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Complex mathematical simulation models are generally used for quantitative measurement of the 
fate of agricultural chemicals in soil. But it is less efficient to use them directly for regional water 
quality assessments because of the large number of simulations required to cover the entire region and 
because the entire set of simulation runs must be repeated for each new policy. To make regional water 
quality impact assessment on a timely basis, a simplified technique called metamodeling is suggested. 
A metamodel summarizes the input-output relationships in a complex simulation model designed to 
mimic actual processes such as groundwater leaching. Metamodels are constructed and validated to 
predict groundwater and surface water concentrations of major corn and sorghum herbicides in the 
Corn Belt and Lake States regions of the United States. The usefulness of metamodeling in the 
evaluation of agricultural nonpoint pollution policies is illustrated using an integrated environmental 
economic modeling system. For the baseline scenario, we estimate that 1.2% of the regional soils will 
lead to groundwater detection of atrazine exceeding 0.12 •g/L, which compares well with the findings 
of an Environmental Protection Agency monitoring survey. The results suggest no-till practices could 
significantly reduce surface water concentration and a water quality policy, such as an atrazine ban, 
could increase soil erosion despite the conservation compliance provisions. 

1. INTRODUCTION 

Control of nonpoint pollution from agricultural practices 
and source reduction of agricultural pollutants for water 
quality protection are increasingly debated policy goals. 
These debates must be based on informed evaluation of 
agricultural nonpoint pollution in relation to policies, man- 
agement practices, and hydrogeological factors. Ideally, 
water quality monitoring should provide policy analysts with 
the needed information. But due to high monitoring costs, 
mathematical models are generally used to simulate the 
physical processes that describe the agricultural chemical 
movement in soil and predict their concentrations in ground- 
water and surface water [Walton, 1984; Wagenet and Hut- 
son, 1991]. Use of these process models is economical and 
practical for site-specific problems only [Evans and Myers, 
1990]. To use these field-scale models for regional water 
quality assessments we have to simulate them for the area- 
wide distribution of soil and weather parameters. But it is 
costly and time consuming to do area-wide simulation for all 
combinations of crop, chemical, management practice, and 
technology. Nearly 75,000 simulation runs are required to 
cover a study area comprising the Corn Belt and Lake States 
regions of the United States. Furthermore, to evaluate a new 
policy within a regional integrated modeling system, we have 
to repeat the simulation runs for all combinations of factors 
used in the baseline evaluation. For instance, a policy 
scenario in an integrated modeling system requires a mutu- 

Copyright 1993 by the American Geophysical Union. 
Paper number 93WR00286. 
0043-1397/93/93 WR-00286505.00 

ally consistent combination of policy, environmental, chem- 
ical, management, and technological parameters and behav- 
ioral equations. Integrated systems analysis requires both 
timely integration of diverse process models and integration 
of outcomes over a distribution of diverse input sets. There- 
fore a simplified technique to ease the computational burden 
while abstracting the key process characteristics is needed. 
Metamodels are simple, but statistically validated, analytical 
tools capable of addressing both of these difficulties. 

Metamodeling is a statistical method to abstract away 
from unneeded detail for regional analysis by approximating 
outcomes of a complex process model through statistically 
validated parametric forms. The simplification provided by 
metamodels allows us to evaluate the consequences of 
alternative policies without the need for additional simula- 
tions. If the complex simulation model is a tool to approxi- 
mate the underlying real-life system, the analytic metamodel 
attempts to approximate and aid in the interpretation of the 
simulation model and ultimately the real-life system. Blan- 
ning [1975] and KleO'nen [1979] recommend analytic meta- 
models for simulation experiments; Lawless et al. [1971] 
propose their use for sensitivity analysis. Empirical applica- 
tion of metamodels in industrial, computer, and management 
fields is documented by Kleijnen [1987]. To our knowledge, 
use of metamodels in agrieco!ogical systems simulation and, 
particularly, the simulation of real processes describing the 
fate of agricultural chemicals, is fairy new [see Bouzaher, 
1991]. 

