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IHîRODUCriON 

Crystallization can be defined as the formation of solid particles 

within a homogeneous phase. The solid particles can be formed from 

the vapor phase, as in the case of snow. They can be formed from a 

liquid melt, as in freezing of water or the manufacture of large single 

crystals. The solid can also be formed from liquid solutions. 

This last case of crystallization from solution is very important 

industrially because of the wide variety of materials that is marketed 

in a crystalline form. The main benefit of the operation is that a 

crystal formed from an impure solution can itself be pure. It also 

affords a practical method of obtaining pure chemical substances in a 

satisfactory condition for packaging and storing. As a result, crystal

lization is used in a wide range of industries from the production of 

bulk fertilizers to the preparation of fine cheniicals and drugs. 

In industrial operations the yield, purity, size, and shape of the 

crystals produced are important factors. Many times, for example in 

sugar production, it is especially necessary that the crystals be of 

uniform size. Unifom size is desirable for appearance, for ease in 

filtering and washing, and for consistent behavior in use. Uniformity 

of size also minimizes caking in the package. 

Attainment of the desired size distribution is one of the main 

objectives in the design and operation of industrial crystallizers. It 

is the relationship between the conçeting kinetic rates of nucleation 

and crystal growth that determines the size distribution of the product. 

For sssj years achieviiig the correct relationship concerning the kinetics 
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was very much an art rather than a science. In the last ten to twenty-

years, however, there has been a great deal of research effort in an 

attempt to better understand the kinetics of crystallization. To under

stand the kinetics it is necessary to understand the two mechanisms of 

crystallization; namely, crystal nucleation and crystal growth. These 

two mechanisms co^ete for solute in tenas of their respective dependence 

on supersaturation. The classical theories of nucleation do not predict 

the observed nucleation rates in continuous crystallization from solution. 

A considerable amount of theoretical work has been done in the area 

of continuous, mixed-suspens ion, mixed-product-removal crystal 1 izers. 

This type of crystallizer is like mary used in industrial processes. 

The analysis technique of using a crystal population balance provides a 

convenient way to study the kinetics of nucleation and growth in a 

mixed-suspens ion crystallizer. 

Since both nucleation and growth are direct functions of the 

level of supersaturation in the crystallizer, to fully understand the 

kinetics of crystallization it is important to know what level of super-

saturation exists, normally the magnitude of supersaturation is quite 

small in a )GMER cooling crystallizer and this makes the measurement of 

small changes in concentration very difficult. In most research to date, 

the magnitude of supersaturation has been inferred from the resulting 

crystal size distribution rather than the more desirable situation of 

predicting the crystal size distribution from knowledge of the level 

of supersaturation. Also, relationships between the level of super-

saturation and the birth and growth rates have not been available. 
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The objectives of this vork are therefore twofold. First of all to 

show that refractive index methods offer a way of continually monitoring 

the level of supersaturation in a MSMER crystallizer. Secondly, to 

develop the needed relationships relating the birth and growth rates 

of crystals to the level of supersaturation and to the crystallizer 

temperature. 
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LITERATURE REVIEW 

Solutions and Solubility 

A solution may be defined as a homogeneous mixture of two or more 

substances. The substances may be in any of the three states of matter— 

gas, liquid, or solid. The solution is usually divided into two parts, 

the solutes and the solvents. It is conventional to call the con^xsnent 

in excess the solvent. For a solution con^sed of an inorganic salt 

dissolved in water the water is the solvent and the salt the solute. 

The solubility of a solute in a given solvent is usually stated as 

the parts by wei^t per part by weight of solvent. If a hydrated SRlt 

is dissolved in water, the solute concentration should always refer to 

the ainhydrous salt. This will avoid difficulty when more than one 

hydrated fom exists over the temperature range being considered. 

Solubility of salts in water is very ten^erature dependent, the solu

bility Increasing as the temperature increases for most but not all 

common salts. 

Saturation is an equilibrium condition. If a solution is saturated 

with respect to a solid, it is in equilibrium with the solid phase. A 

solution containing more dissolved solid than that represented by satu

ration condition is said to be supersaturated. Likewise if less dissolved 

solid than the equilibrium amount is present the solution is under-

saturated. 

If a saturated solution is cooled slowly without disturbance it 

be made to show appreciable degrees of supersaturation. The state of 

supersaturation is an essential feature of all crystallization operations. 
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The tenus "labile" (unstable) and "metastable" supersaturation were 

first introduced by Wilielm Ostwald (46). These terms refer to super

saturated solutions in which spontaneous deposition of solid, in the 

absence of nuclei, will and will not occur, respectively. 

Mullin (38) describes research carried out by Miers into the 

relationship between supersaturation and spontaneous crystallization. 

Mullin expresses the results of Miers in a solubility-supersolubilily 

diagram like that in Figure 1. The solid line represents the solubility 

curve and the dotted line the supersolubility curve. This super-

solubility curve represents tesçeratures and concentrations at which 

spontaneous crystallization occurs. These two curves divide the diagram 

into three zones: 

(1) The stable zone where crystallization is in^ssible. 

(2) The metastable zone where spontaneous crystallization is 

improbable. Growth of seed crystals will occur in this zone. 

(3) The labile zone where spontaneous crystallization is probable, 

but not certain. 

Supersaturation may in general be induced by: (a) evaporating 

some solvent, (b) cooling a saturated solution, and (c) reducing the 

solubility by addition of a third conçonent. The first two are most 

widely used in industrial "^pe crystallizers—referred to as evaporative, 

vacuum, or cooling crystallizers. 

Ting and McCabe (59) observed that the supersolubility carve is 

influenced by (a) cooling rate, (b) stirring rate, (c) amount of 

seed crystals, and (d) size of the seed crystals. 
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Nucleatlon 

Nucleatlon represents the first step in crystallization. Nucle

atlon may be defined as the formation of solid particles of solute 

capable of further grovth. Mullin ( 38) and Nielson {^3) both give 

detailed discussions of the subject. Also, for theoretical discussions 

of the surface chemistry involved there is the text of Zettleooyer (63). 

Hucleation may occur spontaneously or it may be artificially 

Induced. These two cases are often referred to as homogeneous and 

heterogeneous nucleatlon, respectively. Deciding on whether a system 

is undergoing homogeneous or heterogeneous nucleatlon may be quite 

difficult. Mullin (38) divides all nucleatlon into two types he calls 

"primary" and "secondary". Primary nucleatlon refers to all cases of 

nucleatlon, homogeneous or heterogeneous, in systems that do not 

contain crystals. Secondary nucleatlon refers to cases vhere nucleatlon 

is Induced by crystals present in the supersaturated system. He 

therefore gives the following breakdown: 

HUCIEA.TION 

PRIMARY SECOMDARY 
(induced by crystals) 

SOMOŒRECOS 
(spontaneous) 

EETEROOBHECXJS 
(induced by foreign particles) 

Secondary nucleatlon can occur by initial breeding, needle breeding, 

polycryetalline breeding, or collision breeding. 
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Pr-ttuary nucleatlon 

&)inogeneou8 nucleatlop The classical theory of nucleation is 

based on thermodynamics and developed in particular on the formation 

of a water droplet from the vapor phase. This work, first presented 

by Gibbs (24) and Volmer (62), has been modified and extended by many 

workers. 

The free energy changes associated with the process of homogeneous 

nucleation are presented by Mullin (38) as follows. The over-all excess 

free energy, AG, between a small solid particle of solute and the solute 

in solution is equal to the sum of the surface excess free energy, AGg, 

and the volume excess free energy, AGp. AG^ represents the excess free 

energy between the surface of the particle and the bulk of the particle 

and is a positive quantity, the magnitude of which is proportional to 

r^. AGj is the excess free energy between a very large particle (r= *'») 

and the solute in solution; and in a supersaturated solution it is a 

negative quantity proportional to r^. Thus 

AG = AGg+AGp 

=4 irr^TT + 4/3 irr3 A Gv (1) 

where V is the surface energy and AGy is the free energy change of the 

transformation per unit volume. If AG from Equation 1 is plotted as a 

function of r, the nucleus radius, it is seen that AG passes through a 

maximum (see Figure 2). This maximum value, ^('crit^ corresponds to the 

critical nucleus, r^, and for a spherical cluster is obtained by maxi

mizing Equation 1: 

d AG = SlTrT + z 0 (2) 
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or 

Tg = (3) 
AGy 

where AG^ is a negative quantity. Combining Equations 1 and 3 the 

critical over-all excess free energy is given by: 

This shows that the behavior of a newly created crystal nucleus in 

a supersaturated solution depends on its size; it can either grow or 

redissolve. The process which it undergoes should result in the decrease 

in the free energy of the system. The critical radius, r^, therefore, 

represents the minizum size of a stable nucleus. If the particle is 

smaller than it will dissolve because only in this way can it achieve 

a reduction in its free energy. Likewise, if a particle is larger than 

r^ it will continue to grow. "Eie growth being due to an effort to 

minimize the free energy. 

Nielsen (iQ ) discusses a more empirical approach to the nucleation 

process. He proposes a relationship "between the induction period, I 

(the time interval between mixing two reacting solutions and the appear

ance of the crystals), and the initial concentration, c, of the super

saturated solution: 

I = (5) 

where K is a constant and p is the number of molecules needed to form a 

critical nucleus. It is suggested, that the induction period, which 

depends on the supersaturation, represents the time needed for a nucleus 

of critical size to be assembled. The means of observation is controlling 



11 

when measuring I. Therefore this approach presents a problem. 

Heterogeneous nueleation For true homogeneous nucleation to 

occur the solution must be void of all foreign particles such as dust, 

seed crystals, etc. The production of an impurity-free system is 

virtually impossible. Therefore it is generally accepted that true 

examples of spontaneous nucleation are rarely encountered. Most 

nucleation of the primary type takes place as heterogeneous nucleation. 

The presence of a foreign body can induce nucleation at degrees 

of supercooling lower than those required for spontaneous nucleation. 

Therefore the over-all energy change associated with the formation of a 

critical nucleus under heterogeneous conditions must be less than the 

corresponding free energy change associated with homogeneous nucleation. 

Fletcher (19) applied classical nucleation theory to the growth of 

crystals on small foreign particles of different shapes. He developed 

general relationships for predicting the behavior of heteronuclei in 

metastable sy^tans. 

Secondary nv.--leation 

Secondary nuol' 'tion occurs vhen there are solute crystals present 

in a supersaturated solution. Secondary nucleation is caused by inter

action between crystals or between crystals and other solid objects such 

as the vessel walls. Strickland-Constable ($$) divides secondary 

nucleation into four general ̂ rpes. "Initial" breeding occurs if 

untreated crystals are put in a supersaturated solution. It is caused 

by crystalline dust being swept off the newly introduced crystals. 

"Needle" breeding occurs at high levels of supersaturation when needles 
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or spikes called dendrites grow on the ends of crystals. Ibe dendrites 

are then broken off by fluid shear. "Polycrystalline" breeding is the 

fragmentation of a weak polycrystalline mass. It occurs when crystals 

are made up of small randomly oriented crystals that are broken by 

agitation in the crystallizer. Ting and McCabe (59) found that if 

crystals are free to collide with the walls of the vessel or with other 

crystals that fresh nuclei are readily produced at very low super-

saturations. This fourth type of secondary nucleation, called "colli

sion" breeding is thought to be the predominant nucleation mechanism 

in industrial crystcdlizers. 

In the past few years secondary nucleation has become a very active 

area jf research. Melia and Moffitt (34) found that the number of 

secondary nuclei produced in the presence of a parent crystal of solute 

is dependent on the degree of agitation of the solution, the rate of 

cooling, and the degree of supercooling of the solution, but is independ

ent of the number, size, surface characteristics, and chemical nature 

(provided overgrowth of solute can occur) of parent crystal. Working 

with Cise and Randolph (16) found secondary nucleation increases 

with supersaturation, seed crystal mass and size, and stirring rate. 

