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The measurement of physical and chemical parameters of 
soil is an important step toward sustainable farming prac-
tices, landscaping management and, more generally, the 

understanding of terrestrial ecosystem processes. Standard 
soil analytical procedures are often complex, time-consuming, 
and expensive for many applications. Research sampling 
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Soil testing requires the analysis of large numbers of samples in the laboratory that is often time consuming and expensive. Mid-infrared 
spectroscopy (mid-IR) and near infrared (NIR) spectroscopy are fast, non-destructive and inexpensive analytical methods that have been 
used for soil analysis, in the laboratory and in the field, to reduce the need for measurements using complex chemical/physical analyses. A 
comparison of the use of spectral pretreatment as well as the implementation of linear and non-linear regression methods was performed. 
This study presents an overview of the use of infrared spectroscopy for the prediction of five physical (sand, silt and clay) and chemical 
(total carbon and total nitrogen) soil parameters with near and mid-infrared units in bench top and field set-ups. Even though no significant 
differences existed among pretreatment methods, models using second derivatives performed better. The implementation of partial least 
squares (PLS), least squares support vector machines (LS-SVM) and locally weighted regression (LWR) for the development of the calibra-
tion models showed that the LS-SVM did not out-perform linear methods for most components while LWR that creates simpler models 
performed well. The present results tend to show that soil models are quite sensitive to the complexity of the model. The ability of LWR to 
select only the appropriate samples did help in the development of robust models. Results also proved that field units performed as well as 
bench-top instruments. This was true for both near infrared and mid-infrared technology. Finally, analysis of field moist samples was not 
as satisfactory as using dried-ground samples regardless of the chemometrics methods applied.
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strategies such as grid soil sampling require collecting large 
numbers of samples and their individual analysis in the labo-
ratory is often a tedious process. The challenge of modern soil 
science is the development of technologies able to perform 
rapid, accurate, and precise analyses. Mid-infrared (mid-IR) 
spectroscopy and near infrared (NIR) spectroscopy are fast and 
non-destructive secondary analytical methods. NIR spectros-
copy has been used for more than 30 years in agriculture and 
the pharmaceutical and petroleum industries—amongst the 
best known applications—for screening and quality control. In 
recent years, mid-IR has seen increasing interest, especially 
for soil analysis.1

Infrared (IR) spectroscopy is based on the absorption of 
infrared radiation by molecules proportionally to their concen-
tration in the sample of interest. The physical structure of 
the sample is also responsible for differences in absorption 
patterns due to the scattering of light in the sample related 
to particle size and porosity. Since the first applications of IR 
spectroscopy for the determination of soil properties,2 many 
authors have published bench-top and field research results 
on the determination of chemical and physical properties.1,3–5 
Successful applications have been reported from both mid-IR 
and NIR spectroscopy with an apparent advantage to mid-IR 
measurements.6

Nevertheless, the technology involved in NIR instruments 
allows a better customisation of applications for remote 
sensing. NIR spectroscopy is also better suited for field 
trials due to the limited impact of CO2 and water vapour that 
make the treatment of mid-IR spectra potentially difficult and 
perhaps impossible with moist field samples.7

The development of models using data from mid-IR and 
NIR spectra involves the use of chemometric tools. There are 
two main steps in the development of a prediction model: (i) 
the treatment of the spectral data and (ii) the development 
of the models. Pretreatment of the spectral data before 
model development is seen as a critical step since it aims 
to increase signal-to-noise ratio or enhance variations in 
the signal, but a fine threshold has to be found between 
removing noise and removing information. Model develop-
ment is also of importance. Partial least square regres-
sion (PLS) has largely been used, but a recent publication 
introduced neural networks to improve the relationship 
between spectral data and soil properties.8 Authors have 
reported satisfactory results, but the number of samples 
used seemed low compared to standard practices reported 
in the NIR literature.9

In the present study, we provide an overview of the chemo-
metric methods available to soil scientists. We experimented 
with the use of various spectral pretreatment methods as well 
as linear and non-linear regression methods for the predic-
tion of five physical (sand, silt and clay) and chemical (total 
carbon and total nitrogen) soil parameters based on spectral 
data collected on four infrared units: a Fourier transform 
near infrared (FT-NIR) spectrometer and a Fourier transform 
infrared (FT-IR) spectrometer (bench-top units) and two field 
portable proximal sensing systems (an FT-IR spectrometer 

and an NIR system consisting of CCD and InGaAs linear array-
based spectrometers).

