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Implementation of Automated 3D Defect Detection for Low
Signal-to Noise Features in NDE Data

R. Grandin and J. Gray

Center for NDE, Iowa State University, 1915 Scholl Road, Ames, IA 50011 USA

Abstract. The need for robust defect detection in NDE applications requires the identification of subtle, low-contrast changes
in measurement signals usually in very noisy data. Most algorithms rarely perform at the level of a human inspector and
often, as data sets are now routinely 10+ Gigabytes, require laborious manual inspection. We present two automated defect
segmentation methods, simple threshold and a binomial hypothesis test, and compare effectiveness of these approaches in
noisy data with signal to noise ratios at 1:1. The defect-detection ability of our algorithm will be demonstrated on a 3D
CT volume, UT C-scan data, magnetic particle images, and using simulated data generated by XRSIM. The latter is a
physics-based forward model useful in demonstrating the effectiveness of data processing approaches in a simulation which
includes complex defect geometry and realistic measurement. These large data sets represent significant demands on compute
resources and easily overwhelm typical PC platforms; however, the emergence of graphics processing units(GPU) processing
power provides a means to overcome this bottleneck. Processing large, multi-dimensional datasets requires an optimal GPU
implementation which addresses both computational complexity and memory-bandwidth usage.

Keywords: Automated Image Segmentation, Low Signal-to-Noise, Low Contrast, GPU Computing
PACS: 07.05.Pj, 81.70.-q, 81.70.Tx, 87.57.cj, 87.57.cm

INTRODUCTION

The NDE community is faced with the growing problem of “big data”. Optical images are typically several megabytes
each, while computed tomography (CT) and phased-array ultrasonics routinely require 10+ gigabytes. Separate from
the need to simply store this data, efficient analysis methods are required to extract relevant, useful information from
“mountains of data”. Our ability to collect data is out-stripping our ability to segment the data and reliably identify
features. These data quantities will only continue to grow as time moves forward [1]. The problem facing the NDE
community is to automate reviews of larger datasets with low signal to noise ratio (SNR) properties with the capability
of a human inspector.

Unfortunately, most computer algorithms are unable to match the data segmentation ability of a human inspector
and algorithms processing gigabytes of data are often too slow for industrial applications. The low SNR property of
NDE data can be seen in figures 1 and 2, where the SNR’s are 0.84:1 and 0.18:1 respectively. In figure 1 the simple
flaw is easily seen with the human eye, but difficult to accurately size when looking at the line-trace. A threshold which
rejects false-calls will severely under-size the flaw. In figure 2 the flaw is made thinner, thus dramatically reducing its
contrast. It is still visible to the eye, but the line trace shows no indication of the flaw.

FIGURE 1. Low-contrast flaw easy to see with the eye, but difficult to accurately identify computationally. Image is simulated
film radiograph of ellipsoidal void within a casting, radiograph generated by XRSIM. SNR = 0.84:1.
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FIGURE 2. Low-contrast flaw difficult to see with the eye, but nearly-impossible to accurately identify computationally. Image
is simulated film radiograph of ellipsoidal void within a casting, radiograph generated by XRSIM. SNR = 0.18:1.

In this paper we will demonstrate the performance of an automated algorithm which is shown to be capable of
reliably identifying subtle, low-contrast flaws in a variety of NDE datasets.

TECHNICAL APPROACH

The algorithm used is based upon a statistical analysis of spatial and amplitde distributions rather than a simple
comparison of point values. Such an approach is predicated on the presence of stationary statistics. Stationary statistics
requires that the mean and variance of our data remains constant throughout the dataset. In-general, this is not the case.
However, by identifying and removing any underlying long length-scale trends we can achieve a constant mean. Let
us first consider the removal of long length-scale trends, and then the statistical analysis itself.