This paper discusses metamodeling in an agriecological 
economic system with specific reference to evaluate agricul- 
tural nonpoint pollution policy. We identify, estimate, and 
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validate regression metamodels for concentrations of chem- 
ical in groundwater and surface water. We generated these 
concentrations from process model simulations calibrated on 
a sample of soils in a study area comprising the Corn Belt 
and Lake States. A representative, stratified, self-weighted 
random sample of soil was drawn for the simulation exper- 
iment. We find simple nonlinear exponential functions to 
adequately explain and predict the simulation model re- 
sponses. We use the estimated metamodels to predict the 
groundwater and surface water chemical concentrations and 
their distributions for the entire set of soils in the study area 
for the baseline regime of herbicide use. This baseline is 
determined by the agricultural decision model in the Com- 
prehensive Environmental Economic Policy Evaluation Sys- 
tem (CEEPES). CEEPES is an integrated agriecological 
economic system designed to evaluate the trade-offs of 
alternative policies restricting the use of herbicides, partic- 
ularly atrazine, in corn and sorghum production [Cabe et al., 
19911. 

We compared our estimate for the spatial distribution of 
groundwater concentration of atrazine with that of the 
Environmental Protection Agency's (EPA) groundwater 
monitoring survey estimate [EPA, !990]. Our estimate of 
1.2% of the soils in the region contributing to an atrazine 
detection level exceeding the survey's minimum reporting 
limit of 0. !2/zg/L (parts per billion (ppb)), is bounded by the 
monitoring estimate of 0.7% in the rural wells and 1.7% in 
the community water systems. We also derived cumulative 
spatial probability distributions for groundwater and surface 
water concentrations of atrazine under conventional- and 

no-till practices. 
Some of our results are as follows: (1) The probability of 

exceeding the toxicity-weighted benchmark for human ex- 
posure from atrazine, as suggested by the EPA, is relatively 
larger for surface water than groundwater. (2) No-till prac- 
tices significantly reduce the surface water concentrations of 
atrazine and other herbicides relative to conventional tillage. 
(3) A water quality policy that bans atrazine could increase 
soil erosion, even with the conservation compliance provi- 
sions fully incorporated. 

2. METAMODELING IN AN AGRIECOLOGICAL 

ECONOMIC SYSTEM 

A metamodel is a regression model explaining the input- 
output relationship of a complex simulation model, which is 
a mathematical model structured to mimic the underlying 
real-life process. Let cb be the unknown function which 
characterizes the underlying real phenomena relating the 
response y to the input vector v: 

y = cI)(v). (1) 

Most simulation models mimic outcomes for a variety of 
possible response variables, and specification of the re- 
sponse of interest may not be a trivial matter. 

A simulation experiment is a set of executions of the 
simulation models intended to approximate the values of y 
associated with a specified set of input vectors. The output 
of a simulation experiment is a data set consisting of speci- 
fied input vectors and their associated responses, as deter- 
mined by the simulation model. Choice of the number and 
values of input vectors for which the simulation model will 
be executed is the subject of experimental design. For 
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Fig. 1. Schematic representation of the multimedia (groundwater 
and surface water) simulation models. 

statistical purposes, it would be preferable to experiment 
with the real-life system rather than a simulation model of 
the system. In that case we would have a statistical model of 
the system rather than a metamodel. This approach is not 
adopted because it would mean incurring the cost and delay 
of waiting, in this case for 30 years of weather to present 
itself to the real-life system. 

Given the output of a simulation experiment, we can 
specify an analytic metamodel with relatively few inputs, x l 
through x k. Let the metamodel explaining the simulated 
outcome be represented as 

y = •b(xl, x2, '" , x/•, u), (2) 

where u is the stochastic disturbance term. We can use 

statistical procedures to identify and estimate the function 4 
describing the metamodel. Because of their simple and 
precise representation of the complex mathematical model, 
simulation practitioners are favoring metamodels for pur- 
poses such as validation, sensitivity analysis, estimation of 
interactions among inputs, control, and optimization, with- 
out the need for additional simulation runs [Kletjnen, 1987]. 

The groundwater and surface water process models we 
use were configured to simulate the environmental fate of 
herbicides in the major corn- and sorghum-growing regions 
of the United States. This regional application is part of an 
overall CEEPES configuration to evaluate the set of herbi- 
cide strategies applicable to corn and sorghum production. 
Figure 1 illustrates that the core of multimedia (groundwater 
and surface water media) fate and transport component is 
the Risk of Unsaturated/Saturated Transport and Transfor- 
mation of Chemical Concentrations (RUSTIC) system de- 
veloped by Dean et al. [1989]. RUSTIC is the system that 
links the Vadose Zone Flow and Transport (VADOFT) 
model and the Pesticide Root Zone Model (PRZM) to trace 
pesticide movement in soil. PRZM is a one-dimensional, 
dynamic, and compartmental model that can simulate chem- 
ical movement in the unsaturated root zone. Chemical, soil, 
and plant characteristics, tillage and management practices, 
and local hydrometeorological conditions are the major 
parameters for PRZM. VADOFT performs one-dimensional 
transient or steady state simulations of water flow and solute 
transport in the variably saturated vadose zone. 

