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ABSTRACT 

This thesis presents the results of an analysis of the effect of changes in the mean volume 

fraction and local volume fraction have on the drag force in flow past a fixed assembly of 

spheres. Current drag correlations address the mean drag of the system, but neglect changes in 

the mean and local volume fraction which could affect the flow more locally. The impact to the 

local drag and mean system drag, from local and mean volume fraction changes respectively, are 

compared. This is done by finding the predicted change in mean drag force as the mean volume 

fraction of the system changes for a variety of drag laws and comparing it with data from 

simulations in which the local drag and volume fraction fluctuations can be extracted. These 

simulations were previously performed using the PUReIBM method. It will be shown the local 

drag does not show a clear correlation in regard to local volume fraction changes. Furthermore, it 

will be seen the local drag fluctuations are negligible compared to the mean drag changes from a 

mean volume fraction change in the system.
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CHAPTER 1.    INTRODUCTION 

1.1 Research Objectives 

There are numerous correlations which are used to describe particulate flow. Syamlal & 

O’Brien [1] propose a correlation based on the principle the Archimedes number remains the 

same for both a single particle and a system of particles. They use this to create a correlation 

between the settling velocity for a single particle and for a system, which is then used to modify 

the drag of a single particle to obtain the drag for a system. Gidaspow [2] suggests a combination 

of the Wen & Yu correlation and the Ergun equation, using Wen & Yu in the dilute region while 

using Ergun when the system is more packed. Beetstra et al. [3] and Bogner et al. [4] propse 

correlations based on simulated flow past an assembly of spheres using the Lattice-Boltzmann 

method. Tenneti et al. [5], Tang et al. [6], and Zaidi et al. [7] use an Immersed Boundary Method 

to simulate flow past an assembly of particles, each proposing a correlation based on their 

results. These correlations are for predicting the mean drag of the system, and as such use the 

mean volume fraction of the system. It is possible, however, for there to be fluctuations in the 

local volume fraction of an overall homogenous dispersion of particles. The purpose of this work 

is to investigate whether this change in local volume fraction produces appreciable changes in 

the local drag, and to develop a correlation for these fluctuations. It is also investigated as to how 

these fluctuations compare to the predicted change in mean drag from a change in the mean 

volume fraction of the system. 

1.2 Investigated Drag Laws 

In this work, seven drag correlations are analyzed: Tenneti et al. [1], Beetstra et al. [2], 

Zaidi et al. [3], Bogner et al. [4], Tang et al. [5], Gidaspow [6], and Syamlal & O’Brien [7]. 

Table 1.1 shows each drag correlation as implemented in this work, the form in which it was 
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initially reported, and any scaling factor used in the initial form. The final form of the correlation 

is for flow past a fixed assembly of particles, where the particle velocity is zero. Due to this, only 

the fluid velocity, 𝑢𝑓, is used. 

The initial form of the correlations can take two forms, mean force per particle or mean 

force per volume. Following the notation of Mehrabadi [8], the first case will be denoted with 

<Fh> while the second will be denoted as <fh>. The second form is the desired form for this 

work, and it will be shown later how to convert between the two. 

For this work, the scaling factor is defined to be a term which is used to normalize the 

value by a reference point and put the output in non-dimensional form as shown in Eqn. 1.1. 

𝐹∗ = 
𝐹

𝐹𝑠𝑐𝑎𝑙𝑖𝑛𝑔
      (1.1) 
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Table 1.1 Evaluated drag laws 

 

Drag Law Initial 

Form 

Scaling 

Factor 

Implemented Form 

Tenneti et 

al. 

<Fh> Stokes 

Drag 𝐹 =  [
1 + 0.15𝑅𝑒𝑠

0.687

(1 − 𝜙)3
+

5.81𝜙

(1 − 𝜙)3
+ 0.48

𝜙1 3⁄

(1 − 𝜙)4

+ 𝜙3𝑅𝑒𝑠 (0.95 +
0.61𝜙3

(1 − 𝜙)2
)]
6𝜙

𝜋𝑑3
𝐹𝑠𝑡 

Beetstra 

et al. 