Materials and methods
Soil samples
A set of 315 ultisol samples collected in April 2007 from 
a plough layer (0–20 cm) of five bare-soil fields (recently 
plough-tilled and generally vegetation free) located on the 
eastern shore of Maryland, USA, were used in this study. 
Sampling occurred in transects across the fields and corre-
sponded to transects of measurement produced by the 
tillage-based NIR spectrometer (Veris On-The-Go; Veris 
Technology, Salina, KA, USA). For the bench-top units, soil 
samples were dried at 50°C for two days and crushed using 
a hammer mill to pass through a 2 mm screen. The crushed 
material was further ground in scintillation vials containing 
two stainless steel rods and placed on a roller mill overnight. 
For the portable FT-IR unit, samples were scanned field 
moist in the laboratory.

Spectral and reference data collection
Bench-top units
Spectra were collected on dried and sieved samples in NIR and 
mid-IR regions by a Digilab Fourier transform spectrometer 
(FTS7000 FTS; Varian, Inc., Palo Alto, CA, USA) equipped with 
DTGS (deuterated triglycine sulfate) and InSb detectors using 
a Pike (Pike Technologies, Madison, WI, USA) AutoDiff auto-
sampler (sample cups ~1 cm in diameter). Each sample was 
scanned 64 times, at a resolution of four wavenumbers and 
scans co-added to give a final spectrum. These two instru-
ments will be called bench-FT-NIR and bench-FT-MIR 
throughout the article.

A field portable FTIR spectrophotometer (Surface Optics 
Corp, San Diego, CA, USA) was used to collect FTIR spectra on 
field moist samples. This mid-IR instrument collects spectra 
from 4000 cm−1 to 400 cm−1. A rotating sample cup was used 
to increase the area scanned and 64 scans were co-added to 
produce a spectrum. The beam splitter was KBr and the reso-
lution was 8 cm−1. Note that even though this unit was used 
in the laboratory, samples were not dried before scanning to 
simulate field experiment conditions.

Field unit
Transects of NIR spectral data were collected using a tractor-
mounted Veris On-The-Go spectrophotometer built into a shank 
mounted on a toolbar and pulled behind a tractor. Spacing 
between transects was 20 m on average. Spectral measure-
ments were acquired through a sapphire window mounted 
on the bottom of the shank. The spectrophotometer used a 
tungsten–halogen bulb to illuminate the soil and the reflected 
light was collected into a fibre-optic cable for transmission 
to the spectrometer. Two spectrometers were used to collect 
spectral data in the visible and near infrared (350–2225 nm) 
range with an average resolution of 8 nm. The sensors used 
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were a 3648-element TCD1304AP Linear CCD Array (Toshiba, 
Tokyo, Japan) and a 256-element InGaAs linear image sensor 
(Hamamatsu, Shizuoka, Japan). Shutters in the shank were 
manipulated to acquire dark and reference spectra at approxi-
mately 10 min intervals. The shank was pulled through the soil 
at approximately 10 cm depth at 6 km h−1, acquiring approxi-
mately 20 spectra per second. Tillage-based reflectance data 
associated with soil sampling locations were extracted by 
Gaussian elliptical weighting with approximately five spectra 
averaged for each location. Field sampling and field-based 
spectral measurements were collected on the same day.

Reference measurements
Five physical and chemical parameters were measured; phys-
ical parameters were sand, silt and clay; chemical parameters 
were total carbon and total nitrogen.

Soil organic carbon and total nitrogen content were deter-
mined by dry combustion using a TruSpec CN analyser (Leco 
Corp., St Joseph, MI, USA). None of the samples contained 
significant inorganic C. Sand, silt and clay fractions in soil 
were determined by the hydrometer method described by Gee 
and Bauder.10

From the 315 samples, every third sample based on spatial 
distribution in the fields was used to create an independent 
validation set. Table 1 presents summary statistics of both 
calibration and validation sets.

Chemometrics methods
Since most of the work done on soil used classical chemo-
metric methods, this study presents alternative approaches to 
spectral pretreatment and calibration development.