Soil parameters for PRZM and VADOFT were automati- 
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TABLE 1. Summary Statistics of the Herbicide Concentrations Simulated by the Process Models 

Summary 
Statistics 

Average Average Peak Herbicide 
Herbicide Herbicide Concentration in 

Concentration Concentration Surface Water 
at 1.2 m at 15 m (Peak Stream) 

Sample mean, ppb 3.25 0.087 242 
Standard deviation 11.8 0.5 269 
Skewness 5.1 8.5 2.9 
Range 0-110 0-7.3 2-2114 
Percent zeros 20 48 0 
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cally generated with the Data Base Analyzer and Estimator 
(DBAPE) soil data base [lmhoffet al., !990]. Given edge-of- 
field loadings from RUSTIC, the Surface Transport and 
Agricultural Runoff of Pesticides for Exposure Assessment 
(STREAM) model [Donigian et al., 1986] is used to simulate 
chemical concentrations in surface water. Because these 

concentrations are simulated from edge-of-field loadings, 
they are considered to be accurate within an order of 
magnitude and typically overestimate actual concentrations 
[Donigian and Mulkey, 1992]. Hence these should be con- 
sidered as estimates from the worst case scenario. The basic 

RUSTIC and STREAM configurations for this simulation 
experiment are described by Gassman et al. [1991]. 

3. EXPERIMENTAL DESIGN AND PROCEDURE 

Soils selected for the RUSTIC simulations were chosen 

from a total of 2076 P1 (prime agricultural land) and P4 
(irrigated agricultural land) soils. A representative, stratified, 
self-weighted random sample of soils was drawn; soils were 
randomly chosen within each stratum, with sampling prob- 
ability proportional to the percentage use. The soil selection 
was also based on their ability to support corn and sorghum. 
In all, 180 soils, representing four hydrologic groups (A-D), 
from 16 states (strata) were chosen for the RUSTIC simula- 
tions. Soils were classified into four hydrologic groups based 
on their minimum infiltration rate, ranging from A soils, 
which have the highest infiltration rate, to D soils, which 
have the lowest [Soil Conservation Service, 1972]. Sixteen 
herbicides used in corn and sorghum production were se- 
lected. Assuming that chemical use is independent of soil 
type, each of the 16 chemicals was applied to the 180 soils. 
The simulations were performed separately for convention- 
al-, reduced-, and no-till cultivation practices. Simulated 
timings of application of herbicide were early preplant, 
preplant incorporated, preemerge, and postemerge. Early 
preplant herbicides are applied before the crop is planted and 
may be soil incorporated as in preplant incorporated. 
Preemergence (postemergence) herbicides are applied after 
planting and before (after) the crop and weed emerges. A 
total of 7518 simulation runs were performed. The number of 
simulation runs do not match the number of combinations of 

crop, soil, chemical, tillage, and application timings because 
(1) some herbicides are recommended for specific timings 
only (for instance, butylate and EPTC are only preplant 
incorporated herbicides) and (2) some application timings 
are not defined for certain tillage practices (for instance, 
no-till planting does not allow preplant incorporation of 
herbicides) [Hartzlet and Owen, 1990]. 

Many groundwater studies have indicated an inverse 
relationship between pesticide concentration and well depth. 

The groundwater table at 15 m below the soil surface is the 
most vulnerable to chemical contamination [Derroy et al., 
1988]. Therefore, the pesticide concentrations in the solute 
phase were estimated for 1.2 and 15 m (the assumed water 
table depth) for each RUSTIC simulation. Adsorptive prop- 
erties of the chemicals under study are such that the sedi- 
ment phase is negligible and was therefore not simulated. 
The simulation was performed dynamically for each day 
over a 30-year period. Historical weather data (1950-1979) 
used for one weather station in each state of the study region 
was taken from the RUSTIC weather data base [Itohoff et 
al., 1990]. From each simulation run, the average (chronic) 
groundwater concentration at 1.2 and 15 m and the runoff 
loadings were recorded. The runoff loadings were used to 
estimate the peak (acute) surface water concentrations of 
herbicides using STREAM. 