<Fh> Stokes 

Drag 

𝐹

=  [
10𝜙

(1 − 𝜙)3
+ (1 − 𝜙)(1 + 1.5√𝜙)

+
0.413𝑅𝑒𝑠
24(1 − 𝜙)3

(
(1 − 𝜙)−1 + 3𝜙(1 − 𝜙) + 8.4𝑅𝑒𝑠

−0.343

1 + 103𝜙𝑅𝑒𝑠
−(1+4𝜙) 2⁄

)]
6𝜙

𝜋𝑑3
𝐹𝑠𝑡 

Syamlal 

& 

O’Brien 

<fh> None 
𝐹 =  

3𝜙(1 − 𝜙)𝜌

4𝑑𝑣𝑟
2

𝐶𝐷𝑢𝑓
2 

𝐶𝐷 =

[
 
 
 

0.63 +
4.8

√
𝑅𝑒𝑠
𝑣𝑟 ]
 
 
 
2

 

𝑣𝑟 = 
1

2
[𝐴 −  0.06𝑅𝑒𝑠] +

1

2
[√(0.06𝑅𝑒𝑠)

2 + 0.12𝑅𝑒𝑠(2𝐵 − 𝐴) + 𝐴
2] 

𝐴 = (1 − 𝜙)4.14  

𝐵 =  {
0.8(1 − 𝜙)1.28     𝜙 ≥ 0.15

(1 − 𝜙)2.65           𝜙 < 0.15
 

 

Gidaspow <fh> None 
𝐹𝑊𝑒𝑛 & 𝑌𝑢 = 

3𝜌(1 − 𝜙)𝜙

4𝑑
𝐶𝐷𝑢𝑓

2(1 − 𝜙)−2.65 

𝐶𝐷 = 
24

𝑅𝑒𝑠
[1 + 0.15𝑅𝑒𝑠

0.687] 

𝐹𝐸𝑟𝑔𝑢𝑛 = [150
𝜇𝜙2

(1 − 𝜙)𝑑2
+ 1.75

𝜌𝑢𝑓𝜙

𝑑
] 𝑢𝑓 

𝐹 = {
𝐹𝑊𝑒𝑛 & 𝑌𝑢 , 𝜙 < 0.2
𝐹𝐸𝑟𝑔𝑢𝑛 , 𝜙 ≥ 0.2 

Zaidi et 

al. 

<Fh> Stokes 

Drag 
𝐹

=

{
 
 

 
 [

10𝜙

(1 − 𝜙)3
+ (1 − 𝜙)(1 + 1.5√𝜙) +

0.0034

(1 − 𝜙)3.7
𝑅𝑒𝑠]

6𝜙

𝜋𝑑3
𝐹𝑠𝑡    𝑅𝑒𝑠 ≤ 200

[
10.9𝜙0.4

(1 − 𝜙)2.7
+

0.024

(1 − 𝜙)3.86
𝑅𝑒𝑠]

6𝜙

𝜋𝑑3
𝐹𝑠𝑡    𝑅𝑒𝑠 > 200

 

Tang et 

al. 

<Fh> Stokes 

Drag 
𝐹 = [

10𝜙

(1 − 𝜙)3
+ (1 − 𝜙)(1 + 1.5√𝜙)

+
𝑅𝑒𝑠
1 − 𝜙

(0.11𝜙(1 − 𝜙) −
0.00456

(1 − 𝜙)4

+ (0.169(1 − 𝜙) +
0.0644

(1 − 𝜙)4
)𝑅𝑒𝑠

−0.343)]
6𝜙

𝜋𝑑3
𝐹𝑠𝑡 

Bogner et 

al. 

<Fh> Stokes 

Drag 
𝐹 = [(1 − 𝜙)−5.726(1.751 + 0.151𝑅𝑒𝑠

0.684 − 0.445(1 + 𝑅𝑒𝑠)
1.04𝜙

− 0.16(1 + 𝑅𝑒𝑠)
0.0003𝜙)]

6𝜙

𝜋𝑑3
𝐹𝑠𝑡 
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CHAPTER 2.    METHODOLOGY 

2.1 Analytical Methodology 

Investigation in to the effect a change in the mean volume fraction has on the mean 

drag will be done analytically with MATLAB. To compare the predicted drag to the 

numerical data, the result must be given as mean force per volume. The correlations, in the 

forms presented by Lundberg & Halvorsen [9] and Akiki et al. [10], are given as a 

momentum exchange coefficient or mean force per particle, respectively. For the first form, 

simply multiplying the correlation by the slip velocity yields the mean force per volume. For 

the second form, Eqn. 2.1, from Mehrabadi [8], can be used to convert from mean force per 

particle to mean force per volume. 

< 𝒇ℎ >  =  < 𝑭ℎ > 
6𝜙̅

𝜋𝑑3
    (2.1) 

In addition to this, the correlations must be multiplied by any normalizing factor present. The 

correlations presented by Akiki et al. are all normalized by Stokes drag, as defined by Eqn. 

2.2, and so are multiplied by that term. Those presented by Lundberg & Halvorsen have no 

normalizing factor. 

