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A Robust-Resistant Approach to Interpret Spatial Behavior of Saturated 
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A central Iowa glacial till soil under no-tillage condition was studied for its spatial behavior of 
saturated hydraulic conductivity (K) at the surface soil layers. Hydraulic conductivity measurements 
both in situ and in the laboratory were made at two depths of 15 and 30 cm at regular intervals of 4.6 
m on two perpendicular transects crossing each other at the center of the field. Simplified split-window 
median polishing in conjunction with a robust semivariogram estimator were used to examine the 
spatial structure of the glacial till material. Results of this study indicated a nested structure of K at 30 
cm depth. Soil clustering at the experimental site at intervals of 20 m, in addition to the soil 
microheterogeneity, contributed to variation in K, with an overall range of spatial dependence of K up 
to 60 m. Medians of split windows of 23 m width were found to be the "solo representatives" or 
"summary points" of the soil clusters contributing to spatial structure. In situ and laboratory 
measurements for K showed consistency in their trends even though some parametric variations were 
observed. K values observed near the soil surface at a depth of 15 cm were dominated by white noise 
and directional trends. 

INTRODUCTION 

Glacial deposits have often been regarded as one of the 
most variable and complex geological materials [Terzaghi 
and Peck, 1967]. Dreimanis [1976] and Lutenegger et al. 
[1983] concluded that the influence of genesis on various 
properties of till and diamiction matehals occurs primarily as 
a result of gross differences in depositional environment and 
that supraglacial deposits are highly variable compared with 
basal till. These researchers determined that the postdepo- 
sitional changes in glacial deposits can produce a complex 
set of effects on the behavior of the till soil. Moreover, 
recent studies indicate that preferential flow paths and 
spatial variability in hydraulic conductivity (K) of the soil 
have significant influence on chemical transport from agri- 
cultural fields to shallow groundwater [Kanwar et al., 1988, 
1990a, b]. Sharma et al. [1987] demonstrated .that subsurface 
flow can be increased with increased spatial'dependence in 
the hydraulic properties of the soil. Therefore more accurate 
characterization and quantification of K variability are 
needed to make reasonable estimates of water and chemical 
recharge rates to groundwater systems from glacial till 
agricultural watersheds. 

Field experiments were conducted to study the spatial 
structure $f K in a glacial till material in central Iowa, 
employing exploratory techniques and (robust) geostatistics. 
After appr6priate scale transformations o.f measured K data 
were calculated using constant head and Gu•elph permeame- 
ters [Klute, 1965, Reynolds and Elrick, !986], robust semi- 
variGgrams were computed for two soi 1 depths. A resistant 
approach of "split-window median polish •' .across transects 
was used to examin e the appropriateness of the semivariG- 
grams. The main objective of this study was to examine the 
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variability and the dependence of K on sampling distance, 
that is, minimum (optimum) number of representative sam- 
ples to be analyzed to characterize K on a field scale. The 
second objective was to estimate and interpret semivariG- 
grams as a measure of continuity or autocorrelation of K for 
the glacial till material. The third objective was to observe 
the effect of soil depth on K variability. In addition to these 
objectives, consistency in semivariograms using two mea- 
suring techniques was also compared. 

PREVIOUS APPLICATION 

The geostatistical approach of using semivariograms [Dav- 
id, 1977; Journel and HuO'bregts, 1978; Clark, 1979] to 
evaluate the spatial structure of soil properties has become 
increasingly popular. Several scientists in the last decade 
have devoted their attention to the spatial distribution of 
physical, chemical, and hydrogeological properties of soils. 
Gajam et al. [1981], Russo and Bresler [1982], Vauclin eta!. 
[1982], Yost et al. [1982], Russo [1984], Oliver and Webster 
[1986] and others used geostatistical estimators to determine 
the spatial structure of different soil properties. Webster 
[1985] summarized the various geostatistical tools available 
in the area of soil science. Onofiok [1988] studied spatial and 
temporal variability of some tillage-induced soil physical 
properties of a Nigerian paleustult and found significant 
differences in soil macroporosity and K values due to tillage 
and date of sampling. Although most of these researchers 
used the basic assumptions needed for geostatistical analy- 
sis, they usually failed to examine whether the data mea- 
sured in the field satisfied these assumptions [Horowitz and 
Hillel, 1983; Hamlett et al., .1986; Cressie and Horton, 1987]. 
Various studies by Cressie [1984, 1986], Cressie and Hawk- 
ins [1980], Cressie and G!onek [1984], Hamlett et al. [1986], 
and Cressie and Horton [ 1987] have introduced resistant and 
exploratory data analysis techniques such as effects of drift, 
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robust variogram estimation, and robust kriging to geostatis- 
tical analysis. 

Techniques reported by Tukey [1977] for performing ex- 
ploratory analyses could be adopted to characterize the 
spatial structure of soil properties. This paper demonstrates 
how the soil hydraulic conductivity data taken at spatial 
locations and arranged on a regular "cross" (i.e., two 
transects intersecting each other at the center of the field at 
an angle of 90 ø ) can be analyzed with exploratory data 
analysis techniques when nonstationarity is the inherent 
property of most of the soils [Hamlett et al., 1986]. 