4. REGRESSION METAMODELING 

4.1. The Data 

The concentrations in groundwater and surface water 
recorded from the simulation experiment comprise the data 
for the dependent variables in the regression metamodels. 
Table 1 presents the descriptive statistics and distributional 
characteristics of the data. Preliminary analysis of the data 
showed large variability in concentrations from one soil to 
another, highlighting the need for a spatial dimension, and 
from one management practice to another within a soil. In 
90% of the observations, herbicide concentrations in ground- 
water were less than 1 ppb. Twenty percent of the concen- 
trations at 1.2 m and nearly one half of the concentrations at 
15'm were zero. The distributions, in general, were nonnor- 
mal and positively skewed (to the right). The sample mean of 
surface water concentrations was 242 ppb with a standard 
deviation of 269. The data for the regressors were mostly 
represented by the simulation inputs. Soil properties (organ- 
ic matter, water retention capacity, bulk density, sand and 
clay proportions, and soil depth) were obtained from 
DBAPE. Pesticide characteristics (decay rate, Henry's law 
constant, and organic carbon partition (soil sorption) coeffi- 
cient (Koc)) were obtained from Wattchop and Goss [1990]. 
See Carsel and Jones [1990] for a description of these data 
bases and their applicability to regional studies. 

4.2. The Models 

In the metamodeling literature, the most commonly used 
models are the general linear and nonlinear models, often 
referred to as "regression metamodels." We first fitted a 
simple linear model using an ordinary least squares (OLS) 
procedure. Let Y be an n x 1 vector of observations of the 
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simulated response; X be a known, full-rank n x p matrix of 
observations on the explanatory variables; and 13 be a p x 1 
vector of unknown, fixed parameters. The simple linear 
regression model is 

Y = Xl3 + u E(ui) = 0 E(ui) 2= cri 2, (3) 

Coy (u•, u:) = 0. 

Given that the response variable is nonnormal with hetero- 
geneous (nonconstant) variance, the parameter vector • = 
(XrX)-I XrY, and the corresponding predictions • = X• 
are inefficient (in the minimum variance sense). We exam- 
ined the residual plots for any patterns indicating heteroge- 
neity of variance. These plots for the linear model (3) 
exhibited a clear wedge-shaped pattern violating the classi- 
cal assumption of homogeneity of variance. 

We used a standard variance stabilizing transformation on 
the data, and fitted the linear model in the transformed 
space. An estimated regression of the transformed data 
should have an error structure that is normally distributed 
with constant variance. A variance-stabilizing transforma- 
tion for y i (ith element of Y) can be found by using either the 
general form for a power transformation, y/•, proposed by 
Box and Cox [1964], or a procedure similar to the one 
proposed by Lin and Vonesh [1989]. Although the regression 
with the transformed data gave a higher R 2 and well behaved 
residuals compared to the regression with the untransformed 
data, the predictions were poor. We also fitted a weighted 
least squares (WLS) model, using appropriately derived 
weights. Given the variance-stabilizing transformation y X, 
we used Bartlett's [1947] procedure to relate the variance of 
the response variable in the original and transformed spaces 
and get an approximate weight. Although residual diagnos- 
tics were greatly improved when using WLS, predictions 
were still poor. The failure of these linear models to ade- 
quately predict the response variable naturally led us to fit a 
nonlinear model using nonlinear least squares (NLS). 

Sometimes variance heterogeneity may be introduced by 
specifying a linear model when the actual underlying struc- 
ture is a nonlinear one. Such instances are common in 

models for chemical, biological, and kinetic processes [Box 
and Hill, 1974]. Therefore, we fitted a nonlinear model of the 
form 

zi =.q(xi; O) + •i E(,i) = 0 E(,i) 2= o '2 i4) 

Cov (e•, e•.) = 0, 

where # is the nonlinear expectation function, e is the 
random disturbance term, and © is the unknown parameter 
vector to be estimated. A desirable estimate of O, denoted 
by •, has optimal large sample properties (i.e., © --• AN{©, 
cr2[5'.(Og(xi; O)/c90)(O.q(xi; ©)/0©)r]-•}). Because our 
objective is to find a model with theoretical as well as 
empirical justification and better predictive ability we chose 
the simple exponential model, •7(xi; O) = exp (XO). The 
exponential model is a satisfactory representation for several 
reasons: (1) the optimal power transformation parameter 
,•*was small; (2) the original (untransformed) data have a 
positively skewed distribution; and (3) other studies that 
evaluated the groundwater pollution potential of pesticides 
[Ju•2• et al., 1987; Khan and Liang, 1989] used an exponen- 
tial model. 

