state chemical potential of the pure solids with their solubility data at the 

corresponding temperatures. The standard state chemical potential of the double 

salt, KMgCl^.6H20, was fitted with the common-ion ternary solubility data. 
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Table 5.1: Pitzer model parameters at 25°C (Pitzer, 
1979) 

/?(0) /3(1) 

NaCl 0.0765 -0.2664 0.00127 
NaNO^ 0.0068 0.1783 -0.00072 
KCl 0.04835 0.2122 -0.00084 
KNO^ -0.0816 0.0494 0.00660 

MgGl2 0.3524 1.6815 0.00519 
Mg{N0'^)2 0.3671 1.5848 -0.02062 

5.1 The Single Salt (Binary) Systems 

The single salt solubilities from 0 to 25*^0 were fitted with the available experi

mental data in order to determine the standard state chemical potential of the pure 

solids. The pure salts solubilities were taken from Linke and Seidell (1965). 

The Pitzer model parameters at 25'^C and their first order temperature deriva

tives were listed in Table 5.1 and Table 5.2. Higher order temperature derivatives 

were not considered in this study because the data were not available. 

The standard state chemical potentials of aqueous ions at 1 bar and various 

temperatures were calculated by using the revised HKF model. The obtained values 

were then fitted with the following equation. 

11^IRT = a -\-bt  -{• c t^ 

where t  indicates the temperature. The results are listed in Table 5.3. 

Those thermodynamic properties were then used to calculate the solubilities of 

the pure salts. The standard state chemical potentials of the solids were adjusted 

so that the calculated solubilities were close to the experimental data. The final 

results of the standard state chemical potential of the pure solids are also listed 
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Table 5.2: Temperature derivatives of Pitzer model 
parameters (Pitzer, 1979) 

O
 

X
 

1 

O
 

X
 (^1 1 X 10^ 

NaCl 7.15 7.00 -10.54 
NaNO^ 12.66 20.60 -23.16 
KCl 5.79 10.71 - 5.09 
KNO^ 2.06 64.50 39.7 
MgCl2 -4.29 .36.53 -

Mg(N0^)2 5.15 44.93 -

Table 5.3: The standard state chemical potential of aqueous ions, water, and pure 
solids. /i^/RT = a + bt + cf , t: ° C 

a b X 10 c xlO"^ 
Na+ -114.71 3.9392 -1.2923 
K+ -123.29 4.0564 -1.3334 
Mg^+ -201.41 7.8611 -2.2291 

cr -57.151 1.7912 -0.4982 

-47.165 1.0551 -0.3223 
-103.69 3.4590 -1.0560 

KCl -179.03 6.1250 -1.8193 

KNO2, -171.90 5.6059 -1.7877 
NaCl -168.30 5.7810 -1.8174 
NaNO^ -160.31 6.1066 -4.8312 
MgCl2-6H20 -927.08 32.171 -10.115 

M 5 ( A'̂  0 3 ) 2.6  ̂ -912.51 30.897 -8.7497 
KMgGl^.%H20 -1109.0 38.266 -10.666 
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in Table 5.3. The calculated solubilities of various salts between 0 and 25^0 are 

presented in Figure 5.1. The calculated results agreed with the experimental data 

quite well. The double salt KMgCl^.6H20 will be discussed in the later section. 

It should be pointed out that the a, 6, and c values in Table 5.3 for the solids were 

correlated between 0 and 25'^C. They should not be used outside the temperature 

range. The standard state chemical potential values will be quite different from those 

obtained here if they are calculated from the heat capacity data found in Robie et 

al. (1978) because extrapolation is required. 

Also, the O'^C value for NaNO^ was adjusted to be -0.04785. This was 

done because the first order temperature derivative of the (3^^^ for NaNO^ had the 

same order as its value. This meant that the higher order derivative terms were 

also important. Since the higher order terms were not available, the value was 

adjusted so that the calculated solubilities agreed with the experimental data. 

5.2 Common-ion Ternary Systems 

The temperature dependence of the ternary parameters, 9 and Vs in Pitzer's 

model are usually not available due to lack of the common-ion ternary activity coef

ficient data at various temperatures. But they can be correlated from the common-

ion ternary solubility data. Following the suggestion by Pablan and Pitzer (1987), 

we used the constant 0 at their 25°C values and correlated the V' values from the 

common-ion ternary solubility data. The 25^C parameters were taken from Pitzer 

(1979) except where otherwise indicated. 
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Table 5.4: Ternary parameters 

9 tp 
25«^C 20°C IS.S^C 15'^C 10°C o°c 

Na-K-Cl -0.012 -0.001 -0.001 -0.002 -0.003 
Na-K-iV03 -0.012 -0.0025 -0.001 0.004 0.0085 
Na-Cl-jVOg 0.016 -0.006 -0.006 -0.006 -0.007 
K-Cl-TVOg 0.016 -0.006 -0.006 -0.006 -0.003 -0.003 
Mg-Cl-ATOg 0.016 0.000 0.000 -0.001 -0.005 -0.005 
K-Mg-Cl 0.000 -0.022 -0.022 -0.018 -0.018 -0.018 
K-Mg-jVO;^ 0.000 -0.015 -0.015 -0.030 0.000 

5.2.1 NaCl-KCl-^20 System 

The phase diagrams of the NaCl-KCl-iÏ2^ system at the temperature below 

25^C have been calculated by Pabalan and Pitzer (1987) and Spencer et al. (1990). 

The temperature dependence of ip was given as: 

= -6.81 X 10"^ + 1.68 X 10"^T 

by Pabalan and Pitzer. Spence et al. considered the temperature dependence of 

both 9 and Those two values were obtained by fitting the solubility data and the 

freezing point data down to -20°C. 