𝐹𝑆𝑡𝑜𝑘𝑒𝑠 =  3𝜋𝜇𝑑(1 − 𝜙̅)𝑢𝑓    (2.2) 

The Reynolds number used in these drag laws is the slip Reynolds number, which is 

defined by Eqn. 2.3. By holding the slip Reynolds number constant, Eqn. 2.3 can be 

rearranged to solve for the fluid velocity based on the local volume fraction. From here 

onwards, the slip Reynolds number will be referred to simply as the Reynolds number. 

𝑅𝑒𝑠 = 
𝜌𝑑(1−𝜙)𝑢𝑓

𝜇
     (2.3) 
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 The predicted change in mean drag force, Δ𝐹̅, due to change in mean volume fraction, 

Δ𝜙̅, is found by Eqn. 2.4. 

Δ𝐹̅ =  𝐹̅(𝜙̅ + Δ𝜙̅) − 𝐹̅(𝜙̅)     (2.4) 

This assumes the rate of change of 𝐹̅ is dependent solely on the rate of change of 𝜙̅ and has 

constant gradient.  

2.2 Numerical Methodology 

To investigate how fluctuations in the local volume fraction affect local drag, existing 

data, from Mehrabadi [8], will be analyzed. He used a direct numerical simulation (DNS) 

method called Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary 

Method (PUReIBM), developed by Dr. Subramaniam’s group at Iowa State University. It 

gets its name through its unique immersed boundary forcing implementation. The boundary 

forcing required to enforce the no-slip and no-penetration condition of the particles is only 

present in the nodes within the particle, keeping the fluid phase uncontaminated. This enables 

the drag force for each particle to be computed by integrating the stress tensor over the 

surface of the particle. The governing equations are solved on a Cartesian grid with periodic 

boundary conditions. Thorough documentation can be found in previous articles [11, 12]. 

For this work, the post-processing portion of PUReIBM was altered by Dr. 

Subramaniam’s group to allow for the subdivision of the simulation domain in to smaller 

sections when evaluating data from previous simulations. The drag force and volume fraction 

of each of these subdivisions will be referred to as local values. The mean volume fraction 

for each realization will be the total volume fraction of the domain, and the mean drag is the 

total drag force of the entire domain. The fluctuations between the mean volume fraction and 
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local volume fraction is found using Eqn. 2.4. Force fluctuations are found in the same 

manner. 

Δ𝜙 = 𝜙′ − 𝜙̅     (2.5) 

The setup evaluated for this work is flow past a fixed random assembly of spheres 

[8]. The simulations cover a range of 𝑅𝑒𝑠 from 0.01-100 and 𝜙̅ from 0.1-0.4. For each 

combination of 𝑅𝑒𝑠 and 𝜙̅, five realizations were evaluated.  



7 

CHAPTER 3.    ANALYSIS OF DRAG CORRELATIONS 

3.1 Validation of Implementation of Correlations 

Once the selected drag correlations were in MATLAB, they were validated against 

results from Lundberg & Halvorsen [9], which showed predicted drag for gas flow past an 

assembly of spheres. Table 3.1 shows the setup parameters for the validation case. 

Table 3.1 Parameters for drag law verification 

𝑑 154 µm 

𝜌 1.225 kg / m3 

𝜇 1.7894x10-5 kg / m∙s 

𝑅𝑒𝑠 1.4 

 

 

Figure 3.1 Exchange coefficient predicted by Lundberg & Halvorsen [9] 



8 

 

Figure 3.2 Drag predicted by correlations using MATLAB for conditions from Lundberg & 

Halverson [9] 

 

The discrepancy in the magnitudes is due to the difference in what is being reported. In the 

literature it is being reported as a momentum exchange coefficient, while the MATLAB 

results are in mean force per volume. The conversion from the first form to the second is 

achieved by multiplying by the slip velocity, which in this case is just the fluid velocity due 

to the particles being fixed. This value is the same for all the cases, and so although the 

magnitude changes the overall trends should stay the same. It is seen the results from 

MATLAB follow the same trends, which suggests they have been properly implemented. 

3.2 Results 

The graphs following show the results from MATLAB, evaluating the change in 

mean drag force. The vertical axis shows the change in mean drag force normalized by the 
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mean drag force at the initial mean volume fraction. The horizontal axis shows the change in 

mean volume fraction, with 0 representing the initial mean volume fraction. There are four 

graphs for each drag correlation, one for each of the initial mean volume fractions, and each 

one contains each Reynolds number evaluated. Due to the Gidaspow correlation being 

piecewise in nature, and as such discontinuous at a volume fraction of 0.2, a volume fraction 

of 0.201 was used instead for evaluation. 