THEORETICAL BACKGROUND FOR SPATIAL ANALYSIS 

Matheron [1963] proposed the technique of "Geostatis- 
tics" for spatial analysis of ore reserves from sampled data 
whose relative spatial locations were known. David [1977], 
Journel and Hu•7bregts [!9.78], and Clark [1979] have ad- 
dressed this problem and presented case studies in the field 
of mining. 

Experimental variograms are the main tools used to ex- 
plore the spatial structure of soil properties in the field. 
Because these semivariograms can provide the basis for 
further geostatistical assessment of soil properties, accurate 
analysis of data is needed before developing semivariogram 
or kriging maps [Hamlett et al., 1986]. A brief theory of 
geostatistics is reviewed, with attention paid to crucial 
stationarity assumptions. 

Assuming that Z(x), a regionalized variable where (x) 
denotes a location in the space domain (F), is the random 
measurement of the case-specific soil property taken at 
location (x), two types of stationarities are typically as- 
sumed that Z(x) may satisfy. Z(x) is said to be stationary of 
order 2 (i.e., second-order stationarity) if (1) E{Z(x)} = m, 
for any x, which states that the expected value of the random 
function in space exists and does not depend on location x, 
and (2) E{Z(x + h) ß Z(x)] - m 2 } = C(h) for any x and h, 
which states that for each pair of variables {Z(x + h), Z(x) } 
the covariance function C(h) exists and does not depend on 
location but only on the separating vector h [Journel and 
Huijbregts, 1978, p. 32]. The less demanding intrinsic hy- 
pothesis by Matheron [1963] makes the following stationar- 
ity assumptions, which are expressed entirely in terms of 
differences {Z(x + h) - Z(x)} of the regionalized variable: 
(1) E{Z(x + h) - Z(x)} = 0, for any x and h; in other 
words, one expects Z(x) to be constant for any x and h in F, 
and (2) 2y(h) = E{[Z(x + h) - Z (x)12}, for any x and h, 
where •(h) is a semivariogram estimator which states that 
variance of the difference in soil property depends only on 
the separating vector h. Thus second-order stationarity 
implies the intrinsic hypothesis, but the reverse is not true. 
Following Matheron [1963], Journel and Huijbregts [1978] 
and Burgess and Webster [1980] studied spatial variability 
using semivariograms and defined an average semivariogram 
5(h) in a specific direction as 

•/(Ih], a) = [1/2N([h], a)]{ • [g(xi+ Ihl) - Z(Ji)]2} , i=1 

(1) 

where 5(Ihl, a) is a semivariogram estimator, a implies 
direction, Ihl is modulus of interval, N is the number of pairs 

having a specified separating vector, and Z(xi) , ..., Z(xn ) 
are soil property data taken at field locations x i,'.., Xn. 
Journel and Huijbregts [1978, pp. 175 and 262] reported that 
semivariograms may be directionally dependent and that 
data can be checked for anisotropy by computing 5(Ihl, a) for 
different a. Note that for field data the separation vector ( h, 
a) would present a range of values rather than a particular 
value. 

Unfortunately, the field data of many soil properties 
generally contain some outliers that can obscure the whole 
•h) estimation by increasing the variance. Among many 
others, Cressie and Hawkins [1980] proposed a modified 
estimator, known as a robfist estimator, suitable to curtail 
the effect of these outliers by downweighting and defined as 

[•/2N(Ihl, •)] Y'• [g(x• + Ihl) -- Z(x•)] TM 
i=1 

0.457 + 0.494/N(h) + O.045/N(h) 2 

(2) 

Journel and Huijbregts [1978] have reported that the 
observed variability of a phenomenon is most often due to 
the presence of microstructures within macrostructures, 
sampling variation, and so forth. When all structures of 
variability come into play simultaneously and for all dis- 
tances h, they are called nested structures. The overall 
variogram •,(h) for the nested structure can be written as 
[David, 1977, p. 123; Journe! and Huijbregts, 1978, p. 150] 

T(h) = Tl(h) + T2(h) +"' + •/n(h), (3) 

where •/l(h), "', 'Yn(h) are the variograms of the compo- 
nents contributing to the spatial structure. 

For the sake of completeness we may describe a few of the 
theoretical models encountered most commonly in practice, 
including that of this study. The spherical model [Clark, 
1979] in isotropic form can be written as 

3/(h ) = Co + Cs[(3h/2A) _ (h3/2A 3)] 0 < h < A 
(4) 

•/(h) = Co + Cs = C h > A, 

where Co is the nugget component, Cs is the spherical 
component, C is the sill, and A is the range of the semivafi- 
ogram. The spherical model is one of the most common 
transitive models to fit soil properties data. Another model 
that has also been used is the exponential model: 

,/(h) = Co + Ceil - exp (-h/A)] 0 < h -< d, (5) 

where Ce is the exponential component and d (e.g., d > 3A) 
is the maximum distance over which the semivariogram is 
defined. Unlike the spherical model, the exponential model 
reaches the sill asymptotically. Both spherical and exponen- 
tial mo4els show linear behavior at the origin. 

