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We argue that the collinear factorization of the fragmentation functions in high energy hadron and
nuclei collisions breaks down at transverse momenta kT & Qs=g due to high parton densities in the
colliding hadrons and/or nuclei. We calculate, at next-to-leading order in projectile parton density and to
all orders in target parton density, the double-inclusive cross-section for production of a pair of gluons in
the scalar JPC � 0�� channel. Using the low energy theorems of QCD we find the inclusive cross-section
for �-meson production.
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I. INTRODUCTION

Strong interactions at high energy are crucially influ-
enced by high density of gluons in wave functions of
colliding hadrons and/or nuclei [1–3]. A systematic de-
scription of particle production in high energy hadron
reactions can be carried out in terms of quasiclassical
solutions to the Yang-Mills equations on the light-cone
[4]. The quasiclassical approximation is valid for field
modes in which occupation number reaches the saturation
limit of �1=g. These modes correspond to gluons with
transverse momentum less than the saturation momentum
Qs. The square of the saturation momentum is a measure of
the two-dimensional color charge density in the hadron/
nucleus wave function. As the collision energy increases,
the quantum fluctuations increase the occupation number
of modes with larger transverse momentum which mani-
fests in increase of Qs. The corresponding high energy
evolution of scattering amplitude is governed by the non-
linear Balitsky-Kovchegov evolution equation [5,6]. A
comprehensive reviews of the physics of gluon saturation
(color glass condensate) can be found in Refs. [7,8]. A
quasiclassical approach to inclusive processes of high en-
ergy QCD has driven a lot of attention due to its remarkable
phenomenological success in small-x DIS, p�d�A and AA
collisions [7–10].

One of the challenges of QCD is to understand how the
color degrees of freedom metamorphose into hadrons. In
the traditional perturbative QCD this problem is solved
with the help of the collinear factorization theorems which
allow to separate the universal nonperturbative parton dis-
tribution functions, fragmentation functions, and the hard
partonic subprocesses. The collinear factorization theo-
rems hold only if particle production is characterized by
a momentum scale which is much larger than the typical
momentum scale in hadron wave functions. At high ener-
gies, existence of a semihard scale Qs—which is an in-
creasing function of energy and atomic mass A—does not
allow application of factorization theorems at transverse

momenta of the order of Qs or smaller.1 This is the kine-
matical region in which bulk of particles is produced.
Although the collinear factorization breaks down, the per-
turbation theory does not due to smallness of the coupling
at the scale Qs even for the IR modes. Failure of the
collinear factorization of parton distribution functions has
been discussed already in the pioneering publications on
gluon saturation [1,2]. It was suggested that a more general
type of factorization, kT-factorization, may hold at high
energies. However, it turned out that although the
kT-factorization is much better approximation of the exact
formulas than the collinear factorization, it is violated as
well in all high energy processes save for the single in-
clusive gluon production in ��A collisions [14].

As the consequence of breakdown of factorization of the
fragmentation functions, the hadronization pattern changes
with parton density in both target and projectile and thus,
exhibits complicated energy and atomic number depen-
dence. In the present paper we discuss one of the possible
hadronization channels which explicitly breaks down the
collinear factorization. From an empirical point of view,
failure of the collinear factorization is evident from obser-
vations of strong energy dependence of baryon to meson
ratios in pp and dAu collisions [15].

Another process in which the collinear factorization
breaks down is the relativistic heavy-ion collisions in
which the produced system of color charges probably
evolves through the dense and hot stage (quark gluon
plasma). However, it must be heeded that the collinear
factorization is violated already at the early stages of decay
of the classical fields, preceding the formation of the QGP.
It has been suggested that parton recombination may be an
alternative mechanism of hadronization [16–20]. It yields
a surprisingly good description of experimental data on

1In fact, factorization theorems break down at even higher
scale, leading to the so-called extended geometric scaling, see
Refs. [11–13].
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elliptic flow and might also be relevant for interpretation of
baryon to meson ratios reported in [21]. It is based on a
simple idea that small-kT mesons are formed by coales-
cence of two constituent quarks with transverse momenta
kT=2 at the same rapidity, while baryons are formed by
coalescence of three constituent quarks with momenta
kT=3 at the same rapidity.

Motivated by the phenomenological success of the re-
combination approach we set to investigate the process of
gluon recombination in the high gluon density regime. In
this paper we consider pion production and argue that it is
dominated by the recombination of two classical fields.
Our approach naturally incorporates momentum conserva-
tion as well as the recombination geometry in the coordi-
nate space (recombining partons must be in the same
elementary volume of phase-space). In heavy-ion colli-
sions it yields a ‘‘cold’’ nuclear matter effect on particle
hadronization and may be essential for analysis of the
residual ‘‘hot’’ nuclear matter effect.

The recombination process which we discuss in the
present paper consists of two stages: (i) production of a
pair of gluons in JPC � 0�� and color singlet state;
(ii) recombination of this pair into a pair of �-mesons
using the anomaly matching mechanism [22]. The relevant
diagrams are depicted in Fig. 1. Shown in Fig. 1(a) is
emission of two gluons by valence quarks belonging to
different nucleons in the incoming nucleus, their succes-
sive merging and production of a gluon pair in the singlet
JPC � 0�� state.