5. THE RESULTS 

Table 2 summarizes the results from the nonlinear fit. The 
parameter estimates of the nonlinear model for (trans- 
formed) average groundwater concentrations at 1.2 and 15 rn 
and peak concentration in surface runoff are shown. The 
high degree of skewness in the groundwater data justified the 
use of transformation even with the nonlinear model. We 

used SAS's Gauss-Newton algorithm to solve for the optimal 
parameter vector. We relied on past studies in identifying a 
parsimonious specification. Care was taken to avoid signifi- 
cant multicollinearity among the regressors. Collinearity 
between linear and quadratic regressors was reduced by 
centering the variables. That is, we defined these variables 
as deviation from the respective mean values. This transfor- 
mation does not change the meaning or fit of the model, but 
by reducing collinearity it tends to stabilize the sampling 
variance of the estimates. The adjusted R2 was more than 
80% in all three fitted equations. The correlations between 
the actual and the predicted concentrations in groundwater 
and surface water were between 70 and 95%. Figure 2 shows 
the distribution of actual and predicted concentrations. 

The coefficients of the continuous regressors (other than 
the 0,1 type dummy variables) were all different from zero at 
the 5% level of significance, and their signs were consistent 
with theory. The interaction term between bulk density and 
sorption coefficient ((BD)(Koc)) generally referred to as the 
retardation factor [Khan and Liang, 1989], is expected to 
have a negative impact on chemical concentration. The 
estimated coefficient of this regressor is negative and signif- 
icant. The estimated coefficient for decay is significant, with 
a negative sign for groundwater and a positive sign for 
surface water because fast decay implies less leaching and 
more runoff potential. Organic matter enhances the soil 
sorption capacity and the microbial activity, both resulting in 
reduced leaching [Stevenson, 1982]. The negative impact of 
organic matter on groundwater leaching is consistent with 
the theory. The higher the sand percentage, the greater the 
seepage, implying a positive impact on groundwater, which 
is what our result shows. The herbicide concentrations in 

groundwater increased with available water and decreased 
with soil depth. 

Qualitative variables were represented in the nonlinear 
model by a 0, 1 dummy variable. The dummy variables for 
tillage practice were all different from zero at the 5% level of 
significance. These coefficients measure the difference in 
leaching/runoff potential of reduced- and no-till practices 
relative to conventional tillage. Intuitively, conservation 
tillage practices, which allow greater infiltration of moisture 
and less surface runoff, should increase pesticide leaching 
losses [Baker, 1992]. The coefficient on no-till, which has a 
positive impact on groundwater and a negative impact on 
surface water, clearly supports this. The estimated equation 
also captured the differences between hydrologic groups and 
timing of application through 0, 1 regressors. Fifteen dummy 
variables were included to represent the 16 different weather 
stations covering the study area. Most of these coefficients 
were significantly different f¾om zero, highlighting the im- 
portance of climate in determining chemical concentration 
levels. A dummy variable to capture the difference in the 
leaching/runoff potential of sorghum was included. This 
coefficient was significant, with a positive sign for ground- 
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TABLE 2. Coefficients of the Estimated Metamodels Explaining the Response Variable 
(Simulated Herbicide Concentrations in Groundwater at 1.2 and 15 m and Surface Water) 

Dependent Variable 

Eighth Root of Eighth Root of 
1.2-m Average 15-m Average Peak Stream 

Adjusted R 2 0.84 0.84 0.83 
Root-mean-square error 0.19 0.11 112 
k 0.78 0.73 0.91 

Regression Coefficients 
Intercept -0.892 - 1.239 7.258 
Predicted concentration -" 0.374 "' 

for 1.2-m average 
(OM) x (Henry's 123.317 .... 1685.510 

constant) 
(BD) x (Koc) -0.002 -0.001 -0.006 
(OM) x (Decay) -8.359 -67.379 -0.859 
Decay - 19.051 -20.333 6.484 
(Decay) 2 142.391 .... 197.149 
Organic matter - 1.070 -0.496 '" 
(Organic matter) 2 0.222 ...... 
Percent sand 0.003 0.008 '" 
WRC 0.529 1.458 "' 
Soil depth -0.002 -0.001 -0.0004 
D-sorghum 0.199 0.453 -0.054 
D-reduced till 0.071 0.045 -0.005 
D-no till 0.101 0.126 -0.341 

