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Abstract

Recently, results of molecular dynamics (MD) simulations were obtained for the crystal lat-

tice instability conditions for the phase transformations (PTs) between semiconducting Si

I and metallic Si II under action of all six components of the stress tensor (Levitas et al.

(2017a,b)). These conditions are linear in terms of stresses normal to the cubic faces of

Si I and are independent of the shear stresses. In the current paper, we (a) formulated

the requirements for the thermodynamic potential and transformation deformation gradient

tensors and (b) developed a phase field approach (PFA) for the stress-induced martensitic

PTs for large strains while allowing for interfacial stresses, which are consistent with the

obtained instability conditions. The general system of equations for coupled PFA and non-

linear elasticity is presented. Crystal lattice instability criteria are derived within a PFA,

and it is proven that they are independent of the prescribed stress measure. In order to

reproduce the lattice instability conditions obtained with MD: (a) one has to use the fifth

degree polynomial interpolation functions of the order parameter for all material parameters;

(b) each component of the transformation strain tensor should have a different interpolation
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functions; and (c) the interpolation functions for tensors of the elastic moduli of all ranks

should have zero second derivatives for the parent and product phases, so that terms with

elastic moduli, which are nonlinear in stresses, do not contribute to the lattice instability

conditions. Specific interpolation and double-well functions have been derived for all parts of

the Helmholtz free energy and for two models for the transformation deformation gradient.

For these models, explicit expressions for the Ginzburg-Landau equations and lattice insta-

bility conditions are derived. Material parameters have been calibrated using results of MD

simulations. In Part II of this paper, the developed model is further refined and studied, and

applied for the finite element simulations of the nanostructure evolution in Si under triaxial

loading.

Keywords:

phase-field approach, martensitic phase transformation, lattice instability condition,

interpolation functions, large strains

1. Introduction

The PFA is broadly used for modeling martensitic PTs (Artemev et al. (2001); Chen

(2002); Jin et al. (2001a); Levitas and Preston (2002a,b); Levitas et al. (2003); Mamivand

et al. (2014); Mamivand and Zaeem (2013); Paranjape et al. (2016); Rogovoy and Stolbova

(2016); Wang and Khachaturyan (2006); Zhu et al. (2017)) and reconstructive PTs (Denoual

et al. (2010); Salje (1990)). Here, we will consider the PT between the parent phase P0 and

the product phase P1, without including multiple symmetry-related martensitic variants for

brevity. This PT is parameterized by the order parameter η, with η = 0 for the phase P0

and η = 1 for the phase P1. The Helmholtz free energy consists of both the local part and

gradient energy 0.5β|∇∇∇η|2, the latter penalizes the interface energy. Some theories (Artemev

et al. (2001); Chen (2002); Jin et al. (2001a); Wang and Khachaturyan (2006)) did not specify

the physical meaning of the order parameter, but others utilized some components of the
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strain tensor as the order parameters (Barsch and Krumhansl (1984); Falk (1983); Finel et

al. (2010); Jacobs (1992); Vedantam and Abeyaratne (2005)).

The key points in formulating the local thermodynamic potential is to interpolate all

material properties along the transformation paths and to introduce proper energetic barriers

between phases. The only requirements imposed in Artemev et al. (2001); Barsch and

Krumhansl (1984); Chen (2002); Falk (1983); Finel et al. (2010); Jacobs (1992); Jin et al.

(2001a); Vedantam and Abeyaratne (2005); Wang and Khachaturyan (2006) for the local

energy are that it has as many local minima as there are phases (including martensitic

variants) that one considers and that the energy is invariant with respect to an exchange of

any symmetry-related martensitic variants, which is sufficient for qualitatively reproducing

a complex multivariant martensitic structure. As a consequence, the order parameter for

the product phase P1 was not fixed to 1 but depended on stresses and temperature. This

did not allow for precisely reproducing the known material properties of the product phase.

In Levitas and Preston (2002a,b); Levitas et al. (2003) additional important requirements

have been formulated, which will be discussed below and which results in constraint Eqs.(12)

and (16) for an interpolation function ϕm(η) for any material property M . Also, the PT

criteria for direct and reverse PTs should follow from the crystal lattice instability criteria.

The PFAs that satisfy these requirements have been developed within the fourth degree

potential (2− 3− 4) in terms of the order parameter and the six degree potential (2− 4− 6)

in terms of the even degrees of η. These theories reproduce desired stress-strain curves. The

order parameter in Levitas and Preston (2002a,b); Levitas et al. (2003) was related to the

transformation strain tensor rather than to the total strain. In fact, we did not find a way to

impose these constraints for the theories based on the total strain-related order parameters,

that is why they will not be considered any further. These requirements are important

to ensure that the thermodynamically equilibrium material properties of both parent and

product phases are reproduced in the PFA, which was not the case in the previous theories.
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As it is shown in Levitas and Preston (2002a), the transformation strain and stress hysteresis

in Artemev et al. (2001); Barsch and Krumhansl (1984); Chen (2002); Falk (1983); Finel

et al. (2010); Jacobs (1992); Jin et al. (2001a); Vedantam and Abeyaratne (2005); Wang

and Khachaturyan (2006) strongly depend on temperature, and stress-strain curves do not

reproduce the main features observed in experiments for shape memory alloys, steels, and

some ceramics.

The PFA developed in Levitas and Preston (2002a,b); Levitas et al. (2003) was applied for

modeling microstructure evolution during multivariant martensitic PTs (Cho et al. (2012);

Idesman et al. (2008); Levitas and Lee (2007); Levitas et al. (2010)). It was also generalized

for large strain formulation in Levitas (2013a); Levitas et al. (2009) with corresponding finite

element simulations in Levin et al. (2013). This approach was based on the interpolation of

the transformation deformation gradient between parent and product phases.

It was found in Tuma and Stupkiewicz (2016); Tuma et al. (2016) that such an interpola-

tion does not allow for properly separating the volumetric part of the transformation strain

and change in shape. In particular, for twinning it produces volume-conserving shear after

complete transformation only, while there is a volume change during the transformation.

Interpolation of the logarithmic transformation strain which keeps the volume conserved

was suggested in Tuma and Stupkiewicz (2016); Tuma et al. (2016). This was done within

the theory which uses volume fraction of phases as order parameters, which is suitable for

the microscale models (as in Idesman et al. (2005); Levitas et al. (2004)) but not for the

nanoscale ones. However, it was shown in Basak and Levitas (2017) that interpolation for

logarithmic transformation strain produces artificial elastic interfacial stress for a variant-

variant interface which are more than two times larger than for the interpolation used in

Levitas (2013a); Levitas et al. (2009).

Interfacial stresses for martensitic PTs were introduced in Levitas (2013b,c, 2014a); Lev-

itas and Javanbakht (2010) for small strain formulation. These theories were generalized for
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large strains in Levitas (2014b) for isotropic interface energy and stresses and in Levitas and

Warren (2016) for an anisotropic case. However, the lattice instability conditions in Levitas

(2013a) were not yet extended for the model with interfacial stresses, which will be done in

the current study.

In the previous theories the constraint on the interpolation functions were limited to the

values of the functions and their first derivatives at η = 0 and 1, see Eqs.(12) and (16).

The lattice instability conditions operate with the second derivatives of the interpolation

functions (Levitas (2013a); Levitas and Preston (2002a,b); Levitas et al. (2003)); however,

since they were not known from experiment or atomistic simulations, no limitations were

imposed. At the same time, lattice instability conditions are crucial for understanding barri-

erless nucleation during martensitic and reconstructive PTs for relatively low temperatures,

when thermal fluctuations play a minor part (Olson and Cohen (1972, 1986); Olson and

Roytburd (1995)). They are especially important for high pressure PTs for which transfor-

mation pressure is much higher than the phase equilibrium pressure. For example, the phase

equilibrium pressure for the PT from hexagonal to superhard cubic BN at room temperature

is even negative (i.e., cubic BN is stable at atmospheric pressure), see Solozhenko (1995);

however, highly disordered hexagonal BN does not transform up to at least 52 GPa, i.e.,

lattice instability pressure is even higher (Ji et al. (2012)).

Recently, lattice instability conditions for the PTs between semiconducting Si I and

metallic Si II under action of all six components of the stress tensor were found with the

help of MD simulations (Levitas et al. (2017a,b)). These conditions are linear in terms of

stresses normal to the cubic faces of Si I, σi, and are independent of the shear stresses. Thus,

the instability conditions can be presented in a 3D stress space σi as two planes (Figs. 4

and 5), one for direct and another for reverse PTs. It is important that these planes are not

parallel and consequently not consistent with the instability conditions within 2− 3− 4 and

2− 4− 6 thermodynamic potentials. In addition, after the intersection of these planes they
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coincide for part of the stress space (Fig. 5). Thus, new conditions have to be formulated for

the interpolation functions in order to make phase field equations consistent with the lattice

instability conditions obtained with MD simulations and new PFA should be developed that

satisfies these conditions.

The paper is organized as follows. General PFA for martensitic PT described by a sin-

gle order parameter is presented in Section 2 for large strains while allowing for interfacial

stresses. Further consideration is limited to the homogeneous transformation processes. A

thermodynamic equilibrium condition for the order parameter and its consequence for the

constraints on the interpolation functions are considered in Section 3. In Section 4 the cri-

terion for the crystal lattice instability of the thermodynamically equilibrium homogeneous

states under homogeneous perturbations is derived for the theory, which includes interfacial

stresses. In particular, this was done for the prescribed first Piola-Kirchoff stress in Section

4.1; generalized for an arbitrary prescribed stress in Section 4.2, and conditions for interpo-

lation functions were summarized in Section 4.3. Examples of the fifth-degree interpolation

functions and double-well barrier functions that satisfy the formulated conditions were pre-

sented in Sections 5 and 6, respectively. In Section 7 specific expressions for the thermal part

of the free energy and corresponding lattice instability conditions for a stress-free case were

derived. Thermal energy is divided into two parts: the first contributes to the interfacial

stresses and the other does not. In Section 8 expressions for the transformation deformation

gradient are presented. Both kinematic models, based on interpolation of the transforma-

tion strain and logarithmic transformation stain, are presented and analyzed. For the second

model the desired results are obtained when interpolation is performed separately for spher-

ical and deviatoric parts of the logarithmic transformation strain. An expression for high

order elastic energy and the lattice instability criteria for the chosen interpolation functions

are presented. Specification for Si I↔Si II phase transformations is performed in Section

9 utilizing the results of the MD simulations. In order to reproduce the lattice instability
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conditions obtained with MD:

(a) each component of the transformation strain tensor should have a different interpo-

lation function and

(b) interpolation functions for tensors of the elastic moduli of all ranks should have zero

second derivatives at η = 0 and 1 so that the nonlinear-in-stresses elastic energy does not

spoil linear-in-stresses lattice instability conditions.

Explicit expressions for the thermodynamic driving forces and lattice instability con-

ditions are derived for both kinematic models. Parameter identification for PTs between

diamond cubic phase Si I and β−tin phase Si II under action of three stresses normal to the

cubic faces was performed for both kinematic models, with emphasis on satisfying lattice

instability conditions. Concluding remarks are presented in Section 10. In Part II of this

paper (Levitas (2018)), the developed model will be further refined and studied, and applied

for the finite element simulations of the nanostructure evolution during Si I↔Si II PTs un-

der various triaxial loadings. Various phenomena and stress evolution, especially interfacial

stresses will be analyzed.

We designate vectors and tensors with boldface symbols and designate contractions of

tensors AAA = {Aij} and BBB = {Bji} over one and two indices as AAA···BBB = {Aij Bjk} and

AAA:::BBB = Aij Bji. The transpose of AAA is AAAT , and III is the unit tensor; symbol ∀ means ”for

all”, := means equal by definition; ∇ and ∇0 are the gradient operators with respect to the

deformed and undeformed states.