An alternative way to produce a pair of gluons in a
singlet JPC � 0�� state is shown in Fig. 1(b). Unlike the
diagram Fig. 1(a) it represents a first step in quantum
evolution which proceeds by emission of a soft gluon.
This type of evolution gives rise to the Kharzeev-Levin
soft Pomeron [22] (see also [23,24]). However, this dia-
gram is parametrically small as compared to Fig. 1(a).
Indeed, the diagram of Fig. 1(a) is of the order of
�6
s%t%2

p � 1, where %t and %p are the parton densities in
the target and projectile respectively; %t � A1=3, where A is
the atomic mass of the target nucleus (if the projectile is a
nucleus of atomic mass B, then %p � B1=3). Here we used

the fact that in a quasiclassical (McLerran-Venugopalan)
approximation �2

s%t � �2
s%p � 1. On the other hand, the

diagram Fig. 1(b) is parametrically of the order of
�5
s%t%p � �s.
At low invariant masses, description of pair production

in the singlet JPC � 0�� channel in terms of color degrees
of freedom becomes inadequate. Spectral density of the
corresponding correlator (see Sec. III) is saturated by
colorless excitations the most prominent of which are
pions. Unlike gluons which contribute to the spectral den-
sity at the order �2

s , see (36), pions contribute at the order
�0
s , see (42). Therefore, diagram Fig. 1(a) is of the order of

�4
s%t%

2
p � 1=�2

s at low invariant masses. This is parametri-
cally larger than the hadron production via the collinear
fragmentation of a single gluon [14,25–28] shown in
Fig. 1(c). Indeed, the corresponding single gluon produc-
tion diagram is of the order of �3

s%t%p � 1=�s. On the
other hand, Fig. 1(a) represents a higher twist effect as
compared to the single gluon production and thus has an
additional suppression factor Q2

s=k
2
T at high transverse

momenta (here Qs is associated with the projectile).
These two hadronization processes become of the same
order at transverse momenta of the order of k2

T �Q
2
s=�s.

We expect that at lower transverse momenta the recombi-
nation mechanism discussed in this paper gives the main
contribution to the particle hadronization at high energies.
At RHIC energies, the corresponding kinematic region is
about k? & 3 GeV for light hadrons in Au-Au collisions at
midrapidity. It is significantly wider at forward rapidities
and at higher energies.

The paper is organized as follows. In Sec. II we calculate
the double-inclusive cross-section for gluon pair produc-
tion in the singlet JPC � 0�� channel in the framework of
the dipole model [29]. Since the relevant degrees of free-
dom at low invariant masses are pions which have large
inelastic cross-sections on a nucleon, we are going to
neglect the diagram D in Fig. 2 in which the produced
pair interacts with the target. Indeed, the survival proba-
bility of a pion in a heavy nucleus is exponentially sup-
pressed as compared to the one of a color dipole which has
a much smaller characteristic size �1=Qs. This approxi-

 

(c)
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FIG. 1. Examples of diagrams contributing to the production of a pair of gluons in JPC � 0�� and color singlet state:
(a) quasiclassical case, (b) first radiative correction [22–24], (c) single gluon production followed by the conventional fragmentation
[25]. Horizontal solid lines are the valence quarks belonging to a different nucleons. The vertical dashed line describes an
instantaneous interaction which can happen at different light cone times (for simplicity we show here only one possible interaction;
see Fig. 2 for other possibilities).
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mation amounts to assumption that the intermediate gluons
in Fig. 2 are almost on-mass-shell, see (3). The resulting
‘‘wave function’’ is given by (24). We then calculate the
forward amplitude of each color dipole in a nucleus, (19)
and that of the entire projectile, (21). In doing that we
neglect correlation between partons belonging to different
nucleons since the corresponding dipoles have sizes about
1.3 fm (typical nucleon separation). The double-inclusive
cross-section of gluon pair production is the convolution of
the projectile ‘‘wave function’’ and the forward scattering
amplitude in the coordinate space and is given by (26).

In Sec. III, following the steps of [22], we describe the
formalism of anomaly matching and calculate the double-
inclusive cross-section for �-meson production, (43). Our
approach is based on the observation that the scale anom-
aly is closely related to the finite density of vacuum fluc-
tuations of quantum gluon fields. These fluctuations are
characterized by a semihard scale M0 ’ 2� 2:5 GeV
[30,31]. The presence of this scale makes reasonable the
perturbative expansion and allows for the calculation of
nonperturbative contributions to the spectral density due to
the scale anomaly. Our method is similar to the QCD sum
rules approach. The later is based on the operator product
expansion which holds only in the presence of a hard scale.

In Sec. IV the quantum evolution effects are taken into
account. This makes it possible to address energy, rapidity
and atomic mass dependence of the pion production cross-
section. The final result is given in (54).

The fragmentation process suggested in this paper has a
number of phenomenological consequences. First, the en-
ergy dependence of the cross-section is steeper than in the
conventional fragmentation mechanism since it requires
exchange of an additional Pomeron between the projectile
and the produced pair. Second, as Fig. 4 implies, at higher
energies heavier hadrons can be produced along with
pions. Therefore this hadronization mechanism yields a

nontrivial energy dependence for different particle species
and can be used to analyze the energy dependence of
particle ratios. This issue is addressed in great detail in
the forthcoming publication [32]. Other two-gluon chan-
nels besides the JPC � 0�� may also have interesting
phenomenological applications and can be considered
along the same lines.

II. TWO-GLUON PRODUCTION IN A QUASI-
CLASSICAL APPROXIMATION

In the light-cone perturbation theory [33] there are eight
diagrams contributing to the ‘‘wave function’’ of a gluon
pair. In Fig. 2 four of them are shown; the other four
diagrams can be obtained by switching the order of gluon
emission from valence quarks. Note that in the eikonal
approximation, the lifetime of a parton fluctuation in the
fast nucleus wave function tf ’ k�=k2 is much larger than
the typical time of interaction with the target ti ’ RA,
where k� is the large light-cone momentum of the parton,
k its transverse momentum and RA is the nuclear radius.
Therefore, in this approximation we can regard the inter-
action as instantaneous. This observation constitutes the
basis of the dipole model [29]. It implies that an inclusive
production cross-section is a convolution of a projectile
‘‘wave function’’ with the dipole scattering amplitude in
the transverse coordinate space.