 

Figure 3.3 Predicted Δ𝐹̅
𝐹̅(𝜙̅0)
⁄  vs. Δ𝜙̅ for correlation proposed by Tenneti et al. [5] at 

varying 𝑅𝑒𝑠 and 𝜙̅0 



10 

 

Figure 3.4 Predicted Δ𝐹̅
𝐹̅(𝜙̅0)
⁄  vs. Δ𝜙̅  for correlation proposed by Beetstra et al. [3] at 

varying 𝑅𝑒𝑠 and 𝜙̅0 
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Figure 3.5 Predicted Δ𝐹̅
𝐹̅(𝜙̅0)
⁄  vs. Δ𝜙̅  for correlation proposed by Syamlal & O’Brien 

[1] at varying 𝑅𝑒𝑠 and 𝜙̅0 
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Figure 3.6 Predicted Δ𝐹̅
𝐹̅(𝜙̅0)
⁄  vs. Δ𝜙̅ for correlation proposed by Gidaspow [2] at varying 

𝑅𝑒𝑠 and 𝜙̅0 

 



13 

 

Figure 3.7 Predicted Δ𝐹̅
𝐹̅(𝜙̅0)
⁄  vs. Δ𝜙̅ for correlation proposed by Zaidi et al. [7] at 

varying 𝑅𝑒𝑠 and 𝜙̅0 
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Figure 3.8 Predicted Δ𝐹̅
𝐹̅(𝜙̅0)
⁄  vs. Δ𝜙̅ for correlation proposed by Tang et al. [6] at varying 

𝑅𝑒𝑠 and 𝜙̅0 
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Figure 3.9 Predicted Δ𝐹̅
𝐹̅(𝜙̅0)
⁄  vs. Δ𝜙̅ for correlation proposed by Bogner et al. [4] at 

varying 𝑅𝑒𝑠 and 𝜙̅0 

 

The behavior of the drag laws, for a change in the 𝜙̅, generally follows a similar 

trend. They tend to have the form of an exponential curve, with varying degrees of steepness 

and magnitude. The notable outlier are the results for Bogner et al., which trend very steeply 

downwards for higher volume fractions for most Reynolds numbers. This is most likely due 

to the correlation of Bogner et al. not being valid for 𝜙 > 0.35 [4]. Overall, these results 

seem reasonable based on the results from Figure 3.2. There we see an exponential growth, 

so it seems reasonable the growth of the differences would follow a similar trend. 
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CHAPTER 4.    ANALYSIS OF DNS DATA 

4.1 Validation of Quantity of Subdivisions 

To determine the effect a fluctuation in local volume fraction (𝜙′) has on the local 

drag force (𝐹′), cases by Mehrabadi [8] will be evaluated. These are simulations of flow past 

a random fixed assembly of spheres using PUReIBM. For these, 𝜙̅ will be defined as the 

volume fraction of the entire domain while 𝐹̅ is 𝐹(𝜙̅), or the total drag force in the domain. 

Local values will be calculated by splitting the domain in to equally sized subdivisions and 

finding 𝐹′ and 𝜙′ for each. The fluctuations are then found using Eqn. 2.5. 

The smallest amount of subdivisions is one, which results in the domain average, and 

the most would be dependent on the particle size. If subdivisions were small enough such 

that the length of one side of the subdivision was smaller than the particle diameter, you 

could evaluate a subdivision entirely within a particle. For 𝑅𝑒𝑠 = 0.01 and 𝑅𝑒𝑠 = 100,  with 

𝜙̅ = 0.1, a range of subdivisions was tested. Figures 4.1 and 4.2 show the results of these 

tests. 
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Figure 4.1 Evaluation of varying subdivisions for 𝑅𝑒𝑠 = 100 and 𝜙̅ = 0.1 
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Figure 4.2 Evaluation of varying subdivisions for 𝑅𝑒𝑠 = 0.01 and 𝜙̅ = 0.1 

 

It does not appear to make a difference whether a small or large number of subdivisions are 

used, the results do not show a clear trend regardless. For this work, 125 subdivisions were 

used to allow the analysis of the more extreme fluctuations to get a better idea of the range of 

drag fluctuations. 

4.2 Results 

Figures 4.3-4.6 show the results from the evaluation of the data from Mehrabadi [8]. 

