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CHAPTER  1. GENERAL  INTRODUCTION 

INTRODUCTION 

With the intensification of animal production in many countries throughout the world, 

the odor produced and emitted from such intensive animal production can cause nuisance to 

individuals living in the vicinity of livestock farms. Additionally, urbanization of rural areas 

is steadily increasing. These situations together make the impact of odor on the public more 

urgent. Finding solutions for dealing with odors emitted from animal agriculture continues to 

present challenges for researchers and producers.  

Most odor and gas emissions from building and manure storage sources are by-

products of anaerobic decomposition and transformation of organic matter in manure by 

microorganisms (Nicolai et al., 2006). These by-products result in a complex mixture of over 

168 volatile compounds of which 30 have a detection threshold of 0.001 mg/m3 or less, and 

hence are most likely to be associated with odor nuisance (O’Neill and Phillips, 1992). These 

compounds cover a broad spectrum and generally exist in low concentrations. Any 

technology used to reduce emissions must be able to treat a broad spectrum of airborne 

compounds. Various air pollution control technologies have been invented and applied, such 

as activated carbon adsorption, wet scrubbing, and masking agents. These methods, however, 

often transfer odor-causing materials from the gas phase to scrubbing liquids or solid 

adsorbents, and their derivatives have resulted in wastewater and solid waste concerns (Day, 

1996; Lin et al., 2001; Chung et al., 2007). Biofiltration, which can be cost-effective and has 

the ability to treat a broad spectrum of gaseous compounds (O’Neill et al., 1992; Devinny et 
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al., 1999; Janni et al., 2001) has been regarded as a promising odor and gas treatment 

technology that is gaining acceptance in agriculture. 

Biofilters are living systems that rely on microbial populations to degrade compounds 

absorbed into biofilm to allow biofilters to continuously treat compounds. As contaminated 

air is passed through filter media, two basic removal mechanisms occur simultaneously: 

absorption/adsorption and biological oxidation or biodegradation (Naylor et al., 1988). The 

success of biofiters used for controlling odors is based on both sorption and regeneration. 

Odorous gases, aerosols and particulates passing through a biofilter are adsorbed on the 

surfaces of the biofilter medium particles and/or absorbed into the moist surface layer 

(biofilm) of these particles, which is the sorption process, where bacteria degrade them to 

CO2, H2O, inorganic salts and biomass, which is the regeneration process (Swanson and 

Loehr, 1997).  

Several research studies using compost-based biofilters have been conducted with 

significant reductions in odor and specific gases reported. Nicolai and Janni (1997) reported a 

compost/bean straw biofilter that achieved average odor and hydrogen sulfide (H2S) removal 

efficiencies of 75% to 90%, respectively. Sun et al. (2000) observed an average H2S removal 

efficiency between 92.8% and 94.2%, and an average ammonia (NH3) removal efficiency 

between 90.3% and 75.8% with 50% media moisture content and a 20 s gas retention time. 

Martinec et al. (2001) also found from several biofilter research experiments an odor 

reduction efficiency up to 95%. The mixture of wood chips and compost (70:30 to 50:50 

percent by weight) has been recommended as a biofilter media (Nicolai and Janni, 2001a). 

However, special care is needed to screen fines from wood chip/compost mixtures to reduce 

operating static pressure (Nicolai and Janni, 2001b). 
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The by-products of decomposing animal manure include many volatile compounds 

(Nicolai, et al. 2006). Kreis (1978) listed 50 compounds in swine manure. O’Neil and 

Phillips (1992) expanded the list by identifying 168 compounds in swine and poultry manure. 

Curtis (1983) also reported on principal odorous compounds including ammonia, amines, 

hydrogen sulfide, volatile fatty acid, indoles, skatole, phenols, mercaptans, alcohols, and 

carbonyls. Recently, Lo et al. (2008) identified 294 compounds emitted from swine manure 

by using solid-phase microextraction (SPME) and multidimentional gas chromatography-

mass spectrometry-olfactometry (MDGC-MS-O). SPME coupled with MDGC-MS-O is a 

novel approach to be used for air sampling and simultaneous chemical and olfactory analysis 

of odor- causing compounds associated with livestock operations. This approach was used to 

determine the key compounds responsible for the characteristic swine odor at the source 

(Bulliner et al., 2006) and downwind (Koziel et al., 2006). Thus, odor mitigation efforts 

could be directed towards the most significant characteristic odor-causing compounds. SPME 

and MDGC-MS-O were used in this research to evaluate the biofilter’s effects on 

characteristic odorants.  

Currently, olfactometry is considered to be a standard method to measure odor 

concentration. A dynamic forced-choice olfactometer (AC’SCENT International 

Olfactometer; St. Croix Sensory, Inc. Stillwater, MN) was used to evaluate odor 

concentration. The odor concentration from both control and treatments was used to evaluate 

and compare biofilter performance. Among the hundreds of odorants, NH3 and H2S are toxic, 

colorless, and irritating malodorous gases having strong repellent and offensive odors. These 

two gases were often used to evaluate odor inside and nearby animal facilities due to their 

strong smell and potential health effects on humans. Therefore, NH3 and H2S analyzers were 
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used to monitor the concentration of NH3 and H2S and to evaluate biofilters’ effects on those 

two compounds.  

Biofilter media moisture content has been identified as the most important parameter 

in biofilter operation, along with residence time (Bohn 1992, 1993; Swanson and Loehr, 

1997; Goldstein, 1999; Sun et al., 2000; Spencer and Alix, 2003; Schmidt et al., 2004). A 

lack of media moisture control has been cited as the cause of up to 90% of all biofiltration 

problems (Goldstein, 1999; Reyes et al., 2000). Theoretically, pollutants in the gas phase first 

need to be transferred to the liquid phase, where they can be degraded by microorganisms 

living in the biofilter. Therefore, a sufficient empty bed residence time (EBRT), which is 

defined as the volume of the biofilter media divided by the air flow rate passing through the 

media, is necessary to allow the transfer and degradation of pollutants to occur. This makes 

EBRT a critical design and operating parameter (Williams and Miller, 1992; Swanson and 

Loehr, 1997; Classen et al., 2000; Sun et al., 2000; Hartung et al., 2001; Nicolai and Lefers, 

2006). 

Pressure drop is one of the main considerations for running full scale biofilters. 

Agricultural ventilation fans generally are designed to operate at pressure drops less than 60 

Pa (0.25 in. water column) (Nicolai and Janni, 1998). If the pressure drop through the 

biofilter can be kept down to a few tens of pascals it may not be necessary to replace existing 

fans in a livestock building when installing and operating a biofilter (Phillips et al., 1995).  

In response to the above concerns on biofilters, a mobile pilot-scale biofilter system 

consisting of a biofilter testing laboratory and a biofilter monitoring laboratory was 

constructed for this research project. Laboratory tests for choosing biofilter media were 
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carried out in the laboratory. This was followed by field tests at a 1,000-head curtain-sided 

deep-pit swine finishing facility located in central Iowa.  

OBJECTIVES 

The objectives of this research are to investigate the biofilter performance on 

mitigating odors emitted from animal buildings and the relationship between biofilter 

performance and its operating parameters such as media moisture content and EBRT. 

The specific objectives of this research were to: 

1. Conduct a literature review to give an up-to-date review of studies on the 

mitigation of odors and volatile organic compounds using biofilters for 

agricultural facilities. 

2. Investigate the fate of selected odorous compounds when subjected to two distinct 

wood chip-based biofilters operating at various moisture contents and empty bed 

residence times. 

3. Investigate the odor reduction performance of two distinct wood chip-based 

biofilters operating at various moisture contents and empty bed residence times. 

4. Evaluate the pressure drop from wood chip-based biofilters. 

DISSERTATION  ORGANIZATION 

This dissertation is organized in paper format and comprises three papers. The first 

manuscript is a literature review paper entitled “Mitigating Odors from Agricultural 

Facilities: A Review of Literature Concerning Biofilters” which will be submitted to the 

Transactions of the ASABE. The second paper entitled “Performance Evaluation of a Wood 

Chip-Based Biofilter Using Solid-phase Microextraction and Gas Chromatography-Mass 
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Spectrometry-Olfactometry” has been published in the Journal of Bioresource Technology 99 

(16): 7767-7780. The third paper entitled “Evaluation of Wood Chip-Based Biofilters to 

Reduce Odor, Hydrogen Sulfide, and Ammonia from Swine Barn Ventilation Air” has been 

approved for publication in the Journal of Air & Waste Management Association. The three 

papers are followed by an overall summary of the major conclusions of this research and 

recommendations for future research. An appendix showing experiment design and statistics 

analysis follows the overall summary chapter. The acknowledgements are included at the end 

of this dissertation. 
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CHAPTER  2. MITIGATING  ODORS FROM  AGRICULTURAL  

FACILITIES:  A REVIEW  OF LITERATURE  CONCENING  BIOFILTERS 
 

A manuscript to be submitted to the Transactions of the ASABE 

L. Chen, S. J. Hoff 

ABSTRACT 

This paper reviews literature on the studies of biofilters both in laboratories and at 

confined livestock facilities. The purpose is to give an up-to-date review of studies on the 

mitigation of odors and volatile organic compounds (VOCs) relating to agricultural facilities 

using biofilters. More specifically the paper addresses: 1. Factors concerned in design and 

operation of biofilters such as media property, empty bed residence time, media moisture 

measurement and control, microbial ecology, construction and operation cost, and; 2. 

Biofilter performance such as odor/VOC reduction efficiency (RE), and air pressure drop. 

Lab-scale, pilot-scale, and full-scale biofilter studies were reviewed. Biofilter design and 

odor/VOC REs were summarized in tables for easy reference and for a perspective on the 

current state of the art. The relationship between biofilter configuration/operation factors and 

biofiter performance was discussed. This literature study indicates: 1. Biofilters can be used 

as an effective technology for reducing odor/VOC emissions from animal facilities (RE up to 

99% for odor and up to 86% for 16 odorous VOCs reported); 2. The three most important 

factors effecting biofilter performance are packing media, media moisture content, and empty 

bed residence time; 3. Removal efficiency, air pressure drop, and construction/operation cost 

are three parameters of most concern when a biofilter is installed and operated, and; 4. 
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Further studies such as developing precise media moisture measurement and control 

technologies, bacterial structure, and long time full scale biofilter tests are needed to better 

understand the biofiltration process and improve applications of biofilters. 

Keywords: Odor control, Biofilter, Agriculture   

INTRODUCTION 

With the intensification of animal production in many countries throughout the world, 

the odor produced and emitted from such intensive animal production can cause nuisance to 

individuals living in the vicinity of livestock farms. Additionally, urbanization of rural areas 

is steadily increasing. These situations together make the impact of odor on the public more 

urgent. Finding solutions for dealing with odors emitted from animal agriculture continues to 

present challenges for researchers and producers.  

Biofiltration has been regarded as a promising odor and gas treatment technology that 

is gaining acceptance in agriculture. Biofilters are living systems that rely on microbial 

populations to degrade compounds absorbed into biofilm to keep the system at a continuous 

high absorptive capacity. As contaminated air is passed through filter media, two basic 

removal mechanisms occur simultaneously: absorption/adsorption and biological oxidation 

or biodegradation (Naylor et al., 1988). The success of biofiters used for controlling odors is 

based on both sorption and regeneration processes. Odorous gases, aerosols and particulates 

passing through a biofilter are adsorbed on the surfaces of the biofilter medium particles 

and/or absorbed into the moist surface layer (biofilm) of these particles, which is the sorption 

process, where bacteria degrade them to CO2, H2O, inorganic salts and biomass, which is the 

regeneration process (Swanson and Loehr, 1997).  
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The origin of biofiltration can be traced to a 1923 publication where Bach (1923, 

cited by Leson and Winer, 1991) discussed the basic concept of controlling H2S emissions 

from sewage treatment plants using soil beds. The first successful application and patent of 

biofilters were reported in the 1950s in both the United States and West Germany (Leson and 

Winer, 1991; Ergas and Gonzalez, 2004). Biofilters initially compacted with soil have been 

used for controlling air pollution in wastewater plants and chemical manufacturing facilities 

before being adapted to agriculture. Biofilters were first applied to livestock facilities 

reported in West Germany in approximately 1966/67 to reduce odor emissions from a 

piggery (Zeisig and Munchen, 1987). Only in the past three decades, stricter air pollution 

regulations along with the intensification of animal production in many countries throughout 

the world has made the reduction of odors produced and emitted from such intensive animal 

production an urgent need. Thus, extensive biofilter research has been investigated since the 

1980’s during which most of the research and application of biofiltration technology took 

place in a few European countries including Germany and the Netherlands (Ergas and 

Gonzalez. 2004). In the U.S.A., it was not until the 1990’s that the investigation of biofilters 

for livestock facilities began. Nicolai and Janni (1997) investigated the feasibility of treating 

pit gases from a swine farrowing barn with biofilters. In the same year, three pilot-scale 

biofilters were built to clean gases from a swine building at North Carolina State University 

(Young et al., 1997). Since this time, biofilters have gained more attention for agriculture in 

the U.S.A. 

Several bench-scale and pilot-scale biofilter studies have been reported in scientific 

journals. However, only a few full scale biofilters operated on agricultural facilities were 

reported or were reported in a way that was not readily available for interested readers. In 
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this paper an overview of biofilter research, published in scientific journals, conference 

proceedings, progress reports, workshops, and internet resources from about 1997 up to 

2008, regarding agricultural facilities both in laboratories and in the field, is presented. The 

survey results are grouped in tables as follows: 

• Table 1: Examples of laboratory studies with biofilters treating simulated odors 

and odorous compounds that are often found in exhaust air from agricultural 

facilities. 

• Table 2: Examples of on-site studies with biofilters treating gas which was 

directly exhausted from agricultural facilities. 

The main focus is on biofiltration of odors and specific volatile organic compounds 

(VOCs). Biofilter media, biofilter bed dimension, biofilter type (open/close with 

vertical/horizontal flow), empty bed residence time (EBRT) which was defined as the 

volume of the biofilter media divided by the air flow rate passing through the media, pressure 

drop, media moisture, and reduction efficiency (RE) are summarized in the tables for easy 

reference and to allow a direct comparison between studies. Readers are encouraged to refer 

to the original papers for additional details. Abbreviations used in this paper and unit 

conversions are defined in the nomenclature. 

RESULTS 

Selected examples are listed in tables 1 and 2 for laboratory and on-site studies, 

respectively. These studies illustrate that odors and some pollutants presented in exhaust air 

from agricultural facilities can be removed/mitigated with different REs depending on the 

inlet concentration, EBRT, and other operating conditions. Most of the laboratory studies 
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addressed the removal of NH3 and/or H2S under constant operating conditions with a few of 

the studies investigating odor and other VOCs as well. Such conditions are highly unusual at 

agricultural facilities. For example, the exhaust air from a swine building is a complex 

mixture containing over 300 compounds (Schiffman et al., 2001), which generally can be 

divided into four odorous groups (Hobbs et al., 1997; Le et al., 2005; Lo et al., 2008; Chen et 

al., 2008a) including sulfur containing compounds, volatile fatty acids, phenols and indoles, 

and ammonia and volatile amines. The actual composition and individual concentration often 

varies substantially at different facilities based on different diets and manure management 

methods. Even at a single site, the concentration varies substantially over time. Apart from 

fluctuations in the exhaust air composition, the performance of full-scale biofilters may be 

affected by unsteady conditions (such as temperature, relative humidity, channeling of gas, 

and media moisture content) and discontinuous pollutant supply, system maintenance, or 

breakdowns (Webster et al., 1999).  

Under laboratory conditions, high reduction efficiencies (up to 100%, Kim et al., 

2002; Choi et al., 2003;  Kastner et al., 2004; Morgan-Sagastume and Noyola, 2006; Chung 

et al., 2007) – as single pollutants in synthetic air – have been demonstrated for H2S, NH3, 

and some VOCs. A 100% removal in a laboratory is usually observed only at a well 

controlled condition such as pre-humidified inlet gas, stable temperature, media moisture 

content, and inlet gas concentration, and longer EBRT (23-133 s). The elimination capacity 

of the VOCs undergoing treatment depends on many factors related to biofilter media, 

moisture content, EBRT, as well as the properties of the pollutant. For example, Khammar et 

al. (2005) reported a RE at the same operating conditions was 100%, 95%, and 10-20% for 

oxygenated, aromatic, and chlorinated compounds, respectively. 
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Under on-site situations, concentrations of individual pollutants are in general much 

lower than those of substances used in laboratory studies (tables 1 and 2). For instance, NH3 

concentration often tested in laboratories was 20-200 ppm with a high value up to 400 ppm 

(Kalingan et al., 2004) while the average NH3 concentration at swine sites was from five to 

22 ppm for farrowing rooms and finishing barns, respectively (Jacobson et al., 2006). On-site 

studies showed fluctuating RE for both odor and odorants (such as 23.7%-99% for odor, -

4.6%-100% for NH3, 3-100% for H2S). Overall, the RE achieved at on-site locations was 

lower than that in laboratory studies.  

A great variety of packing materials have been tested for both laboratory and on-site 

studies, such as compost (from various sources), wood chips, wood bark, coconut fiber, peat, 

granular activated carbon (GAC), perlite, and polystyrene beads. These materials are selected 

to provide high surface area, high porosity, high water holding capacity, rich mineral nutrient 

available for bacteria needs, and compressive strength. Some materials, such as compost, 

provide satisfactory conditions for microorganism growth, as well as provide a rich 

community of bacteria and have been widely used as agricultural biofilter media. 

A media depth of 20-101 cm and an EBRT range of 1.6-4800 s were investigated on-

site. In order to keep the pressure drop through the biofilter media less than a few tens of 

pascals, the media depth was typically less than 50cm for a mixture of compost and wood 

chips that was commonly used for agricultural biofilters. Because of this restriction, full scale 

biofilters used at confined livestock facilities in general require a larger footprint area. A 

vertical biofilter offers an alternative if enough footprint area is not available (Nicolai and 

Lefers, 2006).  A study conducted by Nicolai and Thaler (2007) showed only 11-13 Pa 

pressure drop through their vertical biofilter packed with hardwood chips with a four sec 
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EBRT. Sadaka et al. (2002) also concluded the resistance to airflow in the horizontal 

direction was approximately 0.65 times the resistance to airflow in the vertical direction. 

In laboratory tests, humidifying inlet gas and supply water (sometimes with nutrients) 

via nozzles were used individually or together to keep stable media moisture content whereas 

spray nozzles were often either manually or automatically controlled to supply water at on-

site studies. During most biofilter studies, a 40-65% media moisture content was mentioned 

as a suitable moisture content range. 