Diagrams in Fig. 2 differ one from another by the
structure of their energy denominators which we would
like to consider now more closely. Each of the eight dia-
grams in Fig. 2 contains three energy denominators. In the
diagrams A–C the two left-most energy denominators
corresponding to emission of gluons at x1 and x2 are
different for each diagram whereas the right-most one,
corresponding to the 2! 2 gluon scattering process is
the same in all cases. The product of the first two energy
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FIG. 2. Contributions to production of a gluon pair in JPC � 0�� and color singlet state in a quasiclassical approximation. Only
diagrams in which the gluon at x2 is emitted from a valence quark before the gluon at x1 are shown.
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denominators is given by

 

A21 � A12:
1

k2�

1

k1� � k2�
�

1

k1�

1

k1� � k2�
�

1

k1�

1

k2�
; (1a)

B21:
1

k2�

1

k2� � p
00
� � p

0
�

�
1

k2�

1

k2� � l1� � l2�
; (1b)

B12:
1

k1�

1

k1� � p00� � p0�
�

1

k1�

1

k1� � l1� � l2�
; (1c)

C21:
1

p00� � p0�

1

k2� � p00� � p0�
� �

1

l1� � l2�

1

k2� � l1� � l2�
; (1d)

C12:
1

p00� � p
0
�

1

k1� � p
00
� � p

0
�

� �
1

l1� � l2�

1

k1� � l1� � l2�
; (1e)

while the last energy denominator is

 

1

k1� � k2� � p00� � p0�
�

1

k1� � k2� � l1� � l2�
; (1f)

where we used the overall energy conservation condition
p00� � l1� � l2� � p0�. The product of the energy denom-
inators in the diagram D is

 D21 �D12:
�

1

k1�
�

1

k2�

�
1

k1� � k2�

1

l1� � l2�

�
1

k1�k2�

1

l1� � l2�
: (1g)

Simple calculation shows that sum of all energy denomi-
nators from all eight diagrams vanishes. We conclude that
in the absence of interactions

 

X
i;j�1;2;i�j

��Aij ��Bij ��Cij ��Dij
� � 0 (2)

as expected.

As explained in the Introduction, the correct description
of the particle pair produced at low invariant masses in the
scalar JPC � 0�� state is furnished using the hadronic
degrees of freedom. By virtue of the color transparency,
the pion-nucleon inelastic cross-section is much larger than
the dipole-nucleon one. Hence, we are tempted to neglect
the contribution of diagram D to inclusive cross-section.
This imposes a certain constraint on the energy denomi-
nators A–C since we must ensure that the condition (2)
holds, for otherwise the resulting cross-section would not
be gauge invariant. In other words, we require that

 

X
i;j�1;2;i�j

��Aij ��Bij ��Cij� � 0: (3)

This approximate equation must hold with the same accu-
racy as the assumption that pions are completely absorbed
by the nucleus. It can be guaranteed if the intermediate
gluons are almost on mass-shell, i. e. k1� � k2� � l1� �
l2�. Then, (1) become

 

A21 � A12:
1

k2�

1

k1� � k2�
�

1

k1�

1

k1� � k2�
�

1

k1�

1

k2�
; (4a)

B21:
1

k2�

1

p00� � k2� � p
0
�

� �
1

k1�

1

k2�
; B12:

1

k1�

1

p00� � k1� � p
0
�

� �
1

k1�

1

k2�
; (4b)

C21 � C12:
1

p00� � p0�

1

k2� � p00� � p0�
�

1

p00� � p0�

1

k1� � p00� � p0�
�

1

k1�

1

k2�
: (4c)

Obviously, the sum of all energy denominators in (4) conforms to condition (3).
Since the structure of the energy denominators in cases A–C is the same, we need to calculate the ‘‘wave function’’ in

only one case, say, A. Introducing momentum q such that (see Fig. 2)

 k1 �
1
2�l1 � l2� � q; k2 �

1
2�l1 � l2� � q; (5)

we have
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��3�4�l1; l2� � TaTbg2
X
�1�2

Z �u�p1����������
p1�
p � 	 "�1�

u�p1 � �l1 � l2�=2� q���������������������������������������������������
�p1 � �l1 � l2�=2� q��

p 1

k1�



�u�p2����������
p2�
p � 	 "�2�

u�p2 � �l1 � l2�=2� q���������������������������������������������������
�p2 � �l1 � l2�=2� q��

p 1

k2�



1

k1� � k2� � l1� � l2� � i0
"�1
� "

�2
� �����abcd h"

�3�
� "�4�

� iS	cd



1

��l1 � l2�=2� q��

1

��l1 � l2�=2� q��

d3q

16�3 ; (6)

where �����abcd is the four-gluon vertex:

 �����abcd � g2�fabefcde�g��g�� � g��g���

� facefbde�g��g�� � g��g���

� fadefbce�g��g�� � g��g����; (7)

and h. . .iS means projection onto the singlet state. After
projection of the final gluons onto the color singlet state,
the color factor becomes the same for all six terms con-
tributing to the four-gluon vertex.

