Duck Futures: A Generative Approach to Transparent Futures

Eric Lin Ganesha Upadhyaya

Sean Mooney Hridesh Rajan

Iowa State University, Ames, IA, 50011, USA
{eylin, ganeshau, smooney, hridesh}@iastate.edu

Abstract

Futures offer a convenient abstraction for encapsulating de-
layed computation. It is a mechanism to introduce concur-
rency through a rewrite of the sequential program. However,
managing futures is tedious and requires knowledge of con-
currency and its concerns. The notion of transparent futures
is used to hide the complexity of futures from developers.
A number of techniques based on transparency have been
proposed to create and manage futures. Previous techniques
make use of reflection. In this paper, we propose duck fu-
tures that use a generative approach. We show that duck fu-
tures are much more efficient compared to previous notions
of transparent futures. We also present the first large scale
study of the applicability and utility of duck futures in prac-
tice using the Boa infrastructure for mining large scale open
source repositories. Our study finds that transparent futures,
despite their limitations, can be very useful in practice.

1. Introduction

Futures act as a placeholder for the result of the not-yet-
performed method invocation. When a client makes an asyn-
chronous call, a future object is returned immediately and
lets the client to proceed with its computation. Later when
the client uses this future, it is blocked until the result is
available. In a way, futures introduce concurrency to the se-
quential program with small rewrite.

Many concurrency mechanisms such as active objects,
actors, separates, active containers, asynchronous references
and many more use futures. Halstead in MultiLisp [15]] pop-
ularized the notion of futures. Futures are applicable to
statically-typed, object-oriented languages [2} [18] 22, [23]].
Languages such as FEiffel [9] and Io [1] use active ob-
jects [16] which return futures. Despite the popularity, cre-

[Copyright notice will appear here once ’preprint’ option is removed.]

ating and managing futures can be tedious. It requires refac-
toring of the code and inter-procedural program analysis to
track if any futures are passed across method boundaries.

The complexity of creating and managing futures is hid-
den from developers using the notion of transparency. Fully-
transparent futures [3| (8], semi-transparent futures [24], fu-
tures using proxies [19] etc, provides transparent futures to
developers. In fully-transparent futures, asynchronous be-
havior is entirely masked from the developer. ProActive [8]
and Mandala [3] are two approaches that provides fully-
transparent futures. ProActive uses inheritance for this pur-
pose. A proxy class that extends the return type is created
dynamically during method calls using reflection, and then
returned to act as a future. Similar to ProActive, Mandala
uses reflection to create futures. The main difference being
Mandala imposes constraints that the return type has to be an
interface which limits its applicability, but eliminates other
inheritance issues. Pratikakis et al. [[19] also proposed using
proxies as futures to achieve transparency.

Previous approaches make use of reflection to obtain a
proxy class of the returned type. However, reflection doesn’t
come for free. Obtaining a class’s metadata has a substantial
cost, and using code produced by reflection is more expen-
sive because of poorer code optimization. The overhead can
overshadow implicit concurrency benefits of futures. We be-
lieve that reflection is not necessary for creating futures. The
type information necessary to create futures can be obtained
statically, and all the runtime cost using reflection can be
moved to compile time, which can effectively increase run-
time performance. In this paper, we propose duck futures to
create transparent futures. Unlike previous approaches, duck
futures are generated statically at compile time as neces-
sary, i.e. futures are generated only for classes that are be-
ing used as return types. Our static approach allows us to
avoid class reflection completely. Like previous approaches,
duck futures have the same type as the original result ob-
ject. Hence, it can be used as the value at all the places
where the original result object is expected and no refactor-
ing of the client code is necessary. Like other transparent fu-
tures, duck futures are implemented using wait-by-necessity
mechanism [7]. Duck futures are successfully implemented
as part of the Panini [4} 6] 20l 21] compiler.

2015/6/22

Java program without Futures

1 class ComplexT {

2 ComplexT getFirstPart() { ... }
3 ComplexT getSecondPart() { ... }
4}

6 class Factory {

7 ComplexT create(ComplexT c1, ComplexT c2) { ... }
s ComplexT create(...) { ... }

9

}

11 class Client {
12 Factory f = new Factory();
13 ComplexT work () {

14 ComplexT c1 = make1();
15 ComplexT c2 = make2();
16 return f.create(c1, c2);

17}

18 private ComplexT make1() {

20 ComplexT first = f.create (...) ;
21 return first ;

2}

23 private ComplexT make2() {

25 ComplexT second = f.create(...);
26 return second;

27}

28 }

Java program with Futures

1 class ComplexT {

2
3
4
5
29
30

31
32

39
40
41
42
43
44

ComplexT getFirstPart() { ... }
ComplexT getSecondPart() { ... }

class Factory {

/+ ComplexT +/ Object create(ComplexT c1, ComplexT c2) { ... }
/+ ComplexT «/ Object create(...) { ... }

class Client {

Factory f = new Factory();
ComplexT work () {
ComplexT c1 = make1();
ComplexT c2 = make2();
return f.create(c1, c2);
}
private ComplexT make1() {
Object futureFirst = f.create (...) ;
if (futureFirst instanceof Future)
futureFirst = futureFirst .get();
ComplexT first = (ComplexT) futureFirst;

return first ;

}

private ComplexT make2() {
/...
Object futureSecond = f.create (...) ;
if (futureSecond instanceof Future)

futureSecond = futureSecond.get();

ComplexT second = (ComplexT) futureSecond;
return second;

}

Figure 1. A program to illustrate that managing futures is tedious. The left-hand-side contains a Java program and the right-
hand-side shows the refactored program using java.util.concurrent.Future. The highlighted lines indicates the refactored code.