DISCUSSION 

Odor, NH3 and H2S removal in bench-scale and pilot-scale biofilters has been well 

documented while only a few full-scale applications in agricultural facilities (Hartung et al., 

2001; Mann et al., 2002; Lau and Cheng, 2007) have been reported in scientific journals. 

Going through the results reported (table1 and 2), the potential of biofilters for removing 

odors and odorous compounds is evident even though varying REs were observed due to the 

various media, construction configuration, operation conditions, measurement methods, and 

application situations used. Biofilter performance (pressure drop, RE of odors and individual 

compound) has been verified relying on the inlet concentration, biofilter configuration such 

as media type, biofilter type, and operation conditions such as media moisture content, 

temperature, EBRT, and nutrient supply. The relationship between the biofilter 

configuration/operation factors and biofiter performance is discussed. This discussion will 

lead to a better understanding on improving biofilter performance by manipulating these 

factors, from which research strategies can be inspired. 
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Biofilter Media 

Selecting the proper biofilter media is an important step toward developing a 

successful biofilter. Williams and Miller (1992) and Swanson and Loehr (1997) pointed out 

that desirable media properties include: 1. Suitable environment for microorganisms to thrive 

including enough nutrients, moisture, neutral pH, and unlimited carbon supply, 2. Large 

specific surface area to maximize attachment area, sorption capacity, and number of reaction 

sites per unit media volume, 3. Stable compaction properties to resist media compaction and 

channeling, 4. High moisture holding capacity to keep higher absorption ability and active 

microorganisms, 5. High pore space to maximize EBRT and minimize pressure drops, and, 6. 

Low bulk density to reduce media compaction potential.  

A wide range of biofilter media has been considered. The most widely used media are 

organic materials (such as compost, peat, wood chips, bark mulch, and mixtures of these). 

These materials have many of the qualities mentioned above, with the main drawback being 

degradation of the organics comprising the bed (Swanson and Loehr, 1997). This degradation 

phenomenon leads to compaction and a limitation on bed life. Although periodically turning 

media, which results in extra operation expense, increases porosity and can modestly 

improve performance, an organic material eventually will require replacement (Goldstein, 

1996). Combining organic materials with inert bulking agents (such as plastic saddles 

(Kastner et al., 2004), shredded high-density plastics (Taghipour et al., 2008), perlite and 

vermiculite (Kalinga et al., 2004)) can increase biofilter porosity, minimize pressure drop, 

compaction and channeling, and cause a long useful life.  

An ideal solution in most applications is to use only the necessary amount of easy-

degradable organic matter in the mixture media to maintain needed activity of the biofilter 
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microbes (Williams and Miller, 1992). Studies are needed to determine the optimal ratio of 

easy and hard or non degradable media materials for various applications. Nicolai and Janni 

(2001a) recommended a mixture of compost and wood chips at a ratio of 30:70 as 

agricultural biofilter media. Similarly, a mixture of 20 to 30% compost and 70 to 80% 

woodchips by weight has also been recommended as optimal for agricultural biofilters 

(Schmidt et al., 2004). Chen et al. (2008a) showed that wood chips only can successfully be 

used to treat odors and VOCs exhausted from a deep pit swine building. There are other 

media choices for agricultural uses depending on local availability. 

Inorganic materials such as granular activated carbon (GAC) and diatomaceous earth 

also have been used as the sole media in biofilters (Kim et al., 2002; Chung et al., 2007). 

However, use of a solely inorganic media requires proper seeding with nutrients and 

organisms (Swanson and Loehr, 1997). 

Summary: Biofilter Media 

A great variety of media materials have been verified suitable for biofilters. However, 

in the point of practical application in agricultural facilities, factors such as cost and local 

availability must also be considered. The mixture of compost and wood chips (ratio of 30 to 

70 by weight) has been recommended as one of the better choices. Based on the belief that 

diversity of bacteria and enough nutrients exist in the exhaust air from agricultural facilities, 

it is hypothesized that wood chips alone is another good option. This requires further studies.  

Biofilter Design Types 

Biofilters can be classified as open or closed by configuration or as vertical or 

horizontal by airflow direction. The vertical airflow biofilter can be further divided into up-
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flow or down-flow. Nicolai and Lefers (2006) pointed out closed biofilters are more 

expensive than open biofilters which are more commonly used for animal agriculture and 

horizontal airflow biofilters offer an option if enough surface area and space are not 

available. Comparing the down-flow and up-flow biofilters, the up-flow type is generally 

cheaper than down-flow in terms of construction costs (Nicolai and Lefers, 2006). Therefore, 

up-flow open bed biofilters are preferred for agricultural uses. However, from the water 

supply and water distribution concerns, the down-flow design is preferred. An overhead 

sprinkling system directly supplies water to the quick-drying top media to prevent the 

formation of a dried media layer that often forms at the bottom of an up-flow biofilter. 

Based on earlier observations from granular products (Kumar and Muir, 1986; Jayas 

et al., 1987; Kay et al., 1989), a smaller horizontal airflow pressure drop per unit flow rate 

per unit thickness through a biofilter compared to vertical airflow can be hypothesized. 

Research comparing pressure drops through the two types of airflow biofilters has been 

conducted (Sadaka et al., 2002; Garlinski and Mann, 2005). Sadaka et al. (2002) compared 

vertical and horizontal airflow characteristics of wood chip/compost mixtures and concluded 

the resistance to airflow in the horizontal direction was approximately 0.65 times the 

resistance to airflow in the vertical direction. A study conducted by Nicolai and Thaler 

(2007) showed an 11-13 Pa pressure drop through their vertical biofilter packed with hard 

wood chips. One of the major disadvantages of horizontal gas flow biofilters is that the media 

tends to settle over time (Garlinski and Mann, 2004, 2005; Nicolai et al., 2005). Media 

settling causes compaction at the base of the filter, reducing airflow through the bottom 

portion of the filter and increasing airflow through the top portion of the filter, resulting in 

gas channeling.  
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Garlinski and Mann (2005) verified using laboratory tests that an inflatable bladder 

would prevent channeling of air over the top surface of a horizontal-airflow biofilter, even 

after substantial settling of the biofilter media. Further tests on full-scale biofilters are 

warranted to verify its appropriateness. Nicolai et al. (2005) reported that a tapered inner wall 

is necessary to compensate for settling to achieve uniform airflow for a vertical biofilter with 

media thicknesses larger than 30 cm. 

Summary: Biofilter Design Types 

Up-flow open bed biofilters are the most suitable for agricultural applications. The 

horizontal airflow with a vertical bed biofilter offers an alternative choice if enough footprint 

area is not available. The horizontal airflow biofilter has a lower pressure drop than a vertical 

airflow biofilter but further studies are needed to address media compaction and to keep an 

even distribution of media moisture before they are applied to full scale applications. 

Biofilter Media Moisture 

 Moisture content 

Biofilter media moisture content has been identified as the most important parameter 

in biofilter operation, along with residence time (Bohn 1992, 1993; Goldstein, 1999; Sun et 

al., 2000; Spencer and Alix, 2003; Schmidt et al., 2004; Chen et al., 2008a). Biofilter failures 

have been attributed to media drying in over 90% of the cases (Goldstein, 1999). 

Unfortunately, there are many reasons why maintaining a suitable media moisture range 

during operation is difficult. Swanson and Loehr (1997) summarized the effects of 

overwetting, dry media, factors complicating maintenance of optimal medium moisture 
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levels, and methods for maintaining optimal media moisture content.  Issues, modified from 

Swanson and Loehr (1997), relating to media moisture content are listed in table 3. 

The optimal moisture content range depends on biofilter media. Goldstein (1999) 

recommended 50% to 55% moisture was a good target range for compost-based media. 

Chang et al. (2004) reported a media moisture content of 60-80% was proper for a pilot 

biofilter packed with chaff of pine and perlite. Nicolai and Lefers (2006) recommended a 

moisture range of 35% to 65% for efficient pollutant reduction using a mixture media of 

compost and wood chips. Chen et al. (2008a) recommended a 40% to 60% moisture level 

was suitable for mitigating odors and VOCs from a deep pit swine finishing building when 

wood chips were used as the biofilter media while Sheridan et al. (2002b) suggested a wood 

chip filter bed moisture content of greater than 63% be used to maintain overall efficiency.  

Biofilter media moisture measurement 

Proper maintenance of media moisture content is based on its precise measurement. 

Great efforts have been tried to monitor media moisture. The gravimetric method was used 

by several researchers to monitor media moisture (Kastner et al., 2004; Nicolai et al., 2006; 

Chen et al., 2008a). This method is among the oldest of analytical techniques. This method is 

tedious and not suitable for continuous monitoring but it is a precise method for periodic 

measurements.  

Young et al. (1997), Classen et al. (2000), and Sheridan et al. (2002a, 2002b) used a 

load cell method which calculated media moisture content by continuously weighing the 

biofilter. If the weight of the biofilter was known then the moisture content of the biofilters 

could be controlled to ± 4%. This method assumes that losses in bed weight are due solely to 

losses of moisture from the bed which ignores dust loading, media degradation, and washout. 
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However, almost all agricultural applications need to deal with dust, which contributes to the 

problem for a weight-based method (Nicolai and Lefers, 2006). Another major disadvantage 

of this method is the inability to cope with non-uniform moisture distribution through the 

bed, thus the measured average moisture content in the bed is in an optimal range while some 

sections may be extremely dry resulting in air channeling (Reyes et al, 2000). From a 

practical perspective, it is difficult to weigh a full scale biofilter using the load cell method. 

Reyes et al. (2000) demonstrated that a time domain reflectometry (TDR) probe could 

be used to monitor their biofilter media (60% compost and 40% pearlite) moisture content on 

a real time basis while Zhang and Geel (2007) reported there was a consistent discrepancy 

between the TDR measured moisture content and those determined gravimetrically when the 

TDR probe was used to measure the vertical moisture content profile in peat columns.  

Robert et al. (2005) tested five different types of moisture meters in a typical biofilter 

media and concluded that the soil and hay moisture meters they tested were unsuitable for 

measuring the media moisture content due to the variability and limited range of the meters’ 

response. The relative humidity sensor they tested was shown to be a more promising method 

for monitoring media moisture content. The large format embedded capacitor sensor they 

tested performed well over a wide range of input frequencies and biofilter media moisture 

contents. But they mentioned further studies are needed. 

A watermark moisture sensor and a moisture control system were tested in a 

laboratory-scale biofilter with promising results (Lefers and Nicolai, 2005). However, the 

authors suggested further testing in a full scale agricultural biofilter was needed. 
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Water supply to biofilter media 

In terms of water supply, laboratory tests often circulate leachate continuously or 

intermittently with nutrients whereas spray nozzles were either manually controlled or 

controlled by a timer to intermittently irrigate the media surface during on-site studies. 

Manually supplying water is time consuming and tedious which probably contributed to the 

failure of optimal media moisture control. For both manual and timer controlled water 

irrigation systems, an optimal period of water supply needs to be tested and given. Chen et al. 

(2008b) tested a water supply method that supplied water using solid cone mist nozzles 

controlled automatically via solenoids at adjustable time periods between nine sec on/30 min 

off and nine sec on/50 min off in an attempt to keep wood chip media at a 60-70% moisture 

content. The results showed this method was successful when it was used to keep the media 

moisture at a stable level with a standard deviation within ± 3%. The results also 

demonstrated the water consumed was half compared to a manually controlled method 

previously tested in the same situation. 

Summary: Biofilter Media Moisture 

The media moisture content has been verified as a critical factor influencing biofilter 

performance. A range of 40-65% is believed suitable for media commonly used in 

agriculture, such as compost based and wood chip-only media. The on-line continuously 

monitored media moisture content measurement is still faced with challenges. Automatically 

controlled water supply systems, either by timers or by moisture sensor response, have the 

potential to accurately maintain the media moisture within a target range. More tests are 

warranted to improve maintaining media moisture within an optimal range. 
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Biofilter Empty Bed Residence Time 

Theoretically, pollutants in the gas phase first need to be transferred to liquid phase, 

where they can be degraded by microorganisms living in the biofilter. Therefore, a sufficient 

EBRT is necessary to allow the transfer and degradation of pollutants to occur, making 

EBRT a critical design and operating parameter (Williams and Miller, 1992; Classen et al., 

2000; Sun et al., 2000; Hartung et al., 2001; Nicolai and Lefers, 2006; Chen et al., 2008a). 

EBRT is a relative measure of gas residence time within the biofilter media. The actual gas 

residence time in the biofilter reactor is the result of the EBRT divided by the air-filled 

porosity available for gas flow, but such porosity data is rarely known (Swanson and Loehr, 

1997).  

Different pollutants have different characteristics which affect the absorbing and 

adsorbing times and degradation processes, and thus need different EBRTs to be completely 

degraded. A reasonable EBRT is closely related to media moisture content and pollutant 

loading. Higher moisture content and lower pollutant loadings result in shorter EBRT. 

Zeising and Munchen (1987) showed sufficient odor reduction at five sec for swine barns, 

three sec for chicken farms, and 10 sec for covered manure storage units. Four sec EBRT was 

estimated adequate for swine nursery barns (Janni et al., 1998; Nicolai and Janni, 1998a, 

1999). A recommended design EBRT for a biofilter on a dairy and swine facility was given 

at five sec for adequate odor and H2S reduction (Schmidt et al., 2004). A four sec EBRT was 

reasonable for characteristic odorant removal at a deep-pit finishing swine building when 

wood chip media moisture content was maintained at 60% (Chen et al., 2008a). 
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Summary: Biofilter EBRT 

Each pollutant needs a minimum EBRT depending on its loading rate and media 

moisture content. Higher loading rates and lower media moisture content generally need a 

longer EBRT for an effective removal. EBRTs between four and 10 sec should be sufficient 

for a biofilter designed to control odors and VOCs from agricultural sites provided the 

moisture content is controlled adequately. 

Temperature 

Optimal temperature can enhance microorganism activity resulting in more efficient 

biofilters. Higher temperatures kill the microbes while lower temperatures slow the microbial 

activity (Bohn, 1993). Biofilters operating in the range of 20-40 ºC has been recommended, 

with 35 ºC often noted as the optimal temperature for the aerobic microorganisms in 

biofilters (Leson and Winer, 1991; Marsh, 1992; Bohn 1993). Similarly, Yang and Allen 

(1994) suggested an optimum operating temperature between 30 and 40 ºC  

Clark et al.  (2004) investigated effects of operating temperature and supplemental 

nutrients in a pilot-scale biofilter. Their data suggested that higher operating temperature 

accelerated the establishment of microbial population and the onset of effective biofiltration, 

but no significant difference in overall odor removal could be associated with the different 

treatment temperatures ranging from 15 to 30 ºC at a P-value of 0.05. Nicolai et al. (2006) 

investigated the effects of two different inlet temperatures (13 and 22 ºC) on a biofilter 

packed with a mixture of compost and wood chips. They concluded raising temperature 

increased average RE. 



 

 

27

 

An open biofilter used to treat odor from a swine barn during sub-zero ambient 

temperature was investigated by Mann et al. (2002).  The odor concentration reduction 

ranged from 56 to 94% suggesting that the use of uninsulated open biofilters without 

supplemental heat can be effective even if the ambient temperatures were below -20 ºC. 

Krishnayya et al. (1999) conducted a study dealing with temperature effects on biofiltration 

of off-gases. Their results showed biofilter performance was better at a temperature warmer 

than 10 ºC. Similarly, Yang and Allen (1994) suggested biofilter systems should be operated 

at temperature above 10 ºC. 

Although non-optimal temperatures can slow microbial activity, microorganisms 

often recover rapidly from temperature variation (Schmidt et al., 2004). For example, a RE of 

80-90% was immediately achieved after receiving 30 ºC waste gas tested in Finland for a 

biofilter which experienced a 10-day shutdown period that resulted in a media temperature at 

4 ºC (Lehtomaki et al., 1992). Their results suggested biofitration during cold weather is 

entirely feasible provided the temperature of the inlet gas is high enough. On the other end of 

the spectrum, temperatures above 40 ºC show a rapid decline in RE (Marsh, 1992; Goldstein, 

1996). Leson and Winer (1991) also mentioned the water solubility of VOCs and the sorption 

capacity of filter solids will decrease at higher temperatures, thus impeding partitioning of 

the gaseous phase at higher temperature. 

Summary: Biofilter Temperature 

Temperatures ranging between 20 and 40 ºC has been recommended, with 35 ºC

believed optimal for biofilter operation. However, a wider temperature ranging from 4-40 ºC 

has also shown high REs. Considering the cost to maintain a desired temperature, no 
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supplementary attempts need to be taken to keep biofilters working at the optimal 

temperature range for agricultural uses.  

Biofilter Media Depth 

Depths ranging from 0.3 to one meter with most between 0.3 to 0.75 m have been 

commonly used for field-scale biofilters. Biofilter media depth, along with airflow rate, is a 

main factor to affect pressure drop and RE. Nicolai and Janni’s (1999) study on the effect of 

biofilter retention time on emissions showed the pressure drop decreased with decreasing 

media depth while maintaining constant surface area, and the RE of odor and H2S reduced to 

less than 65% when a media depth reduced to smaller than 0.15 m. Therefore, they 

recommended a minimum depth of a compost/wood chip media is between 0.15m and 0.3 m, 

with an ideal minimum depth of 0.25 m suggested.  

Based on research conducted on the spatial structure of microbial communities in peat 

media indicated that 75% of the 95% RE and 55% of the 80% RE for aromatic compounds 

took place between 0.3 and one meter in depth for two pilot-scale biofilters, respectively 

(Khammar et al., 2005). Kalingan et al. (2004) investigated the relationship between NH3 RE 

and the height of the biofilter packing with a mixture of peat, perlite, and vermiculite. They 

reported NH3 (inlet concentration 200 ppm) was completely eliminated when it passed 

through a bed height of 0.50 m at an air flow rate of 0.030m3/h (EBRT = 118 sec). Their 

results also showed removal efficiency increased with increasing bed height ranging from 

0.20 to 0.50 m. Similarly, Schmidt et al. (2004) recommended media depth of 0.25 to 0.45 m 

for biofilters used in agriculture to keep a balance between acceptable RE and pressure drop.  
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Summary: Biofilter Depth 

Higher media depth has higher potential RE. However, higher media depth results in 

higher pressure drop which is linearly related to media depth at constant air flow rates. The 

media depth of 0.25 to 0.50 m has been recommended as optimal for agricultural biofilters.  

