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Abstract

This paper evaluates exact coverage probabilities of approximate prediction
intervals for the number of failures that will be observed in a future inspec-
tion of a sample of units, based only on the results of the �rst in-service
inspection of the sample. The failure-time of such units is modeled with a
Weibull distribution having a given shape parameter value. We illustrate
the use of the procedures by using data from a nuclear power plant heat ex-
changer. The results suggest that the likelihood-based prediction intervals
perform better than the alternatives.
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1 Introduction

1.1 Motivation

Based on the number of failures found in a previous inspection of a group
of in-service units, Nelson (1995, 2000) provides prediction limits for the
additional number of failures that will be observed during a future time
period. Nelson's intervals were motivated by the following application. Nu-
clear power plants contain large heat exchangers that transfer energy from
the reactor to steam turbines. Such exchangers typically have 10,000 to

1



2

20,000 stainless steel tubes that conduct the ow of steam. Due to stress
and corrosion, the tubes develop cracks over time. Cracks are detected
during planned inspections. The cracked tubes are subsequently plugged
to remove them from service. To develop e�cient inspection and plugging
strategies, the plant management can use a prediction of the added number
of tubes that will need plugging by a speci�ed future time. A prediction
expressed as an interval indicates the magnitude of the possible prediction
error and quanti�es the \con�dence" in the prediction.

1.2 Related work

There is a large amount of literature describing various statistical predic-
tion applications and methods. Hahn and Nelson (1973), Patel (1989), and
Chapter 5 of Hahn and Meeker (1991) provide surveys of methods for sta-
tistical prediction for a variety of situations.

For applications involving failure-time with censored data (as opposed to
the single inspection available in our motivating example) methods presented
by Lawless (1973), Nelson (1982), Mee and Kushary (1994), and Escobar and
Meeker (1999) are useful. These previously developed prediction methods
cannot be used for the kind of inspection data considered here.

1.3 Overview

Section 2 describes the \within-sample" prediction problem and presents
a statistical model for it. Section 3 provides a general discussion of the
coverage probabilities used to evaluate statistical prediction bounds or in-
tervals. Section 4 provides procedures for constructing Nelson's (1995, 2000)
prediction intervals based on con�dence limits for the ratio of multinomial
proportions and also on a likelihood ratio approach. This section also dis-
cusses issues related to specifying the Weibull shape parameter. Section 5
illustrates the use of Nelson's (1995, 2000) prediction interval procedures
with an example, including an evaluation of sensitivity to deviations from
the given Weibull shape parameter. Section 6 outlines computation of the
actual coverage probabilities used to compare the prediction interval proce-
dures. Section 7 discusses the design of an analytical experiment to evaluate
the procedures and summarizes the results of the experiment. Section 8
provides suggestions for use of the prediction intervals in application and
contains some concluding remarks. The Appendix provides some technical
results on the behavior of the prediction interval procedures.
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2 Model

2.1 Prediction problem

t t wc
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Figure 1: Within-sample prediction.

Suppose that N sample units start service at time 0, and that, by some
censoring time tc, the cumulative number of failures is X . We would like a
prediction interval for the future added number Y of units that will fail by
time tw (e.g., end of a warranty period). That is, Y is the number of failures
in the interval (tc; tw). If Z is the remaining number of unfailed units at
time tw , then (X; Y; Z) will have a trinomial distribution with corresponding
probabilities (p; q; r), where X + Y + Z = N and p + q + r = 1. Figure 1
illustrates the within-sample prediction problem.

2.2 Weibull distribution

The probabilities p, q, and r depend on the assumed failure-time distribu-
tion. For Nelson's (2000) prediction limits, it is assumed that the failure
times are independent observations from a Weibull distribution with un-
known scale parameter � and given (\known") shape parameter �. Thus,

p = 1� exp
h
�(tc=�)

�
i

q = exp
h
�(tc=�)

�
i
� exp

h
�(tw=�)

�
i

(1)

r = exp
h
�(tw=�)

�
i
:

3 Coverage probability for statistical prediction

interval procedures

Following Nelson (2000), our goal is to predict the number of additional
failures Y in a future interval based on earlier information from the same
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sample. The cumulative number of failures X observed before the censor-
ing time tc can be used to obtain an approximate prediction interval with
nominal con�dence level 1 � �, denoted by PI(1 � �) = [Y

e x
; ~Yx]. With

any sensible procedure for generating such an interval, including those given
in Section 4, both Y

e x
and ~Yx will be nonnegative integers. The future ran-

dom variable Y and [Y
e x
; ~Yx] have a joint distribution that depends on the

unknown scale parameter �.