They also say nucleation depends on crystal habit. At the same size 

and mass concentration, crystals of polycrystalline habit generated more 

secondary nuclei than crystals of elongated, mono-crystalline habit. 

Comparison of data on both habits indicated secondary nucleation occurs 

on the favored face. 

Larson, Tium, and Wolff ( 31}, working with «mmnn-tnni alum «VKi aTrmnnlinn 
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sulphate in a continuously operated mixed-suspension crystalJ.izer, 

found that secondary nucleation related to the magma density. 

In studying the effects of additives in a continuous crystallizer, 

Shor Larson (54) found that the nucleation rate could be changed by 

changing the surface characteristics of the parent crystal. 

Cayey ^nd Estrin (15) confirmed the importance of cooling rate and 

supersaturation, but they also observed an induction period vith seeded 

solutions of Mg^Oij in a pilot-scale agitated batch crystallizer. 

Mullin and Leci (39) studied the seeding of citric acid solutions 

in an agitated vessel. Secondary nucleation was observed to occur in 

a series of pulses, mainly during the latent period. The nucleation 

rate decreased with an increase in seed size or in the nysiber of seeds of 

a given size. 

Because collision breeding appears to be the primary type of 

nucleation in most industrial crystallizers, determination of the mecha

nism associated with it has been the topic of much recent work (3,6,16,17). 

Crystal Growth 

There aire three main steps in a crystallization process; (l) fcre

mation of a supersaturated solution; (2) nucleation of particles; and 

(3) growth of the particles. Growth and nucleation nomally occur 

simultaneously in industrial crystallizers. However, it has been observed 

that in some systems there are certain levels of supersaturation where 

growth will occur and not nucleation. It also has been seen that in 

certain cases even at levels of supersaturation which will normally 



14 

support nucleation, there will be no nucleation unless seed crystals 

are Introduced. 

There are several texts which deal with the growth of crystals. 

Among the books which include large sections on the subject sure those 

by Mullin (38), Nielsen (43), Van Hook (61), and Ohara and Reid (4$). 

For a more comprehensive account of the historical development the 

reader is referred to Buckley (10) or Strickland-Constable (55)« 

As Mullin (38) points out in his book, many attempts have been 

made to explain the mechanism and rate of crystal growth. He uses the 

three general headings of "surface energy", "adsorption layer", and 

"diffusion" to classify the many theories. 

The surface energy theories are based on the work of Gibbs (24), 

He noted that an isolated droplet of fluid is most stable when its surface 

free energy, and thus its area, is a minimum. He then suggested that 

crystal growth might be considered as a special case of this principle: 

the total free energy of a crystal in equilibrium with its surroundings 

at constant temperature and pressure would be a minimum for a given 

volume. Therefore, if a crysteLL is allowed to grow in a supersaturated 

solution, the development of the various faces should be in such a 

manner as to ensure that the whole crystal has a minimum total surface 

free energy for a given volume. Mullin ( 38) points out that, although 

there have been modifications to this original idea of Gibbs, so far there 

is no general acceptance of the surface energy theories because there 

is little quantitative evidence to support them. 

The adsorption layer theory of crystal growth was first stated by 
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Volmer (62). Volmer'a theory Is based on thermodynamic reasoning. 

When units of the crystallizing substance arrive at the crystal face 

they aren't immediately integrated into the lattice, but merely lose 

one degree of freedom. They are still free to move across the face by 

surface diffusion. Atoms, ions or molecules vill link into the lattice 

in positions where the attractive forces are greatest; i.e. where the 

greatest concentration of similar molecules are located. Under ideal 

conditions this step-wise build-up will continue until a layer is 

complete. Then before a new layer can be started a new monolayer 

island must be created. Both Buckley (10) and Millin (38) give accounts 

of how this theory has been modified by people like Brandes, Stranskii, 

and XoBsel. But all of the modifications had the same problem. That 

vas the initiation of a new layer on the surface. Frank (20) and later 

Burton, Cabrera, and Frank (12) solved this problem by introducing the 

idea of screw dislocations. Most crystals contain dislocations, which 

cause steps on the crystal surface. As pointed out be Frank (20) the 

screw dislocation eliminates the necessity for surface nucleation in 

the adsorption layer theories. 

The third class of crystallization theories, the diffusion theories, 

have their origin in the work of Kbyes and Whitney (k4). They viewed 

the deposition of solid on the crystal surface as essentially a diffu-

sional process. They also assumed that crystallization and dissolution 

were reverse processes, and the rates of both were governed by the 

concentration difference between the surface and bulk of the solution. 
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The crystallization equation proposed vas 

f : kjl(C.C*) (6) 

where m I mass of solid deposited in time t; A = surface area of ciystal; 

c = solute concentration in supersaturated solution; c* = equilibrium 

saturation concentration; and z coefficient of mass transfer. 

Based on the assumption that there would be a thin stagnant film 

of the liquid adjacent to the crystal face, through which the solute 

would have to diffuse. Kernst (42) modified Equation 6 to 

^ _ D A(c-c*) (7) 
dt - f 

where D = diffusion coefficient of solute, and S z length of diffusion 

path or film thickness. 

Equation 7 implies an almost infinite growth rate as S, the film 

thickness, gets veiy small, i.e. when crystals are very small. This 

is not observed. Also observations show that crystallization and 

dissolution are not necessarily reverse processes. Based on these facts 

Berthoud (8) proposed a modification to the diffusion theory. He 

suggested that crystal growth was a two-st^ process. The first step 

is a diffusion process with solute moving from the bulk of the fluid 

to the solid surface. The second step is a first-order "reaction" step 

where the molecules arrange thanselves into the crystal lattice. These 

two steps can then be represented by the equations: 

^ : %A(c-c^) (diffusion) (8) 

and 
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^ : KjA(c^-c*) (reaction) (9) 

where = coefficient of mass transfer by diffusion; = rate constant 

for the surface reaction; and c^ = solute concentration in the solution 

at the crystal-solution interface. 

Equations 8 and 9 can be combined by eliminating c^. Then an 

over-all driving force, c-c*, can be used to give a general equation 

for crystal growth 

g : Kg&(c-c*)1 (10) 

vhere Kg is an over-all crystal growth coefficient, Ihe exponent q is 

usually referred to as the order of the over-all crystal growth process. 

The diffusion theories cannot be reconciled with the adsorption 

layer and dislocation theories. Although it is acknowledged that the 

diffusion theories have grave deficiencies (e.g. they cannot explain 

layer growth or the faceting of crystals), it is convenient to measure 

and report growth rates in diffusional terms. The utilization of the 

mathematics of mass transfer processes make this the preferred approach, 

from the chemical engineers' point of view, despite its many limitations. 

If Kg in Equation 10 above is independent of size, the crystal 

remains geometrically similar as it grows. McCabe'sAL Law, McCabe (33), 

states that all geometrically similar crystals of the same material 

suspended in the same supersaturated solution grow at the same rate 

regardless of their size. 

As pointed out by Misra (37), when the diffusion process is the 

rate controlling step the growth rate becomes dependent upon the rate at 
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•which solute arrives at the surface. The transfer rate is then related 

to fluid dynamics around the crystal and crystal size plays a role in 

determining the growth rate. Violation of the AL Law can then "be 

expected in these cases. Then Equation 10 must "be replaced with one 

of the torn 

g : XgA(c-c*)1 f(L) (11) 

where f(L) is a function of the crystal size. Various forms of the 

function f(L) have been proposed: 

Branson (9): f(L) -

Canning and Randolph (14): f(L) = (1fa^L) 

Abegg, Stevens, and Larson (1): f(L) = (l "KaL)^ 

!I^es of Czystallizers 

îtost crystallisers csn be divided into three general ̂ pes: evapo

rative, cooling, and precipitation. Evaporative crystallizers usually 

operate under a vacuum and depend on the removal of solvent by evapo

ration, causing the deposition of the solute. Systems that have flat 

solubili-ty curves are best handled with this type of crystallizer. A 

cooling crystallizer takes a hot concentrated feed solution and cools it 

by refrigeration (also sometimes by evaporation). The solute is depos

ited due to the reduced solubilily at the lower crystallizer temperature. 

Systems exhibiting steep solubility curves can be handled in cooling 

crystallizers. In precipitation crystallizers supersaturation is pro

duced by addition of a third cosignent in which the solute is insoluble 

or by producing an insoluble reaction product vith a chemical reaction. 
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Industrial crystallizer» nay be of any of the above types. For 

additional Information on industrial ciystallization equipment the 

reader is referred to Bamforth (2), Bennett (7), Saeman ($1), or 

Mullin (38). 

Laboratory crystalllzers are usually of the cooling or precipitation 

type. Much of the work has been done in batch equipment because of 

easier operation and control. However in the last decade much more 

emphasis has been placed on continuous crystalllzers. Continuous 

crystallization is widely used in industrial applications and its use 

in the laboratory is an attes^t to obtain kinetic data applicable to 

industrial systems. Batch and continuous systems are both is^rtant in 

laboratory work and the type of system selected depends on the investi

gation being performed. 

Crystal Population Balance 

Crystalllzers of the continuous mixed-suspens ion, mixed-product-

removal type are widely used in both industry and the laboratory. Such 

crystalllzers behave as though they are perfectly mixed. Therefore, for 

any arbitrarily small element of volume in the crystallizer, a full and 

uniform particle-size continuum can be assumed to exist. Also the 

distribution of the product crystals is the same as the distribution in 

the volume of the crystallizer. For laboratory crystalllzers the 

constraints and conditions permitting this type of operation are rela

tively easy to attain. Although perfect mixing is rarely achieved in 

industrial crystaillizers, many industrial units do approximate these 

constraints. 
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The following is an application of the population balance theory 

to the steeidy-etate operation of a MSMPR (mixed-suspension, mixed-product-

removal) crystal 1 izer following the presentation of Randolph and 

Larson ( 30}. The constraints and assumptions used in the analysis 

are as follows: 

(a) perfect mixing 

(b) no classification at withdrawal 

(c) breakage assumed negligible 

(d) uniform shape factor. 

Steady-state operation requires that the feed rate, composition, and 

temperature remain constant, and that the crystallizer volume and tem

perature remain constant* 

The population density, n, is defined by 

where N is the number of crystals in the size range AL per unit volume 

of suspension. The number of crystals in the size range L^ to Lg is 

then given by 

^^1 

(13) 

The number of crystals in a given size range mist be conserved with 

no accumulation if the system is operating at steady-state. For a number 

balance on an arbitrary size range L^ to Lg in the volume V of the 

cryatallizer we have: 

Input to size range AL = Output from size range AL 

or. 
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QiS^ALAt + VG^nj^At = ^ALAt f (l4) 

vhere 

= volumetric flow rate in (volume/time) 

Si = average population densily in the range to Lg 
in the feed (numb era/length-volume) 

AL = (length) 

At = Increment of time (time) 

V - volume of crystallizer (volume) 

z growth rate of crystals of size (length/time) 

n^ : population density of crystals of size 
(numbers/length-volume ) 

ng = population density of crystals of size Lg 
(numbers/length-volume) 

Gg : growth rate of crystals of size Ig (length/time) 

Q = volumetric flow rate out (volume/time) 

Dividing thru by At and rearranging, 

V ( GgOg'^'l^i ) - (Qi^i"^ ) A L (15) 

Letting AL approach zero so that the average values of n become point 

values; Equation 15 becomes 

= Qini-Qn (16) 

li there are no crystals in the feed solution, n^ =0, and 

(V/Q) d(Gn)/dL n : 0 (17) 

Equation 17 represents the population balance for a WSMFR crystallizer. 

It may be simplified further if, for the system being studied, McCabe's 

AL Law holds. Then G is not a function of L. 