Biofilter Longevity 

Both odorous compounds and biofilter media are degraded by the same 

microorganisms as a result of their activity (Wani et al., 1998). With time, the degradation 

leads to media compaction, smaller surface area, higher pressure drop, and chemical 

accumulation which finally resulted in biofilter failure (Williams and Miller, 1992; Sun et al., 

2000). The longevity of biofilters mainly relies on media type, microbial activity and dust 

loading within gases needed to be treated.  

A media with a higher percentage of compost typically promotes a higher population 

of microorganisms resulting in higher odor RE making it useful for controlling higher 

concentrations of odorous pollutants. Consequently, it degrades and compacts faster resulting 

in a shorter lifespan (Goldstein, 1996). On the other hand, for a lower concentration of 

odorous compounds presented in the air stream, a media with a smaller percentage of 

compost will be degraded slower, and it will last longer and still get optimum odor removal 

results. For lasting longevity, a mixture with a minimum portion of easy-biodegradable 

materials that can support necessary activity of microbes to meet RE expected is preferred 

(Williams and Miller, 1992). 

A biofilter will fail if high dust loadings fill the bed pore spaces faster than the 

microorganisms can break it down. It is important to pre-filter dust to keep from plugging 
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pore spaces within biofilters used for agriculture. As pore spaces plugged, the pressure drop 

builds up sharply which could damage the air handler resulting biofilter failure.  

Remixing of media can extend the longevity with a drawback of expense. No long 

term studies on biofilters used in agriculture have been reported to determine the length of 

media life, but it is estimated that most biofilter media will remain effective with acceptable 

pressure drop for three to five years (Schmidt et al., 2004) while Goldstein (1996) suggested 

no more than a three year life should be expected.  

Summary: Biofilter Longevity 

Degradation of biofilter media, along with degradation of pollutants, is unavoidable. 

Biofilter life can be increased by using a higher ratio of hardly degraded or non-degraded 

medium materials. Decreasing odorous compound/dust loading and remix media can increase 

biofilter life. Some researchers suggest a reasonable biofilter lifespan of three years while 

others estimated a five year media life can be expected without causing a large pressure drop. 

Long term studies are needed to determine the length of media life. 

Microbial Activity in Biofilters 

Biofilters are living systems that rely on microbes to degrade compounds in waste 

gases. As ecosystems, the community structure varies depending on the selective conditions 

established by a specific application. Sakano and Kerkhof (1998) studied the changes in a 

microbial community structure during a 120-day operation of a biofilter for treating 

ammonia. The overall diversity of the heterotrophic microbial population appeared to 

decrease by 38% at the end of their study. The community structure of the heterotrophic 

population shifted from predominantly members of two subdivisions of the Proteobacteria to 
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members of one subdivision. An overall decrease in the diversity of ammonia 

monooxygenase genes was not observed. 

Chung and Huang (1998) studied REs of ammonia by immobilized Nitrosomonas. 

Their results suggested that the immobilized Nitrosomonas europaea biofilter, which was 

packed with cell-laden Caalginate beads, provided a significant potential for treating 

ammonia in the gaseous phase. Swanson and Loehr (1997) pointed out seeding compost-

based biofilters has not been demonstrated to improve performance in removing easily 

degradable chemicals. Microorganisms indigenous to compost likely outcompete the seeded 

cultures (Bohn, 1992). A number of authors have suggested the use of activated sludge as a 

seed for improving REs and reducing acclimation time (Ergas et al., 1995; Kim et al., 2000; 

Sheridan et al., 2002b; Choi et al., 2003; Khammar et al., 2005). 

Khammar et al. (2005) investigated links between spatial structure of the microbial 

community and degradation of a complex mixture of volatile organic compounds in peat 

biofilters. They concluded the microbial community adapted to a new environmental 

condition and the structuring of microbial community in terms of the biodegradation activity 

and microbial diversity was maintained. The results also indicated the distribution of 

biodegradation activities correlated with the spatialization of microbial density and diversity. 

Ding et al. (2006) studied changes in the bacterial community of a compost biofilter 

treating H2S. Their research indicated that the microbial populations existing in the biofilter 

after 20 days were less diverse when H2S was the only substrate. Introduction of methanol 

(CH3OH) resulted in the enrichment of a variety of CH3OH and H2S degraders, thus 

enhancing the microbial community which resulted in enhanced degradation of primary 
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target compounds. The approach of biostimulation using a co-substrate warrants further 

investigation.  

More recently, Chung (2007) evaluated the bacterial community in a compost based 

biofilter. Based on the presence of their denaturing gradient gel electrophoresis (DGGE) 

bands, B. subtilis, A. aminovorans, P. denitrificans, and C. fustformis were consistently 

present from day 4 to 28. B. subtilis is usually responsible for the degradation of proteins 

(Chung, 2007), A. aminovorans is known to be able to subsist on methylamine as the sole 

carbon source and thus able to effectively degrade organic amine compounds (Raymond and 

Plopper, 2002), and P. denitrificans has been shown to be capable of removing sulfur-

containing compounds (Jordan et al., 1997) and trimethylamine compounds (Kim et al., 

2003). Based on Chung’s (2007) results, A. aminovorans and P. denitrificans, responsible for 

the degradation of sulfur- and nitrogen-containing compounds, accounted for 98.6% of the 

total amount of bacteria in his compost based biofilter. 

Summary: Biofilter Microbial Activity 

Diversity of microorganisms, together with various application situations including 

complicated compounds exhausting from animal facilities, indigenous bacteria existing in 

biofilter media made each application different which resulted in different observations. 

These observations sometimes even led to controversial results. However, it is commonly 

believed microorganisms degrade pollutants and allow biofiters to continuously treat odors. 

Results showed links between biodegradation activity and the spatialization of microbial 

density and diversity. More details of the populations that comprise microbial communities 

of various biofilter applications are still unclear. Further work is needed to better understand 

the relationship among microbial community dynamics, biofilter operation factors and their 
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changes, and biofilter performance. Studies are warranted to investigate whether inoculating 

special bacteria is helpful for removing special compounds. 

pH and Nutrients 

Since biofilters function on the basis of both the absorption process and microbial 

activity, which are closely related to pH, optimal pH for biofilter operation is in the 7-8 range 

to encourage and accelerate the absorption process and maximize microbial activity and 

hence maximize odor treatment (Williams and Miller, 1992; Swanson and Loehr, 1997). 

Sulfur- and nitrogen-containing compounds commonly exist in animal exhaust gases. 

As the filter entraps these compounds from the inlet air, it eventually leads to sulfuric acid 

(H2SO4) and nitric acid (HNO3) buildup which can cause a drop in the pH (Leson and Winer, 

1991; Goldstein, 1996; Swanson and Loehr, 1997). For biofilters used to treat a high 

concentration of those odorants, buffering capacity must be adequate to prevent acid 

accumulation.  The addition of limestone or other water-insoluble alkalis to the filter packing 

has proved a working remedy against a drop in pH (Ottengraf and VanDenOever, 1983). 

Research on wood chip only biofilters treating exhaust gas from a deep-pit finishing 

swine building showed that the leachate pH was between 7.2 and 7.9 during a two month 

monitored period without any supplementary attempts to alter the pH (Chen et al., 2008b). 

In laboratory studies, nutrients were sometimes supplied (Cloirec et al., 2001; Chou 

and Wang, 2007; Chung et al., 2007) along with water irrigation. During field-scale research, 

nutrient supplies were seldom reported since organic media such as compost and wood chips 

were often used. Organic media, such as compost, usually supply ample quantities of 

nutrients in the available form (Leson and Winer, 1991; Sun et al., 2000). The abundance of 

nutrients existing in exhaust air along with particulate matter from agricultural facilities 
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probably make supplemental nutrients less of concern for biofilters used in livestock 

facilities. However, it is necessary to provide nutrients to biofilters packed with inert media 

like GAC. Common forms, which can be supplied in solution, are ammonium nitrate 

(NH4NO3), ammonium chloride (NH4CI), magnesium chloride (MgCI2), calcium chloride 

(CaCI2), and dipotassium hydrogen phosphate (K2HPO4) (Hodge et al., 1991; Clark et al., 

2004). No guidelines identifying the amount of available nutrients needed in biofilters are 

found so far. 

Summary: Biofilter pH and Nutrients 

The pH needs to be maintained at near neutral. Nutrients should be kept in mind when 

biofilters are designed and operated. There are no guidelines identifying the amount of 

available nutrients needed in biofilters. Various nutrients supplied by compost based media, 

which have been commonly used in agriculture, plus the nutrients from exhaust air make 

supplemental nutrients unnecessary. More studies are needed to identify special supplemental 

nutrients to target selected compounds, however.  

Removal Efficiency 

Most odor and gas emissions from building and manure storage sources are by-

products of anaerobic decomposition and transformation of organic matter in manure by 

microorganisms (Nicolai et al., 2006). These by-products result in a complex mixture of over 

168 volatile compounds of which 30 have a detection threshold of 0.001 mg/m3 or less, and 

hence are most likely to be associated with odor nuisance (O’Neill and Phillips, 1992). More 

recently, Lo et al. (2008) identified 294 compounds emitted from swine manure. These 

compounds cover a broad spectrum and generally exist in low concentrations. Biofilters have 
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the ability to treat a broad spectrum of gaseous compounds (O’Neill et al., 1992; Janni et al., 

2001). Khammar et al. (2005) investigated a link between spatial structure of microbial 

communities and degradation of a complex mixture of VOCs in peat biofilters. Their results 

showed 11 compounds have been removed with a RE of 20%-100%. Recently, Chen et al. 

(2008a) conducted research on wood chip-only biofilters treating exhaust gas from a deep-pit 

swine facility. Their study showed a 76%-93% removal efficiency for 16 characteristic 

compounds identified in the exhaust air. 

Much research has been conducted on the removal efficiency of NH3 and H2S both in 

laboratories and on-site. A high RE with a value up to 100% was reported for both NH3 and 

H2S in laboratory studies (Kim et al., 2002; Morgan-Sagastume and Noyola., 2006; Choi et 

al., 2003; Chung et al., 2007, and Kastner et al., 2004) where optimal conditions were well 

controlled. On-site studies showed fluctuating RE for both odors and odorants (such as NH3 

and H2S). Overall, the RE achieved at field-scale research was lower than that achieved in 

laboratory studies. The most probable reasons for the fluctuating RE were due to varied 

concentrations of inlet odors and individual compounds over time and unsteady conditions 

(such as media moisture content, temperature).  

It is worth mentioning that the removal efficiency of odors, NH3, and H2S was greatly 

affected by media moisture content (Sun et al., 2000; Nicolai et al., 2006, and Chen et al., 

2008a). It is also worth mentioning that a few field-scale studies in livestock facilities 

reported a low RE for NH3. Hartung et al. (2001) reported an average RE of 15% (ranging 

from -26%-83%) and 36% (ranging from -9% to 81%) for two biofilters tested at a swine 

husbandry. Nicolai and Janni (2001a) reported an average reduction efficiency of 6%, 49% 

and 81% for their mixture of compost and wood chips at 28%, 47%, and 55% moisture 
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content, respectively. Chen et al. (2008a) studied the effects of different media moisture 

levels with a fixed 1.6 sec EBRT for wood chip-only biofilters. An average RE of -5%, 47%, 

and 67% was reported for western cedar at moisture content of 20%, 40%, and 60%, 

respectively. An average RE of 33%, 34%, and 54% was reported for hardwood at moisture 

content of 20%, 40%, and 60%, respectively. These results showed a low RE would occur if 

the media moisture content is below 40%. Martinec et al. (2001) reported an average RE of 

11% to 26% for two biofilters tested at a pig facility. Further, Martinec et al. (2001) indicated 

biofilters were unsuitable for NH3 reduction while Sheridan et al. (2002b) concluded that 

biofilters packed with wood chips are effective in reducing odors and NH3 from the exhaust 

ventilation air of pig rearing facilities. We hypothesize that combining wet scrubbers with 

biofilters would result in a higher NH3 RE because NH3 RE relies on a high media moisture 

content as reported above. 

Summary: Biofilter RE 

Results showed biofiltration is a promising technology for treating odor and VOCs. 

At ideal conditions, the RE can be 100%. At a typical five sec EBRT and 55% media 

moisture content, a mixture of compost and wood chips  can achieved an average RE of 78%, 

78%, and 81% for odor, H2S, and NH3, respectively. Maintaining proper conditions, 

especially a proper range of media moisture content, is critical for a successful biofilter. A 

wet scrubber coupled with a biofilter may benefit system performance, especially for 

removing NH3. More studies are needed to verify the effects of a wet scrubber/biofilter 

system. More research on removal of VOCs is also warranted. 
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Pressure Drop 

Pressure drop is one of the main considerations for running full scale biofilters. In 

order to keep reasonable fan ventilation efficiency, agricultural ventilation fans should be run 

at pressure drops less than 60 Pa (0.25 in. water column) (Nicolai and Janni, 1998b). If the 

pressure drop through the biofilter can be kept down to a few tens of pascals, existing fans in 

a livestock building may not need to be replaced when installing and operating a biofilter 

(Phillips et al., 1995).  

Phillips et al. (1995) tested seven potential minimum-cost biofilter media, they 

concluded that wood chips appeared to be the most promising since they had a low pressure 

drop of around 45 Pa/m at a superficial air velocity of 0.13 m/s. The 50:50 by weight mixture 

of compost/kidney bean straw at a depth of 30 cm with an estimated 8.8 sec EBRT used by 

Nicolai and Janni (1997) presented a pressure drop of 47 Pa. Based on results from testing 

different mixtures of compost and wood chips, Nicolai and Janni (2001 a, b) concluded the 

pressure drop increased as the percent of compost in the mixture increased, the pressure drop 

was related to percent void space in the biofilter media and there was a linear relationship 

between media unit pressure drop and unit airflow rate for a mixture of compost and wood 

chips. Similarly, a study on a wood chip only biofilter showed a linear relationship between 

the media unit pressure drop and unit airflow rate (Chen et al., 2008b). The media moisture 

content has also been shown an effect on pressure drop through biofilters (Nicolai and Janni, 

2001a). 

Summary: Biofilter Operating Pressure 

The pressure drop is closely related to media type, media depth, and air flow rate 

through the media. There was a linear relationship between media unit pressure drop and unit 
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airflow rate for a mixture of compost and wood chips with 0% compost appeared to be the 

best in terms of pressure drop. The pressure drop caused by biofilters influences the existing 

ventilation systems in agricultural facilities and results in higher energy costs. The pressure 

drop through biofilters should be kept below 40-50Pa depending on fans used. 

Costs 

The costs generally can be split into two parts: construction costs, and 

operation/maintenance costs. Nicolai and Janni (1998b) showed construction costs of about 

$0.22 per piglet or $0.062 per cfm when a biofilter compacted with a 50:50 by weight 

mixture of yard waste compost and brush wood chips was installed on a swine gestation barn. 

Operation costs were estimated at $275 per year for effective rodent control program and 

$125 a year for water sprinkling of biofilter media and using higher power ventilation fans. 

Schmidt et al. (2004) estimated the installation costs for new construction on mechanically 

ventilated buildings will be between $150 and $250 per 1000 cfm. Annual 

operation/maintenance costs of a biofilter are estimated to be $5-$15 per 1000 cfm. These 

costs include the increased electrical costs to push the air through the biofilter and the cost of 

replacing the media after five years. However, Schmidt et al. (2004) pointed out both capital 

costs and operation and maintenance costs are quite variable. The estimated costs were more 

than the value producers were currently spending to control odor even through it could be 

affordable by most swine producers in the U. S. A. (Nicolai and Lefers, 2006). Scotford et al. 

(1996) developed a model based on Pearson et al.’s (1992) information to predict costs of 

biofilters in Europe. The costs predicted by using their model suggested that biofilter are still 

an expensive option. 
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For more cost effective biofilter operation we hypothesize a “smart biofilter” should 

be used. The smart biofilters will combine biofiltration and natural atmospheric dilution. 

During calm stable weather conditions, the exhaust air from livestock buildings could be 

forced to go through the biofilter in which microorganisms degrade odorous compounds and 

thus reduce odors. Under unstable weather conditions, natural atmospheric mixing could be 

used, thus bypassing biofilter operation. In this way, the operation costs will be reduced and 

mitigated odor is accepted. More studies are warranted to identify both the costs and odor 

reduction efficiencies. 

Summary: Biofilter Costs 

Any technology used to mitigate odors will be an added expense for the farmer. 

Biofiltration technology has been proven to be the most cost effective method for treating 

ventilation exhaust air from agricultural facilities. Different types of biofilters vary in their 

construction and operation costs which may be further reduced by introducing new strategies 

such as the “smart biofilter”.   

CONCLUSIONS, GAPS IN  KNOWLEDGE  AND FURTHER  STUDIES REQUIRED 

The objective of this paper was to provide an overview of biofilters for agricultural 

applications. This survey revealed that considerable advancements have been made to 

understand what factors affect the RE and how biofilter performance can be improved. A 

summary is given below: 

1. This survey confirms the feasibility of biofilters as an effective odor and air   

pollution control technology for agricultural facilities.  
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2. Biofiltration uses an active microbial population attached to biofilter media to 

degrade pollutants. The biodegradation relies on the mechanisms of both the 

diffusion (phase change) and biological degradation of target pollutants. 

3. The three most important factors effecting biofilter performance are packing 

media, media moisture content, and EBRT. The RE, air pressure drop, and 

construction/operation cost are three parameters of most concern when a biofilter 

is installed and operated. 

4. Compost based biofilters have been verified as suitable for agricultural facilities. 

Media moisture between 40-65% is an optimal range for compost based and wood 

chip-only biofilters. An EBRT between 4 -10 sec, depending on sites (swine 

barns, poultry barns, dairy barns, covered manure storage units), animal’s diets, 

and biofilters (type, media), should be suitable for reducing odors and VOCs. A 

pressure drop up to around 40-50 Pa depending on fans used is acceptable for full 

scale biofilter applications operating at mechanically ventilation livestock 

facilities. 

5. Neither inoculated bacteria nor supplemental nutrients are necessary for a 

compost based biofilter. A special nutrient may benefit the performance of 

biofilters but further studies are needed to verify effects of supplemental nutrients. 

6. pH needs to be checked periodically and kept near neutral.   

7. The optimal operating temperature of a biofilter is 20-40 ºC. No attempts are 

needed to keep biofilters working at the optimal temperature range for agricultural 

uses. 
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8. A combined system of accurate moisture measurement and easy-to-use water 

supply is needed to maintain a proper media moisture content level. 

9. Wet scrubbers are suggested to combine with biofilters for effectively removing 

NH3. 