Sample size, N = 7518. All the coefficients are significant at 5% level of confidence interval' •) is the 
coefficient of correlation between the actual (simulated) and predicted data. OM denotes organic 
matter; BD, bulk density; and WRC, water retention capacity (available water). (OM) x (Henry's 
constant), (BD) x (Koc), and (OM) x (Decay) are the respective interaction terms. D indicates the 
dummy variable. The linear and quadratic variables representing decay and organic matter are 
centered. 

water, implying that leaching of herbicides is more severe in 
sorghum than in corn. 

6. VALIDATING THE METAMODEL 

Metamodel "validation" refers to testing the robustness 
and predictive ability of the estimated models. Since the 
metamodel is built with simulated data, validation of the 
metamodel differs from the usual sense of validation, in 
which statistical and process models are compared with 
actual (observed) data. Validating the metamodels is impor- 
tant because they are two steps away from the underlying 
real processes. We will have greater confidence in the 
regression metamodels and their estimated parameters and 
predictions when they are statistically validated before being 
integrated into the unified modeling system. The practical 
statistical validation methods [Snee, 1977] include (1) vali- 
dation with new data; (2) cross validation (split-half valida- 
tion) in which the original data set is randomly split into two 
halves, a model is fitted for each half separately, and the 
fitted models are used to predict the other half of the data; 
and (3) comparison of empirical results with those from 
simulations and monitoring surveys. Validation with new 
data and cross validation are widely used methods in the 
literature [Snee, 1977; McCarthy, 1976; Friedman and Fried- 
man, 1985]. 

In the absence of any limitations to obtaining new data, 
model validation with new data is the best method. In some 
cases, however, it is either impossible or too costly to obtain 
new data. Snee [1977] regards data splitting using either a 
random split half or splitting the data based on the underly- 

ing structural makeup as alternative procedures when the 
preferred method of evaluation on new data is not feasible. 
Models explaining time series data can use a natural time 
split and those explaining cross-sectional data can use a 
subset of sample points as validation samples [Berk, 1984]. 
Because of time and cost constraints we chose to validate 
the estimated metamodels using the random split-half vali- 
dation (cross validation) technique. 

6.1. Cross Validation of the MetamodeIs 

Stone [1974] and Snee [1977] offer a good review and 
discussion of cross validation and alternative data-splitting 
methods. According to Snee, cross validation by data split- 
ting is a method to test the in-use prediction accuracy of the 
model and simulate the complete or partial replication of the 
study. For purposes of cross validation, we split the data 
randomly into two approximately equal halves. The first 
subset, ssl, was used to estimate the model, while the 
second subset, ss2, was used to measure the predictive 
ability of the model, and vice versa. The cross-validation 
results shown in Table 3 demonstrate robustness and pre- 
dictive power of the estimated metamodels. We also com- 
pared the sign and magnitude of the estimated coefficients 
from the two split-half models. In the groundwater meta- 
model, the signs of all the coefficients were the same in both 
samples, and the estimated coefficients were comparable in 
their magnitude. In the surface water metamodel, only two 
out of 31 coefficients had unmatching signs. These two 
coefficients, however, were not significantly different from 
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Fig. 2. Frequency distribution of the actual (simulated) and 
predicted observations for herbicide concentrations in (a) ground- 
water (15 m) and (b) surface water. 

zero in both models. The cross-validation results for 1.2 m 
indicated same trend as that of 15 m. 

6.2. Validating the Metamodels With Monitoring 
Survey Estimates 

Validating the metamode!s with monitoring data would be 
the ideal method of validation provided we had adequate 
monitoring data and the process models were adequately 
validated. Given the limited information on groundwater and 
surface water monitoring in a wide geographical area, we 
elected to perform approximate (crude) validation tests with 
the EPA's groundwater monitoring survey estimates [EPA, 
1990]. Table 4 shows some of these results. Atrazine and 

simazine are the two herbicides detected at reasonably high 
percentage rates in the survey. The estimates predicted by 
using the metamodels indicate the same trend. The EPA 
estimates that atrazine is present, at or above 0.12 /zg/L 
(survey minimum reporting limit), in about 1.7% of commu- 
nity water systems and 0.7% of rural domestic wells. Our 
estimation indicates that 1.2% of the soils in the region 
contribute to the groundwater detection limit of atrazine at 
or above 0.12/zg/L, which is clearly bounded by the EPA's 
estimates. At a minimum, we can state that the trends from 
our results are consistent with actual monitoring data. 