G?(dn/dL) + n = 0 (I8) 

where the drawdown time, equals V/Q. Equation 18 can be integrated. 
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letting iP denote the population density of zero-size particles or 

nuclei, 

Slo 
vhich gives 

n = n° e3cp(-L/G"^) (20) 

Equation 20 is the fundamental relationship giving the number 

distribution of the crystal product obtained from a MSMER ciystallizer 

operated under the given conditions. A plot of log n versus L gives a 

straight line vith an intercept at L = 0 of and a slope of -l/Gf-

Therefore, under the constraints and assumptions made earlier, if an 

experiment is carried out at a residence time, '2', the crystal growth 

rate, 6, and the nuclei density, n°, can be determined from measurement 

of the population density, n, as a function of size, L. 

Besides the tert by Randolph and Larson (50) other references (5, 

30,48,52) also deal with a mathematical approach to the particle size 

distribution. Canning and Randolph (l4) derive an empirical model to 

describe crystallization systems where growth rate increases vith 

increasing crystal size in violation of McCabe's AL Law. Canning (13) 

points out that test work with industrial crystallization systems Indi

cates that results often deviate from the basic design theory. But he 

goes on to point out that an awareness of these deviations can make it 

possible to use data that otherwise might be discarded. 
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Relation between Crystal Size Distribution and Kinetics 

Kinetic information is important to both the designer and operator 

of a crystallizer. Knowing the kinetics of a systœa is the key to 

understanding the factors influencing crystal size distribution (CSB). 

By using the population balance it is possible to obtain insight on how 

crystallization kinetics affects CSD. 

To date, the attempts to find a satisfactory theoretical relation 

for nucleation rate, B®, have not been too successful. Nielsen (43) 

notes that a power-law function of supersaturation does a good job 

of approximating the theoretical expressions. Randolph and Larson ($0) 

have had considerable success with the empirical expression 

B° = K^^Cc-Cg)"'! Kj^B® (21) 

where s is the supersaturation, C-Cg. 

The growth rate, G, can also be expressed as a power-law function 

of supersaturation. 

G : KgS^ (22) 

By definition, 

i 11, ,0 : (i) L =0 (# 

Therefore, the nucleation nay be expressed in terms of the growth rate 

and the population density of nuclei by 

B° = rPQ (24) 

If growth is a linear function of supersaturation then n = 1. Equations 

21 and 22 laay then be coaibined by elimination of s to give 

= yf- (25) 
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Or by coTiblning Equations 2k and 25 

nO = KgG*-l (26) 

Equation 26 relates the population density of nuclei to the crystalli

zation kinetics. 

It vas shown earlier that by steady state operation of a MSKFR 

crystallizer, the population balance enables the experimenter to 

determine n° and G at a given residence time. By operating a ÎGMPR 

crystallizer at different supersaturation levels the kinetic order can 

be obtained from Equation 26. 

A great many parameters of crystallizer operation have been found 

to influence the crystallization kinetics and the CSD. Some of the 

more is^rtant parameters are temperature, level of supersaturation, 

iapurities, suspension density, and stirrer speed. Several investigators 

(22,29,32,45,49,54) have reported the effects of one or more of these 

parameters. 

Is^rtance of Supersaturation in Understanding the Operation of a 

MSMER Crystallizer 

Supersaturation is the driving force for the crystallization process. 

It vas shovn earlier that both nucleation and crystal grovth can be 

stated as pover-lav functions of supersaturation. 

Because nucleation and growth are occurring simultaneously and in the 

same environment, they are dependent on the same level of supersaturation. 

B° = Kj^s® 

G : Kgs" 

(21) 

(22) 
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Therefore Equations 21 and 22 can be combined to give 

= KjjG^ (2?) 

This represents a more general form of Equation 25 where n = 1. i then 

represents the order of nucleation with respect to growth. While n 

is the order of growth with respect to supersaturation and m is the 

order of nucleation with respect to supersaturation. 

The level of supersaturation in a MSMR* crystallizer often markedly 

affects the CSD of the product. An analysis of the effect can be made 

by following the work of Randolph and Larson ( 50). In their analysis 

they assume that the suspension density (mass of solids per volume of 

slurry) can be fixed at a given level regardlesb of the holding time. 

As was shown previously for the JGMHÎ crystallizer, where crystal 

growth is not size-dependent, the population balance yields 

n : n° exp(-L/G'îr) (20) 

Randolph and Larson ( 50) also show that a mass balance with one mixed 

withdrawal point gives 

G = Mj./6KyY/Jn°(Gr)^ (28) 

where 

G - growth rate 

Hp = suspension density 

Ky - volumetric shape factor 

2ri residence or drawdown time 

n° = population density of nuclei 

p = densily 

The effects of supersaturation on CSD can be observed by considering 

two crystallizations carried out at the same temperature but at different 
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supersatiirations. A convenient vay to assure different super saturations 

is to operate at different residence times while maintaining the same 

suspension density. 

For crystallizations 1 and 2 operating to produce the same suspension 

density, Mj, Equation 28 gives 

: 6Kypn5(G^-ir^)^ : 6K^png(GgT2)^ (29) 

or 

É= (̂ ) 
^1 V^2 T2 / (30) 

Using Equations 26 and 27 to eliminate G^ and G^ gives 

Mill) 
(TT (if 3) (31) 

Z2/ 

and cohbining Equations 30 and 26 to eliminate n gives 

h 
Gs./ÏATTFIT (32) 

As pointed out by Randolph and Larson ( $o), examination of Equations 

20, 31, and 32 for ^ gives rise to the following observations : 

(a) When the kinetic order i is equal to one, the CSD is 
unaffected by the supersaturation level, i.e., nj = 
G-, t. : Gg although growth rates increase in proportion 

(b) When the kinetic order i is greater than one, say three, 
no increases with a decrease in holding time (increase in 
supersaturation) by a factor to the 4/3 power and 
G again increases but to a lesser degree than when i = 1^ 
namely by the factor ( "V /'T ) to the 2/3 power. The net 
result is smaller crystal siSe at shorter holding times 
(higher supersaturation). 

(c) When kinetic order is less than one, the crystal size 
increases with increase in supersaturation. 
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In Bunaasry, it appears that the higher the supersaturation, the 

smaller the crystal size for systems vhich exhibit kinetic orders 

greater than one. Also, the higher the order of nucleation, the more 

difficult it will he to produce crystals of large size. 

Effects of Secondary Nucleation 

Many crystallization systems exhibit secondary nucleation effects. 

When secondary nucleation is present it is necessary to use a kinetic 

model which accounts for the nuclei formation directly related to the 

solids in suspension. used in Equation 21 srast then be defined as: 

= 4 4 (33) 
t 

In this case accounts for the temperature effects in the systaa 

and accounts for the secondary nucleation effects. Equation 21 

then becomes : 

B° z s° (34) 

Likewise when there are secondary nucleation effects should 

be defined as: 

Kj, = % 4 (35) 

Then Equation 27 becomes : 

BO : % (j(ia/n) = gl (36) 

Measurement of Supersaturation 

If the concentration of a solution can be measured, and the 

equilibrium saturation concentration at the same temperature is known, 

it is a sisple calculation to detezsine the super saturation of the 
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solution. There are many ways of measuring supersaturation; but not 

*11 of these are readily applicable to practical use. 

Solution concentration may be determined directly by analysis, 

or indirectly by measuring some property of the system that is a 

sensitive function of concentration. The direct methods are either 

gravimetric determination or chemical analysis of the solution. Prop

erties frequently chosen for indirect methods include density, viscosity, 

refractive index and electricaJ. conductivity. As discussed by Mullin 

(38), these properties can often be measured with high precision, 

especially if the measurement is made under carefully controlled 

conditions in the laboratory. However, for the operation of a contin

uous crystallizer the demand is usually for an ̂  situ method, prefer

ably one capable of continuous operation. Under these conditions 

problems may arise from the temperature dependence of the property 

being measured. In general, density and refractive index are the 

least temperature-sensitive properties. 

Refractive index 

Critical angle refractometry is based on the physical fact that 

light travels at different speeds in different mediums. Refractive 

index is defined as the ratio of the velocity of light in a sample medium 

to the velocity in a reference medium. The most common reference medium 

is air. Gibb (23 ) gives the following relationship for the refractive 

index of a transparent isotropic medium: 

Ky = Bin i^/sin r^ (37) 

where i^ and r^ are the angles of incidence and refraction, respectively. 
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Both angles are measured from a plane normal to the surface of the medium 

in question. 

Although Hy is a relative measurement (based on the reference 

medium) it is the value most often found in the literature. In general, 

the refractive index of a substance decreases with increasing tes^r-

ature and vith increasing vave length of the illuminating raj. Unless 

otherwise stated, standard tai^ersture is assumed to be 20°C and the 

standard wave length 5S9 sy (sodium D line). Because refractive index 

is a function of temperature, it is in^xjrtant to contrcO. this variable. 

The variation of refractive index with teaçerature is very nearly 

over a limited range. 

Use of refractive index in crystallization measurements 

The first reported use of measuring supersaturation of a solution 

by measuring changes in refractive index appears to be the studies by 

Medium 

Figure 3. Angles of Incidence and Befraction 
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Mi ers (35) in 1904 and by KLers aid. Isaac (36). In this study a 

solution of sodium nitrate and water vas cooled. Measurements of 

refractive index changed linearly until the solution reached its satu

ration temperature. At the saturation temperature the refractive index 

levelled off until a shower of nuclei appeared. Upon appearance of the 

nuclei the refractive index began to decrease and continued to do so 

until the system reached equilibrium. The change in refractive index 

was proportional to the change in the solution concentration. 

Since that time refractive index measurements have been used to 

measure the supersaturation at different points along the surface of a 

growing crystal (11) and to measure concentration changes in a batch 

system (39,4l). 

Jenkins ( 2$) used a Zeiss dipping refractometer in his work. Se 

used the refractive index to follow concentration changes of a solution. 

He noted that the method had distinct advantages over some other methods, 

the main advantage being it is quite rapid. He observed that with his 

method the process liberated heat, slightly increasing the temperature 

of the solution as shown by thermometrlc measurements. This had two 

effects; (l) slowing down crystallization ty reducing the supersat

uration, and (2) decreasing the refractive index of the solution, thus 

apparently increasing the rate of the process. These effects partially 

neutralized each other but the second was greater, so the rate is 

apparently increased in the earlier, and retarded in the later part 

of the run. To obtain accurate detezsiisatlons in very rapid runs 

corrections had to be made for this effect. 
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KLekar (28) used a differential refractometer in his measurements 

on a MSMPR crystallizer. The supersaturation vas directly measured 

from a continuous sampling of the contents of the crystallizer. 
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TSECeSTICAL DEVELOPMENT 

Objectives of Present Work 

The objectives of the present work are twofold. The first is to 

demonstrate that the measurement of refractive index is a feasible 

in situ method of continuously monitoring the supersaturation in a 

MSMPR crystallizer. As was mentioned earlier the level of supersatu

ration in a crystallizer represents the magnitude of the driving force 

for the two mechanisms of crystallization, nucleation and growth. To 

fully understand the kinetics of crystallization and the resultant 

CSD a method of measuring the crystallizer supersaturation is needed. 

From the work done in the past it appears that refractive index measure

ment is a very promising method of indirectly monitoring the super-

saturation. 

The second objective rests on the success of the first. For, if 

the continuous measurement of supersaturation in a 16MPS crystallizer 

is possible, then there is much additional information about the 

crystallization process which may be investigated. Rot the least of 

which is the kinetic relationships between the nucleation and growth 

rate and the level of supersaturation. If the supersaturation can be 

measured directly this provides a chance to check out the power-lav 

relationships for growth and nucleation. If the power-law relations 

are correct, then tesperature effects can also be studied. The eongplete 

kinetic relations as functions of both supersaturation and tecperature 

would then be obtainable. 
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Supersatviration Relationships 

The functional relationships given earlier are: 

= Kis°̂  (21) 

for nucleation and, 

G : Yi^B^ (22) 

for growth V If a NEMPR crystallizer is operated at the same conditions 

except for varying residence times (which will change the supersaturation 

level), then log-log plots of nucleation rate versus supersaturation 

and growth rate versus supersaturation can be made. If these plots are 

linear then Equations 21 and 22 are verified. From the slopes the 

parameter# m and n may be calculated. The constants and may be 

computed from the intercepts of the log-log plots. 