Spectral pretreatment
Two types of spectral pretreatment were used. The first 
type consisted of common derivative and scatter correction 
methods (called spatial pretreatment methods—in relation 

to frequency-based pretreatment methods presented later). 
Nineteen different spectral pretreatments and/or combina-
tions of treatments were used and compared. Vasques et 
al.11 presented an exhaustive study on the use of deriva-
tive methods for soil analysis. The present study reused 
some of the methods and proposed alternative techniques 
as well as combinations of methods. They were variations 
of the Savitzky–Golay derivative,12 normalisation (unit area 
under curve) and scatter correction methods [standard 
normal variate (SNV),13 multiplicative scatter correction 
(MSC),14 extended multiplicative scatter correction (EMSC)15 
and loopy MSC and EMSC].16 Table 2 presents the different 
preprocessing methods used.

The second type of spectral pretreatment used information 
present in the Fourier and wavelet decompositions of raw 
spectra. They are novel techniques to spectral pretreatment 
and have shown their ability to develop robust models for 
calibration transfer situations.17 This property could be useful 
in the development of soil calibrations that are often affected 
by a large variability from sample to sample and from field to 
field. There are two approaches to process frequency informa-
tion. The first involves filtering the high frequency components 
of Fourier coefficients or wavelet detail coefficients with a 
smoothing filter applied to a range of Fourier coefficients 
representing the highest frequency components or to the 
entire detail component of a wavelet transform. Spectra are 
(i) transformed in periodigrams (fast Fourier transform) or 
detail and approximation coefficients (wavelet transform), (ii) 
their Fourier coefficients representing the highest frequency 
components or detail coefficients are smoothed using a 
Savitzky–Golay smoothing filter, and (iii) converted back to 
spectra using an inverse Fourier or wavelet transform. These 
methods are, respectively, called Fourier smoothing and 
wavelet smoothing. The tuning of the algorithms is done by 
choosing the smoothing filter (window size and polynomial 
order) for both Fourier and wavelet filtering and the range 

Table 1. Statistical parameters of the samples used in the calibration models.

Parameter n Average concentration 
(%)

Range 
(%)

Standard deviation 
(%)

Calibration set
Carbon 209   1.26 0.55–2.04   0.25
Nitrogen 209   0.06 0.02–0.12   0.02
Sand 209 46.67 19.01–87.69 13.23
Silt 209 43.09   9.50–67.87 11.23
Clay 209 10.23   1.34–19.72   3.01

Validation set
Carbon 106   1.25 0.59–1.88   0.25
Nitrogen 106   0.06 0.02–0.11   0.02
Sand 106 46.94 21.32–86.84 12.81
Silt 106 43.15 11.07–63.91 11.11
Clay 106   9.91   2.81–19.65   2.80
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of Fourier coefficients to filter (detail component of wavelet 
transform was entirely filtered since wavelet transform keep 
the localisation information). The second approach consists 
in correcting the high-frequency components of a fast Fourier 
transform with a slope and a bias. As with Fourier smoothing, 
spectra are first transformed into periodigrams, then, similar 
to multiplicative scatter correction performed in the wave-
length domain,14 a slope and a bias are calculated and applied 
to each periodigram of the calibration set. Coefficients are 
obtained by regressing the magnitudes of the calibration set 
on the magnitude component of the average spectrum of 20 

samples selected from the calibration set covering the range 
of contents. Filtered periodigrams are finally transformed 
back into spectra. The tuning of the algorithm involves finding 
the appropriate range of high frequency Fourier coefficients to 
correct. This third method was called Fourier signal correc-
tion. For more information about the methods, refer to the 
flowchart in Figure 1 and to Igne and Hurburgh.17

In the present study, Fourier filtering, wavelet filtering and 
Fourier signal correction were tuned by iterative processes to 
determine the best smoothing filters and range of frequency 
components to filter (for Fourier based methods only). A 

Figure 1. Flow-chart of frequency-based preprocessing methods.

ID Combination Parameter
  1 — —
  2 Second derivative 25-point window, third-order polynomial
  3 Second derivative 15-point window, third-order polynomial
  4 Second derivative 35-point window, third-order polynomial
  5 First derivative 25-point window, third-order polynomial
  6 Smoothing 25-point window, third-order polynomial
  7 Normalisation Unit area under curve
  8 Normalisation + second derivative 25-point window, third-order polynomial

  9 Normalisation + second derivative 15-point window, third-order polynomial

10 Normalisation + second derivative 5-point window, third-order polynomial
11 Normalisation + second derivative 35-point window, third-order polynomial
12 SNV —
13 Second derivative + SNV 25-point window, third-order polynomial
14 EMSC —
15 MSC —
16 Loopy MSC 5 cycles
17 Loopy MSC 10 cycles
18 Loopy EMSC 5 cycles
19 Loopy EMSC 10 cycles

Table 2. Preprocessing methods.
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Daubechie 418 wavelet was used to decompose the spectra in 
the wavelet domain.