In each of these, the horizontal axis is the volume fraction fluctuation and the vertical axis is 

the drag force fluctuation divided by the mean drag force. 
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Figure 4.3 Δ𝐹
′

𝐹̅
⁄  with respect to Δ𝜙 for 𝜙̅ = 0.1 
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Figure 4.4 Δ𝐹
′

𝐹̅
⁄  with respect to Δ𝜙 for 𝜙̅ = 0.2 
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Figure 4.5 Δ𝐹
′

𝐹̅
⁄  with respect to Δ𝜙 for 𝜙̅ = 0.3 
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Figure 4.6 Δ𝐹
′

𝐹̅
⁄  with respect to Δ𝜙 for 𝜙̅ = 0.4  
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4.3 Comparison of Mean and Local Volume Fraction Fluctuations 

 When comparing the results from Chapter 4 and Chapter 3, the most immediately 

noted difference is the magnitude of the results. The results for Δ𝐹̅
𝐹̅(𝜙0)
⁄  are many times 

larger than those for Δ𝐹
′

𝐹̅
⁄ . The other noteworthy difference is the distribution of data. The 

results for Δ𝐹
′

𝐹̅
⁄  are random, while Δ𝐹̅

𝐹̅(𝜙0)
⁄  was ordered. 

 Ultimately, the conclusions to be drawn from the comparison of the two, is that 

changes in 𝜙̅ are far more impactful than changes in 𝜙′. This implies the overall 

characteristics of a system are more meaningful than local variance in characteristics. In 

addition, it seems reasonable to neglect these local variances in most cases, which the drag 

laws investigated in this work do. Neglecting these variances help to simplify simulations, 

allowing you to treat a system as homogeneous using correlations based on average values. 

 The last observation is the ability to model, and therefore predict, the impact of the 

changes in volume fraction. The drag laws investigated, although developed in different 

ways, are all the product of modeling the effects of changes in mean volume fraction. The 

effect of changes to the local volume fraction does not show a clear trend and is not 

predictable solely with Reynolds number and Δ𝜙. Based on the results presented in Section 

4.2, it appears the local drag fluctuations cannot be predicted, but possibly when related to 

different parameters a trend will emerge. 



24 

CHAPTER 5.    CONCLUSIONS 

There are three conclusions to draw from what has been presented. First, is the drag 

laws investigated predict similar trends for changes to mean volume fraction. The second is 

the behavior of the local drag due to changes in local volume fraction is not orderly. Last is 

the conclusions drawn from comparing the impact of changes to local and mean volume 

fraction changes. 

The results in Section 3.2, for the investigated drag laws, for the most part are 

remarkably similar. They are predominately an exponential behavior, with Bogner et al. [4] 

behaving differently. This behavior, however, is most likely from the volume fraction being 

beyond the applicable range of the correlation. The other six correlations are also very close 

in magnitude, with Gidaspow [2] and Syamlal & O’Brien [1] being noticeably lower in 

magnitude. This isn’t surprising, as those two drag laws predict a much less drastic change in 

drag for changes in average volume fraction, which can be seen in Figure 3.2. 

The second conclusion is seen very clearly in Figure 4.3 – Figure 4.6, which is the 

local drag fluctuations are chaotic. Local drag fluctuations do not seem to have a dependence 

on the fluctuations in local volume fraction, and any dependence which might be present 

would have to involve other parameters. More so, the drag fluctuations seem to be evenly 

distributed around the (0,0) point of the graph. This suggests accounting for the fluctuations 

was no different than treating it as a homogeneous system without any fluctuations, which is 

of course to use the mean values. The drag laws investigated do just this to handle the drag of 

the system. 

The third conclusion is from the comparison of the changes in drag from local and 

mean volume fraction changes. For very small mean and local volume fraction changes, the 
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change in drag was potentially comparable. It is only potentially the case as, due to the 

randomness of the local drag fluctuations, they may be very close or may be significantly 

different. However, very quickly the mean volume fraction changes produce a more 

significant impact on the mean drag of the system than the local volume fraction fluctuations 

do on the local drag. This means the response of the whole system to changes is much more 

impactful than local responses to changes. Ultimately this works to support aforementioned 

conclusion, which is a system can be adequately modeled by looking at the mean 

characteristics of the system without worrying about local fluctuations in the system. 
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APPENDIX.    MATLAB CODE 

This appendix contains the MATLAB code used to generate the graphs presented in 

Chapter 3. 