The parameters of the theoretical variograrr/s matching the 
experimental variograms can be identified using kfiging by 
the jack-knifing approach [Vauclin et al., 1983]. The param- 
eters can then be validated with the criteria proposed by 
Gambolati and Volpi [1979]. Springer and Cundy [1987] 
referred to these criteria as kriged average error (KAE), 
kriged reduced mean square error (KRMSE), ant] kfiged 
mean square error (KMSE). Furthermore, the kriged value 
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Fig. 1. Experimental plot for spatial study of K in Boone 
county, Iowa; 66 sampling sites arranged on two transects (NE-SW 
and NW-SE) across the field (soil type map included). Triangles 
indicate sampling sites. 

should be positively correlated with the observed value of 
the regionalized variable. Finally, the theoretical variogram 
model (of raw data or drift residuals) should closely approx- 
imate the observed variogram of the raw data or of the 
residuals [Journe! and Huijbregts, 1978, p. 167 and 246]. 
Ordinary and universal kriging computations were per- 
formed with a computer routine adopted from the United 
States Geological Survey [Grundy and Miesch, 1987]. 

EXPERIMENTAL METHODS 

A 115 m x 183 m experimental plot was used for this study 
at the Agronomy and Agricultural Engineering Farm near 
Boone in central Iowa. Soil types in this plot were Nicollet 

loam and Clarion loam derived from glacial till. The plot had 
gentle slopes of less than 2% on the north and was on a 
slightly convex rise on the south with low relief [U.S. 
Department of Agriculture, 1984]. It has also been under 
no-tillage management for the last 6 years. A Guelph per- 
meameter [Reynolds and Elrick, 1986] was used to measure 
the in situ values of K at sites located on two perpendicular 
transects crossing at the center of the field. The transects 
were oriented in NW-SE and NE-SW directions along the 
major and minor axes of the field and are shown in Figure 1. 
This type of sampling pattern is not commonly used to study 
the spatial dependence of soil hydraulic properties. The 
design was intended to limit the number of K measurements 
and to generate sufficient number of pairs at intermediate lag 
distances. The sampling pattern also provided an adequate 
number of pairs for directional geostatistical analysis and for 
exploratory data analysis in NW-SE and NE-SW directions. 

K measurements with the Guelph permeameter were 
made at 4.6-m intervals on both transects, at 15 and 30 cm 
depths. This resulted in 66 in situ measurements of K for 
each depth (as shown in Figure 1). All K measurements were 
made in the crop rows to avoid compaction due to wheel 
traffic, which would lower K values significantly by reducing 
total porosity and macroporosity [Onofiok, 1988]. The 
GuelPh permeameter method described by Reynolds and 
Elrick [1986] was adopted for measuring the steady rates of 
recharge at 5 and 10-cm heads, and K values were calculated 
using the relationship based on Richard's analysis for steady 
state discharge from a cylindrical well in an unsaturated soil. 

In addition to the Guelph permeameter technique, six 
undisturbed soil cores were taken from each of the 66 sites, 
with three replicates from each depth. Undisturbed soil 
cores (76 mm in diameter and 76 mm long) were collected 
with an Uhland core sampler for K measurements in the 
laboratory, using the constant head permeameter method 
[Klute, 1965]. For the lab method, 198 (3 x 66) cores were 
collected from 66 sites for each depth. After discarding few 
bad samples, 185 samples for the 15 cm depth and 188 
samples for the 30 cm depth were analyzed. Details on the 
method of collecting undisturbed soil cores for K determi- 
nation in the lab are given by Kanwar et al. [1989]. 

EXPERIMENTAL RESULTS 

Table 1 and Figure 2 give the summary of the experimental 
K values obtained using the in situ Guelph permeameter and 
the laboratory constant head permeameter methods. The K 
values shown in Figure 2 for the laboratory method are the 

TABLE 1. Summary of K Data Sets Based on 66 Sampling Sites Arranged on Two Transects 
Across the Field, Perpendicular to Each Other 

Lab* Depth Field Depth 

Method Adopted 15 cm 30 cm 15 cm 30 cm 

Number of observations 185 188 66 66 
Average, cm/s 6.293 x 10 -4 8.737 x 10 -4 5.426 x 10 -4 3.923 • 10 -4 
Maximum, cm/s 2.662 x 10 -3 2.163 x 10 -3 2.064 x 10 -3 1.813 • 10 -3 
Minimum, cm/s 5.240 x 10 -5 3.037 x 10 -5 2.034 x 10 -5 1.822 x 10 -5 
Standard deviation 5.664 • 10 -4 6.296 X 10 -4 4.414 X 10 -4 3.432 x 10 -4 
Variance 3.208 x 10 -7 3.965 x 10 -7 1.948 x 10 -7 1.178 x 10 -7 
Coefficient of variation, % 90.00 72.07 81.35 87.46 

*These statistical parameters are based on average K (i.e., of three replicates). 
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arithmetic averages of three replicates collected from each 
site. On the average the constant head laboratory method 
provided higher K values than the Guelph permeameter 
method. Moreover, the standard deviations and coefficient 
of variations for K were generally higher for the laboratory 
method in comparison with the Guelph permeameter 
method. These differences between lab and field data could 

have been caused by macroporosity effects, experimental 
method effects, and/or sample volume effects. A study by 
Lauren et al. [ 1988] showed a large variation in K values due 
to sample volume used when the soil contained macropores. 
They found more accurate K estimates with larger soil 
samples. Our study contained a large number of macropores 
(wormholes and root channels) oriented nearly vertically 
within the top 30 cm of the soil. The wormholes and root 
channels were different in size and density at 15 and 30 cm 
depths because of differential growth and density of plant 
roots at different depths [Singh et al., 1991]. 