In the eikonal approximation, we can simplify the q!
qg vertex as follows [29]

 

�u�p1����������
p1�
p � 	 "�1�

u�p1 � k1������������������������
�p1 � k1��

p 1

k1�
�

2k1 	 e�1�

k2
1

; (8)

where the bold typeface distinguishes the transverse com-
ponent of the corresponding four-vector. It is convenient to
introduce the following notations: (i) fractions z and z0 of
the light-cone momenta of each of the four gluons are
given by
 

k1� 
l1� � l2�

2
� q� � z�l1� � l2��;

k2� 
l1� � l2�

2
� q� � �1� z��l1� � l2��; (9a)

l1� � z0�l1� � l2��;

l2� � �1� z0��l1� � l2��; (9b)

(ii) the total and the relative transverse momenta k, �, and
~q are defined as

 

k � l1 � l2 � k1 � k2; � � z0l2 � �1� z
0�l1;

~q � zk2 � �1� z�k1: (10)

Note that the invariant mass of the produced pair is

 M2 � �l1 � l2�
2 � l1�l2� � l1�l2� � 2l1 	 l2

�
1

z0�1� z0�
�2: (11)

With the help of these equations, after some simple alge-
bra, we can derive

 

1

k1� � k2� � l1� � l2� � i0

�
1

k2
1

zk�
�

k2
2

�1�z�k�
�

l21
z0k�
�

l22
�1�z0�k�

� i0

�
k�z�1� z�z0�1� z0�

~q2z0�1� z0� � �2z�1� z� � i0
: (12)

(We added expression ��k1�k2�
2=k���l1�l2�

2=k��
0 to the denominator of the first line).

At high energy, the scattering matrix is diagonal with
respect to the color dipoles. Therefore, in order to take the
interaction of the incoming parton system with the nucleus
into account we need to transform the wave function
��l1; l2� into the coordinate representation. This is accom-
plished as follows:

 ���1; �2� �
Z d2l1
�2��2

Z d2l2
�2��2

e�il1	�1�il2	�2 ��l1; l2�:

(13)

Here �1 and �2 are the coordinates of the final gluons with
momenta l1 and l2, respectively. It is convenient to intro-
duce the transverse coordinates of the intermediate gluons
x1 and x2. To this end, we change the set of integration
variables in (6) and (13) from fl1; l2;qg to a new one
fk;�;qg using (5) and (10). The Jacobian of this trans-
formation is unity. The phase factor in (13) becomes
 

�il1 	 �1 � il2 	 �2 � �i� 	 ��2 � �1� � i�k1 � k2�

	 �z0�1 � �1� z
0��2�: (14)

We can identify x1 � x2 � z0�1 � �1� z
0��2  x. We

observe that the coordinates of both intermediate gluons
are equal. This is the result of the integration over the
internal momentum q. Indeed, had we Fourier transformed
the amplitude with respect to l1, l2, and q, the subsequent
integration over q would have given the delta function
	�x2 � x1�.

Summation over the gluon polarizations can be carried
out using the rule he�i e��j i � 	ij=2. Recalling that in the
light-cone gauge " 	 
 � "� � 0 we derive using (7)
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 X
�1;�2

"�1
� "

�2
� �����abcd h"

�3�
� "�4�

� iS�k1 	 e�1���k2 	 e�2��	cd � �g2
X
�1;�2

�e�1 	 e�2��facefbde � fadefbce�


 	cd�k1 	 e�1���k2 	 e�2��	�3�4

� �g2�k1 	 k2��facefbde � fadefbce�	cd	�3�4

� �g2�k1 	 k2�2Nc	ab	�3�4
: (15)

We can now write the ‘‘wave function’’ as

 ��3�4��;x� � �g4TaTb2Nc	ab	�3�4

Z d2k

�2��2
Z d2�

�2��2
e�i�	��ik	x

Z d2 ~q

16�3

Z 1

0
dz

4�zk� ~q� 	 ��1� z�k� ~q�
�zk� ~q�2��1� z�k� ~q�2



z0�1� z0�

~q2z0�1� z0� � �2z�1� z� � i0
; (16)

where � � �2 � �1.
The cross-section for the double-inclusive gluon production is given by

 

d�gg
d2l1d

2l2dyd
2b
�

1

8N2
c

1

�16�3�2
Tr1 Tr2

X
�3�4

Z
d2�

Z
d2x

Z
d2


Z
d2y

Z dz0

z0�1� z0�


��3�4��;x���3�4���; y�2��x; y�eil1	�x�y��1�z0�������eil2	�x�y�z0������; (17)

where the coordinates y and � in the complex-conjugate amplitude correspond to the coordinates x and � in the amplitude;
��x; y� is the rescattering factor, b is impact parameter of the projectile with respect to the target and the color traces are
taken over each nucleon (hence the subscripts 1,2). Introducing color gluon notations in the amplitude as shown in Fig. 2
and denoting by letters with bars the corresponding gluon colors in the complex-conjugated amplitude, we find the overall
color factor as

 

1

N2
c

Tr�TaT �a�Tr�TbT �b��f
acefbde � fadefbce�	cd�f �a �c �ef �b �d �e � f �a �d �ef �b �c �e�	 �c �d

�
1

4N2
c
	a �a	b �b�Nc	ab � Nc	ab��Nc	

�a �b � Nc	
�a �b� � 2CFNc: (18)

 

BC

AA BB CC

AB AC

FIG. 3. All possible time sequences for interaction of a projectile with the target. The diagrams BA, CA, and CB can be obtained by
complex-conjugation of the diagrams AB, AC, and BC, respectively. Interaction of the final gluon pair is neglected as explained in the
text.
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We can see that all four nonvanishing gluon index permutations in the four-gluon vertex give the same color factor.
Next, we turn to calculation of the forward scattering amplitudes for each time and gluon ordering (see Fig. 3). Let us for

a moment assume that the intermediate gluons have arbitrary coordinates x1 and x2 in the amplitude and y1 and y2 in the
complex conjugate one. Calculation of the scattering amplitudes is similar to the case of a single gluon production [25]. We
have