3.1 Coverage probability for two-sided prediction intervals

It is important to distinguish between two types of coverage probabilities:

� Conditioned on X , the number of additional failures, Y , has a
BINOMIAL(N �X; �) distribution, where

� =
q

q + r
(2)

is a function of the probabilities q and r from (1); � is the conditional
probability that a sample unit fails in the interval (tc; tw), given that
it survived until tc. We denote the above conditional binomial cdf as
Pr(Y � y j X) = BINCDF(y;N �X; �).

For given X and resulting [Y
e x
; ~Yx], the conditional coverage proba-

bility of the speci�c prediction interval with nominal con�dence level
1� � is

CP[PI(1� �) j X ; �] = Pr(Y
e x

� Y � ~Yx j X ; �)

= BINCDF(~Yx; N �X; �)� BINCDF(Y
e x

� 1; N �X; �): (3)

The actual conditional coverage probability in (3) is random because
[Y
e x
; ~Yx] depends on X , which varies from sample to sample. This

probability is also unknown here, because � depends on the unknown
scale parameter �.

� One is generally interested in evaluating the coverage probability asso-
ciated with a prediction interval procedure. The unconditional coverage
probability (for a procedure) is the expected value of the conditional
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coverage probability in (3) with respect to the random variable X ;
that is,

CP[PI(1� �); �] = Pr(Y
e x

� Y � ~Yx; �)

= EX fCP[PI(1� �) j X ; �]g : (4)

3.2 Relationship between two-sided prediction intervals and
one-sided prediction bounds

A two-sided 100(1��)% prediction interval may be obtained by combining a
one-sided lower 100(1��1)% prediction bound and a one-sided upper 100(1�
�2)% prediction bound, where �1 + �2 = �. By using equal-tail prediction
intervals (i.e., �1 = �2 = �=2), both end points of the resulting interval can
be interpreted as one-sided prediction bounds (after making the necessary
adjustment in the con�dence level). Escobar and Meeker (1999, Section 2.3)
provide more discussion of the coverage probabilities for statistical prediction
intervals and one-sided bounds.

4 Prediction and prediction limits

4.1 Point prediction

It may be desirable to have a single prediction bY for the number of additional
failures Y in a future interval (tc; tw). Given the observed (nonzero) number
of failures X by tc, the maximum likelihood (ML) estimate of � is

b� = tc

(� log[1� (X=N)])1=�
: (5)

As suggested by Nelson (2000), the corresponding point prediction for Y is

bY = N � bq; (6)

where the estimate bq is obtained by substituting b� into (1) for q, yielding

bq = [1� (X=N)]� [1� (X=N)](tw=tc)
�

: (7)

While the point prediction provides a \best guess" for the future realization
of the random variable Y based the observed value of X , it does not give
any indication of prediction precision and is therefore much less informative
than a prediction interval.
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4.2 Prediction bounds: probability ratio (PR) procedure

Following Nelson (2000), when the Weibull probabilities p and q are small,
the approximation

q

p
=

�
1� exp

�
�(tw=�)

�
��
�
�
1� exp

�
�(tc=�)

�
��

1� exp [�(tc=�)�]

�
(tw=�)

� � (tc=�)
�

(tc=�)�

= (tw=tc)
� � 1 (8)

does not depend on the unknown Weibull scale parameter �. Nelson (1972)
gives a conservative 100(1��)% con�dence interval for the trinomial prob-
ability ratio p=q as [gL(Y;X; �1); gU(Y;X; �2)], where

gL(Y;X; �1) =

�
X=[(Y + 1)F(1� �1; 2Y + 2; 2X)] X 6= 0
0 X = 0

(9)

and

gU(Y;X; �2) = [(X + 1)F(1� �2; 2X + 2; 2Y )]=Y: (10)

