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CHAPTER ONE 

GENERAL INTRODUCTION  

Thesis Organization 

 The following thesis is organized into 3 chapters and one appendix. Chapter 1 is a 

review of the physiological adaptations at birth that occur in the fetus at birth as well as 

the implications of dystocia. Chapter 2 is a summary of research conducted to 

characterize the predictive measures of fetal distress in calves during delivery. General 

conclusions about the research conducted are in Chapter 3. Appendix A contains the 

color chart used throughout the research.  

  

Review of Literature 

 Physiological Adaptations at Birth and Implications of Dystocia 

Introduction  

 The process of parturition that is initiated by the fetus involves a cascade of 

endocrine events that leads to myometrial contractions, dilation of the cervix, expulsion 

of the fetus, and finally the expulsion of the placenta (Senger, 1999). This transition from 

fetal to neonatal life is the most traumatic and dramatic change that occurs during the life 

of the animal. Factors that disrupt either the fetal or maternal system during birth may 

result in dystocia, or an abnormal birth.  According to Berger (1996) there has been a 

decrease in the percentage of unassisted births and an increase in the percentage of births 

requiring considerable force or extreme difficulty. Estimates of the rate of calf mortality 

range from 7 to 25 percent with the majority of deaths occurring at or around birth or 

during the first week of life (Dennis, 1981; Rice and Wiltbank 1972; Laster and Gregory 
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1973; Berger, 1995). Therefore, there is a great need for information regarding calving 

intervention strategies as well as possible fetal monitoring protocols for use on dairies to 

ensure a lower calf mortality rate (Mee, 2004; Uysterpruyst et al., 2000; Bleul and Kähn, 

2008). 

Initiation of Parturition  

The initiation of parturition has been most clearly defined in sheep. In the ewe, 

the signal for parturition originates in the fetus via the fetal hypothalamus. Several days 

prior to birth, the fetal adrenal gland secretes an increased amount of cortisol. This 

increase in fetal cortisol affects placental function. There is a resulting decrease in the 

secretion of progesterone and an increase in estrogen secretion from placental tissue. 

Increased placental estrogen induces an increased concentration of prostaglandin F2α 

(PGF2α) in the maternal cotyledons and myometrial tissue. Elevated levels of PGF2α 

induce a heightened sensitivity to oxytocin in the myometrium. The increased 

responsiveness to oxytocin causes distention and dilation of the cervix and induces 

uterine contractions which ultimately results in expulsion of the fetus (Liggins et al., 

1973). 

In cattle, the role of fetal cortisol in the initiation of parturition is less clear than in 

sheep. In the calf, plasma cortisol levels begin to progressively rise at about nine days 

before parturition. There is a sharp rise in the concentration of fetal cortisol at the onset 

of parturition; maximum levels in the fetus are reached within 3 hours of birth (Comline 

et al., 1974). However, during this same time period maternal cortisol concentrations 

remain relatively low (Fairclough et al., 1975). The increase in bovine fetal cortisol 

concentrations in the last days before parturition is similar to that seen in the lamb, 
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suggesting that the fetal adrenal is similarly involved in the control of bovine parturition 

(Fairclough et al., 1975; Hunter et al., 1977).  

Progesterone concentrations in the cow slowly decline to approximately 4 ng/ml 

plasma one week before delivery, and then decline further to less than 1 ng/ml plasma in 

the final 24 h before delivery (Stabenfeldt et al., 1970). This decline in the concentration 

of progesterone concentration appears to be a necessary component in the initiation of 

parturition (Stabenfeldt et al., 1970). In the last 24-48 h prior to parturition, PGF2α 

concentrations rise sharply to a maximum of 5.5-9.0 ng/ml, peaking at delivery in the 

cow (Fairclough et al., 1975). The increase in the concentration of prostaglandin causes 

luteolysis and therefore a sharp decline in plasma progesterone levels preceding delivery 

of the fetus (Edqvist et al., 1978; Fairclough et al., 1975). 

The main source of estrogen in late pregnancy is the fetal placenta (Hoedemaker 

et al., 1990). The increase in fetal adrenal activity stimulates estrogen production in the 

placenta (Comline et al., 1974; Hunter et al., 1977).  Fetal cortisol directly affects steroid 

synthesis in the trophoblast cells of the placenta (Hoedemaker et al., 1990).  

In cattle, myometrial oxytocin receptor concentrations increase gradually, 

reaching the highest density near delivery. At the start of labor, decreases in receptor 

density occur. Significant increases in maternal oxytocin levels occur during labor and 

secreted into the maternal blood of the cow. This surge is thought to be the cause of 

myometrial contractions during parturition (Fuchs et al., 1992) 

Intercaruncular endometrial oxytocin receptors also increase in concentration 

during pregnancy and reach maximum levels at the onset of parturition (Fuchs et al., 

1992). There is an interaction of oxytocin with its endometrial receptors which leads to 
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the release of PGF2α.  This oxytocin-induced release of PGF2α enhances the contractile 

force of uterine contractions initiated by oxytocin alone. This interplay of PGF2α and 

oxytocin induces uterine contractions and thus the expulsion of the calf (Fuchs et al 

1992). 

Stages of Parturition 

 Parturition or birth of the fetus is classically divided into three stages: stage one 

consists of increased periods of restlessness of the cow and positioning of the fetus in 

preparation for delivery, stage two involves the expulsion of the fetus, and stage three 

involves the expulsion of the fetal membranes.  

 The first stage of parturition is often characterized by the obvious discomfort of 

the cow. This discomfort is often shown by restlessness, rapid flicking of the tail, 

bellowing, kicking at the abdomen, and attempts by the cow to separate from the herd. 

During this time, the calf moves into delivery position and the pressure of the amniotic 

sac on the opening of the cervix initiates cervical dilation (Straiton, 1994). Regular 

contractions of the myometrium begin to occur usually at the rate of 12-24 contractions 

per hour. This stage of parturition usually lasts between 6-24 hours, but can be shorter if 

it is a multiparous cow (Peters and Ball, 1995).  

 The second stage of parturition involves the expulsion of the calf.  This stage is 

characterized by the onset of regular contractions. These myometrial contractions force 

the calf backwards toward the pelvic cavity causing abdominal contractions. These 

contractions occur in a series of five or six, and each series last from 60 to 90 seconds 

(Schrag and Singer, 1992; Straiton 1994). The pressure of the fetus on the cervix 

stimulates the release of oxytocin which in turn leads to further contractions. As the 
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contractions progress the amniotic sac ruptures which will provide lubrication for the 

birth. During this stage of labor the frequency and duration of the contractions will cause 

the cow to lie down. The cow will strain from 0.5 hours to 4 hours until the explusion of 

the fetus is complete (Peters and Ball, 1995).  The umbilical cord will break during the 

delivery process. 

 After the expulsion of the fetus and the abdominal contractions cease; the 

myometrium still contracts to expel the placenta. This expulsion of fetal membranes is 

considered to be the third and final stage of parturition. This stage can last up to 6 hours 

after birth (Peters and Ball, 1995).  If the placenta is not expelled it is termed ‘retained 

placenta’ which is a postpartum disorder and has pathological implications (Peters and 

Ball, 1995; Straiton, 1994).  