 

clc 

close all 

 

%Parameters for simulation 

phiList = [0.1 0.201 0.3 0.4]; %All the values of phi change to try 

ReList = [0.01 1 5 10 20 30 40 50 100]; %List of Rem to try 

D = 1; %Particle diameter 

MU = 0.0012; %Particle viscosity 

RHO = 1; %Particle density 

m=2; %For forming subplots 

n=2; %For forming subplots 

 

%Symbolic variables for each drag law 

syms TGS(phi,Re,d,mu,rho) %Tenneti et al 

syms BVK(phi,Re,d,mu,rho) %Beetstra et al 

syms ZA1(phi,Re,d,mu,rho) %Zaidi et al - Re <= 200 

syms ZA2(phi,Re,d,mu,rho) %Zaidi et al - Re > 200 

syms ZAI(phi,Re,d,mu,rho) %Zaidi et al - Complete 

syms BOG(phi,Re,d,mu,rho) %Bogner et al 

syms TAG(phi,Re,d,mu,rho) %Tang et al 

syms WY(phi,Re,d,mu,rho) %Wen and Yu 

syms ERG(phi,Re,d,mu,rho) %Ergun Equation for use in Gidaspow 

syms GDS(phi,Re,d,mu,rho); %Gidaspow et al 

syms SOB(phi,Re,d,mu,rho) %Syamlal & O'Brien 

 

%Other symbolic variables used 

syms SOBCd(phi,Re) %Drag Coefficient for Syamlal & O'Brien 

syms vr(phi,Re) %Velocity correlation factor for Syamlal & O'Brien 

syms Fst(phi,Re,d,mu,rho); %Stokes drag force 

syms NumDen(phi,d); %Number Density 

syms uf(phi,Re,d,mu,rho); %Fluid velocity 

syms dPhi; %Change in volume fraction 

 

%List of Figure Created 

VerFig = figure('Name','Drag Law Verification','NumberTitle','off'); 

TGSFig = figure('Name','Tenneti et al','NumberTitle','off'); 

BVKFig = figure('Name','Beetstra et al','NumberTitle','off'); 

ZAIFig = figure('Name','Zaidi et al','NumberTitle','off'); 

BOGFig = figure('Name','Bogner et al','NumberTitle','off'); 

TAGFig = figure('Name','Tang et al','NumberTitle','off'); 

GDSFig = figure('Name','Gidaspow et al','NumberTitle','off'); 

SOBFig = figure('Name','Syamlal & OBrien','NumberTitle','off'); 
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%Assign equations to symbolic variables for use in drag laws 

uf(phi,Re,d,mu,rho) = (Re*mu)/(rho*d*(1-phi)); 

NumDen(phi,d) = (6*phi)/(pi*d^3); 

Fst(phi,Re,d,mu,rho) = 3*pi*mu*d*(1-phi)*uf(phi,Re,d,mu,rho); 

vr(phi,Re) = piecewise(phi>=0.15, 0.5*((1-phi)^4.14-

0.06*Re)+0.5*sqrt((0.06*Re)^2+0.12*Re*(2*0.8*(1-phi)^1.28-(1-phi)^4.14)+((1-phi)^4.14)^2), 

phi<0.15, 0.5*((1-phi)^4.14-0.06*Re)+0.5*sqrt((0.06*Re)^2+0.12*Re*(2*(1-phi)^2.65-(1-

phi)^4.14)+((1-phi)^4.14)^2)); 

SOBCd(phi,Re) = (0.63+4.8/sqrt(Re./vr(phi,Re)))^2; 

 

%Assign equations to symbolic variables for each drag law, corresponding to 

%the form shown in Table 1.1 

TGS(phi,Re,d,mu,rho) = ((1+0.15*Re^0.687)/(1-phi)^3 + (5.81*phi)/(1-phi)^3 + 

0.48*(phi^(1/3)/(1-phi)^4) + phi^3*Re*(0.95+ (0.61*phi^3)/(1-

phi)^2)).*NumDen(phi,d).*Fst(phi,Re,d,mu,rho); 

BVK(phi,Re,d,mu,rho) = ((10*phi)/(1-phi)^3 + (1-phi)*(1+1.5*sqrt(phi)) + ((0.413*Re)/(24*(1-

phi)^3))*(((1-phi)^(-1)+3*phi*(1-phi)+8.4*Re^(-0.343))/(1+10^(3*phi)*Re^(-

(1+4*phi)/2)))).*NumDen(phi,d).*Fst(phi,Re,d,mu,rho); 

ZA1(phi,Re,d,mu,rho) = ((10*phi)/(1-phi)^3 + (1-phi)*(1+1.5*sqrt(phi)) + (0.034/(1-

phi)^3.7)*Re).*NumDen(phi,d).*Fst(phi,Re,d,mu,rho); 