Here F(;m;n) is the  quantile of the F distribution with m numerator
degrees of freedom and n denominator degrees of freedom, and �1+�2 = �.
As before, X and Y denote the number of failures in the intervals (0; tc] and
(tc; tw), respectively. The justi�cation for this interval is that

Pr

�
gL(Y;X; �1) �

p

q
� gU(Y;X; �2)

�
� 1� �;

as shown in the appendix of Nelson (1972) and in Nelson (2000).
Then, using the approximation in (8) for small p and q, the above limits

will provide an approximate 100(1��)% con�dence interval for
�
(tw=tc)� � 1

�
�1
;

that is,

Pr

�
gL(Y;X; �1) �

1

(tw=tc)� � 1
� gU(Y;X; �2)

�
� 1� �: (11)

Given the (nonzero) number of failures X and 0 < � < 1, both gL(y;X; �)
and gU(y;X; �) are monotonically decreasing functions of positive, real-
valued y. Hence, the \oor" of smallest, positive real y-value that satis�es
the left inequality in (11) is an approximate one-sided lower 100(1� �1)%
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prediction bound for Y . We denote this bound by Y
e pr

. If X = 0, we may

only produce a trivial lower bound for the number of failures in (tc; tw). We
de�ne Y

e pr
to be zero in this case.

The \ceiling" of the largest real y-value that satis�es the right inequality
in (11) is an approximate one-sided upper 100(1� �2)% prediction bound
for Y , denoted by ~Ypr. Together Y

e pr
and ~Ypr produce Nelson's (2000) ap-

proximate 100(1� �)% prediction interval

�
Y
e pr

; ~Ypr

�
for Y .

Because gL(0; X 6= 0; �1) = X=F(1� �1; 2; 2X), it is important to rec-
ognize that if (tw=tc)

� � 1 � F(1 � �1; 2; 2X)=X, the 100(1� �1)% lower
prediction bound Y

e pr
will necessarily be zero; that is, all nonnegative integer

y-values will then satisfy the left inequality in (11). In addition, depending
on X , (tw=tc)

�, and the level of con�dence (�1 or �2), the PR procedure
may yield lower or upper prediction bounds that fall outside the sample
space of Y (namely, bounds greater than N �X). The appendix describes
these circumstances as well as some other technical details. If the computed
value of ~Ypr is greater than N � X , we reset the upper bound to N � X .
Likewise, if the PR procedure produces a lower prediction bound greater
than N �X , we rede�ne the bound to be N �X � 1. Note also that, given
X and the ratio (tw=tc)

�, the upper and lower prediction bounds provided
by this procedure do not depend on the initial sample size N .

4.3 Simpli�ed probability ratio (SPR) prediction bounds

As suggested by Nelson (2000), simpler multinomial probability ratio bounds
for large Y result from noting that, (for �xed X) as y �! 1,

� F(1��1; 2y+2; 2X) converges to F(1��1;1; 2X) = 1=F(�1; 2X;1) =
2X=�2(�1; 2X), where �2(;n) denotes the  quantile of a chi-square
distribution with n degrees of freedom.

� F(1� �2; 2X + 2; 2y) converges to F(1� �2; 2X + 2;1) =
�2(1� �2; 2X + 2)=(2X + 2).

Substituting these limiting values for the F quantiles appearing on the left
and right sides of (11) yields easy-to-compute, approximate one-sided lower
100(1 � �1)% and upper 100(1 � �2)% prediction bounds given by Nel-
son (2000):

Y
e spr

=
j
0:5
�
(tw=tc)

� � 1
�
�2(�1; 2X)� 1

k
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and

~Yspr =
l
0:5
�
(tw=tc)

� � 1
�
�2(1� �2; 2X + 2)

m
; (12)

respectively. The oor and ceiling functions are represented above by bc and
de. If X = 0 or if 0:5

�
(tw=tc)

� � 1
�
�2(�1; 2X) < 1, we de�ne Y

e spr
to be

zero. The advantage of these intervals is that they can be computed directly
without any iteration.