Changes from fetal to neonatal life 
 
Respiration and Circulation 
 

During fetal development, respiration and circulation is a function of the shared 

placenta. Fetal lungs are essentially secretory organs which play no role in respiratory gas 

exchange. Rapid removal of the fluid located in the lungs during or soon after birth is an 

essential event involved in the switch from placental to pulmonary gas exchange (Bland 

and Nielson, 1992). In fetal sheep, it has been found that lung luminal fluid contains 

almost no protein, a bicarbonate concentration of less than 3 mEq/L, and a Cl- 

concentration 50% greater than that of fetal plasma (Adams et al., 1963). The volume of 

liquid in airspaces of fetal lambs increases from 4 to 6 ml/kg body weight at mid-

gestation to more than 20ml/kg near term. This increase in lung liquid volume reflects the 

increase in pulmonary vascular and epithelial area due to proliferation of lung capillaries 
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and respiratory units (Bland and Nielson, 1992). The secretion of lung liquid begins to 

decrease 2 to 3 days prior to spontaneous birth. Epinephrine inhibits secretion of fetal 

lung liquid and also leads to an increase in the concentration of surfactant in the liquid 

(Brown et al., 1983). There is a sharp rise in plasma epinephrine (adrenaline) 

concentration detected during the last part of labor (Brown et al., 1983). The absorption 

of the fluid in the lungs observed during the latter part of labor is mediated by adrenaline 

circulating in the blood (Brown et al., 1983). Epinephrine stimulates Na+ uptake by the 

respiratory tract epithelium which drives liquid from the lung lumen into the interstitium 

where it is absorbed into the blood stream or removed through lymphatics (Bland and 

Nielson, 1992). 

 During the fetal stage of life the ductus arteriosus and foramen ovale function to 

divert blood away from the lungs. Shortly after birth, circulation in the fetus is altered. 

When the first breath is taken by the newborn, there is a decrease in pulmonary vascular 

resistance and an increase in pulmonary blood flow (Dawes et al., 1953). The interruption 

of umbilical circulation is also followed by a fall in heart rate and a rise in systemic 

arterial pressure (Assali et al., 1962). This leads to a change in blood flow through the 

ductus arteriosus. Circulation is reversed and blood flows from the aorta to the pulmonary 

trunk (Dawes et al, 1953; Amoroso et al., 1957; Assali et al., 1962). Also, during fetal life 

there is a difference in heart pressure gradients when compared to the adult.  Before birth, 

pressures in the chambers of the right side of the heart are consistently higher than those 

of the left chambers.  The right side of the fetal heart is more muscular and represents the 

high pressure system (Assali and Morris, 1964). Therefore, it can be concluded that the 

right ventricle of the fetus performs more work than the left ventricle. After birth, both 
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the ductus arteriosus and foramen ovale close, the left ventricle performs more work than 

the right, and overall patterns of circulation occur as in the adult animal. Closure of the 

ductus arteriosus and foramen ovale occurs primarily due to the response to high PO2 in 

the blood and the change in pulmonary and systemic pressures (Walsh and Lind, 1978).  

Blood Gasses and Acid-Base Balance 
 
 Fetal blood gas tensions differ from those in the neonate. Mean values for PO2, 

PCO2, and pH range between 38-40 mmHg, 43-45 mmHg, and 7.384-7.395, respectively 

(Comline et al., 1974). Blood gas tensions and pH remain stable in the fetus until a few 

minutes prior to birth. In the time immediately after birth there is a decrease in blood pH 

to approximately 7.25 and an increase in PCO2 to approximately 65 mm Hg. (Comline et 

al., 1974). Stable PO2 levels are reached within 15 min of birth and pH is restored within 

1 hour in unstressed calves (Comline et al., 1974).  Concentrations of electrolytes and 

lactate increase steadily in the first few hours after birth (Strawn et al., 1996). The base 

excess, or titrateable base in blood, tends to decrease more for stressed calves for the first 

3 h after birth compared to unstressed calves (Strawn et al., 1996). Strawn et al. (1996) 

reported that arterial blood [H+] in eutocic calves is 5.0 x 10-8 and 6.7 x 10-8 in dystocic 

calves. However, there was no difference reported between dystocic and eutocic calves in 

regards to arterial PCO2. Arterial PO2 was reported to be 32 mm Hg in dystocic calves and 

41 mm Hg in normal calves. Most abnormal values in dystocic calves reached normal 

values by 16 h of age; however, concentrations of hemoglobin and oxygen tensions 

remained low in arterial blood into the second day of life (Strawn et al., 1996). 
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Renal Function  

In most neonatal mammals, the renal system is immature at birth in respect to glomerular 

filtration rate, tubular function, and renal plasma flow (Dalton, 1968c). However, in the 

neonatal calf the renal system is considered to be far more efficient and renal function is 

comparable to adult renal function. The neonatal calf produces highly concentrated urine 

when dehydrated and readily excretes excess fluid (Dalton, 1968b). Also, the calf’s urea 

clearance is similar to that of an adult human in contrast to a typical mammal neonate 

(Dalton, 1968b). Approximately half of the urea secreted in the glomeruluar filtrate is 

reabsorbed in the tubules (Dalton, 1968c). The ability of the calf to maintain fluid 

homeostasis is of importance because the primary source of nutrients is milk (Dalton, 

1968a). 

Thermoregulation 

During fetal life the calf does not need to thermoregulate because heat is transferred to 

the fetus via the placenta and uterus.  Fetal temperature regulation is dependent on 

maternal heat transfer until birth. After the calf is born it is directly exposed to the 

extrauterine environment and it utilizes thermogenic processes to counteract heat loss. 

The newborn calf often faces immediate thermal stress at birth (Asakura, 2004). After the 

first hour of life the calf’s temperature will begin to stabilize at around 38.8◦C.  The 

postnatal drop and rise in temperature corresponds to the evaporation of amniotic fluid 

and drying of the calf’s hair coat (Vermorel et al., 1983). Heat production in newborn 

animals is the result of the metabolic rate of body tissues, the metabolism of brown 

adipose tissue, shivering, and physical activity (Vermorel et al., 1983, Asakura, 2004 ). 
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There are two types of adipose tissue, brown adipose tissue and white adipose 

tissue. In white adipose tissue, the sources of fat deposited are triacylglycerols arising 

either from blood lipoproteins or in situ synthesis. The presence of white adipose tissue 

reserves are relevant to the newborn due to the role it plays in metabolism after birth. 

White adipose tissue reserves increase postnatal survival because the newborn can use 

these fat deposits as energy reserves to prevent accidental starvation (Medina et al, 1992). 

Brown adipose tissue is located in the perirenal, inguinal, and prescapular regions at 

about 2% of total body weight (Vermorel et al., 1983). Brown adipose tissue differs 

morphologically and metabolically from white adipose tissue. Brown adipose tissue 

contains many mitochondria, fat vacuoles, and abundant sympathetic innervation, and 

increased blood supply. In the mitochondria of brown adipose tissue, ATP synthesis is 

uncoupled from the oxidative process via an uncoupling protein. This protein provides a 

system for continuous heat production by channeling protons across the inner 

mitochondrial membrane which dissipates the membrane potential (Medina et al., 1992). 