2. General Theory

Kinematics. The motion of elastic material with PTs will be described by a continuous

vector function rrr = rrr(rrr0, t), where rrr0 and rrr are the positions of points in the reference

(undeformed) Ω0 and the actual (deformed) Ω configurations, respectively; t is the time.
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The deformation gradient FFF = ∂rrr
∂rrr0 = ∇0rrr can be multiplicatively decomposed

FFF = FFF e···UUU t, (1)

into elastic and transformational parts (Levitas (1998)). Without loss of generality, thermal

strain is included in UUU t(η), UUU t(η) is considered to be symmetric (rotation-free) tensor, and all

rotations are included in FFF e. After a local release of stresses, elastic deformation disappears

(i.e., FFF e = III) and an unloaded configuration, characterized by UUU t, is designated as Ωt. It is

assumed that no reverse PT occurs during such an unloading; otherwise, these procedures

should be considered as the thought experiment under fixed phase state. The Jacobian

determinants, which describe ratios of volumes V and mass densities ρ in the corresponding

configurations, are

J :=
dV

dV0

=
ρ0

ρ
= detFFF ; Jt :=

dVt
dV0

=
ρ0

ρt
= detUUU t; Je :=

dVe
dVθ

=
ρθ
ρe

= detFFF e ⇒ J = JtJe. (2)

Dissipation rate, equations for stresses, and Ginzburg-Landau equation. Using the first and

second laws of thermodynamics, and accepting the Helmholtz free energy per unit mass in the

form ψ = ψ̄(FFF , η, θ,∇∇∇0η), the dissipation rate per unit mass D due to phase transformation

can be derived as follows (Levitas (2014b)):

D = Xη̇ ≥ 0; ρ0X := −ρ0
∂ψ̄

∂η
+∇∇∇0 ·

(
ρ0

∂ψ̄

∂∇∇∇0η

)
, (3)

where X is the thermodynamic force per unit mass for change in η and θ is the temperature.

The same thermodynamic procedure leads to the expression for the first Piola–Kirchhoff

stress PPP and the true Cauchy stress σσσ, as well as for the entropy s:

PPP = ρ0
∂ψ̄

∂FFF
; σσσ := J−1PPP ···FFF t = ρ

∂ψ̄

∂FFF
···FFF t; s = −∂ψ̄

∂θ
, (4)

where viscous stresses are neglected for compactness. The linear relationship between gen-

eralized thermodynamic force X and rate η̇ results in the generalized Ginzburg-Landau
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equation

η̇ = LX = L

(
−∂ψ̄
∂η

+
1

ρ0

∇∇∇0 ·
(
ρ0

∂ψ̄

∂∇∇∇0η

))
, (5)

where L > 0 is the kinetic coefficient.

Specification of the Helmholtz energy. To introduce interface tension, we accept the

Helmholtz free energy per unit mass in the following form (Levitas (2014b)):

ψ̄(FFF , η, θ,∇∇∇0η) = ψl(FFF , η, θ) + Jψ∇(FFF · ∇∇∇0η) =

Jt
ρ0

ψe(FFF e, η, θ) + Jψ̆θ + ψ̃θ + Jψ∇(∇∇∇η); ψ∇ =
β

2ρ0

|∇∇∇η|2. (6)

Here ψl is the local and ψ∇ is the gradient energies; ψe is the elastic energy, β > 0 is

the gradient energy coefficient; ψ̃θ is the part of the thermal energy, which is proportional

to the thermal driving force for P0 → P1 PT ∆ψθ = ψθ1 − ψθ0, and ψ̆θ is the double-well

energy, which may also depend on ∆ψθ. As it was demonstrated in Levitas (2014b) the

consideration of the gradient ∇∇∇η =∇∇∇0η ·FFF−1 in the deformed configuration as an argument

of ψ∇ and multiplication of ψ̆θ and ψ∇ by the Jacobian determinant J results (with the

proper choice of ψ̆θ) in the desired expression for interface stresses. Note that Jacobians

and gradient with respect to deformed configurations in Eq.(6) should be kept even in small

strain formulation (when they are traditionally neglected), otherwise, interface stresses will

disappear, see Levitas (2013b). The reason for the multiplier Jt
ρ0

in front of the elastic energy

is described in Levitas (2014b). Note that since FFF e = FFF · UUU−1
t (η), dependence of ψe on

FFF e and η does not contradict the structure of the free energy ψ̄(FFF , η, θ,∇∇∇0η). Due to the

principle of material frame-indifference, ψe = ψe(EEEe, η, θ), where EEEe = 0.5(FFF T

e · FFF e − III) is

the Lagrangian elastic strain, and we did not change designation of the function for elastic

energy for brevity.

Explicit equations for stresses. For such a structure of the free energy, one obtains (Levitas
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(2014b)) the following relationships for the first Piola–Kirchhoff stress

PPP = PPP e +PPP st; PPP e = Jt
∂ψe

∂FFF e

···UUU−1
t ;

PPP st = ρ0J(ψ̆θ + ψ∇)FFF t−1 − ρ0J∇∇∇η ⊗
∂ψ∇

∂∇∇∇η
·FFF t−1 =

J(ρ0ψ̆
θ +

β

2
|∇∇∇η|2)FFF t−1 − Jβ∇∇∇η ⊗∇∇∇η ·FFF t−1, (7)

and for the Cauchy stress

σσσ = σσσe + σσσst; σσσe = J−1
e FFF e···

∂ψe

∂EEEe

···FFF t
e = J−1

e VVV e···
∂ψe

∂BBBe

···VVV e;

σσσst = ρ0(ψ̆θ + ψ∇)III − ρ0∇∇∇η ⊗
dψ∇

d∇∇∇η
= (ρ0ψ̆

θ +
β

2
|∇∇∇η|2)III − β∇∇∇η ⊗∇∇∇η. (8)

Here, elastic stresses (designated with the subscript e) are defined in terms of elastic energy

of the bulk phases; structural stresses (designated with the subscript st) are zero in bulk and

localize at the interface between phases. It is proven in Levitas (2014b) that for the propa-

gating interface σσσst reduces to biaxial stress with a magnitude equal to the nonequilibrium

interface energy.

Explicit form of the Ginzburg-Landau equation. Similarly, substituting free energy Eq.(6)

in the Ginzburg-Landau equation (5), after the transformation presented in Levitas (2014b),

results in the following expression in the reference configuration

η̇ = LX =
L

ρ0

(
PPP t
e···FFF e:::

dUUU t(η)

dη
− Jt

∂ψe

∂η

∣∣∣
FFF e

− JtψeUUU−1
t :::

dUUU t

dη
(9)

−Jρ0
∂ψ̆θ

∂η
− ρ0

∂ψ̃θ

∂η
+ Jβ

(
FFF−1 ·FFF t−1

)
:::∇∇∇0∇∇∇0η

)
and in the current configuration

Dη(rrr, t)

Dt
=
∂η(rrr, t)

∂t
+ vvv · ∇∇∇η = LX =

L

ρ

(
FFF t
e···σσσe:::FFF

t−1
e ·UUU−1

t ·
dUUU t(η)

dη

− 1

Je

∂ψe

∂η

∣∣∣
EEEe

− ψe

Je
UUU−1
t :::

dUUU t

dη
− ρ0

∂ψ̆θ

∂η
− ρ0

J

∂ψ̃θ

∂η
+ β∇∇∇2η

)
, (10)
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where vvv is the particle velocity. Note that the structural stresses do not directly contribute

to the driving force X. However, the structural stresses change elastic stresses through the

solution of the mechanical problem and contribute to X indirectly.

3. Thermodynamic equilibrium conditions for homogeneous phases

Determination of η-dependence of UUU t and all material properties entering the free energy

ψ is one of the main problems in formulating the phase field theories. Here we will formulate

the main conditions, which should be satisfied while formulating specific theories.

Independent of the physical interpretation of the order parameter, it can be modified

so that η = 0 corresponds to the phase P0 and η = 1 corresponds to the phase P1. Both

thermodynamically equilibrium values of η, 0 and 1, will be for brevity designated by a

symbol η̂. It is natural to present any material property M (energy, entropy, elastic moduli

and thermal expansion) in the form

M(η, θ) = M0(θ) + (M1(θ)−M0(θ))ϕm(η). (11)

Here M0 and M1 are values of the property M at η = 0 and η = 1, respectively, and ϕm(η)

is the interpolation function that meets evident constraints

ϕm(0) = 0, ϕm(1) = 1. (12)

Since η = 0 corresponds to the homogeneous bulk phase P0 and η = 1 corresponds to the

homogenous bulk phase P1, the order parameter should not evolve further after reaching

equilibirum bulk phases. According to the Ginzburg-Landau Eq.(9) for homogeneous states,

this is possible when for bulk phases the thermodynamic equilibrium condition is identically

satisfied. Thus, values η = 0 and η = 1 should satisfy the thermodynamic equilibrium

11
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conditions

ρ0X = PPP t···FFF e:::
dUUU t(η̂)

dη
− Jt

∂ψe(EEEe, θ, η̂)

∂η

∣∣∣
FFF e

− Jtψe(EEEe, θ, η̂)UUU−1
t :::

dUUU t(η̂)

dη
(13)

−Jρ0
∂ψ̆θ(θ, η̂)

∂η
− ρ0

∂ψ̃θ(θ, η̂)

∂η
= 0

for any stress PPP , temperature θ, and corresponding elastic deformation gradient FFF e. Note

that for homogeneous states structural stresses disappear and elastic stresses remain only.

That is why we will omit subscript e for stresses when possible.

If the above condition is not met, the thermodynamic equilibrium values of the order

parameters obtained from condition X = 0 will depend on stresses and temperature. Insert-

ing these functions in Eq.(11) will result in an artificial stress- and temperature-dependence

of the property M , which will not coincide with the known properties M0 and M1 of bulk

phases. Eq.(13) can be presented in a more concise form:

ρ0X = PPP T···FFF e:::
dUUU t(η̂)

dη
− ρ0

∂ψl(EEEe, θ, η̂)

∂η
= 0 (14)

Due to the independence of UUU t and ψl, Eq.(14) splits in two sets of equations:

dUUU t(η̂)

dη
= 0;

∂ψl(EEEe, θ, η̂)

∂η
= 0. (15)

It also follows from Eq.(15) that for transformation deformation gradient and any material

property which participates in ψl, one has

dϕm(0)

dη
=
dϕm(1)

dη
= 0. (16)

Note that one of the important assumptions is that η is not subjected to any constraint, like

e.g., η ⊂ [0, 1], which is the case for volume fraction of a phase, see Folch and Plapp (2003,

2005); Idesman et al. (2005); Steinbach (2009); Tuma and Stupkiewicz (2016); Tuma et al.

(2016). In those theories extrema at η = 0 and η = 1 may be because of constraint rather

than zero derivative. This case is explicitly excluded in the current study.
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4. Criterion for the instability of the thermodynamically equilibrium homoge-

neous states under homogenous perturbations

PT criteria in PFA are usually derived as conditions for instability of the homogeneous

equilibrium state of crystal lattice under spontaneous variation of the order parameters,

see the most general finite-strain treatment in Levitas (2013a); Levitas et al. (2017b). In

contrast, the traditional instability approach originated in Born (1939, 1940) and generalized

for the finite strain in Hill and Milstein (1977); Milstein et al. (1995); Wang et al. (1993a)

is based on the elastic lattice instability. Extra degrees of freedom are included in stability

analysis for multilattices, namely, relative shift vectors (see Dove (1993); Elliott et al. (2011)).

In addition, phonon stability criteria (see Dove (1993); Elliott et al. (2011)) were applied.

Some advantages of our approach based on the order parameters and comparison of different

approaches are presented in Levitas (2017); Levitas et al. (2017b). We will not repeat it here

and will present our approach only.

4.1. Instability under prescribed first Piola-Kirchoff stress PPP

Instability of the homogeneous equilibrium state, i.e., phase P0 or P1, under homoge-

neous perturbations, i.e., for material point, can only be analyzed for prescribed boundary

conditions for some stress measure. It does not mean that stresses σσσ or PPP , which directly

participate in boundary conditions, can be prescribed only. With the proper feedback and

control of σσσ or PPP in experiment or atomistic simulations one can prescribe any stress mea-

sure. We will start with prescribed nominal stress–i.e., the nonsymmetric first Piola-Kirchoff

stress PPP . Temperature is fixed and may be omitted when it is not important. In contrast to

the study of elastic instability, when strain is subjected to a spontaneous fluctuation under

prescribed stress, we consider inelastic instability characterized by spontaneous fluctuations

of the internal variable or order parameter η under prescribed stress. Elastic deformation

gradient FFF e does not have independent fluctuations and obeys the elasticity rule (7). Still,
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it is allowed to vary due to change in elastic moduli during PT and spontaneous variation

in η.

Definition. If under prescribed boundary conditions for any spontaneous perturbation

of the order parameter ∆η from the thermodynamic equilibrium values η̂ the dissipation

rate D ≥ 0, then this perturbation is thermodynamically admissible and the equilibrium is

unstable.