10. Further studies are needed to better understand the mechanics of biofiltration such 

as: (1) what effects the diffusion of odorous compounds in a biofilter, (2) what 

type of individual microorganism is mainly responsible to targeted pollutants, (3) 

the relationship between the RE and the structure of microbial community, (4) 

how fast microbial community changes in response to the change in influent 

concentration of odors and VOCs, (5) what affects the activity of bacteria living 

in biofilters, and (6) long term full scale biofilter studies are needed to verify the 

performance and to determine the longevity of biofilters at various on-site 

conditions. 

11. Models need to be developed to predict odor/VOC REs and to predict 

construction and operation costs for agricultural biofilters at typical conditions.  

12. Standards are needed to guide biofilter construction and to evaluate biofilter 

effects on reducing odors and VOCs. 

NOMENCLATURE 

The following abbreviations were used: 

1, 2 DE = 1, 2 dichloroethane 

1, 2 DM = 1, 2 dichloromethane 

BAC = biological activated carbon 
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DGGE = denaturing gradient gel electrophoresis 

EBRT = empty bed residence time 

GAC = granular activated carbon 

H2S = hydrogen sulfide 

MIK = methyl isobutyl ketone 

MEK = methyl ethyl ketone 

NH3 = ammonia 

OU = odor unit 

RE = reduction efficiency 

TDR = time domain reflectometry 

VFA = volatile fatty acid 

VOC(s) = volatile organic compound(s) 

Pressure drops are reported as inch water in some references, conversion of inch 

water to Pascal (Pa) is done using the equation: 1 inch water = 248 Pa.  

Pollutant concentrations are reported as mass concentration in some references, 

conversion of mass concentration to volumetric is done using the ideal gas law, which leads 

to the following equation: 

MW

MT
V c

c
×

×+
=

187.12

)15.273(
 

Where Vc is volumetric concentration in parts per million (ppm), T is the temperature 

in ºC, Mc is mass concentration in mg/m3, and MW is molecular weight in g/mol. T was 

assumed as 28 ºC for all conversions which reduced to: MWMV cc /24711×=  where Mc 

unit corresponding to g/m3. 
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Table 3. Issues relating to media moisture content (modified from Swanson and Loehr, 1997).

An overwet biofilter media causes A dry biofilter media causes
Factors complicating maintenance of optimal 

media moisture content
Methods used to keep optimal media 

moisture content

High pressure drops and low EBRT due to 
filling of the pore space with water.

Deactivation of microbes. High-velocity, non-saturated gas flows that strip 
moisture from the biofilter media.

Direct water supplyn to biofilter media 
with spray nozzels or soaker hoses.

Creation of anaerobic zones that promote 
odor formation, expecially for sulfur 
containing compounds (Devinny et al., 1999; 
Sheridan et al., 2002a; and Chen et al., 
2008a), and slow degradation rates.

Contraction and consequent medium 
cracking reducing EBRTs.

Exothermic reactions that increase temperatures, 
which (1) speed up these reactions and further 
increase temperatures; and (2) lead to increases in 
water vapor pressure, further augmenting the 
moisture-carrying capacity of the gas stream. 

Humidification of inlet gases to minimize 
drying potential.

Oxygen limitation due to reduced air/water 
interface per unit biofilm volume.

Frustrated attempts to rewet dry media. Lack of sensors for precisely measuring 
agricultural biofilter media moisture made water 
supply digressing optimal demand.

A combination of both humidification and 
periodic direct water addition.

Nutrient washing from the biofilter media. Channeling Covers used to keep moisture from 
evaporating

High volume, low-pH leachate requiring 
disposal (Hodge et al., 1991, Marsh, 1992).

Low absorption capacity
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CHAPTER  3. PERFORMANCE  EVALUATION  OF A WOOD CHIP-
BASED BIOFILTER  USING SOLD-PHASE MICROEXTRACTION 

 AND GAS CHROMATOGRAPHY-MASS  SPECTROMETRY-
OLFACTOMETRY 

 

A paper published in Bioresource Technology1 

L. Chen, S. J. Hoff, J. A. Koziel, L. Cai, B. Zelle, G. Sun2 

ABSTRACT 

A pilot-scale mobile biofilter was developed where two types of wood chips (western 

cedar and 2 inch hardwood) were examined to treat odor emissions from a deep-pit swine 

finishing facility in central Iowa. The biofilters were operated continuously for 13 weeks at 

different air flow rates resulting in a variable empty bed residence time (EBRT) from 1.6 to 

7.3 seconds. During this test period, solid-phase microextraction (SPME) PDMS/DVB 65µm 

fibers were used to extract volatile organic compounds (VOCs) from both the control plenum 

and biofilter treatments. Analyses of VOCs were carried out using a multidimentional gas  

_____________________________ 

1Reprinted with permission of the Bioresource Technology, 2008, 99(16), 7767-7780 
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Engineering, Iowa State University, Ames, Iowa. Corresponding author: Steven J. Hoff, 212 

Davidson Hall, Iowa State University, Ames, IA 50011; phone: +1 515-294-6180; fax: +1 

515-294-2255; email address: hoffer@iastate.edu. 
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chromatography-mass spectrometry-olfactometry (MDGC-MS-O) system. Results indicated 

that both types of chips achieved significant reductions in p-cresol, phenol, indole and 

skatole which represent some of the most odorous and odor-defining compounds known for 

swine facilities. The results also showed that maintaining proper moisture content is critical 

to the success of wood chip-based biofilters and that this factor is more important than media 

depth and residence time. 

Keywords: Biofilter; Odor; Wood chips; SPME; MDGC-MS-O; VOCs; Reduction; Swine 

INTRODUCTION 

The reduction of odors emitted from livestock and poultry production systems 

represents a significant challenge for researchers. Biofiltration is a versatile odor and gas 

treatment technology that has gained much acceptance in agriculture. Several research 

studies using compost-based biofilters have been conducted with significant reductions in 

odor and specific gases reported. Nicolai and Janni (1997) reported a compost/bean straw 

biofilter that achieved average odor and H2S removal efficiencies of 75% to 90%, 

respectively. Sun et al. (2000) observed an average H2S removal efficiency between 92.8% 

and 94.2%, and an average NH3 removal efficiency between 90.3% and 75.8% with 50% 

media moisture content and 20 s gas retention time. Martinec et al. (2001) also found from 

several biofilter research experiments an odor reduction efficiency up to 95%. The mixture of 

wood chips and compost (75:25 to 50:50 percent by weight) has been recommended as 

biofilter media (Nicolai and Janni 2001a). However, the mixture media can cause a high air 

flow resistance that must be overcome, often with the use of large expensive fans (Devinny et 

al., 1999; Garlinski and Danny, 2003) which in turn results in excessive electrical energy use. 
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A wood chip-based biofilter can reduce the pressure drop but little is known about the 

performance of wood chip-based biofilters on reduction of malodor and VOCs emitted from 

swine facilities. 

Most odor and gas emission from building and manure storage sources are by-

products of anaerobic decomposition and transformation of organic matter in manure by 

microorganisms. The by-products of decomposing animal manure include many volatile 

compounds (Nicolai, et al. 2006). Kreis (1978) listed 50 compounds in swine manure. O’Neil 

and Phillips (1992) expanded the list by identifying 168 compounds in swine and poultry 

manure. Curtis (1983) also reported on principal odorous compounds including ammonia, 

amines, hydrogen sulfide, volatile fatty acid, indoles, skatole, phenols, mercaptans, alcohols, 

and carbonyls. Recently, Lo et al. (2008) identified 294 compounds emitted from swine 

manure by using solid-phase microextraction (SPME) and multidimentional gas 

chromatography-mass spectrometry-olfactometry (MDGC-MS-O). SPME coupled with 

MDGC-MS-O is a novel approach to be used for air sampling and simultaneous chemical 

and olfactory analysis of odor- causing compounds associated with livestock operations. This 

approach was used to determine the key compounds responsible for the characteristic swine 

odor at the source (Bulliner et al., 2006), downwind (Koziel et al., 2006) and odor-particulate 

matter interactions (Cai et al., 2006).  Thus, odor mitigation efforts could be directed towards 

the most significant characteristic odor-causing compounds.  Cai et al. (2007) used SPME 

and GC-MS-O to evaluate the effectiveness of topical zeolite applications to mitigate VOCs 

and odor from simulated poultry manure storage.   

To date, studies have mainly focused on NH3 and H2S reductions when evaluating 

biofilters. More studies are needed to better understand the biofilter’s effects on VOCs, 
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especially the principal odorous compounds identified above. Therefore, the objective of this 

research was to investigate the fate of selected chemicals when subjected to two distinct 

wood chip-based biofilters operating at various moisture content and empty bed residence 

time (EBRT), defined as the volume of the biofilter media divided by the air flow rate 

passing through the media. 

MATERIALS  AND METHODS 

Experiment Site 

This research project was conducted at a 1,000-head curtain-sided deep-pit swine 

finishing facility located in central Iowa.  This research was conducted from July 14 to 

October 13, 2006. The building monitored was approximately 14 × 55 m with 25 cm and 61 

cm diameter fans pulling pit-gases from the pump-out locations.  

Mobile Pilot-Scale Biofilter System 

A novel pilot-scale mobile biofilter system, which consisted of a biofilter testing 

laboratory and a biofilter monitoring laboratory, was constructed for this research project.  

The mobile testing laboratory was covered at the top and sides to eliminate wind and rain 

effects on the biofilters being tested. Meanwhile, the mobile monitoring laboratory was used 

to house all instrumentation hardware and calibration gases required. The set-up is shown in 

Figure 1a. The layout of the biofilter testing laboratory is shown in figure 1b. The mobile 

monitoring laboratory was used to collect all data associated with this project such as 

temperature, biofilter moisture content, wind speed, wind direction, NH3 and H2S 

concentration.   
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On the biofilter testing laboratory (Figures 2a,b), there were eight parallel plastic 

reactor barrels, four of which were randomly selected to be filled with western cedar (WC) 

chips and the remaining four filled with 5 cm (2 in.) hardwood (HW) chips (Figure 2c). 

There was a common plenum underneath the barrels directly connected to a fan from one of 

the pump-out locations. Eight adjustable fans (model AXC 100b; Continental Fan 

Manufacturing, Buffalo, New York) and 10 cm (4 in.) PVC pipes were used to connect the 

common plenum with the eight barrels. In order to homogenize the exhaust air in the plenum, 

a small fan (model 4C442; Dayton Fans) was installed inside the plenum for mixing 

purposes.  

The reactor barrels (56 cm diameter, 86 cm in depth) were designed with a 25 cm air 

space at the bottom of the barrel, with the biofilter media located above this airspace, 

separated by a metal mesh support (Figure 3). Preliminary laboratory tests conducted on 

seven various chip-based media indicated that WC chips and standard 5 cm (2 in.) HW chips 

were superior based on moisture retention.  The decision was then made to test these two 

products as the media for the pilot-scale biofilters. The WC and HW media porosity was 

67.0%±0.5% and 55.9%±0.5% respectively, using the bucket test method (Nicolai and Janni, 

2001a). Each of the eight reactors was initially filled to a depth of 51 cm. Water was added 

manually via a spray nozzle at the top of each barrel. Biofilter media moisture was measured 

with commercially available soil moisture sensors (model ECH2O EC-20; Decagon Devices, 

Inc., Pullman, WA) which were first calibrated in the laboratory. Each of the eight reactors 

had its own variable speed fan that was manually adjusted based on the demands of the 

experimental design. The variable speed fans were used to adjust EBRT.to 1.6, 2.5, 2.6, 3.3, 

3.6, 4.0, 5.3, 5.5, and 7.3 seconds. 
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Biofilter Operation 

The biofilter media in each reactor was allowed to stabilize by passing pit-gas air 

through each reactor with the media at an initial depth of 51 cm, a maintained moisture 

content in the 50~60% range (wet basis) and at an air flow rate of 2,265 L/minute.  The 

stabilization period was for a month during which SPME fiber selection and time series test 

were conducted. After the one month-long stabilization period, the media depth was changed 

from 51 cm to 38 cm and then to 25 cm over a period of nine weeks, in three week 

increments. At each depth tested, three levels of air flow rate (2,265 L/minute, 1,410 

L/minute and 1,025 L/minute) were randomly set to run in each reactor for about one week 

during which SPME samples were collected and analyzed.  At the final period of this project 

where the media depth was 25 cm, SPME samples were collected at three different media 

moisture levels (60%, 40%, 20% wet basis) with a fixed air flow rate of 2,265 L/minute. 

SPME Sampling 

The SPME sampling system consisted of a funnel, PFA 6 mm (¼ inch) inside 

diameter Teflon tubing, a 47 mm diameter membrane filter with a 0.45µm pore size, a 

custom-built PTFE (Teflon) sampling port for the collection of air samples with SPME and a 

vacuum pump (Figure 3).  All sample tubing was heated to prevent condensation within the 

tubes. The SPME sampling ports were cleaned and dried at 110 ºC overnight before 

installing. When the SPME samples were collected, the SPME fibers were placed into the 

customized SPME sampling ports which allowed to expose the fiber to the sample air. Five 

commercially available fibers including 85 µm Car/PDMS, 65 µm PDMS/DVB, 50/30 µm 

DVB/Car/PDMS, 85 µm PA and 100 µm PDMS (Supelco, Bellefonte, PA) were first tested 

to select the most suitable (i.e., efficient in collecting typical swine odorants, Lo et al., 2008) 
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SPME coating for extracting VOCs associated with the pit-gas exhaust air. Before use, each 

fiber was conditioned in a heated GC splitless injection port under helium flow according to 

the manufacturer’s instructions. SPME sampling time was varied from 10 seconds to 2 hours 

to determine the optimal SPME sampling time.  The system was first allowed to run for 2 

minutes to equilibrate and then a SPME fiber was placed into the sampling port where the 

SPME fiber was exposed in the sample air for the preset sampling time. The fibers were then 

removed from the sampling port, wrapped in clean aluminum foil and stored in a cooler for 

transfer to the on-campus laboratory for analysis. All SPME samples were analyzed within 

48 hours of collection. The desorption time of SPME fibers in GC injector was always 40 

minutes at 260 ºC. 

Solid phase microextraction eliminates the use of sample containers and solvents and 

it combines sampling and sampling preparation into one step.  Air sampling with SPME 

presents many advantages over conventional sampling methods (Koziel et al., 2005; Koziel 

and Pawliszyn, 2001) due to its simplicity, reusability, very good sample recovery and 

hydrophobic property of SPME coatings.  Koziel et al. (2005) reported average 105% 

(±11.4%) recoveries of gaseous VFAs (from acetic to hexanoic acid) at room temperature 

and 24 hrs storage time from the 75 µm Carboxen/PDMS SPME fiber coatings. The ariability 

(measured as standard deviation) for recoveries of VFAs were as low as 2.0%, 3.6%, 9.7%, 

and 5.6% for propanoic, butanoic, pentanoic, and hexanoic acids, respectively. 
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Analytical Methods 

Chemical and odor analysis 

The compounds attracted by the SPME fiber were analyzed using a MDGC-MS-O 

(Microanalytics, Round Rock, TX) which integrates GC-O with conventional GC-MS 

(Model 6890N GC/5973 MS; Agilent, Inc Wilmington, DE) as the base platform with the 

addition of an olfactory port and flame ionization detector (FID). The system was equipped 

with two columns in series connected by a Dean’s switch. The non-polar pre-column was 12 

m, 0.53 mm i.d.; film thickness, 1 µm with 5% phenyl methylpolysiloxane stationary phase 

(SGE BP5) and operated with constant pressure mode at 8.5 psi. The polar analytical column 

was a 30 m × 0.53 mm fused silica capillary column coated with poly(ethylene glycol) 

(WAX; SGE BP20) at a film thickness of 1 µm. The column pressure was constant at 5.8 psi. 

The use of two columns with opposite polarity results in improved separation of a complex 

matrix such as VOCs emitted from swine barn. Separations on a non-polar column are 

mainly due to the molecular weights and boiling points of compounds, while separation on a 

polar column is due the difference in polarity and compound structure. System automation 

and data acquisition software were MultiTraxTM V. 6.00 and AromaTraxTM V. 6.61, from 

Microanalytics and ChemStationTM, from Agilent. The general run parameters used were as 

follows: injector temperature, 260 ºC; FID temperature, 280 ºC; column temperature, 40 ºC 

initial; 3 minutes hold, 7 ºC/minute, 220 ºC final, 10 minutes hold; carrier gas, He. 

Mass/molecular weight-to-charge ratio (m/z) range was set between 33 and 280. Spectra 

were collected at 6/s rate and electron multiplier voltage was set to 1500 V. The MS detector 

was auto-tuned weekly. More detail information related to the instrumentation has been 

described by Lo et al. (2008).  
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Compounds were identified with three sets of criteria: (1) matching of the retention 

time on the MDGC capillary column with the retention time of pure compounds run as 

standards, (2) matching mass spectrums of unknown compounds with Bench-Top/PBM 

(from Palisade Mass Spectrometry, Ithaca, NY) and (3) matching odor character. Qualitative 

assessment of VOC abundance was measured as area counts under peaks for separated 

VOCs. Human panelists were used to sniff separated compounds simultaneously with 

chemical analyses.  

Statistical analysis 

Analysis of variance (ANOVA) was used to test the main experimental factors of 

wood chip type (WC, HW), media moisture (20%, 40%, 60%), and EBRT (1.6, 2.5, 2.6, 3.3, 

3.6, 4.0, 5.3, 5.5, and 7.3 seconds) using SAS (v. 9.1) for response variable reduction 

efficiency of different principal odorous compounds. The reduction efficiency of each 

compound was transformed to natural logarithm to adjust for unequal variance and was 

tested using the main experimental factors listed above and its interactions. Tukey-Kramer 

adjustment for multiple comparisons was used. 

RESULTS AND DISCUSSION 

Selection of SPME Fibers 

Five new commercial SPME fiber coatings (85 µm Carboxen/PDMS, 65 µm 

PDMS/DVB, 50/30 µm DVB/Carboxen/PDMS, 85 µm PA and 100 µm PDMS; Supelco, 

Bellefonte, PA) were evaluated for determination of VOCs. Figure 4a shows the comparison 

of extraction efficiency between the five SPME fiber coatings for eleven characteristic swine 

odorants which included: acetic acid, propanoic acid, butanoic acid, isovaleric acid, 
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pentanoic acid, hexanoic acid, phenol, p-cresol, 4-ethyl phenol, indole, and skatole. All 

extractions were performed for 30 min using the SPME sampling system (Figure 3).  No 

attempt was made to alter the gas temperature passing over the SPME fibers. The 65 µm 

PDMS/DVB and 85 µm Car/PDMS fibers were overall, the most effective for all target 

compounds among the five types of the fibers. Eight SPME samples were then collected 

again using both the 65 µm PDMS/DVB and 85 µm Car/PDMS fibers (four replicate samples 

for each fiber coating).  