Frequency-filtered spectra were then preprocessed in the 
wavelength domain before calibration. The best performing 
preprocessing methods (or combination of preprocessing 
methods) found when developing PLS models were used to 
complement frequency-based pretreatment methods.

Calibration techniques
Partial least squares,19 a linear method, least squares support 
vector machines (LS-SVM),20–22 a non-linear regression tech-
nique, and locally weighted regression (LWR), a local linear 
method,23–25 were used to develop calibration models for the 
five parameters. Least squares support vector machines were 
preferred to neural networks for their ability to perform on 
small datasets and by the fact that only one global minimum 
exists in the optimisation plane.

Partial least squares regression
Partial least squares regression extracts from the spectral 
data (X_matrix) the information that is related to the refer-
ence value of interest (Y_matrix). This extraction is performed 
by calculating principal components or latent variables that 
maximise the covariance between the Y_matrix and all possible 
linear functions of the X_matrix.19 The choice of latent variable 
to include in the model is usually determined by minimising 

the standard error of cross-validation and limiting overfitting, 
the result of creating a model only valid on the calibration 
set. Model parameters (preprocessing methods and number 
of latent variables to include) were determined by comparing 
performances in cross-validation leave-one-out. The valida-
tion set was applied to the tuned model.

Least squares support vector machines
Least squares support vector machines has been developed 
to perform on data presenting non-linear relationships with 
a limited number of observations. Similar to support vector 
machines classification that looks for the maximum margin 
between clusters, LS-SVM tries to minimise the predic-
tion error relative to an error rate determined by the user. 
The main advantage of LS-SVM is that only two param-
eters need to be determined: the error rate and the param-
eter of the kernel function (to correct for non-linearity). 
The error plane presents only one minimum. However, its 
main drawback is the computation time; it is exponentially 
proportional to the size of the dataset and can take several 
hours to perform on a set of several hundred samples. 
Cogdill and Dardenne20 provided a good overview of LS-SVM. 
Shawe-Taylor et al.21 and Suykens et al.22 are references for 
theoretical aspects of support vector machines. An exhaus-
tive search of the error rate and kernel parameter was 
performed to optimise the model. The validation set was 

Instrument Parameter
PLS LWR

Number of 
samples

Number of latent 
variables

Number of 
samples

Number of latent 
variables

Portable FT-IR 
 
 
 

Total carbon 209   7 175   7
Total nitrogen 209   6 200   6
Sand 209   9 205   9
Silt 209   9 205   9
Clay 209 12 150   9

Bench-FT-NIR 
 
 
 

Total carbon 209 12 65   8
Total nitrogen 209   9 209   9
Sand 209 14   95 10
Silt 209 14   95 10
Clay 209 11 145   9

Veris 
 
 
 

Total carbon 209 12 205 12
Total nitrogen 209   6 110   5
Sand 209 12   90 10
Silt 209 13   90 10
Clay 209 12 125 11

Bench-FT-MIR 
 
 
 

Total carbon 209 13 195 13
Total nitrogen 209 12 170 12
Sand 209 11 110 10
Silt 209 11 110 10
Clay 209   9 160   8

Table 3. PLS and LWR model parameters.
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applied to the tuned model. Fernández Pierna et al.23 first 
applied LS-SVM to soil analysis on a chemometrics contest 
dataset. The present study aimed at showing the method 
performances on another dataset with various instrumental 
settings and different parameters.

Locally weighted regression
Local models look for the closest samples in the calibration set 
to the sample to predict. A sub-calibration set is then created 
to only include in the model samples that are relevant. This 
approach allows the development of linear models in situa-
tions where, over the range of concentrations, the relationship 
between NIR response and chemical concentration are non-
linear. It also reduces the complexity of models by including 
less noise, but is subject to overfitting. The locally weighted 
regression (LWR) algorithm24,25 uses a principal component 
analysis to determine the closest samples by calculating score 
Mahalanobis distances in principal component analysis space 
between the new sample and the database using sample 
scores. An exhaustive search of the best parameters was 
performed. The size of the calibration set was increased by 
five samples every generation, starting with an initial set of 20 
samples. Partial least squares model performances at each 
generation were evaluated by cross-validation leave-one-out. 
The number of principal components included in the PLS 
models varied from five to 15. The model presenting the best 
results was applied to the validation set.