In addition to the sample volume or macropore effects, the 
variation between the lab and Guelph permeameter methods 
might be compounded because of the inherent differences. 
The Guelph permeameter measures the composite of hori- 
zontal and vertical values for K under anisotropic condi- 
tions, whereas the lab method determines the vertical K 
values. Moreover, the K values measured by the Guelph 
permeameter are also affected because of smearing of the 
well wall, compaction, and air entrapment, which could also 
reduce the conductivity in comparison with the measured K 
values in the lab. For some soil cores we observed extremely 
high K values due to short-circuiting of water through the 
unexpectedly large number of continuous macropores (chan- 
nels). Similar phenomena have been reported by Lauren et 
al. [1988] and Kanwar et al. [1989]. 

SPATIAL ANALYSIS AND DISCUSSION 

Robust-Resistant Approach for Semivariogram 
Development 

Exploratory techniques [Tukey, 1977; Velleman and Ho- 
aglin, 1981] are suitable for spatial analyses of soil properties 
using resistant (i.e., arithmetically stable) and robust (i.e., 
model stable) methods [Hamlett et al., 1986; Cressie and 
Horton, 1987]. Incorporating resistant measures and robust 
ideas, the basic objective of exploratory data analysis tech- 
niques is to overcome the nonstationarity within the exper- 
imental data, which is a common occurrence under field 
conditions. Downweighting by a robust estimator [Cressie 
and Hawkins, 1980] or removal by resistant measures 
[Tukey, 1977] of any outliers present in a data set helps to 
achieve the stationarity conditions for the semivariogram 
development. 

For the K data collected in this study a resistant technique 
(little affected by data outliers) was used to examine the 
spatial structure of K values in conjunction with geostatis- 
tics. Normal probability plots and plots of median against 
interquartile range squared were also developed to examine 
the data distribution and variance stationarity. The running 
median smoother approach [¾el!eman and Hoaglin, 1981, 
pp. 163] is simplified to a split-window median polish tech- 
nique for our spatial analysis and is discussed in the follow- 
ing sections. A major finding is that while serving as an 

efficient smoothing tool, the median behaves more as a "sol0 
representative" or "summary point" for the data set of a 
particular window. 

Figure 2 shows normal probability plots of raw K data for 
two soil depths using two methods (i.e., in situ Guelph 
permeameter and laboratory constant head permeameter). 
These plots show a highly skewed distribution of K data. For 
the resistant analysis, stationarity of the variances against 
medians was checked. Because we matched our sampling 
grid design and expected soil clustering in the glacial till 
material (due to differential and incremental deposition of 
soil material during the process of formation and afterward), 
both transects were divided into a number of regular win- 
dows each having an equal number of sampling sites. Figure 
3 shows the median of the windows and their interquartile 
range squared to inspect the stationarity of variance. This 
figure shows that the variance (interquartile range squared) 
is correlated with the median value, indicating the presence 
of nonstationarity in the variance. To remove the nonsta- 
tionarity and nonnormality in the data sets, different trans- 
formations and resistant-based remediation techniques were 
tried. 

K data were transformed to produce a nearly normal 
distribution (i.e., approximately symmetric, bell-shaped 
stem-and-leaf plot), and homogeneous variances [Cressie, 
1985] using the "universal transformation principle." Dif- 
ferent transformations were invoked to squeeze or spread 
the data set to obtain a more bell-shaped or Gaussian curve. 
Square root, cube root, and other power transformations 
[Tukey, 1977; Cressie and Horton, 1987] and scaled trans- 
formations [e.g., Bres!er eta!., 1982] yielded good results in 
transforming the nonnormal data sets to nearly normal data 
sets. But the question arises about the stationarity of vari- 
ance, which could not be assured by these transformations. 
Log e transformation yielded fairly homogeneous variance 
(i.e., interquartile range squared) with respect to the median 
of windows across the transects (Figure 3) for K values at 15 
cm depth (lab method) but did not show much improvement 
for K values at 30 cm depth. A comparison of Figure 2 
illustrating raw K data with Figure 4 illustrating log- 
transformed K data and the X 2 test (Table 2) clearly indicate 
that K values tend to be lognormally distributed. Although 
log transformation has nearly normalized the data set, the 
presence of local trends or regional clustering in the soil 
might be causing the nonstationarity. Therefore normalized 
data is assumed to follow the relation 