With X and �1 �xed, if F(1��1; 2y+2; 2X) is a decreasing (increasing)
function of positive, real-valued y, the lower bound Y

e spr
will be greater (less)

than or equal to the previous probability ratio-based bound Y
e pr

derived from

(11). Similarly, the upper bound ~Yspr will be less (greater) than or equal to
~Ypr if F(1� �2; 2X + 2; 2y) is a decreasing (increasing) function of y.

4.4 Prediction bounds: likelihood ratio (LR) procedure

The preceding prediction bounds are approximate and suitable for small p
and q. Another approximate procedure suggested by Nelson (2000), which is
appropriate for more general values of p and q, can be based on a likelihood
ratio statistic as follows. The two-parameter multinomial likelihood for the
observed (x; y; z) is

L(p; q; x; y) = Cpxqy(1� p� q)N�x�y ; (13)

where C = N !=(x!y!(N � x� y)!) is the multinomial coe�cient. The maxi-
mum of (13) is

L�(x; y) = C(x=N)x(y=N)y(1� x=N � y=N)N�x�y: (14)

Under the Weibull distribution model with probabilities (p; q; r) given
by (1), the one-parameter constrained sample likelihood is

K(�; x; y) = C
�
1� e�(tc=�)

�
�x �

e�(tc=�)
�

� e�(tw=�)
�
�y �

e�(tw=�)
�
�N�x�y

:

(15)

The ML estimate b�(x; y) of the Weibull scale parameter must be found nu-
merically by maximizing (15). We denote the maximum of (15) by K�(x; y).

The log likelihood ratio test statistic comparing the constrained Weibull
likelihood with the unconstrained multinomial likelihood is

Q(x; y) = �2 (log [K�(x; y)]� log [L�(x; y)]) : (16)
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If the true distribution is Weibull, then the asymptotic distribution ofQ(X; Y )
is approximately chi-square with 1 degree of freedom. Hence, for the random
variables X and Y ,

Pr
�
Q(X; Y ) � �2(1� �; 1)

�
� 1� �: (17)

Given the cumulative number of failures X by time tc, the set of y-values
for which Q(X; y) � �2(1��; 1) provides an approximate 100(1��)% pre-
diction region for Y . In particular, the \oor" and \ceiling" of the respective
smallest and largest positive real values that satisfy this inequality, say Y

e lr

and ~Ylr, yield the approximate 100(1��)% likelihood ratio-based prediction
interval for Y . A one-sided (lower or upper) 100(1� �)% prediction bound
can be obtained from the appropriate end point of a two-sided 100(1�2�)%
prediction interval.

4.5 Speci�cation of the Weibull shape parameter

The prediction interval procedures described in Sections 4.2 to 4.4 are based
on the assumption that a single group of units \on trial" is a random sample
from a Weibull distribution with a given shape parameter, �. Of course, in
applications, knowledge of � is inexact.

When prior information is available, a Bayesian approach may be useful.
There can, however, be di�culties in some applications that would require
the use of alternative methods. For the heat exchanger tubes, the Weibull
shape parameter is not identi�able from the available data and thus the prior
distribution for � would e�ectively determine the answer. Especially in such
situations, sensitivity analysis to assess the e�ect of changes in an uncertain
prior distribution is an essential part of the analysis. The one-parameter
sensitivity analysis for the non-Bayesian prediction procedures given in Sec-
tions 4.2 to 4.4 would be more straightforward than a sensitivity analysis
involving prior distributions for the Weibull distribution parameters.

When there has been a considerable amount of past experience with
similar situations (material and failure mechanism combinations), it may be
reasonable and safe to use a particular value for the Weibull shape param-
eter in decision making. For example, the shape parameter of a reliability
distribution (reecting spread on the log scale) also tends to be a func-
tion of material/device and failure mechanism. Such information is avail-
able in various places, including MIL-STD 217 and Klinger, Nakada, and
Menendez (1990) who give tables of what are e�ectively Weibull parameters
for di�erent devices. Relatedly, Abernethy (1998) describes the use of a
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\Weibull library" that contains information about past analyses that can be
used to glean information on Weibull shape parameters for particular failure
mode. Similar methods were advocated in Abernethy, Breneman, Medlin,
and Reinman (1983).