We first describe our work on duck futures in Then
in §4] we evaluate the performance overhead of duck futures
and compare it against ProActive and Mandala. There are
many previous work on transparent futures, but no large
scale empirical study has been conducted on how applicable
and useful they are in practice. Thus, we investigate the
applicability and utility of transparent futures in practice
by performing a large scale open source repository mining
using Boa [10]. The contributions of this work and some
interesting results we have discovered include:

e We show that generating inheritance based transparent
futures can be done statically, removing the cost of fu-
ture creation from runtime completely. This could poten-
tially make transparent futures more attractive feature for
implicitly concurrent languages.

e We show that duck futures has a significantly lower per-
formance overhead compared to ProActive and Mandala.

Duck futures, like transparent futures provide implicit
concurrency, and maximize benefiting from concurrency
when the future is not being used immediately. Our study
on the distance of method calls and use of the return value
in practice shows that return values are usually used at
a few statements away from the call, thus allowing the
program to benefit from concurrency.

¢ In practice, a fair amount of futures remain unclaimed
within the same method and may potentially cross the
boundary of methods. Without transparency, interproce-
dural refactoring is needed for these cases.

¢ Classes that are incompatible with transparent futures are
not very commonly written by programmers. In addition,
final classes are rarely used as return types. In contrast,
methods returning primitive types are fairly common.

2. Motivation

Managing futures is tedious for a number of reasons. First,
there is a need to refactor client code. This refactoring in-
volves carefully replacing the return value of a method call
with a future so that the method call can be made asyn-
chronously. Second, if the returned value crosses method
boundary then either futures needs to be claimed, or an inter-
procedural analysis followed by instrumentation needs to be
performed. Figure [I] shows an example that illustrate both
problems.

The example Java program shown in Figure [I] contains
three classes, ComplexT, Factory and Client. The left-hand-side
highlights parts of the code that requires refactoring to use
futures. The right-hand-side highlights refactored code using
java. util .concurrent.Future. The methods make1() and make2()

of Client receives an object from Factory (line 41 and line
49 respectively). If the received object is an instance of

2015/6/22

Future then retrieves the actual value of the future using get()
method on Future object. In both cases, actual object (type
ComplexT) is returned. Lines 43 and 44 is used to claim the
future, as futures must be claimed within the extent of the
method. To determine proper method boundaries of futures,
an interprocedural program analysis is required. Hence, to
use futures in the program a substantial refactoring of the
program is required. And, to determine when and where
all the future objects needs to be claimed requires an inter-
procedural program analysis.

3. Duck Futures: Design and Implementation

In this section we describe the design and informal semantics
of duck futures. Basic idea is that a duck future is an object
that behaves exactly like the original result object (walks
like a duck and swims like a duck and quacks like a duck
it is a duck). In other words, it has the same type as the
original result object. Therefore, all of the methods that can
be invoked on the result object can be invoked on the duck
future. These invocations are delegated to the original result
object when it is available.

Since the duck future has the same type as the original
result object, it can be used at all the places where the
original result object is expected. Therefore no refactoring
of the client code is necessary as in the right-hand-side of
Figure[T]

We have added support for duck futures in the Panini
compiler which extends the OpenJDK java compiler. To im-
plement this semantics, futures are hidden behind a carefully
constructed interface that is automatically generated by the
compiler. We first briefly explain the compilation strategy
and then demonstrate it using an example.

Essentially, if a class C is to be wrapped in a duck future,
we extract C’s public signature as an interface. We then
generate an implementation of that interface as a Proxy [7].
This implementation takes care of managing the future, the
claimed value, and the appropriate delegation to the claimed
value.

3.1 Hiding behind an interface

Interfaces provide languages like Java a type-safe mecha-
nism to abstract what methods may be called on a type from
the implementation of each method. The interface mecha-
nism can be used to hide the details of managing dispatching
and claiming a future from the client. Figure 2] shows Duck
Future interface. Every class that needs to be wrapped in an
duck future will implement this interface. For the example
program shown in Figure[T] ComplexT class is used as return
value by Factory and Client classes. Hence, ComplexT needs to
be wrapped in a duck future as shown in Figure 3]

3.2 Inside a Duck Future

Figure [3|shows the duck future generated for ComplexT class.
DuckFuture_ComplexT class needs to extend ComplexT and

1 public interface DuckFuture<T> {

/I Method to claim the actual object

public void finishFuture(T t);

/I Returns the actual object wrapped inside the duck future
public T get();

- NIRT ISR

Figure 2. Interface of a duck future.