 

�AA � e��1=4��x1�y1�
2Q2

s e��1=4��x2�y2�
2Q2

s ; (19a)

�BB � e��1=4��x1�y1�
2Q2

s � e��1=4��x2�y2�
2Q2

s � e��1=4��x2
1�y2

2�Q
2
s � e��1=4��x2

2�y2
1�Q

2
s ; (19b)

�CC � 1; (19c)

�AB � e��1=4�x2
1Q

2
s e��1=4��x2�y2�

2Q2
s � e��1=4�x2

2Q
2
s e��1=4��x1�y1�

2Q2
s ; (19d)

�AC � e��1=4�x2
1Q

2
s e��1=4�x2

2Q
2
s ; (19e)

�BC � e��1=4�x2
1Q

2
s � e��1=4�x2

2Q
2
s : (19f)

Taking into account (4a)–(4c) we can sum up all the scattering amplitudes to obtain

 �AA ��BB ��CC ��AB ��BA ��AC ��CA ��BC ��CB

� �1� e��1=4��x1�y1�
2Q2

s � e��1=4�x2
1Q

2
s � e��1=4�y2

1Q
2
s ��1� e��1=4��x2�y2�

2Q2
s � e��1=4�x2

2Q
2
s � e��1=4�y2

2Q
2
s �: (20)

In the limit of recombining gluons x1 � x2 � x and y1 � y2 � y we derive

 ��x; y� � �1� e��1=4��x�y�2Q2
s � e��1=4�x2Q2

s � e��1=4�y2Q2
s �2: (21)

To write the final expression for the double-inclusive gluon production, we introduce an auxiliary function F��;x� such
that

 ��3�4��;x� � �g4TaTb2Nc	ab	�3�4
F��;x�: (22)

With this notation we obtain
 

d�gg
d2l1d

2l2dyd
2b
�

�4
s

2�2 NcCF
Z
d2�

Z
d2x

Z
d2


Z
d2y

Z dz0

z0�1� z0�
F��;x�F���; y�2��x; y�eil1	�x�y��1�z0�������


 eil2	�x�y�z0������: (23)

(23) is a general result which we derived in the eikonal approximation and assuming that the recombining gluons are
almost on-mass-shell. It can be significantly simplified if we note that the recombining gluons must be close in rapidity
which implies that the light-cone momentum fractions carried by gluons are typically equal z; z0 � 1=2. Assuming that this
configuration is dominant, we derive in Appendix A the following expression for the ‘‘wave function’’

 ��3�4��;x� � �TaTb2Nc	ab	�3�4

�2
s

�2x2 ln
�
1�

4x2

�2

�
(24)

and the cross-section

 

d�gg
d2l1d2l2dyd2b

�
2�4

s

�6

NcCF
�l2 � l1�

4

Z d2x

x2

Z d2y

y2 �1� ixjl2 � l1jK1�ixjl2 � l1j��


 �1� iyjl2 � l1jK1��iyjl2 � l1j��ei�l1�l2�	�x�y�2��x; y�: (25)

Using (25) we can extract the inclusive cross-section for production of a pair of gluons with invariant mass M. For this
objective, it is convenient to consider the inclusive cross-section in terms of momenta k � l1 � l2 and � � �l2 � l1�=2.
Then integrating over the directions of � and recalling that by (11) �2 � M2=4 yields
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d�gg
dM2d2kdyd2b

�
8�4

s

�7

NcCF
M4

Z d2x

x2

Z d2y

y2


 eik	�x�y��1� ixMK1�ixM��


 �1� iyMK1��iyM��2��x; y�: (26)

Integrating2 over k we get

 

d�gg
dM2d2b

�
32

�6

NcCF�
4
s

M4

Z 1
0

dx

x3


 j1� ixMK1�ixM�j28�1� e��1=4�x2Q2
s �2:

(27)

The integrand of (27) can be expressed in terms of Bessel
functions exploiting the relation

 

j1� ixMK1�ixM�j
2 �

�
1�

�
2
MxY1�Mx�

�
2

�
�2

4
�Mx�2J2

1�Mx�: (28)

In the limit of large invariant masses M� Qs the
dominant contribution to the integral in (27) comes from
dipoles of size 1=M� x� 1=Qs. Expanding both the
MacDonald function and the dipole scattering amplitude
yields

 

d�gg
dM2d2b

�
8�4

sNcCF
3�5

Qs

M3 ; M� Qs: (29)

In the opposite limit of small invariant masses the largest
(logarithmic) contribution stems from sizes 1=Qs � x�
1=M in which case we estimate

 

d�gg
dM2d2b

�
64�4

sNcCF
�6

1

M2 ; M� Qs: (30)

This behavior has important phenomenological conse-
quences which will be elucidated in the upcoming publi-
cation [32].

Finally, the total inclusive cross-section is determined
from (23) by first integrating over � which yields the delta
function 	�� � ��. Then using (A8) and (C1) we derive

 

d�gg
d2b

�
2�4

sNcCF
3�2

Z 1
0

dx
x

2��x;x�

�
16�4

sNcCF
3�2 ln�Qs=��: (31)

Numerical calculation of the ratio of (27) to (31) is exhib-
ited in Fig. 4.

III. ANOMALY MATCHING

Now as we derived the cross-section for the double-
inclusive gluon production in the scalar color singlet chan-
nel JPC � 0��, we can use the anomaly matching proce-
dure to derive the double-inclusive pion production at low
invariant masses. This approach has been discussed in
detail in [22]. Here we give a brief review.