In this study, the ip values were fitted with the solubility data from Linke and 

Seidell (1965). The results are listed in Table 5.4. The calculated solubilities at 0, 

20 and 25^0 are shown in Figure 5.2. The obtained 0 values agree with the values 

calculated from the equation given by Pabalan and Pitzer (1987). The lO'^C V' value 

will be discussed later. 
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5.2.2 NaCl-7VajV(9g-^2<^ System 

The phase diagrams of the NaCl--^2O system at 0, 20 and 25^C were 

calculated by using the same strategy. The fitted -ip values are listed in Table 5.4. It 

appears that the ij.' values do not change much within the 25^C temperature range. 

The calculated phase diagrams are shown in Figure 5.3. 

5.2.3 KCl-A''iV03-^2^ System 

The phase diagrams of the I(Cl-A7jVC)g-^2(^ system at 0, 18.5 and 25were 

calculated and compared with the experimental data. The 4' values obtained are 

listed in Table 5.4 and the calculated phase diagrams are shown in Figure 5.4. 

5.2.4 NaN0^-KN0^-H20 System 

The calculated phase diagrams of the NaNO^-KN0^-H20 system at 0, 20 and 

25°C are shown in Figure 5.5. Since there are very few experimental data, the V' 

values were adjusted so that the calculated invariant points agreed with the available 

experimental data as close as possible. The values are listed in Table 5.4. 

5.2.5 MgCl2-KCl-H20 System 

The calculated phase diagrams of the Mg'C72-KCl-^2'^ system at 0, 15 and 

25^C are shown in Figure 5.6. The 25^0 ternary parameters were taken from 

Harvie and Weare (1980). The standard state chemical potential of the double salt 

KMgCl^.QH20 were adjusted, together with the values, in order to match with the 

experimental data. The standard state chemical potentials of the KMgCl^.6H20 

are listed in Table 5.3. The -0 values are given in Table 5.4. 
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The formation of the double salts and the multi-hydration salts such as mag

nesium chloride and sulfate makes the correlation of their standard state chemical 

potential and the 4' more difRcult. Without the heat capacity data, the only way of 

obtaining those data is from the ternary solubility data provided that the solubility 

data for such system are available at the temperature concerned. 

5.2.6 MgCl2-Mg[N0^)2-H20 System 

The calculated phase diagrams of the MgCl2 — Mg{N0^)2 — H2O system at 

15 and 25°C are shown in Figure 5.7. The 0 values are given in Table 5.4. The 0*^0 

ip value was obtained from the quaternary solubility calculation presented below. 

5.2.7 Mg{N0^)2 — KNO^ — H2O System 

The phase diagrams of the Mg[N0^)2 — KNO^ — H2O system at 0 and 25*^0 

were calculated and compared with the experimental data. The corresponding V' val

ues are given in Table 5.4. Both the 25^C and 0°C ip values were obtained from fitting 

the experimental data. The calculated phase diagrams are plotted in Figure 5.8. 

5.3 The Quaternary Systems 

In order to test the model parameters and the solid standard state chemi

cal potential values obtained above, the phase diagrams of two quaternary sys

tems, NaCl — KNO2 — H2O and MgCl2 — KNO^ — H2O, were calculated at 

different temperatures and compared with available experimental data. For the 

NaCl — KNO^ — H2O system, the phase equilibria were calculated at 0, 10, 20 

and 25°C. The lO^C values used are listed in Table 5.4. They were chosen to fit 
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Table 5.5: Invariant points for NaCl — KNO^ — H2O system, in molality 

Experimental data Calculated values 
t ( C )  NaCl A NO^ NaCl KNO:^ 

0 6.5187 2.0410 6.4230 2.4408 
10 6.4519 2.5944 6.4032 2.6133 
20 6.4906 3.4108 6.5133 4.1874 
25 6.6286 4.0991 6.6403 4.8431 

the experimental invariant data. The calculated invariant points are listed in Ta

ble 5.5 together with the experimental data. The phase diagram calculated at 20^C 

is compared with the experimental data in Figure 5.9 along with phase diagrams at 

0 and 25°C. 

For the MgC'Zg — KNO2, — H2O system, the phase diagrams were calculated at 

0, 10 and 20'^C. All calculated values compared well with the experimental data. At 

lO'^C, four i '  values, i'Mg,K,Cb 'l'Mg,K,NO^^'^Cl,NO^,Mg i'Cl ,K,NO^ were 

adjusted to produce good agreement between the calculated values and the experi

mental data because those four ^ values had not been obtained from the common-ion 

ternary calculations. The results given in Figure 5.10 show good agreement for all 

three temperatures. 
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6. CONCLUSIONS 

In this study, the Na,-I{-Mg-Cl-A^0g-^2(^ phase equilibria were calculated by 

using the Pitzer's model for the activity and osmotic coefficients and a revised HKF 

model for the standard state chemical potential of aqueous ionic species and water. 

The pure solid standard state chemical potentials were obtained by fitting the sol

ubility data. All phase equilibria were calculated by using the method of Song and 

Larson (in press). 

Within the temperature range of this study (0 to 25^C), the first order tem

perature dependence of the binary parameters in the Pitzer model is sufficient for 

the phase diagram predictions with the exception of systems containing NaNO^. 

Because of the small value of [3^^^ for NaNO^ at 25®C, using only the first order 

temperature derivative is not sufficient for the accurate predications. Higher order 

terms are needed for a temperature range greater than 25 degrees. 

The temperature dependence of the ternary tp values were fitted from the common-

ion ternary solubility data. It has been found that these ternary parameters are 

sensitive to the equilibrium calculation although they have very small values. 