Trend Identification and Removal

Trends within NDE datasets arise from a number of sources, for example, part geometry, systematic trends in
equipment, and analysis assumptions, all of which can introduce long length-scale trends in data. A common trend in
CT reconstruction is beam hardening - a trend resulting from the assumption that the incident beam is mono-energetic,
a situation that does not typically happen. The result is a bowl-shaped or shell structure, seen in the left side of figure
3. The variation results from the low energy photons in the white x-ray spectrum being absorbed more-heavily at the
outer surface.

Trend-identification can be accomplished using a number of filter types, with the median filter being simple and
effective. Median filters do well at smoothing point noise while maintaining edges. They become burdensome with
larger images and filter templates requiring large bandwidth between the computer processor and memory when sorting
values. The available bandwidth is rapidly saturated, especially with today’s multi-core processors, causing the filter
performance to be capped by a low-performance ceiling.

Many CPU performance ceilings can be mitigated through the application of GPU-computing. GPU computing uses
the hundreds of processor cores on a graphics processing unit (GPU) to perform calculations in a massively-parallel
manner. A GPU will still suffer from the memory bandwidth limitations we observe on a CPU and an alternate to
median filtering must be considered if we are to maximize performance.

An alternate algorithm, called Bilateral Filtering, was introduced in 1998 [2]. The bilateral filter calculates a
weighted average of values within its kernel, with weights determined both by the spatial proximity of the points to the
central pixel and by the similarity of pixel values. This consideration of pixel intensities allows the filter to preserve
edges and reject outlier values. The weighted average typically uses a Gaussian distribution, but any functional form
may be chosen.

The bilateral filter can be described by equations 1 and 2, where I0 is a reference intensity value, I j is the intensity

of the jth element of the kernel, d j is the distance of the jth element to the reference value’s location, σD controls the
distance (domain) weighting, σR controls the intensity (range) weighting, and I′ is the post-filter intensity value.
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FIGURE 3. Example of beam-hardening trend in CT reconstruction slice (left). Same slice with trend removed is shown on the
right. Small intensities are represented by white. The trend-removal algorithm is unoptimized and still under development. The
smooth line on the left is to guide the eye and is offset from the data for clarity to separate it from the actual trend in the data.

I′ = ∑w jIj

∑w j
(2)

The additional calculations involved with the Gaussian weighting make this filter well-suited for implementation on
a GPU due to the massively-parallel architecture. Performing bilateral filtering on a 1920 x 1400 image, with an 11 x
11 kernel requires 35 seconds on a serial CPU, 4.5 seconds on a parallel CPU with 8 parallel threads, and 0.21 seconds
on a GPU. The use of the GPU becomes more advantageous as the images and kernels grow. X-ray detectors and CT
volumes can easily span 4000+ pixels in each dimension, and kernels of 100 elements or more may be required to
adequately capture the long length-scale trends.

Once the trend is identified, it is removed from the data using simple subtraction. After subtraction we are left with
data of constant mean background value and a constant noise variance. Any regions which have local means and/or
variances different from these background values can then reliably be considered defects.

Statistical Analysis

After achieving stationary noise statistics by removing background trends, we can then identify defects through a
statistical analysis of distributions [3]. Figure 4 shows the same flattened CT slice from figure 3 with two areas of
intrest marked. A reference area is identified, and encloses a region containing only background noise. It is this noise
which must have stationary statistics throughout the dataset.

A smaller test region is also marked. This region will be swept through the dataset, and for each position in the
dataset the defect-detection analysis will be performed by comparing the shapes of the dashed-line and solid-line
distributions. For the slice shown on the left of figure 4, the corresponding distributions are shown on the right of the
same figure.

When viewing the histograms on the right side of figure 4 we can see a distinct difference between the two
distributions. We see that the test region has a distribution which is broader and shorter than that of the reference
distribution. And upon closer inspection we can also see that the test distribution is also left-skewed while the reference
distribution appears symmetric.