Thus, if for the thermodynamically equilibrium states η̂ under stress PPP = constconstconst, the

perturbation ∆η and corresponding perturbation ∆FFF e (that follows from the elasticity rule

(7)) satisfy the thermodynamic admissibility condition

ρ0X (PPP ,FFF e + ∆FFF e, η̂ + ∆η, θ) η̇ ≥ 0, (17)

then equilibrium of phase η̂ is thermodynamically unstable. Since, X (PPP ,FFF e, η̂) = 0, the

Taylor series of X in Eq. (17) around the equilibrium values η̂ leads to

ρ0
∂X (PPP ,FFF e, η̂)

∂η

∣∣∣∣
PPP
η̇2 ≥ 0 → ρ0

∂X (PPP ,FFF e, η̂)

∂η

∣∣∣∣
PPP
≥ 0. (18)

Let us find an explicit expression for ∂X
∂η

∣∣∣
PPP

by directly differentiating the expression for X

from Eq. (14):

ρ0
∂X

∂η

∣∣∣∣
PPP

= PPP t ··· ∂ F
FF e

∂ η
:::
dUUU t(η̂)

d η
+ PPP t ···FFF e :::

d2UUU t(η̂)

d η2
− ρ0

∂2ψl (EEEe , η̂)

∂ η2

∣∣∣∣∣
FFF e

− ρ0
∂2ψl (EEEe , η̂)

∂ η ∂ FFF e

:::
∂ FFF t

e

∂ η

∣∣∣∣∣
PPP

. (19)

The first term disappears because of Eq. (15), dUUU t(η̂)
dη

= 0. According to the thermoelasticity

rule (7),

PPP = Jt
∂ψe

∂FFF e

···UUU−1
t → PPP = fff(FFF e,UUU t,M

i(η)), (20)
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where fff is some function and M i(η) are all material properties that participate in the

elasticity rules, such as components of the elasticity tensors of different ranks and thermal

expansion coefficients. Differentiating Eq. (20) at fixed PPP one has

∂ PPP

∂ η
= 0 =

∂ fff

∂ FFF t
e

:::
∂ FFF e(η̂)

∂ η

∣∣∣∣∣
PPP

+
∂ fff

dUUU t

:::
dUUU t(η̂)

∂ η
+

∂ fff

∂ M i

dM i(η̂)

d η
. (21)

The second term in Eq. (21), according to Eq. (15) dUUU t(η̂)
d η

= 0. The last term in Eq. (21)

also disappears, because for any property Mm, according to Eqs. (11) and (16), one has

dMm(η̂)
d η

= 0. Then Eq. (21) represents a system of nine homogeneous linear equations with

respect to ∂FFF e(η̂)
∂ η

. Since in general det

(
∂fff

∂FFF T

e

)
6= 0 (excluding some special stress states),

this system has the only solution

∂FFF e(η̂)

∂ η

∣∣∣∣∣
PPP

= 0. (22)

Thus, the fourth term in Eq. (19) also disappears and Eq. (19) simplifies to

ρ0
∂X (PPP ,FFF e, η̂)

∂η

∣∣∣∣
PPP

= PPP t ···FFF e :::
d2UUU t(η̂)

d η2
− ρ0

∂2 ψl (EEEe , η̂)

∂ η2

∣∣∣∣∣
EEEe

. (23)

This is our general instability criterion in the concise form.

To find a more explicit form based on the expression (13) for ρ0X, we first prove that

according to Eqs. (15) and (22),

∂FFF (η̂)

∂ η

∣∣∣∣∣
PPP

= FFF e ·
dUUU t(η̂)

d η
+
∂FFF e(η̂)

∂ η

∣∣∣∣∣
PPP

·UUU t(η̂) = 0. (24)

Then, also

∂J(η̂)

∂η

∣∣∣∣∣
PPP

=
∂J

∂FFF T :::
∂FFF (η̂)

∂ η

∣∣∣∣∣
PPP

= 0. (25)
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Direct differentiation of the driving X in Eq.(13) while allowing for the obtained results

leads to the following instability criterion:

ρ0
∂X

∂η
= PPP t ···FFF e :::

d2UUU t(η̂)

d η2
− Jt

∂2ψe

∂η2

∣∣∣
FFF e

− JtψeUUU−1
t :::

d2UUU t

dη2
− ρ0J

∂2ψ̆θ

∂η2
− ρ0

∂2ψ̃θ

∂η2
≥ 0, η = η̂, (26)

or in terms of the Cauchy stress:

ρ
∂X

∂η
= FFF t

e···σσσe ·FFF
t−1
e ·UUU−1

t :::
d2UUU t

dη2
− 1

Je

∂2ψe

∂η2

∣∣∣
EEEe

− ψe

Je
UUU−1
t :::

d2UUU t

dη2
− ρ0

∂2ψ̆θ

∂η2
− ρ0

J

∂2ψ̃θ

∂η2
≥ 0, η = η̂. (27)

4.2. Instability of the thermodynamic equilibrium for arbitrary prescribed stresses

Now we prescribe some other stress measure T̃TT (e.g., the Cauchy stress or the second

Piola-Kirchoff stress) instead of the first Piola-Kirchoff stress PPP . In general, these two

stresses are connected through a function PPP = φφφ(T̃TT ,FFF ) = φφφ1(T̃TT ,FFF e,UUU t(η)) = φφφ2(T̃TT ,FFF e, η).

Repeating the same procedure but at a fixed T̃TT , one obtains the following equation instead

of Eq.(18)

ρ0

∂X
(
T̃TT ,FFF e, η̂

)
∂η

∣∣∣∣∣∣ ˜TTT

≥ 0. (28)

An explicit expression for ∂X
∂η

∣∣∣ ˜TTT
will be obtained by direct differentiation of the expression

for ρ0X from Eq. (14) as follows:

ρ0

∂X
(
T̃TT ,FFF e, η̂

)
∂η

∣∣∣∣∣∣ ˜TTT

=
∂PPP t

∂η

∣∣∣∣ ˜TTT
···FFF e:::

dUUU t (η̂)

d η
+PPP t ··· ∂ F

FF e

∂ η

∣∣∣∣∣ ˜TTT

:::
dUUU t (η̂)

d η
+ PPP t ···FFF e :::

d2UUU t (η̂)

d η2

− ρ0
∂2ψl (EEEe , η̂)

∂ η2

∣∣∣∣∣
EEEe

− ρ0
∂2ψl (EEEe , η̂)

∂ η ∂ FFF e

:::
∂ FFF t

e (η̂)

∂ η

∣∣∣∣∣ ˜TTT

. (29)

The first two terms in Eq. (29) can be eliminated because, based on Eq. (15), dUUU t(η̂)
d η

= 0.

Let us show that the last term in Eq. (29) can be also eliminated.
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(a) Let T̃TT be a nonsymmetric tensor. Then, the thermoelasticity rule has the form

T̃TT = qqq(FFF e,UUU t,M
i(η)) with some function qqq . Keeping T̃TT = constconstconst, we will differentiate this

equation with respect to η:

0 =
∂qqq

∂FFF t
e

:::
∂FFF e(η̂)

∂ η

∣∣∣∣∣ ˜TTT

+
∂qqq

∂UUU t

:::
dUUU t(η̂)

d η
+

∂ qqq

∂ M i

dM i(η̂)

d η
. (30)

The two last terms in Eq. (30) disappear because of dM i(η̂)
d η

= 0 and dUUU t(η̂)
d η

= 0. Since in

general det

(
∂qqq

∂FFF t
e

)
6= 0 (with exception for some stress states and measures), nine linear

equations (30) with nine unknowns possess the unique solution

∂FFF e(η̂)

∂ η

∣∣∣∣∣ ˜TTT

= 0. (31)

Since the last term in Eq. (29) is eliminated, this proves that the instability criterion Eq.

(23) is valid for any prescribed stress measure.

(b) Let T̃TT be a symmetric tensor, e.g., the Cauchy stress tensor σσσ. In this case Eq.

(30) contains six linear algebraic equations only for nine unknowns. This is not unexpected

because the rigid-body rotation is not excluded. Similar to the solution of the boundary-

value problems we impose three scalar kinematic constraints jjj(FFF ) = jjj(FFF e···UUU t) = constconstconst, e.g.,

exclude three shear strains (like in MD simulations in Levitas et al. (2017b)):

F21 = {FFF e···UUU t}21 = 0, FFF 23 = {FFF e···UUU t}23 = 0, F31 = {FFF e···UUU t}31 = 0. (32)

The differential form of these constraints is

0 =
∂jjj

∂FFF T

e

:::
∂FFF e(η̂)

∂ η
+

∂jjj

∂UUU t

:::
dUUU t(η̂)

d η
. (33)

As was already stated multiple times, the second term disappears. Because the determinant

of nine linear algebraic equations (30) and (33) is not zero in a general case, we arrive again

at Eq. (22). Thus, again the last term in Eq. (29) disappears, and we obtain the instability

criterion Eq. (23) for any prescribed stress measure.
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Validity of equations (26) and (27) for arbitrary prescribed stresses can be proven in the

same way. Note that it is well known (Hill and Milstein (1977); Milstein et al. (1995)) that

the instability criterion depends on the loading device, i.e., the boundary conditions. That

is why our result sounds very counterintuitive. However, it is based on additional conditions

(15), which resolve the contradiction. We will study this problem in more detail in part II

of the paper (Levitas (2018)).

Remark. The question arises: since instability is considered for homogeneous states,

for which interfaces and interfacial stresses are absent, why it is important to include in-

terfacial stresses in the instability condition? Interfacial stresses are introduced by making

some modifications in the gradient energy ψ∇ and multiplying ψ̆θ + ψ∇ by the Jacobian

determinant J , see Eqs.(6) and (8). For the homogeneous states ψ∇ = 0. However, the local

term Jψ̆θ remains and contains the Jacobian determinant J , which was absent for the case

without interfacial stresses and may affect the instability condition.

4.3. Properties of the interpolation functions related to instability conditions

Conditions for thermodynamic instability of equilibrium phases P0 and P1 Eq. (26) should

reproduce actual instability criteria obtained e.g., with the help of atomistic simulations or

experiments. In general, this means that the second derivative of all interpolation functions

participating in Eq. (26) should be controlled, i.e., equal to the prescribed values:

d2ϕm(0)

dη2
= 2am ≥ 0;

d2ϕm(1)

dη2
= 2wm ≤ 0. (34)

Since any interpolation function can be presented as the sum of monotonous and double well

barrier functions, we will treat them separately. We will start with monotonous interpolation

functions; that is why the second derivatives have signs shown in Eq. (11).
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5. Examples of interpolation functions

The smallest degree potential that satisfies all the above formulated conditions (11), (12),

(16), and (34) is the fifth degree. Thus, starting with the full fifth degree polynomial and

applying conditions 1-3, one obtains:

ϕ(a, w, η) = a η2 + (10 − 3 a+ w) η3 + (3a − 2w − 15) η4 + (6− a + w) η5, (35)

where subscripts are omitted. This function for different parameters a and w is shown in

Fig. 1(a).

Figure 1: Fifth-degree interpolation function ϕ(a,w, η) = a η2 + (10 − 3 a+ w) η3 + (3a − 2w − 15) η4 +

(6−a +w) η5 for several parameters a and w (a) and its particular case a fourth-degree interpolation function

ϕ(a, a− 6, η) = aη2(1− η)2 + η3(4− 3η) (b) for several parameters a.

Let us consider different particular cases of this function.

Interpolation function that satisfy antisymmetry condition. If the magnitude of the second

derivatives at η = 0 and 1 is the same, i.e., w = −a, interpolation function ϕ(a, w, η) reduces

to

ϕ(a,−a, η) = η2[ a + (10 − 4 a) η + 5 (a − 3) η2 − 2 (a − 3) η3]. (36)
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It is easy to check that this function satisfies the following antisymmetry condition

ϕ(a,−a, 1− η) = 1− ϕ(a,−a, η). (37)

This condition imposes an equivalence of phases P1 and P0 in the following sense. Let us

introduce the order parameter η̄ = 1 − η, which is 1 for P0 and zero for P1. Then the

interpolation function

ϕ(a,−a, η̄) = ϕ(a,−a, 1− η) = 1− ϕ(a,−a, 1− η̄) (38)

satisfies the same antisymmetry condition in terms of η̄. The plot of functions ϕ(a,−a, η̄)

and ϕ(a,−a, η) (Fig. 2) is symmetric with respect to the vertical line at η = η̄ = 0.5. For

large a = 15 there is a plateau around η = 0.5 with the value ϕ ' 0.5, which can be used to

represent an intermediate phase. For dislocations (Levitas et al. (2003)) such a plateau may

correspond to the partial dislocation.