When ATP synthesis is separated from the oxidative process then heat is produced that is 

necessary for non-shivering thermogenesis. During the first month of life, brown adipose 

tissue is rapidly converted to white adipose and it begins to react less and less (Vermorel 

et al., 1983). 

Metabolism 
 

In utero, the fetus is solely dependent on maternal sources of energy. The placenta 

permits transport of sugars, amino acids, vitamins and minerals to the fetus for substrates 

for fetal metabolism and growth. The placenta also serves as a storage organ for glycogen 

as well as iron (Riddle and Tyler, 2003).  
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At birth, the newborn calf must assume control of nutrient metabolism. The first 

several hours of life for the neonate are crucial for survivability. During these first few 

hours, physiological changes are tremendous and energy demands are high. Fructose is 

synthesized in the placenta and is present in large quantities in the blood of fetal 

ruminants (Alexander et al., 1970). Fructose is not metabolized by the fetus under normal 

conditions, but it may act as a reserve carbohydrate for utilization when glucose 

concentrations are low (Alexander et al., 1970). Fructose concentrations are high in 

lambs and in calves but diminish during the first 24 hours of life (Alexander et al., 1970; 

Kurz and Willett; 1991).  

In contrast, glucose levels are low in the fetus and at birth, but increase to normal 

concentrations by 6 h of birth in the ruminant neonate (Kurz and Willett, 1991). 

Approximately 70% of the glucose transferred from mother to fetus is used for placental 

metabolism (Ktorza and Ferre, 1992). Some glucose is metabolized in the placenta to 

lactate. A significant amount of the lactate produced is transferred to the fetus, which 

leads to lactate concentrations 2 to 3 fold higher than that of the mother (Ktorza and 

Ferre, 1992). Glucose also contributes to energy storage in the form of hepatic and 

muscular glycogen.  In sheep, 60% of glucose is oxidized immediately, whereas, 40% is 

taken up by the fetus and used for glycogen accretion. Accumulation of hepatic glycogen 

is particularly important in terms of energy homeostasis. Liver glycogen stores are 

utilized when placental transfer of glucose abruptly stops at parturition (Ktorza and Ferre, 

1992). 

Concentrations of free amino acids are 2- to 3-fold higher in fetal blood than in 

maternal blood. This suggests that amino acids are actively transported across the 
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placenta to the fetus.  Amino acids are involved in oxidative metabolism in the fetus and 

contribute primarily to protein accretion (Ktorza and Ferre, 1992).  

Non-esterified fatty acids and ketone bodies readily cross the placenta to the fetus. 

These substrates are a poor source of energy, but they are used for the synthesis of energy 

stores (Ktorza and Ferre, 1992). 

Dystocia 
 

Dystocia is defined as any abnormal or difficult delivery process, encompassing 

malpresentations, prolonged parturitions, and difficulties due to inappropriate assistance. 

In order to quantify dystocia, many scoring systems have been devised. The most 

commonly used system in the United States is the 5-point calving ease scale. A calving 

ease score of 1 indicates that no assistance was provided, but provides no assurance that 

assistance was not needed. Where as, a calving ease of 5 is a difficult parturition resulting 

in severe mechanical assistance. However, a calving ease score of 5 may be the result of 

an uncorrected malpresentation of the fetus, or inappropriate timing of assistance. Despite 

inconsistencies and the subjective nature of the scoring system, it serves as a quantitative 

asset (Mee, 2008b; Mee 2004).  

Causes of Dystocia 

Maternal factors 

 Dystocia caused by maternal factors account for 24% of all dystocial births.  The 

most frequent abnormality associated with the dam is the failure of the cervix and vagina 

to dilate completely. Sloss and Johnson (1967) reported that there was a 53% maternal 

death loss in cases of improper dilation. Maternal death rate is most affected by maternal 

causes of dystocia (32%) compared to fetal causes (13%) (Sloss and Johnson, 1967). 
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 There is also interplay between maternal pelvic size and calf size that affects 

dystocia. Feto-pelvic disproportion is by far the most common factor associated with 

dystocia in domestic dairy cattle (Mee, 2008b). Maternal pelvic size, although important, 

is difficult to assess. Accuracy of pelvic measurements is questionable; measurements 

can vary with the same animal with different technicians and tools. Because of these 

issues, the predictive power of these measurements prior to calving for pelvic size at 

calving is extremely poor (Gaines et al., 1993).  

 Age, parity and body weight of the dam are other factors associated with dystocia. 

Reported dystocia rates range up to 83% depending on breed and maternal age (Rice and 

Wiltbank, 1972; Laster et al., 1973; Philipsson et al., 1979). Primiparous cows have a 

much greater incidence of dystocia (Pollack and Freeman, 1976). Sieber et al. (1989) 

reported that over 50% of first parity births required assistance. Dystocia scores differ 

among parities. Lombard et al. (2008) reported that 18.9% of calves born to primiparous 

dams were classified as severe dystocias, but only 6.9% of calves born to multiparous 

dams were classified as severe dystocias. Dystocia in 2 year old cows is 36% higher than 

in 3-year olds and 45% higher than in 4- and 5-year old cows (Laster et al., 1973). 

 Some factors affecting dystocia are breed-related. Holsteins have the highest 

incidence of dystocia of any dairy breed averaging a 40% incidence rate.  Holsteins have 

the highest ratio of calf birth weight to dam body weight; it averages 7.1%, but it is often 

over 10%. In contrast, Jersey dams rarely suffer from prolonged or difficult deliveries. 

The calf to dam weight ratio for the Jersey breed averages 5.6 to 6.3% and rarely exceeds 

8% (Holland and Odde, 1992). Crossbreeding cattle results in a lower incidence of 
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dystocia. Holland and Odde (1992) reported 15.9% calving difficulty for Jersey x 

Holstein cattle.  

 Dystocic cows have altered hormonal profiles when compared to cows 

experiencing normal parturition. Progesterone concentrations in cows experiencing 

dystocia are higher than cows experiencing no dystocia (O’Brien and Stott, 1976). This 

increased progesterone concentration may have an inhibitory effect on the circulating 

estrogen.  Cows experiencing dystocia have two to four times lower estrogen 

concentrations than that of normal cows between 23 days to 10 days prepartum (O’Brien 

and Stott, 1976).  

