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ABSTRACT

Suppose we aim to build a phylogeny for a set of taxa X using information from a collection of

loci, where each locus offers information for only a fraction of the taxa. The question is whether,

based solely on the pattern of data availability, called a taxon coverage pattern, one can determine if

the data suffices to construct a reliable phylogeny. The decisiveness problem expresses this question

combinatorially. Informally, a taxon coverage pattern is decisive if the following holds for any

binary phylogenetic tree T for X: the collection of phylogenetic trees obtained by restricting T

to the subset of X covered by each locus uniquely determines T . The decisiveness problem is the

problem of determining whether a given coverage pattern is decisive. Here we relate the decisiveness

problem to a hypergraph coloring problem. We use this connection to (1) show that the decisiveness

problem is co-NP complete, (2) obtain lower bounds on the amount of coverage needed to achieve

decisiveness, (3) devise an exact algorithm for decisiveness, (4) develop problem reduction rules, and

use them to obtain efficient algorithms for inputs with few loci, (5) apply local search and devise

a deterministic and a randomized algorithm for decisiveness(6) devise Boolean satisfiability (SAT)

and integer linear programming formulations (ILP) of decisiveness, which allow us to analyze data

sets that arise in practice. For data sets that are not decisive, we use our SAT and ILP formulations

to obtain decisive subsets of the data.
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CHAPTER 1. INTRODUCTION

Missing data poses a challenge to assembling phylogenetic trees. The question we address here

is how much data can we afford to miss without compromising accuracy. We focus on data sets

assembled by concatenating data from many (sometimes thousands) of loci (13; 15; 28). Such data

sets are used to construct phylogenetic trees by either (i) combining the data from all the loci into

a single supermatrix that is then used as input to some standard phylogeny construction method

(e.g., (10; 23)) or (ii) taking phylogenetic trees computed separately for each locus and combining

them into a single supertree that summarizes their information (4; 21; 27). For various reasons,

the coverage density of concatenated datasets — i.e., the ratio of the amount of available data to

the maximum possible amount — is often much less than 1 (18). Reference (6) examines a wide

range of phylogenetic analyses using concatenated data sets, and reports coverage densities

ranging from 0.06 to 0.98, with the majority being under 0.5.

Low coverage density can give rise to ambiguity (19; 24; 29). In supertree analyses, ambiguity

manifests itself in multiple supertrees that are equivalent with respect to the method upon which

they are based. In super-matrix analyses, it is manifested in multiple topologically different, but

co-optimal (in terms of parsimony or likelihood scores) trees. Note that high coverage density does

not, by itself, guarantee lack of ambiguity. More important is the coverage pattern itself. The

question is whether one can identify conditions under which a given coverage pattern guarantees a

unique solution. Sanderson and Steel (26; 19) have proposed a formal approach to studying this

question, which we explain next.

A taxon coverage pattern for a taxon set X is a collection of sets S = {Y1, Y2, . . . , Yk}, where,

for each i ∈ {1, 2, . . . , k}, Yi is a subset of X consisting of the taxa for which locus i provides

information. S is decisive if it satisfies the following property: Let T and T ′ be two binary

phylogenetic trees for X such that, for each i ∈ {1, 2, . . . , k}, the restrictions of T and T ′ to Yi are



2

isomorphic (restriction and isomorphism are defined in Section 2.2). Then, it must be the case

that T and T ′ are isomorphic. The decisiveness problem is: Given a taxon coverage pattern S,

determine whether or not S is decisive.

Intuitively, if a taxon coverage pattern S is not decisive, we have ambiguity. That is, there are

at least two trees that cannot be distinguished from each other by the subtrees obtained when

these trees are restricted to the taxon sets in S.

A necessary and sufficient condition for a coverage pattern to be decisive — the four-way

partition property — is known (19; 26) (see also Section 2.2). However, as we show in Section 2.3,

deciding whether this condition holds is co-NP complete. On the positive side, the rooted case,

where at least one taxon for which every locus offers data, is known to be polynomially solvable,

and software for handling this case is available (30). Groves (1; 7) are a related, but not identical,

notion. For a discussion on the relationship between groves and decisiveness, see (18).

1.1 Overview

In Chapter 2, we define the Decisiveness problem and the four-way partition theorem

precisely. We also investigate hypergraphs and no-rainbow coloring problem in hypergraphs.

Finally we show the connection between decisiveness and no-rainbow coloring. We show for a

given set X of taxa and a collection of sets S = {Y1, Y2, . . . , Yk} we can find a corresponding

hypergraph H where each node is an element of X and each hyperedge is a set in S. The coloring

function assigns one color to each node. We call a coloring no-rainbow 4-coloring if there exists no

hyperedge with at least 4 nodes with 4 different colors. The connection of two problems says, if

there does not exist a surjective no-rainbow 4-coloring for H, then S is decisive.

In Chapter 3, we define lower bounds for the no-rainbow coloring problem. We use the fact

that small number of hyperedges make it easier to find a no-rainbow coloring. We prove a tight

lower bound on the number of hyperedges needed in the given hypergraph. We also prove a tight

lower bound on the degree of each vertex by showing each vertex must be participated in sufficient

number of hyperedges. We prove that any hypergraph with fewer hyperedges than the bound has



3

a no-rainbow coloring. Furthermore, any hypergraph with any node with smaller degree than the

minimum degree bound has a no-rainbow coloring.

In Chapter 4, we present an exact algorithm for solving no-rainbow coloring problem. By the

pigeonhole principle, we know that there must be one color which covers at most n
r of the nodes.

We start by fixing a subset of at most n
r nodes with one color and decide about the uncolored

vertices and the remaining colors. The exact algorithm in chapter 4 solves the decisiveness

problem in O(2.8n). We then suggest reduction rules to find a fixed-parameter algorithm for the

general decisiveness problem. We show if the number of columns are fixed, we can reduce the

number of rows to 2k−1 and solve the problem in O(2.82
k
) time.

In Chapter 5 we apply local search to find deterministic and probabilistic algorithms for

decisiveness and no-rainbow coloring problem. We use the idea of starting with a coloring

candidate and apply a mixture of local search and other methods to solve the problem. We

suggest using covering codes to do a better investigation. Finally we suggest a candidate that

helps us to solve the problem using a deterministic algorithm in O(2.28n). Using the same

candidate gives us a randomized algorithm with running time of O(2n).

Chapter 6 presents a saisfiability formulation and an integer linear programming (ILP)

formulation of the decisiveness problem, along with some experimental results using these

formulations. We also show that the ILP approach can be used to obtain subsets of taxa for which

the given data is decisive.

In Chapter 7 which is the final chapter of this research we present concluding remarks and

suggest possible future works on this subject.
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CHAPTER 2. DECISIVENESS AND NO-RAINBOW COLORINGS OF

HYPERGRAPHS

2.1 Introduction

Constructing supertrees is the process of combining the information of many smaller

overlapping phylogenetic trees to make a single supertree which presents all the needed information

from the smaller trees. In this chapter we consider how much data from the set of phylogenetic

trees is needed or is sufficient to make a single supertree. In the other words we argue if a given set

of phylogenetic trees is decisive or not. We precisely define the Decisiveness Problem and present

earlier results on this problem. We also show the connection between the decisiveness problem and

the no-rainbow coloring problem in hypergraphs. The connection between the two problems helps

us to view the problem from different perspectives and design more efficient algorithms.

2.2 Preliminaries

Throughout the rest of this paper, X denotes a set of taxa, n denotes |X|, and, for any

positive integer q, [q] denotes the set {1, 2, . . . , q}.

2.2.1 Phylogenetic Trees

A phylogenetic X-tree (22; 25) is a tree T with leaf set X, where every internal vertex has

degree at least three. Fig 2.1 shows two distinct binary phylogenetic X-trees for

X = {1, 2, 3, 4, 5}(26). Biologists are often interested in rooted trees, where the root is considered

as the origin of species and edges are viewed as being directed away from the root, indicating

direction of evolution. Note, however, that most phylogeny construction methods produce

unrooted trees.
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Figure 2.1 Two binary phylogenetic X-trees for X = {1, 2, 3, 4, 5}. If we take
Y = {1, 2, 3, 4} then T |Y = 12|34 and T ′|Y = 13|24. (From (26).)

A split of taxon set X is a bipartition A|B of X such that A,B 6= ∅. Let T be a phylogenetic

X-tree. Each edge e in T defines a split σT (e) = A|B, where A and B are the subsets of X lying

in each component of T − e. Spl(T ) denotes the set {σe : e ∈ E(T )}. It is well-known that a

phylogenetic X-tree T is completely determined by Spl(T ) (22, Theorem 3.5.2). Two X-trees T

and T ′ are isomorphic if Spl(T ) = Spl(T ′).

Let T be a phylogenetic X-tree, and suppose Y ⊆ X. The restriction of T to Y , denoted by

T |Y , is the phylogenetic Y -tree where

Spl(T |Y ) = {A ∩ Y |B ∩ Y : A|B ∈ Spl(T ) and A ∩ Y,B ∩ Y 6= ∅}. Equivalently, T |Y is obtained

from the minimal subtree of T that connects Y by suppressing all vertices of degree two that are

not in Y .

2.2.2 Decisiveness

A taxon coverage pattern S for X is phylogenetically decisive if it satisfies the following

property: If T and T ′ are binary phylogenetic X-trees, with T |Y = T ′|Y for all Y ∈ S, then

T = T ′. In other words, for any binary phylogenetic X-tree T , the collection {T |Y : Y ∈ S}

uniquely determines T (up to isomorphism). The decisiveness problem is the problem of

determining whether a given coverage pattern is decisive.

Let QS denote the set of all quadruples from X that lie in at least one set in S. That is:

QS =
⋃
Y ∈S

(
X
4

)
. A collection S of subsets of X satisfies the four-way partition property (for X) if,
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for all partitions of X into four disjoint, nonempty sets A1, A2, A3, A4 (with

A1 ∪A2 ∪A3 ∪A4 = X) there exists ai ∈ Ai for i ∈ {1, 2, 3, 4} for which {a1, a2, a3, a4} ∈ QS .

Theorem 2.2.1. (26) A taxon coverage pattern S for X is phylogenetically decisive if and only if

S satisfies the four-way partition property for X.