Substituting η = 1− η̄ in Eq.(11) we obtain

M(η, θ) = M0 + (M1 −M0)ϕ(a,−a, 1− η̄) = M0 + (M1 −M0)(1− ϕ(a,−a, η̄))

= M1 + (M0 −M1)ϕ(a,−a, η̄). (39)

Consequently, material property M is invariant with respect to exchange (P0, η)↔(P1, η̄).

This condition is not mandatory but allows some simplifications and specification. However,

it is required for a multiphase system described by multiple order parameters in theories

(Folch and Plapp (2005); Levitas and Roy (2015, 2016)).

Interpolation function for properties that do not contribute to the instability condition. If

some material properties do not contribute to the instability condition for PTs P0→P1 or

P1→P0, then either a = 0 or w = 0 and one obtains from Eq.(35)

ϕ(0, w, η) = (10 + w) η3 − (2w + 15) η4 + (6 + w) η5 = η3(w(1− η)2 + 10 + 3η(2η − 5)),(40)
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Figure 2: Fifth-degree interpolation functions ϕ(a,−a, η) and ϕ(a,−a, 1−η) which satisfy the antisymmetry

condition for several parameters a. These functions are symmetric with respect to the vertical line at η = 0.5.

ϕ(a, 0, η) = a η2 + (10 − 3 a) η3 + (3a − 15) η4 + (6− a) η5 = η2(a(1− η)3 + η(10 + 3(2η − 5)).(41)

When both direct and reverse PTs are not affected by some material property, then the

corresponding interpolation function looks as

ϕ(0, 0, η) = η3(10− 15η + 6η2), (42)

which also satisfies the antisymmetry condition (37), see Fig. 2. This interpolation function

is widely used for the thermal part of the free energy in order to satisfy the phase stability

condition for any thermal driving force (Folch and Plapp (2003, 2005); Wang et al. (1993b)).

This is nonphysical but serves some purpose for allowing to artificially increase an interface

width by reducing the energy barrier between phases. On the other hand, it was found in

MD simulations for PTs Si I↔ Si II (Levitas et al. (2017a,b)) that the term due to change in

elastic moduli (which is nonlinear in stresses) does not contribute to the instability criterion,

which was found to be linear in components of the stress tensor. Thus, function (42) have
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to be used for elastic moduli tensor of any order.

Fourth-degree interpolation function. A disadvantage of the fifth-degree interpolation

function is that it generally does not allow an analytical solution for a propagating interface

and, consequently, correct introduction of the interfacial stresses. The only way to reduce

the polynomial degree down to fourth is to assume w = a− 6 and obtain

ϕ(a, a− 6, η) = aη2(1− η)2 + η3(4− 3η). (43)

This function for different parameters a is shown in Fig. 1(b). Such an interpolation function

was used in Levitas (2013a); Levitas and Preston (2002a,b) for transformation strain. To

satisfy the antisymmetry condition (37) one must impose a = 6− a, i.e., a = 3 and obtain

ϕ(3,−3, η) = 3η2(1− η)2 + η3(4− 3η) = η2(3− 2η). (44)

This function, which does not have any fitting parameter, was utilized in Levitas and Roy

(2015, 2016) for developing multiphase theory. The fifth degree polynomial (36) that satis-

fies the antisymmetry condition (37) is much more flexible, because it contains a material

parameter a.

Monotonous interpolation function. If properties vary monotonously between phases,

then the interpolation function (35) ϕ (a, w, η) does not have an extremum on the interval

0 ≤ η ≤ 1 , which impose a constraint on a and w. Condition of the absence of unphysical

extrema in the range 0 ≤ η ≤ 1 for the function (35) can be expressed in terms of quadratic

inequalities for a and w. Inequalities

am ≥ 0; wm ≤ 0 (45)

are evident necessary but not sufficient conditions.

The above property is directly related to another requirement that the driving force X

should not possess unphysical zeros for 0 ≤ η ≤ 1 for any stresses and temperature. In
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particular this means that the Helmholtz free energy should not possess unphysical minima

for temperature. Any 0 < η < 1 for which X = 0 and ∂ X
∂ η

< 0 represents a spurious

(unphysical) stable phase. Such η cannot be interpreted as a ”discovery” of a new phase

since this is just a consequence of the chosen approximation function rather than physically-

based knowledge. In particular, one may ”reveal” numerous phases by adding some periodic

function of the order parameters to the interpolation functions.

When material property is described by a tensor, different a and w in the interpolation

function can be applied for each tensorial component. Traditionally they were used the

same for all components, see Levitas (2013a); Levitas and Preston (2002a,b). However,

based on the results of molecular dynamic simulations for PTs Si I ↔ Si II in Levitas et al.

(2017a,b) (Figs. 4 and 5), different parameters should be used for different components of

the transformation strain tensor. We will utilize this in the current paper.

6. Functions for double-well barriers

Using the same reasoning, we conclude that the functions for double-well barriers χm

satisfy the following conditions

χm(0) = 0, χm(1) = 0; (46)

dχm(0)

dη
=
dχm(1)

dη
= 0. (47)

∂2χm(0)

∂η2
= 2Am;

∂2χm(1)

∂η2
= 2Zm. (48)

The minimum degree polynomial that satisfies these conditions is

χ(A,Z, η) = (Aη + Z(1− η))η2(1− η)2 = (A+ Z)

(
A

A+ Z
η +

(
1− A

A+ Z

)
(1− η)

)
η2(1− η)2.(49)

Function χ̄(b, η) := (bη + (1 − b)(1 − η))η2(1 − η)2 for different parameters b = A/(A + Z)

is shown in Fig. 3. Traditionally, A = Z, which leads to the traditional fourth-degree
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Figure 3: Double well barrier function χ̄(b, η) = (bη + (1 − b)(1 − η))η2(1 − η)2 for different parameters b

shown near the curves.

polynomial

χ(A,A, η) = Aη2(1− η)2, (50)

which is symmetric with respect to η = 0.5. Different A and Z allow to reproduce asymmetric

double-well barrier and different contributions to the instability conditions at η = 0 and 1.

7. Thermal part of the free energy and lattice instability conditions for stress-

free case

7.1. Fifth-degree polynomial

The most general expression for the thermal part of the free energy that satisfies all of

the above conditions can be obtained by combining Eq.(35) for the jump in thermal energy

∆ψθ = ψθ1 (θ )− ψθ0 (θ ), where ψθi is the thermal energy of the bulk phase i, and Eq.(49) for
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the double-well barrier:

ψθ(θ, η) = ψθ0 (θ) + ∆ψθ(θ)[aη2 + (10− 3a+ w) η3 + (3a− 2w − 15)η4 + (6− a+ w)η5]

+(Aη + Z(1− η))η2(1− η)2. (51)

Conditions for thermodynamic instability (23) of equilibrium phases P0 and P1 for stress-free

conditions should give specific instability temperatures, which are temperatures for barrier-

less PT or spinodal temperatures. Critical temperature should be below phase equilibrium

temperature θe for high-temperature phase P0 and above θe for low temperature phase P1.

Thermodynamic instability conditions (23) for a stress-free case are

P0 → P1 :
∂X(θ, 0)

∂η
= −∂

2ψθ(θ, 0)

∂η2
= −2(A+ a∆ψθ) ≥ 0→ −∆ψθ ≥ A(θ)

a
; (52)

P1 → P0 :
∂X(θ, 1)

∂η
= −∂

2ψθ(θ, 1)

∂η2
= −2(Z + w∆ψθ) ≥ 0→ −∆ψθ ≤ Z(θ)

w
, (53)

where we took into account that w < 0. Thus, barrierless direct PT P0 → P1 occurs when

the driving force −∆ψθ exceeds some positive threshold and barrierless reverse PT P1 → P0

occurs when the driving force −∆ψθ is smaller than some negative threshold; there is a

hysteresis, which is logical.

Let us assume that A, Z and ∆ψθ are linear functions of temperature:

A(θ) = A∗θ −B∗; Z(θ) = Z∗θ − C∗; ∆ψθ = −∆s(θ − θe), (54)

where A∗, B∗ < 0, Z∗, and C∗ < 0 are parameters, and ∆s = s1 − s0 is the jump in entropy

between phases P1 and P0. We also assume that P0 is the high-temperature phase and,

consequently, ∆s < 0. The linear temperature dependence of ∆ψθ implies neglecting the

difference between specific heats of phases. Then instability conditions (52)-(53) reduce to

P0 → P1 : θ < θ0
c ; θ0

c :=
a∆s θe −B∗
a∆s− A∗

; a∆s < A∗; (55)

P1 → P0 : θ > θ1
c ; θ1

c :=
−w∆s θe + C∗
−w∆s+ Z∗

; w∆s < Z∗, (56)
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where θ0
c and θ1

c are the critical temperatures for the loss of the thermodynamic stability

of phases P0 and P1. The required conditions θ0
c < θe and θ1

c > θe lead to the following

constraints: B < A∗θe and C > Z∗θe. Since critical temperatures are often not well-known,

one of the plausible assumptions, θe = 0.5(θ0
c + θ1

c ), is used (Levitas and Preston (2002a)).

It results in the following constraint

(a∆s θe −B∗)/(a∆s− A∗) + (−w∆s θe + C∗)/(−w∆s+ Z∗) = 2θe. (57)

7.2. Fourth-degree polynomial

The problem with Eq.(51) is that we cannot find an analytical solution for a propagating

interface and, consequently, correct expression for interfacial stresses. One needs to eliminate

the terms with η5 to be able to complete the theory. Then, a simplified version of Eq.(51) is

obtained by placing w = a− 6 and A = Z:

ψθ(θ, η) = ψθ0 (θ ) +
(
a∆ψθ(θ) + A

)
η2(1− η)2 + ∆ψθ(θ)η3(4− 3η). (58)

This function was used in Levitas and Roy (2016). The instability conditions (52)-(53)

simplify to

P0 → P1 : −∆ψθ ≥ A(θ)/a; P1 → P0 : −∆ψθ ≤ A(θ)/(a− 6), (59)

and the instability conditions (55)-(56) reduce to

P0 → P1 : θ < θ0
c ; θ0

c :=
a∆s θe −B∗
a∆s− A∗

; a∆s < A∗; (60)

P1 → P0 : θ > θ1
c ; θ1

c :=
(6− a)∆s θe +B∗
(6− a)∆s+ A∗

; (a− 6)∆s < A∗. (61)

The conditions θ0
c < θe and θ1

c > θe both lead to the same inequality B < A∗θe. An

assumption θe = 0.5(θ0
c + θ1

c ) leads to two possible solutions. The first one, A∗ = B∗/θe,
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results in unphysical relationship θe = θ0
c = θ1

c . The second second is A∗ = (a−3)∆s leading

to

θ0
c := (a∆s θe −B∗)/(3∆s); θ1

c := ((6− a)∆s θe +B∗)/(3∆s). (62)

Thus, the fourth-degree polynomial for ψθ has sufficient flexibility to incorporate the de-

sired lattice instability temperatures for a stress-free case. If one additionally imposes the

antisymmetry condition (37), then a = 3 and instability conditions reduce to

P0 → P1 : −∆ψθ ≥ A(θ)/3; P1 → P0 : −∆ψθ ≤ −A(θ)/3. (63)

The critical temperatures are

θ0
c := (3∆s θe −B∗)/(3∆s− A∗); θ1

c := (3∆s θe +B∗)/(3∆s+ A∗), (64)

and for the case when θe = 0.5(θ0
c + θ1

c ) one has A∗ = 0, A is temperature independent, and

θ0
c := θe −B∗/(3∆s); θ1

c := θe +B∗/(3∆s). (65)

Eq.(58) for a = 3 simplifies to

ψθ(θ, η) = ψθ0 (θ ) + ∆ψθ(θ)η2 (3− 2η) + Aη2(1− η)2. (66)

7.3. Analytical solution for a propagating interface and determining functions ψ̆θand ψ̃θ in

Eq.(6)

The Ginzburg-Landau equation (5) for a stress-free case and one dimensional formulation

is

η̇ = LX = L

(
−∂ψ

θ(θ, η)