Fetal factors 

 The most common fetal cause of dystocia is calf size (Rice and Wiltbank, 1972; 

Sloss and Johnson, 1967; Mee, 2008). McDermott et al. (1992) found birth weight as the 

most important factor in predicting dystocia. Odds of dystocia increase by 13% per kg 

increase in calf birth weight (Johansen and Berger, 2003). In Holstein cattle the threshold 

of calf birth weight lies between 42 and 45 kg; for any calf above this threshold, dystocia 

rates increase significantly (Menissier and Foulley, 1979). Also, birth weights above the 

average of 40.3 kg have an exponentially increasing risk of mortality (Johanson and 

Berger, 2003). Probabilities of mortality for birth weights of 29, 35, 40, 46, and 52 kg are 

2.1, 2.5, 3.4, 5.1, and 9.6%, respectively (Johanson and Berger, 2003). However, since 

calf size is related to sex of the calf, this may be an effect of prolonged maternal exposure 

to testosterone (Bellows et al., 1993), but most researchers assume that male calves have 

more difficulty due to the fact that they are simply larger at birth (1-3 kg) than their 

female counterparts (Meijering, 1984; McDermott, 1992; Mee 2008).  
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Environmental factors 

 The incidence of dystocia is variable across seasons. The highest incidence rate 

occurs in late fall and winter periods (Lindhe, 1966). There can be several explanations 

for this phenomenon, although the most intriguing being the possibility of heat stress 

(Collier et al., 1982).  Exposure to high environmental temperatures affects pregnancy 

and the fetus in several ways. These high temperatures during mid-gestation or during the 

third trimester restrict placental development and depress fetal development to term 

(Shelton, 1964; Bell et al., 1987; Collier et al., 1982).  

Effects of Dystocia 

Maternal 

Dystocia can have dramatic effects on the cow. According to the National Animal 

Health Monitoring System, calving problems or dystocia is the leading cause of death in 

dairy cows (NAHMS, 1996). Cow deaths increase 4.1% for cows that experience extreme 

difficulty calving when compared to cows that calve normally (Dematawewa and Berger 

1997). The incidence of postpartum disorders, postpartum production, reproductive 

performance, milk production, and future incidence of calving difficulty are all affected 

by dystocia. Dystocia is associated with a 2-fold increase in the incidence of milk fever, 

3-fold increase in cystic ovaries, 2-fold increase in the risk for left-displaced abomasums, 

and a 2-to 3-fold increase in retained placenta and metritis. The increased incidence of 

postpartum disorders leads to increased culling rates (Laster et al., 1973; Rajala and 

Grohn, 1998) . 

 Dam parity also has a significant impact on economic and production losses 

associated with dystocia. The most recent published data (Dematawewa and Berger, 
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1997) regarding the effects of dystocia on the primiparous dam suggests these cows 

needing assistance during parturition experienced highly significant losses in 305-d 

adjusted milk, fat, and protein yields. The milk production of the primiparous dam 

steadily decreases as calving score increase to scores of 3, 4, and 5. At the score of 5, 

losses exceed 700 kg of milk per 305-day milk production, 24 kg milk fat loss, and 

protein losses exceed 20 kg. For second parity cows, adjusted milk, fat, and protein 

significantly decreased for calving scores of 4 and 5. For cows in the third lactation or 

more, losses were reported only in extreme difficulty or a score of 5 (Dematawewa and 

Berger, 1997).  These losses reported by Dematawewa and Berger (1997) are greater than 

those previously reported in an earlier study by Djemali (1987).  

 Reproductive performance of the dam following a dystocic parturition is also 

adversely affected. The number of services per conception increases with increasing 

calving scores of 2, 3, 4, and 5. A dam that has extreme calving difficulty requires 

approximately 0.22 more services than those dams which have no difficulty 

(Dematawewa and Berger, 1997). According to Thompson et al. (1982) an increase in 

calving difficulty results in more days open as well as a longer interval to first breeding 

and more services per conception. Heifers that experience calving difficulty have calving 

intervals that are an average of 11 d longer than heifers needing no assistance (Pollak and 

Pelissier, 1980). According to Dobson et al. (2001) delayed uterine involution, delayed 

onset of luteal activity postpartum, and more abnormal progesterone profiles occur after a 

dystocic birth. The percentage of cows detected in estrus during the 45 day AI period is 

14.4% lower in cows that required assistance at previous calving. The conception rate is 

also decreased for cows that experienced dystocia; 69.4% in dystocic cows compared to 
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85.3% for cows experiencing no dystocia (Laster et al., 1973). Cows that experience 

dystocia are more likely to experience the condition again in a subsequent calving (Mee 

et al., 2007). 

Fetal 

Calf losses during a stressful parturition are less well-documented than losses of 

the dam. It has been reported that 50% of stillbirths are a direct result of dystocia (Meyer 

et al., 2000; Lombard et al., 2007). In stillborn calves, approximately 90% of the losses 

were associated with a delay in receiving assistance or the amount of difficulty and time 

required to remove the calf (Laster and Gregory, 1973). This may suggest that 

applications of intervention strategies during calf deliveries are inadequate. In another 

study by Meyer et al. (2001) it was reported that a slight calving problem increased the 

odds of stillbirth by 2.91 in primiparous cows and 4.67 in multiparous cows. In more 

difficult calvings, primiparous cows were 6.67 times more likely to have a stillborn calf 

whereas multiparous cows were 11.36 times more likely to have a stillborn calf (Meyer et 

al., 2001). Calf mortality associated with a difficult birth or a calving ease score of 5 

increases 2- to 3- fold over births with slight problems (Pollak and Pelissier, 1980). Wells 

et al. (1996) reported that as severity of dystocia increases there is a direct negative effect 

on dairy heifer survivability. 

Fetal stress at birth 

The majority of calf deaths are associated with fetal stress at birth. Prolonged 

hypoxia and significant acidosis are common problems in calves that experience dystocia, 

which can cause immediate death of the calf or reduce long-term survival (Breazile et al., 

1988). Severe hypoxia increases the rate of respiratory movements due to the fetus 
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attempting to breathe in response to reduced oxygen (Kasari, 1994). Hypoxia also causes 

the discharge of meconium (Wensvoort, 1968). Expulsion of meconium from the 

intestinal lumen into the amniotic cavity is thought to be due to increased peristalsis and 

the relaxation of the anal sphincter resulting from vagal stimulation (Grignaffini et al., 

2004). Due to the hypoxia-induced gasping, inspiration of meconium-contaminated 

aminotic fluid occurs resulting in meconium aspiration syndrome postnatally (Schoon 

and Kikovic, 1989).  

Calves that experience hypoxic stress during birth are often weak and slow to 

stand and suckle (Odde, 1988; Dufty, 1977; Kasari, 1994). These impairments negatively 

affect ability to absorb colostrum leading to failure of passive transfer (Townsend, 1994). 

Consumption of colostrum in dystocic calves is reduced by 74% during the first 12 h 

after birth (Vermorel, 1989). However, it has been reported that calves that experienced 

dystocia that were tube-fed pooled colostrum have an equal amount of immunoglobulin 

absorptive capacity when compared to eutocic calves (Strawn et al., 1996; Donovan et 

al., 1986).  

Dystocia and hypoxia depresses the calf’s ability to utilize non-shivering 

thermogenesis. Therefore a difficult parturition can impair the cold tolerance of neonates 

during the early postnatal period (Carstens, 1994). Vermorel et al. (1989) reported a 

decrease in heat production and an increase in heat-loss in dystocic calves. This is in part 

due to the low concentrations of NEFA and delayed increase of limited lipid stores in the 

calf (Vermorel, 1989). Hypoxia also reduces muscular tonicity and inhibits shivering at 

birth which are important components of thermogenesis (Vermorel, 1989). 
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Economic 

 There are several economic costs associated with dystocia. Dematawewa and 

Berger (1997) estimated the total cost of dystocia in association parities to be $0.00, 

$50.45, $96.48, $159.82, and $397.61 for no assistance, slight assistance, needed 

assistance, considerable forced assistance, and extreme difficulty, respectively. 