The calculated phase diagrams using the fitted model parameters and the solid 

standard state chemical potential values showed reasonable agreement with the ex

perimental data. Care should be taken in the application of these calculations. The 
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presence of organic and other solutes in process of waste stream would be expected 

to affect the phase equilibria of these salt mixtures. 
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7. NOMENCLATURE 

A = Coefficient Matrix, 

— the Pitzer-Debye-Huckel limiting slope, 

Bca = Binary Pitzer model parameter for cation-anion interactions, 

C'ca = Binary Pitzer model parameters, 

D = Dielectric constant of pure water, 

G — Gibbs free energy of the system, 

I = ionic strength, 

NQ = Avogadro Number, 

P = Pressure, 

R = Gas constant, 

T = Temperature, (K) 

Z = Term in the Pitzer model, 

b = Pitzer model constant, 1.2, 

e = charge of electron, 

k = Boltzmann constant, 

— molality of the ith species, 

ni = the mole number of ith species, 

nx = the initial system input vector. 
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t = temperature, ^C, 

= ion charge. 

Greek Letters 

{^(0)^^(1),^(2) = Pitzer model parameters, 

7 = Activity coefficients, 

(j) — Osmotic coefficients, 

/t = Chemical potential, 

V' = Ternary Pitzer model parameters. 

Subscripts 

a, a' = anion, 

c, c = cation, 

ca = salt ca, 

r — reference state, 

M = cation, 

X = anion. 

Superscripts 

o — standard state. 
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SUMMARY AND DISCUSSION 

This work covers three aspects of the phase equilibrium calculation, namely (1) 

thermodynamic model, (2) numerical algorithm and (3) practical applications with 

the focus on the aqueous electrolyte mixtures. The success of a thermodynamic 

model relies on its flexibility and accuracy in predicting of solution properties such 

as activity, density and solubility. A large database of model parameters and their 

temperature and pressure dependence is the only way of making certain models have 

any engineering usefulness. Yet only the information obtained from a convincing 

numerical procedure can be used in the engineering design. 

Despite the primary promising results obtained by using Liu et al. model, lack 

of temperature and pressure dependence of the model parameters prevent the further 

application of the model, which is true for all NRTL models. It is very difficult to 

predict volumetric properties using the NRTL model because the pressure derivative 

of the Gibbs free energy given by the NRTL model is mathematically very complex 

and the resulting equations will be highly nonlinear. But the advantage of these 

models is its capability of dealing with mixed solvent and systems involving molecular 

species. 

The Gibbs free energy given by Pitzer's model is a linear model in terms of the 

model parameters. Any derivative of linear equation is still in linear form. Therefore, 
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Pitzer's model gives a simple model for the engineering purposes. As shown in Part 

III of this work, Pitzer's model can give fairly accurate predictions about the phase 

equilibrium of the aqueous electrolyte solutions. 

Since the Gibbs free energy for nonideal system is highly nonlinear with respect 

to composition, being able to find the correct equilibrium composition of each phase 

is as important as having an accurate thermodynamic model. The algorithm de

scribed in Part II of this work provides an unified approach in solving the phase 

equilibrium problem. The mathematical procedures have thermodynamic meanings. 

The algorithm described in this part has the following advantages: 

• The phase selection procedure is identical to the thermodynamic considerations; 

• The phases selected are stable; 

• The optimum solution will always satisfy Gibbs phase rule; 

• The calculated phase diagrams agree well with experimental data. 

One general neglected area in solid-liquid phase equilibrium problems is the 

study of the properties of individual solid phase, to be specific, the temperature 

dependence of the standard state chemical potential of the solid or the equilibrium 

constant of the solid formation reaction. Without those information, the solid-liquid 

phase equilibrium prediction could be very tedious and sometimes impossible. 
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APPENDIX A. DEBYE-HUCKEL THEORY 

In 1923 Debye and Huckel provided, in a simple theory, the correct equation 

for the behavior of electrolyte solutions in the limit of very low concentration. The 

theory can be divided into three parts, i.e. (1) the selection of the molecular model 

or the interionic potentials of mean force, (2) the calculation of the interionic radial 

distribution functions from the model, and (3) the calculation of thermodynamic 

functions from the potentials and the radial distribution functions. 

Interionic potentials 

A plausible model can be described as follows: 

u i j [ r )  =  u*y(r) + z ^ z j e ^ l D r  

where is the charge of ion i,r is the distance between ion i  and j ,  and u * j { r )  is short-

range interaction function giving the difference between the true potential of mean 

force and the electrostatic term. All effects departure from this electrostatic term 

are combined in These include at intermediate distances a variety of effects 

related to the molecular natures of the solvent (solvation, dielectric saturation, etc.) 

as well as dispersion forces between ions and at shorter distances the direct repulsion 

of ions as their electron shells begin to overlap. 

The simplest assumption for u*, used by Debye and Huckel and frequently called 
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the primitive model, is: 

iL*j = +00, r < a 

u*j = 0,r > a 

where the hard-core diameter a is the same for all ions. 

Radial Distribution Functions 

The concentration of ionic species i near species j is given by the Boltzmann 

expression: 

== e x p ( - z i e ( j ) j l K T )  

where n i ( r )  is the number of ions per unit volume at distance r ,  is the total 

number of ion i per unit volume, <j)j is electrostatic potential associated with ion j, 

and K is Boltzmann constant. This implies the following radial distribution function: 

g i j { r )  =  e x . p ( - z i e ( f ) j l K T )  

The summation over all ion i at distance r gives the charge density: 

i 

= ^ exp(-z^e,^j/A:r) 
i 

Take the expansion for the exponential function, yields: 

fjir) = + ... 
i i 

According to the electrical neutrality, the first term on the right is zero. For 

simplicity we only take the second term as an approximation. Substituting into 
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the Poisson equation for the electrostatic potential and using appropriate boundary 

conditions, yield: 

z ^ e e x p ( k a )  e x p ( — k r )  

where / D K T )  Vj and a  is the diameter of the hard-core. Then the 

radial distribution function becomes: 

9 i j  =  ̂ ^ T P i - Q i j )  

Z i Z j e x p { k a )  e x p { - k a )  