∂η
+ β

d2η

dx2

)
. (67)

An analytical solution for the propagating interface within a fourth-degree polynomial was

obtained in Levitas (2013b) for the particular case of Eq.(58) with a = 0. Thus, substitut-

ing the magnitude of the double well barrier A in the solution from Levitas (2013b) with
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a∆ψθ(θ)+A from Eq.(58), we can trivially generalize analytical solutions in Levitas (2013b)

for our model. Thus, for a propagating interface

ηin = (1 + e−ζ)−1; ζ = k(x− ct); c = 6L∆ψθ(θ)/k; (68)

where c is the interface velocity and parameter

k =

√
2(A(θ) + (a− 3)∆ψθ(θ))

β
; δ =

10

k
(69)

is proportional to the inverse interface width, δ. Note that different definitions of the in-

terface width results in a different proportionality factor (Levitas et al. (2010, 2003)). The

temperature at which the propagating interface exists is constrained by the existence of a

real-valued k, i.e., A(θ) > (3−a)∆ψθ(θ). One of the important properties of solution Eq.(68)

is

dηin/dζ = ηin(1− ηin). (70)

Using it and the definition of k in Eq.(69), we obtain an important relationship for the points

of a propagating interface:

ψ∇ =
β

2
|∇∇∇ηin|2 =

βk2

2

(
dηin
dζ

)2

= [A(θ) + (a− 3)∆ψθ(θ)]η2
in(1− ηin)2. (71)

Repeating the same steps as in Levitas (2013b) we obtain a splitting of the general fourth-

degree polynomial in Eq.(58) into the part that according to Eq.(6) contributes to the inter-

facial stresses

ψ̆θ :=
[
A(θ) + (a− 3)∆ψθ(θ)

]
η2(1− η)2, (72)

and the remaining part, which does not participate in the interfacial stresses

ψ̃θ = ψθ(θ, η)− ψ̆θ = ∆ψθ(θ)η2(3− 2η) + ψθ0 (θ ) . (73)
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Eq.(72) for a = 0 reduces to the expression for ψ̆θ in Levitas (2013b). Similar to Levitas

(2013b, 2014b), the Gibbsian divided surfaces for the propagating interface passes through

the point with η = 0.5. For a = 3 one obtains ψ̆θ = A(θ)η2(1 − η)2 and expressions for

the interface stresses, width, and energy are independent of the thermal driving force ∆ψθ,

like in Levitas and Roy (2016); Steinbach (2009). Analyzing Eq.(72), the main problem in

determining ψ̆θ can be reformulated: which part of ψθ proportional to the thermal driving

force ∆ψθ contributes to the double-well function? A priory answer is not unique, because

instead of 3 − a one can use an arbitrary multiplier, which will change ψ̃θ. The notable

property of the obtained solution Eqs.(72) and (73) is that the maximum degree of ψ̃θ

reduced in comparison with that of ψθ. The same is true for the sixth-degree polynomial in

Levitas (2014b).

8. Expressions for transformation strain and stress-related contributions to the

thermodynamic driving force and instability conditions

8.1. Interpolation for transformation strain εεεt := UUU t − III

For each component of the transformation strain tensor εεεt = εijt (η)eeei⊗eeej, where eeej is the

Cartesian unit basis vector, we accept the general fifth-degree approximation as in Eq.(35)

plus additional terms:

εijt (η) = εijt (0) + ∆εijt ϕ
ij + Aijε φ̄; φ̄ := η2(1− η)2 (74)

ϕij :=
[
aijε η

2 +
(
10ιij − 3aijε + wijε

)
η3 + (3aijε − 2wijε − 15ιij)η4 + (6ιij − aijε + wijε )η5

]
.

Here, matrix ϕij (and, consequently, matrices aijε , wijε , and ιijε ) have the same non-zero

components and symmetry as ∆εijt ; non-zero components of ιij are equal to unity, and no

summation is performed over the repeating superscripts. In the previous theories (Levitas

(2013a); Levitas and Preston (2002a,b); Levitas et al. (2003)) all components of the ∆εijt are

29



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

multiplied by the same function ϕij = ϕ (i.e., aijε = aε and wijε = wε for all i, j) and Aijε = 0,

i.e.,

εijt (η) = εijt (0) + ∆εijt ϕ; εεεt(η) = εεεt(0) + ∆εtϕ; (75)

ϕ :=
[
aεη

2 + (10− 3aε + wε) η
3 + (3aε − 2wε − 15)η4 + (6− aε + wε)η

5
]
.

In this case, all nonzero components of the transformation strain tensor vary proportionally

to a single order parameter and if some of the components of the transformation strain tensor

are zero after complete PT, they do not appear and disappear during transformation, and

do not affect the driving force for PT and lattice instability conditions. However, such a

version could not reproduce instability conditions obtained with MD simulations in Levitas

et al. (2017a,b).

Eq.(74) utilizes different constants aijε and wijε for each independent component of the

transformation strain tensor. In this case the transformation strain path in the space of the

transformation strain tensor components represents some curved line connecting initial and

final values. This generalization is sufficient for the description of the instability conditions

obtained with MD simulations in Levitas et al. (2017a,b), see Section 9.

Let us discuss the additional terms Aijε η
2(1− η)2, which without problem can be substi-

tuted in all following equations with the more general interpolation function Eq.(49). For

most PTs, some components of the transformation strain tensor εεεt(1) are zero. The compo-

nents Aijε are nonzero for those i and j for which ∆εijt = 0 only. For example, for cubic to

tetragonal PT εεεt(1) has nonzero diagonal components only in the coordinate system of the

cubic cell. Thus, the terms Aijε η
2(1 − η)2 are off-diagonal and show an increase and then a

disappearance of the transformation shear strains. The terms Aijε η
2(1 − η)2 contributes to

the instability condition when corresponding stresses are acting. Thus, they are introduced

to include a possible effect on the instability conditions of stresses which do not produce

transformation work with εεεt(1) and, consequently, do not contribute to the phase equilib-
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rium conditions, as well as to include a transformation path more complex than described

by εεεt(1). For example, shear stresses for cubic to tetragonal PT change symmetry of the

lattice and may affect elastic lattice instability.

For compactness, we rewrite this equation in the index-free form:

εεεt(η) = εεεt(0) + ∆εεεt ◦ϕϕϕ+AAAεη
2(1− η)2, (76)

where AAAε := {Aijε } is the tensor and we define the Hadamard product of matrix ∆εεεt ◦ϕϕϕ :=

{∆εijt ϕij} (note no summation over i and j) and corresponding tensor ∆εεεt ◦ϕϕϕ := ∆εijt ϕ
ijeeei⊗

eeej. Note that ∆εεεt ◦ϕϕϕ := {∆εijt ϕij} should not be confused with a scalar double contraction

of two tensors with components ∆εijt and ϕij; this is tensor ∆εεεt each component ∆εijt of

which is multiplied by a scalar ϕij. Note that

ϕϕϕ :=
[
aaaεη

2 + (10ιιι− 3aaaε +wwwε) η
3 + (3aaaε − 2wwwε − 15ιιι)η4 + (6ιιι− aaaε +wwwε)η

5
]

(77)

and, consequently, aaaε := {aijε }, wwwε := {wijε }), and ιιι, are matrices but not second-rank tensors,

because they do not transform as tensors under change of basis. That is why they should

be defined in some special basis, e.g., in the basis corresponding to the parent crystal lattice

or cubic lattice, or in the principle basis. Tensorial transformations to different bases can be

performed for {∆εijt } and {∆εijt ϕij} only, but not for {ϕij}.

Below we evaluate the transformational Jacobian determinant, which is the volumetric

deformation transformation gradient:

Jt(η) = detUUU t(η) = det
[
III + εεεt(0) + ∆εεεt ◦ϕϕϕ+AAAεη

2(1− η)2
]
. (78)

In the simplest case εεεt(0) = 0, AAAε = 0, and all ϕij = ϕ are the same, Eq.(78) simplifies to

Jt(η) = det [III + ∆εεεtϕ(η)] =
∏[

1 + ∆εiit ϕ(η)
]
, (79)

where ∆εiit are the principle components of the tensor ∆εεεt. For small strains,

Jt(η)− 1 =
∑

∆εiit ϕ(η) = (Jt(1)− 1)ϕ(η), (80)
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i.e., the volumetric transformation strain Jt(η) − 1 is expressed in terms of its final value

Jt(1) − 1 and an interpolation function ϕ(η), and for Jt(1) = 1 one has Jt(η) = 1 for all η.

In contrast, for finite strains, even for the simplest case in Eq.(79), this is impossible. I.e.,

variation of the volumetric transformation strain Jt(η)−1 cannot be expressed in terms of its

final value Jt(1)− 1 and some interpolation function. In particular, if Jt(1) = 1, i.e. product

crystal cell has the same specific volume as the parent one, which is true for twinning,

transformation between martensitic variants, and approximately the case for some shape

memory alloys, one would expect that all intermediate states also have the same specific

volume. However, it does not follow from Eq.(79) that Jt(η) = 1.

8.2. Stress and transformation strain related contributions to the driving force X and insta-

bility conditions

Let us evaluate stress power in the driving force X in Eq.(10)

FFF t
e···σσσ ·FFF

t−1
e :::UUU−1

t ·
dUUU t(η)

dη
= FFF t

e···σσσ ·FFF
t−1
e ·UUU−1

t :::

{
∆εεεt ◦

dϕϕϕ

dη
+AAAε

dφ̄

dη

}
. (81)

Decomposing the Cauchy stress into a spherical part, i.e., the mean stress, σ0, and deviatoric

part, SSS = devσσσ,

σσσ = σ0III +SSS; σ0 :=
1

3
σσσ:::III; SSS = devσσσ, (82)

we elaborate Eq.(81)

FFF t
e···σσσ ·FFF

t−1
e :::UUU−1

t ·
dUUU t(η)

dη
= σ0UUU

−1
t :::

dUUU t(η)

dη
+FFF t

e···SSS ·FFF
t−1
e :::dev

{
UUU−1
t ·

dUUU t(η)

dη

}
, (83)

where we took into account thatFFF t
e···SSS·FFF

t−1
e is a deviator, because III:::FFF t

e···SSS·FFF
t−1
e = FFF t−1

e ·FFF
t
e:::SSS =

III:::SSS = 0. Since

UUU−1
t :::

dUUU t(η)

dη
= J−1

t (η)
dJt(η)

dη
=

d

dη
ln

[
Jt(η)

Jt(0)

]
(84)
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is the η−derivative of logarithmic volumetric transformation strain, the first term in the

right hand side of Eq.(116) is the transformation power of the change in volume. However,

since Jt(η) cannot be expressed in terms of Jt(1) and some interpolating function of η, even

if Jt(1) = Jt(0), i.e., both phases have the same specific volume in the unloaded state,

Jt(η) 6= Jt(0) for all η during PT, and the mean stress produces a contribution to the

evolution of η. Since for Jt(1) = Jt(0)∫ 1

0

d

dη
ln

[
Jt(η)

Jt(0)

]
dη = ln

[
Jt(1)

Jt(0)

]
= 0, (85)

the total contribution of the constant mean stress σ0 to the transformation work when η

varies from 0 to 1 disappears. However, volumetric strain produces internal stresses and

their total work may not be zero when η varies from 0 to 1.

Next, substituting the expression for dUUU t(η)
dη

from Eq.(81) into Eq.(83), we obtain

FFF t
e···σσσ ·FFF

t−1
e :::UUU−1

t (η) · dU
UU t(η)

dη
= σ0UUU

−1
t (η):::

{
∆εεεt ◦

dϕϕϕ

dη
+AAAε

dφ̄

dη

}
+

FFF t
e···SSS ·FFF

t−1
e :::dev

{
UUU−1
t (η) ·

[
∆εεεt ◦

dϕϕϕ

dη
+AAAε

dφ̄

dη

]}
. (86)

It is difficult to further simplify this expression even when all ϕij = ϕ are the same and

diag(AAAε) = 0. Similarly, we evaluate the stress contribution to the instability criterion

Eq.(27)

FFF t
e···σσσ ·FFF

t−1
e :::UUU−1

t (0) · d
2UUU t(0)

dη2
= FFF t

e···σσσ ·FFF
t−1
e :::2 (∆εεεt ◦ aaaε +AAAε) =

σ0III:::2 (∆εεεt ◦ aaaε +AAAε) +FFF t
e···SSS ·FFF

t−1
e :::2dev (∆εεεt ◦ aaaε +AAAε) ; (87)

FFF t
e···σσσ ·FFF

t−1
e :::UUU−1

t (1) · d
2UUU t(1)

dη2
= FFF t

e···σσσ ·FFF
t−1
e :::UUU−1

t (1) · 2 [∆εεεt ◦wwwε +AAAε] =

σ0UUU
−1
t (1):::2 [∆εεεt ◦wwwε +AAAε] +FFF t

e···SSS ·FFF
t−1
e :::dev{UUU−1

t (1) · 2 [∆εεεt ◦wwwε +AAAε]}. (88)

Even for scalar aε and wε and diag(AAAε) = 0, the multiplier for σ0 is not related to volumetric

transformation strain only. That is why in expressions below we will not split stress contri-

bution to the instability criterion into spherical and deviatoric parts. In fact, matrices aaaε
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and wwwε may be used to correct this. It is clear that tensor AAAε allows one to include the effect

on the lattice instability condition of the stresses, for which corresponding components of

the final transformation strain are absent.