Corollary 2.2.2. The decisiveness problem is in co-NP.

Proof. A certificate for non-decisiveness is a partition of X into four disjoint, nonempty sets

A1, A2, A3, A4, such that there is no quadruple {a1, a2, a3, a4} ∈ QS where ai ∈ Ai for each

i ∈ {1, 2, 3, 4}.

Note that Theorem 2.2.1 implies that a taxon coverage pattern S for X such that X ∈ S (that

is, one set in S contains all the taxa) is trivially decisive.

Theorem 2.2.3. (26) Let S be a taxon coverage pattern for X.

(i) If S is decisive, then for every set A ∈
(
X
3

)
, there exists a set Y ∈ S such that A ⊆ Y .

(ii) If
⋂
Y ∈S Y 6= ∅, then, S is decisive if and only if for every set A ∈

(
X
3

)
, there exists a set

Y ∈ S such that A ⊆ Y .

Part (ii) of Theorem 2.2.3 implies that decisiveness is polynomially solvable in the rooted case

(25).

2.3 Hypergraphs, No-Rainbow Colorings, and Decisiveness

2.3.1 Hypergraphs

A hypergraph H is a pair H = (X,E), where X is a set of elements called nodes or vertices,

and E is a set of non-empty subsets of X called hyperedges or edges (2; 3). Two nodes u, v ∈ V are

neighbors if {u, v} ⊆ e, for some e ∈ E. The degree of a node v, denoted d(v), is the number of

edges that contain v. A hypergraph H = (X,E) is r-uniform, for some integer r > 0, if each

hyperedge of H contains exactly r nodes.
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A chain in a hypergraph H = (X,E) is an alternating sequence v1, e1, v2, . . . , es, vs+1 of nodes

and edges of H such that: (1) v1, . . . , vs are all distinct nodes of H, (2) e1, . . . , es are all distinct

edges of H, and (3) {vj , vj+1} ∈ ej for j ∈ {1, . . . , s}. Two nodes u, v ∈ X are connected in H,

denoted u ≡ v, if there exists a chain in H that starts at u and ends at v. The relation u ≡ v is an

equivalence relation (2); the equivalence classes of this relation are called the connected components

of H. H is connected if it has only one connected component; otherwise H is disconnected.

2.3.2 No-Rainbow Colorings and Decisiveness

Let H = (X,E) be a hypergraph and r be a positive integer. An r-coloring of H is a mapping

c : X → [r]. For node v ∈ X, c(v) is the color of v. Throughout this paper, r-colorings are assumed

to be surjective; that is, for each i ∈ [r], there is at least one node v ∈ X such that c(v) = i. An

edge e ∈ E is a rainbow edge if, for each i ∈ [r], there is at least one v ∈ e such that c(v) = i. A

no-rainbow r-coloring of H is a surjective r-coloring of H such that H has no rainbow edge.

Given an r-uniform hypergraph H = (X,E), the no-rainbow r-coloring problem (r-NRC) asks

whether H has a no-rainbow r-coloring (5). r-NRC is clearly in NP, but it is unknown whether

the problem is NP-complete (5).

Let S be a taxon coverage pattern for X. We associate with S a hypergraph H(S) = (X,S),

and we associate with QS a 4-uniform hypergraph H(QS) = (X,QS). The next result states that

r-NRC is equivalent to the complement of the decisiveness problem.

Proposition 2.3.1. Let S be a taxon coverage pattern. The following statements are equivalent.

1. S is not decisive.

2. H(QS) admits a no-rainbow 4-coloring.

3. H(S) admits a no-rainbow 4-coloring.

Proof. (1) ⇔ (2): By Theorem 2.2.1, it suffices to show that S fails to satisfy the 4-way partition

property if and only if H(QS) has a no-rainbow 4-coloring. S does not satisfy the 4-way partition

property if and only if there exists a partition A1, A2, A3, A4 of X such that, for every q ∈ QS ,
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there is an i ∈ [4] such that Ai ∩ q = ∅. This holds if and only if the coloring c, where c(v) = i if

and only if v ∈ Ai, is a no-rainbow 4-coloring of H(QS).

(2) ⇔ (3): It is clear that if c is a no-rainbow 4-coloring of H(S), then c is a no-rainbow

4-coloring of H(QS). We now argue that if c is a no-rainbow 4-coloring of H(QS), then c is a

no-rainbow 4-coloring of H(S). Suppose, to the contrary, that there a rainbow edge Y ∈ S. Let q

be any 4-tuple {v1, v2, v3, v4} ⊆ Y such that c(vi) = i, for each i ∈ [4]. Then, q is a rainbow edge

in QS , a contradiction.

Theorem 2.3.2. The decisiveness problem is co-NP-complete.

Proof. In Corollary 2.2.2 we established that decisiveness is in co-NP. Completeness follows from

the fact that the no-rainbow 3-coloring problem is NP-complete (31).

Proposition 2.3.3. Let H = (X,E) be a hypergraph and r be a positive integer.

(i) If H has at least r connected components, then H admits a no-rainbow r-coloring.

(ii) If r = 2, then H admits a no-rainbow r-coloring if and only if H is disconnected.

Proof. (i) Suppose the connected components of H are C1, . . . , Cq, where q ≥ r. For each

i ∈ {1, . . . , r − 1}, assign color i to all nodes in Ci. For i = {r, . . . , q}, assign color r to all nodes in

Ci. Thus, no edge is rainbow-colored.

(ii) By part (i), if H is disconnected, it admits a no-rainbow 2-coloring. To prove the other

direction, assume, for contradiction that H admits a no-rainbow 2-coloring but it is connected.

Pick any two nodes u and v such that c(u) = 1 and c(v) = 2. Since H is connected, there is a

(u, v)-chain in H. But this chain must contain an edge with nodes of two different colors; i.e., a

rainbow edge.

Part (ii) of Proposition 2.3.3 implies the following.

Corollary 2.3.4. 2-NRC ∈ P .
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Lemma 2.3.5. Let H = (X,E) be an r-uniform hypergraph. Suppose that there exists a subset A

of X such that 2 ≤ |A| ≤ r − 1 and A 6⊆ e for any e ∈ E. Then, H has a no-rainbow r-coloring.

Proof. Let c be the coloring where each of the nodes in A is assigned a distinct color from the set

[|A|] and the remaining nodes are assigned colors from the set {|A|+ 1, . . . , r}. Then, c is a

no-rainbow r-coloring of H.
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CHAPTER 3. BOUNDS FOR FINDING A NO-RAINBOW COLORING

3.1 Introduction

Assume we have a hypergraph H = (X,E) with n nodes and we want to use exactly r colors

to color the nodes in H, while avoiding a rainbow coloring. When we have only a few number of

hyperedges it is easier to avoid having a rainbow coloring since it is easier to find some nodes

which never appear in the same hyperedge. Also if we have a node which does not participate in

sufficient number of hyperedges, it is easier to find some nodes which never appear together in a

hyperedge. Both of these observations lead to lower bounds for the no-rainbow colroing problem.

In this chapter we present two lower bounds for the number of hyperedges in a given hypergraph

H and for degree of each node. Both lower bounds are tight and we prove any hypergraph with

fewer number of edges or with a node with smaller degree as mentioned lower bound has a

no-rainbow coloring.

3.2 Lower bounds

The next result captures the intuition that a taxon coverage pattern S for X is unlikely to be

decisive if it is not dense enough (i.e., if there is not enough overlap among the sets in S) or if

there is a taxon x ∈ X that is included in few sets in S. Let us define the degree of a taxon x ∈ X

in a coverage pattern S, denoted dS(x), as the degree of node x in H(QS).

Theorem 3.2.1. Let S be a taxon coverage pattern for X and let n = |X|, n ≥ 4. Then, S is not

decisive if either

(i) |QS | <
(
n−1
3

)
or

(ii) minx∈X dS(x) <
(
n−2
2

)
.
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v1

v2
v3

v4

e1
e2

e3

Figure 3.1 Example of non-existence of no-rainbow 3-coloring. If there were less number
of edges or a node with any degree less than 2, then we could find a no-rainbow
3-coloring

Conditions (i) and (ii) do not suffice to guarantee non-decisiveness. Nevertheless, the bounds are

tight. That is, there exist decisive taxon coverage patterns S for X such that either |QS | =
(
n−1
3

)
or minx∈X dS(x) =

(
n−2
2

)
.

By Proposition 2.3.1(ii), Theorem 3.2.1 is the special case of the following result for r = 4.

Theorem 3.2.2. Let H = (X,E) be an n-node r-uniform hypergraph with n ≥ r ≥ 1. Then H

admits a no-rainbow r-coloring if either

(i) |E| <
(
n−1
r−1
)
or

(ii) minv∈X d(v) <
(
n−2
r−2
)
.

Conditions (i) and (ii) are not sufficient to guarantee no-rainbow r-colorability. Nevertheless, the

bounds are tight. That is, there exist n-node r-uniform hypergraphs H = (X,E) where either

|E| =
(
n−1
r−1
)
or minv∈X d(v) <

(
n−2
r−2
)
such that every r-coloring of H has a rainbow edge.

Fig. 3.1 figure shows a 3-uniform hypergraph H = (X,E) with 4 nodes and 3 hyperedges that

illustrates Theorem 3.2.2. Here |E| = 3 =
(
3
2

)
=
(
n−1
r−1
)
and minv∈X d(v) = 2 =

(
2
1

)
=
(
n−2
r−2
)
. We

can verify by inspection that H does not admit a no-rainbow 3-coloring. However, if we remove

any hyperedge or decrease the degree of any node, then every 3-coloring has a rainbow edge.

Proof of Theorem 3.2.2. Let us consider part (i) first.
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For the base cases, consider r = 1 or n = r. Then, H has at most one hyperedge. If

|E| < 1 =
(
n−1
r−1
)
, then H contains no hyperedges and H trivially admits a no-rainbow r-coloring.

If |E| = 1, then any coloring of H that uses all r colors contains a rainbow edge.

Let us assume that for any i and j with 1 ≤ i < n and 1 ≤ j ≤ r,
(
i−1
j

)
equals the minimum

number of hyperedges an i-node, j-uniform hypergraph H that does not admit a no-rainbow

r-coloring. We now prove the claim for i = n and j = r.