~  D K T i l  +  k a )  r  

Thermodynamic Equations 

The osmotic coefficient for the solution is then: 

du • • 
- 1 = -(6cArr)-l ̂  ̂  y jr 

% ; 0 ^ 

where c is the total concentration of solute. The activity coefficient can be calculated 

from the Gibbs-Duhem equation and the final result is: 

ln7-- = --
^ 1 + 5a/V2 

where A and B are Debye-Huckel constants, / is the ionic strength. At infinite 

dilution, the above equation becomes: 

I n j j  =  



130 

APPENDIX B. SOURCE PROGRAM 

//EqUIL JOB N1$WXS,WXS,MSGLEVEL=(1,1),CLASS=C 

/•ACCOUNT 15649 

//* CHECKPOINT=YES 

/*JOBPARM LINES=100 

//SO EXEC SCRUNC,PARM='N1$WXS.SONGl' 

//SO EXEC SCRUNC,PARM='N1$WXS.S0NG2' 

//SO EXEC SCRUNC,PARM='N1$WXS.SONGS' 

//SFORTl EXEC FORTVCL,FVP0PT=2 

//FORT.SYSIN DD * 

«PROCESS DC(ZCOMM) 

IMPLICIT REAL*8 (Z) 

COMMON/ZCOMM/Z(400000) 

DATA NWCORE/400000/ 

CALL MINOSK Z,NWCORE) 

STOP 

END 

SUBROUTINE FUNOBJ(MODE.N.X,F,G,NSTATE,NPROB,Z,NWCORE) 

IMPLICIT REAL*8(A-H,0-Z) 

DOUBLE PRECISION X(N),G(N),Z(NWCORE),M0L(4) 

EXTERNAL EQUIL 

C 

CALL EqUIL(N,X,F,G) 

C 
DO 10 I = 1, 4 

10 MOL(I) = X(I)*1000.0D0/(18.0D0*X(5)) 

WRITE(6,*) 'THE EQUILIBRIUM CONCENTRATIONS ARE: ' 
WRITE(6,111) (MOL(I). I = 1, 4) 

111 FORMAT(2X,4F10.4) 
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RETURN 

END 

C 

C 

C 

C ******************************************************* 

C * THE FOLLOWING SUBROUTINE IS FOR THE CALCULATION OF * 

C * THE GIBBS FREE ENERGY AND ITS GRADIENTS * 

C * CHEMICAL POTENTIAL USING PITZER'S MODEL * 
C ******************************************************* 

C 

c 
c 

SUBROUTINE EqUIL(N,X,G,DG) 

INTEGER NSP,NI,NC,NA,NS 

PARAMETER (NC=2,NA= 2,NI=NC+NA) 

DOUBLE PRECISION BETA(NC,NA),BETA1(NC,NA),BETA2(NC,NA), 

$ SITAO(NI,NI),ALFAl(NC,NA),ALFA2(NC.NA),CFI(NC,NA). 

$ PUSI(NI,NI,NI).LNR(NI).ML(NI),Z(NI),SITA1(NI.NI) 

DOUBLE PRECISION U(NI+1),DG(N),X(N) 

DOUBLE PRECISION B.T.G.AFI.FI.I.MZ.LNW 

COMMON /PARA2/B.BETA,BETAl,BETA2,ALFAl,ALFA2,CFI. 

$ PUSI,SITA0,SITA1,Z,T,U0 

EXTERNAL ACTIVT.OSMOTC 

INTRINSIC DLOG 
C 

B = 1.2D0 

T = 283.15D0 

AFI = 0.388D0 

C 

Z(l) = 2.0D0 

Z(2) = l.ODO 

Z(3) = l.ODO 

Z(4) = l.ODO 

C 

C BINARY PARAMETERS 

C 

C *** MG-CL *** 

BETA(1,1) = 0.3545D0 



BETAld.l) = 1.6632D0 

BETA2(1,1) = O.ODO 

CFI(1,1) = 0.00519D0 

ALFAld.l) = 2.0D0 

ALFA2(1,1) = 2.0D0 

*** MG-W03 *** 

BETA(1,2) = 0.36460D0 

BETA1(1,2) = 1.5803D0 

BETA2(1,2) = O.ODO 

CFI(1,2) = -0.02062D0 

ALFA1(1.2) = 2.0D0 

ALFA2(1,2) = 2.0D0 

*** K-CL *»* 

BETA(2,1) = 0.04546D0 

BETA1(2,1) = 0.2068D0 

BETA2(2,1) = O.ODO 

CFI(2,1) = -0.0005860D0 

ALFA1(2.1) = 2.0D0 

ALFA2(2,1) = 2.0D0 

*** K-N03 *** 

BETA(2,2) = -0.08263D0 

BETA1(2,2) = 0.01715D0 

BETA2(2,2) = O.ODO 

CFI(2,2) = 0.004615D0 

ALFA1(2,2)=2.0D0 

ALFA2(2,2) = 2.0D0 

TERWEY PARAMETERS 

SITA0(1,2) 

SITA0(3.4) 

SITA1(1,2) 

SITA1(3.4) 

PUSI(1,2,3) 

PUSI(1,2,4) 

PUSI(3,4,1) 

PUSI(3.4,2) 

= O.OOODO 

= 0.016D0 

= O.ODO 

= O.ODO 

= -0.022D0 

= -0.020D0 

= -O.OOODO 

= -0.006D0 
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C 

C CALCULATE THE MOLALITY FROM MOLE NUMBER 

C 
MZ=O.ODO 

DO 17 K=1.NI 

ML(K)=1.OD+3/(1.8D+1*X(NI+1))*X(K) 

HZ=MZ+ML(K)*Z(K)**2 

17 CONTINUE 

I = 0.5D0*MZ 

C 

C COMPUTE THE CHEMICAL POTENTIAL OF SPECIES j. 