Calibration and validation procedures
MATLAB R2007b (The MathWorks, Natick, MA, USA) was used 
for all calculations. The pretreatment of the data and the 
development of PLS and LWR models were performed with 
the PLS_toolbox 4.2.1 and the EMSC_Toolbox 1.2 (both tool-
boxes are from Eigenvector Research, Wenatchee, WA, USA); 

LS-SVM calibrations were developed with the LS-SVMlab 
toolbox v. 1.5 for MATLAB by Suykens et al.22 Table 3 presents 
the number of latent variables and samples used for PLS and 
LWR models.

Spatial preprocessing methods used for LS-SVM and LWR 
were the best performers found with PLS. All models were 
validated on the same validation sets. Autoscaling (mean zero 
and unit variance) was used to scale spectra, after pretreat-
ment methods, before developing all regression models.

Model evaluation and comparison
Standard error of prediction (SEP) was used to evaluate the 
precision of each model. Standard error of prediction is 
the standard deviation of differences not corrected for bias 
between the Y_matrix of validation and the prediction matrix 
ŷ. The models’ fit was evaluated using the coefficient of deter-
mination (r 2) that represents the percentage of variability 
explained by the model.

Results and discussion
Effect of spectral preprocessing methods
Figure 2 presents the effect of all spatial preprocessing 
methods on the precision of the PLS predictions of total 
carbon and silt content (see Table 2 for a list of settings 
used for all methods). No significant effect of preprocessing 
methods was observed (a = 0.05). For total carbon, when 
considering only FT-NIR and the field unit, normalisation to 
unit area gave significantly higher SEPs. This was not true for 
silt. The difference between the 18 methods (except normali-
sation) was not large and the method that gave the lowest 
errors for one instrument was often different for others. The 
development of models without preprocessing methods was a 
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Figure 2. Effect of preprocessing methods on the prediction of total carbon and silt. 3 
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Figure 2. Effect of preprocessing methods on the prediction of total carbon and silt.
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good option for the Veris, bench-FT-NIR, and bench-FT-MIR. 
It had the advantage of simplifying the model and providing 
as precise results as with pretreatment methods. For silt, 
the difference between methods was larger than for total 
carbon and the use of preprocessing methods was really 
beneficial for instruments such as the bench-FT-NIR and the 
Veris units, although not using preprocessing methods was 
not the worst option. This situation may come from the fact 
that silt is much harder to predict by NIR spectroscopy than 

carbon and that an enhancement of the signal-to-noise ratio 
can improve the overall performances of the models.

The present results showed that the use of spectral 
preprocessing methods was instrument- and parameter 
dependent. These results are consistent with the literature.26 
This situation makes the interpretation of the effect of each 
method difficult, since a good preprocessing method [i.e. 
second derivative (35-point window, third-order polynomial)] 
worked for a specific instrument (i.e. the portable-FT-IR) 
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Figure 3. Comparison on spatial and frequency based preprocessing methods. 3 
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Figure 4. Comparison of coefficients of determination of models developed with partial 3 

least squares (PLS), least squares support vector machines (LS-SVM), and locally 4 

weighted regression (LWR). 5 
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and both parameters, but did not perform well for others 
(i.e. bench-FT-MIR). Differences in technologies, interpola-
tion, sample presentation, number of subsamples (signal-to-
noise ratio), parameter, etc. have a large impact on the final 
results and only an iterative process can help in the develop-
ment of the best models. However, the second derivative was 
always in the combination of preprocessing methods that 
gave the lowest error (in agreement with Vasques et al.11) and 
MSC-based methods did not perform well, especially with the 
bench-FT-MIR instrument.

For total carbon and silt, Figure 3 presents the best spatial 
preprocessing method: (for carbon: second derivative 25-point 
window—third-order polynomial, second derivative 35-point 

window—third-order polynomial, normalisation + second 
derivative 25-point window—third-order polynomial, second 
derivative 25-point window—third-order polynomial for 
portable FT-IR, bench-FT-NIR, Veris, and bench-FT-MIR, 
respectively; for silt: none, second derivative 15-point window—
third-order polynomial, normalisation + second derivative 
25-point window—third-order polynomial, normalisation + second 
derivative 25-point window—third-order polynomial for portable 
FT-IR, bench-FT-NIR, Veris and bench-FT-MIR, respectively) 
as well as the frequency-based filtering methods. Similar to 
what was observed with spatial preprocessing, frequency-
based preprocessing gave similar precision to other methods. 
Fourier signal correction appeared to be the best method, even 
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though the improvement was not significant. Improvements 
were observed when compared with the use of only spatial 
preprocessing methods. Again, the use of these preprocessing 
methods was parameter- and instrument dependent.