ZA2(phi,Re,d,mu,rho) = ((10.9*phi^0.4)/(1-phi)^2.7 + (0.024/(1-

phi)^3.86)*Re)*NumDen(phi,d)*Fst(phi,Re,d,mu,rho); 

ZAI(phi,Re,d,mu,rho) = piecewise(Re<=200, ZA1(phi,Re,d,mu,rho), Re>200, 

ZA2(phi,Re,d,mu,rho)); 

BOG(phi,Re,d,mu,rho) = ((1-phi)^(-5.726)*(1.751+0.151*Re^0.687-0.445*(1+Re)^(1.04*phi)-

0.16*(1+Re)^(0.0003*phi))).*NumDen(phi,d).*Fst(phi,Re,d,mu,rho); 

TAG(phi,Re,d,mu,rho) = ((10*phi)/(1-phi)^3 + (1-phi)*(1+1.5*sqrt(phi)) + (0.11*phi*(1+phi) - 

0.00456/(1-phi)^4 + (0.169*(1-phi) + 0.0644/(1-phi)^4)*Re^(-0.343))*(Re/(1-

phi))).*NumDen(phi,d).*Fst(phi,Re,d,mu,rho); 

WY(phi,Re,d,mu,rho) = ((3*rho*(1-phi)*phi)/(4*d))*((24/Re)*(1+0.15*Re^(0.687)))*(1-phi)^(-

2.65).*uf(phi,Re,d,mu,rho).*uf(phi,Re,d,mu,rho); 

ERG(phi,Re,d,mu,rho) = (150*((mu*phi^2)/((1-phi)*d^2)) + 

1.75*(rho*phi.*uf(phi,Re,d,mu,rho)/d)).*uf(phi,Re,d,mu,rho); 

GDS(phi,Re,d,mu,rho) = piecewise(phi<0.2, WY(phi,Re,d,mu,rho), phi>=0.2, 

ERG(phi,Re,d,mu,rho)); 

SOB(phi,Re,d,mu,rho) = ((3*(1-

phi)*phi*rho)/(4*d.*vr(phi,Re).^2)).*SOBCd(phi,Re).*uf(phi,Re,d,mu,rho).^2; 

 

 

%Plot for verification against results from Lundberg & Halvorsen 

figure(VerFig) 

v1 = fplot(TGS(phi,1.4,0.000154,0.000017894,1.225),[0 0.7],'b-'); 

hold on 

v2 = fplot(BVK(phi,1.4,0.000154,0.000017894,1.225),[0 0.7],'r-'); 

v3 = fplot(ZAI(phi,1.4,0.000154,0.000017894,1.225),[0 0.7],'k-'); 

v4 = fplot(BOG(phi,1.4,0.000154,0.000017894,1.225),[0 0.7],'b--'); 

v5 = fplot(TAG(phi,1.4,0.000154,0.000017894,1.225),[0 0.7],'r--'); 

v6 = fplot(GDS(phi,1.4,0.000154,0.000017894,1.225),[0 0.7],'k--'); 

v7 = fplot(SOB(phi,1.4,0.000154,0.000017894,1.225),[0 0.7],'cd'); 

hold off 

legend([v1 v2 v3 v4 v5 v6 

v7],{'Tenneti','Beetstra','Zaidi','Bogner','Tang','Gidaspow','Syamlal 

OBrien'},'Location','northwest'); 

ylabel('<F_{d}>') 
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xlabel('\phi') 

title('Drag Law Validation') 

ylim([0 180000]) 

xticks([0:0.1:0.7]) 

yticks([0:20000:180000]) 

set(gca,'XMinorTick','on','YMinorTick','on') 

 

%dF/F(phi_0) vs. dPhi for Varying Re for each drag law 

%Done using fplot, which plots expressions over a given range for a 

%variable, which in this case is dPhi 

 

%Tenneti et al 

figure(TGSFig) 

for i=1:length(phiList) 

    subplot(m,n,i); 

    for j=1:length(ReList) 

        fplot((TGS(dPhi+phiList(i),ReList(j),D,MU,RHO)-

TGS(phiList(i),ReList(j),D,MU,RHO))./TGS(phiList(i),ReList(j),D,MU,RHO),[-phiList(i) 0.35]) 

       hold on 

    end 

    hold off 

    title(['\phi_{0}=' num2str(phiList(i))]) 

    xlabel('\Delta\phi') 

    ylabel('\DeltaF/F(\phi_{0})') 

    legend(strcat('Re=',num2str(ReList')),'Location','northwest') 

end 

 