8.3. Interpolation for logarithmic transformation strain lnUUU t

We will try similar interpolation but for logarithmic strain measure:

lnUUU t(η) = lnUUU t(0) + (lnUUU t(1)− lnUUU t(0)) ◦ϕϕϕ+ ln(BBBε)φ̄, (89)

i.e.,

UUU t(η) = exp
{
lnUUU t(0) + (lnUUU t(1)− lnUUU t(0)) ◦ϕϕϕ+ ln(BBBε)φ̄

}
, (90)

where the components lnBBBε are nonzero for those i and j for which lnUUU t(1) − lnUUU t(0) = 0

only. Below, we will use the following identities for a second-rank tensor AAA (see Jog (2015))):

det(exp(AAA)) = exp(tr(AAA)); tr(ln(AAA)) = ln(detAAA). (91)

Let us evaluate the volumetric deformation transformation gradient, i.e., the transforma-

tional Jacobian determinant

Jt = detUUU t(η) = det
{
exp

[
lnUUU t(0) + (lnUUU t(1)− lnUUU t(0)) ◦ϕϕϕ+ ln(BBBε)φ̄

]}
=

exp
[
tr(lnUUU t(0)) + tr((lnUUU t(1)− lnUUU t(0)) ◦ϕϕϕ) + tr(ln(BBBε))φ̄

]
exp

[
ln(det(UUU t(0))) + tr((lnUUU t(1)− lnUUU t(0)) ◦ϕϕϕ) + ln(det(BBBε))φ̄

]
=

det(UUU t(0))(det(BBBε))
φ̄exp {tr[(lnUUU t(1)− lnUUU t(0)) ◦ϕϕϕ]} . (92)

The last multiplier in the component form is

tr[(lnUUU t(1)− lnUUU t(0)) ◦ϕϕϕ] =
∑

(lnUUU t(1)− lnUUU t(0))ii ϕ
ii, (93)

34



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

which in general cannot be simplified further. However, for η = 1 all ϕii0 = ϕii1 = 1,

tr (lnUUU t(1)− lnUUU t(0)) = ln(det(UUU t(1))− ln(det(UUU t(0)) = ln(det(UUU t(1))/(det(UUU t(0)) (94)

and

exp {tr [lnUUU t(1)− lnUUU t(0)]} = det(UUU t(1))/det(UUU t(0)). (95)

Also, if all ϕij = ϕ are the same, in a similar way we obtain

tr [lnUUU t(1)− lnUUU t(0)]ϕ = ln[det(UUU t(1))/det(UUU t(0))]ϕ = ln

{[
det(UUU t(1))

det(UUU t(0))

]ϕ}
, (96)

and

exp {tr [lnUUU t(1)− lnUUU t(0)]ϕ} = [det(UUU t(1))/det(UUU t(0))]ϕ. (97)

Then

Jt = detUUU t(η) = det(UUU t(0))(det(BBBε))
φ̄

[
det(UUU t(1))

det(UUU t(0))

]ϕ
. (98)

If tensor lnUUU t(1) − lnUUU t(0) has all nonzero diagonal components, then tensor lnBBBε has

off-diagonal components only and tr(lnBBBε) = 0 → ln(det(BBBε)) = 0 → det(BBBε) = 1. Let

us for simplicity assume UUU t(0) = III. Then Eq.(98) reduces to

Jt(η) = detUUU t(η) = (detUUU t(1))ϕ(η) = Jt(1)ϕ(η);

ln[Jt(η)] = ϕ(η)ln[Jt(1)]. (99)

In this case the volumetric transformation gradient Jt(η) is expressed in terms of Jt(1) and

an interpolation function ϕ(η) and for Jt(1) = 1 one has Jt(η) = 1 for all η. This is,

however, impossible for different interpolation functions ϕij, i.e., variation of the volumetric

transformation gradient Jt(η) cannot be expressed in terms of the final value Jt(1) and some

interpolation function. In particular, if Jt(1) = 1, one would expect that all intermediate

states also have the same specific volume. However, it does not follow from Eq.(93) that

Jt(η) = 1. The above particular case gives us an idea on how to modify interpolation Eq.(89)

to satisfy this requirement for a more general case.
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8.4. Interpolation for logarithmic transformation strain lnUUU t that separates volumetric and

deviatoric parts

We present

lnUUU t(η) = lnUUU t(0) +HHH(η) + ln(BBBε)φ̄, (100)

with

HHH(1) = lnUUU t(1)− lnUUU t(0); HHH(0) = 0. (101)

The following interpolation for components of the tensor HHH(η) is suggested

H ij(η) = Hv(1)δijϕv(av, wv, η) +H ii
dd(1)ϕii(aiid , w

ii
d , η) +H ij

of (1)ϕij(aijof , w
ij
of , η); (102)

Hv(1) =
1

3

∑
H ii(1);

∑
H ii
dd(1)ϕii(aiid , w

ii
d , η) = 0 ∀η; H ii

of (1)ϕii(aiiof , w
ii
of , η) = 0. (103)

Thus, tensor HHH(η) consists of a spherical part Hv, which solely determines volumetric trans-

formation strain, and diagonal deviatoric H ii
dd and off-diagonal H ij

of parts, which do not affect

volumetric transformation strain. Condition for the diagonal deviatoric parts can be satisfied

for

a33
d =

a11
d (H22

dd(1) +H33
dd(1))− a22

d H
22
dd(1)

H33
dd(1)

; w33
d =

w11
d (H22

dd(1) +H33
dd(1))− w22

d H
22
dd(1)

H33
dd(1)

,(104)

which can be obtained by applying a deviatoric constraint for multipliers for each power ηk,

k = 2, 3, 4, 5. In the compact form Eqs.(102) and (103) can be presented as

HHH(η) = Hv(1)IIIϕv(av, wv, η) +HHHdd(1) ◦ϕϕϕdd(aaad,wwwd, η) +HHHof (1) ◦ϕϕϕof (aaaof ,wwwof , η); (105)

Hv(1) =
1

3
trHHH(1) =

1

3
[ln(detUUU t(1))− ln(detUUU t(0))] =

1

3
ln
detUUU t(1)

detUUU t(0)
=

1

3
ln
Jt(1)

Jt(0)
;

tr [HHHdd(1) ◦ϕϕϕ(aaad,wwwd, η)] = 0 ∀η; diag [HHHof (1) ◦ϕϕϕ(aaaof ,wwwof , η)] = 0. (106)
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Then,

UUU t(η) = exp
{
lnUUU t(0) +HHH(η) + ln(BBBε)φ̄

}
, (107)

Jt(η) = detUUU t(η) = det
{
exp

[
lnUUU t(0) +HHH(η) + ln(BBBε)φ̄

]}
=

exp
[
tr(lnUUU t(0)) + tr(HHH(η)) + tr(ln(BBBε))φ̄

]
exp

[
ln(det(UUU t(0))) + ln

(
detUUU t(1)

detUUU t(0)

)ϕv

+ ln(det(BBBε))φ̄

]
=

det(UUU t(0))

(
detUUU t(1)

detUUU t(0)

)ϕv

(det(BBBε))
φ̄ = Jt(0)

(
Jt(1)

Jt(0)

)ϕv

(det(BBBε))
φ̄. (108)

Thus, for detBBBε = 1 (i.e., when diag[ln(BBBε)] = 0), η-variation of the volumetric deformation

gradient Jt(η) can be expressed in terms of Jt(1), Jt(0), and interpolation function ϕv, as

desired. In particular, for the same specific volume of phases Jt(1) = Jt(0) and Jt(η) = Jt(0)

does not vary during phase transformation. If based on some available data one needs to

add variation of volumetric strain in general or for the same specific volume of phases, one

has to add a spherical part to ln(BBBε).

Using a Taylor series for the exponential function,

UUU t(η) = exp
{∑

AAAi ◦ϕϕϕi(η)
}

= III +
∑

AAAi ◦ϕϕϕi(η) + (109)

1

2!

{∑
AAAi ◦ϕϕϕi(η)

}2

+
1

3!

{∑
AAAi ◦ϕϕϕi(η)

}3

+ ...

and differentiating with respect to scalar η, one obtains

dUUU t

dη
= UUU t ·

{∑
AAAi ◦ dϕ

ϕϕi

dη

}
; (110)

d2UUU t

dη2
= UUU t ·

{∑
AAAi ◦ d

2ϕϕϕi

dη2

}
+UUU t ·

{∑
AAAi ◦ dϕ

ϕϕi

dη

}2

, (111)

where AAAi and ϕϕϕi(η) are η-independent tensors and corresponding interpolation functions in

Eq.(107). Since
dϕϕϕi(η̂)

dη
= 0, then

d2UUU t(η̂)

dη2
= UUU t ·

{∑
AAAi ◦ d

2ϕϕϕi(η̂)

dη2

}
. (112)
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More explicitly,

dUUU t

dη
= UUU t ·

{
Hv(1)III

dϕv
dη

+HHHdd(1) ◦ dϕ
ϕϕdd
dη

+HHHof (1) ◦
dϕϕϕof
dη

+ ln(BBBε)
dφ̄

dη

}
. (113)

d2UUU t(η̂)

dη2
= UUU t ·

{
Hv(1)III

d2ϕv(η̂)

dη2
+HHHdd(1) ◦ d

2ϕϕϕdd(η̂)

dη2
+HHHof (1) ◦

d2ϕϕϕof (η̂)

dη2
+ ln(BBBε)

d2φ̄(η̂)

dη2

}
.(114)

8.5. Contributions to the driving force X and instability conditions due to stress and trans-

formation strain

Let us evaluate the stress contribution to the driving force X in Eq.(10)

FFF t
e···σσσ ·FFF

t−1
e :::UUU−1

t ·
dUUU t(η)

dη
=

FFF t
e···σσσ ·FFF

t−1
e :::

{
Hv(1)III

dϕϕϕv
dη

+HHHdd(1) ◦ dϕ
ϕϕdd
dη

+HHHof (1) ◦
dϕϕϕof
dη

+ ln(BBBε)
dφ̄

dη

}
. (115)

Decomposing the Cauchy stress into a spherical part, i.e., the mean stress, σ0 := 1
3
σσσ:::III, and

deviatoric part, SSS = devσσσ, σσσ = σ0III +SSS, we elaborate Eq.(115)

FFF t
e···σσσ ·FFF

t−1
e :::UUU−1

t ·
dUUU t(η)

dη
= σ0 ln

(
Jt(1)

Jt(0)

)
dϕv
dη

+ σ0III:::

{
ln(BBBε)

dφ̄

dη

}
+

FFF t
e···SSS ·FFF

t−1
e :::

{
HHHdd(1) ◦ dϕ

ϕϕdd
dη

+HHHof (1) ◦
dϕϕϕof
dη

+ dev ln(BBBε)
dφ̄

dη

}
. (116)

Thus, for diag[ln(BBBε)] = 0, the mean Cauchy stress contributes to the driving force X

through the volumetric transformation work σ0 ln (Jt(1)/Jt(0)) only, and the deviatoric

Cauchy stress contributes to the driving force X through the corresponding transforma-

tion work as well, both as desired. This is the main advantage of the Eqs.(100)-(108). By

adding a spherical part to ln(BBBε), one can get extra contribution to the volumetric transfor-

mation unrelated to the transformation strains at η = 0 and η = 1. The off-diagonal part

of ln(BBBε) allows one to take into account into X the contribution of the stresses, for which

conjugate components of the transformation strain are lacking.