Effects of regression methods
The comparison of preprocessing methods showed that it is 
often beneficial to perform an iterative search of the best algo-
rithms to enhance the performances of a calibration model, 
but as demonstrated in Figures 4 and 5, the choice of the 
regression method is also of importance. Figures 4 and 5 
present the coefficient of determination and the standard 
error of prediction for the five parameters of interest when 
models were developed with PLS (spatial preprocessing), 
LS-SVM, LWR, PLS + Fourier filtering and PLS + Fourier signal 
correction. Wavelet filtering was left out, as it gave some low 
results for silt and total carbon. A bootstrap method27 was 
implemented to estimate the uncertainty around the SEP.

Even though no significant differences existed between 
results, by using PLS results as the benchmark, we observed 
that LS-SVM did not always perform well (clay) and did not 
outperform more traditional methods when predicting other 
parameters. Figure 4 shows that LWR was the method of 
choice for NIR instruments while other regression tech-
niques performed similarly for mid-IR instruments. It is 
interesting to notice that for clay, PLS did not perform very 
well for mid-IR instruments while PLS + frequency based 
methods gave good results. The noise removed by modifying 
the frequency information was beneficial for the prediction of 
these parameters.

These results tend to show that soil calibration perform-
ances are very sensitive to the complexity of the models. With 
autoscaling only or a single preprocessing method and the 
selection of samples to include in the calibration set (LWR), 
results are as good as, or better than, when combining many 
preprocessing methods and employing more advanced regres-
sion methods. Note that spectral preprocessing methods have 
been optimised for PLS models and used for LWR and LS-SVM. 
An optimisation of the spectral preprocessing methods might 
improve the validation results.

For all parameters except total nitrogen, MIR instruments 
gave significantly better results than NIR-based units. The 
bench-FT-MIR unit outperformed the field unit for total 
carbon. Those results are consistent with the literature, but 
show that field units can be good alternatives to bench-top 
instruments. It is nevertheless important to note that the port-
able FT-IR unit had a larger interpolation than the bench MIR 
unit (8 cm−1 versus 4 cm−1). Calibrations were thus based on 
spectra with half as many data points. This may have impacted 
final results in addition to the fact that the portable FT-IR unit 
may be noisier. Also, it is necessary to insist on the fact that 
the Veris and the portable FTIR spectra were collected on 
moist samples and this was most likely responsible for the 
poorer results of these units.

Compared with previous publications,4,28 the present results 
for the prediction of total carbon and nitrogen were rather low. 

This was most likely due to the lower standard deviations of 
calibration sets and readers should not infer on the predictive 
ability of the chemometrics techniques since sand, silt and 
clay results were in agreement with reported results.

Conclusions
The present study compared 22 different preprocessing 
methods and three different regression algorithms for the 
prediction of five physical and chemical parameters in soil 
samples. While no statistical differences existed among the 
preprocessing methods, derivative-based models gave the 
best precisions and the use of Fourier-based methods allowed 
the development of more robust models. The comparison of 
regression methods showed that the simplest model (locally 
weighted regression) provided the overall best performances. 
Finally, MIR units gave the best results. Differences between 
bench-top and field units were instrument- and parameter 
dependent.

This article provides soil scientists with an example of cali-
bration development with different instrumentations and 
approaches to model the data. The results of the locally 
weighted regressions suggested it is a good alternative to 
classic PLS models and reinforced the need for samples in a 
calibration set to have analyses which are uniformly distrib-
uted over the range for the parameter of interest. Locally 
weighted regression, being easily subject to overfitting due to 
the limited number of samples, may also require a solid vali-
dation strategy for field applications.

Advances in chemometrics that constitute LS-SVM, 
advanced spatial preprocessing methods and frequency-
based filtering methods did not give different or better results 
than others, but the situation might be different in other cases, 
with different samples, different instruments and different 
concentration ranges in the various parameters. They should 
be tested through an iterative process and compared to PLS 
that remains the best benchmark method for soil analysis.
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