Z(x) =/x(x) + e(x), (6) 

where Z(x) denotes the log-transformed regionalized vail- 
able at location (x), p.(x) is a measure of central tendency, 
that is, deterministic drift of the variable at location (x), and 
e(x) is the random component at location (x) normally 
distributed with zero mean, which satisfies the second-order 
stationarity required for spatial analysis. All experimental K 
data were therefore log-transformed, and loge K values were 
used for further analysis. But at the same time it is known 
that additivity principles are valid only on the same scale 
[Cressie, 1985]. Therefore it was decided to carry out the 
entire analysis with the data on log scale and to transfer the 
results to the original scale whenever required. 
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Fig. 2. Steady state K data: (a) 30 cm, field; (b) 30 cm, lab; (c) 15 cm, field; and (d) 15 era, lab. Spatial distribution 
plots are on the left and normal probability plots are on the right. 
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Fig. 3. Median-interquartile range squared plots for K data sets: raw data (left) and log-transformed data (right). 

Semivariograms at 30 cm Depth 

Experimental semivariograms based on loge K values 
were developed and are presented in Figure 5. These two- 
dimensional mean isotropic semivariograms were based on 
all 66 log-transformed data (with wild outliers present). A 
robust estimator [Cressie and Hawkins, 1980], however, was 
used to curtail the effects of these outliers by downweight- 
ing. Strong positive spatial dependence was found for both in 
situ and lab methods at a depth of 30 cm under no-till 
conditions. Figures $c and $d show plots of •/(h) versus h. 
The dip in the lag range of 15 to 30 m may be an indication 

of some kind of short-scaled variation in K. It may by cyclic 
or clustered. Short-scale variation should not be confused 

with microheterogeneity of soil. Moreover, these semivari- 
ograms show an overall range much higher than these 
short-scale variational ranges. The lower "nugget effect" in 
comparison with the sill value in Figures 5c and 5d indicates 
that spatial structure dominates microheterogeneity in the 
soil. At the same time, moderately steeper slopes of these 
variograms signify the changes in K values, indicating mod- 
erately irregular, erratic, or discontinuous surfaces. 

Directional semivariograms (7i) as shown in Figures 5c 
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and 5d at 30 cm depth were developed along the transects 
(NW-SE and NE-SW) and along the diagonal directions (N-S 
and E-W), with a tolerance of -+ 22.5 ø. The average semivari- 
ogram (T*) using the weighted average [(1/•ni)•iniYi] was 
developed. All-directional mean isotropic variograms (5) 
compared well with average variograms (7'). But the direc- 
tional semivariograms show new interesting behaviors. In 
both instances (laboratory and in situ) the main feature of 
directional variation is easily observed. Sill is maximum for 
7i in the NW-SE direction and minimal in the E-W direction, 
although the range remains approximately the same for all 
directions. Looking at Figures 5c and 5d, it is difficult to 
differentiate whether the difference between these direc- 
tional variograms are due to the proportional effect or to 
anisotropicity indicating the underlying depositional process 
of glacial till. Looking at the semivariograms toward higher 
lag distances, one might assume that the phenomenon is 

proportional. By focusing the comparison near the origin, 
one might conclude that the phenomenon is indeed zonal 
anisotropy [JourneI and Huijbregts, 1978, p. 181; David, 
1977, p. 135], which may not be true because all measure- 
ments were made at the same depth (30 cm). Moreover, 
because the sampling scheme adopted was regular and on 
bisecting transects, the chances of clustered-sampling loca- 
tions were eliminated, and such locations are the usual 
causes of "quasi-stationarity" producing a "proportional 
effect" in semivariogram estimates. Therefore it is difficult 
to determine the cause of the underlying process contribut- 
ing to the spatial structure of K. The proportional effect, 
however, seems to be effecting more than the anisotropy 
effects, considering the nonstationarity of the log- 
transformed data due to soil clustering described earlier. 
Therefore all-directional mean isotropic semivariograms es- 
timated using the entire K data set for both transects 

TABLE 2. X 2 Test of Normality for K and In K 

Depth, 
Method ½m 

Degrees of 
X 2 Freedom P.L. X 2 

In K 

Degrees of 
Freedom P.L. 

Lab 15 
Lab 30 
Field 15 
Field 30 

33.36 4 <<0.005 3.17 
13.45 4 0.0093 11.3 
40.55 4 <<0.005 7.19 
19.67 3 <<0.005 6.94 

0.366 
0.011 
0.124 
0.072 

P.L., level of significance. 
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Fig. 5. Experimental robust semivariograms (directional, average, and two-dimensi0n.a! mean isotropic). 

represent the spatial structure of the till soil at 30 cm. The 
"short-scale variation," representing the clustering phenom- 
enon, and the "large-scale variation," indicating soils of 
similar hydraulic properties, seem to have greater spatial 
correlation (i.e., smaller 7 values) along the NE-SW transect 
than along the NW-SE transect. The orientation of maxi- 
mum and minimum continuity along these directions sug- 
gests incremental deposition causing layered and overlap- 
ping soils. 