The basic idea in this test is to observe that the noise is described by a distribution. A Gaussian distribution with
mean μ and standard deviation σ describes an ensemble of actual noise distributions in an image. Most of the values
are clustered around the mean, as seen in the solid-line histogram in figure 4. Any of the ensemble of observed noise
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FIGURE 4. Example distributions from flattened data. Reference area is larger box (left) and corresponds to the solid line in the
histogram (right). The test area is the smaller box and dashed line.

distributions following this description will have a similar shape, maximum height, and standard deviation. However,
the noise distribution of a pore, the dashed line, is clearly different from the noise distribution shown by the solid line.
The statistical question is: what is the likelihood that the dashed-line distribution is an instance of the ensemble of
noise patterns described by the solid-line histogram?

To give an example, if 50 tosses of a fair coin are recorded we would expect to have 25 heads and 25 tails. If these
tosses are repeated 1000 times, we will see a distribution which is centered on 25 heads and has some variance which
indicates that observing 23 or 24 heads is relatively common, but observing only 1 or 2 is very uncommon. If we
let the distribution of these 1000 trials represent the expected distribution of a fair coin, we can then use a second
coin of unknown fairness and repeat the process. Using a zeta test we can determine if the distribution observed
from the unknown coin significantly deviates from that of the fair coin. Similarly, we can use a zeta test to evaluate
the probability of the dashed-line histogram in figure 4 being an instance of the noise distribution described by the
solid-line distribution.

This is a robust analysis method that will be shown in the following section to work well with low-contrast noisy data
from several different NDE inspections. Further, the dimensionality of the data used to generate the distributions does
not affect the statistical analysis. The following examples are based on 2D images, but collapsing to 1D or expanding
to 3D will not adversely affect the analysis. This statistical analysis has not been implemented on a GPU yet, but is
readily executed in parallel on a multi-core CPU.

APPLICATION TO NDE DATA

X-Ray CT

Given the immense quantity of data generated by a CT inspection and reconstruction, let us first consider such a
dataset. For this example we scanned a dolomite rock core with our high-resolution CT system. Using a microfocus
tube to exploit geometric magnification we performed the reconstruction on a grid of 450 slices, with each slice
containing 1000 x 1000 pixels. The entire dataset required 2 gigabytes of memory.

Figure 5 shows a slice from this reconstruction. This slice contains several features-of-interest including large-scale
porosity, micro-porosity, and line-type indications from a fracture face which intersects the reconstruction plane.

The right image in figure 5 shows many small indications, which may appear to be spurious results. However, if we
zoom-in on the upper-right corner of the slice to show detail we can see that the small indications actually correspond
nicely with small-scale porosity (figure 6). These small-scale porosity indications have SNR’s below 1:1.

In addition to considering individual CT slices, individual slice results can be stacked to provide a volumetric
analysis. By considering the entire volume we can perform detailed studies on flaw morphology and connectivity
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FIGURE 5. Example CT reconstruction slice (left) with automatic-detection result overlaid (right). Small intensities are repre-
sented by white.

FIGURE 6. Upper-right of example CT reconstruction slice (left) with automatic-detection result overlaid (right). Small intensi-
ties are represented by white.

(figure 7). Segmenting the CT volume required approximately 10 minutes using a combination of CPU and GPU
parallelism. Serial execution on a CPU would have required over 8 hours.

Ultrasonic C-Scan

Ultrasonic inspections can also generate large quantities of data, particularly when capturing full waveforms during
a C-scan or when using phased arrays. Our automated defect detection algorithm was applied to a C-scan of a carbon-
composite panel containing two delaminations (figure 8). Both delaminations were readily found using our algorithm,
despite the very low contrast and low dynamic range of the input values.

In addition to the two delaminations, our algorithm also produced some additional indications. Several are found
near the edges where the panel suffered damage during the manufacturing process. These are real indications although
they are not of-interest. There are a few indications in the middle of the panel which can be attributed to the
low-contrast and significant noise in the dataset. Such noise is common in UT inspections of composites, and the
overall performance of our algorithm is quite good considering the challenges of the dataset. The SNR of the large
delamination is approximately 2:1, while the SNR of the small delamination is approximately 0.5:1. Segmenting such
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FIGURE 7. Detail flaw morphology (left) and connectivity (right) extracted from volumetric analysis.