The comparison results between the 65 µm PDMS/DVB and 85 µm Car/PDMS fibers 

are shown in Figure 4b which indicates that for acetic acid, propanoic acid, and butanoic 

acid, the 85 µm Carboxen/PDMS fiber had higher extraction efficiency. However for p-

cresol and skatole, the 65 µm PDMS/DVB fiber performed better. For the rest of the 

compounds; isovaleric acid, pentanoic acid, hexanoic acid, phenol, 4-ethyl phenol and indole, 

both fibers were equally effective. The compound p-cresol has been implicated as being the 

highest ranking odorant responsible for the characteristic odor near the source and far 

downwind (Bulliner et al., 2006; Koziel et al., 2006; Wright, et al., 2005). As a result of these 

findings, PDMS/DVB was selected for preferential extraction of p-cresol. Based on these 

results and previous experiences, the 65 µm PDMS/DVB fiber was selected for this study. 

Effects of SPME Sampling Time on Target Odorants from Swine Barn 

SPME sampling time was varied from 10 seconds to 2 hours to determine the optimal 

SPME extraction conditions by using 65 µm PDMS/DVB fibers. The plots of peak area of 

characteristic compounds versus extraction time are shown in Figures 5a and 5b which show 

that as extraction time increased so did the amount of most volatiles extracted by the fiber, 

however the patterns were not the same for all compounds. Most compounds, such as 
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hexanoic acid, p-cresol, 4-ethyl phenol, indole and skatole, appeared to follow a linear trend, 

although at different adsorption rates, with no evidence of reaching equilibrium up to 2 hours 

extraction time. Butanoic acid and isovaleric acid showed an increasing trend with longer 

extraction time and then leveled after 30-60 minutes. However, the extraction amount of 

acetic acid and propanoic acid decreased with longer extraction time and then leveled.  This 

trend was due to the porous structure of the 65 µm PDMS/DVB fiber which can easily 

become saturated when using prolonged extraction times (Jia et al. 2000; Woolfenden 1997). 

Once this occurs, compounds with higher affinity for the fiber will essentially displace those 

compounds with lower affinity. This can be minimized when shorter extraction times are 

used (Koziel et al. 2000; Zabiegala et al. 2000). The linearities (R2) for times from 10 

seconds up to 10 min for the 11 compounds are listed in table 1. 

These R2 values, except for acetic acid, illustrate nearly linear uptake of these target 

gases on SPME fibers during sampling. Linear uptake is an indication that no displacement 

effects were observed and that the peak area counts for each compound (and therefore also 

the measured concentrations) were not affected by limited sorptive capacity of SPME fibers. 

Based on these results, an air sampling time of 10 minutes was chosen for all SPME 

extractions. 

Mean Peak Area Counts versus EBRT 

There are several chemical compounds which are the main sources of offensive odors 

from swine buildings. Hammond et al. (1979) identified the organic acids, propanoic, 

butanoic, phenyl-acetic, and 3-phenyl-propanoic, as well as phenol, p-cresol, and 4-ethyl 

phenol, as important odor contributors. Wright et al. (2005) ranked p-cresol, indole, and 

skatole as the major odorants and assigned lower ranking to acetic acid and phenol.  
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However, acetic acid and phenol are typically present at higher concentrations in these 

environments. Cai et al. (2006) also reported key malodorants associated with swine barn 

particulate matter including methyl mercaptan, isovaleric acid, p-cresol, indole and skatole. 

In this study, SPME fibers were used to identify the odorous compounds exhausted from 

both the control plenum and biofilter treatments (WC, HW). The mean peak area counts of 

the odorous compounds detected in the control plenum and from the treatment reactors were 

used to compare the reduction efficiency between treatments as percent reduction, i.e., as the 

ratio of the difference between the control and treatment to the control, of the form (Cai et 

al., 2007): 

%100% ×
−

=
i

ii

C

TC
Reduction  (1) 

Where: 

Ci = peak area count of compound “i” for the control, and 

Ti = peak area count of compound “i” for the treatment. 

The percentage reduction of specific compounds reported in this paper is based on 

qualitative evaluations and use of equation (1) without estimating actual compound 

concentrations. However, it could be assumed that percentage reduction estimated with this 

qualitative approach is not significantly different from the percentage reduction that would be 

obtained based on estimates of concentrations (Cai et al., 2007). This is because no 

significant effects of competitive adsorption were observed on the SPME fiber coatings used 

for the same sampling time and sampling temperature. Potential biases associated with 

selective extractions and the use of different SPME fibers (Jia et al., 2000) should also be 
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relatively insignificant when equation (1) is used for qualitative comparisons.  More research 

is warranted to test these assumptions with alternative air sampling and analysis methods.    

The same approach was used by Cai et al. (2007) to determine the reduction of 

odorous gases from treated and untreated poultry manure.  Cai et al. (2007) used a 10 minute 

air sampling time with SPME from manure headspace followed by analyses on GC-MS-O 

and used the area count percent reduction as given in equation (1) which is consistent with an 

assessment of concentration reduction. 

The mean peak area counts were calculated using the integrated area of a single ion. 

The results with standard errors (n=3) are shown in Figures 6a, b, c, d. The higher reduction 

of WC for acetic acid, phenol, p-cresol and skatole compared to HW (Figures 6a, b, c, d) 

could be due to the higher porosity of the WC compared to HW. It is also important to 

mention that indole was not detected from either the WC or HW treatments using the GC-

MS, although the odor associated with indole were detected at the olfactory port by the 

panelists from the HW treatment at the 5.3 s EBRT. This indicates that the concentration of 

indole was below the detection capability of the GC-MS but still above the recognition 

threshold for the panelists.  

Odorous gases emitted from swine manure are very complex mixtures from hundreds 

of odorous compounds (Lo et al., 2008; O’Neill and Phillips, 1992; Schiffman et al., 2001). 

However, it is generally agreed that only some chemical groups of compounds are likely 

contributors of the odor nuisance (Van Gemert and Nettenbreijer, 1977; O’Neill and Phillips, 

1992; Schaefer, 1977; Yasuhara, et al., 1984). Generally there are four chemical groups 

reported by the above researchers: VFAs, sulfur containing compounds, phenolics and 
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indolics. A summary of the reduction efficiency, estimated with equation (1), for the four 

groups of characteristic compounds is given in Tables 2a, b. 

The compound removal efficiencies, based on overall average, were very good for 

both types of biofilter media ranging from 76% to 92.6% (Tables 2a, b).  Particularly 

noteworthy is the removal of p-cresol which has been cited as the major odorant responsible 

for downwind swine odor (Koziel et al., 2006).  The reduction of p-cresol, averaged over all 

EBRTs, was 99.9% and 95.3 % for WC and HW, respectively.  The reduction efficiencies 

shown in Tables 2a and 2b have no discernable trend relative to EBRT. The most likely 

reason for this was that the media was maintained at a high moisture content of 60%. These 

results indicate that for biofilter design and operation, a higher media moisture content is 

most important. The relationship between moisture content, EBRT and reduction efficiencies 

for the characteristic compounds need to be further investigated. 

The WC treatment achieved maximum removal efficiencies for VFAs up to 99.8% 

with a minimum efficiency of 96.1%. The HW treatment achieved maximum removal 

efficiencies for VFAs up to 99.7% with a minimum efficiency of 86.8%. This high peak area 

reduction efficiency was most likely the result of the VFAs having a low volatility (Henry’s 

law constant) and a high water solubility making them easily dissolved in the surface water 

of the high moisture content media.  

The WC treatment achieved a maximum removal efficiency of 74.9% and a minimum 

removal of 16.9% for sulfur-containing compounds while the HW treatment achieved a 

maximum efficiency of 67.9% and a minimum removal of 12.8%. Sheridan et al. (2002) 

reported sulfur-containing compounds were reduced between 8-65% and -147-50% across 

two biofiltration systems made from two different sizes of wood ships. The relatively low 
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reduction efficiency for the sulfur-containing compounds (compared to VFA, phenolic and 

indolic groups) was most likely the result of anaerobic zones (excess interstitial water) within 

the biofilter bed where organisms can create sulfur-containing organics (Devinny et al, 1999; 

Sheridan et al. 2002).  

For the phenolic compounds, the reduction efficiencies for WC were between 98.6% 

and 94.6% and the reduction efficiencies for HW were between 98.1% and 85.5%. For the 

indolic compounds, the reduction efficiencies were above 98.3% for WC and above 97.5% 

for HC, respectively.   

The ANOVA analysis results of reduction efficiencies for the 11 target compounds 

are shown in Table 3 which indicates that there were significant differences between the two 

media treatments among the 9 EBRT levels except for hexanoic acid, indole and isovaleric 

acid.  These three compounds were below the GC-MS detection limit for both the WC and 

HW treatments indicating that the removal efficiency was nevertheless very high.  

Reduction Efficiency Comparison versus Media Moisture 

Moisture is needed to maintain microbial activity during biofiltration processes. 

Several studies have reported that biofilter media moisture is one of the key factors when 

biofilters are used for treating odors (Hartung et al., 2001; Nicolai et al., 2006; Sun et al., 

2000). Moisture levels between 40%-60% (wet basis) have been suggested for biofilter 

operation (Kastner, 2004; Nicolai and Janni, 2001b). In this study, SPME samples were 

collected and analyzed at three levels of media moisture content (60%, 40% and 20% wet 

basis) with a fixed media depth of 25 cm and a fixed air flow rate of 2, 265 L/minute (EBRT 

= 1.6 s). Figures 7a, b, c, d, e show the results attained in this study.  
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Increasing both the WC and HW media moisture improved the reduction efficiencies 

for the five main compounds as shown in Figures 7a, b, c, d, e, respectively. This could be 

the result of a higher moisture level absorbing these compounds along with the maintenance 

of a better environment for bacteria growth. Several studies conducted on odor, H2S and NH3 

reductions obtained similar trends as those found in this study. Sun et al. (2000) reported that 

a higher media moisture content resulted in a higher removal efficiency for H2S (47%-94%) 

and NH3 (25%-90%) corresponding to moisture contents of 30-50%, respectively, when the 

compost-based biofilter was used to treat odorous gas. Nicolai et al. (2006) observed that 

increasing the moisture content from 40% to 50% (wet basis) increased removal efficiency of 

NH3 from an average of 76.7% to 82.3% and increasing the moisture content to 60% did not 

significantly change the removal efficiency with a compost/wood chip biofilter. These results 

confirmed that the media moisture plays a key role in the biofiltration processes. 

The results shown in Figures 7a, b, c, d, e also indicate that WC performed better than 

HW at all moisture levels except the reduction efficiency for p-cresol and phenol at the 20% 

moisture level. The reduction efficiencies of WC for moisture levels between 20-60% were 

between 32%-77% for acetic acid, 19%-96% for phenol, above 49% for p-cresol, above 73% 

for indole and above 53% for skatole. The reduction efficiencies of HW for moisture levels 

between 20-60% were between 14%-77% for acetic acid, 55%-93% for phenol, 72%-98% for 

p-cresol, above 75% for indole and 52%-96% for skatole.  

A summary of the reduction efficiencies at three levels of media moisture content, 

estimated with equation (1), for different compounds arranged by the four groups of 

characteristic compounds is given in Tables 4a, b. The reduction efficiencies for VFAs, 

phenolics, indolics and the overall average for all compounds increased with higher media 
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moisture level. There was no significant improvement when the moisture level was raised 

from 40% to 60% for WC but there was significant improvement for HW over this same 

range. For the sulfur-containing compounds, the reduction efficiency decreased when the 

media moisture level increased above 20% for both WC and HW. The most likely reason was 

the development of anaerobic zones as proposed by Devinny et al. (1999).  

The WC biofilter can achieve relatively high removal efficiencies (93.8%, 97.2%, 

97.8%, and 74% for VFAs, phenolics, indolics and overall average for all compounds, 

respectively) at a lower moisture content (40%) while the HW biofilter needed a higher 

moisture content (60%) to achieve the same reduction efficiencies for these compounds 

(Tables 4a, b). For the sulfur-containing compounds, HW performed better than WC at all 

levels of media moisture.  

CONCLUSIONS 

A pilot-scale mobile biofilter was developed where WC and HW chips were 

examined to treat odor emissions from a deep-pit swine finishing facility in central Iowa. The 

fate of characteristic odorous compounds was investigated. The results of this study 

demonstrated that both the WC and HW chips achieved high overall average reduction 

efficiency (at least 76% and as high as 93%) for treating characteristic compounds when the 

biofilter media moisture content was kept at 60% (wet basis). The reduction efficiency 

testing at three media moisture levels indicated that the biofilter, whether WC or HW, was 

more sensitive to the media moisture content than media depth or EBRT. Therefore, 

maintaining proper moisture content is critical to the proper operation of wood chip-based 

biofilters.  Moisture content is more important than media depth and EBRT when a wood 
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chip-based biofilter is operated. The high reduction efficiency obtained with the wood chip-

based biofilter media studied in this research suggests that these materials can be used 

effectively as biofilter media for reducing swine building odors. However, more studies at 

full scale biofilters are needed.  
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Table 1. Summary of linearrities (R2).

Compounds R2

Acetic acid 0.0221

Propanoic acid 0.7677

Butanoic acid 0.9713

Isovaleric acid 0.9919

Pentanoic acid 0.9982

Hexanoic acid 0.9502

Phenol 0.8837

p-Cresol 0.9978

4-Ethyl phenol 0.9938

Indole 0.9976

Skatole 0.9976  

 
Table 2a. Reduction efficiency of characteristic compounds based on equation (1) for WC at a 60% moisture content.

EBRT (s)

1.6 2.5 2.6 3.3 3.6 4 5.3 5.5 7.3
VFAs

Acetic acid  (%) 76.7 95.2 92.5 100.0a 92.8 90.6 98.6 97.6 76.3 91.1

Propanoic acid  (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Butanoic acid  (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0

Isovaleric acid  (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Pentanoic acid  (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Hexanoic acid  (%) 100.0 100.0 100.0 b 100.0 100.0 100.0 100.0 100.0 100.0

Average for VFAs 96.1 99.2 98.8 100.0 98.8 98.4 99.8 99.6 96.1 98.5

Sulfide compounds
Methyl mercaptan (%) -44.2 17.2 29.0 32.6 63.5 48.3 -91.8 52.3 43.1 16.7

Dimethyl sulfide (%) 100.0 b b b 100.0 b 100.0 b b 100.0

Dimethyl disulfide (%) b b b b 100.0 b b 100.0 80.6 93.5

3-Methyl thiophene (%) 39.0 49.8 76.7 46.4 36.5 1.3 52.9 63.5 b 45.8

Dimethyl trisulfide (%) -27.3 37.0 86.5 14.0 58.2 47.5 21.0 83.9 b 40.1
Average for sulfide 
compounds 16.9 34.7 64.1 31.0 71.6 32.4 20.5 74.9 61.8 59.2

Phenolics

Phenol  (%) 95.6 95.5 95.2 95.8 95.1 93.2 95.9 92.3 83.9 93.6

p-Cresol  (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.9 100.0 99.9

4-Ethyl phenol  (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average for phenolics 98.5 98.5 98.4 98.6 98.4 97.7 98.6 97.1 94.6 97.8

Indolics

Indole (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skatole (%) 100.0 100.0 100.0 96.7 100.0 100.0 100.0 100.0 100.0 99.6

Average for indolics 100.0 100.0 100.0 98.3 100.0 100.0 100.0 100.0 100.0 99.8

Overall average 76.0 85.3 91.4 82.1 90.4 84.3 78.4 92.6 91.1 86.3
a100% removal efficiency signifies that a compound was not detedted in treated exhaust.
bThis compound was not detected in both the control plenum and treated exhaust.

Compounds
Average over 

EBRT (%) 
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Table 2b. Reduction efficiency of characteristic compounds based on equation (1) for HW at a 60% moisture content.

EBRT (s) Average over 

Compounds 1.6 2.5 2.6 3.3 3.6 4 5.3 5.5 7.3 EBRT (%)

VFAs
Acetic acid  (%) 76.8 88.2 87.5 100.0a

88.6 80.0 98.4 96.1 34.8 83.4

Propanoic acid  (%) 100.0 100.0 100.0 100.0 94.9 100.0 100.0 98.2 100.0 99.2

Butanoic acid  (%) 100.0 99.2 99.0 100.0 94.8 98.0 99.8 99.0 86.2 97.3

Isovaleric acid  (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Pentanoic acid  (%) 100.0 100.0 100.0 100.0 95.4 100.0 100.0 99.3 100.0 99.4

Hexanoic acid  (%) 100.0 100.0 100.0 b 100.0 100.0 100.0 100.0 100.0 100.0

Average for VFAs 96.1 97.9 97.8 100.0 95.6 96.3 99.7 98.8 86.8 96.6

Sulfide compounds
Methyl mercaptan (%) 30.9 1.2 27.1 33.4 5.8 -44.1 -30.5 35.8 6.7 7.4

Dimethyl sulfide (%) 100.0 b b 28.6 19.0 b 100.0 b 100.0 69.5
Dimethyl disulfide (%) b b b 22.7 100.0 b b 100.0 64.8 71.9

3-Methyl thiophene (%) 39.4 27.9 39.4 69.6 43.1 34.6 -3.7 45.2 100.0 43.9

Dimethyl trisulfide (%) -38.8 40.4 30.7 32.0 64.5 47.9 11.2 46.1 b 29.3

compounds 32.9 23.2 32.4 37.3 46.5 12.8 19.2 56.8 67.9 44.4

Phenolics

Phenol  (%) 92.8 94.4 93.5 94.2 90.4 93.8 94.9 89.3 75.5 91.0

p-Cresol  (%) 97.7 99.3 97.7 100.0 90.3 98.8 98.8 93.9 81.1 95.3

4-Ethyl phenol  (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 93.2 100.0 99.2

Average for phenolics 96.8 97.9 97.1 98.1 93.6 97.5 97.9 92.1 85.5 95.2

Indolics

Indole (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skatole (%) 95.6 100.0 100.0 95.6 100.0 96.6 94.9 100.0 100.0 98.1

Average for indolics 97.8 100.0 100.0 97.8 100.0 98.3 97.5 100.0 100.0 99.0

overall average 79.6 82.2 83.9 76.9 80.4 79.0 77.6 86.4 83.3 80.3
a100% removal efficiency signifies that a compound was not detedted in treated exhaust.
bThis compound was not detected in both the control plenum and treated exhaust.  