As a further check a log-log plot of nucleation versus growth may 

be prepared. If Equation 27 is correct, 

(27) 

then this plot should also be linear. And the slope and intercept may 

be used to calculate i and Kjj, respectively. Since 1 z m/n and 

:  K i / t h e s e  v a l u e s  s h o u l d  c h e c k  o u t  w i t h  t h e  e a r l i e r  

calculated values. 

If linear log-log plots aren't obtained then relationships different 

from the power-lav functions of supersaturation would be needed to 

describe the crystallization kinetics « Development of such relationships 

should be greatly aided by having an actual measurement of the super-

saturation level. 

If the measurecent of supersaturation in an operating crystallizer 
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is possible then effects of other parameters of the crystallization 

system may also be studied. By varying such parameters as temperature^ 

stirring rate, and impurity levels it vould be possible to see how this 

affected the overall kinetics and the order of growth and nucleation 

To obtain the conçlete kinetic relationships for crystal growth 

and nucleation it is advantageous to study the temperature effects. A 

study of Equations 21 and 22 reveals that in each case there are three 

parameters that may vary with temperature. They are; the rate coeffi-

supersaturation, s. Supersaturation is not directly temperature-

dependent, but may be supported at different levels for different 

temperatures due to the combined kinetics of growth and nucleation at 

the temperatures involved. Analogous to the kinetic relations for 

chemical reactions, it would not be expected that the power veilues, m 

and n, would change with the temperature of growth or nucleation. This 

leaves only the rate coefficients, for nucleation and Kg for growth, 

as temperature dependent parameters in the power-law functions. 

As noted by Genck (21), both of these coefficients might reasonably 

be expected to follow an Arrhenius - type temperature dependency. Assuming 

this Igrpe of dependency the following equations are applicable: 

(m and a) 

Effects of Temperature 

cient, or the power parameter, m or n, and, indirectly, the 

(38) 
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Kg = kg exp(-E^/RT) (39) 

vhere and kg are frequency factors; and and are activation 

energies for nucleation and growth, respectively. The activation 

energies may be calculated by operating the crystallizer at different 

teiq)erature levels. A different and Kg value can be calculated for 

each temperature using the methods described above. Then semi-log 

plots of K^ and versus 1/T can be made. If Arrhenius - type dependency 

is indeed followed the semi-log plots will yield straight lines. The 

slopes of such plots can then be used to calculate the values and S^. 

While the intercepts yield values for k^ and kg. Cosçlete kinetic 

relationships for nucleation and growth will then be available: 

B°/M^ : k^ exp(-Ej^/RT) 8° (40) 

and 

G : kg ezp(-Eg/BT) s^ (4l) 
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EXHERIMEmL 

Equipment 

A simplified flow diagram of the equipment used is shewn in 

Figure k. The equipment cam be divided into five primaxy subsystems: 

(1) the crystallizer, (2) the feed supply systaa, (3) the with

drawal system, (4) the coolant system, and ($) the sampling and 

instrumentation equipment. 

Crystal1izer 

The crystallizer used in the present work was a mixed- suspens ion 

mixed-product-resaoval cooling crystallizer. It vas a plexiglass 

cylindrical vessel equipped with three baffles and a propeller type 

agitator. The overall volume of the vessel was approximately 14 liters, 

however the active volume used was 10 liters. A partial draft tube 

was achieved by the helical stainless steel cooling coil which was 

Immersed in the crystallizer. The agitator which was vertically mounted 

in the center of the vessel was powered by a Model V-7 Lightnin Mixer. 

The direction of flow was down the center and up the outside «nmii at 

space between the cooling coil and vessel wall. The agitator speed was 

adjustable to provide good mixing of the mother liquor and crystal 

suspension. 

Previous studies (4,l8) have shown that it is important to insure 

isokinetic withdrawal in a MSMER crystallizer. Therefore the product 

withdrawal tube vas placed parallel to the circulation flow and the 

withdrawal vas made in the direction of flow. 
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Figure 4. Flaw diagram for the crystallization ayotem 
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A sketch of the crystallizer is shown in Figure 5-

Feed supply system 

The feel solution was prepared and stored in a 55 gallon stainless 

steel drum. The outside of the tank was insulated. An electrical 

immersion type tank heater was used to heat the solution. The heater 

was thezToostat controlled to maintain the desired tanperature in the 

feed tank throughout the experimental runs. The feed solution was 

mixed by a three-bladed impeller powered by a 3A horsepower Lightnin 

mixing motor. 

The feed solution was pumped to the crystallizer by an Eastern 

1/15 horsepower centrifugal pump that was controlled by a Varlac variable 

power s tat. Also included in the feed line were a rotameter to monitor 

the flow rate, a needle valve for flow control, and a 0.35 micron Pall 

Disposable Filter Asseaibly. The feed inlet to the crystallizer vas 

from above with discharge into the center of the vessel. 

A heat exchanger was also incorporated into the feed line to 

help maintain temperature control. The thermostat control on the 

immersion heater in the feed drum produced some fluctuations in the 

temperature of the feed solution. A small glass heat exchanger was 

used to decrease the amplitude of these fluctuations and therefore 

maintain better ten^rature control in the crystallizer. The feed 

solution was fed through a single spiral tube. Water from a constant 

te&^>erature bath was passed through the shell side of the heat exchanger. 



39 

COOLANT OUTLET 

AIR FILLED 
JACKET 

COOLANT INLET 

SAMPLE PORT 

COOLING COIL 

Figure 5. Crystallizer vessel 
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Wlthdraval system 

The average outflow from the crystallizer vas too small to vithdraw 

continuously vlthout size claeslflcatlon. Therefore Intermittent 

product vithdrsval vas used so that hi^ vlthdraval velocities could 

be achieved. To accon^lish the intermittent vlthdraval, a Sargent 

Laboratory Relay vas used in conjunction vlth an adjustable time delay 

unit. A copper electrode was used to sense the liquid level. GSie probe 

was set at the maximum desired liquid level for the vessel. When the 

liquid level reached the height of the probe it would complete a circuit 

and activate the relay-time delay system. This system would then start 

the vlthdraval pump vhich ran for a preset length of time until the 

time delay shut off. VlthdravsLl times of 2, 10, or 1$ seconds could 

be used. The vlthdraval pump was a Jabsco self-priming, centrifugal 

pump. The slurry vlthdraval tubing betveen the crystalllzer and the 

pump vas 3/8 inch l.d. stainless steel. This tubing vas wrapped with 

an electricalheat tape to provide some initial heating of the slurry 

before it vas returned to the feed tank* 

Coolant system 

The coolant used was a mixture of water and ethylene glycol. The 

mixture vas stored in another Insulated 55 gallon stainless steel drum. 

The coolant supply vas kept at a constant temperature by a Blue M 

Refrigeration Unit vhich had a maximum capacity of 350 vatts. The 

coolant vas pumped through the stainless steel coll in the crystalllzer 

by an Eastern l/l5 horsepower centrifugal pump. The coolant flow rate 

vas controlled by a Variac connected to the pump. 
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Sampling Arwl Instrumentation 

The differential refractometer used in the experiments vas a 

Waters Associates Mcxiel R-404. The unit has two cells, one for the 

reference material and one for the sample. The refractometer measures 

the deflection of a light beam resulting from the difference in refrac

tive indices between the sample and the reference liquid. The instrument 

is capable of measuring changes of 1 x 10"? RI units. The output 

signal from the refractometer is in millivolts. With the use of cali

bration curves the output may be converted to refractive index units, 

or in the case of the present work to concentration units. The output 

was recorded by using a Beckman Instruments Offner Type strip chart 

recorder. To insure thermal accuracy of the refractometer a Haake FJ 

circulating water bath was used to keep the temperature of the refrac

tometer constant. 

The sample vithdrawal port vas in the side of the crystal lizer as 

shown in Figure The opening vas covered vith a fine mesh screen 

vith an aperture of 75 microns to prevent crystals from leaving the 

vessel. Small l/8 inch plastic tubing vas used for the flow to the 

refractometer. A Masterflex variable speed drive pump with solid state 

controller unit was used in the sampling line between the crystallizer 

and the refractometer to provide a constamt flow rate. Masterflex pump 

head number 7014 with a range of 7.5 to 150 ml/min was used. 

To provide a reference solution a "saturator" vas installed inside 

the crystallizer. This vas a lyrex tube 1 and 1/8 inch in diameter and 

7 inches long. The bottom of the tube vas sealed using a Millipore 
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Svizinex-2^ filter unit with a l/lO inch outlet. Plastic tubing was 

connected to the outlet to allow liquid withdrawal. The filter unit 

contained 2$ mm filter paper with a maximum opening of 0.85 micron. 

The top of the "saturator" cylinder was left open but mounting was such 

that the top was above the liquid level in the crystallizer. 

The "saturator" was filled approximately half full with KNO^ crys

tals and then filled with distilled water. The arrangement provided a 

supply of saturated KNO^ solution at the same temperature as the 

crystallizer and thus represented a reference for supersaturation 

measurements. Withdrawal from the "saturator" to the reference cell 

was periodic and was accomplished using a second Masterflex pump. If 

the liquid in the "saturator" became depleted during an experimental 

run it could be momentarily lowered below the liquid level of the 

crystallizer and refilled with the crystal slurry. The bed of undis

solved KNO^ crystals was more than ample to ensure a saturated solution 

at all times during the run. 

For those experimental runs where the crystallizer tençerature 

was greater than the room tesperature an electrical heating tape was 

used on all sampling lines to prevent in-line crystallization and flow 

blockage. 

Calibration of Refractoaeter 

Before the refractometer can be used in the experiments it must be 

calibrated. The refractometer measures the difference between the 

refractive indices of a sample solution and a reference solution. 
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Calibration allows the refractive index difference to be converted to 

a concentration difference, a value of super saturation. 

Solutions of known concentration were prepared by addijng known 

weights of KNO^ to known weights of water. Each of these known solutions 

was then used in the reference cell of the refractoneter to produce 

a calibration curve. Each reference solution was handled in the same 

manner and each resulted in a calibration curve. Successive knowm weights 

of water vere added to each reference solution. After each water addition 

a small amount was placed in the sample side of the refractoneter and 

a reading made. At all steps of the procedure the solution concen

tration was calculated by gravimetric methods. The results were plotted 

as calibration curves. The slopes of the calibration curves were calcu

lated to give the change in refractive index per change in concentration, 

AR.I./AConc. This therefore gives the relationship between refrac-

tometer reading and super saturation. A total of eight different cali

bration curves were obtained, each with a different reference concentra

tion. C&e curves all had linear slopes for a small change in concen

tration, and the curves were all nearly parallel. The calibration curves 

are shown in Figure 6. The resulting slopes are given in Table 1. 

Averaging the values given in Table 1 yields a calibration value of 

-175 pRi/mssu. 



Figure 6. Refractive index calibration curves for 
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Table 1. Slopes of the refractometer calibration curves 

Bun number Slope, pRi/mssu® 

4c -177 
5c -203 
6c -162 
7c -180 
8c -210 
9c -143 
10c -169 
11c -154 

: 10~^ refractive index units 

B188U Z miUisupersaturation unit or 10~  ̂ grams XNO^/gram 

Procedure 

Feed preparation 

In preparing the feed solution reagent grade potassium nitrate 

vas used. Feed of the desired concentration vas prepared by dissolving 

the required velght of salt In distilled vater. For each series of 

experimental runs the feed concentration vas selected to be that of a 

saturated solution at a tesoperature one to tvo degrees centigrade above 

the crystal lizer tes^erature being used. During the ciystalllzer opera

tion the feed solution vas maintained at a temperature at least three 

degrees above the saturation temperature to ensure that crystals 

vere dissolved. 