Fix an arbitrary node v ∈ X. Any coloring c of H falls into one of two mutually disjoint

classes, depending on whether

1. c(v) 6= c(u) for any u ∈ X \ {v} or

2. c(v) = c(u) for some u ∈ X \ {v}.

For the colorings in class 1, we need hyperedges that contain node v, since in the absence of

such hyperedges, any coloring is a no-rainbow coloring. Assume, without loss of generality, that

c(v) = r. The question reduces to finding the number of hyperedges in an (n− 1)-node

(r − 1)-uniform hypergraph (since v’s color, r, is unique). The minimum number of hyperedges

needed to avoid a no-rainbow (r − 1)-coloring for an (n− 1)-node hypergraph is
(
n−2
r−2
)
.

To find the minimum number of hyperedges needed to cover colorings of class 2, we ignore v,

since v is assigned a color that is used by other nodes as well. The number of hyperedges needed

for this class is
(
n−2
r−1
)
.

To obtain a lower bound, we add the lower obtained for the two disjoint classes of colorings.

Thus,
(
n−2
r−2
)

+
(
n−2
r−1
)

=
(
n−1
r−1
)
.

Now, consider part (ii). Pick an arbitrary node v ∈ X. Consider the class of colorings of H in

which c(v) 6= c(u) for any u ∈ X \ {v}. As seen in the proof of part (i), H must have at least
(
n−2
r−2
)

hyperedges that contain node v. The absence of any of these hyperedges leads to a no-rainbow

r-coloring.
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Algorithm 3.1: Constructing a minimum no no-rainbow r-coloring
1 ConstructMin(n, r)

Input: X = [n] and r colors
Output: Set E where E =

(
n−1
r−1
)
and H = (X,E) does not admit a no-rainbow coloring

2 E = ∅
3 if n < r then
4 E = ∅
5 end
6 else
7 if n = r then
8 E = E ∪ {{1, · · · , n}}
9 end

10 else
11 if r = 1 then
12 E = E ∪ {{1}}
13 end
14 else
15 E1 = ConstructMin(n− 1, r)
16 E2 = ConstructMin(n− 1, r − 1)
17 foreach e ∈ E2 do
18 e = e ∪ {n}
19 end
20 E = E1 ∪ E2

21 end
22 end
23 end
24 return E

3.3 Constructing a hypergraph with no no-rainbow coloring using minimum

number of hyperedges

In 3.2 we showed a lower bound for the number of hyperedges for hypergraphs with no

no-rainbow r-coloring. Here we use the same idea to construct a hypergraph with n nodes and(
n−1
r−1
)
hyperedges that does not admit a no-rainbow r-coloring for the given r.

Algorithm 3.1 shows how we can construct a set of hyperedges E, where |E| =
(
n−1
r−1
)
and

H = (X,E) , where X = {1, · · · , n} for which every surjective coloring has a rainbow edge.
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Theorem 3.3.1. Algorithm 3.1 constructs a set E where:

1. |E| =
(
n−1
r−1
)

2. H = (X,E) does not admit any no-rainbow r-coloring.

Proof. First we prove 1. The proof is by induction on n and r. When r = 1, the algorithm returns

E = {{1}}. Since |E| =
(
n−1
r−1
)

=
(
n−1
0

)
= 1 the algorithm gives the correct answer. Also when

n = r we have E = {{1, · · · , n}} and since |E| =
(
n−1
r−1
)

= 1 the algorithm gives the correct answer.

Let us assume for any hypergraph with i nodes where r ≤ i < n and j colors where 1 ≤ j ≤ r the

algorithm works correctly. Now we want to show the algorithm gives the correct answer for n

nodes and r colors. Based on hypothesis |E1| =
(
n−2
r−1
)
and E2 =

(
n−2
r−2
)
. Since E = E1 ∪ E2, we

know |E| =
(
n−2
r−1
)

+
(
n−2
r−2
)

=
(
n−1
r−1
)
and so the statement is proved.

The proof of part 2 is easy since we followed the logic we used in the Theorem 3.2.1 in our

construction. The base case is obvious for the cases n = r and r = 1 since in these cases any edge

is a rainbow. We assume for any hypergraph with i nodes where r ≤ i < n and j colors where

1 ≤ j ≤ r the algorithm finds E where there is no no-rainbow r-coloring. Now we want to prove

the algorithm is correct when there are n nodes and r colors. Following the proof of Theorem 3.2.1

we consider two sets of hyperedges; the ones which cover node n and the ones which does not

cover n. The hyperedges that cover n need to have r − 1 other nodes from the remaining n− 1

nodes, which can be found by ConstructMin(n− 1, r− 1) and adding n to each of these sets since

we know they definitely cover n. The hyperedges that does not cover n must have r nodes from

n− 1 nodes since n is not part of our coverage. We can ignore n and find these edges by

ConstructMin(n− 1, r). The union of these two sets gives us E.

Corollary 3.3.2. Algorithm 3.1 constructs a minimum size hyperedge set E for H such that there

does not exist any no-rainbow coloring for H. It takes polynomial time to generate each set.

Proof. By Theorem 3.2.1 any hypergraph with |E| <
(
n−1
r−1
)
has a no-rainbow coloring. In Theorem

3.3.1 we showed there is no no-rainbow coloring H = (X,E) with the constructed E where
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|E| =
(
n−1
r−1
)
. So we can claim the suggested E is a minimum size set of hyperedges such that

H = (X,E) does not admit a no-rainbow coloring.

Observe that the base case of Algorithm 3.1 when r = 1 we construct an edge with node 1

while any edge with any node results in a graph which does not have any no-rainbow r-coloring.

By changing this edge we may get other Es which satisfies our conditions. Thus the set of

hyperedges E s.t |E| =
(
n−1
r−1
)
and H = (X,E) does not admit a no-rainbow r-coloring is not

unique.

Theorem 3.3.3. We can generate all the set E for H = (X,E) such that |E| =
(
n−1
r−1
)
and H does

not have any no-rainbow r-coloring.

Proof. We can change the base case of Algorithm 3.1 by applying a for loop to generate all the

possible edges where r = 1.

Example 3.3.4. For a hypergraph H with n = 5 nodes and r = 3 colors if there are less than(
4
2

)
= 6 3-uniform hyperedges such that there exists a no-rainbow coloring for H.

We apply Algorithm 3.1 to construct E. Since n 6= r or r 6= 1, the algorithm calls itself to

construct E1 =ConstructMin(4, 3) and E2 =ConstructMin(4, 2) and add 5 to each set of E2.

To construct E1 we need to call ConstructMin(3, 3) which is equal to {{1, 2, 3}} and

ConstructMin(3, 2) and add the element 4 to each set of the latter one, so we have:

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}

For E2 we need to call ConstructMin(3, 2) and ConstructMin(3, 1) and add 4 to each set in

the latter one, so we have: {{1, 2, 5}, {1, 3, 5}, {1, 4, 5}}. Finally we have

E = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 5}, {1, 3, 5}, {1, 4, 5}}
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CHAPTER 4. EXACT AND FIXED-PARAMETER TRACTABLE

ALGORITHMS

4.1 Abstract

In this chapter we present an exact algorithm and one fixed-parameter tractable algorithm to

solve no-rainbow r-coloring problem. The exact algorithm suggested in 4.2.1 uses the idea of fixing

a subset of nodes with one color and continuing the process for the uncolored nodes. In section 4.3

we suggest a fixed-parameter tractable algorithm for the decisiveness problem. A reduction rule

for the decisiveness problem is a rule that replaces an instance S of the problem by a smaller

instance S̃ such that S is decisive if and only if S̃ is.

4.2 Introduction

The naïve way to use Theorem 2.2.1 to test whether a coverage pattern S is decisive is to

enumerate all partitions of X into four non-empty sets A1, A2, A3, A4 and verify that there is a set

Y ∈ S that intersects each Ai. Equivalently, by Proposition 2.3.1, we can enumerate all surjective

colorings of H(S) and check if each of these colorings yields a rainbow edge. In either approach,

the number of options to consider is given by a Stirling number of the second kind, namely{
n
4

}
∼ 4n

4! (9). The next result is a substantial improvement over the naïve approach.

Theorem 4.2.1. Let S be a taxon coverage pattern for a taxon set X. Then, there is an

algorithm that, in O∗(2.8n) time1 determines whether or not S is decisive.

We prove Theorem 4.2.1 by showing that there exists an algorithm that, given a 4-uniform

hypergraph H = (X,E), determines if H has a no-rainbow 4-coloring in time O∗(2.8n). Before

proving this, we consider the problem of determining whether a 3-uniform hypergraph has a
1The O∗-notation is a variant of O-notation that ignores polynomial factors (8).
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no-rainbow 3- coloring. In addition to serving as an introduction to the ideas behind the

no-rainbow 4-coloring algorithm, the no-rainbow 3- coloring algorithm is needed in the FPT

algorithm for decisiveness described in Section 4.3.

4.2.1 No-Rainbow 3-Colorings

We prove the following.

Lemma 4.2.2. There exists an algorithm that, given a 3-uniform hypergraph H = (X,E)

determines if H has a no-rainbow 3-coloring in time O∗(1.7n).

Proof. We claim that algorithm Find3NRC (Algorithm 4.1) solves 3-NRC in O∗(1.89n) time.

Find3NRC relies on the observation that if H has a no-rainbow 3-coloring c, then there must exist a

subset A ⊆ X where |A| ≤ bn3 c, such that all nodes in A have the same color, which is different

from the colors used for X \A. Find3NRC tries all possible choices of A and, without loss of

generality, assigns c(v) = 1, for all v ∈ A. We are now left with the problem of determining

whether we can assign colors 2 and 3 to the nodes in X \ (A ∪B) to obtain a no-rainbow

3-coloring for H.

Let c be the current coloring of H. For each e ∈ E and each i ∈ [3], mc
e(i) denotes the number

of nodes v ∈ e such that c(v) = i. Consider the situation after Find3NRC assigns colors 1 to the

nodes in A. There are two cases, both of which can be handled in polynomial time.