7. HERBICIDE POLICY APPLICATION 

Statistically validated metamodels for pred!cting regional 
agricultural nonpoint pollution enhance the evaluation of 
alternative agricultural chemical policies. By integrating the 
metamodels with an agricultural economic decision-making 
model that allows for substitution between herbicides and 

between weed control management strategies, chemical and 
nonchemical, we can evaluate the consequences of water 
quality policies regulating or restricting the use of herbi- 
cides. In this section we briefly discuss the decision-making 
model and its integration with the metamodels and the 
results from a herbicide policy of banning atrazine in corn 
and sorghum production in the study area. Atrazine is the 
most commonly detected herbicide in groundwater and 
surface water, forcing the EPA to reevaluate its ecological- 
economic trade-offs [EPA, !990]. 

Assume agricultural production is represented by a joint 
production process where the two outputs, crop and pollu- 
tion, are separable. The agricultural production and the 
nonpoint pollution process can be represented by the follow- 
ing expressions: 

q = f(x), (5) 

z = h(fix, xt r, /5). (6) 

Expression (5) represents farm outputs (q) as a function of 
inputs (x). The production technology f is assumed to follow 
the standard regularity conditions, including strict concav- 
ity. The function h translates the level of polluting inputs and 
practices employed in the production process into the 
amount of chemical concentrations in groundwater and 
surface water (z), via the application rates and the physical 
and chemical characteristics of the polluting inputs (fix), the 
soil characteristics (•), and the meteorologic conditions (/5). 
A notable feature of our damage function is the inclusion of 
spatial characteristics and climatic conditions. 

For the empirical analysis we used the agricultural eco- 
nomic decision-making model Resource Adjustment Model- 
ing System (RAMS) [see Bouzaher et al., 1990], which is an 
optimization model specified for a representative farm de- 
fined at the watershed (producing area) level. RAMS is a 
short-run profit-maximizing model that assumes a risk- 
neutral and competitive producer managing a multioutput- 
farm firm. A major feature of RAMS is that it has a weed 
control subsector, which define• the weed control and 
herbicide application activities and provides the important 
link to the chemical policy space. 

The information on yield loss and cost trade-off from 

TABLE 3. Cross Validation of the Metamodels for Herbicide 
Concentrations in Groundwater (15 m) and Surface Water 

15-m Average Peak Stream 

Validation ss 1 ss2 ss 1 ss2 
Statistics (Pre-ss2) (Pre-ssl) (Pre-ss2) (Pre-ssl) 

a 2 

MSEV/MSEø 

0.83 0.85 0.83 0.83 
(0.87) (0.88) (0.82) (0.82) 
0.70 0.84 1.02 1.04 

Here, ss denotes split-half sample. Nssl = 3748; Nss2 = 3770. 
MSE v and MSE ø are the validation and the original mean squared 
errors. 
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TABLE 4. Comparison of the Estimated Spatial Probability Value of Groundwater 
Concentrations of Selected Herbicides With the Groundwater Monitoring Estimates 

Percent Occurrence of 
Pollutant* 

Nonpoint 
Pollutant Rural Wells CWS? 

Estimated Spatial 
Probability of Survey Minimum 

Exceeding Minimum Reporting Limit, 
Reporting Limit, % /•g/L 

Atrazine 0.7 1.7 1.2 0.12 
Alachlor <0.1 0 0 0.50 
Bentazon 0.1 0 0 0.25 
Simazine 0.2 1.1 1.2 0.38 

*Occurrence is defined as concentrations in excess of the EPA's [1990] minimum reporting limit. 
?Community water systems. 

alternative weed control strategies and the relative herbicide 
substitution is inputed into RAMS through the WISH 
(weather impact simulation of herbicide) simulator [Bouza- 
her et al., 1992]. A weed control strategy captures both the 
management and the technological aspects of weed control. 
Its structure is assumed to be made up of a primary herbicide 
treatment and a secondary herbicide treatment that will be 
applied only if the primary treatment fails for weather- 
related reasons. The choice of alternative weed control 
strategies determines the rate of substitution between herbi- 

Cure Prob 
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--q-- No-till (.002) 
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!3.1 / 
0 .001 .01 .1 1.0 3.0 

ppb 

A 
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cides and also the substitution between chemical and me- 
chanical weed control. The estimated metamodels, which 
are proxies for social damage functions, and the RAMS 
model were exogenously linked to determine the concentra- 
tion of atrazine and other herbicides used in corn and 
sorghum production under different tillage practices. 