At the beginning of each tençerature series approximately 25 to 
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35 gAi 1 ftnH of feed solution vas prepared. This amount of solution vas 

sufficient to keep the heating coil submerged and to redis solve the 

crystals that were recycled in the product slurry. The feed concen

tration vas checked by hydrometer and/or gravimetric methods at the 

beginning of each experimental run. Periodically over a series of runs 

SOSLU additions of make-up water were required to replace water lost 

from the feed tank by evaporation. In all cases it was attested to 

keep the feed concentration approximately the same for a series of runs. 

Coolant systaa 

Refrigeration was provided by a Blue M portable cooling unit 

equipped with a l/3 h.p. motor and having a maximum capacl^ of 350 

watts. The coil of the cooling unit was placed in a mixture of ethylene 

glycol and water (approximately 25 gallons). The refrigeration unit 

was turned on prior to the beginning of a run so that the coolant solu

tion could be cooled to a temperature 10°C below the operating level of 

the crystalllzer. The time required for this initial cooling down 

depended upon the coolant temperature desired and varied from a couple 

of hours to overnight. 

During an experimental run the coolant was circulated throu^ the 

stainless steel coll inside the crystalllzer and returned to the storage 

drum by means of a centrifugal pump connected to a Variac power s tat. 

Steady state temperature in the crystalllzer was maintained by varying 

the coolant flow with changes In the powers tat setting. At the beginning 

of a run the tes^erature of the coolant mixture would rise until steady 

state operation was achieved. At steady state there was usually only a 
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one or tvo degree centigrade temperature difference between the coolant 

and the crystalllzer. 

Due to the limited heat removal capacity of the Blue M unit the 

coolant sometimes continued to rise in temperature at short residence 

times. It vas then necessary to increase the flow rate of the coolant 

by adjustment of the powers tat. This procedure changed the amount of 

coolant available to carry away heat and was continued throughout the 

run as needed. In these runs it was necessary to start with a lower 

initial temperature of coolant. 

Operation of crystallization system 

The feed solution was stirred and heated to the required temperature. 

The coolant mixture was cooled to the desired temperature. The feed 

flow and coolant flow were started at the same time. The feed flow rate 

was adjusted to give the proper flow rate. The feed solution was pushed 

from the drum throu^ a final filter, a control valve, a rotameter, and 

into the crystalllzer. When the crystalllzer was filled the vessel 

stirrer was started and adjusted to a speed of 2000 RFM. Also the opera

tion of the level controller and the product removal pump was initiated. 

The coolant flow rate was adjusted to bring the crystalllzer to the 

desired temperature level. During the run adjustments were made in the 

feed and coolaint flow rates to maintain a constant residence time and 

crystalllzer tearperature. 

The crystalllzer was operated for a minimum of el^t residence times 

to achieve steady state. Then supersaturation measurements were started. 

The supersaturation data was collected for two to six residence times. 
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Sanpllng of the crystal suspension vas then initiated. Tvo saoules 

of the crystal suspension vere obtained approximately one half hour 

apart. 

After All of the data for a run had been collected the feed and 

coolant pumps vere shut off; the crystallizer vas es^tied, and then 

filled vlth distilled vater. 

Sampling and filtration of crystals 

A graduated vacuum flask vas alloyed to vithdrav saoules of the 

crystal suspension from the operating cryctsllizer. IZhls method resulted 

in quick removal of the sangile vhlch prevented size classification and 

led. t-o isz the nsthod of senpling. The size of the sançles 

varied depending upon the suspension density but vere generally in the 

range of 400 to 800 milliliters in size. Samples vithdravn from various 

locations in the crystallizer for the same run revealed similar size 

distributions. This offers supporting evidence for the assumption of 

perfect mixing in the operating ciystallizer. 

After obtaining the sample it vas important that the mother liquor 

be filtered off as quickly as possible to prevent nev crystallization or 

the dissolving of existing crystals. Therefore the samples vere immedi

ately filtered by suction after being vithdravn from the crystallizer. 

Either Whatman Ko. $ or Whatman No. 4l filter paper vas used in a 9 cm. 

Coors filter. After being filtered the crystals vere vashed at least 

three times vlth mother liquor and once vlth a final vash of acetone. 

Suction vas continued until the crystals vere dry enough for easy removal. 

Then they were placed on a paper and slloved to air dry for at least 
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a day before being sized. When the crystals were dry their total vei^t 

was recorded for use in calculating the suspension density. 

The crystals were separated and sized using a set of 3-inch, U. S. 

Standard sieves. Initial agitation was provided by a Ro-Tap testing 

sieve shaker. Each sangle vas shaken for an hour. It was found that 

better separation occurred when additional shaking was provided by 

hand. Sieves of the following mesh and aperture sizes were used (the 

apertures expressed in millimeters are in parentheses): l6(l.l9), 

18(1.00), 20(0.841), 25(0.710), 30(0.600), 35(0.500), 40(0.420), 45 

(0.355), 50(0.300), 60(0.250), 70(0.212), 80(0.180), 100(0.150), 120 

(0.125), 140(0.106), 170(0.090), 200(0.075), and the pan. The crystals 

were then removed from each screen and placed on weighing papers. The 

weight of each size fraction was then found using a Mettler Balance. 

From the various weights the population density could be calculated. 

Supersaturation measurement 

While the crystallizer was coming to steady state the refractometer 

was turned on to warm up and the constant temperature bath was brought 

up to the desired temperature. Also the saturator was filled with 

solution from the crystallizer. Before collecting data the recorder 

was turned on and the refractometer was zeroed using distilled water in 

both cells. When the crystallizer had reached steady state the sampling 

pumps for both the saturator and the mother liquor were started. îhe 

recorder was started and supersaturation readings were teiken for a 

minimum of two residence times. Flow from the crystallizer was continu

ous during the data collection. Flew from the saturator was intezmittent 
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however. Initially the reference side of the refractometer was 

flushed and filled using solution from the saturator. Then this flow 

was shut off with the reference cell of the refractometer then containing 

stagnant liquid. If and when the temperature in the crystallizer 

changed by more than 0.1°C the saturator pump was again started and 

the reference cell filled with new solution from the saturator. If 

the saturator was emptied during a run then it was refilled from the 

top with crystallizer solution. As solution was passed throu^ the 

saturator the crystal bed grew. Therefore after a few runs it was 

necessary to clean excess crystals out of the saturator. 

Supersaturation data was collected for at least two residence 

times during each run. At the end of the run all lines, the refrac

tometer, and the pumps were flushed with distilled water. 
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RESULTS 

Treatment of Data 

As vas aentloned earlier a sieve analysis vas used to obtain the 

veight fractions for the various size ranges. To obtain population 

densities this weight distribution had to be converted to number of 

particles. The procedure used to find the population densities vas 

as follows: 

a) The arithmetic average diameter, L, of each fraction was deter

mined. This is just the arithmetic average of the uperture for the 

sieve the fraction vas collected on and the aperture of the sieve-

directly above in the nest. 

b) The veight of each fraction vas converted to number of crystals 

by dividing by the cube of the average diameter, "j?, the volumetric 

shape factor, Ky, and the density of the solid crystals. The volumetric 

shape factor relates the particle volume to the size cubed. For this 

analysis a shape factor of 1.0 vas assumed for potassium nitrate. (See 

Appendix A.} 

c) The number of crystals in the size fraction vas then divided 

by A L to obtain the population density, n. AL r^resents the vidth of 

the fraction and it is obtained by taking the difference in aperture 

diameter between successive sieves. 

d) The population density of crystals vas then put on a basis of 

100 ml. by multiplying by the ratio of lOCtol. volume to the suspension 

sample volume, V,. 
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The above calculations can be combined into one equation vhich 

gives the population density as a function of the weight fraction 

obtained: 

See Appendix B for the breakdown of the different size fractions. 

The readings from the differential refTactometer were in milli

volts. However once the refractometer had been calibrated it was 

a simple multiplication to change the millivolt readings to concen

tration differences and thus supersaturation. It must be emphasized 

here that the calibration as well as all data collection had to be 

done at a specific constant temperature. This is the reason for the 

Haake constant temperature bath. The water flow from this bath was 

circulated through the refractometer unit at all times to maintain a 

constant tes^erature. This constant temperature was 35°C which was 

selected so as to be well above the crystallizer temperature for all 

runs. 

As was mentioned earlier the supersaturation reading was recorded 

over a period of two to six residence times. During this recording time, 

which was all at steady state operation of the crystallizer, there were 

fluctuations in the supersaturation reading. These fluctuations were 

due to slight variations in flows and the normal cycling vhich occurs 

with an operating system. Refractive index and also supersaturation are 

extremely temperature sensitive. The operating crystallizer did go 

throû  thermal cycling. In all cases this cycling was held to t 0,5°C. 

(42) 
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However this thermal cycling was responsible for much of the fluctuations 

in supersaturation. In most cases the fluctriations in supersaturation 

were on the order of t 20$, however in a few runs the fluctuations became 

as great as f $0$. Because of these fluctuations a time-averaged value 

of supersaturation was obtained for each run during steady state opera

tion. It is the time-averaged values which were used for plotting and 

further kinetic analysis. 

The physical arrangement of equipment used in the measurement 

of supersaturation resulted in a slight variance in the supersaturation 

reading which could be accounted for. This was because of the screen 

over the sample port. As was mentioned earlier the sample port was 

covered with a fine screen with 75 AM apertures. The purpose of the 

screen was to filter out the crystals from the suspension and have only 

mother liquor for supersaturation measurement. However, since the screen 

had an aperture of 75 A®» crystals smaller than this size could pass 

on through with the mother liquor. Since the refractometer was always 

operated at a temperature well above that of the crystallizer these 

crystals would be redissolved in the refractometer and thus increase 

the mother liquor concentration. A correction can be made for this 

increase in concentration by using the population density plot. By 

integrating under the curve from size zero to size 75 A™ the total mass 

of crystals going through the screen car be calculated. It is then a 

simple calculation to find the increase in concentration of the mother 

liquor due to redissolving. This calculation was performed and it was 

found that the concentration change represented an adjustment in super-
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saturation amounting to only 1-2% of the measured value for almost 

cases. There were one or two cases where this correction was as 

hi^ as 5% for a maximum. 

The sampling screen and the sampling technique employed also 

offered a potential problem in the supersaturation measurement which 

could not be corrected for. This problem concerned the build-up of 

a crystal fila or thin cake on the surface of the screen. If such a 

cake were to form on the screen then mother liquor being drawn throu^ 

the screen could have some of its supersaturation relieved by growth 

of the crystals in the film. ISiis would result in too low of a concen

tration of the mother liquor and therefore too small of a supersaturation 

measurement. In testing earlier designs for sampling this problem had 

arisen. However, with the design presently being used, no such problem 

was experienced. The screen was placed flush with the wall and the 

flow in the crystallizer tended to wash the screen surface clean. Only 

a small film was ever observed and it did not appear to affect the super-

saturation readings. There was no visible drop off of supersaturation 

as sampling time was Increased. 

There were times when the suspension density was so high that the 

screen became plugged with enough crystals to stop the sampling flow. 

In these cases the line was back flushed with small amounts of distilled 

water or air in a hypodezmic needle. This usually worked to clean the 

screen and allow the continued measurement of supersaturation after the 

system had recovered and returned to steady state. 
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Determination of Grovth and Fucleation Rates 

It was shown earlier that Equation 20 is the fundamental relation

ship giving the number distribution of the crystal product obtained 

from a continuous )6MFR crystallizer operating at steady state. 