1. There is no e ∈ E such that mc
e(1) = 1. Then, if we partition the nodes of X \A, arbitrarily

into subsets B and C and assign c(v) = 2 for each v ∈ B and c(v) = 4 for each v ∈ C, we

obtain a no-rainbow 3-coloring of H.

2. There exists e ∈ E such that mc
e(1) = 1. Let e be any such edge. Then e must contain

exactly two uncolored nodes, x and y. To avoid e becoming a rainbow edge, we must set

c(x) = c(y) 6= 1. Without loss of generality, make c(x) = c(y) = 2. Next, as long as there

exists any hyperedge e such that mc
e(i) = 1 for each i ∈ [2], the (unique) uncolored node x in



18

e must be assigned c(x) = 2, because setting c(x) = 3 would make e a rainbow hyperedge.

Once no such hyperedges remain, we have two possibilities:

(a) X does not contain uncolored nodes. Then, there does not exist a no-rainbow

3-coloring, given the current choice of A.

(b) X contains uncolored nodes. Then, there is no e ∈ E such that mc
e(i) = 1 for each

i ∈ [2]. Thus, if we set c(u) = 3 for each uncolored node u, we obtain a no-rainbow

3-coloring for H.

The total number of sets A considered throughout the execution of FindNRC is at most∑bn
3
c

i=1

(
n
i

)
= O(2h(1/3)n), where h(δ) = −δ log2(δ)− (1− δ) log2(1− δ) is the binary entropy

function (20). Thus, the number of sets considered is O(1.89n). The time spent per set A is

polynomial in n; hence, the total running time of Find3NRC is O∗(1.89n).

4.2.2 No-Rainbow 4-colorings

The proof of Theorem 4.2.1 relies on the following result.

Lemma 4.2.3. There exists an algorithm that, given a 4-uniform hypergraph H = (X,E),

determines if H has a no-rainbow 4-coloring in time O∗(2.8n).

Proof. We claim that algorithm FindNRC (Algorithm 4.2) solves 4-NRC in O∗(2.8n) time. FindNRC

relies on the observation that if H has a no-rainbow 4-coloring c, then (1) there must exist a subset

A ⊆ X where |A| ≤ bn4 c, such that all nodes in A have the same color, which is different from the

colors used for X \A, and (ii) there must exist a subset B ⊆ X \A, where |B| ≤ bn−|A|3 c, such that

all nodes in B have the same color, which is different from the colors used for the nodes in X \B.

FindNRC tries all possible choices of A and B and, without loss of generality, assigns c(v) = 1, for

all v ∈ A and c(v) = 2, for all v ∈ B. We are now left with the problem of determining whether we

can assign colors 3 and 4 to the nodes in X \ (A ∪B) to obtain a no-rainbow 4-coloring for H.
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Let c be the current coloring of H. For each e ∈ E and each i ∈ [4], mc
e(i) denotes the number

of nodes v ∈ e such that c(v) = i. Consider the situation after FindNRC assigns colors 1 and 2 to

the nodes in A and B. There are two cases, both of which can be handled in polynomial time.

1. There is no e ∈ E, such that, for each i ∈ [2], mc
e = 1. Then, if we partition the nodes of

X \ (A ∪B), arbitrarily into subsets C and D and assign c(v) = 3 for each v ∈ C and

c(v) = 4 for each v ∈ D, we obtain a no-rainbow 4-coloring of H.

2. There exists e ∈ E, such that, for each i ∈ [2], mc
e = 1. Let e be any such edge. Then e must

exactly contain two uncolored nodes, x and y. To avoid e becoming a rainbow edge, we must

set c(x) = c(y) 6∈ [2]. Without loss of generality, make c(x) = c(y) = 3. Next, as long as

there exists any hyperedge e such that mc
e(i) = 1 for each i ∈ [3], the (unique) uncolored

node x in e must be assigned c(x) = 3, because setting c(x) = 4 would make e a rainbow

hyperedge. Once no such hyperedges remain, we have two possibilities:

(a) X does not contain uncolored nodes. Then, there does not exist a no-rainbow

4-coloring, given the current choice of A and B.

(b) X contains uncolored nodes. Then, there is no e ∈ E such that mc
e(i) = 1 for each

i ∈ [3]. Thus, if we set c(u) = 4 for each uncolored node u, we obtain a no-rainbow

4-coloring for H.

The total number of pairs (A,B) considered throughout the execution of FindNRC is at most∑bn
4
c

i=1

(
n
i

)∑bn−i
3
c

j=1

(
n−i
j

)
. We have estimated this sum numerically to be O(2.8n). The time spent

per pair (A,B) is polynomial in n; hence, the total running time of FindNRC is O∗(2.8n).

Proof of Theorem 4.2.1. Given S, we construct the hypergraph H(QS), which takes time

polynomial in n, and then run FindNRC(H(QS)), which, by Lemma 4.2.3, takes O∗(2.8n) time. If

the algorithm returns a no-rainbow 4-coloring c of H(QS), then, by Proposition 2.3.1, S is not

decisive; if FindNRC(H(QS)) returns fail, then S is decisive.
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4.3 Reduction Rules and Fixed Parameter Tractability

4.3.1 Reduction Rules

A reduction rule for the decisiveness problem is a rule that replaces an instance S of the

problem by a smaller instance S̃ such that S is decisive if and only if S̃ is. Here we present

reduction rules that can reduce an instance of the decisiveness problem into a one whose size

depends only on k. This size reduction is especially significant for taxon coverage patterns where

the number of loci, k, is small relative to the number of taxa. Such inputs are not uncommon in

the literature — examples of such data sets are studied in Section 6.3.

We need to introduce some definitions and notation. Let H = (X,E) be a hypergraph where

X = {x1, x2, . . . , xn} and E = {e1, e2, . . . , ek}. The incidence matrix of H is the n× k binary

matrix where MH [i, j] = 1 if xi ∈ ej and MH [i, j] = 0 otherwise. Two rows in MH are copies if the

rows are identical when viewed as 0-1 strings; otherwise, they are distinct.

Let M̃H denote the matrix obtained from MH by striking out duplicate rows, so that M̃H

retains only one copy of each row in MH . Let ñ denote the number of rows of M̃H . Then, ñ ≤ 2k.

M̃ is the incidence matrix of a hypergraph H̃ = (X̃, Ẽ), where X̃ ⊆ X, and each v ∈ X̃

corresponds to a distinct row of MH . For each v ∈ X, X(v) ⊆ X consists of all nodes u ∈ X that

correspond to copies of the row of MH corresponding to v.

Given two binary strings s1 and s2 of length k, s1 & s2 denotes the bitwise and of s1 and s2; 0

denotes the all-zeroes string of length k.

The next result is a direct consequence of Lemma 2.3.5.

Proposition 4.3.1. If M̃H has two rows r1 and r2 such that r1 & r2 = 0 or three rows r1, r2 and

r3 such that r1 & r2 & r3 = 0, then H̃ and H admit no-rainbow 4-colorings.

Corollary 4.3.2. If M̃H has more than 2k−1 rows, where k is the number of columns, then H

admits a no-rainbow 4-coloring.
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Proof. Suppose ñ ≥ 2k−1. Then, there are at least two rows r1 and r2 in M̃H that are

complements of each other (that is, r2 is is obtained by negating each bit in r1) and, thus,

r1 & r2 = 0. The claim now follows from Proposition 4.3.1.

4.3.2 A Fixed-Parameter Algorithm for Decisiveness

We first present an auxiliary result.

Theorem 4.3.3. Suppose n ≥ ñ+ 2. H admits a no-rainbow 4-coloring if and only if H̃ admits a

no-rainbow r-coloring for some r ∈ {2, 3, 4}(17).

Proof. (If ) Suppose H̃ = (X̃, Ẽ) admits a no-rainbow r-coloring c̃ for some r ∈ {2, 3, 4}. Let c be

the coloring for H obtained by setting c(u) = c̃(v), for each v ∈ X̃ and each u ∈ X(v). If c̃ is a

no-rainbow 4-coloring of H̃, then c is also a no-rainbow 4-coloring of H, and we are done.

Suppose c̃ is a no-rainbow 3-coloring. Since n ≥ ñ+ 2, there must exist v ∈ X̃ such that

|X(v)| ≥ 2. We choose one node u ∈ X(v) \ {v}, and set c(u) = 4, making c a no-rainbow

4-coloring for H.

Suppose c̃ is a no-rainbow 2-coloring. If there exists v ∈ X̃ \ {v} such that |X(v)| ≥ 3, we pick

any u,w ∈ X̃ \ {v}, and set c(u) = 3 and c(w) = 4. If there is no v ∈ X̃ such that |X(v)| ≥ 3,

there must exist v1, v2 ∈ X̃ such that |X(vi)| ≥ 2 for i ∈ {1, 2}. For i ∈ {1, 2}, choose any

ui ∈ X(vi) \ {vi} and set c(ui) = i+ 2.

(Only if ) Suppose H = (X,E) has a no-rainbow 4-coloring c. We show that H̃ = (X̃, Ẽ)

admits a no-rainbow r-coloring for some r ∈ {2, 3, 4}.

Let c̃ be the coloring of H̃ where, for each v ∈ X̃, c̃(v) = c(u), for some arbitrarily chosen node

in u ∈ X(v). If c̃ is a 4-coloring of H̃, c̃ must be a no-rainbow 4-coloring of H̃, and we are done. If

c̃ is a no-rainbow r-coloring for some r ∈ {2, 3, 4}, we are also done. Suppose that, instead, for

some r ∈ {1, 2, 3}, c̃ is an r-coloring of H̃ with a rainbow edge. We argue that c̃ can be

transformed into a no-rainbow r-coloring of H̃ for some r ∈ {2, 3, 4}. There are three cases.

Case 1: c̃ is a 3-coloring of H̃ that has a rainbow edge. We can transform c̃ into a no-rainbow

4-coloring ĉ of H̃ as follows. Consider three nodes v1, v2, v3 ∈ X̃ that are all neighbors and have
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distinct colors. Since X̃ ⊆ X, v1, v2, v3 are neighbors in H as well. Since H admits a no-rainbow

4-coloring, there must exist a node v4 ∈ X \ {v1, v2, v3} such that c(v4) 6= c(vi), for i ∈ {1, 2, 3}.