1 class DuckFuture_ComplexT extends ComplexT implements DuckFuture
{

2 /I Wrapped actual object

3 private ComplexT wrapped = null;

4 // boolean to indicate if the future has been claimed or not

5 private boolean isRedeemed = false;

6 /| Translated method

7 public final ComplexT getFirstPart() {

8 if (isRedeemed == false) this.get();

9 return wrapped.getFirstPart();

1 /I Translated method
12 public final ComplexT getSecondPart() {

13 if (isRedeemed == false) this.get();

14 return wrapped.getSecondPart();

15

16 /I Method to fill the wrapped object with the actual object
17 public final void finish (ComplexT t) {

18 synchronized (this) {

19 wrapped = t; isRedeemed = true;

20 notifyAll () ;

21 }

22

23 /I Claim method

24 public final ComplexT get () {

25 /I Block waits until the actual object has been claimed
26 while (isRedeemed == false) try {

27 synchronized (this) {

28 while (isRedeemed == false) wait();

29

30 } catch (InterruptedException e) {

31 }

32 return wrapped;

33}
34}

Figure 3. Generated DuckFuture for ComplexT class
shown in Figure|T]

1 class Factory {
2 public ComplexT create(ComplexT c¢1, ComplexT c2) {

3 final DuckFuture duckFuture = new DuckFuture_ComplexT();
4 new Thread(new Runnable(){

5 void run() {

6 // Original body of create, creates ComplexT c

7 duckFuture.finish(c);

8 }

9 }) .start();

10 return duckFuture;

no}
2}

Figure 4. Factory class with public method create refactored

implement DuckFuture interface. DuckFuture_ComplexT con-
tains reference to Future object (wrapped) on line [3] and on
line [5] a boolean (isRedeemed) which indicates if the future
has been claimed or not. lines shows the translated
getFirstPart () method of ComplexT class. Each such method

2015/6/22

1 class Client {

2 Factory f = new Factory();

3 public final ComplexT work() {

4 DuckFuture duckFuture = new DuckFuture_ComplexT();
5 new Thread(new Runnable(){

6 void run() {

7 ComplexT c1 = make1();

8 ComplexT c2 = make2();

9 ComplexT c = f.create(c1, c2);
10 duckFuture.finish(c);

1 }

12 }).start();

13 return duckFuture;

15 private ComplexT make1() {

16 /...

17 ComplexT first = f.create (...) ;
18 return first ;

v}

20 private ComplexT make2() {

21 /..

2 ComplexT second = f.create(...);
23 return second;

1}

Figure 5. Client class with public methods refactored.

is implemented by checking if the actual value is available
(isRedeemed), calling the claim method (get() from lines 24-
33)if it is not (which will block until the value of the future is
available), and finally delegating the call to the actual value
object (wrapped). All of the methods ComplexT and ComplexT
inherited from its superclass will need a translated method
inside the DuckFuture. The translation strategy only needs
the signature information of the methods, which can be ob-
tained while compiled statically.

3.3 Automatically claiming a future

In the previous section we wrapped a ComplexT class us-
ing DuckFuture. To illustrate the usage of DuckFuture con-
sider an example concurrent implementation of Factory and
Client classes. In Figure |4 the public method create (...)
in the Factory class is refactored to make use of DuckFu-
ture. In the modified method, a duck future of the type of
DuckFuture_ComplexT is created, and immediately returned.
On lines [}[9] a separate thread is created and started, and
a ComplexT instance is created using the original code. The
ComplexT object is then delegated to the DuckFuture. The
same refactoring process is applied to all the public meth-
ods in the Client class. The refactored Client class is shown in
Figure[5

To understand how a future is claimed automatically,
consider the lines [7}j9] of Figure[5} On line[7)a create (...) call
is made to Factory. The create (...) method of Factory returns
a DuckFuture c1 right away. Client can now proceed to line[§]
for a second create (...) call to Factory and receive another
Duck Future ¢2. Finally, on line E] a create(c1,c2) call is made
to Factory. At this time, the value of the values of both ¢1 and
c2 have to be claimed to be able to make a successful call.
By this time if the previous calls to the Factory class has been

completed, Client will then receive the actual values of ¢1 and
c2. Otherwise, Client blocks.

On the other side, Factory received two create (...) calls.
Factory processes them in the order they are received and
calls the finish () method on the Duck Future created with
the returned value. The finish () method then puts the actual
return object and notifies to any consumer who is blocked. In
our case, Client is notified that, Factory has finished comput-
ing and c1 and c2 are both available. Now, Client can proceed
and make the call in line 10.

3.4 Benefits

This technique allows clients to remain completely oblivious
to the details of managing a future. It is ensured the mechan-
ics are always implemented correctly because the translation
is machine generated. Another benefit is that Futures can be
used without any noticeable impact at client sites, for asyn-
chronous computation. Finally, all the work is done at com-
pile time, and adds little overhead to runtime.

4. Evaluation

In this section we describe the research questions we wish to
answer (§4.1), we show the experiments we have performed
to answer these research questions (§4.2), and the results of

the experiments (§4.3).

4.1 Research Questions

RQ1: How much overhead is added when constructing a
transparent future? Futures are used to allow asynchronous
calls and introduce concurrency to programs. To create these
futures an overhead is inevitably added to the asynchronous
method invocation process compared to synchronous method
calls. We want to know how much overhead is added by each
of the approaches presented in this paper.

RQ2: How much claiming overhead is added when at-
tempting to use a future? All of the approaches mentioned
in this paper use a wait-by-necessity mechanism such that
attempting to claim a future blocks if result is not available.
However, checking the completion state of the future and
redirecting the method calls to the actual object adds an ex-
tra overhead that using a normal object doesn’t have. This
is another performance overhead introduced by futures. We
would like to know how duck futures perform compare to
other works w.r.t. this overhead.