A plot of log n versus L gives a straight line with an intercept at 

L = 0 of n° and a slope of -l/cy. This relationship therefore gives a 

method of determining the growth and nucleation rates from the population 

densi^ data obtained for each run. A semilog plot of population density 

versus size was made for each set of data. An example of one such plot 

is shown in Figure 7. An exponential least squares analysis was com

pleted for each plot. (See Appendix C.) This gave the best fit inter

cept and slope for the data which were in turn used to calculate the 

nuclestios rate, B°, and the grcvth rate, G, using Equ&tion 20. 

In each experimental run two samples were taken yielding two 

population density plots. A least squares analysis was done for both 

plots and the data set giving the best correlation of fit was used to 

calculate the growth and nucleation rates for that run. 

Nucleation rate is a function of the suspension density in the 

crystallizer. For KNO^ the relationship is a direct one with the suspen

sion density. Hp, being to the first power (53,58): 

In the experimental runs the suspension density varied from one run to 

another. Therefore for the calculated nucleation rates to be comparable 

n = n° exp(-L/Gf) (20) 

= f(Mr) (43) 



Figure 7. laical plot of crystal size distribution for KNO3 
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from run to run it vas necessary to put them on a common basis. This 

vas done by using a suspension density basis of 1.0 g./lOOml. To 

achieve this all nucleation rates vere divided by the suspension 

density for that run. 

The suspension density for a given crystallizer run vas calculated 

from the crystal suspension samples obtained. The total veight of 

crystals obtained in each sample after filtration and drying vas 

divided by the total volume of sample taken from the crystallizer. If 

the crystallizer is veil mixed and the sas^ling procedure is valid 

then this value of sample suspension density should be representative 

of the suspension density present in the crystallizer. The extent to 

vhich this is true may be questionable, hovever. Often the tvo suspen

sion samples taken for any one given run resulted in different suspension 

densities. Although in most cases the differences vere not great. 

The experimental reaulte for all of the runs are tabulated in 

Appendix D. 

Grovth and Nucleation Kinetics 

Supersaturation dependency 

The grovth and nucleation kinetics vere studied as a function of 

supersaturation. To do this the supersaturation level va» varied by 

varying the residence time. By holding all other parameters constant 

and varying the residence time from run to run a change in supersatu

ration level vith corresponding change in growth and nucleation rates 

was achieved. This experimental procedure ir&e followed at four different 
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temperature levels from 10°C to 25°C. 

As vas mentioned earlier past work has Indicated that power-law 

empirical models provide the best relationships between grovth and 

nucleatlon rate and supersaturation. The approach used then was to see 

if the data did indeed fit a power-law relationship; and, if it did, to 

find the best empirical relationship. To test the power-law relation

ships a graphical procedure was used. Growth rate versus supersatu

ration was plotted on log-log paper to see if a straight line resulted 

as is indicated by the relation given In Equation 22 where 

G = KgS^ (22) 

In all of the cases the resulting fit of the data showed that growth 

rate Is approximately a linear function of supersaturation, that is 

from the slope n is found to be approximately 1.0. Therefore the 

growth rate versus supersaturation data was plotted on linear paper 

and the resulting figures are 8-11. Althou^ there Is a great deal of 

scatter In the data, a linear relationship seems to best describe the 

fit. 

It should be noticed here that some of the curves do not pass 

throu^ the origin If extrapolated. That is, the growth rate becomes 

zero at a positive value of supersaturation. There are perhaps two 

explanations which might explain this. The first possibility Is that 

the data cover only a linear portion of a higher order curve. The range 

of supersaturation measured is relatively small. No values were obtained 

below 0.0035 g. KNO^/g. ̂ 0 at any of the temperatures. Therefore 

extrapolation below this range with a linear curve may not give the 
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Figure 9- Relationship between growth rate and supersaturation 
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correct relationahlp which would be found at the lower values of 

supersaturation. The small range of supersatuzation observed in 

these experisents may represent linear portions of a hi^er order 

curve. A higher order relationship nay be needed to describe the entire 

range of supersaturation. 

The second possibility is that there may be a driving 

force (level of supersaturation) required to produce a net growth rate. 

It is difficult to visualize aqy physical model of growth which would 

explain this type of relationship. It would seem that any super-

saturation should result in some finite growth rate. Therefore the 

first explanation vould appear to be the correct one. 

Jones and MuUin (26) observed a similar relationship in their 

work with potassium sulphate. They found there was a positive value of 

supersaturation even vhen the overall linear growth rate was zero. 

Mullin (38) points out that this is the relationship one would expect 

if the Burton-Cabrera-Frank growth equation is used. This equation 

approximates to a growth rate proportional to the supersaturation 

squared at low values of supersaturation. But at high supersaturations 

the equation reduces to a linear relationship between growth rate and 

supersaturation. This points out a very important limitation of both 

growth emd nucleation relationships found in the present work. That 

is they are only good for the range of parameters that were studied. 

They should not be extrapolated beyond that range. 

Power-law relationships were also expected for the nucleation versus 

super saturation data. As with the growth rate a graphical approach vas 
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ençloyed to test for the validity of Equation 

B® = KÎ 8° (34) 

Log-log plots of nucleation rate (corrected for suspension density) 

versus supersaturation were made for each of the temperature levels 

studied. These plots are shown in Figures 12-15- The data has a great 

deal of scatter but the figures also show the best least squares fit 

of the data points. The slopes are quite steep resulting in a rather 

large value for the power exponent a. 

In looking at the nucleation rate data another form of the power-

law relationship was suggested. It was felt that the supersaturation 

value should possibly be corrected by a value s*. This s would 

represent a minimum value of supersaturation required in the crystalli

zation system to produce any net nucleation rate. If e* was subtracted 

from the measured value to give a quantity (s-s*), then the power-law 

model would take on the form: 

Since both growth rate and nucleation rate are dependent upon the same 

level of supersaturation the proper value of s* mig^t be suggested by 

the positive intercept in the corresponding growth rate curve. Figures 

16-I8 give the corresponding plots to fit this new relationship given in 

Equation 44 for all temperatures except 2$°C. (The data at 25^C was 

found to give a better fit using Equation 34.) From these plots it is 

found that a power of m I I.7 beat fits the data for 1 the temper

atures studied. 

In developing the power-law expressions it was shown that as a 

(44) 
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check a log-log plot of nucleation rate versus growth rate could be 

prepared. This plot should also be linear and fit the relationship: 

To perform this check the plot of (corrected for suspension density) 

versus G was made for each of the temperatures studied. The plots are 

shown in Figures 19-22. Sie slopes yield a value for i of 1.7. This 

supports the idea that +.he nucleation relationship should be of the 

form: 

As was shown earlier the grovth rate is an approximately linear function 

of supersaturation. It was also shown during the section on model 

development that i z (m/n). Ve have seen that n is approximately equal 

to 1.0 and that i is approximately equal to 1.7, so therefore m should 

be equal to 1.7 as was found in using the relationship of Equation 44. 

It should also be noted that the data shows much less scatter than 

the plots involving supersaturation. Since this ̂ ype of plot does not 

involve data from the supersaturation measurement this indicates the 

scatter in earlier plots can be attributed to errors in measurement of 

the supersaturation. This is as might be expected since the super-

saturation value is very small and quite sensitive to small changes in 

temperature, pressure, impurities, etc. 

A summary of the experimental parameters for the power-law relation

ships is given in Table 2. 

(36) 

(44) 
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Figure 20. Relationship between nucleation rate and growth rate 
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TEMPERATURE = 25^C 
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Figure 22- Relationship between nuclestion rate growth rate 
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Table 2. Summary of experimental power-law relationships 

Growth rate as function of supersaturation 

10°C; G : 7OO8-O.I67 

14%: G = 73OS-I.68 

20°C; G : 10658-3.86 

25°C: G : 6008-0.028 

Ifucleation rate as function of supersaturation 

10°C: : 1.71xlo9(s)2'48 

: 8.52x10*^(8-0.0015)^*^^ 

lk°C: B°/>^ : 1.33x10^^(8)^*^° 

: 2.87x10^(8-0.002)^'^° 

20°C; B°/Hj, : 1.07x10^1(8)3'^? 

B°/M^ : 6.09x10*^(8-0.0036)1*^^ 

25fC: 8°/)^ : 4.35x10^(8)1*58 

gucleation rate as function of growth rate 

10°C: : 453G1*?^ 

14°C: B°/Hp : 359Gl*?^ 

20°C; : ll+5G^'?^ 

25°C: : 240G^'^3 
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Temperature dependency 

The ten^erature dependency of the growth and nucleation kinetics 

vas also investigated in this work. A series of experimental runs 

was carried out at four different tesçerature levels: 10°C, 14°C, 

20°C, and 25°C. 

It vas pointed out in the section on theoretical development that 

one vould expect only the rate coefficients and Kg to be temperature 

dependent parameters in the power-lav functions. It vas further noted 

that these coefficients might reasonably be expected to follow an 

Arrhenius - type temperature dependency. To check this type of dependency 

semilog plots of and Kg versus 1/T vere made and are shown in Figures 

23 and 2k. Straight lines were evidenced which supports an Arrhenius-

type dependency. 

The relationships describing the dependency are therefore of the 

form: 

= k^ exp(-Eg/RT) (38) 

Kg = kg exp(-Eg/RT) (39) 

The calculated value of the slopes can then be used to estimate the 

activation energies. Eg and E^, required for nucleation growth 

respectively. The frequency constants k^ and kg may be calculated from 

the intercepts. This information was then combined with the earlier 

obtained information on supersaturation dependency to give the complete 

kinetic relationships for growth and nucleation rates. These relation

ships are given in Table 3. 



Figure 23. Temperature dependency of proportionality constant for 
nucleation rate 
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Figure 2k. Temperature dependency of proportionality constant for 
growth rate 
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Table 3* CoBsplete kinetic relationships 

Activation energy for growth = 7.3%10^ cal/gmole 

k2 = 2.86x10® 

G : 2.86x10® exp(-7.3xlO^/RT) (s)^*° 

Activation energy for nucleation - -2.$4x10^ cal/gmole 

kj_ = 1.8x10-12 

: 1.8x10-12 exp(2.5ifxloVRr) (s-s*)!"? 

The activation energy for growth is positive and suggests the same 

form as that found in most chemical reaction kinetics. This says that 

vhen there is an increase of temperature the growth rate increases also. 

However the activation energy for nucleation is a negative value. 

Although this is not the normal occurrence there are a few chemical 

reactions which exhibit negative values also. What this means qualita

tively is that as the tençiercture increases the nucleation rate of 

crystallization decreases. This inverse relationship of nucleation rate 

versus temperature for KRO^ was also observed by Genck (21). 

The tQsg>eratxire dependency of the growth rate may also be investi

gated by observing the growth rate change for a given residence time 

when the temperature increases. By using residence time in place of 

super saturation as a constant parameter the measurement errors are limited. 

It is seen from Table k that for a constant residence time the growth rate 

Increases as the temperature increases. It may also be seen that as 

residence time increases the growth rate decreases. Both of these 

observations are as would be expected. 
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Table 4. Growth rate as a function of temperature and residence time 

Residence time, min. Growth rates, um/nia, 
10°C 14% 20°C 25°c 

<15 6.91 6.93 
7.60 

15 to 20 4.42 4.61 5.52 5.41 
4.67 4.76 5.68 5.49 
4.68 5.05 5.94 5.76 

5.13 5.99 6.44 
5.32 6.40 
5.35 

20 to 25 3.20 3.69 4.51 4.71 
3.84 3.81 4.90 5.09 
4.06 4.21 5.27 5.35 
4.15 4.25 5.38 

4.31 
4.40 
4.60 

25 to 30 3.29 3.80 3.27 
3.35 4.13 4.07 
3.50 4.15 4.17 
3.56 4.17 

4.21 
4.61 

30 to 35 2.68 2.34 3.38 3.23 
2.85 3.02 3.56 3.49 

35 to 40 2.40 2.66 3.02 3.42 
2.85 

>40 2.19 2.28 2.48 2.4o 
2.40 2.52 2.77 
2.54 2.79 
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Discussion of Inverse Nueleation Rate with Temperature 

One of the more interesting observations of the present vork is 

that for a given supersaturation the nucleation rate is inversely 

related to temperature. That is at a constant level of supersaturation 

if the temperature level is increased the nucleation rate is decreased. 