%Beetsra et al 

figure(BVKFig) 

for i=1:length(phiList) 

    subplot(m,n,i); 

    for j=1:length(ReList) 

       fplot((BVK(dPhi+phiList(i),ReList(j),D,MU,RHO)-

BVK(phiList(i),ReList(j),D,MU,RHO))./BVK(phiList(i),ReList(j),D,MU,RHO),[-phiList(i) 0.35]) 

       hold on 

    end 

    hold off 

    title(['\phi_{0}=' num2str(phiList(i))]) 

    xlabel('\Delta\phi') 

    ylabel('\DeltaF/F(\phi_{0})') 

    legend(strcat('Re=',num2str(ReList')),'Location','northwest') 

end 

 

%Zaidi et al 

figure(ZAIFig) 

for i=1:length(phiList) 

    subplot(m,n,i); 

    for j=1:length(ReList) 

       fplot((ZAI(dPhi+phiList(i),ReList(j),D,MU,RHO)-

ZAI(phiList(i),ReList(j),D,MU,RHO))./ZAI(phiList(i),ReList(j),D,MU,RHO),[-phiList(i) 0.35]) 

       hold on 

    end 

    hold off 

    title(['\phi_{0}=' num2str(phiList(i))]) 
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    xlabel('\Delta\phi') 

    ylabel('\DeltaF/F(\phi_{0})') 

    legend(strcat('Re=',num2str(ReList')),'Location','northwest') 

end 

 

%Bogner et al 

figure(BOGFig) 

for i=1:length(phiList) 

    subplot(m,n,i); 

    for j=1:length(ReList) 

        dF=[]; 

        dPhiList=[]; 

        for dPhi=-phiList(i):0.05:0.35 

            dF = [dF double((BOG(dPhi+phiList(i),ReList(j),D,MU,RHO)-

BOG(phiList(i),ReList(j),D,MU,RHO))/BOG(phiList(i),ReList(j),D,MU,RHO))]; 

            dPhiList = [dPhiList dPhi]; 

        end 

        plot(dPhiList,dF) 

        hold on 

    end 

    hold off 

    title(['\phi_{0}=' num2str(phiList(i))]) 

    xlabel('\Delta\phi') 

    ylabel('\DeltaF/F(\phi_{0})') 

    legend(strcat('Re=',num2str(ReList')),'Location','northwest') 

end 

 

%Tang et al 

figure(TAGFig) 

for i=1:length(phiList) 

    subplot(m,n,i); 

    for j=1:length(ReList) 

       fplot((TAG(dPhi+phiList(i),ReList(j),D,MU,RHO)-

TAG(phiList(i),ReList(j),D,MU,RHO))./TAG(phiList(i),ReList(j),D,MU,RHO),[-phiList(i) 0.35]) 

       hold on 

    end 

    hold off 

    title(['\phi_{0}=' num2str(phiList(i))]) 

    xlabel('\Delta\phi') 

    ylabel('\DeltaF/F(\phi_{0})') 

    legend(strcat('Re=',num2str(ReList')),'Location','northwest') 

end 

 

%Gidaspow et al 

figure(GDSFig) 

for i=1:length(phiList) 

    subplot(m,n,i); 

    for j=1:length(ReList) 

       fplot((GDS(dPhi+phiList(i),ReList(j),D,MU,RHO)-

GDS(phiList(i),ReList(j),D,MU,RHO))./GDS(phiList(i),ReList(j),D,MU,RHO),[-phiList(i) 0.35]) 

       hold on 

    end 

    hold off 

    title(['\phi_{0}=' num2str(phiList(i))]) 
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    xlabel('\Delta\phi') 

    ylabel('\DeltaF/F(\phi_{0})') 

    legend(strcat('Re=',num2str(ReList')),'Location','northwest') 

end 

%} 

 

%Syamlal & O'Brien 

figure(SOBFig) 

for i=1:length(phiList) 

    subplot(m,n,i); 

    for j=1:length(ReList) 

        dF=[]; 

        dPhiList=[]; 

        for dPhi=-phiList(i):0.05:0.35 

            dF = [dF double((SOB(dPhi+phiList(i),ReList(j),D,MU,RHO)-

SOB(phiList(i),ReList(j),D,MU,RHO))/SOB(phiList(i),ReList(j),D,MU,RHO))]; 

            dPhiList = [dPhiList dPhi]; 

        end 

        plot(dPhiList,dF) 

        hold on 

    end 

    hold off 

    title(['\phi_{0}=' num2str(phiList(i))]) 

    xlabel('\Delta\phi') 

    ylabel('\DeltaF/F(\phi_{0})') 

    legend(strcat('Re=',num2str(ReList')),'Location','northwest') 

end 

 