RQ3: Does duck futures’s generative approach gives us a
performance advantage compared to reflective approaches?
Duck futures uses a generative approach, which statically
generates the futures at compile time. By contrast, other
transparent future approaches create a reflections of the fu-
ture object dynamically. We wish to understand the advan-
tages of avoiding the use of reflection.

2015/6/22

RQ4: What is the potential implicit concurrency we can
get out of transparent futures? Using futures adds an over-
head to a method call. In exchange, concurrency is gained
by allowing the client to proceed with its computation while
the method call is executed asynchronously. The benefit is
maximized if the method calls are made as soon as possible,
and the future is claimed as late as possible. However, when
using transparent futures, programmers do not necessarily
write their programs with concurrency in mind. We would
like to know in practice, what the call-claim distance nor-
mally is, i.e. the distance between a method call and using
the result of the method call in terms of number of state-
ments?

RQS: How applicable are transparent futures in prac-
tice? Futures using an inheritance approach generate a future
subtyping the target class. Final classes and primitive types
cannot be properly subtyped. Even with non final classes,
those with final methods or public fields can also be an issue
because the wait-by-necessity mechanism cannot be applied.
More discussion on completeness of duck futures and trans-
parent futures as a whole is described in §5.1} We would like
to know about the importance of this issue in practice.

4.2 Approach of Evaluation

In this section, we describe our evaluation approach to an-
swer the research questions identified in §4.1]

4.2.1 RQI1,?2 and 3: Evaluation Setup and Approach

To measure the performance overhead, we designed two
microbenchmarks to specifically measure the two use cases
of using a future: the creation of the future and returning
a future to the caller, and using the future by invoking a
method call on the future object.

We use a measurement methodology taken from Georges
et al. [14]]. To measure the runtime performance of these
benchmarks, we warm up the JVM until steady-state is
reached, by measuring 3 consecutive runs with a coefficient
of variation under 0.02. We then obtain the steady-state per-
formance runtime, by measuring the mean of ten steady-state
runs.

The experiments were run on a single machine with 24
GB of memory and 24 cores clocked at 400 MHz, running on
Linux 3.5.6-1.fc17 kernel with OpenJDK 64-Bit Server VM
build 23.2-b09. The Panini compiler version 0.9.3 [4] was
used for the Panini programs, Mandala version 2.3 [3]] and
ProActive Programming 5.4.2 [8] were used for Mandala
and ProActive respectively.

4.2.2 RQ4 and 5: Evaluation Approach

For research questions 4 and 5, we look into source code of
open source repositories to find answers to the questions.
To do a large scale analysis on a large amount of source
code, we make use of Boa [[10] and its dataset from Source-
Forge [3]]. Boa is an infrastructure for mining software repos-

itories at a large scale. It allows users to write their own
queries and extract data of source code and project details
they are interested in from repositories. The dataset we used
for our evaluation is the full September 2013 dataset of
SourceForge provided by Boa. This dataset contains 35,341
Java projects including widely-used Java projects, such as
Azureus/Vuze, Weka, Hibernate, JHotDraw, JabRef, JUnit,
iText, FindBugs, JML, TightVNC, etc. and has been used
for several studies e.g. [1L1}[12].

4.3 Experiment Results
4.3.1 Construction Overhead of Transparent Futures

To measure the overhead of the transparent future implemen-
tation, we constructed a microbenchmark that focuses on the
invocation of a method and obtaining a future. The program
repeatedly sends asynchronous calls to another object, ob-
taining a future object and claiming it for 1,000,000 number
of times. The method being called has the minimal amount
of execution and only contains a single return statement.

35000
28788

30000 25982

25000
£

‘GE',’ 20000 16779
‘€ 15000

=}

[
10000

5000

0

Panini Mandala ProActive

Figure 6. Runtime performance overhead of 1,000,000
asynchronous calls.

The results shown in Figure [6] represents the mean of 10
steady state runtime in milliseconds. At 1,000,000 iterations,
duck futures has a 54.85% performance gain over Mandala
and 71.57% over ProActive.

The results shows that the use of reflection to gener-
ate proxies impacts the performance of method invocations
greatly.

4.3.2 Claim Overhead of Transparent Futures

In this section, we measure the overhead of claiming a fu-
ture by using another microbenchmark. The benchmark is
designed to test the overhead of the actions of checking the
completion state of the future, and method invocation on the
actual result. The program first makes an asynchronous call
and then immediately claims the future. The claim will be
blocked until the method is done executing and the future is
completed. The program then attempts to invoke a method
on the same completed future for another 10,000,000 times.

2015/6/22

To act as a base case for comparison, another program was
tested where the receiver is a normal object.

1200

997
1000

794
800

600

Runtime(ms)

400

200
0 16
0
Mandala

Base Panini ProActive

Figure 7. Claiming overhead of 10,000,000 future claims.
The runtime of the base case is lesser than 1 millisecond.

The results shown in Figure [7| represents the mean of 10
steady state runtime in milliseconds. It is clear by comparing
against the base case that using a future instead of a normal
object indeed adds some amount of overhead when attempt-
ing to claim it. The result also shows that duck future has a
much lower overhead than the other two. The performance
difference is because Mandala and ProActive use reflection
to obtain the result class to compare and check against the
expected class, and again use reflection to invoke the actual
method. In comparison, duck futures checks the completion
of the future by a simple boolean check and directly call-
ing the method on the actual object, adding a much smaller
overhead to the process.