Dematawewa and Berger (1997) also estimated total average cost of dystocia for 

primiparous cows was $28.01 compared to $11.10 for multiparous cows. In a previous 

study conducted by Djemali et al. (1987) economic loss in calves were valued at $70 for 

males and $150 for females.  

Calving Management 

 Calving management practices can directly and indirectly affect calf survivability. 

These management factors include selection of a defined calving season, appropriate 

frequency of observation, appropriate timing of assistance, and use of appropriate calving 

facilities (Dargatz et al., 2004). 

Dargatz et al. (2004) reported that only 39.6% of calvings occur in operations that 

use special calving facilities. The use of specialized calving facilities may provide for 

increased observation frequency and more timely assistance and provide protection that 

would decrease calf death losses. Due to the decreased ability for calves to 

thermoregulate the first few hours after birth, adequate shelter from the environment is 

also essential (Dargatz et al., 2004; Dennis, 1981). Cows should be moved to maternity 

unit within 1 to 2 days of calving depending upon available facilities (Mee, 2004). 

According to Mee (2004), some 10 to 20% of cows, particularly heifers, begin stage 2 of 

labor with no signs of stage 1. Monitoring cows near their calving date is very important. 
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Over 90% of United States operations observe heifers or cows on a regular basis during 

calving season. However, the frequency of observation was only every 6.7 hours for 

heifers and 9.6 hours for cows (Dargatz et al., 2004). The effects of infrequent 

observations and lack of allowed labor time prior to calving signifies that some heifers 

and cows are probably experiencing prolonged labor (Dargatz et al., 2004). 

Obstetrical Assistance 

Over 50% of all calf losses could be prevented by timely and correct obstetrical 

assistance (Bellows et al., 1987b). A large number of calf deaths are attributed to trauma, 

which suggests an inappropriate timing of assistance or excessive force during assistance 

(Dufty, 1973). Schuijt (1990) reported that 40% of stillborn calves born to heifers from 

veterinary-assisted deliveries had fractured ribs and 10% had vertebral fractures. An 

excessive amount (25%) of trauma has been reported in calves normally extracted. 

However, this can be explained by assuming that some powerful extractions are wrongly 

classified as normal. The moderate force of 2 men varies greatly; force of traction can be 

less than 160 kg, but may also range from 200-400 kg (Schuijt, 1990; Meijering and 

Postma, 1984). As little as 275 kg of force will fracture the long bones of neonatal calves 

(Ferguson, 1994).  

When excessive force is applied during the delivery process, trauma inflicted can 

affect several body systems (Schuijt, 1990; Kelly and Rowan; Kasari, 1989; Straiton, 

1994). Kasari (1989) reported that tracheal collapse can occur in calves older than one 

week as a consequence from an assisted delivery, but these collapses are often 

misdiagnosed. A higher incidence of meningeal hemorrhages within or around the cranial 

and spinal meninges has been reported in dystocic calves (Haughey, 1975; Dennis, 1981). 
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Rupture of the liver has also been reported as a direct result from the compression during 

delivery. Calf deaths in this case may not occur for 12 to 24 h (Johnson and Maclachlan, 

1986; Dennis, 1981). Most traumatic injuries sustained during extraction are suspected to 

remain undiagnosed (Kelly and Rowan, 1993). 

Another consequence of forced extraction of the fetus is the premature rupture of 

umbilical vessels. In cattle the umbilical cord is very short. During extraction when the 

hind legs are pulled from the vagina, the cord ruptures (Dufty, 1973). Kinmond et al. 

(1993) reported that immediate umbilical cord clamping deprives the human neonate of 

significant blood volume. There is a reduction in incidence of hemorrhages with a one 

minute delay in cord clamping (Kinmond et al., 1993).  In foals, early rupture of 

umbilical vessels leads to a loss of approximately 1500 ml or 30% of potential blood 

volume (Mahaffey, 1961). Hammer (1998) reported that calves receiving premature 

assistance that ruptured the umbilical cord earlier during delivery had low PO2 and high 

PCO2 values postnatally. These effects were theorized to be due to poor pulmonary 

perfusion because of decreased neonatal blood volume. However, these effects were not 

seen by Riddle and Tyler (2003) who reported no effect of the timing of umbilical 

clamping on residual placental blood volume.  Symptoms of early umbilical cord rupture 

include failure to thermoregulate, delayed time to stand, and inability to regulate 

respiration, all of which have been noted in calves experiencing dystocia (Mahaffey, 

1961; Adams et al., 1990; Strawn et al., 1996).  

Fetal monitoring at birth   

In human medicine, extensive and continuous monitoring of the fetus is standard 

procedure whereas in cattle there is virtually no monitoring (Bleul and Kähn, 2008). Fetal 
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monitoring during calving is very limited to observations and subjective signs of stress 

(Mee, 2008b). According to Mee (2004) when the calf begins to show signs of reduced 

vigor such as lingual edema, buccal or lingual cyanosis, scleral hemorrhages or reduced 

responsiveness to stimulation, intervention should occur.  There is currently a lack of any 

published data supporting these observations.  

In humans, several monitoring protocols and technologies have been developed. 

Pulse oximetries as well as fetal electrocardiogram (ECG) are tools that can be used 

during labor after membrane rupture with scalp electrodes (Nielson, 2006; Grignaffini et 

al., 2004).  High false positives often occur using ECG which has led to the widespread 

use of fetal pulse oximetry in humans. Fetal pulse oximetry safely and accurately 

indicates fetal oxygenation by measuring the percentage oxygen saturation of arterial 

hemoglobin (Grignaffini et al., 2004; Uystepruyst et al., 2000). This tool can aid in the 

early diagnosis of fetal hypoxia (Grignaffini et al., 2004).  The use of scalp electrodes, 

however, is not a practical approach for monitoring calves during delivery.  Tongue pulse 

oximetry has also been utilized in young children during surgery, and clinical trials have 

demonstrated that tongue oximetry is a reasonable alternative location for the probe site 

compared to more conventional peripheral sites (Coté et al., 1992).    

In human infants, assessment protocols regarding the color of lips, mucous 

membranes, and nail beds have also been established. Cyanosis is a blue coloration of the 

skin and mucous membranes associated with a decreased amount of oxygen in the blood 

(Roberts, 1975; Dain, 2007; O’Donnell et al., 2007). When skin changes color rapidly, it 

is a result of vasodilatation, vasoconstriction, or the amount of hemoglobin present in the 
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blood (Roberts, 1975). There is however, substantial variation in the perception of 

newborn infant color among observers (O’Donnell et al., 2007).  