Semivariograms at 15 cm Depth 

Semivariograms for 15 cm depth (Figures 5a and 5b) were 
of dissimilar characteristics and dominated by white noise 
and trends. Even though semivariograms •h) for the Guelph 
permeameter and lab methods did not match very well, both 
revealed a typical concave trend, and the one for lab 
measurements was more prominent. In these variograms the 
higher nugget effect versus sill is caused by random variabil- 
ity of "microheterogeneity" in comparison with structural 
variation, indicating a weak spatial dependence. Possible 
reasons for this variation are farm traffic and freezing and 
thawipg phenomena which break the soil structure unevenly 
at the surface of no-till soil. Hamlett et al. [ !986] observed a 
similar phenomenon for their soil water tension study in 
no-till plots, which was due to variability in soil surface 
residue cover and soil pore continuity. From this evidence it 
can be concluded that the no-till plots lack good spatial 
structure at the surface soil layer of 0-15 cm. : 

. 

Theoretical Model Fitting 

Usually, the forecasting of variogram models facilitates 
follow-u p spatial studies. Therefore an effort was made to 
gehe.ralize the structural trends by fitting e,xperimental semi- 
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TABLE 3. Theoretical Models Fitted to Two-Dimensional Mean Isotropic Semivariograms for In K Data Sets 

Depth, 
Cli1 Method Models 

Applicable Range, 
m 

lab 

15 field 

?(h) = 0.265 + 0.583(1.5h/18 - 0.5h3/183) + 0.715(1.5h/46 - 0.5h3/463) 
?(h) = 0.265 + 0.583 + 0.715(1.5h/46 - 0.5h3/463) 
?(h) = 0.2.6.5 + 0.583 + 0.715 
y(0) = o ' 
T(h) = 0.663 + 0.742(1.5h/23 - 0.5h3/233) + 0.954(1.5h/60 - 0.5h3/603) 
•h) = 0.663 + 0.742 + 0.954(1.5h/60 - 0.5h3/603) 
•h) = 0.663 + 0.742 + 0.954 
y(0) = 0 

h<18 
18<h<46 

h_>46 

h <23 

23<h <60 
h ->60 

variograms with standard theoretical models. The fitted 
theoretical models were found useful in analyzing and inter- 
preting our results of the split-window-based resistant ap- 
proach. 

Theoretical models were fitted for the experimental vari- 
ograms at 30 cm depth by the trial and error approach and 
were validated using a simple point-kriging approach (see 
Figures 6a and 6b). The developed theoretical models for the 
observed K• data had a •nested structure with three distinct 
components. A small "nugget effect" (Co) indicates inherent 
"microheterogeneity" of soil samples. A spherical model 
with sill (C•), which fabricates the structure of the soil 
within a lag distance of about 20 m, could be termed a 
"short-scale variation." The third component, m0c•,eled with 
another spherical model with sill (C2), indicating "large- 
scale variations," had an overall range of spatial dependence 
for K up to 60 m (in situ method). An exponen[ial model with 
the •ame sill and range, however, showed equally good fit as 
the spherical one but showed the typical asymptotic behav- 
io.r. Thus the spherical one was preferred over the exponen- 
tial one. The overall nested structure of the models and their 

, 

characteristic parameters are presented in Tables 3 and 4. 
Comparison of these models for two different K-measuring 
techniques showed excellent consisten..cy in their trends 
even though some variations in their parametric values were 
observed. The three major cross-validation criteria (KAE, 
KRMSE, and KMSE) estimated are shown in Table 5. 
Values of KAE, KRMSE, and KRMSE were close enough 
to their recommended optimum. Correlation coefficients 
(R 2) between the regionalized variable and the kriged esti- 
mate were reasonably good at 0.64 and 0.58 for lab and in 
situ methods, respectively, ensuring the nested model as a 
good fit (Figure 7). 

Summarily, the semivariograms of log-transformed data 
Z(x) for 30 cm depth show cyclic or clustering behavior at 
about 20-m lag distance, thereby indicating a nonrandom 
shift for both measuring tech. niques. At 15 cm depth for K 
values measured with the Guelph permeameter the normal 
probability plot and 'the semivariogram estimators confirm 

the effect of random variability contributing toward the 
"nugget effect." The semivari9gram estimators at 15 cm 
depth for lab measurements (Figure 5b) showed, however, a 
typical linear drift in the NW-,.SE direction. Handling this 
kind of cyclic or clustering pattern and/Qr directional trend 
and coming up with model parame. terõ is• not a trivial task 
[David, 1977, p. 266; JourneI and Huijbregts, 1978, p. 313]. 
Webster and Burgess [1980], Yost et aI. [1982], and other 
researchers have discussed meth9ds of handling drift (or 
detrending the data) by modeling it an d using up to second- 
degree polynomials. On the other hand, Hamlett et al. [1986] 
adopted the nonparametric media/n po!ish approach [Tukey, 
1977] to remove the drift along all grid directions and found 
it a better and more economical 'approadh than the former 
because the nature of data or residua!s can be visualized 
after every operation. This approach could support the 
spatial analysis by judging the normality of data and station- 
arity of variance and of median and b3 rgvea,ling the pres- 
ence or removal of drift or clusters, resulltin. g i.n interpretable 
sem!variogram estimators %h). ß 