This result also shows that the claiming overhead is rela-
tively insignificant compared to the overhead of generating
the future, as the overall run time is much slower than the
previous results from §4.3.T] Note that in this experiment 10
times more iterations were executed.

The results from both the performance experiments show
that duck futures has an overall performance gain over Man-
dala and ProActive, with at least 54.85% performance im-
provement at 1,000,000 iterations using our benchmark pro-
gram in §4.3.1] For the second benchmark in §4.3.7] the
results also show that duck futures have a significantly
lower overhead when claiming futures. From these two mi-
crobenchmarking experiments, we conclude that the result
suggests that duck future’s generative approach has a lower
performance overhead than Mandala and ProActive.

4.3.3 Measuring the Call-Claim Distance of Futures

In this section, we use Boa to answer RQ4. For these experi-
ments, we assume that each method call is replaced by calls
using futures. By the wait-by-necessity rule, a result is used
when a method invocation is invoked on the returned result.
To measure the number of statements that are executed be-
tween making a method call and the result being used, we

first mark each of the method calls whose result is assigned
to a variable. Next, we count how many statements are de-
clared, before we see an method invocation on the marked
variable. Futures that escape the scope of the method by
return statements are counted. If the result is never claimed
in the same method, the distance is returned as oco.

[All [All- (oo + Returned) |
| Occurrence || % | Accum. % | % | Accum. % |

1 3,888,945 30.56% 30.56% 41.27% 41.27%

2 1,776,887 13.96% 44.52% 18.85% 60.12%

3 1,368,430 10.75% 55.27% 14.52% 74.64%

4 768,932 6.04% 61.31% 8.16% 82.80%

5 483,693 3.80% 65.11% 5.13% 87.93%

6 301,956 2.37% 67.49% 3.20% 91.14%

7 190,205 1.49% 68.98% 2.02% 93.16%

8 148,826 1.17% 70.15% 1.58% 94.74%

9 110,299 0.87% 71.02% 1.17% 95.91%

10 78,508 0.62% 71.63% 0.83% 96.74%

>10 307,301 2.41% 74.05% 3.26% 100.00%

) 1,660,495 13.05% 87.10% - -

Returned 1,642,378 12.90% 100.00%

[Total | 12726855]| 100.00% |]] -

Figure 8. Distance between calls and claiming the results of
the returned objects.

The result is shown in Figure The distance of 1
means that the resulted object was used by the statement
immediately after the method call. Of all the 12,726,855
method calls measured, 12.90% of them were returned by
the method before being used, 13.05% were not used within
the same method. Almost 40% (38.69%) of the results were
claimed at a distance more than 4 statements away. Given
that the average number of statements in methods using the
same counting method is about 7 statements, this is a fairly
sizable distance.

The result of this experiment suggests that most of the re-
turned results are not being used immediately after the call,
and applying transparent futures to programs is likely to gain
some benefit from concurrency without modifying the pro-
gram. Another observation is that a sizable percentage of
objects leave the method without being claimed (potentially
up to 25.95%). These are the cases where a refactoring ap-
proach to add futures to code may require a full interpro-
cedural analysis to perform refactoring. For these cases, the
transparency of duck futures can be very useful.

4.3.4 Applicability of Transparent Futures

In this section, we use Boa to answer RQ5, i.e. how fre-
quently are classes defined by programmer not compatible
with transparent futures? That is, classes for which a trans-
parent future class cannot be created, or classes that will
lead to incorrect code when used as a transparent future. As
discussed in §4.1] there are 3 properties of classes we are
looking for: final classes that cannot be subtyped, classes
with final methods where we cannot implement the wait-by-
necessity blocking mechanism, and non static public fields
to which the blocking mechanism cannot be applied.

For the first experiment in attempt to answer this ques-
tion, we first look at all the classes that are defined by the

2015/6/22

programmer. We count the number of classes that have the
above properties to find out how many of these classes are
compatible with transparent futures.

Incompatible Final Classes
Non-final 5.17%
Classes
6.99%

Figure 9. Percentage of final classes and transparent future
compatible/incompatible non-final classes out of 8,244,248
public classes.

The percentage of final classes we found out is shown in
Figure 0] Among 8,244,248 public classes, only 5.17% of
the classes are declared as final. If we further look into the
non final classes, we get the result shown in Figure [T0]

Final methodsp, 1 Fields
4.18% .

Both
' i 0.18%

Figure 10. Percentage of classes with non static public
fields or public final methods out of 7,818,244 non final
classes.

Among all the public non final classes, 4.18% has final
methods and non-public fields, 3.0% has public fields but
not final methods, and 0.18% has both public fields and
final methods. This leaves a 92.63% of non final classes
that transparent futures are compatible with. From the results
so far, it is clear that although the number of incompatible
classes are not negligible, the majority of the classes are
compatible with transparent futures.

To gather more data, we repeat the experiment on another
set of classes in the open source projects. This time we only
count the classes that are actually being used as return types
within the same project they are defined. The results are
shown in Figure [[T]and Figure

It is noticeable that classes used as return types more of-
ten have public fields and final methods in comparison to

Incompatible Final Classes

Non-final 5.89%
Classes
11.47%

Figure 11. Percentage of final classes and transparent future
compatible/incompatible non-final classes out of 1,597,974
public classes being used as return types.