C 

C CALCULATE ACTIVITIES 

CALL ACTIVY(ML,I.AFI,LNR) 

C CALCULATE OSMOTICS 

CALL OSMOTC(ML,I,AFI,FI,LNW) 

C 
DO 20 J=1,NI+1 

IF(J.LE.NI) THEN 
U(J)=LNR(J)+DLOG(ML(J)) 

ELSE 
U(J)=LNW 

END IF 

20 CONTINUE 

C 

C COMPUTE THE FREE ENERGY OF THE NONLINEAR PART 

C 
G=O.ODO 

DO 30 L=1,NI+1 

30 G=G+U(L)*X(L) 

C 

C CALCULATE DERIVATIVES OF THE OBJECTIVE FUNC. 

C 
DO 60 L=1,NI+1 

DG(L) = U(L) 

60 CONTINUE 

RETURN 

END 

C 

C 
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C CALCULATE THE ACTIVITY. 

C 

SUBROUTINE ACTIVY(ML,I.AFI,LNR) 

COMMON /PARA2/B,BETA,BETAl,BETA2,ALFA1,ALFA2,CFI, 

a PUSI,SITA0,SITA1.Z 

DOUBLE PRECISION GX 

EXTERNAL GX.SITIA.FUNF 

INTRINSIC DSQRT 

INTEGER NI.NC.NA 

PARAMETER (NC=2.NA=2.NI=NC+NA) 

DOUBLE PRECISION Z(NI).LNR(NI),ML(NI). 

* BETA(NC,NA),BETAl(NC,NA),BETA2(NC,NA).ALFAl(NC.NA). 

* ALFA2(NC.NA),CFI(NC.NA).BA(NC,NA),C(NC.NA), 

* PUSKNI.NI.NI) .SITAO(NI,NI) ,ESITA(NI.NI). 

* ESITAP(NI,WI) .FKNI.NI) .Rl(NC.NC) .R2(NA.NA) . 

* RIl(NI),RI2(NI).RI3(NI).SITAl(NI.NI) 

DOUBLE PRECISION SI.I.B.F.AFI.RR.Xl,X2.ZZ.SITAI 

C 

C 

C CALCULATE BA(NC.NA) 

C 
SI=DSQRT(I) 

DO 5 K=1.NC 

DO 5 L=1.NA 

X1=ALFA1(K.L)*SI 

X2=ALFA2(K.L)*SI 

BA(K.L)=BETA(K,L)+BETA1(K.L)*GX(X1) 

* +BETA2(K.L)*GX(X2) 

5 CONTINUE 

C 
ZZ=O.ODO 

DO 6 K=1.NI 

6 ZZ=ZZ+ML(K)*Z(K) 

DO 10 K=1.NC 

DO 10 L=1.NA 

L1=L+NC 

10 C(K.L)=CFI(K,L)/(2.0D0*DSqRT(Z(K)*Z(Ll))) 

C 

CALL SITIA(Z,I.AFI.ESITA.ESITAP) 

C 



135 

DO 15 K=1,WC 

DO 15 L=1.NC 

IF(K.GE.L) GOTO 15 

Smi=Sm0(K,L) + (2.0D0*SITAl(K,L)/4.0D0/I)* 
(1.ODO-(1,ODO+2.ODO*SI)*DEXP(-2.ODO*SI)) 

FI(K,L)=SITAI+ESITA(K,L) 

CONTINUE 
DO 16 K=1,NA 

K1=K+NC 

DO 16 L=1,NA 

L1=L+NC 

IF(K.GE.L) GOTO 16 

SITAI=SITAO(K1,LI)+(2.0D0*SITA1(K1,LI)/4.ODO/I)* 

(1. ODO-(1.ODO+2.ODO*SI)*DEXP(-2.ODO*SI)) 

FI(K1.L1)=SITAI+ESITA(K1.L1) 

CONTINUE 

CALL FUNF(ML,I,AFI,F) 

COMPUTE CATION'S ACTIVITY COEFFICIENTS 

DO 20 J=1,NC 

RI1(J)=0.0D0 

DO 21 L=1,NA 

L1=L+NC 

RI1(J)=RI1(J)+ML(L1)*(2.0D0*BA(J,L)+ZZ*C(J,L)) 

RI2(J)=0.0D0 

DO 25 K=1,NC 

IF(K.EQ.J) GO TO 25 

IF(K.LT.J) FI(J,K)=FI(K,J) 

R1(J,K)=0.0D0 

DO 22 L=1,NA 

L1=L+NC 

IF(K.LT.J) PUSI(J,K.L1)=PUSI(K,J,L1) 

R1(J,K)=R1(J,K)+HL(L1)*PUSI(J,K,L1) 

RI2(J)=RI2(J)+ML(K)*(2.0D0*FI(J,K)+R1(J,K)) 

CONTINUE 
RI3(J)=0.0D0 

DO 30 K=1,NA 

K1=K+NC 
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DO 30 L=1,MA 

L1=L+NC 

IF(K.GE.L) GO TO 30 

RI3(J)=RI3(J)+ML(K1)*ML(L1)*PUSI(K1,L1,J) 

30 CONTINUE 

LNR(J)=Z(J)**2*F+RI1(J)+RI2(J)+RI3(J) 

20 CONTINUE 
RR=0.0D0 

DO 35 K=1,NC 

DO 35 L=1,NA 
L1=L+NC 

35 RR=RR+ML(K)*ML(L1)*C(K,L) 

DO 36 J=1,NC 

36 LMR(J)=LNR(J)+RR*Z(J) 

G 

C COMPUTE ANION'S ACTIVITY COEFFICIENTS 

C 
DO 60 J=1,NA 

J1=J+NC 

RI1(J1)=0.0D0 

DO 40 K=1,NC 

40 RIl(Jl)=RI1(Jl)+ML(K)*(2.ODO*BA(K,J)+ZZ*C(K,J)) 
RI2(J1)=0.0D0 

DO 45 L=1,MA 

L1=L+NC 

IF (L.EQ.J) GOTO 45 
IF (L.LT.J) FI(J1,L1)=FI(L1,J1) 