38



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Similarly, we evaluate the stress contribution to the instability criterion Eq.(27)

FFF t
e···σσσ ·FFF

t−1
e :::UUU−1

t ·
d2UUU t(η̂)

dη2
=

FFF t
e···σσσ ·FFF

t−1
e :::

{
Hv(1)III

d2ϕϕϕv(η̂)

dη2
+HHHdd(1) ◦ d

2ϕϕϕdd(η̂)

dη2
+HHHof (1) ◦

d2ϕϕϕof (η̂)

dη2
+ ln(BBBε)

d2φ̄(η̂)

dη2

}
=

σ0 ln

(
Jt(1)

Jt(0)

)
d2ϕv(η̂)

dη2
+ σ0III:::

{
ln(BBBε)

d2φ̄(η̂)

dη2

}
+

FFF t
e···SSS ·FFF

t−1
e :::

{
HHHdd(1) ◦ d

2ϕϕϕdd(η̂)

dη2
+HHHof (1) ◦

d2ϕϕϕof (η̂)

dη2
+ dev ln(BBBε)

d2φ̄(η̂)

dη2

}
. (117)

This expression has the same advantages as the expression for the driving force X. Namely,

for diag[ln(BBBε)] = 0, σ0 participates in the instability criterion through the volumetric

transformation work σ0 ln (Jt(1)/Jt(0)) only, and SSS participates through the corresponding

transformation work as well, both as desired. By adding a spherical part to ln(BBBε), one

can get extra contribution of σ0 to the instability condition. The off-diagonal part of ln(BBBε)

allows one to include the effect on the lattice instability condition of the stresses for which

corresponding components of the transformation strain are absent.

8.6. Elastic energy

The general expression for elastic energy is

ψe(EEEe, θ,CCC
k(η)) =

1

2
EEEe:::CCC(η):::EEEe +

1

3!
(EEEe:::CCC

3(η):::EEEe):::EEEe +
1

4!
EEEe:::(EEEe:::CCC

4(η):::EEEe):::EEEe + ...(118)

with elastic moduli of the kth rank

CCC(η) = CCC0 + (CCC1 −CCC0)ϕ(ac2, wc2, η);

CCC3 (η) = CCC3
0 + (CCC3

1 − CCC3
0) ϕ(ac3, wc3, η);

CCC4 (η) = CCC4
0 + (CCC4

1 − CCC4
0) ϕ(ac4, wc4, η). (119)

Similar to the second-rank transformation strain tensor each component of the kth rank

elastic moduli tensor can be multiplied by function ϕ(ack, wck, η) with different scalars ack

and wck.
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8.7. Lattice instability criteria for chosen interpolation functions

For transformation strain εεεt related interpolation. Substituting in the general lattice in-

stability criterion (27) all specific functions, namely elastic constants (118) and (119) with

interpolation function (35) and Eqs. (72), (73), and (76) for other interpolating functions,

as well as Eqs. (87) and (88) one obtains more explicit criteria for the direct and reverse

PTs:

P0 → P1 : ρ
∂X

∂η
= (FFF t

e···σσσ ·FFF
t−1
e − ψe

Je
III):::2 (∆εεεt ◦ aaaε +AAAε)

− 2

Je

[ac2
2
EEEe:::(CCC1 −CCC0):::EEEe +

ac3
3!

(EEEe:::(CCC
3
1 − CCC3

0):::EEEe):::EEEe +
ac4
4!
EEEe:::(EEEe:::(CCC

4
1 − CCC4

0):::EEEe):::EEEe

]
−2ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
− 6ρ0

Je
∆ψθ(θ) ≥ 0; (120)

P1 → P0 : ρ
∂X

∂η
= (FFF t

e···σσσ ·FFF
t−1
e − ψe

Je
III):::UUU−1

t (1) · 2 [∆εεεt ◦wwwε +AAAε]

− 2

Je

[wc2
2
EEEe:::(CCC1 −CCC0):::EEEe +

wc3
3!

(EEEe:::(CCC
3
1 − CCC3

0):::EEEe):::EEEe +
aw4

4!
EEEe:::(EEEe:::(CCC

4
1 − CCC4

0):::EEEe):::EEEe

]
−

2ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
+

6ρ0

J
∆ψθ(θ) ≥ 0, η = η̂. (121)

For interpolation of the logarithmic transformation strain lnUUU t that separates volumetric

and deviatoric parts. Instead of expression (76) for εεεt(η) we will use Eqs.(100)-(108) utiliz-

ing separate interpolation functions for spherical and components of deviatoric logarithmic

transformation strain, as well as Eqs.(114) and (117) for the second derivative of UUU t and

corresponding stress work. Thus, we obtain

P0 → P1 : ρ
∂X

∂η
= 2(σ0 −

ψe

Je
) ln

(
Jt(1)

Jt(0)

)
av + 2(σ0 −

ψe

Je
)III:::ln(BBBε) +

2FFF t
e···SSS ·FFF

t−1
e ::: {HHHdd(1) ◦ aaadd +HHHof (1) ◦ aaaof + dev ln(BBBε)}

− 2

Je

[ac2
2
EEEe:::(CCC1 −CCC0):::EEEe +

ac3
3!

(EEEe:::(CCC
3
1 − CCC3

0):::EEEe):::EEEe +
ac4
4!
EEEe:::(EEEe:::(CCC

4
1 − CCC4

0):::EEEe):::EEEe

]
−2ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
− 6ρ0

Je
∆ψθ(θ) ≥ 0; (122)
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P1 → P0 : ρ
∂X

∂η
= 2(σ0 −

ψe

Je
) ln

(
Jt(1)

Jt(0)

)
wv + 2(σ0 −

ψe

Je
)III:::ln(BBBε) +

2FFF t
e···SSS ·FFF

t−1
e ::: {HHHdd(1) ◦wwwdd +HHHof (1) ◦wwwof + dev ln(BBBε)}

− 2

Je

[wc2
2
EEEe:::(CCC1 −CCC0):::EEEe +

wc3
3!

(EEEe:::(CCC
3
1 − CCC3

0):::EEEe):::EEEe +
aw4

4!
EEEe:::(EEEe:::(CCC

4
1 − CCC4

0):::EEEe):::EEEe

]
−

2ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
+

6ρ0

J
∆ψθ(θ) ≥ 0, η = η̂. (123)

9. Specification for Si I↔Si II phase transformations

9.1. Transformation strains

Instability conditions for cubic to tetragonal PTs Si I↔Si II were obtained with the help

of MD simulations for various combinations of all six components of the Cauchy stress tensor

in Levitas et al. (2017a,b). We accept UUU t(0) = III for the cubic state and skip (1) for the

product tetragonal state. In the cubic axes, components εt1 = εt2 = 0.1753 and H1 = lnUt1 =

lnUt2 = 0.1615 (extension); εt3 = −0.447 and H3 = lnUt3 = −0.5924 (compression), i.e.,

Jt = (1 + εt1)2(1 + εt3) = 0.764 and trHHH = lnJt = −0.2694. Components of HHHdd(1) = devHHH

are Hd1 = Hd2 = 0.2513 and Hd3 = −2Hd1 = −0.5026. Then for the reverse PT UUU r
t = UUU−1

t

with components εrt1 = εrt2 = −0.1492 and lnU r
t1 = lnU r

t2 = −0.1615; εrt3 = 0.8083 and

lnU r
t3 = 0.5924. Instability conditions have been described in terms of normal stresses σi

along the cubic axes; the effect of shear stresses was negligible and we will not consider

it. This in particular means that the tensors AAAε and lnBBBε, which describe the effect of the

off-diagonal components of the Cauchy stress, are negligible as well, AAAε = lnBBBε = 0.

9.2. Lattice instability conditions from MD simulations

For the loading by three stresses normal to the cubic faces, tensors σσσ, FFF e, UUU t, their

inverse and η-derivatives are coaxial and can be permuted in the scalar product. Thus,

FFF t
e···σσσ ·FFF

t−1
e = σσσ ·FFF t−1

e ···FFF
t
e = σσσ.
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Figure 4: Confirmation of crystal lattice instability criterion (124) for direct Si I→Si II PT. (A) Plane in

stress space σi corresponding to the instability criterion (124) and instability points from MD simulations.

Projections of each point on σi − σj planes allow one to determine coordinates of each point in stress space.

(B) The same plot as in (A) but rotated until theoretical plane (124) is visible as a line, to demonstrate how

close all simulation points are to the theoretical plane. Adopted from Levitas et al. (2017b).

Lattice instability conditions at 1 K obtained with the help of atomistic simulations are

approximated in Levitas et al. (2017a) as

P0 → P1 : 0.361195(σ1 + σ2)− σ3 ≥ 12.2978 GPa for σ3 > −6.23782 GPa;(124)

P1 → P0 : 0.19200(σ1 + σ2)− σ3 ≤ 9.45916 GPa, (125)

see Figs. 4 and 5. Under hydrostatic loading, instability stress σ1 = σ2 = σ3 = −46.75GPa

for the direct PT and −15.36GPa for the reverse PT.

Intersection of the instability planes (124) and (125) in stress space corresponds to σ3 =

−6.23782GPa and σ1 + σ2 = −16.7775GPa. While for reverse PT plane (125) describes

instability in the whole stress ranges, for direct PT for σ3 < −6.23782GPa (or equivalently,

σ1 + σ2 < −16.7775GPa), there is a jump from the plane (124) to (125), i.e, instability

criteria for direct and reverse PTs coincide (Fig. 5):

P0 → P1 : 0.19200(σ1 + σ2)− σ3 ≤ 9.45916 GPa for σ3 < −6.23782 GPa.(126)
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Figure 5: Relationships between stresses σ3 and σ1 = σ2 for crystal lattice instability for direct and reverse

Si I↔Si II PTs. Each instability line corresponds to the disappearance of the minimum in the Gibbs energy

G plot for the corresponding phase. The dashed line is the schematic phase equilibrium line determined by

the equality of the Gibbs energy of phases. When two instability lines merge, Gibbs energy has a plateau

with a constant value leading to an unique homogeneous and hysteresis-free first-order Si I↔Si II PT, with a

continuum of intermediate homogeneous phases (HP), which are in indifferent thermodynamic equilibrium.

Adopted from Levitas et al. (2017a).
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Note that qualitatively most of the MD results obtained in Levitas et al. (2017a,b) can be

described with the simplest geometrically nonlinear elastic model (Levitas (2017)).

9.3. Interpolation functions for the elastic moduli and the modified transformation work in-

stability criteria

Elastic moduli. Since instability conditions are linear in stresses, all nonlinear-in-stresses

terms in Eqs.(120) and (121) should be either identically equal to zero or nonlinearity should

be negligible. According to atomistic simulations in Levitas et al. (2017a,b), the jump in

elastic energy is large. Thus, to eliminate corresponding nonlinearity, it is reasonable to

assume that the second derivatives of the corresponding approximating functions are zero

for η = 0 and 1, i.e., according to Eqs.(42)

ϕ(ac2, wc2, η) = ϕ(ac3, wc3, η) = ϕ(ac4, wc3, η) = ϕ(0, 0, η) = η3(10− 15η + 6η2). (127)

Thus, Eqs.(120) and (121) simplify to

P0 → P1 : (σσσ − ψe

Je
III):::εεεt ◦ aaaε − ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
− 3ρ0

Je
∆ψθ(θ) ≥ 0;(128)

P1 → P0 : (σσσ − ψe

Je
III):::UUU−1

t (1) · εεεt ◦wwwε − ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
+

3ρ0

J
∆ψθ(θ) ≥ 0,(129)

and Eqs.(122) and (123) simplify to

P0 → P1 : (σ0 −
ψe

Je
) ln (Jt(1)) av +SSS::: {HHHdd(1) ◦ aaadd}

−ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
− 3ρ0

Je
∆ψθ(θ) ≥ 0; (130)

P1 → P0 : (σ0 −
ψe

Je
) ln (Jt(1))wv +SSS::: {HHHdd(1) ◦wwwdd}

−ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
+

3ρ0

J
∆ψθ(θ) ≥ 0. (131)
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Cubic to tetragonal PT. Elaborating the first term in Eqs.(128) and (129) for cubic to tetrag-

onal PT, we obtain

P0 → P1 : Wd := (σ1 + σ2)εt1aε1 + σ3εt3aε3 ≥

−ψ
e

Je
(2εt1aε1 + εt3aε3) + ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
+

3ρ0

Je
∆ψθ(θ); (132)

P1 → P0 : Wr := (σ1 + σ2)
εt1wε1
1 + εt1

+
σ3εt3wε3
1 + εt3

≥

−ψ
e

Je
(
2εt1wε1
1 + εt1

+
εt3wε3
1 + εt3

) + ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
− 3ρ0

J
∆ψθ(θ), (133)

where W represents a modified transformation work, which for aε1 = aε3 = −wε1 = −wε3
reduces to the traditional transformations work.