Final methods pypjic Fields
7.02%

4.69%
Both
048

%

Figure 12. Percentage of classes with non static public
fields or public final methods out of 94,082 non final classes.

the overall set. The increase of public fields may be because
these classes are more likely to be designed as data con-
tainers so programmers tend to want the contained data to
be easily accessible. Another observation is the majority of
classes are not being used as returned types, with 1,597,974
out of all 8,244,248 public classes (19.38%) being used as
return types. Which also implies that only 19.38% of classes
need duck futures generated.

For our last experiment to find out the applicability of
transparent futures, we measure the percentage of different
return types of all the non-private methods.

The result is shown in Figure [I3] Among all the non-
private methods, 50.36% are void methods, 22.28% of the
methods return primitive types, and only 0.05% of the meth-
ods return final classes defined in the same project. We ob-
served that in Java, the majority of methods return types
other than classes. This result along with the previous result
of incompatible classes are the minority of all classes imply
that only a small portion of methods may return incompati-
ble classes, and primitive types may be the biggest problem
when using transparent futures. Note that the “other” cat-
egory are not completely compatible classes. Incompatible

2015/6/22

Primitive
Final Return
Types
0.06%

Void
Methods
50.36%

Figure 13. Percentage of different return types of non-
private methods.

classes defined in libraries is included, and array types are
also counted.

In conclusion, in our dataset, among all the classes de-
fined in the project, 17.36% of the classes used as return
types are incompatible with transparent futures. For the re-
turn types of methods, only at most 27.30% percent of non
private methods return class types, with merely 0.06% of
them being final classes from the same project. However,
primitive types shows to be a major issue for transparent fu-
tures in Java.

4.4 Threats to Validity

We now outline the threats to our evaluation’s validity.

4.4.1 Threats to Performance Evaluation

When measuring performance of Java and JVM-based tech-
niques, it is hard to avoid other variables brought in by the
tools implementing the techniques to affect the performance
outcome. For example, the just-in-time (JIT) compilation
overhead can affect the outcome greatly. To mitigate the ef-
fect of these variables, we used the runtime measurement
methodology proposed by Georges et al.[14] to measure the
performance in steady state.

4.4.2 Threats to Empirical Evaluation

Our call-claim analysis discussed in §4.3.3]is intraprocedural
and is not weighted by the cost of statements. Therefore,
a threat is that it pessimistically underestimates the cost of
method calls. Furthermore, it also, pessimistically, counts
only a single iteration of a loop. We believe this threat due
to underestimation will not affect our conclusion, because
adding complete call sequences will add more distance to
the result.

In §4.3.4] our analysis excludes classes from imported
libraries including the standard JDK. Although the cor-
pus being examined also includes many libraries itself, this
may slightly affect the precision of the result. In the future,
we plan to use Boa to find out the most used libraries by

projects, and perform an analysis using information of these
libraries. Boa also plans to include the JDK library as one of
their available datasets in the near future, which can allow
us to further improve our analysis.

Finally, in all of our analyses we consider all projects as
candidates to apply transparent futures. But in reality they
may choose not to do so and may not gain any benefits from
implicit concurrency.

5. Discussion

In this section we discuss the some of the aspects of evalu-
ation transparent future models. For this paper, we use the
following criteria borrowed from the work of Eugster [13]].

Completeness: This criterion specifies the types that
transparent futures can work with, and the proportions of
the types that they can work on.

Safety: The safety criterion inspects additional actions not
defined by the user introduced by the implicit transparent
future process. The presence of additional actions may end
up with side-effects or exceptions being thrown that is not
expected by the user.

Overhead: This criterion measures the performance over-
head introduced by transparent futures. In any approach, a
future has to be created to be returned to the caller and an
overhead is added. This includes the claim overhead of the
future, where the future may have to check upon the com-
pletion of the execution of method. This aspect has already
been specifically discussed in §4]

Transparency: This criterion represents the degree that
the programmer are aware of a future being created for
procedure calls. Transparency indicates the programmer is
oblivious of the returned type and the asynchronous nature
of the call.

5.1 Completeness

The completeness criterion specifies the types of Java, that
can not be handled by the approaches and have a transparent
future generated for the specified type. Approaches based
on Java inheritance, generates futures by subtyping the ex-
pected return type. This strategy runs into trouble when sub-
typing is illegal. In Java, classes declared as final cannot be
subtyped. For the same reason, arrays of any type and prim-
itive types provided by Java proves difficult for inheritance
based approaches to handle.

Another problem for inheritance based approaches is
claiming of futures relies on overriding the methods of the
subtyped class to provide the wait-by-necessity mechanism.
Final methods and public classes that cannot be overrid-
den or accessing does not go through methods bypasses the
blocking mechanism and becomes a problem.

Duck futures implicitly make calls to incompatible classes
synchronous as a workaround. Both Mandala and ProActive
runs into the same problem. ProActive’s approach is similar
to ours. For these cases, method calls are simply implicitly

2015/6/22

synchronous, and calling final methods and accessing public
fields on a future leads to inconsistent behavior.