R2(J,L)=0.0D0 

DO 50 K=1,NC 

IF(L.LT.J) PUSI(J1,L1,K)=PUSI(L1.J1,K) 

50 R2(J,L)=R2(J.L)+ML(K)*PUSI(J1,L1,K) 

RI2(J1)=RI2(J1)+ML(L1)*(2.0D0*FI(J1,L1)+R2(J,L)) 

45 CONTINUE 
RI3(J1)=0.0D0 

DO 55 K=1,NC 

DO 55 L=1,NC 

IF(K.GE.L) GO TO 55 

RI3(J1)=RI3(Jl)+ML(K)*ML(L)*PUSI(K.L.J1) 

55 CONTINUE 

LNR(J1)=Z(J1)**2*F+RI1(J1)+RI2(J1)+RI3(J1)+Z(J1)*RR 
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CONTINUE 

RETURN 

END 

FUNCTION GX(X) 

DOUBLE PRECISION GX,X 

INTRINSIC DEXP 

GX=2.ODO*(1.ODO-(1.ODO+X)*DEXP(-X))/X**2 

RETURN 

END 

CALCULATE F FUNCTION 

SUBROUTINE FUNF(M.I,AFI,F) 

COMMON /PARA2/B,BETA,BETAl,BETA2,ALFAl,ALFA2,CFI, 

PUSI,SITA0,SITA1,Z 

DOUBLE PRECISION GXP 

EXTERNAL GXP,SITIA 

INTRINSIC DSQRT.DLOG 

INTEGER NI.NC.NA 

PARAMETER (NC=2,NA=2,NI=NC+NA) 

DOUBLE PRECISION M(NI),Z(NI),BETA(NC,NA).BETAl(NC.NA). 

ALFAl(NC,NA),ALFA2(NC,NA),CFI(NC,NA),PUSI(NI,NI,NI), 

BP(NC.NA).ESITA(NI.NI).ESITAP(NI.NI).SITAO(NI.NI). 

BETA2(NC.NA),SI,I,F1.F2,F3.F4.F,B.AFI.X1,X2,SITA1(NI.NI) 

SI=DSqRT(I) 

F1=-AFI*(SI/(1.0D0+B*SI)+2.ODO/B*DLOG(1.ODO+B*SI)) 

DO 5 K=1,NC 

DO 5 L=1.NA 

X1=ALFA1(K,L)*SI 

X2=ALFA2(K,L)*SI 

BP(K.L)=BETA1(K.L)*GXP(X1)/I 

+BETA2(K.L)*GXP(X2)/I 

CONTINUE 

CALL SITIA(Z.I.AFI.ESITA,ESITAP) 

F2=0.0D0 
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DO 10 K=1,NC 

DO 10 L=1,NA 

L1=L+NC 

10 F2=F2+M(K)*M(L1)*BP(K,L) 

C 

C FOR CATION 

C 
F3=0.0D0 

DO 11 K=1,NC 

DO 11 L=1,NC 

IF(K.GE.L) GO TO 11 

F3=F3+M(K)*M(L)*ESITAP(K,L) 

11 CONTINUE 

C 

C FOR ANION 

C 
F4=0.0D0 

DO 12 K=1,NA 

K1=K+NC 

DO 12 L=1,NA 

L1=L+NC 

IF(K.GE.L) GO TO 12 

F4=F4+M(K1)*M(L1)*ESITAP(K1,L1) 

12 CONTINUE 

F=F1+F2+F3+F4 

RETURN 

END 

C 

C 

FUNCTION GXP(X) 

DOUBLE PRECISION GXP, X 

INTRINSIC DEXP 

GXP=-2.ODO*(1.ODO-(1.ODO+X+5.0D-1*X**2)*DEXP(-X))/X**2 

RETURN 

END 

C 

C 

C 

SUBROUTINE SITIA(Z,I,AFI,ESITA,ESITAP) 

INTEGER NI,NC,NA 
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PARAMETER (NC=2,NA=2,NI=NC+NA) 

DOUBLE PRECISION Z(NI).ESITA(NI,WI).ESITAP(NI,NI), 

JXO(NI,NI),JX1(NI,NI),XZ(NI.NI),XX,X0,X1,AFI,I 

EXTERNAL JXFUN 

INTRINSIC DSQRT 

COMMON /DATA/XX 

FOR CATION 

DO 10 K=1.NC 

DO 10 L=1,NC 

IF(K.GT.L) GOTO 10 

XZ(K,L)=6.0D0*Z(K)*Z(L)*AFI*DSQRT(I) 

XX=XZ(K,L) 

CALL JXFUNCXO.Xl) 
JXO(K.L)=XO 

JX1(K,L)=X1 

CONTINUE 

DO 11 K=1,NC 
DO 11 L=1,NC 

IF(K.GE.L) GO TO 11 

ESITA(K,L)=Z(K)*Z(L)/(4.0D0*I)*(JX0(K.L)-

5.0D-1*JX0(K,K)-5.0D-1*JX0(L,L)) 

ESITAP(K,L)=Z(K)*Z(L)/(8.0D0*I**2)*(JX1(K,L)-

5.0D-1*JX1(L,L)-5.0D-1*JX1(K,K))-ESITA(K,L)/I 

CONTINUE 

FOR ANION 

DO 12 K=1,NA 

K1=K+NC 

DO 12 L=1,NA 

L1=L+NC 

IF(K.GT.L) GOTO 12 

XZ(Kl,Ll)=6.0D0*Z(Kl)*Z(Ll)*AFI*DSqRT(I) 

XX=XZ(K1,L1) 

CALL JXFUNCXO.Xl) 

JX0CK1.L1)=X0 

JX1CK1,L1)=X1 

CONTINUE 
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DO 13 K=1,NA 

K1=K+MC 

DO 13 L=1,M 

L1=L+WC 

IF(K.GE.L) GO TO 13 

ESITA(K1,L1)=Z(K1)*Z(L1)/(4.0D0*I)*(JX0(K1.L1)-

& 5.0D-1*JX0(K1,Kl)-5.0D-1*JX0(L1,L1)) 

ESITAP(K1,L1)=Z(K1)*Z(L1)/(8.0D0*I**2)*(JX1(K1,L1)-

& 5.0D-1*JX1(K1,K1)-5.0D-1*JX1(L1,L1))-ESITA(K1,L1)/I 

13 CONTINUE 

RETURN 

END 

C 

C 

C CALCULATE THE OSMOTIC. 