In the product of the ‘‘wave function’’ and its complex
conjugate, there appears to be a loop formed by the pro-
duced gluons. The contribution of this loop is proportional
to the correlator3

 h0jTf���x����0�gj0i; (32)

where �� is the energy-momentum tensor. In the chiral
limit its trace acquires a finite value

 �� � �
bg2

32�2 F
a��Fa�� (33)

due to the scale anomaly of QCD. The correlator (32) can
be written in the spectral representation

 ��k2� � i
Z
d4xeik	xh0jTf���x����0�gj0i

�
Z
d�2 ���2�

�2 � k2 � i0
; (34)

where the spectral density

 ��k
2� �

X
n

Z d3pn
2"n

�2��3	�4��pn � k�jhnj
�
�j0ij2: (35)

k2 � M2 is the invariant mass of the produced system. In
the lowest order of perturbation theory the spectral density
is given by

 �pt
 �M

2� �

�
bg2

32�2

�
2 2NcCF

4�2 M4: (36)

 

1 2 3 4 5 6
M

0.2

0.4

0.6

0.8

1
R

FIG. 4. Ratio R � M2 d�gg
dM2d2b

�
d�gg
d2b
��1 as a function of invariant

mass M. Values of parameters for solid line: Qs � 1 GeV,
dashed line: Qs � 2 GeV. In both cases e� � 1 GeV.

2Convergence of the integral in (26) is discussed in
Appendix C.

3All coordinate and momenta notations in this section are
independent from the notations in other sections unless other-
wise specified.
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Although the scale invariance of QCD (in the chiral
limit) is broken down by quantum fluctuations, there re-
mains a residual symmetry which manifests itself in an
infinite tower of equations, known as the low energy the-
orems [30], relating various Green’s functions involving
operator ���x�. The first in this tower of equations relates
the Green’s function of the first and second order as follows

 ��0� � �4h0j��j0i � �16�vac: (37)

Spectral density (35) represents the sum over all physical
states, perturbative (high M2) and nonperturbative (low
M2). We can see using (36) in (34) that the perturbative
contribution to ��0� is divergent. Therefore, it must be
subtracted to satisfy the theorem (37):

 

Z d�2

�2 ��
phys
 ��2� � �pt

 ��
2�� � �16�vac: (38)

Thus, the vacuum expectation value of �� measures the
energy density of nonperturbative fluctuations of the
vacuum.

If the invariant mass of the produced gluons is small, we
can no longer describe the produced particles in terms of
the color degrees of freedom. Rather it is appropriate to
express �� directly in terms of hadrons. This can be done
using the effective chiral Lagrangian [34]

 L �
f2
�

4
Tr@�U@�Uy �

1

4
m2
�f2

� Tr�U�Uy�; (39)

where U � e2i�=f� , �  �ata and ta are the SU�2� gen-
erators. The trace of the energy-momentum tensor for this
Lagrangian is

 �� � �@��
a@��a � 2m2

��
a�a � . . . : (40)

In the chiral limit we have

 h����j��j0i � M2; (41)

leading to the following nonperturbative contribution to the
spectral density

 ��� �M
2� �

3

32�2 M
4; (42)

where M2 is assumed to be less than a certain cutoff M0 at
which the perturbation theory becomes applicable. This
cutoff is related to the vacuum energy density �vac and is
estimated to be rather large M0 ’ 2–2:5 GeV [30,31].

The main idea of anomaly matching is that while at large
M2 the physical spectral density coincides with the pertur-
bative formula (36), at low M2 it is specified by (42).
According to (38) gluons do not contribute to the spectral
density at low M2. The two formulas must coincide at the

scaleM0. Therefore, in order to calculate production of two
pions at M � M0 we need to replace the perturbative
contribution to the spectral density (36)—calculated (in-
directly) in the previous section—by the two-pion contri-
bution (42). This substitution is equivalent to calculating
the diagram in Fig. 5. Therefore, the cross-section for the
double-inclusive pion production becomes (using the no-
tation of the previous section)
 

d���
dM2d2kdyd2b

�
96�2

s

�5b2

1

M4

Z d2x

x2

Z d2y

y2


 eik	�x�y��1� ixMK1�ixM��


 �1� iyMK1��iyM��2��x; y�; (43)

where we employed (36) and (42) in (26). It is remarkable
that this cross-section is of the order �2

s , two remaining
factors of �s are inherent to the gluon distribution func-
tions of each projectile nucleon.

IV. INCLUDING QUANTUM EVOLUTION

Here we are going to include the small-x nonlinear
quantum evolution of [5] into the cross-section from
(26). Since the evolution equations in [5] are written for
the forward amplitude of a quark dipole on a nucleus, we
have to first generalize (26) to the case of gluon pair
production in two dipoles-nucleus scattering. Of course,
such a model of a nucleon is a rough approximation.
However, in the gluon, saturation regime details of nucleon
structure play a little role. Therefore, our results below may
still serve as a good approximation to a more accurate
treatment of the nucleon [14]. The generalization of (26)
to dipole-nucleus scattering is easily done by including
emissions of the s-channel gluon in Fig. 2 by the quark
and antiquark in the incoming dipoles. Denote the trans-
verse coordinates of the quark and antiquark in the incom-
ing dipoles by az0 and az1, where the superscript a � 1; 2
labels different nucleons. Then, instead of (26) we have

 

d�gg
dM2d2kdyd2b

�1z01;
2z01� �

8�4
s

�7

NcCF
M4

Z d2x

x2

Z d2y

y2 e
ik	�x�y�

X2

a�1

X1

i;j�0

2��x; y; azi;
azj�


 �1� ijx� azijMK1�ijx� azijM���1� ijy �
azjjMK1��ijy � azjjM��: (44)