Mandala takes on a more restrictive but more consistent
approach. Because methods in Java interfaces cannot be fi-
nal, and all fields in interfaces are implicitly constant, using
interfaces exclusively avoids having to deal with these dif-
ficulties when subtyping. Three limitations are applied by
Mandala, the object being turned into a proxy must imple-
ment at least one interface, methods being invoked must be
defined in the interface, and the return type of the method
must be an interface.

5.2 Safety

It is important for a transparent future mechanism to not
introduce potential execution of code that is not present
in the original user defined program. This is to guaran-
tee unexpected side effects will not happen. For many in-
heritance based approach, one vulnerability for this crite-
ria comes from constructor of super classes. Constructors
of Java classes are required to either explicitly invoke a
constructor of its superclass as its first statement, or a no-
argument constructor invocation will be added implicitly in-
stead. This means that code that may be in the constructor of
the superclass may compromise the safety criterion.

To avoid this problem, ProActive requires classes being
used as return types to provide an empty constructor with-
out any arguments. If such a constructor is not provided, the
class is treated in the same way as a final class and invoca-
tions toward methods with such classes will be synchronous.
However this does not guarantee that the constructor of the
superclass higher up in the hierarchy does not invalidate
safety.

The restriction of exclusively using interfaces by Man-
dala also removes the concern of constructors, because in-
terfaces cannot define constructors and only the default con-
structor of the Object class is invoked.

5.3 Transparency

The Transparency criteria evaluates four different aspects:
The return type of a call should appear to the caller as the
expected type, and not a Future<T> type. This holds for duck
futures and both works we compare with in this paper.
Identity revealing operations such as instanceof and ==
should be able to operate as if performed on the actual
object. For example, a problem may occur when the program
attempts to check the returned value against the null value.
The asynchronous nature of the future should be hid-
den. The future object can be passed around like normal
objects, and the call should appear and behave the same
as synchronous calls. An issue for asynchrony occurs for
checked exceptions. A try/catch block on method invoca-
tions may not catch exceptions properly, as the control flow
may have already exited the block when the exception is
thrown. ProActive prevents this by making the calls that may
throw exceptions synchronous. In addition, ProActive pro-

vides a semi-transparent solution so that the user can explic-
itly place blocking barriers around the try/catch block so that
the control flow cannot exit the block until the execution of
the method is completed.

In this section we have discussed the aspects of trans-
parent future researchers are interested in. Approaches to
implement transparent futures in Java using an inheritance
strategy have many common challenges. Each work has their
own decisions to overcome the challenge, but so far most of
the approaches also have their own drawbacks and do not
fully solves the problem. However, as we have shown in §4]
some problems such as final classes may not be as major as
it seems. These problems remains an open challenge, and
await future researches to solve.

6. Related Work

Many approaches require manipulating futures manually [2}
17, 22]]. Managing futures requires a good understanding of
concurrency and its concerns in a multi-threaded execution
context. To solve this problem transparent futures are intro-
duced. The notion of futures-transparency is used to hide
the complexity of futures to developers. A number of ap-
proaches provide fully-transparent futures [3,I8]. The goal of
using fully transparent futures is to allow the use of legacy
classes which were not designed in a concurrent context.

ProActive [8]] uses inheritance to provide fully transpar-
ent futures. In ProActive, a transparent future is an instance
of a class which extends the return value of the original
method. For example, for a method call Rm(...), a transpar-
ent future will be R* where class R’ extends R. The subclass
R’ implements the wait-by-necessity behavior: until the real
result is available the caller is blocked and once the result is
available, every blocked caller is notified.

Mandala [3]] approaches the problems by using interfaces.
In Java, interfaces do not contain fields, methods of the inter-
faces are declared public, and interfaces cannot be declared
public. Hence, all the inheritance related problems are solved
by interface solution. But, interface constraints limits Man-
dala’s applicability.

Researchers have found exception handling difficult with
fully transparent futures [24]]. Hence, an alternative solution
to solve the problems is to not use fully transparent futures
but use semi-transparent futures. Semi-transparent futures
have strong typing and exceptions are always handled. In
semi-transparent futures, developers are aware of the asyn-
chronous nature of method invocations and have control over
it. On the other hand, in Duck Futures managing of futures
is completely oblivious to developers and developers do not
have control over it.

Pratikakis et al. [19] proposed using proxies as futures
to achieve transparency. The most significant difference be-
tween Duck Future and that of proxies is where the future
is claimed. Their approach uses a static analysis to automat-

2015/6/22

ically insert code to both generate and claim futures at the
point of usage for the future.

Eugster [13]] work also provides a proxy class for that ex-
tends the original class so it can be used as the original type.
It provides an enhancement over previous dynamic proxy
techniques on increasing the completeness of the proxies.
The proxy class is generated at run-time as byte code when
needed, and then loaded and linked. The final keyword and
the problems it create are dealt with by treating final classes
as non final classes at linking time, thus allowing class sub-
typing and overriding of methods. For public fields, field ac-
cesses are transformed to use setters and getters generated
inside the proxy. Safety issues stemmed by constructors are
handled by insertion of special constructors.