 

 

Table 3. P-values of ANOVA analysis of reduction efficiencies for eight characteristic compounds.

Factors 4-Ethyl phenol Acetic acid Butanoic acid Pentanoic acid Phenol Propanoic acid Skatole p-Cresol

Media <.0001 0.027 <.0001 <.0001 0.0003 <.0001 <.0001 <.0001

EBRT <.0001 0.0007 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

Media*EBRT <.0001 0.019 <.0001 <.0001 0.054 <.0001 <.0001 <.0001  
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Table 4a. Reduction efficiencies at 1.6 sec EBRT for WC.

20 40 60

VFAs

Acetic acid  (%) 32.2 62.6 76.7 57.1

Propanoic acid  (%) -6.5 100.0a 100.0 64.5

Butanoic acid  (%) 2.4 100.0 100.0 67.5

Isovaleric acid  (%) 14.5 100.0 100.0 71.5

Pentanoic acid  (%) 3.5 100.0 100.0 67.8

Hexanoic acid  (%) 100.0 100.0 100.0 100.0

Average for VFAs 24.3 92.5 96.1 71.0

Sulfide compounds

Methyl mercaptan (%) 5.6 1.7 -44.2 -12.3

Dimethyl sulfide (%) 56.2 100.0 100.0 85.4

Dimethyl disulfide (%) 100.0 50.8 b 75.4

3-Methyl thiophene (%) 31.2 -27.4 39.0 14.3

Dimethyl trisulfide (%) 23.9 35.2 -27.3 10.6

Average for sulfide compounds 43.4 32.1 16.9 30.8

Phenolics

Phenol  (%) 18.8 92.7 95.6 69.0

p-Cresol  (%) 48.7 99.0 100.0 82.6

4-Ethyl phenol  (%) 58.1 100.0 100.0 86.0

Average for phenolics 41.9 97.2 98.5 79.2

Indolics

Indole (%) 73.3 100.0 100.0 91.1

Skatole (%) 52.5 95.5 100.0 82.7

Average for indolics 62.9 97.8 100.0 86.9

Overall average 38.4 74.0 76.0 62.8
a100% removal efficiency signifies that a compound was not detedted in treated exhaust.
bThis compound was not detected in both the control plenum and treated exhaust.

Moisture content (%) Average over all moisture 
content (%)

Compounds

 

 

 

 

 

 

 



 

 

90

 

 
 
 

 

 

Table 4b. Reduction efficiencies at 1.6 sec EBRT for HW.

20 40 60

VFAs

Acetic acid  (%) 13.8 31.6 76.8 40.8

Propanoic acid  (%) 35.7 66.9 100.0a 67.5

Butanoic acid  (%) 45.2 72.0 100.0 72.4

Isovaleric acid  (%) 47.4 100.0 100.0 82.5

Pentanoic acid  (%) 55.3 100.0 100.0 85.1

Hexanoic acid  (%) 100.0 100.0 100.0 100.0

Average for VFAs 49.6 78.4 96.1 74.7

Sulfide compounds

Methyl mercaptan (%) 36.9 29.0 30.9 32.3

Dimethyl sulfide (%) 41.6 37.3 100.0 59.6

Dimethyl disulfide (%) 100.0 58.9 b 79.4

3-Methyl thiophene (%) 11.8 9.9 39.4 20.4

Dimethyl trisulfide (%) 59.5 16.6 -38.8 12.4

Average for sulfide compounds 50.0 30.3 32.9 37.7

Phenolics

Phenol  (%) 54.7 58.2 92.8 68.5

p-Cresol  (%) 72.3 70.8 97.7 80.3

4-Ethyl phenol  (%) 68.6 67.2 100.0 78.6

Average for phenolics 65.2 65.4 96.8 75.8

Indolics

Indole (%) 75.4 75.3 100.0 83.6

Skatole (%) 51.6 57.1 95.6 68.1

Average for indolics 63.5 66.2 97.8 75.8

Overall average 54.4 59.4 79.6 64.5
a100% removal efficiency signifies that a compound was not detedted in treated exhaust.
bThis compound was not detected in both the control plenum and treated exhaust.

Moisture content (%) Average over all moisture 
content (%)

Compounds
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Figure 1a. Mobile pilot-scale biofilter laboratory and monitoring laboratory. 

 

 

 
Figure 1b.  Plan view layout of the biofilter testing laboratory. 
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Figure 2a. Inside the biofilter testing laboratory showing four of eight eight total reactor barrels. 

 
 

 
Figure 2b. SPME sampling port with SPME fibers. 
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Figure 2c. Hardwood (HW) and western cedar (WC) media. 
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Figure 3. Schematic of the gas and SPME sampling systems. 
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Figure 4a. Comparison of extraction efficiency between five SPME fiber coatings tested. 

 
 
 

Comparison of PDMS/DVB and Caroxen/PDMS

0.0E+00
5.0E+05
1.0E+06
1.5E+06
2.0E+06
2.5E+06
3.0E+06
3.5E+06
4.0E+06
4.5E+06
5.0E+06

A
ce

ti
c

ac
id

P
ro

p
an

o
ic

ac
id

B
u

ta
n

o
ic

ac
id

Is
o

va
le

ri
c

ac
id

P
en

ta
n

o
ic

ac
id

H
ex

an
o

ic
ac

id

P
h

en
o

l

p
-C

re
so

l

4-
E

th
yl

p
h

en
o

l

In
d

o
le

S
ka

to
le

Compound

P
ea

k 
ar

ae
 c

o
u

n
t

65 um PDMS/DVB

85 um Car/PDMS

 
Figure 4b. Comparison of extraction efficiency between the 65 µm PDMS/DVB fibers and the 85 µm 

Car/PDMS fiber coatings for eleven characteristic swine odorants. Extraction time= 30 minutes. 
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Figure 5a. Plot of peak area counts for the characteristic VFA compounds versus extraction  

time by using 65 µm PDMS/DVB fiber. 
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Figure 5b.  Plot of peak area counts for the characteristic phenolic and indolics compounds 

 versus extraction time by using 65 µm PDMS/DVB fibers. 
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Figure 6a. Comparison of peak area count as a function of EBRT for acetic acid. 
 
 
 
 
 
 

Phenol

1
10

100
1000

10000
100000

1000000

1.6 2.5 2.6 3.3 3.6 4 5.3 5.5 7.3

Retention time (s)

A
re

a 
co

u
n

t

WC HW Control
 

Figure 6b. Comparison of peak area count as a function of EBRT for phenol. 
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Figure 6c. Comparison of peak area count as a function of EBRT for p-cresol. 
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Figure 6d. Comparison of peak area count as a function of EBRT for skatole. 
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Figure 7a. Comparison of area counts as a function of media material and 
moisture content for acetic acid. 
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Figure 7b. Comparison of area counts as a function of media material and 
moisture content for phenol. 
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Figure 7c. Comparison of area counts as a function of media material and 
moisture content for p-cresol. 
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Figure 7d. Comparison of area counts as a function of media material and 
moisture content for indole. 
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Figure 7e. Comparison of area counts as a function of media material and 
moisture content for skatole. 
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CHAPTER  4. EVALUATION  OF WOOD CHIP-BASED BIOFILTERS  TO 

REDUCE ODOR, HYDROGEN  SULFIDE,  AND AMMONIA   
FROM  SWINE BARN VENTILATION  AIR 

 

Modified from a paper accepted for publication in the J. Air & Waste Manage. Assoc. 

L. Chen, S. Hoff, L. Cai, J. Koziel, B. Zelle 

ABSTRACT 

A pilot-scale biofilter was developed where two types of wood chips (western cedar 

and 2 inch hardwood) were examined to treat odor emissions from a deep-pit swine finishing 

facility in central Iowa. The biofilters were operated continuously for 13 weeks at different 

air flow rates resulting in variable empty bed residence times (EBRT) from 1.6 to 7.3 sec. 

The effects of three media moisture levels were also evaluated. A dynamic forced-choice 

olfactometer was used to evaluate odor concentrations from both the control (inlet) plenum 

and biofilter treatments (outlet). Hydrogen sulfide (H2S) and ammonia (NH3) concentrations 

were also measured from these olfactometry samples. Solid-phase microextraction (SPME) 

PDMS/DVB 65 µm fibers were used to extract volatile organic compounds (VOCs) from 

both the control plenum and biofilter treatments. Analyses of separated odors were carried 

out using a gas chromatography-mass spectrometry-olfactometry (GC-MS-O) system. Static 

sample results indicated that both types of chips achieved significant reductions in odor 

(average 70.1% and 82.3% for HW and WC, respectively), H2S (average 81.8% and 88.6% 

for HW and WC, respectively) and NH3 (average 43.4% and 74.0% for HW and WC, 

respectively) concentrations. GC-MS-O aromagram results showed both treatments reached 

high odor reduction efficiency (average 99.4% and 99.8% for HW and WC, respectively). 
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The results also showed that maintaining proper moisture content and a minimum EBRT are 

critical to the success of wood chip-based biofilters. 

IMPLICATIONS 

A mobile pilot-scale biofilter was developed where two types of wood chips (western 

cedar and 2 inch hardwood) were tested to treat odor emission from a deep pit swine 

finishing facility in central Iowa. The reduction efficiency and pressure drop characteristics 

obtained with the wood chip-based biofilters studied in this research indicate the feasibility 

of farm-level applications of wood chip-based biofilters. 

INTRODUCTION 

With the intensification of animal production in many countries throughout the world, 

the odor produced and emitted from such intensive animal production can cause nuisance to 

individuals living in the vicinity of livestock farms. The reduction of odors emitted from 

livestock and poultry production systems continues to present challenges for researchers. 

Most odors and gas emissions from building and manure storage sources are by-products of 

anaerobic decomposition and transformation of organic matter in manure by 

microorganisms.1 These by-products result in a complex mixture of over 168 volatile 

compounds of which 30 have a detection threshold of 0.001 mg/m3 or less, and hence are 

most likely to be associated with odor nuisance.2 These compounds cover a broad spectrum 

and generally exist in low concentrations. Any technology used to reduce emissions must be 

able to treat a broad spectrum of airborne compounds. Various air pollution control 

technologies have been invented and applied, such as activated carbon adsorption, wet 

scrubbing, and masking agents. These methods, however, often transfer odor-causing 
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materials from the gas phase to scrubbing liquids or solid adsorbents, and their derivatives 

have resulted in wastewater and solid waste concerns.3-5 Biofiltration, which can be cost 

effective and has the ability to treat a broad spectrum of gaseous compounds,6-8 has been 

regarded as a promising odor and gas treatment technology that is gaining acceptance in 

agriculture. The operational principle of a biofilter is that the contaminated air is passed 

through a filter media where microorganisms reside. The contaminants in the air diffuse into 

the liquid surrounding the biofilm where bacteria degrade them to CO2, H2O, inorganic salts 

and biomass.9, 10 Several research studies using compost-based biofilters have been 

conducted with significant reductions in odor and specific gases reported. Nicolai and Janni11 

reported a compost/bean straw biofilter that achieved average odor and H2S removal rates of 

78% to 86%, respectively. Sun et al.12 observed an average H2S removal efficiency between 

93% and 94%, and an average NH3 removal efficiency between 90% and 76% with 50% 

media moisture content and 20 sec gas residence time. Martinec et al.13 also found an odor 

reduction efficiency up to 95%.  

Selecting the proper biofilter media is an important step toward developing a 

successful biofilter. Williams and Miller14 and Swanson and Loehr15 pointed out that 

desirable media properties include: (1) Suitable environment for microorganisms to thrive 

including enough nutrients and moisture, (2) Large surface area to maximize attachment area 

and sorption capacity, (3) Stable compaction properties to resist media compaction and 

channeling, (4) High moisture holding capacity, and, (5) High pore space to maximize EBRT 

and minimize pressure drop. In addition, practical concerns such as cost and local availability 

must also be considered. A great variety of media materials have been verified suitable for 

biofilters. The most widely considered media in agriculture are organic materials such as 
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compost mixtures (from various sources). Compost has many of the qualities mentioned 

above, with the main drawback being a relatively fast degradation15 which leads to 

compaction, a limitation on bed life, and a high air flow resistance that must be overcome 

with the use of large, expensive fans.6,16 The mixture of wood chips and compost (70:30 to 

50:50 percent by weight) has been recommended as biofilter media for agricultural uses.17 

However, special care is needed to screen fines from wood chip/compost mixtures to reduce 

operating static pressure.17 In order to keep reasonable fan ventilation efficiency, agricultural 

ventilation fans should be run at pressure drops of less than 60 Pa (0.25 in. water column).18 

Using only wood chips as the biofilter media can reduce the pressure drop19 without special 

fan needs which results in less construction and operating costs.  However, little is known 

about the performance of wood chip biofilters on the reduction of odors emitted from swine 

facilities. 

To date, studies have mainly focused on overall odor, H2S, and NH3 reductions when 

evaluating biofilters used in agriculture. More studies are needed to better understand the 

biofilter’s effect on an individual odorous compounds. Therefore, the objectives of this 

research were to investigate: 1. the odor reduction performance of two distinct wood chip 

biofilters influenced by media moisture content and empty bed residence time (EBRT); 2. the 

fate of individual odorous compounds corresponding to each of four chemical groups by 

using an innovative GC-MS-O system; and, 3. the pressure drop characteristics of wood chip 

media. 
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MATERIALS  AND METHODS 

Experiment Site 

This research project was conducted at a 1,000-head curtain-sided deep-pit swine 

finishing facility located in central Iowa.  This research was conducted from July 14 to 

October 13, 2006. The building monitored was approximately 14 x 55 m with 25 cm and 61 

cm diameter fans pulling pit-gases from the pump-out locations. 

Mobile Pilot-Scale Biofilter System 

A mobile pilot-scale biofilter system, which consisted of a biofilter testing laboratory 

(BTL) and a biofilter monitoring laboratory (BML), was constructed for this research project. 

The set-up is shown in Figure 1a. The layout of the BTL is shown in Figure 1b. The BML 

was used to house all instrumentation hardware, calibration gases required, and data 

acquisition hardware required to measure and store temperature, biofilter moisture content, 

wind speed, wind direction, NH3 and H2S concentrations.  The static gas and solid-phase 

microextraction (SPME) sampling system utilized a series of pumps that pulled sample air 

from selected locations during testing. A bag sample collection system was also available in 

the BML to collect static gas samples in 10-liter Tedlar® bags for odor analysis.  

The BTL (Figures 1b and 2a) consisted of eight parallel plastic reactor barrels, four of 

which were randomly selected to be filled with western cedar (WC) and the remaining four 

were filled with 5 cm (2 in.) hardwood (HW) (Figure 2b). Both wood chip types were 

purchased locally and were used in their acquired state without pre-preparation such as 

grading and screening. The characteristics of the two wood chip types are given in Table 1. 

There was a common plenum underneath the barrels directly connected to a fan from one of 
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the barn pump-out locations. Eight adjustable fans (AXC 100b; Continental Fan 

Manufacturing, Buffalo, New York) and 10 cm (4 in.) PVC pipes were used to connect the 

common plenum with the eight barrels. In order to homogenize the exhaust air in the plenum, 

a small fan (4C442; Dayton Fans) was installed inside the plenum for mixing purposes.  

The reactor barrels (56 cm inner diameter, 86 cm in depth) were designed with a 25 

cm air space at the bottom of the barrel, with the biofilter media located above this airspace 

separated by a metal mesh support (Figure 3).  Each of the eight reactors was initially filled 

to a depth of 51 cm. Water was added manually via a spray nozzle at the top of each barrel. 

Biofilter media moisture was measured with commercially available soil moisture sensors 

(Model ECH2O EC-20; Decagon Devices, Inc. Pullman, WA) which were first calibrated in 

the laboratory. Each of the eight reactors had its own variable speed fan that was manually 

adjusted based on the demands of the experimental design. The variable speed fans were 

used to adjust the EBRT to 1.6, 2.5, 2.6, 3.3, 3.6, 4.0, 5.3, 5.5, and 7.3 sec. 

Biofilter Operation 

The biofilter media in each reactor was allowed to stabilize by passing pit-gas air 

through each reactor with the media at an initial depth of 51 cm, a media moisture content in 

the 50-60% range (wet basis) and an air flow rate of 2265 L/min. The stabilization period 

was one month; a decision based on previous field experience.20 Odor samples were taken 

weekly and SPME fiber selection and time series tests were conducted during the 

stabilization period. After the one month stabilization period, the media depth was changed 

from 51 cm to 38 cm and then to 25 cm over a period of nine weeks, in three week 

increments. At each depth tested, three levels of air flow rate (2265 L/min, 1410 L/min and 

1025 L/min) were randomly set to run in each reactor for about one week during which 
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SPME and static odor samples were collected and analyzed.  At the final period of this 

project, where the media depth was 25 cm, SPME and static odor samples were collected at 

three different media moisture levels (60% ± 6%, 40% ± 5%, 20% ± 3% wet basis) with a 

fixed air flow rate of 2265 L/min. 

Static Gas and SPME Sampling 

The static gas and SPME sampling system consisted of a funnel, PFA 6 mm (¼ in.) 

inside diameter Teflon tubing, a 47 mm diameter membrane filter with a 0.45µm pore size, a 

custom-built PTFE (Teflon) SPME sampling port (Figure 4), which was used to hold the 

SPME fiber and keep the fiber tip (extraction component) in contact with sample air while 

preventing ambient air exposure, and a vacuum pump (Figure 3).  All sample tubing was 

heated to prevent condensation within the tubes. The SPME sampling ports were cleaned and 

dried at 110 ºC overnight before installation. When the static gas samples were collected, the 

system was first allowed to run 3 min at an air flow rate of 5 L/min to equilibrate and then 

the odorous gas from a selected location was drawn into a 10-liter Tedlar® bag. At each 

measurement, three static odor samples were collected. All static odor samples were analyzed 

within 24 hours of collection. 