This is just the opposite of what vould normally be found with Arrhenius-

type kinetics. Eowever it is not the first time such a relation has 

been observed. Kem and Abegg (27) reported such a change with a 

proprietary substance and Genck (21) previously observed this with 

KNO^. In both of these earlier cases supersaturation was not measured^ 

however. Genck (21) therefore suggested that the decrease in nucleation 

rate with increasing temperature is the result of a decrease in the 

supersaturation level supported. With the measurement of supersaturation 

in the present vork this does not sppssr to be the cause. 

To explain this phenomenon one must postulate some ideas about 

the mechanisms that might be occurring at the crystal surface. Surface 

diffusion and overall activation energy could both play a major role 

In causing the observed relationship. In either case one must start by 

looking at the surface characteristics of a growing crystal. In all 

likelihood the idea put forth by Powers («7) is correct. He presumed 

that the surface of the crystal is covered by a fluidized layer. This 

layer is made up of molecules of solute loosely bond to the growing 

crystal face. 

For growth to occur the molecules are drawn from this fluidized 

layer to be anchored in true lattice bondings oa the growing l^er fronts. 
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This involves surface diffusion of the molecular aggregates. If, 

as would be expected, the surface diffusion rate increases with 

temperature; then the incorporation of the molecules into the lattice 

would occur more quickly. This means there would be fewer molecules 

available in the fluidized layer and it would not be as extensive as 

it was at lower temperatures. 

Powers (47) also proposed that secondary nucleation is very depend

ent upon the fluidized layer. He postulated that secondary nucleation 

occurs when fluid shear and collisions cause some of the fluidized 

layer to be drawn off to fom new nuclei. If at a higher temperature 

the increased surface diffusion depletes the fluidized layer faster 

than it is regenerated by fresh solute from the solution then there 

would be less secondary nucleation. This could therefore explain 

the decrease in nucleation rate as temperature is increased. 

Powers (4?), Melia and Moffitt (34), and Sung, Estrin, and 

Youngquist ($6) all point out that many times secondary nucleation is 

associated with dendritic-type growths appearing on the surface of the 

parent crystal. The shearing action of the fluid and collisions within 

the system tear off the dendrites to form new nuclei. It is worthwhile 

to think about how increased surface diffusion, resulting from increased 

temperature, might influence the growth of dendrites. If dendritic 

growth is an important part of secondary nucleation, then the fewer 

the number of dendrites the lower the nucleation rate. 

In a study of ice crystals K. H. Fletcher (19) points out that 

surface diffusion provides a stabilizing mechanism by tending to destroy 
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any perturbations on the growth surface. He states that the effect 

of surface diffusion is very considerable and has a large influence on 

the grovth morphology. Van Hook (6l) discusses a correlation between 

d, the diameter of the crystal, and the thickness of the crystal-

medium interface. If x^«d, polyhedra forms prevail, but if 

then dendrites appear. So ve can see that if surface diffusion is 

increased due to increased temperatures it is likely that dendritic 

growth and nucleation rate viU be decreased. 

The second major influence of the temperature on the observed 

nucleation rate may come from the overall activation energy considera

tions. Decreased nucleation rates with increasing temperature have 

been observed in melts. If the crystal surface is indeed covered with 

a fluidized layer of solute as Powers (47) suggests, then the nucleation 

behavior might be considered to be much the same as nucleation from 

a melt. Some insight might then be gained by looking at the mechanism 

which causes inverse nucleation rate in melts. 

By following the development of Mull in (38), it can be shown how 

the abnormal nucleation characteristic observed in melts occurs. First 

the nucleation rate is expressed in the foni of the Arrhenius reaction 

velocity equation commonly used for the rate of a thermally activated 

process ; 

exp(-AG/k^T) (4$) 

where equals a constant, AG equals the over-all excess free energy, 

k^ equals the Boltzmann constant, and T is the temperature. 

The Gibbs-Thomson relationship may be written as 
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2TV 
^ k^Tr (46) 

where v is the nolecul&r volume and S = c/cg. This then gives 

-AG. = iX -
^ r ~ V 

Using Equation 4 it can be shown that 

(47) 

Ar - ififq-^v^ _ (48) 
^^crit - 3(k^T ln(5))^ 

and from Equation 

.2 
B° -=*1 

This equation indicates that three main variables govern, the rate of 

nucleation: temperature^ T; supersaturation. S; and interfacial 

tension,T. 

Tamman (57) observed that in dealing with melts the rate of 

nucleation usually iscresses exponentially as supersaturation increases. 

But as hi^er levels of supersaturation are reached the nucleation rate 

reaches a aariauEi and subsequently decreases. Tamman suggested that 

this behavior was caused by the sharp increase In viscosity with super

cooling which restricted molecular movement and inhibited the formation 

of ordered crystal structures. Turnbull and Fisher (6o) quantified 

this observed behavior with a modified form of Equation 4$: 

„ • J. AG' ~7 
B = «P LasgV (ln(s))^ (50) 

which includes a "viscosity" term. When AG , the activation energy 

for molecular motion across the œ^ryo-matriz interface, is exception

ally large (ss in the case of hi^ly viscous liquids and glasses) the 
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other exponential term is small because under these conditions s is 

t 

generally large. A G then becomes the dominant factor in the rate 

equation and a decrease in nucleation rate is predicted. 

Previously reported experimental observations of this reversal 

of the nucleation rate have been confined to melts ̂ but it should also 

be expected in highly viscous solutions. Mullin and Leci (40) also 

observed such a behavior in aqueous solutions of citric acid. 

Since the apparent reversal of nucleation rate vas observed in 

the present study using KNO^, it mi^t be concluded that the activation 

energy, A g) of this system must be quite large. This would result in 

the second e:q)onential term of Equation $0 being dominant. In the 

temperature range studied the "viscosity" term would then have the 

controlling influence over the observed nucleation rate. 
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COKCLSJSIOBS 

1. The data from the experiments show a large amount of scatter 

in the super saturation measurement. There are three facts which jsust 

be kept in mind. The first is that the magnitude of the values being 

measured is quite small. The second is that the crystallizer was 

operating continuously and some variation in time is expected. Thirdly, 

the tes^erature range for the experiments was small. Considering the 

nature of the experiments it is not too surprising that the super satura

tion measuranent is a difficult one. The experiments were designed 

to study both mechanisms of nucleation and crystal growth simultaneously. 

A linear function describes the relationship between growth rate 

and supersaturation as veil as any other power-law function. However 

the growth relationships found in the work are only good for the range 

of values studied and should not be extrapolated. The functional 

relationships observed clearly should not be expected to exist over the 

entire range of supersaturation. Instead it would appear that the linear 

relationship represents only a small portion of a higher order curve. 

2. The growth rate constant increases as the ten^erature increases. 

There is a positive activation energy associated with growth rate. This 

vas shown somewhat inconclusively when observing the growth rate as 

a function of super saturation. But the observation was supported vhen 

growth rate is viewed as a function of temperature and residence time. 

3. Under the experimental conditions of this vork, the best power-

law relationship for nucleation is one of the form: B° = f(s-s*)^. 
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Using this relationship the data suggests a value of approximately 

1.7 for m. 

4. The nucleatlon rate decreases as the temperature increases 

at a constant value of supersaturation. This means that vith an 

Arrhenius-type of temperature dependency the nucleation rate has a 

negative value for an activation energy. This is an inverse effect 

from that which normally would be expected. Mullin (38) points out 

however that the size of the critical nucleus is dependent on temper

ature. The size of a critical nucleus increases with temperature 

increases. At a higher temperature a higher free energy of formation 

is required to obtain a critical nucleus capable of further growth. 

This has some effect on how the nucleation rate changes with changes 

in temperature. This analysis would apply only for homogeneous 

nucleation, however. In the MSMHî crystallizer used in this work 

secondary nucleation was the main source of nuclei. As the teo^erature 

is increased the surface activity is increased resulting in a more 

ordered surface. Consequently fewer nuclei are produced during crystal 

contacts. 

5. A linear relation between nucleation rate and suspension density 

= f(Hn^*^)> seems to be supported by this work. 

6. There is a very good correlation of the nucleation versus 

growth rate data. Nucleation rate is approximately a 1.7 power function 

of the growth rate. 

7. The population density data obtained from the sieve analysis 

is very good and supports the view that KNO^ shows size independent 
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growth. 

8. The oxjAntltative results of the supersaturation measurement 

obtained in this work were not good. However the refractometer still 

appears to be a valuable tool for qualitative analysis. It responds 

very rapidly to changes in supersaturation and therefore offers a good 

way of monitoring steady state operation. 
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EECŒMBRmTIOBS 

1. The measurement of supersaturation was not too successful 

in these experiments because of the scatter in the data. However 

further investigation could still be useful. One such study would be 

to investigate other systems which show a higher level of supersaturation. 

This could be with an organic system such as sucrose. 

2. In attaapting to determine why there was so . much scatter in the 

present studies the saturator design and method of obtaining a saturated 

reference solution became prime suspects. Therefore further work 

might entail finding a better way of producing a saturated reference. 

This could involve either a new saturator design or some cos^letely 

different approach. In the present saturator design saturation is 

approached from a supersaturated solution. A better design idea mi^t 

be to approach saturation from an undersaturated solution. 

3. One of the more important results found in the present work 

was the inverse relationship of nucleation rate with ten^erature. That 

is KKO^ appears to exhibit a decrease in nucleation rate as temperature 

is increased. Further studies should be done at different temperature 

levels to investigate this phenomena. 

4. The range of supersaturations obtained in the present work was 

fairly limited. By using different operating conditions or a different 

crystallization system this range of supersaturation could possibly be 

expanded. 

5. The refractoaeter seemed to respond quickly to upsets or changes 

in the CAjFwtCLHizer systcsi. Some thought should be given to usin^ the 
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refractive index measurement t® monitor dynamic changes in a crystal

lizer system. This could either be in a continuous system or it 

could be applied to time studies in a batch crystallizer. 

6. If a staged crystallizer system were being used the differential 

refractometer might offer an excellent method of checking relative 

concentration differences between vessels within the system. 
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NOMEKCIATURE 

a proportionality constant 

a^ proportionality constant 

A surface area of crystal 

proportionality constant 

A^ proportionality constant 

b exponential power for size-dependent growth relationships 

B° nucleation rate 

c solute concentration in supersaturated solution 

c* equilibrium saturation concentration 

c solute concentration in the solution at the crystal-solution 
interface 

c saturation concentration of solute 
s 

d equivalent diameter of crystal 

D diffusion coefficient of solute 

Eg activation energy for growth 

Ejj activation energy for nucleation 

G growth rate of crystals 

growth rate of crystals of size 

Gg growth rate of crystals of size Lg 

AG over-all excess free energy 

AG activation energy for molecular motion across the embryo-matrix 
interface 

AGcrit over-all excess free energy of a particle with radius r^ 

AG^ surface excess free energy 

AG+ volume excess free energy 
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A Gy free energy change per unit volume 

i m/n, nucleation rate power dependency on growth rate 

î  angle of incidence 

I induction period, time interval between mixing two reacting 
solutions and the appearance of the crystals 

j nucleation order related to Hj, 

Boltzmann constant 

frequency factor for nucleation rate 

kg frequency factor for growth rate 

K constant 

coefficient of mass transfer by diffusion 

Kg over-all crystal growth coefficient 

coefficient of mass transfer 

Kjj proportionality constant for nucleation rate as function of 
growth rate 

proportionality constant for nucleation rate temperature effects 
as function of growth rate 

rate constant for the surface reaction 

Ky volumetric shape factor 

K- proportionality constant for nucleation rate as function of 
supersaturation 

proportionality constant for nucleation rate temperature effects 
as function of supersaturation 

Kg proportionality constant for growth rate as function of supersat
uration 

L crystal size, equivalent diameter 

L arithmetic average ciystal diameter 

AL width of size fraction, Lg-L̂  
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naes of solids deposited 

(as exponent) nucleation rate power dependency on supersaturation 

suspension density 

population density of crystal suspension 

(as exponent) growth rate power dependency on supersaturation 

population density of zero-size particles or nuclei 

average population density in the range to Lg in the feed 

population density of ciystals of size 

population density of crystals of size Lg 

number of crystals 

number of crystals at zero size 

refractive index of transparent isotropic medium 

number of molecules needed to form a critical nucleus 

order of over-all crystal growth process 

volumetric flow rate out 

volumetric flow rate in 

particle radius 

angle of refraction 

critical radius 

gas constant 

C-Cg, supersaturation 

constant value of supersaturation used for correction of power-
law expressions 

time 

increment of time 

temperature 
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molecular volume 

volume of crystallizer 

volume of a single crystal 

volume of sample 

weight of crystals 

thickness of crystal-medium interface 

film thickness or length of diffusion path 

density of crystals 

V/Q, residence time 

surface energy 
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APPENDIX A 

VOLUMETRIC SHA.FE FACTOR 

A precise calculation of the volume of a solid body of regular 

geometric shape can only be made when its length, breadth, and thickness 

are known. For the crystals grown in a continuous crystallizer these 

three dimensions can never be precisely measured. For calculation 

purposes the equivalent diameter of the particle is used. In a 

sieving analysis the second largest dimension of the particle is the 

equivalent diameter used (38). 