Since v4 /∈ X̃ there must be a copy of v4 with a different color in X̃. If we insert v4 to X̃ and

remove its copy from X̃, then X̃ has 4 colors and the new coloring is a no-rainbow 4-coloring.

Case 2: c̃ is a 2-coloring of H̃, that has a rainbow edge. We can transform c̃ into a no-rainbow

r-coloring ĉ of H̃, for r ∈ {3, 4} as follows. Consider any two neighbor nodes v1, v2 ∈ X̃ such that

v1 and v2 have distinct colors. Note that v1 and v2 must be neighbors in H as well. Since H

admits no-rainbow 4-coloring, there must be at least one other node v3 ∈ X such that v3 6= vi, for

i ∈ {1, 2} and c(v3) 6= c(vi), for i ∈ {1, 2}. Since v3 /∈ X̃ there must be a copy of v3 with another

color in H̃. If we insert v3 with color c(v3) to H̃ and remove its copy from H̃, then H̃ has 3 colors.

If the new coloring is a no-rainbow 3-coloring we are done, otherwise the new coloring is a

3-coloring with a rainbow edge and we are in Case 1.

Case 3: c̃ is a 1-coloring of H̃. Then, we can transform c̃ into a no-rainbow r-coloring ĉ of H̃,

for r ∈ {2, 3, 4} as follows. Since H admits no-rainbow 4-coloring, we can replace one of the nodes

of H̃ with a copy of that in H of different color. The result is a 2-coloring for H̃. If the result is a

no-rainbow 2-coloring we are done. Otherwise, we have a 2-coloring of H̃ with a rainbow edge and

we can use Case 2 to find a no-rainbow r-coloring for r ∈ {3, 4}.

Theorem 4.3.4. Decisiveness is fixed-parameter tractable in k.

Proof. Let S be the input coverage pattern. First, in O∗(2k) time, we construct H̃(S). By

Theorem 2.2.3, we need to test if H̃(S) admits a no-rainbow r-coloring for any r ∈ {2, 3, 4}. If the

answer is “yes” for any such r, then S is not decisive; otherwise S is decisive. By Corollary 2.3.4,

the test for r = 2 takes polynomial time. We perform the steps for r = 3 and r = 4 using the

algorithm of Section ??. The total time is O∗(2.8ñ), which is O∗(2.82k).
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Algorithm 4.1: No-rainbow 3-coloring of H
1 Find3NRC(H)

Input: A 3-uniform hypergraph H = (X,E) such that |X| ≥ 3.
Output: A no-rainbow 3-coloring of H, if one exists; otherwise, fail.

2 for i = 1 to bn3 c do
3 foreach v ∈ X do c(v) = uncolored
4 foreach A ⊆ X such that |A| = i do
5 foreach v ∈ A do c(v) = 1

6 if there is no e ∈ E such that mc
e(1) = 1 then

7 Arbitrarily partition X \A into nonempty sets B,C
8 foreach v ∈ B do c(v) = 2

9 foreach v ∈ C do c(v) = 3

10 return c

11 end
12 else
13 Choose any e ∈ E such that mc

e(1) = 1

14 foreach uncolored node x ∈ e do
15 c(x) = 2

16 end
17 while there exists e ∈ E s.t. mc

e(i) = 1 for each i ∈ [2] do
18 Pick any e ∈ E s.t. mc

e(i) = 1 for each i ∈ [2]

19 Let x be the unique uncolored node in e
20 c(x) = 2

21 end
22 if X contains no uncolored node then
23 return fail
24 end
25 else
26 foreach uncolored node u ∈ X do
27 c(u) = 3

28 end
29 return c

30 end
31 end
32 end
33 end
34 return fail
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Algorithm 4.2: No-rainbow 4-coloring of H
1 FindNRC(H)

Input: A 4-uniform hypergraph H = (X,E) such that |X| ≥ 4.
Output: A no-rainbow 4-coloring of H, if one exists; otherwise, fail.

2 for i = 1 to bn4 c do
3 foreach v ∈ X do c(v) = uncolored
4 foreach A ⊆ X such that |A| = i do
5 foreach v ∈ A do c(v) = 1

6 for j = 1 to bn−i3 c do
7 foreach B ⊆ X \A such that |B| = j do
8 foreach v ∈ B do c(v) = 2

9 if there is no e ∈ E such that, for each i ∈ [2], mc
e(i) = 1 then

10 Arbitrarily partition X \ (A ∪B) into nonempty sets C,D
11 foreach v ∈ C do c(v) = 3

12 foreach v ∈ D do c(v) = 4

13 return c

14 end
15 else
16 Choose any e ∈ E such that mc

e(i) = 1 for each i ∈ [2]

17 foreach uncolored node x ∈ e do c(x) = 3

18 while there exists e ∈ E s.t. mc
e(i) = 1 for each i ∈ [3] do

19 Pick any e ∈ E s.t. mc
e(i) = 1 for each i ∈ [3]

20 Let x be the unique uncolored node in e
21 c(x) = 3

22 end
23 if X contains no uncolored node then return fail
24 else
25 foreach uncolored node u ∈ X do
26 c(u) = 4

27 end
28 return c

29 end
30 end
31 end
32 end
33 end
34 end
35 return fail
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CHAPTER 5. LOCAL SEARCH

5.1 Local Search

Let us assume we are given an r-uniform hypergraph H = (X,E) where |X| = n. Our goal is

to find a no-rainbow r-coloring for H. In this chapter, we use local search in combination with

some heuristic methods to find out if a no-rainbow coloring exists for H. The idea of applying

local search to this problem comes from Schöning, Moser and Scheder (20) who applied

randomized algorithms and local search methods to solve K − SAT problem.

Local search is a heuristic method for solving algorithmic problems. The idea of local search is

to start with a candidate solution and use some rules to find a better solution. The candidate

solution can be picked randomly, or we can choose one we think is within a reasonable distance

from an optimum solution. We are not likely to find the best solution at the first step, so we need

to find a way to do a local search to find a better coloring in the neighborhood. For example, we

find a rainbow edge and try to make it no-rainbow. Although our move may negatively affect the

output of the other hyperedges and change their status from no-rainbow to rainbow, we hope that

applying the local search makes the current situation closer to a no-rainbow coloring.

In our problem, the solution candidate is an initial surjective coloring for the given hypergraph

H = (X,E).

If the initial candidate is a no-rainbow r-coloring, we are done, but if it is not a no-rainbow

coloring, we need to find a way to get closer to the desired solution, which is a no-rainbow

r-coloring.

How can we realize how close we are to a no-rainbow coloring? We can use different measures.

For example, we can find the number of rainbow hyperedges and reduce the number of rainbow
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hyperedges in each step. Here we use Hamming Distance as our measure. In our problem, the

Hamming distance between two colorings c and c′ equals the number of nodes x ∈ X such that

c(x) 6= c′(x). We denote Hamming distance between two colorings c and c′ by d(c, c′).

If c is a no-rainbow coloring, the region in which we are looking for a no-rainbow coloring is

the set of all colorings c′ within some specified Hamming distance from c; i.e.

Hamg(c) = {c̃|d(c̃, c) ≤ g}

which is called the Hamming Ball around the coloring c with radius g.

We shall consider deterministic and randomized algorithms. If there exists a no-rainbow

coloring in the given graph H, a deterministic algorithm will always find it and if there does not

exist any no-rainbow coloring, it gives a firm no as output.

If a randomized algorithm finds a no-rainbow coloring we can be sure that the coloring is

indeed a no-rainbow r-coloring. However, if the algorithm says no, there is a probability that the

algorithm failed to find an existing no-rainbow coloring. Let p be the probability that a

randomized algorithm finds the correct answer. Although p is a small number, we can boost the

probability of success by repeating the algorithm.

Lemma 5.1.1. Suppose we have a randomized algorithm with some small probability p of success.

Then O(1p log n) repetitions of the algorithm are sufficient so that we have probability greater than

or equal to 1− 1
n10 that at least one of the runs was successful.

Proof. We use the fact that 1− p ≥ e−p for any real number p. Now, suppose we repeat the

algorithm t times. The probability that all repetitions fail equals (1− p)t ≤ e−pt. If we plug in

t = 10
p lnn we get n−10. So, the probability that at least one of the repetitions succeeds is at least

1− n−10

It is clear that we prefer a deterministic algorithm to make sure our solution has no errors. Of

course, we cannot ignore the importance of speed in the algorithms and it is the reason a

randomized algorithm with a good running time can be useful.
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In sections 5.3, 5.5 and 5.7 we offer randomized algorithms, while in sections 5.4, 5.6 and 5.8

we offer deterministic algorithms.

5.2 Overview

We start section 5.3 by picking a random initial coloring and do a random walk to see if we

can find a no-rainbow coloring from the starting point. In each step we find a rainbow hyperedge

and change the color of one of its nodes. The result is a randomized algorithm that does not

guarantee finding a no-rainbow coloring in the case there exists one. The complexity for this

algorithm is better than naive algorithm, but worse than Algorithm 4.2.

In section 5.4 we improve our algorithm by using a better initial candidate. The suggested

initial candidate helps us to derive a deterministic algorithm that does not search the whole space.

The resulting algorithm is slower than the algorithm in section 5.3, but it has the advantage of

being deterministic.

In section 5.5, we suggest using more but smaller Hamming balls. Thus, we start our search

with t random initial candidates and do a local search with smaller Hamming balls for each of

them. The result is a randomized algorithm with better running time than the ones in sections 5.3

and 5.4.

In section 5.6 we combine the results of sections 5.4 and 5.5. We design a deterministic

algorithm that uses several initial candidates and smaller Hamming balls. In order to generate the

initial candidates we use covering codes. We also present an algorithm that freezes the color of

each node after changing it. The result is a deterministic algorithm with better complexity

compared to the previous sections.

In section 5.7 we apply the idea of freezing the color of one node in each step on the algorithm

in 5.3. The result is a randomized algorithm with a better complexity than the algorithms

mentioned in the other sections.
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Finally, in section 5.8 we combine the idea of using one non-random initial candidate, first

introduced in section 5.4, with the idea of freezing the color of one node in each step. The result is

a simple deterministic algorithm with the same complexity as the algorithm presented in 5.6.