Five new commercially available fibers including 85 µm Car/PDMS, 65 µm 

PDMS/DVB, 50/30 µm DVB/Car/PDMS, 85 µm PA and 100 µm PDMS (Supelco, 

Bellefonte, PA) were first tested to select the most suitable (i.e., efficient in collecting typical 

swine odorants21) SPME coating for extracting volatile organic compounds (VOCs) 

associated with the pit-gas exhaust air. Before using, each fiber was conditioned in a heated 

gas chromatography (GC) splitless injection port under helium flow according to the 

manufacturer’s instructions. SPME sampling time was varied from 10 sec to 2 hr to 
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determine the optimal SPME sampling time. As a result of pre-testing, the PDMS/DVB 65 

µm fiber and 10 min extraction time were used for this research. When the SPME samples 

were collected, the system was first allowed to run for 3 min to equilibrate and then the 

SPME fiber was placed into the sampling port where the fiber was exposed to the sample air 

for the preset sampling time. The fibers were then removed from the sampling port, wrapped 

in clean aluminum foil and stored in a cooler for shipping to an on-campus laboratory for 

analysis. At each measurement, three SPME samples were collected. All SPME samples 

were analyzed within 48 hours of collection.  

Analytical Methods 

A dynamic forced-choice olfactometer (AC’SCENT International Olfactometer; St. 

Croix Sensory, Inc. Stillwater, MN) was used to evaluate odor concentration based on ASTM 

E679-0422. Eight panelists were used for each evaluation. Each panelist was screened based 

on their ability to detect n-butanol in the 20-80 ppb range23, 24 as defined by EN13725. Each 

panelist was given a series of presentations at decreasing dilution ratios. At each dilution 

ratio the panelist was given one presentation which contains the odor and two blank 

presentations (triangular testing). The panelist must select the presentation which is different 

from the other two and declare to the test administrator whether the selection is a "Guess", 

"Detection", or "Recognition", as defined by ASTM E679-04.22 The concentrations of NH3 

and an H2S equivalent measure were also evaluated from the static bag samples by using 

NH3 (Model Drager Pac III; Drager Safety, Inc., Pittsburgh, PA) and H2S (Model Jerome 

631-X; Arizona Instrument LLC, Tempe, AZ) analyzers. The Jerome 631-X analyzer 

measured total reduced sulfur (TRS) and was expressed as an H2S equivalent measure in this 

paper for a convenient comparison with other research using the same analyzer. Both the 
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NH3 and H2S analyzers were calibrated annually by the manufacturer and monthly in-house 

using standard calibration gases.  

A multidimensional GC-MS-O (Microanalytics, Round Rock, TX) was used to 

simultaneously evaluate odor and specific compounds. The GC-MS-O integrates GC-O with 

conventional GC-MS (Model 6890N GC/5973 MS; Agilent, Inc Wilmington, DE) as the base 

platform with the addition of an olfactory port and flame ionization detector (FID). The 

system was equipped with a non-polar pre-column and a polar column in series as well as 

system automation and data acquisition software. The general run parameters used were as 

follows: injector temperature, 260 ºC; FID temperature, 280 ºC; column temperature, 40 ºC 

initial; 3 min hold, 7 ºC/min, 220 ºC final, 10 min hold; carrier gas, He. Mass/molecular 

weight-to-charge ratio (m/z) range was set between 33 and 280. Spectra were collected at a 

6/sec rate and the electron multiplier voltage was set to 1500 V. The MS detector was auto-

tuned weekly. More detailed information related to the GC-MS-O has been described by Lo 

et al.21  

A trained human panelist was used to sniff separated odors from the sniff port on the 

GC-MS-O system simultaneously with chemical analyses. Odors were evaluated using the 

Aromatrax software25. Each odor analysis resulted in an aromagram generated by the 

panelist. The width of each peak in the aromagram indicates the start and end times for 

individual odor responses, and the peak height was related to the perceived intensity of these 

responses. The odor area count was calculated using the integrated area of each odor peak. 
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RESULTS AND DISCUSSION 

Static Gas Sample Results 

The odor concentration results for a 60% media moisture content (wet basis) are 

given in Figure 5a. The Student’s t-test p-value and the odor concentration reduction 

efficiency (100×(control (inlet)-treatment (outlet))/control) as a function of EBRT are given 

in Table 2. The treated (outlet) odor concentration was significantly reduced compared with 

control at each EBRT level since the Student’s t-test p-value was from less than 0.001 to 

0.026. The odor concentration after WC treatment is lower than HW treatment. The odor 

concentration reduction efficiency increased with increasing EBRT. Above a 4 sec EBRT, a 

maximum odor reduction efficiency of above 75.7% and 90.3% was observed for HW and 

WC, respectively. The average reduction efficiencies for HW and WC were 70.1% 

(maximum 88%; minimum 48.2%), and 82.3% (maximum 91.4%; minimum 62%), 

respectively. This was comparable with the removal efficiencies of 78% and 81% attained by 

Nicolai and Janni,11 and Martinec et al.,26 respectively. The results reported here were lower 

than the 90% and 92% reported by Sheridan et al.,27, 28 respectively. 

The biofilter effect on hydrogen sulfide concentration is shown in Figure 5b. The 

reduction efficiency increased with increasing EBRT for both HW and WC, except that the 

reduction efficiency had a drop at the 3.6 sec EBRT. This drop was most likely the result of 

the low inlet concentration which averaged 0.37 ppm compared to the range of other inlet 

concentrations (1.50 to 6.33 ppm) resulting in the lower reduction efficiency even though the 

outlet concentration was the lowest (0.19 and 0.12 ppm for HW and WC, respectively) 

compared with that of other EBRTs. Figure 5b also indicates that the reduction efficiency 
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was stable and reached an average 92.5% (minimum 91.1%; maximum 94.2%), and 95% 

(minimum 92.4; maximum 96.8%), for HW and WC (respectively) when the EBRT was 

longer the 3.6 sec.  

The biofilter effect on ammonia concentration is shown in Figure 5c. The reduction 

efficiency fluctuated when the EBRT was less than 4 sec and reached an average 61.3% 

(minimum 49.7%; maximum 70.8%), and 79.8% (minimum 60.5%; maximum 93.8%), for 

HW and WC (respectively) when the EBRT was longer the 3.6 sec. Based on the results 

shown in Figure 5, the 4 sec EBRT is a recommended minimum for these types of wood chip 

biofilters. 

It is commonly believed that the media moisture content is a key factor influencing 

biofilter performance.28-31 The results of odor, hydrogen sulfide, and ammonia concentrations 

at three levels of media moisture with an EBRT fixed at 1.6 sec are shown in Figures 6a, b 

and c, respectively. The 1.6 sec EBRT was chosen to assess media performance at the lowest 

EBRT, a desirable condition for practical on-farm biofilter applications. 

The Student’s t-test p-value and the odor reduction efficiency as a function of media 

moisture content are given in Table 3. The odor reduction efficiency for both WC and HW 

increased with increasing media moisture from 20% to 60%, however the differences 

between 20% and 60% media moisture content for both WC and HW were not statistically 

significant since the t-test p-value was 0.05 and 0.82 for WC and HW, respectively. The most 

likely reason was the shorter EBRT (1.6 sec) which implies that a minimum EBRT is needed 

to take advantage of a higher media moisture content regarding odor concentration reduction. 

The lower reduction efficiency at 40% moisture level compared to 20% was most likely the 

result of the lower inlet concentration (1150 OU/m3 at 40% compared with 1848 OU/m3 at 
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20%) even though the outlet concentration (878 and 717 OU/m3 for HW and WC, 

respectively) at 40% moisture level was lower than that at the 20% moisture level (1014 and 

861 OU/m3 for HW and WC, respectively; Figure 6a). 

The hydrogen sulfide concentration reduction efficiency of WC at moisture levels of 

20%, 40% and 60% was 6.0%, 69.1% and 83.5%, respectively. The hydrogen sulfide 

concentration reduction efficiency of HW at moisture levels of 20%, 40% and 60% was 40%, 

49.4% and 70.1%, respectively. Sun12reported that a higher media moisture content resulted 

in a higher removal efficiency for H2S (47%-94%) corresponding to moisture contents of 30-

50% at 5, 10 and 20 sec gas retention times, respectively, when their compost-based biofilter 

was used to treat odorous gas.  Nicolai and Janni31 reported an average hydrogen sulfide 

reduction for the low (27.6%), medium (47.4%) and high (54.7%) moisture contents at 5 sec 

empty bed contact times were 3%, 72% and 87%, respectively, when evaluating treatment 

effects of different biofilter media mixture ratio of wood chips and compost (ratio from 0% 

to 50% by weight).  

The ammonia concentration reduction efficiency of WC at moisture levels of 20%, 

40% and 60% was -4.5%, 46.7% and 67.3%, respectively. The ammonia concentration 

reduction efficiency of HW at moisture levels of 20%, 40% and 60% was 32.8%, 34.4% and 

54.1%, respectively. For the WC biofilter, ammonia reduction efficiency increased 

drastically (from -4.5% to 46.7%) when the media moisture content increased from 20% to 

40%, and further increasing the media moisture content from 40% to 60% led to higher 

removal efficiencies (from 46.7 to 67.3%). Increasing the HW media moisture content from 

20% to 40% changed the ammonia reduction efficiency from 32.8% to 34.4%, and further 

increasing the moisture content to 60% improved the reduction efficiency to 54.1%.  
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Overall, WC performed better than HW in terms of the ammonia reduction efficiency 

and WC could achieve relatively high reduction efficiency (46.7%) at a relatively low media 

moisture content (40%) compared to HW (54.1% reduction efficiency at 60% moisture 

content). The most likely reason was that WC has a higher porosity than HW (see Table 1) 

resulting in a larger surface area which benefited both adsorption and biodegradation. 

Sun12reported that a higher media moisture content resulted in a higher removal efficiency 

for NH3 (25%-90%) corresponding to moisture contents of 30-50% at 5, 10 and 20 sec gas 

retention times, respectively, when their compost-based biofilter was used to treat odorous 

gas.  Nicolai et al.1observed that increasing the moisture content from 40% to 50% (wet 

basis) increased removal efficiency of NH3 from an average of 76.7% to 82.3% and 

increasing the moisture content to 60% did not significantly change the removal efficiency 

with a compost/wood chip biofilter at a 5 sec retention time. The maximum ammonia 

reduction efficiency measured in this study was much lower than the compost based biofilter 

reported by Sun et al.12and Nicolai et al.1 and this was most likely the result of a shorter 

EBRT (1.6 sec). In other words, a minimum EBRT along with a higher media moisture 

content was necessary for a higher biofilter performance.  

SPME Sample Results 

Four chemical groups have been cited as likely contributors to odor nuisance2, 32, 33 

including: volatile fatty acids (VFAs), sulfur containing compounds, phenolics and indolics. 

A comparison of peak area counts for these four group odors (defined as the sum of peak 

area of all odors belonging to each group on the aromagram) and the number of odor events 

for each group at the 60% media moisture content and varying EBRT are shown in Table 4. 

The group of “sulfur containing compounds” included all the odors such as sewer, skunky, 
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onion, garlic, and sulfury which correspond to methyl mercaptan, dimethyl disulfide, 3-

methyl thiophene and dimethyl trisulfide. The group of “VFAs” included all the odors such 

as acidic, burnt, fatty acid and body odor which correspond to acetic acid, propanoic acid, 

butanoic acid, isovaleric acid, pentanoic acid and hexanoic acid. The group of “phenolics” 

included all odors such as medicinal, barnyard, urinous and phenolic which correspond to 

phenol, p-cresol, and 4-ethyl phenol. The group of “indolics” included all the odors such as 

barnyard, and naphthalenic which correspond to indole and skatole. In this approach, the 

potential odor interactions were not considered. However, comparing the number of odor 

events and the odor area count between control and treatment is still meaningful. The same 

approach was used by Cai et al.34 to determine the reduction of odorous gases from treated 

and untreated poultry manure. 

As shown in Table 4, both the number of odor events and odor area count were 

drastically reduced for both the WC and HW treatments. The WC performed better than or 

equal to HW chips on reducing peak area of both the subcategory odors and total odors. This 

was consistent with the olfactometry results. However, the odor area reduction at each EBRT 

level from the aromagram results was higher than that reported from olfactometry results. 

This was most likely the result of the complex sense of smell since odors are not additive and 

may mask each other or alternatively enhance the effect of one another.  

The odor area count, number of odors, and reduction efficiencies, as defined in eq 1 

(Cai et al.34), with 60%, 40% and 20% media moisture contents are listed in Table 5. 

%100% ×
−

=
i

ii

C

TC
Reduction  (1) 

Where: 
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Ci = peak area count of odor “i” for the control, and 

Ti = peak area count of odor “i” for the treatment. 

The reduction efficiency for subcategories “VFA”, “phenolics”, and “total” odor for 

WC was improved when the media moisture content increased from 20% to 40% and further 

increasing the moisture content to 60% did not further benefit the reduction efficiency, but 

the number of odorous compounds identified in the treatment was reduced with the moisture 

content increased from 20% to 60% (Table 5). The reduction efficiency of HW was 

improved with increased moisture levels between 20% and 60% for all subcategories and 

total odors except for the subcategory “sulfur” at 20% moisture content. The number of odors 

detected in the HW treatment was also reduced with the moisture content increased from 

20% to 60%. Although Table 5 shows that the higher media moisture improved the reduction 

efficiencies for both WC and HW, WC reached the same high reduction efficiency at a lower 

moisture content as compared to HW. 

GC-MS results at 20%, 40% and 60% media moisture levels are shown in Figures 7a, 

b, and c, respectively. As shown in Figure 7a relatively lower reductions of the characteristic 

compounds were measured at the 20% media moisture level. The lower peak traces for HW 

and WC corresponding to higher media moisture levels (Figures 7b and 7c) indicated that the 

reduction efficiencies for these characteristic compounds increased with higher media 

moisture content. For example, the peak height of p-cresol for HW progressively decreased 

from Figure 7a to 7b and then to 7c which corresponded to media moisture contents of 20%, 

40%, and 60%, respectively. The same decreasing trend was found for WC. Similar trends 

were observed for other characteristic compounds such as phenol, skatole, and indole. A 

more detailed assessment on GC-MS results can be found in Chen et al.35 It is worth 
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mentioning that the peak reduction for p-cresol, which has been implicated as being the 

highest ranking odorant responsible for the characteristic odor near an animal source and far 

downwind,36-38 was improved drastically when media moisture content increased from 20% 

to 60% for both WC and HW. Several studies have reported that biofilter media moisture is 

one of the key factors1, 12, 29 when biofilters are used for treating odors. Higher media 

moisture content aids adsorption and absorption processes which resulted in higher reduction 

potentials. The GC-MS results shown in this study confirmed that the media moisture content 

plays a critical role in the biofiltration process. 

Pressure Drop Characteristics 

Pressure drop is one of the main considerations for practical biofilter operation. It is 

commonly believed that the anticipated pressure drop through a full-scale biofilter media 

should be less than 50 Pa to allow the existing fans to remain operational. For the pilot-scale 

biofilter tested in this research, the pressure drops at different levels of air flow rate and 

media depth are given in Table 6. The pressure drop was less than 50 Pa at the media depth 

less than 38 cm for both HW and WC which implied that the existing ventilation fans will 

not necessarily need to be replaced when the wood chips-based biofilter is installed and 

operated under these conditions. No sharp changes in pressure drop occurred through WC 

and HW for each level of air flow rate during the test period which showed that both WC and 

HW have excellent stability properties even after wetting.  

A linear relationship between media unit pressure drop and unit airflow rate for both 

WC and HW was observed and is shown in Figure 8. HW performed better than WC in terms 

of media unit pressure drop as shown in Figure 8. This relationship is comparable with 

Nicolai and Janni17 where they reported a linear relationship between the media unit pressure 
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drop and unit airflow rate for mixtures of wood chips and compost. The results from Nicolai 

and Janni show that significant changes in operation pressure will result from their 

unscreened media. The wood chips tested and reported here were not screened from their 

acquired state. 

CONCLUSIONS 

A mobile biofilter testing laboratory was developed where WC and HW chips were 

examined to treat odor emissions from a deep-pit swine finishing facility. The odor reduction 

performance of two distinct wood chip-based biofilters operating at various moisture 

contents and EBRT was investigated. The results of this study demonstrated that both WC 

and HW chips achieved high reduction efficiencies for odor concentration (48%-93%) when 

keeping the biofilter media moisture content at 60% (wet basis). The results also indicated 

that both a proper media moisture content and a minimum EBRT were important for a 

successful biofilter. The reduction efficiency and pressure drop characteristics obtained with 

the wood chip-based biofilters studied in this research indicate the feasibility of farm-level 

applications of wood chip-based biofilters for reducing swine building odors. 
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APPENDIX 

Bucket test method for estimating media porosity adopted from Nicolai and Janni 

(2001)17: 

1. Start with two identical 5-gallon buckets. 

2. Fill one bucket one-third full with media. Drop the pail 10 times from a height of      

15 cm onto a concrete floor. 

3. Add media to fill the same bucket two-thirds full and drop the pail 10 times from 

a height of 15 cm onto a concrete floor. 

4. Fill the bucket to the top with media and once again drop the pail from a height to 

15 cm onto a concrete floor. 

5. Fill the bucket once again to the top edge of the pail. 

6. Fill the second bucket to the top with clean water. 

7. Slowly pour water from the second bucket into the first bucket containing media 

until the water reaches the top of the bucket. 

8. Record both the total depth in the second bucket and the distance between the 

level of the remaining water and the top of the bucket. 

9. Calculate the porosity by dividing the distance from the water line to the top of 

the bucket by the total bucket depth and multiply by 100. 
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Table 6. Pressure drop for HW and WC at different levels of air flow rate and media depth.

Air flow rate 
(L/min)

Media depth 
(cm)

EBRT 
(sec) Pressure drop for HW (Pa) Pressure drop for WC (Pa)

2265 25 1.6 41 ± 3 55 ± 4

2265 38 2.5 50 ± 3 64 ± 10

1410 25 2.6 16 ± 1 27 ± 1

2265 51 3.3 54 ± 3 119 ± 10

1025 25 3.6 7 ± 1 9 ± 1

1410 38 4 21 ± 1 26 ± 5

1410 51 5.3 31 ± 4 71 ± 5

1025 38 5.5 12 ± 2 18 ± 3

1025 51 7.3 17 ± 0 49 ± 7  
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Figure 1a. Mobile biofilter testing laboratory and mobile monitoring laboratory. 

 

 
Figure 1b. Plan view layout of the biofilter testing laboratory. 
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Figure 2a. Inside the biofilter testing laboratory showing four of eight reactor barrels. 