Split-Window Median Polish 

Following semivariogram development, an exploratory 
approach of "split-window median polis. h" was used to 
analyze and interpret the behavior of the loge K data sets. 
This approach was found suitable for analyzing the cyclic or 
clustering behavior of the data sets. Both the NE-SW and 
NW-SE transects were split into a number of' spans or 
windows of equal lengths (and equal nu. mbers of sampling 
sites because of the regular sampling pattern). Medians of 
these windows were estimated. Window lengths having odd 
three (13.8 m), five (23 m), and seven (32.2 m) numbers of 
sampling points were chosen to calculate the m..edians of the 
windows of K data. Windows of up to a maximum of seven 
sites (i.e., 32.2 m) were considered, because the previous 
estimated semivariograms for the lo.g.-transformed K values 
at 30 cm depth showed a clustering behavior in the spatial 
structure at a lag distance of about 18 to 23 m. The first 

TABLE 4. Summary of Spatial-Dependent Parameters of In K at 30 cm Depth for the Glacial Till Soi! 

Structural Component Range 
Nugget 

Method Depth, Effect Model 1 Model 2 Sill C Model 1, M. odel 2, 
Adopted cm (Co) C• C2 (C0 q' C1 q' C2) Co/C , % m m Variance 

Lab 30 0.265 0.583* 0.715' 1.563 17 18 i6 ..... 1.431 
Field 30 0.663 0.742* 0.954' 2.359 28 23 6,q 1.871 

*Spherical. 
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TABLE 5. Values of Cross Validation Criteria for the Nested Models of In K at 30 cm Depth 

Search Radius, 
Depth, m/Neighborhood 

Method cm KAE KRMSE KMSE/SD Size R 2 

Lab 30 -0.0033 1.0556 0.8963/!. !96 46/10 0.64 
Field 30 -0.0173 1.0041 1.1127/1.368 60/13 0.58 

iteration of the median polish approach [Tukey, 1977] for 
each window was performed to account for the clustering 
effect of K property. Residuals were calculated by subtract- 
ing the median of respective windows from the regionalized 
variable at each site as 

R(x) = Zi(x) - Z7i i= 1, 2, ..., N, (7) 

where R(x) denotes the residual value at location (x), Zi(x) 
is the log-transformed K data and belongs to window (i), and 
Z i indicates the median of window i. The odd number of data 
values left at the end of the transect (which could not be 
accommodated in the windows of specified lengths) were 
averaged out or taken as such if they were left alone. 
Stem-and-leaf plots and nqFmal probability plots of these 
residuals R(x) were developed and examined visually. The 
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Fig. 7. Scatter diagrams of log-transformed K data versus kriged 
estimates based on the nested model at 30 cm depth. 

best sets of residuals were obtained with a window width of 
23 m (of five sites) with nearly normal distribution. Stem- 
and-leaf plots and normal probability plots are shown in 
Figure 8 for 23-m windows. Moreover, the medians of these 
residuals for all the windows across the transects were zero 
irrespective of interquartile range squared, which satisfies 
the variance and median stationarity rule for semivariogram 
development. 

Median-polished residual values were used for semivari0- 
gram estimation and are plotted in Figure 9. Instead of 
achieving better variograms with better structure, all ap- 
peared to exhibit the pure "nugget effect." However, when 
plots were examined of the window median across the 
transects (as shown in Figure 10 for NE-SW and NW-SE 
transects), some interesting features were discovered. The 
plots for 30 and !5 cm depth (Figures 10a-10d) show that the 
spatial structure lies in the median of the windows, indicat- 
ing structural variation (i.e., regular variation of the median 
from window to window and clustering of soil of similar 
hydraulic properties inside the window, with few excep- 
tions. Comparing the plots of medians (Figure 10) with the 
semivariograms drawn for log-transformed K values before 
median polishing (Figure 5) could reconfirm our results in 
terms of range of "short-scale" and "large-scale" varia- 
tions. Examining these figures, it can also be judged that the 
overall range (large-scale variation) of soils of predictable K 
at 30 cm depth is of about three window lengths of 69 m 
(measured in situ) and about two window lengths of 46 m 
(measured in the lab). That reconfirms the overall spatial 
range found from the semivariogram analysis. Moreover, 
each window of 23 m length would represent soil of sitnilar K 
value, indicating short-scale variation. Therefore when me- 
dians were subtracted from the raw data, the structural 
components were removed from the data set, leaving behind 
the "nugget effect" in the residuals, which resulted in the 
structureless semivariograms, as shown in Figure 9. There- 
fore the open-ended question, Is stationarity of regionalized 
variable a critical criterion for semivariogram estimation in 
this type of clustered soil?, may be posed at this moment. 
Interestingly, at 30 cm depth, both in situ and lab semivari- 
ogram estimators, as well as the medians across the 
transects, showed consistency in their trends even though 
some differences were observed in their sills and overall 
range of influence, which may have been caused by the basic 
difference between the two techniques. 