Given the baseline estimates of RAMS, we determined the 
chemical concentrations for the complete distribution of 
soils in the study area and computed spatial probability 
distributions. The spatial probability is measured as the 
proportion of soils for which a particular chemical under a 
given technology exceeds the toxicity-weighted benchmark 
(maximum contaminant level (MCL)). This measure, "prob- 
ability that a soil is at risk," is more intuitively interpreted as 
a measure of the "spatial distribution of risk," and its 
usefulness is to target vulnerable soils and areas. Figure 3 
illustrates the cumulative spatial probability distribution of 
atrazine under conventional- and no-till practices. Compar- 
ing our estimates with the MCL for chronic and acute 
exposure levels of atrazine in drinking water, 3 ppb and 100 
ppb, we find that the probability of exceeding the benchmark 
is higher for surface runoff than for groundwater. The 
probability that the average concentration in ,•roundwater 
will exceed the chronic benchmark value of !: ppb is only 
0.2%, regardless of tillage. The probability that the peak 
concentration in surface runoff will exceed the acute bench- 

B 
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Fig. 3. Cumulative spatial probability distribution of atrazine 
concentration by tillage practice in (a) groundwater (15 m) and (b) 
surface water. Values in parentheses are the probability that the 
concentration will exceed the benchmark. 
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Fig. 4. Acute (peak) concentrations of selected corn and sorghum 
herbicides in surface water by tillage practice. 
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TABLE 5. Total Soil Erosion in the Corn Belt for the Baseline 
and Atrazine Ban Scenarios 

Soil Erosion, million tons 

Tillage Baseline Atrazine Ban 

Conventional 429.1 452.3 (+ 5.4) 
Conservation* 13 !.9 128.9 (-2.3) 
All 561.0 581.2 (+3.6) 

1 ton equals 907.2 kg. Values in parentheses are the percentage 
change from the baseline. 

*Conservation tillage includes reduced till and no-till. 

mark value of 100 ppb is reduced from 51% under conven- 
tional tillage to 10% under no-till practice. In general, a 
similar result holds for other herbicides (see Figure 4). 

A major implication of these results is that groundwater 
quality is unimpaired by the conservation compliance policy. 
This suggests that the implementation of soil conservation 
policy will not lead to any unfavorable trade-offs between 
soil conservation and groundwater quality goals. But this is 
not the case for the water quality policy of banning atrazine. 
Our preliminary investigation suggests increased soil erosion 
in the Corn Belt because of shifts in cultivation practices 
from conservation tillage to conventional tillage. Table 5 
shows the changes in the total soil erosion caused by an 
atrazine ban policy relative to the baseline for conventional 
and conservation tillage practices in the Corn Belt. Overall, 
soil erosion increased by 3.6% despite the conservation 
compliance provisions. By relaxing those provisions, we 
expect a more significant increase in soil erosion. These 
results are interesting in light of the recent debate on 
compatibility of soil conservation and water quality policies. 
Water quality is determined by a multiattribute vector, 
comprising such elements as sediment, nutrient, chemicals, 
and biotoxicants. Therefore a comprehensive analysis using 
a multiobjective framework is required to analyze trade-offs 
between these two policies [Lakshminarayan et al., 1991]. 

8. CONCLUSION 

Informed debate on agricultural nonpoint pollution policy 
requires evaluation of water quality on a regional basis in 
relation to management practices and hydrogeological con- 
ditions. Metamodeling has enormous potential for use in 
integrated agriecologica! economic systems designed for 
policy evaluation on regional levels. The overall implication 
of this study is that the metamodeling strategy can support 
integrated multimedia policy analysis in an environment of 
existing policy interventions with agents who respond to 
policy changes. The present illustration incorporates 
groundwater and surface water media, models relevant to 
existing policy interventions such as conservation compli- 
ance, and allows agents to respond to policy changes by 
altering weed control strategies. Without the method of 
metamodels, policy analysis would necessarily be less com- 
prehensive, and consequently, less adequate to deal with the 
difficult but important task at hand. 
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