Currently, the dairy industry’s goal of maintaining healthy cattle is partially 

limited by a lack of useful methods for determining the vitality of the calf during 

parturition (Bluel and Kähn, 2008). Blood gas analysis in bovine fetuses can assess 

vitality, but only provide point-in-time information and techniques are not suitable for 

continuous fetal monitoring (Bleul and Kähn, 2008).  Subjective, visual methods are 

used, but have not been tested in a research setting to determine their usefulness as 

accurate and repeatable predictors of fetal stress.  In addition, pulse oximetry could 

provide a non-invasive, immediate, and portable technique to assess oxygenation and 

diagnose hypoxic calves (Uystepruyst et al., 2000).    
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CHAPTER TWO 

PREDICTIVE MEASURES OF FETAL DISTRESS IN CALVES DURING 
DELIVERY 

 

K.E. Hard, H.D. Tyler, and J.D. Quigley III 

INTRODUCTION  

 The transition from fetal to neonatal life is the most hazardous period in the life of 

dairy calves.  The risk of disease and death peaks during the first two weeks of life. The 

greatest risk factor for both early mortality and morbidity is stress during the delivery 

process, most commonly a result of dystocia.  Dystocia is defined as a prolonged or 

difficult birth. Lombard et al. (2007) reported that dystocia and subsequent health effects 

account for nearly 50% of all calf mortality.  The greatest death losses occur as stillbirths.  

Stillbirths are defined as calves that die just prior to, during, or within 24 to 48 h of 

parturition (Meyer et al., 2001). The cost of stillbirths to the U.S. dairy industry has been 

estimated at $132 million per year (Thompson et al., 1981). Over 50% of all calf losses 

could be prevented by timely and correct obstetrical assistance (Bellows et al., 1987). 

 In stillborn calves, approximately 90% of the losses have been associated with a 

delay in receiving assistance or the amount of difficulty and time required to remove the 

calf (Laster and Gregory, 1973). Wells et al. (1996) reported that a dystocia requiring 

forced extraction, compared with an unassisted calving, was 4.22 times more likely to 

result in heifer calf death within the first 21 days of life.  

In human medicine, extensive and continuous monitoring of the fetus is standard 

procedure whereas in cattle there is virtually no monitoring (Bleul and Kähn, 2008). Fetal 

monitoring during calving is very limited to observations and subjective signs of stress 
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(Mee, 2008b). According to Mee (2004) when the calf begins to show signs of reduced 

vigor such as lingual edema, buccal or lingual cyanosis, scleral hemorrhages or reduced 

responsiveness to stimulation, intervention should occur.  There is currently a lack of any 

published data supporting these observations.  

In humans, several monitoring protocols and technologies have been developed. 

Pulse oximetries as well as fetal electrocardiogram (ECG) are tools that can be used 

during labor after membrane rupture with scalp electrodes (Nielson, 2006; Grignaffini et 

al., 2004).  High false positives often occur when using ECG which has led to the 

widespread use of fetal pulse oximetry in humans. Fetal pulse oximetry safely and 

accurately indicates fetal oxygenation by measuring the percentage oxygen saturation of 

arterial hemoglobin (Grignaffini et al., 2004; Uystepruyst et al., 2000). This tool can aid 

in the early diagnosis of fetal hypoxia (Grignaffini et al., 2004).  The use of scalp 

electrodes, however, is not a practical approach for monitoring calves during delivery.  

Tongue pulse oximetry has also been utilized in young children during surgery, and 

clinical trials have demonstrated that tongue oximetry is a reasonable alternative location 

for the probe site compared to more conventional peripheral sites (Coté et al., 1992).    

In human infants, assessment protocols regarding the color of lips, mucous 

membranes, and nail beds have also been established. Cyanosis is a blue coloration of the 

skin and mucous membranes associated with a decreased amount of oxygen in the blood 

(Roberts, 1975; Dain, 2007; O’Donnell et al., 2007). When skin changes color rapidly, it 

is a result of vasodilatation, vasoconstriction, or the amount of hemoglobin present in the 

blood (Roberts, 1975). There is however, substantial variation in the perception of 

newborn infant color among observers (O’Donnell et al., 2007).  
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Currently, the dairy industry’s goal of maintaining healthy cattle is partially 

limited by a lack of useful methods for determining the vitality of the calf during 

parturition (Bluel and Kähn, 2008). Blood gas analysis in bovine fetuses can assess 

vitality, but only provide point-in-time information and techniques are not suitable for 

continuous fetal monitoring (Bleul and Kähn, 2008).  Subjective, visual methods are 

used, but have not been tested in a research setting to determine their usefulness as 

accurate and repeatable predictors of fetal stress.  In addition, pulse oximetry could 

provide a non-invasive, immediate, and portable technique to assess oxygenation and 

diagnose hypoxic calves (Uystepruyst et al., 2000).    

 Therefore the objective of this study was to assess the accuracy of pulse oximetry 

and tongue parameters when evaluating fetal stress during parturition.  

MATERIALS AND METHODS 

Fifty eight calves from three breeds of dairy cattle (Holsteins, Jerseys, and Jersey 

X Holsteins) were monitored beginning at the onset of parturition.  Duration of calving 

was defined as the period from the first appearance of hooves to umbilical rupture.  From 

the time the tongue was first visible, measurements for tongue color, length and reflex 

were taken approximately every two minutes until the time of umbilical cord rupture. 

Tongue color was determined using a color chart that included 17 distinct colors 

(Appendix A). Tongue length (mm) was measured from the middle point of the nose to 

the tip of the tongue. Tongue reflex was assessed with a sharp pinch on the tongue on a 

scale from 0 to 3 based on the following criteria: 

0: No reflex: calf does not respond to hard pinch of the tongue 

1: Poor reflex: calf responds poorly only to very hard pinch of the tongue 
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2: Fair reflex: calf responds to a moderate pinch of the tongue 

3: Good reflex: calf immediately responds to a light pinch of the tongue 

 Measurements of fetal oxygen saturation and fetal heart rate were attempted 

intrapartum using pulse oximetry (Nellcor N-595, Boulder, CO).  A modified lingual 

sensor was clamped to the tongue as soon as possible during the delivery process.  The 

sensor consisted of light-emitting diodes and a photodiode as the receiver.  Measurements 

were collected using a software program that collated data every second (Score Software 

1.1 a).      

Calving ease score was based on the following criteria: 

 1. cow had no problem during parturition 

 2. cow had slight problem during parturition requiring slight    

 assistance 

 3.  cow required assistance during parturition to extract the calf 

 4. considerable force required to extract calf 

 5. extremely difficult extraction requiring mechanical assistance 

 All abnormal occurrences were recorded, including abnormal presentation, 

meconium staining, or other problems. All decisions regarding assistance were made by 

the maternity barn personnel.  

 Arterial blood samples were taken to establish stress parameters (PO2, PCO2, pH) 

defined previously by Strawn et al., 1996. Samples were drawn anaerobically within 20 

minutes of birth into sterile 3 ml syringes containing 50 units lyophilized lithium heparin 

(safePICO; Radiometer, Copenhagen).  Samples were analyzed immediately by using a 
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blood gas/electrolyte analyzer (ABL77; Radiometer, Copenhagen) to determine PO2, 

PCO2, pH, [Na+], [K+], [Cl-], and [Ca2+].  