5.3 Randomized Algorithm

The search space for the no-rainbow coloring problem with n nodes and r colors has size rn.

Thus an exhaustive search for a no-rainbow coloring takes Ω(rn).

Since we need to use all r colors, we can ignore the colorings that use r − 1 or fewer colors.

Then we can be more precise with search space size and say it is equal to
{
n
r

}
where{

n
r

}
= 1

r!Σ
r
i=0

(
r
i

)
(r − i)n is the Stirling number of the second kind. The search area is too large for

exhaustive search to be efficient.

In this section we present a straightforward algorithm that finds a no-rainbow coloring with

probability p. We can use lemma 5.1.1 to boost the success probability.

Now we show an algorithm that uses Schöning’s idea for K − SAT problem. In this algorithm,

we start with an initial coloring, and while the coloring is rainbow, we pick a random rainbow

hyperedge and randomly change the color of one of its r nodes. We repeat this process n times.

Algorithm 5.1: Randomized No-rainbow Coloring

1 Pick a random initial coloring c̃
2 while There is at least one rainbow hyperedge and have done this at most n times: do
3 Pick an arbitrary rainbow hyperedge
4 Change the color of one of the vertices to another color.
5 end

Consider some arbitrary no-rainbow coloring c, and let Ak be the event that the initial

assignment c̃ disagrees with c on exactly k vertices. Note that:

Pr[Ak] =

(
n

k

)
2k3−n
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The probability p that we succeed is at least the probability that in Step 2 we make a beeline

towards c (reducing Hamming distance by 1 in each step until we reach a no-rainbow coloring).

This means for the case of r = 3 we have:

p ≥ Σn
k=0

(
n

k

)
2k3−n

(
1

6

)k
= 3−nΣn

k=0

(
n

k

)(
1

3

)k
= 3−n

(
1 +

1

3

)n
=

(
4

9

)n
.

Putting this together with lemma 5.1.1 and considering the fact that each repetition runs in

polynomial time, the total computation time is: poly(n)× (94)n = O∗(2.25n).

For the case of r = 4 we have:

p ≥ Σn
k=0

(
n

k

)
3k4−n

(
1

12

)k
= 4−nΣn

k=0

(
n

k

)(
1

4

)k
= 4−n

(
1 +

1

4

)n
=

(
5

16

)n
.

Thus, the complexity of Algorithm 5.1 for r = 4 is poly(n)× (165 )n = O∗(3.2n).

More general, the complexity of Algorithm 5.1 for r is poly(n)× ( r2

r+1)n = O∗(( r2

r+1)n).

We improve this result in the next sections.

5.4 Deterministic Local Search

Here we start with a non-random solution candidate and suggest a better way to restrict the

search area and find a no-rainbow coloring if one exists.

Suppose our initial coloring candidate c̃ assigns r different colors to r different nodes and

assigns color 1 to the remaining n− r + 1 nodes.
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Figure 5.1 Shannon’s binary enthropy function h(δ)

Lemma 5.4.1. If there exists a no-rainbow coloring c for hypergraph H, there exists at least one

no-rainbow coloring c′ where d(c′, c̃) ≤ (r−1)n
r + ε.

Proof. If c is a no-rainbow surjective coloring, it uses all r colors. By the pigeonhole principle, one

of these colors is used at least n
r times. Assume this color is b. If b = 1, we are done. Otherwise,

we switch color 1 and b in c and we call the result c′. It is obvious that we are allowed to do this

because of symmetry, and that c′ is a no-rainbow coloring which satisfies d(c′, c̃) ≤ (r − 1)n/r + ε

where ε ≤ r
n .

We start with the solution candidate mentioned in Lemma 5.4.1. We call this coloring c̃. Let c

be a no-rainbow r-coloring. We show that the Hamming Distance between c and c̃ by g = δn

where δ denotes the maximum fraction of the nodes that have different color than c. In the case of

r = 3, δ = 2/3.

The number of colorings that differ from c in at most δn nodes, (i.e. d(c, c̃) ≤ δn) is∑δn
i=0

(
n
i

)
(r − 1)i. This number behaves asymptotically like 2h(δ)·n where

h(δ) = −δ log2(δ)− (1− δ) log2(1− δ) is Shannon’s binary entropy function (20). Figure 5.4 shows

the graph of h(δ).
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Algorithm 5.2: Deterministic Local Search Algorithm
1 localSearch(H, c̃, g)
2 if c̃ is a no-rainbow coloring then
3 return 1
4 end
5 Let e ∈ H be a hyperedge with rainbow color {c1, c2, c3}
6 for i = 1 to 3 do
7 Change the color of ci in c̃ to any other two colors and apply localSearch (H, c̃, g− 1)

8 if localSearch(H, c̃, g − 1) for any of two modified c̃s then
9 return 1

10 end
11 end

12 return 0

Algorithm 5.2 shows how local search works on the initial coloring to find a no-rainbow

coloring for r = 3.

If c̃ is not a no-rainbow coloring, there exists at least one rainbow hyperedge. The idea of the

localSearch algorithm is to find a rainbow hyperedge e and change the color of each of its 3

nodes to any of the other 2 colors. Changing the color of any of the nodes is guaranteed to make e

a no-rainbow hyperedge; however, it does not mean that any change we apply moves the coloring

toward the correct direction, since we may change the color of some node which has the correct

color or increase the number of rainbow edges.

We know for one of the six new colorings, d(c, c̃) decreases by 1. If there exists a no-rainbow

coloring, it is guaranteed to be found by this algorithm. The running time of algorithm 5.2 is

T (g) = 6T (g − 1) = O(6g) = O(6
2
3
n) = O(3.3n).

Applying the same algorithm to find a no-rainbow 4-coloring will result in a Hamming Ball

with radius g = 3
4n and so T (g) = 12T (g − 1) = O(12

3
4
n) = O(6.4n).

Algorithm 5.2 is worse than the naive algorithm. Nevertheless, as shown in the next sections

the idea of this procedure can be employed to find better algorithms.
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5.5 Random Initial Coloring

The algorithm presented in section 5.4 is deterministic, but the Hamming balls are big, and so

is the search region. We now show that it is possible to apply the same algorithm on several initial

colorings but using smaller Hamming balls. In this section we choose the initial candidates

randomly.

The idea shown in Algorithm 5.3 is to repeat the search for t times on Hamming balls with

radius g = δn to cover the whole search space.

Algorithm 5.3: Random Local Search Algorithm

1 for i = 1 to t do
2 Choose a random assignment c̃
3 if localSearch(H, c̃, g) then
4 return "There exists a no-rainbow coloring"
5 end
6 end
7 return "There is no no-rainbow coloring"

We want to find the optimal choices for t and g to cover the whole search space. We miss an

existing no-rainbow coloring when there is no no-rainbow coloring in the Hamming ball of any of

the t random initial colorings. We can compute this probability as follows:
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Pr(∀i ≤ t : d(Ci(H), c) > δn) =

t∏
i=1

Pr(d(Ci(H), c) > δn)

=

t∏
i=1

(1− Pr(d(Ci(H), c) ≤ δn))

=

t∏
i=1

(
1−

∑δn
j=i

(
n
j

)
2j

3n

)

≤

(
1−

∑δn
j=i

(
n
j

)
2j

3n

)t

≤ e−t.
∑
j=iδn(nj)2j

3n , since 1− x ≤ e−x

= e−c, when t =
c · 3n∑δn
j=i

(
n
j

)
2j

The following lemma shows the result of this computation.

Lemma 5.5.1. If we apply the algorithm t = c·3n∑δn
j=i (

n
j)2j

times, the probability that we miss an

existing no-rainbow coloring is ≤ e−c when c is a constant.

The following proposition helps us to find δ (20).

Proposition 5.5.2. For 0 ≤ δ ≤ 1/2 and n ∈ N it holds that(
n

δn

)
≥ 1√

8nδ(1− δ)

(
1

1− δ

)(1−δ)n

We know t = c·3n∑δn
j=i (

n
j)2j
≤ c·3n

( nδn)2δn
Using Proposition 5.5.2 and setting δ = 1/3 for r = 3 we

have:

t ≤ c · 3n(
n
δn

)
2δn
≤ c · 3n2n

3n2n/3
≤ c · 2n/3

Thus, the complexity of the algorithm with random initial colorings for r = 3 is

O(t · 6δn) = O(c · 2n/3 · 6n/3) = O∗(12n/3) = O∗(2.29n)

Considering Lemmas 5.5.2 and 5.5.1, when r = 4, we choose δ = 1/4, which results in:

O(t · 12δn) = O(t · 12δn) = O((31/2 · 121/4)n) = O(3.22n).
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In general, we can take δ = 1
r , and then we have(

n

n/r

)
≥ 1√

8n
rn/r

(
r

r − 1

)(r−1)n/r
=

rn√
8n(r − 1)(r−1)n/r

Theorem 5.5.3. The probabilistic algorithm 5.3 for no-rainbow 3-coloring has (worst-case)

running time of O∗(2.29n). The probabilistic algorithm 5.3 for no-rainbow 4-coloring has

(worst-case) running time of O∗(3.22n).

Generalizing this for no-rainbow r-coloring (r ≥ 3) this means: for every r ≥ 3 there is a

probabilistic algorithm for no-rainbow r-coloring with running time O∗((r1/r · (r − 1)
r−1
r )n).

5.6 Covering Codes

As noted earlier, we prefer a deterministic algorithm over a randomized algorithm. Thus, in

this section we present a way to generate the initial coloring candidates instead of working with t

random initial candidates.

Recall that Hamming radius is the maximum fraction of the number of nodes whose colors are

different than their color in c, and Hamg(c) = {β ∈ [r]n|d(β, c) ≤ g} where [r]n is the set of all

colorings. We define Covering Codes as follows:

Definition: A set of words C = {c1, c2, · · · ct} over the set of colors [r] of length n is called a

covering code with Hamming radius g, if

n⋃
i=1

Hamg(ci) = [r]n

In addition, if the Hamming balls are pairwise disjoint, C is called a perfect code.