For a single particle, the volume can then be defined as a function 

of this equivalent diameter. 

In this equation is the volume, d is the equivalent diameter, and 

Ky is the volumetric shape factor. It can be seen that varies 

depending upon the shape of the crystals. For spherical (diameter = d) 

and cubical (length of side id) particles, is equal to fr/6 and 1, 

respectively. In general the shape factor can be adequately determined 

from a screen analysis of several samples of the crystalline form. 

Previous investigators (21,53) have found a volumetric shape factor 

of 1.0 for potassium nitrate. Therefore in this analysis a value of 

1.0 was used for 

(51) 
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APPENDIX B. 

CAICUIATION OF DUMBER CF CRYSTAIS FROM WEIGHT CF 

KNO^ IN SCREEN ANALYSIS 

W 

° - KyL^AL p (52) 

For KNO^: 

Ky : 1.0 (See Appendix A) 

p : 2.11 g./cm^ : 2.11xl0'-^g./>m" (Reference 38) 

Sieve # L^microns AL,micron8 jSKvL^AL.g 

18 1095 190 0.5264 

20 921 159 0.2621 

25 776 131 0.1292 

30 655 no 0.0652 

35 550 100 0.0351 

40 46o 80 0.0164 

45 388 65 8.011x10'^ 

50 328 55 4.095x10'^ 

60 275 50 2.194x10'^ 

70 219 38 8.422xl0"^ 

80 196 32 
-4 

5.084x10 

100 165 30 
-4 

2.844x10 

120 138 25 
-4 

1.386x10 

140 116 19 6.258x10'^ 

170 98 16 3.177x10'^ 

200 83 15 I.SIOXIO"^ 
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APPENDIX C. 

EXPONENTIAL LEAST SQUARES ANALYSIS 

The various plots of population density versus crystal diameter 

show the expected scatter of experimental data. Theory has shown that 

the semi-log plots should be linear. And indeed in this work all such 

plots were found to yield straight lines. The important parameters to 

be obtained from the plots were the slope and intercept. To obtain 

the best values for these two parameters a least-squares program was 

run on a Hewlett Packard 9100 Calculator. 

The program computes the least squares fit and correlation coeffi

cient of n pairs of data points for an exponential function of the 

form: 

y = ae^^ (53) 

The equation is linearized into 

In y = In a f bx ($4) 

or 

Y  z  A - h b x  (55} 

Using a linear regression method, 

_ nIzY - ÎxIY (56) 

nfx" - (kx)2 

& = SY -  blx (57) 
n 

a : e^ (58) 

The correlation coefficient is given by (Note: Y^ 0; i = !,•••,n) 

nIxY - Ix^Y 

((n^x^ _ (^x)~)(n^Y^ -
(59) 
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APPENDIX D. 

RESULTS OF EXPERIMENTAL RUNS 

Notea for the Appendix; 

Run 3- Large variance in supersaturation reading for unknown 

reasons. 

Run 8- Bad population density, bad sample. 

Run 14- Too large of sample taken for sieving, giving bad population 

density plots. 

Run 23- Large variation in supersaturation recorded. 

Run 27- Variation in feed solution. 

Run 30- Bad temperature control on the run, probably not at 

steady state. 

Run 3^- Build-up of cake on sampling screen, had to back flush 

sample lines several times. 

Runs 37-39- Sampling screen loose. 

Runs 46-47- Feed concentration changing. 

Run 53- Large variation in feed flow rate, probably not at steady 

state. 

Run $4- Plugging of sangle lines, first attempt at running above 

room temperature. 

Run 72- Too large a suspension density, suspect feed concentration 

changing. Also amount of feed solution getting very low, may be getting 

feedback of product stream crystals. 

Run 74- Steady state not achieved. 
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1 2 
Rim, , 8, Mrp, Growth, B°, B°, Temp., 

(#) (min. ) /g.KRO^ f S- \ ( m V no. \/ no. \ (°C) 
I g.HgOy ^lOOml.j ^min. /(pin-lOOml/jpln- 100ml/ 

73 25.0 0.0047 0.51 3.20 3280 6400 10.1 

74 20.5 0.0035 0.67 4.15 3260 4900 10.1 

75 33.8 0.0045 0.63 2.68 1240 1970 10.0 

76 23.4 0.0055 0.65 3.84 2500 3850 10.0 

77 18.0 0.0067 1.47 4.42 11,200 7600 9.8 

78 19.0 O.OC5I 0.97 4.68 4700 4850 10.1 

79 43.3 0.0050 1.21 2.19 1740 1450 10.1 

80 30.5 0.0057 1.18 2.85 3660 3100 10.2 

81 38.0 0.0048 0.80 2.40 1580 1975 10.2 

82 21.2 0.0052 1.11 4.06 5400 4850 10.0 

83 18.1 0.0052 0.71 4.67 4200 5900 10.0 

k 33.0 0.0071 0.72 2.34 2430 3370 14.4 

5 25.0 0.0077 1.45 3.69 4170 3640 14.3 

6 17.5 0.0090 0.77 4.76 5800 7500 14.2 

7 19.0 0.0078 1.26 4.61 7400 5900 14.1 

8 44.0 0.0082 0.95 2.40 1385 1460 14.2 

9 29.0 0.0054 1.15 3.29 3300 2870 14.2 

10 24.0 0.0063 1.02 3.81 4550 4450 13.9 

1 
3° I nucleation rate actually found from the data. 
2 
B° I B°/Mp, nucleation rate corrected for the suspension density present 

during the run. 
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Run, Y, 8, fip, Growth, Temp., 

(#) (min.) /g.KKO^ / g. \ f no. V no. \ (°C) 
Xg.EgOy \100ml.y V. min./\5ain-100iii^galn-100mly 

3 21.0 0.0051 1.30 4.60 4940 3800 14.2 

36 31.4 0.0063 0.74 3.02 1780 2400 13.8 

37 20.4 0.0053 1.17 4.21 5760 4920 14.1 

33 17.9 0.0052 0.94 5.05 4700 5000 14.4 

39 22.6 0.0058 1.61 4.31 4950 3080 13.9 

40 26.3 0.0051 1.11 3.35 3775 3400 14.2 

41 36.6 0.0050 1.14 2.66 2050 1800 14.2 

43 41.0 0.0078 1.12 2.54 1570 1400 14.2 

44 26.2 0.0062 1.19 3.50 3650 3070 14.2 

45 21.0 0.0060 0.78 4.25 3570 4580 14.2 

46 16.6 0.0051 0.82 5.51 4690 5700 14.2 

47 17.9 0.0061 2.09 5.13 10,500 5030 13.8 

49 36.5 0.0070 0.71 2.85 1100 1550 14.2 

50 27.0 0.0086 0.62 3.56 1615 2650 14.2 

51 20.7 0.0092 0.43 4.40 2160 5000 14.6 

52 17.9 0.0104 0.61 5.32 2590 4250 14.1 

53 50.5 0.0080 0.68 2.28 650 950 14.2 

13 29.0 0.0075 3.24 4.15 3820 1180 20. 

J.4 21.0 0.0058 2.12 5.27 4560 2150 20. 

l6 45.0 0.0075 3.89 2.79 2340 600 20. 

17 21.0 0.0087 4.15 4.90 11,900 2870 20. 
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Run, a, Growth, B°, B° Temp», 

(#) (min. ) /g.KNOA / g. \ r m\f no- V no. \ (°C) 
\^g.^0 y \10Cml. J \mija,f[mln-lQC^(s>in-10QmlJ 

16 35.0 0.0077 3.83 3.56 3300 860 20. 

19 15.0 0.0091 0.52 6.91 2550 4900 20. 

20 25.6 0.0073 2.60 4.61 4400 1700 20. 

21 18.0 0.0085 1.96 5.99 6045 3080 20. 

22 17.0 0.0092 1.30 5.52 6540 5020 20. 

23 13.0 0.0068 2.68 7.60 10,860 4050 20. 

24 30.0 0.0075 2.61 3.80 4030 1550 20. 

25 38.5 0.0071 2.24 3.02 2460 1100 20. 

26 32.7 0.0067 1.53 3.38 2l40 1400 20. 

27 15.8 0.0058 1.29 5.94 6230 4830 20. 

28 26.2 0.0068 1.35 4.13 2520 1870 20. 

29 41.7 0.0064 1.73 2.48 3480 1160 20. 

30 17.2 0.0061 2.26 6.40 6610 2920 20. 

31 30.0 0.0065 1.30 4.21 1370 1050 20. 

32 45.3 0.0070 2.19 2.52 1735 790 20. 

33 25.6 O.OCTj 3.06 4.17 6520 2140 20. 

34 17-0 0.0059 2.02 5.68 8180 4060 20. 

35 21.6 0.0070 2.21 4.51 6990 3160 20. 

54 19.8 0.0105 2.64 4.82 12,000 4550 26.0 

55 19.1 0.0069 2.55 5.41 8000 3140 25.0 

56 32.1 0.0070 2.68 3.49 4000 1490 25.0 
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I) 
Run, 8, Hr,, Growth, B°, B°, Temp., 

(#) (oin, ) r \ I ^)f V ^ (°c) 
Yg.HgO^ \,100ml./ ymin. /^ln-100a%^(mizi-100ml/ 

57 26.8 0.0066 3.13 4.07 5600 1790 25.0 

58 23.4 0.0083 2.61 4.71 6180 2370 25.0 

6o 29.0 0.0076 1.44 3.27 3600 1400 25.0 

6i 19.6 0.0081 2.60 6.44 5975 2300 24.9 

62 41.6 0.0072 2.69 2.77 3400 1260 25.2 

63 20.6 0.0067 2.53 5.35 6570 2600 25.1 

64 35.0 0.0072 2.24 3.23 3100 13S0 25.2 

65 22.0 0.0074 2.61 5.09 5850 2240 25.0 

66 18.4 0.0090 2.40 5.76 7700 3200 24.9 

67 19.8 0.0098 3.39 5.49 9450 2800 24.8 

68 13.8 0.0087 3.34 6.93 18,470 5500 24.8 

69 21.0 0.0081 3.66 5.36 7770 2120 24.8 

70 27.4 0.0073 1.65 4.17 3000 1820 25.1 

71 36.8 0.0076 3.46 3.42 3100 900 25.1 

72 49.0 0.0080 4.09 2.40 3360 820 25.2 