Statistical analysis 

 Data were analyzed by analysis of variance using the Proc MIXED procedure of 

SAS (SAS Institute, 2003) with tongue color, length and responsiveness included as the 

dependent variables. Orthagonal contrasts were used to test differences between normal 

tongue color vs. color extreme, between normal vs. dark tongue colors, and between light 

vs. dark tongue colors. Pearson correlation coefficients were also calculated for all 

measured parameters using the Proc CORR procedure of SAS.  Significance was 

declared at P < 0.05 unless otherwise noted and probability values between 0.05 and 0.15 

were defined as tendency towards significance.  Standard errors presented were for the 

differences among least squares means. 

RESULTS 

 Three color categories were devised from the original individual 17 colors (Table 

1). The categories were devised by using PROC SORT in SAS using tongue color and 

defined stress parameters of pH, PO2, and PCO2. Eleven of the observed calves were 

classified in color category 1, 44 calves were classified in the color category 2, and 3 

calves were classified in color category 3 (Table 1). The calves were also classified by 

calving ease (Table 2). Twenty-nine of the calves were classified as calving ease of 1, 15 

of which were Holstein, 6 were Jersey and 8 were Holstein x Jersey. Seventeen calves 

were classified as having a calving ease of 2, 10 of which were Holstein, 3 were Jersey, 

and 3 were Holstein x Jersey.  Six calves were classified as a calving ease of 3, 5 of 

which were Holstein and 1 was Holstein x Jersey. Six calves were classified as a calving 
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ease of 4, 4 of which were Holstein, 1 was Jersey, and 1 was Holstein x Jersey.  No 

calves were classified in calving ease score 5. 

Color Categories 

 Both initial and final tongue colors were significantly different (P<.0001) across 

color categories (Figure 1 & 2). Surprisingly parameters reflecting oxygen delivery (PO2, 

hematocrit, total hemoglobin, oxygen saturation, and total oxygen content) were not 

correlated with color categories (Table 3 and Figures 5, 6, and 7). Also, color categories 

were not significantly correlated with pH or PCO2 (Table 3). This suggests that dark 

tongue color is a poor predictor of hypoxia and acidosis.  

Tongue length 

 Mean tongue length tended to be positively correlated with PCO2 and tended to be 

negatively correlated with pH (Table 3), indicating that calves with longer tongues tended 

to have a lower pH and a higher PCO2. Lower pH and a higher PCO2 are the best 

parameters reflecting birth stress (Strawn et al., 1996). However tongue length was not 

correlated with oxygen delivery parameters (Table 4). This suggests that length is a good 

predictor of acidosis but not hypoxia. Final tongue length was significantly positively 

correlated with calving ease score, suggesting that calves with longer tongues were more 

likely to have a higher calving ease score. Final tongue length was also significantly 

negatively correlated to final tongue color (Table 3 & Figure 4).  This suggests that as the 

tongue lengthened the tongue color was darker. Tongue length was the parameter that 

was most predictive for calving difficulty. This suggests that acidotic calves were more 

likely to receive assistance than calves experiencing hypoxia. 
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Tongue reflex  

 Final tongue reflex was significantly negatively correlated to tongue length (Table 

4), suggesting that calves with longer tongues were less responsive to tactile stimulation. 

However, tongue reflex was not correlated to parameters associated with hypercapnia, 

acidosis, or hypoxia. This suggests that tongue reflex alone is a poor predictor of hypoxia 

or acidosis. Least squares means for tongue reflex are shown in Figure 3. 

Calving ease 

 Factors most related to calving ease were pH, PCO2, PO2, and tongue length 

(Figures 8-12). This shows that calving assistance decisions provided by personnel were 

appropriate during the period that the study was conducted.  

Pulse Oximetry 

 Several attempts were made to successfully monitor the fetus using transmittance 

pulse oximetry. . However, due to the ineffective lingual clamp and cow movement, data 

was obtained for one delivery only. In future attempts, a new lingual clamp must be 

developed to keep the diodes parallel and stable. 
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Table 1: Distribution of final tongue color categories 

________________________________________________________________________ 
Color Categories Holstein Jersey Holstein x Jersey Total   
1 4 5 2 11 
2 29 5 10 44  
3 2 0 1 3  
 
 
Color Category 1: Final tongue color 1-3 
Color Category 2: Final tongue color 4-9 
Color Category 3: Final tongue color 10-17 
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Table 2: Calving ease distribution 
________________________________________________________________________ 
Calving Ease Scores Holstein Jersey Holstein x Jersey Total  
 1 15 6 8 29 
 2 10 3 3 17 
 3 5  0 1 6 
 4 4 1 1 6  
 5 0  0 0 0  
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Table 4: Probability values for Pearson Correlation Coefficients for tongue length 
________________________________________________________________________ 
 Initial Tongue Length Final Tongue Length Mean Tongue Length 
Final Tongue Reflex .6500 .0256* .0237* 
pH .2890 .2193 .1369 
PCO2 .1300 .1164 .0534 
PO2 .6230 .2180 .6583 
Calving Ease Score .2497 .0014* .0139* 
Hct .8333 .7469 .7627 
[K +] .9977 .7059 .5797 
[Ca2+] .1615 .8804 .2670 
[Cl-] .8381 .5520 .4455 
ctHb .8438 .7450 .7630 
[HCO3-] .5506 .6355 .5914 
Base excess .6518 .8389 .7970 
ctCO2 .3358 .4561 .3609 
Anion Gap .1285 .8615 .5262 
sO2 .5604 .3640 .6075 
ct O2 Vol% .3550 .5117 .5274  
 