 

π

π

FIG. 5. Production of a pion pair in JPC � 0�� channel with
invariant mass M � M0.
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where az01 �
az0 �

az1 and

 ��x; y; azi;
azj� � �e

��1=4��azi�
azj�

2Q2
s � e��1=4��x�y�2Q2

s � e��1=4��x�azi�
2Q2

s � e��1=4��y�azj�
2Q2

s �2: (45)

The inclusion of quantum corrections in the leading logarithmic approximation (resumming powers of �sy) in the
large-Nc limit is done along the lines of [14] using Mueller’s dipole model formalism [29]. Since we assume that the
produced gluons are at the same rapidity, the prescription for inclusion of quantum evolution is identical to the single gluon
production case. We first define the quantity n1�

az0;
az1; aw0;

aw1;Y � y�, which has the meaning of the number of dipoles
with transverse coordinates aw0, aw1 at rapidity y generated by the evolution from the original dipole az0, az1 having
rapidity Y. It obeys the dipole equivalent of the BFKL evolution equation [29,35]

 

@n1�
az0;

az1; aw0;
aw1; y�

@y
�
�sNc
2�2

Z
daz2

z2
01

z2
20z

2
21

�n1�
az0;

az2; aw0;
aw1; y� � n1�

az2;
az1; aw0;

aw1; y�

� n1�
az0;

az1; aw0;
aw1; y�� (46)

with the initial condition

 n1�
az0;

az1; aw0;
aw1; y � 0� � 	�az0 �

aw0�	�
az1 �

aw1�: (47)

If the target nucleus has rapidity 0, the incoming dipole has rapidity Y, and the produced gluons have rapidity y, the
inclusion of small-x evolution in the rapidity interval Y � y is accomplished by replacing the cross-section from (44) by
[8,14]

 

d�gg
dM2d2kdyd2b

�1z01;
2z01� !

Z Y2

a�1

daw0d
aw1n1�

az0;
az1; aw0;

aw1;Y � y�
d�gg

dM2d2kdyd2b
�1w01;

2w01�: (48)

(48) neglects correlations between the original dipoles as explained in Sec. I. The evolution in each of the original dipoles
is linear as was originally shown in [14]: the Pomeron splittings cancel in the rapidity interval between y and Y in
compliance with the AGK cutting rules [36].

Inclusion of evolution in the interval between 0 and y is accomplished by replacing the Mueller-Glauber rescattering
exponents according to the following rule [14]

 e��1=4��x0�x1�
2Q2

s ! 1� N�x0;x1; Y�; (49)

whereN�x0;x1; Y� is the forward amplitude for a quark dipole x0, x1 scattering on a target with rapidity interval Y between
the dipole and the target. It obeys the following evolution equation [5]

 

@N�x0;x1; Y�
@Y

�
�sNc
2�2

Z
d2x2

x2
01

x2
20x

2
21

�N�x0;x2; Y� � N�x2;x1; Y� � N�x0;x1; Y� � N�x0;x2; Y�N�x2;x1; Y�� (50)

with the initial condition

 N�x0;x1; Y � 0� � 1� e��1=4��x0�x1�
2Q2

s : (51)

Performing the substitution from (49) in (45) yields

 ��x; y; azi;
azj;Y� � �N�x;

azi; Y� � N�y;
azj; Y� � N�

azi;
azj; Y� � N�x; y; Y��

2: (52)

With the definition of (52) we write the following answer for the double-inclusive gluon production cross-section in the
scalar JPC � 0�� channel including small-x evolution effects

 

d�gg
dM2d2kdyd2b

�1z01;
2z01� �

8�4
s

�7

NcCF
M4

Z Y2

a�1

daw0d
aw1n1�

az0;
az1; aw0;

aw1;Y � y�
Z d2x

x2

Z d2y

y2 e
ik	�x�y�



X1

i;j�0

2��x; awi; y; awj; y��1� ijx�
awijMK1�ijx� awijM��


 �1� ijy � awjjMK1��ijy � awjjM��: (53)
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Similarly, the double-inclusive pion production cross-section is given using (43) by
 

d���
dM2d2kdyd2b

�1z01;
2z01� �

96�2
s

�5b2

1

M4

Z Y2

a�1

daw0d
aw1n1�

az0;
az1; aw0;

aw1;Y � y�
Z d2x

x2

Z d2y

y2 e
ik	�x�y�



X1

i;j�0

2��x; awi; y; awj; y��1� ijx�
awijMK1�ijx� awijM��


 �1� ijy � awjjMK1��ijy � awjjM��: (54)

This is the central result of our paper. We are going to use it
for the phenomenological analysis of the RHIC data in the
forthcoming publication [32].
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APPENDIX A: DERIVATION OF THE INCLUSIVE
CROSS-SECTION IN THE z; z0 � 1=2

APPROXIMATION

Using expressions (16) and (22), the function F��;x�
becomes
 

F��;x� �
Z d2k

�2��2
Z d2�

�2��2
e�i�	��ik	x



Z d2q

16�3 4
�12 k� q� 	 �12 k� q�

�12 k� q�2�12 k� q�2
1

q2 � �2 � i0
:

(A1)

Integration over k can be done using the following formula
(see Appendix B for the derivation)

 

Z d2k

�2��2
�12 k� q� 	 �12 k� q�

�12 k� q�2�12 k� q�2
e�ik	x

� �
1

�
q 	 x
q2x2 sin�2q 	 x�: (A2)