We know |Hamg(c)| =
∑g

i=0(r − 1)i
(
n
i

)
. Unfortunately, there are no perfect codes with the

parameters needed here. So we restrict ourselves to covering codes coming as close as possible to

the ideal number of code words expressed by the so called Hamming bound:

rn

Hamg(c)
=

rn∑p
i=0(r − 1)i

(
n
i

)
The Hamming bound is obtained when the Hamming balls are all disjoint and cover the entire

search space [r]n.
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The following lemma is due to Moser and Scheder(16).

Lemma 5.6.1. For every ε > 0 there is a constant n0 and a covering code C0 ∈ {1, 2, · · · , r}n0,

with Hamming radius n0
r , whose size is close to that of a perfect code, namely

|C0| ≤
n20 · rn0∑n0

r
i=0(r − 1)i

(
n0

i

) ≤ (
r

(r − 1)1/r+h(1/r)
+ ε)n0 = ((r − 1) + ε)n0− 2n0

r

.

Proof. The proof is similar to that in the previous section. Let ε and δ be given. We randomly

choose |C0| code words and then compute the probability that there is a coloring that does not fall

into any of the |C0| Hamming balls:

Pr(∃c∀i ≤ |C0| : d(Ci(H), c) > δn) ≤
∑
c

|C0|∏
i=1

P (d(Ci(H), c) > δn)

=
∑
c

|C0|∏
i=1

(1− P (d(Ci(H), c) ≤ δn))

= rn ·

(∑δn
j=0

(
n
j

)
(r − 1)j

rn

)|C0|

≤ rn · e−|C0|·
∑δn
j=0 (nj)(r−1)j

rn since 1− x ≤ e−x

= (
r

en
)n if we set |C0| =

n2 · rn∑δn
j=0

(
n
j

)
(r − 1)j

It then holds for some n0:

|C0| =
n20 · rn0∑δn0

j=0

(
n0

j

)
(r − 1)j

(5.1)

≤
(

r

(r − 1)1/r+h(1/r)
+ ε

)n0

(5.2)

= (r + ε)n0− 2n0
r (5.3)

We use a probabilistic existence proof to show a code C0 exists. Since the probabilistic

estimation above for adequate size of |C0| converges toward 0 when n→∞, it follows that such

codes satisfying the covering condition must exist. There exists such a code already for a concrete

length n0 which depends on ε and δ.
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The existence of code C0 is proven and it can be found in polynomial time (20). For an

arbitrary n we can obtain the covering code C ⊆ {1, 2, 3}n with Hamming radius δn and

|C| ≤ (21/3 + ε)n by putting code words from C0 together. We create a set of code words such that

each code words is a concatenation of code words in C0.

C = {w1w2w3 · · ·wn/n0}

which results in

|C| ≤ ((21/3 + ε)n0)n/n0

The fact is that C itself is a covering code. We can partition any arbitrary word w of length n

into n
n0

subwords each of length n0. Each of these subwords is within Hamming distance δn0 from

a suitable codeword in C0. So each word w of length n is within Hamming distance n
n0
δn0 = δn

from a suitable codeword in C.

We use the idea of covering code to modify our randomized algorithm in the previous section

and design a deterministic algorithm for no-rainbow coloring problem. We also modify the

localSearch algorithm that we used before to find a more efficient algorithm.

We modify the procedure to freeze the color of each node after changing its color. After we

freeze the color of a node we are never allowed to change the color again. Like the previous

algorithms, we start with an initial surjective coloring c̃. We pick r non-neighbor vertices with r

different colors and freeze the color of these nodes. In each iteration we find a rainbow hyperedge

and change the color of one of its unfrozen nodes to make it a no-rainbow hyperedge. Doing this

makes some hyperedges useless since they have all r nodes frozen. Also we will have some

hyperedges with a reduced number of unfrozen nodes. We claim that in each iteration if the

coloring is not a no-rainbow coloring or there doesn’t exist any frozen rainbow hyperedge, then

there exists a rainbow hyperedge with exactly r − 1 frozen vertices. As a result, we need to worry

about the color of the only node whose color is not frozen yet. In order to avoid having a rainbow

hyperedge, we only need to assign one of the existing r − 1 colors to the unfrozen node. We can
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view the progress as a tree where each node in our tree stands for a state of our colored graph, and

each node has r − 1 branches. If we find a frozen rainbow hyperedge at any step, we reject it, stop

investigating that branch, and move forward with the other branches. We show how to apply

localSearch&Freeze for in Algorithm 5.4.

Algorithm 5.4: generalLocalSearch&Freeze(H, c̃, g)

1 if c̃ is a no-rainbow coloring then
2 return 1
3 end
4 if There exists a rainbow edge then
5 return 0
6 end
7 if All rainbow edges have at most r − 2 frozen nodes then
8 assign color c1 to all the unfrozen nodes
9 return 1

10 end
11 Let e ∈ H be a hyperedge with rainbow color {c1, c2, · · · , cr} where there is exactly one

vertex v whose color is not frozen
12 Change v’s color to any other r − 1 colors, change v’s status to fixed and apply

localSearch(H, c̃, g − 1) to any new colorings
13 if localSearch(H, c̃, g − 1) for any of the updated c̃s then
14 return 1
15 end
16 return 0

Observation 5.6.2. Suppose that c̃ is a surjective r-coloring of an r-uniform hypergraph

H = (X,E). Suppose also that the node set X of H is partitioned into two sets:

1. F , consisting of all x in X such that c(x) is fixed (i.e., is not allowed to change), and

2. X − F , consisting of nodes whose color is allowed to change.

Then one of the following holds true

(i) c̃ is a no-rainbow r-coloring of H.

(ii) There exists a rainbow edge e ∈ E such that e ∈ F
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(iii) There exists a rainbow edge e ∈ E such that |e ∩ F | ≤ r − 1

Lemma 5.6.3. Consider an execution of localSearch&Freeze together with all the recursive

calls that are triggered by this. There exists a hyperedge with exactly r − 1 frozen vertices.

Proof. Lemma 5.6.2 shows in each iteration we either find a no-rainbow r-coloring (case 1) or we

find a rainbow edge. If we find a no-rainbow coloring or we find a rainbow edge with all the nodes

frozen (case 2), we are done. Thus, we only investigate case 3.

Suppose we are in case 3. Then, we have two possibilities:

a For every rainbow edge e, |e ∩ F | ≤ r − 2.

b There exists a rainbow edge e such that |e ∩ F | = r − 1.

In case a, c̃ can be transformed into a no-rainbow r-coloring c as follows: Use color 1 to color

all the unfrozen vertices. The result is a no-rainbow r-coloring because:

1. c is surjective,

2. no edge e in E such that |e ∩ F | = r in the original coloring c̃ is a rainbow edge, and

3. for each e in E such that |e ∩ F | ≤ r − 2 in the original coloring c̃, at least two nodes have

the same color in the c.

In case b, choose any edge e such that |e ∩ F | = r − 1 and let x be the single node in e− F .

Then, there are only r − 1 possible colors for x. We try all the possibilities recursively (note that

we may be able to rule out one or both of these possibilities immediately, but this is not a

problem).

Algorithm 5.5 applies localSearch&Freeze on the given covering code C0.

Theorem 5.6.4. The complexity of Algorithm 5.5 for r = 3 is

O(n2 · 2n/3 · 2n/3) = O∗((22/3)n) = O(1.59n). The complexity of Algorithm 5.5 for no-rainbow

4-coloring is O(n2 · 3n/2 · 3n/4) = O∗((33/4)n) = O∗(2.28n).

Generalizing Algorithm 5.5 for n and r ≥ 3 the running time is O(n2 · (r − 1)n−
2n
r (r − 1)

n
r ).
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Algorithm 5.5: coveringCodeLocalSearch&Freeze(H,n ≥ n0)
1 for all w1w2 · · ·wn/n0

∈ C0 × · · · × C0 do
2 interpret w1w2 · · ·wn/n0

as a coloring c̃
3 if generalLocalSearch&Freeze(H, c̃, δn) then
4 return "There exists a no-rainbow coloring"
5 end
6 end
7 return "There exists no no-rainbow coloring"

5.7 Local Search and Freeze Randomized Algorithm

In section 5.3 we presented a randomized algorithm for no-rainbow coloring problem. Here we

use the idea of freezing the color of one node in each step to avoid changing the color of a node

over and over. We start by fixing the color of r non-neighbor nodes so that they have r different

colors. As proved in lemma 5.6.3 in each step we either have at least one hyperedge with exactly

r − 1 frozen nodes or, we are done with the procedure (already found a no-rainbow r-coloring or

failed to find any no-rainbow coloring). Following is the Algorithm for r = 3.

We can view the procedure as a tree where each node in tree represents a coloring, and each

node has r − 1 children. Thus, the probability of getting closer to the correct coloring, if there

exists any, at each step is 1
r−1 .

Let us assume there exists a no-rainbow r-coloring c for the given hypergraph. Let Ak be the

event that the initial assignment c̃ disagrees with c on exactly k vertices. Note that

Pr[Ak] =

(
n

k

)
2k3−n

The probability p that we succeed is at least the probability that in Step 2 we make a beeline

towards c, reducing disagreement by 1 on each step until we reach a no-rainbow coloring. Thus,
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Algorithm 5.6: Randomized&Freeze

1 Pick a random initial coloring c̃
2 while There is at least one rainbow hyperedge which has exactly r − 1 frozen node: do
3 Pick an arbitrary rainbow hyperedge with exactly r − 1 frozen nodes
4 Change the color of the unfixed vertex to another color.
5 end
6 if There exists no rainbow edge then
7 return 1
8 end
9 if There exists a frozen rainbow edge then

10 return 0
11 end
12 if All rainbow edges have at most r − 2 frozen nodes then
13 assign color c1 to all the unfrozen nodes
14 return 1
15 end

for the case of r = 3 we have:

p ≥ Σn
k=0

(
n

k

)
2k3−n(

1

2
)k

= 3−nΣn
k=0

(
n

k

)
= 3−n2n = (

2

3
)n

Putting this together with our claim and the fact that each iteration runs in polynomial time,

we get a total work of poly(n)× (32)n = O∗(1.5n).

For the case of r = 4 we have:

p ≥ Σn
k=0

(
n

k

)
3k4−n(

1

3
)k

= 4−nΣn
k=0

(
n

k

)
= 4−n2n = (

1

2
)n

Thus, the complexity of the mentioned algorithm for r = 4 is poly(n)× (2)n = O∗(2n).