FIGURE 8. UT C-scan (left) and automated-detection result (right) for scan of 1“ and 1/2” delaminations in a carbon-composite
panel.

a small image (150 x 200 pixels) only required 1 minute on a serial CPU, but this could be reduced to 3 seconds using
a combination of CPU and GPU parallelism.

Magnetic Particle Inspection

As a final example of applicability to NDE data, let us consider a photograph of a visual inspection. Figure 9 shows a
tool used to verify proper performance of the fluid bath in a magnetic particle inspection (MPI). Typically an operator
will look at the ring as it is shown in the picture and then make a determination if the cracks are properly visible.
This is a very subjective process and efforts to bring objectivity and consistency to this analysis have met with great
difficulty due to the noise caused by particles captured in surface roughness and variable lighting conditions.

Although the cracks appear to be easily visible in figure 9, we see in figure 10 that a simple threshold cannot
adequately capture the crack details. However, in the right image of figure 10 we can see a significant improvement
in detection. This dramatic improvement was obtained using a typical photograph (8 bits per RGB channel), and even
better performance is expected when using images with greater bit-depth due to the improved signal resolution. SNR
varies from approximately 3:1 for the large, wide cracks to less than 0.5:1 for the small, thin cracks. Segmenting this
1500 x 1500 image required 2 minutes on a serial CPU, which was reduced to 5 seconds using a combination of CPU
and GPU parallelism.

Similar to what is observed in the CT slice results, what may appear to be errant indications in figure 10 are actually
seen to be valid defect indications when we zoom-in on the lower-right corner of the images of the figure, as seen in
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FIGURE 9. Photograph of grinding cracks used for MPI bath qualification tests. The diagonal line in the photo marks the line
over which intensity values are plotted adjacent to the photo. The horizontal line in the plot shows the threshold used in the left
image of figure 10. Notice the inability to capture low-contrast peaks without including significant noise.

FIGURE 10. Result of applying a simple threshold (left) and our automated detection algorithm (right) to the photograph in
figure 10.

figure 11. We see in figure 11 that many of the smaller cracks are now at least partially marked.

CONCLUSIONS

We have shown a successful implementation of a multi-dimensional image segmentation algorithm suitable for large
NDE datasets. The performance of this algorithm has been demonstrated using several varied datasets containing
low-contrast and low dynamic-range data, and in each case our algorithm performed very well. The algorithm
consistently identified the correct features while avoiding both false-calls and missed defects. While not yet matching
the segmentation performance of a human inspector, the implementation of this algorithm is a significant step towards
that goal.

While achieving this analytical performance, the recent quantum leap in computing power was leveraged to allow
these results to be obtained in minutes rather than hours or days as would have been required only a short time ago.
Use of GPU computing allowed us to reduce the time required to de-trend the data by two orders of magnitude, from
the tens of minutes to a few seconds.
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FIGURE 11. Detail of lower-right corner of images in figure 10, showing simple threshold result (left) and our automated
detection result (right).

FUTURE WORK

Building upon the results shown here, we will extend the analysis to be truly three-dimensional. The addition of
an additional dimension will increase the computational load by an order of magnitude and require implementing
the statistical analysis algorithm on the GPU architecture. We will also work to appropriately correct for the footprint-
effect which occurs from discretely-stepping a finite-sized test window across the data and to improve the performance
with complex materials.

A logical extension of this work is to automatically characterize the flaws which are detected. Such characterization
could include size distributions, position analysis, and study of flaw morphology. Further, characterization results can
be used in the development of matched filters which can be efficiently used to search through a dataset for specific
types of flaws.

Finally, a defect-detection algorithm such as this can be used to develop objective, robust figures of merit which
may be used to evaluate the effectiveness of data-processing algorithms. Quantitative NDE simulation tools may be
coupled with this defect-detection algorithm to develop figures of merit which objectively evaluate the quality and
sensitivity of the inspection.
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