*P<.05 
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Figure 1: Mean initial tongue color of calves across color categories (least squares 
means ± standard error of the mean). 
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Color Category 1: Final tongue color 1-3: n=11 
Color Category 2: Final tongue color 4-9: n=44 
Color Category 3: Final tongue color 10-17: n=3 
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Figure 2: Mean final tongue color of calves across color categories (least squares 
means ± standard error of the mean). 
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Color Category 1: Final tongue color 1-3: n=11 
Color Category 2: Final tongue color 4-9: n=44 
Color Category 3: Final tongue color 10-17: n=3 
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Figure 3: Mean final tongue reflex of calves across color categories (least squares 
means ± standard error of the mean).  The higher the number, the greater the 
tongue reflex to tactile stimulation. 
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Color Category 1: Final tongue color 1-3: n=11 
Color Category 2: Final tongue color 4-9: n=44 
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Figure 4: Mean final tongue length of calves across color categories (least squares 
means ± standard error of the mean). 
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Color Category 1: Final tongue color 1-3: n=11 
Color Category 2: Final tongue color 4-9: n=44 
Color Category 3: Final tongue color 10-17: n=3 
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Figure 5: Mean partial pressure of oxygen in arterial blood calves across color 
categories (least squares means ± standard error of the mean). 
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Color Category 1: Final tongue color 1-3: n=11 
Color Category 2: Final tongue color 4-9: n=44 
Color Category 3: Final tongue color 10-17: n=3 
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Figure 6: Mean oxygen saturation in arterial blood of calves across color categories 
(least squares means ± standard error of the mean). 
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Color Category 1: Final tongue color 1-3: n=11 
Color Category 2: Final tongue color 4-9: n=44 
Color Category 3: Final tongue color 10-17: n=3 
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Figure 7: Mean total oxygen content in arterial blood of calves across color 
categories (least squares means ± standard error of the mean). 
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Color Category 2: Final tongue color 4-9: n=44 
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Figure 8: Mean final tongue length of calves across calving ease (least squares 
means ± standard error of the mean). 
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 1: cow had no problem during parturition: n=29 
 2: cow had slight problem during parturition requiring slight assistance: n=17 
 3: cow required assistance during parturition to extract the calf: n=6 
 4: considerable force required to extract calf: n=6 
 5: extremely difficult extraction requiring mechanical assistance: n=0 
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Figure 9: Mean final tongue reflex of calves across calving ease (least squares means 
± standard error of the mean).  The higher the number, the greater the tongue 
reflex response to tactile stimulation.  
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 1: cow had no problem during parturition: n=29 
 2: cow had slight problem during parturition requiring slight assistance: n=17 
 3: cow required assistance during parturition to extract the calf: n=6 
 4: considerable force required to extract calf: n=6 
 5: extremely difficult extraction requiring mechanical assistance: n=0 
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Figure 10: Mean partial pressure of oxygen in arterial blood of calves across calving 
ease (least squares means ± standard error of the mean). 
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 1: cow had no problem during parturition: n=29 
 2: cow had slight problem during parturition requiring slight assistance: n=17 
 3: cow required assistance during parturition to extract the calf: n=6 
 4: considerable force required to extract calf: n=6 
 5: extremely difficult extraction requiring mechanical assistance: n=0 
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Figure 11: Mean pH in arterial blood of calves across calving ease (least squares 
means ± standard error of the mean). 
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 1: cow had no problem during parturition: n=29 
 2: cow had slight problem during parturition requiring slight assistance: n=17 
 3: cow required assistance during parturition to extract the calf: n=6 
 4: considerable force required to extract calf: n=6 
 5: extremely difficult extraction requiring mechanical assistance: n=0 
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Figure 12: Mean partial pressure in arterial blood of carbon dioxide of calves across 
calving ease (least squares means ± standard error of the mean). 
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 1: cow had no problem during parturition: n=29 
 2: cow had slight problem during parturition requiring slight assistance: n=17 
 3: cow required assistance during parturition to extract the calf: n=6 
 4: considerable force required to extract calf: n=6 
 5: extremely difficult extraction requiring mechanical assistance: n=0 
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DISCUSSION 

 Data generated in this study would suggest that individual tongue parameters have 

limited value for predicting fetal distress in calves. In human infants color is predictive of 

oxygen delivery parameters, although variation in perception of color is high between 

individuals (O’Donnell et al., 2007; Dain, 2007; Roberts, 1975). To avoid these issues 

with variances in color perception, a color chart was developed with 17 discrete colors 

(Appendix A). Differences in tongue pigmentation between breeds were a confounding 

factor that may have impacted our ability to detect differences in oxygen status. Pulse 

oximetry techniques would overcome this limitation, however, the different morphology 

of the bovine tongue proved to be a difficult obstacle for successful application of this 

technique. The bovine tongue is thicker and more muscular than tongues of non-

ruminants. Other researchers have utilized reflectance oximetry, which uses different 

diode attachment sites.  Reflectance type oximetry has been used extensively and 

successfully in human intrapartum monitoring (Elchalal et al., 1995), but has had limited 

success as a technique for bovine intrapartum monitoring (Bleul and Kähn, 2008). 

Because this technique requires adherence of the diodes to the hard palate, we chose to 

use a transmission type oximeter with a modified lingual clamp.   

  Hypoxia also causes loss of muscle control. This issue has been most commonly 

apparent in meconium-stained calves (Schoon and Kikovic, 1987; Wensvoort, 1968). We 

used tongue length as an early measure of loss of muscle control. Although our data did 

not did not confirm a relationship between oxygen delivery parameters and tongue 

length, we did document a relationship between tongue length, hypercapnia, and acidosis. 

Since hypercapnia and acidosis are associated with birth stress (Strawn et al., 1996), 
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tongue length may be a viable predictor for fetal distress. Tongue length was most closely 

associated with calving ease score in this study. 

 Calving difficulty in this study was associated with decreased pH, increased PCO2, 

decreased SO2, and decreased total oxygen content. These data agree with previously 

reported results from this lab (Strawn, 1996). In addition our data showed that increasing 

tongue length is also associated with calving difficulty, suggesting that this may be a 

useful predictive calving management tool.  

 Due to the differences in tongue color between breeds, the data was analyzed 

excluding the Jersey calves (n=46). There was a significant negative correlation between 

initial tongue color and PO2, oxygen saturation of hemoglobin, and total oxygen content 

(P=.0249, P=0.0416, and P=0.0568). This shows that color can be correlated with oxygen 

parameters within the Holstein breed. However, there was no significance shown in final 

tongue color or mean tongue color.  
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CHAPTER THREE 

GENERAL CONCLUSIONS 

This research represents a continuing effort to understand and establish methods 

of assessing fetal stress.  The transition from fetal life to the neonate has a major impact 

on calf survivability. The objective of the study was to assess the ability of several tongue 

parameters and transmittance tongue oximetry to detect fetal stress.  

This study provided several starting points for future studies.  Tongue parameters 

may be an effective method for monitoring fetal stress in cattle. Tongue length 

monitoring was indicative of acidosis in calves. This is due to the loss of muscle control 

and contractility that occurs during stress. Tongue reflex was shown to be negatively 

correlated with tongue length. Calves with longer tongues are less responsive to tactile 

stimulation. When these data were analyzed after the exclusion of Jersey calves (that 

have naturally darker tongues), there was a significant correlation between initial tongue 

color and oxygen parameters.  Our data, while not conclusive, strongly suggest that 

tongue parameters can be useful as predictive measures of stress, but when all three stress 

indicators are present in the calf (long tongue, reduced reflex, and dark color) it is more 

definitively indicative of stress than the presence of a single indicator.  There were six 

calves in the study that had long tongues (greater than 55 mm), dark color (color 3 or 

lower), and poor responsiveness (reflex equal to 1). Five out of the six calves or 83% 

were stressed (pH ≤ 7.25, PO2 < 50, and PCO2 > 60).  However, there were 12 total 

stressed calves six of which did not display two or more tongue parameters measured. 

Due to the variability of transmittance pulse oximetry and success of reflectance 

oximetry reported by Bleul and Kähn (2008), reflectance oximetry could be used to better 
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correlate tongue parameters to stress. Ideally, a large number of Holstein calves would be 

monitored in a futures study. Reflectance oximetry during delivery and arterial blood 

gases at birth can be utilized to assess stress and then these data can be correlated with 

tongue paramters.  

Our data can provide a basis for new more useful techniques in fetal monitoring. 

Calving management practices would benefit from an easy way to determine stress in the 

calf. Such techniques could potentially reduce calf morbidity and mortality and increase 

future production for these animals. 
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Appendix: Color Chart 

 