Theorem 5.7.1. Algorithm 5.6 for no-rainbow 3-coloring has the (worst-case) running time of

O∗(1.5n).
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The algorithm 5.6 for no-rainbow 4-coloring has the (worst-case) running time of O∗(2n).

Generalizing this for no-rainbow r-coloring (r ≥ 3) this means: Algorithm 5.6 for no-rainbow

r-coloring has the (worst-case) running time of O∗(( r2)n).

5.8 Local Search and Freeze Deterministic Algorithm

In this section, we apply the idea of freezing color of our nodes to the deterministic algorithm

we presented in section 5.4.

We apply generalLocalSearch&Freeze on c̃ which maps r colors to r different nodes and

assigns color 1 to every other node. We know if there exists a no-rainbow coloring, it must be in

the Hamming ball of c̃ with maximum radius δ = (r−1)n
r . By Lemma 5.6.2 we know we can choose

a rainbow hyperedge with exactly r − 1 frozen colors in each step. As a result we have r − 1

choices in each step. Since the maximum distance between the candidate and the ideal solution is

(r − 1)n/r, we continue this procedure g = (r − 1)n/r times.

The complexity of applying Algorithm 5.4 with c̃ as input is O(22n/3) = O(1.59n) which is as

efficient as Algorithm 5.5.

For r = 4 we get O(33n/4) = O(2.28n).

Theorem 5.8.1. The generalLocalSearch&Freeze algorithm given in 5.6 for no-rainbow

3-coloring has (worst-case) running time of O(1.59n). The generalLocalSearch&Freeze

algorithm given in 5.6 for no-rainbow 4-coloring has (worst-case) running time of O(2.28n).

Generalizing this for no-rainbow r-coloring (r ≥ 3) we will have: the

generalLocalSearch&Freeze algorithm for no-rainbow r-coloring has the (worst-case) running

time of O∗((r − 1)(r−1)n/r).
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CHAPTER 6. PRACTICAL RESULTS1

6.1 Satisfiability Formulation

Let S = {Y1, Y2, . . . , Yk} be a taxon coverage pattern for X. Here we construct a Boolean

formula that is satisfiable if and only if S is non-decisive. We use the equivalence between

non-decisiveness of S and the existence of a no-rainbow 4-coloring of hypergraph H(S)

(Proposition 2.3.1).

Suppose X = {a1, a2, . . . , an}. For each i ∈ [n] and each color q ∈ [4], define a Boolean color

variable xiq, where xiq = true if taxon ai is assigned color q. The requirement that each ai is

assigned only one color for each i ∈ [n], is expressed by the formula

∧
i∈[n]

xi1 ⊕ xi2 ⊕ xi3 ⊕ xi4, (6.1)

where ⊕ denotes the exclusive or.

The following formula ensures that each color q ∈ [4] appears at least once.

∧
q∈[4]

∨
i∈[n]

xiq (6.2)

To ensure that, for each j ∈ [k], Yj is not rainbow colored, we require that there exist at least

one color that is not used in Yj ; i.e, that
∧

i: ai∈Yj
¬xiq = true, for some q ∈ [4]. The requirement

that Yj not be rainbow-colored is expressed as

∧
j∈[k]

∨
q∈[4]

∧
i: ai∈Yj

¬xiq (6.3)

Proposition 6.1.1. Let Φ be the Boolean formula obtained by taking the conjunction of

expressions (6.1), (6.2), and (6.3). Then, S is non-decisive if and only if Φ is satisfiable.
1This chapter is joint work with Katherine Braught.
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Most SAT solvers require the input formula to be in conjunctive normal form (CNF). We

convert each part of formula Φ of Proposition 6.1.1 into CNF as follows. Converting (6.1) to CNF

is straightforward, using logical equivalence. Expression (6.2) is already in CNF. We can use

DeMorgan’s Theorem to convert expression (6.3) to CNF, but this yields too many clauses.

Instead, we use the Tseytin transformations (see, e.g., (20)), to ensure that the number of clauses

and variables grows linearly.

6.2 An Integer Linear Programming Formulation

We now formulate a 0-1 integer linear program (ILP) that is feasible if and only if S is

non-decisive.2 We use the same notation as in Section 6.1, and again rely on the equivalence

between non-decisiveness of S and the existence of a no-rainbow 4-coloring of hypergraph H(S).

Our ILP expresses the logical constraints (6.1), (6.2), and (6.3) of Section 6.1 using linear

inequalities. For each i ∈ [n] and each color q ∈ [4], define a binary color variable xiq, where

xiq = 1 if taxon ai is assigned color q. To ensure that, for each i ∈ [n], ai is assigned only one

color, we add constraints ∑
q∈[4]

xiq = 1, for each i ∈ [n]. (6.4)

The following constraints ensure that each color q ∈ [4] appears at least once.

∑
i∈[n]

xiq ≥ 1, for each q ∈ [4]. (6.5)

To ensure that, for each j ∈ [k], Yj is not rainbow colored, we require that there exist at least

one color that is not used in Yj ; i.e, that
∑

i: ai∈Yj xiq = 0, for some q ∈ [4]. To express this

condition, we define a binary variable zjq for each j ∈ [k] and each q ∈ [4] such that zjq = 1 if and

only if
∑

i: ai∈Yj xiq = 0. We express the zjqs in terms of the xiqs with the following linear

constraints.

(1− zjq) ≤
∑

i: ai∈Yj

xiq ≤ n · (1− zjq), for each j ∈ [k] and each q ∈ [4] (6.6)

2For an introduction to the applications of integer linear programming, see (12).
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Using the zjqs, we express the requirement that Yj not be rainbow-colored as

∑
q∈[4]

zjq ≥ 1, for each j ∈ [k]. (6.7)

Proposition 6.2.1. S is non-decisive if and only if the 0-1 ILP with variables xiq and zjq and

constraints (6.4), (6.5), (6.6), and (6.7) is feasible.

6.3 Computational Results Using SAT and ILP

We wrote Python scripts that, as explained in Sections 6.1 and 6.2, take as input a taxon

coverage pattern S and generate either (i) a CNF Boolean formula that is unsatisfiable if and only

if S is decisive or (ii) an ILP model that is infeasible if and only if S is decisive. We used the

PySAT python library (14) to solve CNF formulas. PySAT offers a variety of SAT solvers,

including Glucose 3, Glucose 4, Lingeling, and CaDiCaL. We only report results for Glucose 4, as

the other SAT solvers performed similarly or were slower. We used Gurobi (11) to solve ILP

models. All tests were run on a four core Dell PC running Ubuntu-based Elementary OS.

We ran our scripts on the data sets analyzed in (6). Table 6.1 compares the running times of

the SAT and the ILP approaches to generate a decisive submatrix. Neither approach is uniformly

faster than the other. However, the SAT formulation may be preferable in practice as many good

open-source SAT solvers are available.

As expected, the majority of the data sets we analyzed are non-decisive. Thus, we extended

our scripts to generate decisive sub-matrices using two different simple methods:

• Remove method: Repeatedly remove a taxon that has the fewest number of non-zero entries

until a decisive sub-matrix is found.

• Add method: Remove taxa as described in the remove method and add back sets of taxa in

the powerset of initially removed taxa until the largest decisive sub-matrix is found.

We also used the reduction described in Section 4.3 to reduce the matrix sizes to the sizes

described in Table 6.2. Figure 6.3 compares the running times of the ILP and SAT approach for
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Table 6.1 Submatrix Generation Time in Seconds for ILP and SAT formulations Using
Remove Method

Data Set # Loci # Taxa Gurobi running time (sec) Glucose4 running time (sec)
Allium 6 57 0.480 0.156
Asplenium 6 133 0.882 0.373
Caryophyllaceae 7 224 2.297 1.449
Eucalyptus 6 136 1.188 0.450
Euphorbia 7 131 0.556 0.343
Ficus 5 112 0.663 0.356
Iris 6 137 0.935 0.498
Meredith.mammals 6 169 0.270 0.206
Miadlikowska.fungi 9 1317 70.686 x
Primula 6 185 1.830 12.486
Rabosky.scincids 6 213 0.433 0.502
Ranunculus 7 170 1.472 1.372
Rhododendron 7 117 0.542 0.517
Rosaceae 7 529 12.886 8.966
Shi.bats 9 815 35.660 39.272
Solanum 7 187 1.915 1.081
Soltis.saxifragales 1 946 49.954 37.932
Szygium 5 106 0.365 0.205
Tolley.chameleons 6 202 0.5340 0.399

the remove method and shows a large improvement over the running times for the non-reduced

matrices in Table 6.1. Table 6.2 shows the size of the final decisive sub-matrix for both the

reduced and non reduced matrices. Table 6.3 compares the running time and final sizes of the add

and remove method, where an "x" indicates the program timed out. On smaller matrices, the add

method can find a larger decisive submatrix in similar time. On matrices with many taxa removed

initially, the add method times out due the exponential number of taxa sets to be re-added.
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CHAPTER 7. FUTURE WORK SUMMARY AND DISCUSSION

Despite its apparent complexity, the decisiveness problem appears to be quite tractable in

practice. We have presented algorithms to test decisiveness that are far superior to exhaustive

enumeration. Additionally, our computational results on real data using SAT and ILP show that

these approaches, combined with our reduction reduction techniques are effective in practice.

Since real data sets are likely to be non-decisive, testing for decisiveness can only be

considered a first step. Indeed, if we determine that a data set is not decisive, it is useful to find a

subset of the data that is decisive. In Section 6.2, we have taken some further steps in that

direction, using simple heuristics. These heuristics or their implementations could potentially be

improved upon, perhaps relying on the data reduction ideas of Section 4.3. One open problem is

whether the doubly-exponential algorithm of Theorem 4.3.4 can be improved.

In chapter 5 we designed a deterministic algorithm using the idea of covering code. Covering

codes generate a number of initial candidates with small Hamming balls to cover the whole search

space. In another section of chapter 5 we showed that due to coloring symmetry we only need to

cover r−1
r of the whole space to design a deterministic algorithm. One open problem is to employ

fewer covering codes to only cover the required space.
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