C 

SUBROUTINE OSMOTC(ML,I,AFI,FI,LNW) 

COMMON /PARA2/B,BETA,BETAl.BETA2,ALFAl,ALFA2,CFI, 

& PUSI.SITAO.SITAl.Z 

INTEGER NI.NA.NC 
PARAMETER (NC=2,NA=2,NI=NA+NC) 

DOUBLE PRECISION Z(NI),ML(NI),ALFA2(NC,NA), 

* BETA(NC,NA),BETAl(NC,NA),BETA2(NC,NA),ALFAl(NC,NA), 

* PUSI(NI,NI,NI),SITAO(NI,NI),ESITA(NI,NI),ESITAP(NI,NI), 

* FIFI(NI.NI),BFI(NC,NA),C(NC,NA).CFI(NC,NA),SITA1(NI,NI) , 

* AFI,I,MZ1,B,FI1.FI2,FI3,FI31,FI4.FI41,FI,ZZ,LNW.SITAI,SI 

C 

EXTERNAL SITIA 

INTRINSIC DSQRT.DEXP 

C 

C CALCULATE THE TOTAL MOLALITY AND ION STRENGTH 

C 
MZ1=0.0D0 

DO 3 K=1.NI 

MZ1=MZ1+ML(K) 

3 CONTINUE 
SI = DSQRTd) 

C 

FI1=-AFI*I**1.5/(1.ODO+B*DSqRT(I)) 

ZZ=O.ODO 
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DO 2 K=1,NI 

ZZ=ZZ+ML(K)*Z(K) 

DO 5 K=1,NC 

DO 5 L=1,NA 

L1=L+NC 

BFI(K,L)=BETA(K,L)+BETA1(K.L)*DEXP(-ALFA1(K,L) 

& *DSQRT(I))+BETA2(K.L)*DEXP(-ALFA2(K,L)*DSQRT(I)) 

C(K,L)=CFI(K,L)/(2.0D0*DSQRT(Z(K)*Z(L1))) 

CONTINUE 

CALL SITIA(Z,I,AFI,ESITA.ESITAP) 

DO 13 K=1,NC 

DO 13 L=1,MC 

IF(K.GE.L) GO TO 13 

SITAI=SITA0(K,L)+(2.0D0*SITA1(K,L)/4.0D0/I)* 

* (1.0D0-(1.0D0+2.0D0*SI)*DEXP(-2.0D0*SI)) 

FIFI(K,L)=SITAI+ESITA(K,L)+I*ESITAP(K,L) 

CONTINUE 

DO 14 K=1,NA 

K1=K+NC 

DO 14 L=1,NA 

L1=L+NC 

IF(K.GE.L) GO TO 14 

SITAI=SITA0(K1,L1)+(2.0D0*SITA1(K1,L1)/4.0D0/I)* 

* (1.0D0-(1.0D0+2.0D0*SI)*DEXP(-2.0D0*SI)) 

FIFI(K1,L1)=SITAI+ESITA(K1,L1)+I*ESITAP(K1,L1) 

CONTINUE 

FI2=0.0D0 

DO 15 K=1,NC 

DO 15 L=1,NA 

L1=L+NC 

FI2=FI2+ML(K)*ML(L1)*(BFI(K,L)+ZZ*C(K,L)) 

FI3=0.0D0 

DO 20 K=1,NC 

DO 20 L=1,NC 

IF(K.GE.L) GO TO 20 
FI31=0.0D0 

DO 21 J=1,NA 
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J1=J+NC 

21 FI31=FI31+ML(J1)*PUSI(K,L,Jl) 

FI3=FI3+ML(K)*ML(L)*(FIFI(K,L)+FI31) 

20 CONTINUE 

C 

FI4=0.0D0 

DO 25 K=1,NA 

K1=K+NC 

DO 25 L=1,NA 
L1=L+NC 

IF(K.GE.L) GO TO 25 
FI41=0.0D0 

DO 26 J=1,NC 

26 FI41=FI41+ML(J)*PUSI(K1,L1.J) 

FI4=FI4+ML(K1)*ML(LI)*(FIFI(K1,LI)+FI41) 

25 CONTINUE 

FI=1.ODO+2.ODO/MZl*(FI1+FI2+FI3+FI4) 

LNW=-1.8D+1/1.0D+3*MZ1*FI 

RETURN 

END 

C 

C CALL DOIAMF, CALCULATE THE INTEGRAL IN PITZER'S MODEL. 

C 

SUBROUTINE JXFUN(JXO,JXl) 

INTEGER KOUNT 

C ... LOCAL SCALARS ... 

DOUBLE PRECISION A,ABSERR,EPSABS.EPSREL,EX, 

* EXACT,RESUT1,RESUT2,X,JXO,JXl 

INTEGER IFAIL,INF,NOUT 

C ... LOCAL ARRAYS ... 

DOUBLE PRECISION W(800) 

INTEGER IW(102) 

C .. FUNCTION REFERENCES .. 

DOUBLE PRECISION XOIAAF,FST1,FST2 

C .. SUBROUTINE REFERENCES .. 