 

 

 

 
Figure 2b. Hardwood (HW) and western cedar (WC) media. 
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Figure 3. Schematic of the biofilter reactor and gas/SPME sampling systems. 
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Figure 4. SPME sampling port with SPME fiber. 
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Figure 5. Static sample results: (a) odor, (b) H2S, and (c) NH3 concentration 
vs. empty bed residence time (EBRT). 
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Figure 6. Static sample results: (a) odor, (b) H2S, and (c) NH3 concentration 
vs. media moisture content. 
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Figure 7. GC-MS results: (a) at 20% media moisture content, (b) at 40% media 

moisture content, (c) at 60% media moisture content. 
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Figure 8. Media unit pressure drop for HW (55.9% voids) and WC (67.0% voids) vs. unit airflow rate at 
60% moisture content (this study). Nicolai and Janni17 predicted values (30-40% moisture content) for 

(A) unscreened compost/wood chip mixture (50:50 by weight) with 39.0% voids, (B) screened 
compost/wood chip mixture (60:40 by weight) with 47.0% voids, and (C) screened compost/wood chip 

mixture (30:70 by weight) with 56.5% voids. 
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CHAPTER  5. GENERAL  CONCLUSIONS AND RECOMMENDATIONS  

FOR FUTURE RESEARCH 
 

SUMMARY  AND CONCLUSIONS 

The following conclusions were drawn from this research: 

1. A mobile pilot-scale biofilter was developed where WC and HW chips were 

examined to treat odor emissions from a deep-pit swine finishing facility at 

various EBRT and media moisture levels. The olfactometry results demonstrated 

that both WC and HW chips achieved high reduction efficiencies for odor 

(average 70.1% and 82.3% for HW and WC, respectively) and H2S (average 

81.8% and 88.6% for HW and WC, respectively), when keeping the biofilter 

media moisture content at 60% (wet basis).  

2. At the 60% media moisture content, the treated odor concentration decreased with 

increasing EBRT ranging from 1.6 to 7.3 sec. Four seconds was recommended as 

a suitable EBRT for treating deep-pit swine odors.  

3. The odor reduction results from olfactometry indicated that both a proper media 

moisture content and a minimum EBRT were important for a successful biofilter. 

4. The GC-MS results demonstrated that both WC and HW chips achieved high 

overall average reduction efficiencies (76% - 93%) for treating characteristic 

compounds when the biofilter media moisture content was kept at 60% (wet 

basis). At the 60% media moisture content, the reduction efficiencies of the 

characteristic compounds have no discernable trend relative to EBRT. For lower 



 

 

138

 

media moisture, the relationship between EBRT and reduction efficiency for the 

characteristic compounds needs to be further investigated.  

5. A linear relationship between media unit pressure drop and unit airflow rate for 

both WC and HW was observed. No sharp changes in pressure drop occurred 

through WC and HW during the test period which indicates that both WC and 

HW chips have an excellent stability property. 

6. The high reduction efficiency and pressure drop characteristics obtained with the 

wood chip-based biofilter media studied in this research suggests that these 

materials can be used effectively as biofilter media for treating gas emissions 

from swine facilities. However, more studies at full scale biofilters are needed.  

RECOMMENDATIONS  FOR FUTURE RESEARCH 

The following are recommended for future research: 

1. Further studies are needed to understand the mechanics of biofiltration such as: 

(1) what effects the diffusion of odorous compounds in a biofilter, (2) what type 

of individual microorganism is mainly responsible to which pollutant’s 

degradation, (3) the relationship between the RE and the structure of microbial 

community, (4) how fast microbial community changes in response to the change 

in influent concentration of odors and VOCs, (5) what affects the activity of 

bacteria living in biofilters, and (6) long term full scale biofilter studies are 

needed to verify the performance at various on-site conditions. 

2. Investigate NH3 and odor reduction performances of combinations of wet 

scrubbers and biofilters. 
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3. Models need to be developed to predict odor/VOC REs and to predict 

construction and operation costs for agricultural biofilters at typical conditions.  

4. Standards are needed to guide biofilter construction and to evaluate biofilter 

effects on reducing odors and VOCs. 

5. Further experiments with at least one replication at different levels of EBRT and 

media moisture content are warranted to investigate the relationship among odor 

reduction efficiency, EBRT and media moisture content. 
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APPENDIX.  EXPERIMENT  DESIGN AND STATISTICS  ANALYSIS 
 

DESCRIPTION  OF THE  EXPERIMENT 

Two types of wood chips – western cedar (WC) and hardwood (HW) – were chosen 

as biofilter media used to treat odors emitted from a swine building. A mobile biofilter 

testing system, which consisted of biofilter monitoring laboratory (BML) and biofilter testing 

laboratory (BTL) was built for field tests. The BTL consisted of eight reactor barrels. Four 

barrels were randomly selected to be filled with WC and the remaining four barrels were 

filled with HW. The objective of the experiment was to investigate effects of biofilter empty 

bed residence times (EBRTs), biofilter media moisture content (MC), and biofilter media 

(WC and HW) on odor reduction efficiency (RE), which was defined in equation (1). For 

these purposes, two experiments were conducted as described below. 

%100*(%)
CODT

TODTCODT
RE

−
=   (1) 

Where: 

CODT = control odor detection threshold, and 

TODT = treatment odor detection threshold. 

EXPERIMENT  1  

The objective of this experiment was to investigate odor RE influenced by biofilter 

media type (MT) and EBRT. The response variable of this experiment was odor RE. There 

were two factors of interest. One was biofilter media and the other was EBRT, which had 

two and nine levels, respectively. Each level of EBRT was randomly run at a fixed 60% 
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media MC for one week. At each EBRT level, three samples were collected at different times 

from each of control, WC and HW treatments, respectively. This experiment was run as a 

split plot design as diagrammed in Figure 1.  As shown in Figure 1, EBRT was the whole 

plot variable, the group of eight barrels was the whole plot experiment unit, the combination 

of sampling time with three levels and biofilter media type with two levels was the sub plot 

factor, and the individual barrels from which the samples were collected were the sub plot 

experiment unit.  

Analysis of Data 

The software JMP7 (SAS Institute Inc., Cary, NC, 1989-2007) was used to analyze 

data. The plot of RE (%) vs. EBRT is given in Figure 2 which shows that RE increases with 

EBRT increasing from 1.6 to 4 sec, and then it tends to level off at higher EBRT values. 

Considering there were no replications at either the whole plot or the subplot for this 

experiment, a linear model given in equation (2) was used to fit the data. 

kjjiijk MTEBRTSTSTWPEBRTY +++++= **γµ

EBRTMTSTEBRTMTMTST jkkjk *)*(*)*( +++   (2) 

Where Yijk = RE, i =1-9 for each whole plot, j = 1-3 for each sampling time, k = 1-2 

for each media type; µ = a total population mean; γ = a slope (regression coefficient) for 

EBRT; EBRT = the whole plot variable which was considered continuous; WP = whole plot 

(a random error term from the whole plot which in fact was the sum of squares for the “Lack 

of Fit” by the whole plot treatment for this analysis); ST = sampling time; ST*EBRT = an 

interaction between ST and EBRT; MT = media type; ST*MT = an interaction between ST 

and MT; MT*EBRT = an interaction between MT and EBRT; (ST*MT)*EBRT = a three 

way interaction among ST, MT and EBRT. 
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A residual vs. predicted value plot based on the linear model defined in equation (2) 

is given in Figure 3 which shows a random pattern with a mean of zero for residuals. The 

residual variance was nearly the same at each predicted level.  

Fixed effect test results are presented in Table 1 which shows that both EBRT 

(p=0.0044) and MT (p<0.0001) have significant effects on odor RE. However, the factor ST 

and all the two and three way interactions did not show significant effects on odor RE.  

In order to get a simpler model, a model based on the linear model (equation 2) 

included only significant effect variables as shown in equation (3): 

kiik MTWPEBRTY +++= *γµ   (3) 

Where Yik = RE, i =1-9 for each whole plot, k = 1 and 2 for each media type; γ = a 

slope (regression coefficient) for EBRT; EBRT = the whole plot variable which was 

considered continuous; WP = whole plot (a random error term from the whole plot); MT = 

media type. 

A residual vs. predicted value plot based on the simplified model is presented in 

Figure 4 which shows a random pattern with a mean of zero for residuals. The number of 

residuals above and below the zero line was almost the same. The residual variance was 

almost equal at different predicted values. These residual conditions implied that the linear 

regression assumptions were met and p-values based on the simplified model can be relied 

on. 

Fixed effect test results and parameter estimates are given in Tables 2 and 3, 

respectively. From the results presented in Table 2, both EBRT and MT showed a significant 

effect on odor RE for the fixed 60% media MC based on the small p-values (p = 0.0044 and 

p<0.0001 for EBRT and MT, respectively). Based on parameter estimates presented in Table 
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3, a prediction expression is given in equations (4) and (5) for WC and HW, respectively. 

Two plots of actual vs. predicted RE value based on the prediction expressions are shown in 

Figure 5 with EBRT ranging from 1.6 to 7.3 sec. 

RE (%) = 53.89 + 5.58*EBRT + 6.22     (R2=0.605)  (4) 

RE (%) = 53.89 + 5.58*EBRT - 6.22      (R2=0.634)  (5) 

Conclusions for Experiment 1 

From the results, both EBRT and media type showed a statistically significant 

influence on odor RE for the fixed 60% media moisture content based on the small p-values 

(p=0.0044 for EBRT and p=0.0001 for media type). Prediction expressions were given based 

on the simplified model for both WC (RE (%) = 53.89 + 5.58*EBRT + 6.22) and HW (RE 

(%) = 53.89 + 5.58*EBRT - 6.22) under the experiment conditions. Overall, odor RE 

increased with a longer EBRT ranging from 1.6 to 7.3 sec for the fixed 60% media moisture 

content. WC performed better than HW in terms of odor RE. It is worth mentioning that 

more experiments are needed to confirm these conclusions since this experiment was short of 

replication. 

EXPERIMENT  2  

This experiment was conducted to investigate odor RE influenced by biofilter media 

and media MC. The response variable of this experiment was odor RE. There were two 

factors of interest. One was biofilter media and the other was media MC, which had two and 

three levels, respectively. Each level of media MC was run for three days at a fixed 1.6 sec 

EBRT. At each media MC level, three samples were collected at different times from each of 

control, WC and HW treatments, respectively. This experiment was run as a split plot design 
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as diagrammed in Figure 6.  As shown in Figure 6, media MC was the whole plot variable, 

the group of eight barrels was the whole plot experiment unit, the combination of sampling 

time with three levels and biofilter media type with two levels was the sub plot factor, and 

the individual barrels from which the samples were collected were the sub plot experiment 

unit.  

Analysis of Data 

Since no replication at either the whole plot or subplot level was conducted, a 

simplified model was used to analyze data from experiment 2 and is given in equation (6).  

kjiijk MTSTWPMCY ++++= *γµ   (6) 

Where Yijk = RE, i =1-3 for each whole plot, j = 1-3 for each sampling time, k = 1-2 

for each media type; µ = a total population mean; γ = a slope (regression coefficient) for MC; 

MC = media moisture content, the whole plot manipulated variable, which was considered 

continuous; WP = whole plot (a random error term from the whole plot); ST = sampling 

time; MT = media type. 

A residual vs. predicted value plot based on the simplified model is presented in 

Figure 7 which shows a random pattern with a mean of zero for residuals. The number of 

residuals above and below the zero line was almost same. The residual variance looks almost 

equal at different predicted RE values. These residual conditions implied that the linear 

regression assumptions were met and p-values based on the simplified model can be relied 

on. 

Fixed effect test and the least-squared (LS) mean difference Student’s t-test results for 

MT and ST based on the simplified model are shown in Tables 4-6, respectively. From the 
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results presented in Tables 4 and 5, MT showed a significant influence on odor RE for the 

fixed 1.6 sec EBRT (p = 0.007); however the results did not show a linear relationship 

between RE and MC (p = 0.8643). Based on the results presented in Table 6, sampling time 

did not show a significant influence on odor RE at a 5% confidence level.  

Conclusions for Experiment 2 

The results did not show a linear relationship between odor RE and media moisture 

content (p = 0.8643) for the fixed 1.6 sec EBRT. Sampling time did not show a significant 

effect on odor RE at a 5% confidence level based on the LS mean Student’s t-test results. 

However, media type did show a significant effect on odor RE (p=0.007). It is worth 

mentioning that there was a risk in accepting these conclusions since this experiment was 

short of replication. 

RECOMMENDATIONS 

For future research, it is recommended to conduct an experiment based on a split plot 

design with three replications as diagrammed in Figure 8. As shown in Figure 8, the whole 

plot variable is MC with three levels (20%, 40% and 60%); the sub plot variable is 

combinations of EBRT with four levels (3, 4, 5, and 6 sec) and MT with two levels (WC and 

HW). In this way, a complete assessment can be done and more reliable conclusions should 

be inferred. A partial ANOVA table for the recommended experiment design is given in 

Table 7.  
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Table 1. Fixed effect tests based on the linear model (equation 2) for experiment 1. 

Source Nparm DF DFDen F Ratio Prob > F

EBRT(sec) 1 1 7 17.0108 0.0044

SamplingTime 2 2 35 0.4251 0.657

MediaType 1 1 35 101.0389 <.0001

MediaType*SamplingTime 2 2 35 1.4096 0.2578

MediaType*EBRT(sec) 1 1 35 2.4463 0.1268

EBRT(sec)*SamplingTime 2 2 35 1.3968 0.2608

MediaType*EBRT(sec)*SamplingTime 2 2 35 0.6148 0.5465  
 
 

Table 2. Fixed effect tests based on the simplified model for experiment 1. 

Source Nparm DF DFDen F Ratio Prob > F

EBRT(sec) 1 1 7 17.0108 0.0044

Types 1 1 44 98.4897 <.0001  
 
Table 3. Parameter estimates based on the simplified model for experiment 1. 

Term  Estimate Std Error DFDen t Ratio Prob>|t|

Intercept 53.8917 5.8317 7 9.24 <.0001

EBRT(sec) 5.5829 1.3536 7 4.12 0.0044

Types[HW] -6.2222 0.6076 44 -9.92 <.0001  
 
Table 4. Fixed effect tests based on the simplified model for experiment 2. 

Source Nparm DF DFDen F Ratio Prob > F

MoistureContent(%) 1 1 1 0.0469 0.8643

MediaType 1 1 12 10.5416 0.007

SamplingTime 2 2 12 0.0349 0.9658  
 
Table 5. LS mean difference Student’s t-test for experiment 2. 

MT Level Least Sq Mean

WC A  50.8889

HW  B 38.2222  
α=0.050; Levels not connected by same letter are significantly different. 

 
Table 6. LS mean difference Student’s t-test for experiment 2. 

ST level Least Sq Mean

1 A 45.0000

2 A 44.8333

3 A 43.8333  
α=0.050; Levels not connected by same letter are significantly different. 

 
 



 

 

148

 

 
Table 7. Partial ANOVA table for recommended experiment design. 

Source df Comment

MC 2 Moisture content with 3 levels: Whole plot variable

Whole Pot Error 6 3 levels of MC, (3-1) df for each level

EBRT 3 Empty bed residence time with 4 levels

MT 1 Media type with 2 levels

EBRT*MT 3

MC*EBRT 6

MC*MT 2

MC*EBRT*MT 6

Residual (sub plot) Error 42

C. Total 71 Total 72 samples  
 
 
 
 
 
 
Table 8. Raw data at different media MC with a fixed 1.6 sec EBRT. 

MediaType MoistureContent(%) EBRT(sec) RE(%) SamplingTime WholePlot
WC 20 1.6 53 1 1
WC 20 1.6 53 2 1
WC 20 1.6 53 3 1
HW 20 1.6 53 1 1
HW 20 1.6 37 2 1
HW 20 1.6 45 3 1
WC 40 1.6 35 1 2
WC 40 1.6 41 2 2
WC 40 1.6 38 3 2
HW 40 1.6 35 1 2
HW 40 1.6 9 2 2
HW 40 1.6 24 3 2
WC 60 1.6 58 1 3
WC 60 1.6 65 2 3
WC 60 1.6 62 3 3
HW 60 1.6 35 1 3
HW 60 1.6 58 2 3
HW 60 1.6 48 3 3  
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Table 9. Raw data at different EBRT with a fixed 60% media MC. 
MediaType MoistureContent(%) EBRT(sec) RE(%) SamplingTime WholePlot

WC 60 1.6 58 1 1
WC 60 1.6 65 2 1
WC 60 1.6 62 3 1
HW 60 1.6 35 1 1
HW 60 1.6 58 2 1
HW 60 1.6 48 3 1
WC 60 2.5 76 1 2
WC 60 2.5 64 2 2
WC 60 2.5 62 3 2
HW 60 2.5 58 1 2
HW 60 2.5 55 2 2
HW 60 2.5 58 3 2
WC 60 2.6 85 1 3
WC 60 2.6 83 2 3
WC 60 2.6 83 3 3
HW 60 2.6 66 1 3
HW 60 2.6 66 2 3
HW 60 2.6 63 3 3

WC 60 3.3 80 1 4
WC 60 3.3 80 2 4
WC 60 3.3 80 3 4
HW 60 3.3 73 1 4
HW 60 3.3 74 2 4
HW 60 3.3 73 3 4
WC 60 3.6 82 1 5
WC 60 3.6 83 2 5
WC 60 3.6 84 3 5
HW 60 3.6 55 1 5
HW 60 3.6 71 2 5
HW 60 3.6 60 3 5
WC 60 4 90 1 6
WC 60 4 91 2 6
WC 60 4 90 3 6
HW 60 4 77 1 6
HW 60 4 75 2 6
HW 60 4 75 3 6
WC 60 5.3 92 1 7
WC 60 5.3 87 2 7
WC 60 5.3 89 3 7
HW 60 5.3 81 1 7
HW 60 5.3 77 2 7
HW 60 5.3 81 3 7
WC 60 5.5 96 1 8
WC 60 5.5 92 2 8
WC 60 5.5 93 3 8
HW 60 5.5 89 1 8
HW 60 5.5 88 2 8
HW 60 5.5 88 3 8
WC 60 7.3 93 1 9
WC 60 7.3 92 2 9
WC 60 7.3 89 3 9
HW 60 7.3 81 1 9
HW 60 7.3 81 2 9
HW 60 7.3 79 3 9  
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Figure 1. Experiment 1 diagram. 
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Figure 2. Plot of RE(%) vs. EBRT. 
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Figure 3. Residual vs. predicted value plot. 
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Figure 4. Residual vs. predicted value plot. 
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(a)                                                                            (b) 
Figure 5. Actual vs. predicted value plot based on the simplified model for: (a) WC, and 

(b) HW. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Experiment 2 diagram. 
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Figure 7. Residual vs. predicted value plot. 
 

 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

Figure 8. Recommended experiment diagram. Each whole plot consists of eight barrels, 
four of which were randomly selected for WC and HW. At the sub-plot level, four levels 

of EBRT were randomly assigned to each type of chips. 
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