In the plots for 15 cm depth, medians (Figures 10c and 
10d) are dominated by white noise and a NW-SE drift 
matching the structureless semiva•riograms of the residuals 
(Figures 9a and 9b), indicating no apparent large-scale 
structure in the original data sets of K values for the surface 
layer (0-15 cm). Moreover, comparison of semivariograms 
at 15 cm depth (lab method), for log-transformed K data 
(Figure 5b with Figure 9b for median-polished residuals), 
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Fig. 9. Robust semivariograms of the residuals following split-window median polish. 

reconfirms the presence of a drift in the medians of the 
windows. Thus it attributes the median a "solo representa- 
tive" or "summary point" of the window when the structure 
can be best described as a "single-window structure." 

Split-Window Median Polish Versus Universal 
Kriging 

Universal kriging [Matheron, 1971; Journel and Hui/- 
bregts, 1978; Webster and Burgess, 1980] was performed on 
lab 15-cm data to give a qualitative comparison with split- 
window median polish to remove the local drift. Least 
square fits (simple regression) of the log-transformed K 
values versus X-Y coordinates of the field indicated a 

reasonable correlation between the X axis (NW-SE) and the 
K values. As reported by previous researchers, drift of an 
order higher than quadratic is almost never needed in 
universal kriging. Linear and quadratic drifts were tested by 
trial and error in conjunction with different linear and nugget 
variograms to represent the residuals. From the cross- 
validation criteria in this instance we did not achieve anything 
significant for quadratic trend over the linear trend. Therefore 
in order to avoid needed detail, linear trend was considered to 
be the best approximation. The experimental variograms (up to 
eight lags) were almost falling on the best fit linear model for all 
directions. Universal kriging was therefore performed with a 
moving neighborhood (search radius) of eight lag distances. 
Semivariograms of the residuals after removing the linear drift 
showed a limited or absent spatial relation for the laboratory K 
data set (Figure 11). Such a behavior is often referred to as 
"nugget effect." These changes indicate that a higher rate of 
variability and smaller zone of influence resulted from detrend- 
ing. As expected, however, detrending followed by residual 

semivariogram development decreased the estimate of bias 
(sum of residuals: original data minus kriged estimate) but not 
significantly. Furthermore, comparison of Figures 11 and 9b 
shows the close match of results obtained by both the methods. 
It assures that the split-window median polish is an equally 
suitable and much easier approach for the spatial analysis of 
clustered soils. 

SUMMARY AND CONCLUSIONS 

Spatial structure for saturated hydraulic conductivity (K) 
of a glacial till material under no-tillage condition was 
examined for two depths with two K measuring techniques. 
Evidence of nonstationarity in K data pose problems on the 
reliability of semivariogram estimators. Analysis of data 
before developing the semivariogram was discussed. Log 
transformation followed by an economical resistant data 
analysis using split-window median polishing technique was 
used to remove the median and variance nonstationarity 
from a data set generating valuable semivariogram estima- 
tors for the interpretation of the structural variability. 

A robust estimator [Cressie and Hawkins, 1980] was used 
to accommodate the contaminating outliers. Semivariograms 
estimated for both methods of K measurements were found 
to have close similarity for 30 cm depth. Good spatial 
structure was observed (short-scale variability) within a lag 
distance of 20 m for determining K values of the glacial till 
soil. Beyond this range a more clustering effect in K was 
observed with an overall range (large-scale variability) of 60 
m (in situ method). Spatial structure of K was modeled using 
the nested structure of three different components, namely, 
random variability due to soil "microheterogeneity", 
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Fig. 10. Medians ofln K as "solo representative" of split windows across the transects NE-SW (left) NW-SE (fight). 

"short-scale variability", which may be due to clustering of 
till material by differential deposition, and "large-scale vari- 
ability" due to the soil of the same type or origin. The nugget 
effect, and two spherical models, were used in the above in 

1.3 
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•' 1.1 ß original data - < + residual 
h- 1 
• 0.9 

õ 0.8 
-.-- 0.7 

E 0,6- 
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Fig. 11. Semivadograms of In K at 15 cm depth (lab method) 
before and a•ter a linear drift was removed by unive•s• Edging. 

order to fabricate the overall structure of the till material. 

Further exploratory data analysis exposed an interesting fact 
indicating that spatial structure of the clustered soil lies in 
their medians, which may be called "solo representatives" 
or "summary points" of clusters. This clustering phenome- 
non is due to differential deposition of soil layers by glacial 
drifts during its formation or subsequent incremental depo- 
sition due to wind drifts. 

Semivariogram estimators for in situ K values at 15 cm 
depth under the no-till condition did not exhibit any large- 
scale structure in addition to weak small-scale structure. 

Variability is dominated by the heterogeneity in the soil. 
Reasons for this behavior may be due to uneven breaking of 
soil structure due to freezing and thawing at this shallow 
layer. Moreover, a typical directional trend was found for 
both in situ and lab measurements of K. This trend became 

more prominent in the medians of the windows across the 
NW-SE transect. Split-window median polish was found to 
be a useful tool, for clustered soils, in performing a reliable 
spatial analysis, resulting in more realistic structural estima- 
tors for better interpretation of K data. 

, 
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