EXTERNAL FSTl,FST2,XOIAAF 

COMMON /TELNUM/KOUNT 

COMMON /DATA/X 

DATA NOUT/6/ 

EPSABS = O.ODO 
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EPSREL = l.OD-4 
A = O.ODO 

EXACT = XOIAAF(A) 

INF = 1 

KOUNT = 0 

IFAIL = 1 

CALL DOlAMF(FSTl,A,INF,EPSABS,EPSREL,RESUTl,ABSERR,W, 

800,IW,102,IFAIL) 

JXO = 0.25D0*X-1.0D0+RESUT1/X 

EX = DABS(EXACT-RESUTl) 

CALL DOIAMF(FST2,A,INF,EPSABS,EPSREL,RESUT2,ABSERR,W, 

800,IW,102,IFAIL) 

JXl = 0.25D0*X-RESUT2/X 

EX = DABS(EXACT-RESUT2) 

RETURN 

END 

FUNCTION FSTl(Y) 

... SCALAR ARGUMENTS ... 

DOUBLE PRECISION X,Y 

. . . SCALARS IN COMMON ... 

INTEGER KOUNT 

... FUNCTION REFERENCES ... 

DOUBLE PRECISION DEXP,FST1 

COMMON /TELNUM/KOUNT 

COMMON /DATA/X 

KOUNT = KOUNT + 1 

FSTl = (1.0D0-DEXP(-X/Y*DEXP(-Y)))*Y**2 

RETURN 

END 

FUNCTION FST2(Y) 

... SCALAR ARGUMENTS ... 

DOUBLE PRECISION X.Y 

... SCALARS IN COMMON ... 

INTEGER KOUNT 

... FUNCTION REFERENCES ... 
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DOUBLE PRECISION DEXP,FST2 

C 

COMMON /TELNUM/KOUNT 

COMMON /DATA/X 

KOUNT = KOUNT + 1 

FST2=(1.ODO-(1.ODO+X/Y*DEXP(-Y))* 

* DEXP(-X/Y*DEXP(-Y)))*Y**2 

RETURN 

END 

//LKED.SYSLMOD DD DSN=N1$WXS.S0NG3(FUTCRQP), 

// DISP=(NEW,CATLG).SPACE=(TRK,(30,10,10),RLSE),UNIT=DISK, 
// V0L=SER=UCC001 

//LKED.MYLIB DD DSN=N1$WXS.MIN0S51.LOAD,DISP=SHR 

//LKED.SYSIN DD * 

MODE AM0DE(31),RMODE(ANY) 

INCLUDE MYLIB(MINOS) 

ENTRY MAIN 

//STEPl EXEC PGM=FUTCRQP,REGION=5000K,TIME=60 

//STEPLIB DD DSN=N1$WXS.S0MG3,DISP=SHR 

// DD DSN=SYS1.VSF2F0RT,DISP=SHR 

//FT06F001 DD SYSOUT=A, 

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458,BUFN0=2) 

//FT08F001 DD UNIT=SYSDA,SPACE=(TRK,(4,4)), 

// DCB=(RECFM=FB,LRECL=8,BLKSIZE=1600) 

//FT09F001 DD SYSOUT=A, 

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458,BUFN0=2) 

//*FT10F001 DD DSN=N1$WXS.S0NG1, 

//* UNIT=DISK,DISP=SHR 

//FTllFOOl DD UNIT=DISK,DISP=(,CATLG), 

// DSN=N1$WXS.S0NG1, 

// SPACE=(TRK,(150,30)), 

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160) 

//FT13F001 DD DSN=N1$WXS.S0NG2,UNIT=DISK, 

// DISP=(,CATLG),DCB=(LRECL=111,RECFM=FB,BLKSIZE=18981), 

// SPACE=(TRK,(50,30)) 

//FT05F001 DD * 

BEGIN MGCLKN03 

MINIMIZE 

OBJECTIVE = GENERGY 
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NONLINEAR VARIABLES 5 

SUPERBASICS LIMIT 5 

DERIVATIVE LEVEL 3 

ITERATION LIMIT 10 

LOG FREQUENCY 1 

SAVE FREQUENCY 1 

NEW BASIS FILE 11 

END MGCLKN03 

NAME MGCLKN03 

ROWS 

E RMG 

E RK 

E RCL 

E RN03 

E RH20 

E CONSTl 

E C0NST2 

N GENERGY 

COLUMNS 

MG RMG 1.0 GENERGY -186.590 
MG CONSTl 2.0 

K RK 1.0 GENERGY -115.711 

K C0NST2 1.0 

CL RCL 1.0 GENERGY -53.7681 
CL CONSTl -1.0 

N03 RN03 1.0 GENERGY -45.1830 

N03 C0NST2 -1.0 

H20 RH20 1.0 GENERGY -97.2389 
MGCL26 RMG 1.0 RH20 6.0 

MGCL26 RCL 2.0 GENERGY -867.100 
KN03 RK 1.0 

KN03 RN03 1.0 GENERGY -161.405 

KCL RK 1.0 

KCL RCL 1.0 GENERGY -167.55 
MGN036 RMG 1.0 RH20 6.0 
MGN036 RN03 2.0 GENERGY -854.500 

B RMG 3.82 



B RK 5.0 

B RCL 10.64 

B RN03 2.0 

B CONSTl 0.0 

B C0NST2 0.0 

B RH20 55.5 

BOUNDS 

PL BOUNDOl MG 1.OE-4 

PL BOUNDOl K l.OE-4 

PL BOUNDOl CL 1.OE-4 

PL BOUNDOl N03 l.OE-4 

PL BOUNDOl H20 l.OE-4 

FX INITIAL MG 3.82 

FX INITIAL K 5.0 

FX INITIAL CL 10.64 

FX INITIAL N03 2.0 

FX INITIAL H20 55.5 

LO INITIAL MGCL26 

LO INITIAL KCL 

LO INITIAL MGN036 

LO INITIAL KN03 

LO INITIAL KMGCL36 

EMDATA 
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