7. Conclusion

Creating and managing futures is tedious. Many researchers
have worked on transparent futures to make creating and
managing futures transparent to developers. Previous ap-
proaches create futures using reflection, which adds a sub-
stantial amount of overhead to runtime. In this paper we pre-
sented duck futures as transparent futures using a generative
approach. The static approach reduces the overhead added to
runtime, while providing the utility it needs to serve as trans-
parent futures. Our work on duck futures shows that type in-
formation statically available is sufficient to create transpar-
ent futures. We show that as a result of being able to avoid
reflection to dynamically create futures, duck futures has a
lower runtime overhead compared to Mandala and ProAc-
tive, which heavily rely on reflection. We also performed a
large scale study to show the potential benefit of applying
transparent futures to synchronous code and gained a better
understanding of the applicability of transparent futures.
For future work on duck futures, improvement on un-
solved issues mentioned such as public constructors and ex-
ception is important going forward. It would also be interest-
ing to see further empirical studies on applicability of duck
futures, e.g. across different programming languages.

Acknowledgements

This work was supported in part by the NSF under grants
CCF-14-23370, CCF-11-17937, and CCF-08-46059. We
thank Steve Kautz for help and comments.

References

[1] To: A small programming language.
iolanguage.com/|

http://www.

[2] JSR 166: Concurrency utilities. http://www. jcp.org/
en/jsr/detail?id=166.

[3] VIGNERAS, P. Mandala. Web page, August 2004. http:
//mandala.sf.net/.

[4] Panini Website. http://paninij.org/l

[5] Dice Holdings, Inc. Sourceforge website 2015. http://
sourceforge.net/.

[6] M. Bagherzadeh and H. Rajan. Panini: A concurrent program-
ming model for solving pervasive & oblivious interference. In
Modularity’15, 2015.

[7] D. Caromel. Toward a method of object-oriented concurrent
programming. Communications of the ACM, 36(9):90-102,
1993.

[8] D. Caromel, W. Klauser, and J. Vayssiere. Towards seamless
computing and metacomputing in Java. Concurrency Practice
and Experience, 10(11-13):1043-1061, 1998.

[9] M. J. Compton. SCOQOP: An investigation of concurrency in
Eiffel. 2000.

[10] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa:
A language and infrastructure for analyzing ultra-large-scale
software repositories. In ICSE ’'13, pages 422-431. IEEE
Press, 2013.

[11] R. Dyer, H. Rajan, and T. N. Nguyen. Declarative visitors
to ease fine-grained source code mining with full history on
billions of AST nodes. In GPCE 13, pages 23-32, 2013.

[12] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. Mining
billions of AST nodes to study actual and potential usage of
Java language features. In ICSE 2014, pages 779-790, 2014.

[13] P. Eugster. Uniform proxies for Java. In OOPSLA ’06, pages
139-152. ACM, 2006.

[14] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rig-
orous Java performance evaluation. In OOPSLA ’07, pages
57-76. ACM, 2007.

[15] R. H. Halstead Jr. Multilisp: A language for concurrent sym-
bolic computation. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 7(4):501-538, 1985.

[16] R. G. Lavender and D. C. Schmidt. Active object—an object
behavioral pattern for concurrent programming. 1995.

[17] B. Liskov and L. Shrira. Promises: linguistic support for
efficient asynchronous procedure calls in distributed systems,
volume 23. ACM, 1988.

[18] D. A. Manolescu. Workflow enactment with continuation and
future objects. In OOPSLA '02, pages 40-51, 2002.

[19] P. Pratikakis, J. Spacco, and M. Hicks. Transparent proxies for
Java futures. In OOPSLA ’04, pages 206-223. ACM, 2004.

[20] H. Rajan. Capsule-oriented programming. In /ICSE’15, 2015.

[21] H. Rajan, S. M. Kautz, E. Lin, S. L. Mooney, Y. Long, and
G. Upadhyaya. Capsule-oriented programming in the Panini
language. Technical report, Iowa State University, August
2014.

[22] R. R. Raje, J. I. Williams, and M. Boyles. Asynchronous re-
mote method invocation (ARMI) mechanism for Java. Con-
currency - Practice and Experience, 9(11):1207-1211, 1997.

[23] E. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behav-

ioral reflection: Spatial and temporal selection of reification.
In OOPSLA 03, pages 27-46, 2003.

[24] P. Vignéras. Transparency and asynchronous method invoca-
tion. In On the Move To Meaningful Internet Systems 2005:
CooplS, DOA, and ODBASE, pages 750-762. Springer, 2005.

2015/6/22

http://www.iolanguage.com/
http://www.iolanguage.com/
http://www.jcp.org/en/jsr/detail?id=166
http://www.jcp.org/en/jsr/detail?id=166
http://mandala.sf.net/.
http://mandala.sf.net/.
http://paninij.org/
http://sourceforge.net/.
http://sourceforge.net/.

	Introduction
	Motivation
	Duck Futures: Design and Implementation
	Hiding behind an interface
	Inside a Duck Future
	Automatically claiming a future
	Benefits

	Evaluation
	Research Questions
	Approach of Evaluation
	RQ1, 2 and 3: Evaluation Setup and Approach
	RQ4 and 5: Evaluation Approach

	Experiment Results
	Construction Overhead of Transparent Futures
	Claim Overhead of Transparent Futures
	Measuring the Call-Claim Distance of Futures
	Applicability of Transparent Futures

	Threats to Validity
	Threats to Performance Evaluation
	Threats to Empirical Evaluation

	Discussion
	Completeness
	Safety
	Transparency

	Related Work
	Conclusion