For Eqs.(130) and (131), let us first specify the terms proportional to SSS while taking

into account constraints (104). Due to H11
dd(1) = H22

dd(1), a11
d = a22

d , and w11
d = w22

d , the

constraints (104) simplify to

a11
d = a22

d = a33
d = ad; w11

d = w22
d = w33

d = wd, (134)

i.e., all components of the deviatoric strain for the cubic to tetragonal transformation have

the same interpolation functions. Then with allowing for H3
dd(1) = −2H11

dd(1) and S3 =

−(S1 + S2), one obtains

SSS::: {HHHdd(1) ◦ aaadd} = SSS:::HHHdd(1)ad = 3S3H
33
dd(1)ad/2 = (2σ3 − σ1 − σ2)H33

dd(1)ad/2;

SSS::: {HHHdd(1) ◦wwwdd} = SSS:::HHHdd(1)wd = 3S3H
33
dd(1)wd/2 = (2σ3 − σ1 − σ2)H33

dd(1)wd/2.(135)

Then Eqs.(130) and (131) specify to

P0 → P1 : (σ0 −
ψe

Je
) ln (Jt(1)) av + (2σ3 − σ1 − σ2)H33

dd(1)ad/2

−ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
− 3ρ0

Je
∆ψθ(θ) ≥ 0; (136)
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P1 → P0 : (σ0 −
ψe

Je
) ln (Jt(1))wv + (2σ3 − σ1 − σ2)H33

dd(1)wd/2

−ρ0

[
(A(θ) + (a− 3)∆ψθ(θ)

]
+

3ρ0

J
∆ψθ(θ) ≥ 0. (137)

9.4. Specification of lattice instability conditions

The term ρ0∆ψθ(θ) can be estimated from the thermodynamic equilibrium equation

under hydrostatic condition. Thus, neglecting elastic strain and change in elastic moduli

during PT, we obtain σeq0 (Jt − 1) = ρ0∆ψθ(θ). Under quasi-hydrostatic conditions, phase

equilibrium mean stress σeq0 for PTs Si I↔Si II at room temperature is −10.5 GPa (Voronin

et al. (2003)). At 1 K, it should be between instability mean stresses−15.36 and−46.75GPa.

For the best approximation of the stress-strain curve for the hydrostatic loading in Part II

of this paper (Levitas (2018)), we accept σeq0 = −26.9 GPa and get ρ0∆ψθ = 6.35 GPa for

the transformation strain based kinematic model. Besides, we accept σeq0 = −27.20 GPa

and get ρ0∆ψθ = 6.42 GPa for the logarithmic strain based model.

Substituting all numerical values of material parameters in Eqs.(132) and (133) as well

as Eqs.(136) and (137) we specify the instability criteria for the transformation strain based

model:

P0 → P1 : Wd := 0.39217(σ1 + σ2)
aε1
aε3
− σ3 ≥

−ψ
e

Je

(
0.78434

aε1
aε3
− 1

)
+

2.2371ρ0A(θ)

aε3
+

14.2058a

aε3
+

42.6174

aε3

(
1

Je
− 1

)
; (138)

P1 → P0 : Wr := 0.184523(σ1 + σ2)
wε1
wε3
− σ3 ≤

−ψ
e

Je

(
0.369046

wε1
wε3
− 1

)
+

1.2371ρ0A(θ)

wε3
+

7.8558a

wε3
− 23.5674

wε3

(
1

J
+ 1

)
, (139)

and for the logarithmic strain based model:

P0 → P1 : Wd := (σ1 + σ2)
0.2513− 0.0898av/ad
0.5026 + 0.0898av/ad

− σ3 ≥

ρ0A(θ)/ad − 4.72(3− a− 3/Je)/ad − (av/ad)(0.26935ψe)/Je
0.5026 + 0.0898av/ad

; (140)
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P1 → P0 : Wr := (σ1 + σ2)
0.2513− 0.0898wv/wd
0.5026 + 0.0898wv/wd

− σ3 ≤

ρ0A(θ)/wd − 6.35(3− a+ 3/J)/wd − (wv/wd)(0.26935ψe)/Je
0.5026 + 0.0898wv/wd

, (141)

where the sign of the inequality in Eqs.(139) and (141) is changed because wε3 < 0 and

0.5026wd + 0.0898wv < 0. Comparing Eqs.(138)-(139) and Eqs.(140)-(141) with correspond-

ing instability criteria for Si I↔Si II PT in Eqs. (124) and (125) we obtain that

aε1
aε3

= 0.9210; 0.3848
ψe

Je
+

2.2371ρ0A(θ)

aε3
+

14.2058a

aε3
+

42.6174

aε3
(

1

Je
− 1) = 12.2978; (142)

wε1
wε3

= 1.0405; 0.6160
ψe

Je
+

1.2371ρ0A(θ)

wε3
+

7.8558a

wε3
− 23.5674

wε3
(

1

J
+ 1) = 9.4592. (143)

av
ad

= 0.5707; −0.1537
ψe

Je
+
ρ0A(θ)

ad
+

6.42a

ad
+

19.26

ad

(
1

Je
− 1

)
= 6.8112; (144)

wv
wd

= 1.4462; −0.389527
ψe

Je
+
ρ0A(θ)

wd
+

6.42a

wd
− 19.26

wd

(
1

J
+ 1

)
= 5.98263. (145)

Since nonlinear-in-stress terms ψe, Je, and J should not visibly contribute to the instability

criteria, their effect should be insignificant. Usually, elastic energy is an order of magnitude

smaller than stresses and terms with ψe could be neglected from the very beginning. In MD

simulations the elastic strain of Si II is much smaller than the transformation strain, so we

assume J ' Jt = 0.7639. In contrast elastic strain of Si I was relatively large and we assume

Je = 0.95.

Material parameters for transformation strain based interpolation functions. Then Eqs.

(142) and (143) simplify

2.2371ρ0A(θ) + 14.2058a+ 2.2430 = 12.2978aε3; (146)

1.2371ρ0A(θ) + 7.8558a− 54.4147 = 9.4592wε3. (147)
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Since A and a contribute in the same proportion to both equations, they can be excluded:

wε3 = −5.8837 + 0.7189aε3; 0 ≤ aε3 ≤ 8.1843. (148)

Condition aε3 ≤ 8.1843 follows from wε3 ≤ 0. Since there is some freedom in choosing a3

and wε3 we can impose an additional condition that wε3 = aε3 − 6, which is required for

disappearance of the term with η5. Then we obtain

aε3 = 0.4138; wε3 = −5.5862; aε1 = 0.3811; wε1 = −5.8124. (149)

Substituting aε3 in Eq.(146) (or wε3 in Eq.(147)), since these equations are linearly depen-

dent), one obtains

ρ0A(θ) + 6.35a = 1.2721. (150)

Since both A and a contribute to the thermal free energy (72) in the same combination as

in Eq.(150), there is no way to separately determine A and a, and this is not necessary.

Note that for any 0 ≤ aε3 ≤ 8.1843 the plots of the functions εt1(η) and εt3(η) are visually

undistinguishable, while they have slightly different second derivatives at η = 0 and 1. This

is not surprising. For example, for the fourth-degree polynomial (Fig. 1(b)), when a varies

from 0 to 6, the polynomial does not change significantly visually but the second derivatives

at η = 0 and 1 change drastically, and corresponding instability stress tends to infinity for

a = 0 for direct PT and for a = 6 for the reverse PT.

Material parameters for logarithmic transformation strain based interpolation functions.

Similarly, Eqs. (144) and (145) simplify to

ρ0A(θ) + 6.42a+ 1.0136 = 6.8112ad; (151)

ρ0A(θ) + 6.42a− 44.4727 = 5.98263wd, (152)
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which results in

wd = −7.6031 + 1.1385ad; 0 ≤ ad ≤ 6.6781. (153)

Condition ad ≤ 6.6781 follows from wd ≤ 0. Since there is some freedom in choosing ad, we

can impose an additional condition that the magnitude of the second derivatives at η = 0

and 1 is the same, i.e. wd = −ad. Then we obtain

wd = −ad = −3.5553; av = 2.0290; wv = −5.1416. (154)

Substituting ad in Eq.(151) (or wd in Eq.(152), since these equations are linearly depen-

dent), one obtains

ρ0A(θ) + 2.481a = 23.2022. (155)

10. Concluding remarks

After formulating the general structure of the PFA equations coupled to mechanics, the

main problem is in formulating the local thermodynamic potential, namely in the interpo-

lation of all material properties between different phases and introducing proper energetic

barriers between them. The initial requirements for energy were that it has as many local

minima as there are phases one considers and that it is invariant with respect to an exchange

of any symmetry-related martensitic variants. More advanced theories imposed conditions

on the interpolation and barrier functions, which specify the values of the order parameter(s)

and zero first derivatives for each equilibrium phase. These conditions could be met within

the fourth-degree interpolating polynomials.

In this paper, we utilized the crystal lattice instability conditions for PTs Si I↔Si II

under multiaxial loading obtained with MD simulations in Levitas et al. (2017a,b) in order to

essentially advance PFA for stress-induced martensitic or reconstructive PTs. MD results in
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Levitas et al. (2017a,b) are (to our best knowledge) the first instability conditions obtained

under action of all six components of the stress tensor. Accordingly, our current paper

is the first one which utilizes such information for formulating new requirements to the

thermodynamic potential and transformation strain tensor and developing new PFA that

satisfies these requirements. This was done for the general large strain formulation with

higher order nonlinear elastic energy, and with allowing for interfacial stresses. The crystal

lattice instability criteria are derived for such a general case and it is proven that they are

independent of the prescribed stress measure. In order to reproduce the lattice instability

conditions obtained with MD:

(a) one has to use the fifth degree polynomial interpolation functions of η for all material

parameters;

(b) each independent component of the transformation strain tensor should have different

interpolation functions;

(c) interpolation functions for tensors of the elastic moduli of all ranks should have zero

second derivatives for the parent and product phases, so that the elastic energy (which is

nonlinear in stresses) does not contribute to the lattice instability conditions.

Specific interpolation and double-well functions have been derived for all parts of the

Helmholtz free energy as well as for two models for the transformation deformation gradient:

based on interpolation of the transformation strain and logarithmic transformation strain.

For these models explicit expressions for the thermodynamic driving force in the Ginzburg-

Landau equation and the lattice instability conditions are derived. Material parameters have

been calibrated for both kinematic models using results of MD simulations.

In Part II of this paper (Levitas (2018)), the developed model is further refined and

studied, and applied for the finite element simulations of the nanostructure evolution in Si

under triaxial loading. A developed theory can be generalized for twinning, dislocations,

multiple martensitic variants, and multiphase systems. Similar instability conditions can be
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determined under action of multiaxial electromagnetic fields.

Developed quantitative PFA will allow one to develop a quantitative theory for barrierless

nucleation at various types of defects, like dislocations, grain and twin boundaries, and

external surface. Even for steels there is no quantitative PFA to martensite nucleation, see

Olson and Cohen (1972, 1986); Olson and Roytburd (1995). Stability of the propagating

interfaces can be studied using methods developed in Grinfield (1991). In order to explain

the drastic reduction, by an order of magnitude, of the PT pressure by superposed plastic

deformations (Ji et al. (2012); Levitas and Shvedov (2002)), the nucleation at the dislocation

pile up is modeled analytically (Levitas (2004,a)) and with PFA in Javanbakht and Levitas

(2015, 2016); Levitas and Javanbakht (2014, 2015). However, all of the above studies were

performed for a model materials. The current model allows quantitative studies for Si.
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• New requirements for the thermodynamic potential, which allow one to satisfy the lattice 
instability conditions are formulated. 

• Phase field approach that satisfies these requirements and includes interfacial stresses and large 
strains is developed. 

• It is proved that the lattice instability criteria are independent of the type of the prescribed stress 
tensor. 

• Fifth degree polynomial interpolation functions of the order parameter have to be used. 
• Different components of the transformation strain should have different interpolation functions. 

 
 

 