The subsequent integration over � is a Fourier transforma-
tion of a two-dimensional Feynman propagator and can be

expressed in terms of the Hankel function

 

Z d2�

�2��2
e�i�	�

1

q2 � �2 � i0
�
i
4
H�2�0 �q��; (A3)

where q � jqj, � � j�j. With the aid of (A2) and (A3) we
obtain

 F��;x� � �
i

8�3x

Z 1
0
dqH�2�0 �q��J1�2qx�: (A4)

This integral can be taken by analytically continuing the
Hankel function to imaginary values of q with the help of
Eq. 9.6.4 of Ref. [37]

 K0�ir� � �
i�
2
H�2�0 �r�; (A5)

and using Eq. 6.576.3 of Ref. [38]. The result is

 F��;x� �
1

�2��4x2 ln
�

1�
4x2

�2

�
: (A6)

To calculate the cross-section (23) we use the following
integral

 

Z
d2�e�i�1=2��	�l2�l1� ln

�
1�

4x2

�2

�

� 2�
Z 1

0
d��J0

�
1

2
�jl2 � l1j

�
ln
�
1�

4x2

�2

�

�
16�

�l2 � l1�
2 �1� ixjl2 � l1jK1�ixjl2 � l1j��: (A7)

Inserting (A6) and (A7) into (23) and using K�1�iz� �
K1��iz� we derive (25).

Let us also note for future reference the following in-
tegral

 

Z 1
0
d��

��������ln
�
1�

4x2

�2

���������
2
�
Z 2x

0
d��

�
ln2

�
4x2

�2 � 1
�
� �2

�
�
Z 1

2x
d��ln2

�
1�

4x2

�2

�
�

2�2x2

3
� 2�2x2 �

2�2x2

3

�
10�2x2

3
: (A8)

APPENDIX B: DERIVATION OF (A2)

Consider an auxiliary function G�x;q� defined as the following
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 G�x;q� �
Z d2k

�2��2
e�ik	x

1

�12 k� q�2�12 k� q�2
: (B1)

One can readily verify that

 

Z d2k

�2��2
�12 k� q� 	 �12 k� q�

�12 k� q�2�12 k� q�2
e�ik	x � �

�
1

2
rx � iq

��
1

2
rx � iq

�
G�x;q�: (B2)

Thus, the problem is reduced to evaluation of G�x;q�. Using the Feynman’s trick we write

 G�x;q� �
Z 1

0
d�

Z d2k

�2��2
e�ik	x

1

f��12 k� q�2 � �1� ���12 k� q�2g2
:

Introducing a new vector k0 � 1
2 k� �1� 2��q we come by

 G�x;q� � 4
Z 1

0
d�e2�1�2��iq	x

Z d2k0

�2��2
e�2ik0	x 1

fk02 � 4��1� ��q2g2

�
1

�

Z 1

0
d�e2�1�2��iq	x x

q
��������������������
��1� ��

p K1�4xq
��������������������
��1� ��

p
�: (B3)

Now, the integral (B1) is dominated by two IR logarith-
mic singularities at k � �2q which tie in with emission of
soft gluons k1 � 0 and k2 � 0 by the projectile. In (B3)
they correspond to the values � � 0; 1 of the Feynman
parameter �. Keeping only the logarithmically divergent
terms we derive

 G�x;q� �
x
�q
�e2iq	x � e�2iq	x�

Z 1
0

d�����
�
p K1�4xq

����
�
p
�:

(B4)

Changing the integration variable � � �2 yields

 G�x;q� �
4x
�q

cos�2q 	 x�lim
	!0

Z 1
0
d��	K1�4xq��

�
1

�q2 cos�2q 	 x� ln�1=qx�: (B5)

Finally, using (B5) in (B2) we arrive at (A2).
An important remark is in order here. (A2) is not valid in

two limits: (i) x! 0, q fixed and (ii) q! 0, x fixed,
though it holds in the limit qx! 0. The reason is that
the integral on the left-hand-side of (A2) is symmetric with
respect to transformation x$ q. This can be verified using
twice the formula

 

k
k2
�
Z
d2zeik	z

1

2�i
z
z2 (B6)

to transform the integrand into the coordinate space. This
symmetry property is violated in the above mentioned
limiting cases (i) and (ii). The values of the integral in
these cases are

 

Z d2k

�12 k�2
e�ik	x � 8� ln�1=x��

and [25]

 

Z
d2k
�12 k� q� 	 �12 k� q�

�12 k� q�2�12 k� q�2
� �8� ln�q=��;

where � is an IR cutoff.

APPENDIX C: CONVERGENCE OF THE
INTEGRAL IN (26)

Consider the following integral

 I�M; k� �
1

�2��2
Z d2x

x2

Z d2y

y2 e
ik	�x�y��1� ixMK1�ixM��


 �1� iyMK1��iyM����x; y�:

The dipole scattering amplitude ��x; y� � 1 by unitarity.
Therefore,

 I�M; k� �
��������
Z d2x

�2��x2 e
ik	x�1� ixMK1�ixM��

��������
2

�

��������
Z 1

0

dx
x
J0�kx��1� ixMK1�ixM��

��������
2
;

where x � jxj and k � jkj as usual. Since [see (A7)]

 

Z 1
0

dx
x
J0�kx��1� ixMK1�ixM�� � ln

�
M2

k2 � 1
�
; (C1)

we derive

 I�M; k� �
��������ln

�
M2

k2 � 1
���������

2
: (C2)

This expression is finite apart from the logarithmic diver-
gence at k � M corresponding to l1 	 l2 � 0. Integration
over M in (26) is thus bounded by [see (A8)]
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�
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