When such engineering knowledge is used, it is important to conduct
appropriate sensitivity analyses. Nelson (1985) discusses and illustrates the
use of a given Weibull shape parameter for a di�erent kind of reliability
estimation problem and illustrates the use of sensitivity analysis to evaluate
con�dence bounds over a range of plausible shape parameter values.

5 An example: heat exchangers

For illustration, consider Nelson's (1995, 2000) example of a heat exchanger
with N = 20,000 tubes. When inspected at age tc = 3 years, X = 8 tubes
had failed (i.e., had a crack initiation requiring that the tube be plugged).
Suppose plant managers need a prediction and prediction bounds for the
additional number Y of tubes that will need plugging by a future inspection
at age tw = 10 years.

The stress corrosion cracks in the heat exchanger are a phenomena that
has been observed since the �rst nuclear power plants went into service.
After many years of service, hundreds of the individual tubes in a given
heat exchanger will develop cracks and be taken out of service, before the
entire heat exchanger is retired. With that amount of experience and cor-
responding life data with previous heat exchangers, engineers would have a
good basis for specifying some reasonable range of values for such a stress
corrosion cracking shape parameter. Following Nelson (2000), to obtain the
prediction, the Weibull shape parameter � = 3:3 is used. In practice, most
engineers would choose such a value to be conservatively large (when ex-
trapolating beyond the range of the data, larger values of �, indicating less
spread in the distribution, will provide more pessimistic predictions, as we
will see in our sensitivity analysis to follow).

Using (6) and the within-sample information, we would predict thatbY = 413 additional tubes will fail in the next seven years, since

bq = [1� (8=20000)]� [1� (8=20000)](10=3)
3:3

= 0:0206396;bY = 20000(0:0206396)

= 412:8:
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Table 1: 90% prediction intervals for the added number of cracked heat
exchanger tubes, assuming N = 20,000, X = 8, tc = 3 years, tw = 10 years.

Shape parameter, �
Procedure

3.0 3.3 3.6

Probability Ratio

�
Y
e pr

; ~Ypr

�
[140; 524] [205; 756] [297; 1090]

Simpli�ed PR

�
Y
e spr

; ~Yspr

�
[142; 521] [206; 753] [298; 1087]

Likelihood Ratio

�
Y
e lr

; ~Ylr

�
[148; 487] [216; 700] [311; 1001]

Table 1 provides equal-tail 90% prediction intervals for the added number
of cracked tubes in the span of 3 to 10 years, based on the three procedures
described in the previous section. Two additional values of theWeibull shape
parameter are also used to evaluate the e�ect of misspeci�cation of � on the
prediction bounds. The prediction intervals are also shown graphically in
Figure 2.

The intervals produced by the two probability ratio-based procedures
agree closely, because the lower predictions for Y are fairly large. Substitut-
ing X = 8 and �1 = �2 = :05 into the F quantiles appearing in (9) and (10),
it so happens that F(:95; 2y+ 2; 16) and F(:95; 18; 2y) are both decreasing
functions of positive, real-valued y. As mentioned earlier, this implies that
the 90% prediction intervals from the probability ratio procedure in Sec-
tion 4.2 should be wider than the intervals produced with the simpli�ed
probability ratio-based bounds (as seen in the Table 1 and Figure 2).

The PR and SPR intervals are wider than the LR intervals. This is
related to results that will be described in the next section. In situations
corresponding to this example (a similar number of tubes and fraction fail-
ing), the LR method tends to have coverage probability close to nominal,
but the PR and SPR methods tend to be somewhat conservative, resulting
in the longer intervals. Focusing on the likelihood ratio interval, the sensi-
tivity analyses indicate that, even with the pessimistic value of � = 3:6, the
number of failed tubes before the end of 10 years is unlikely to exceed 5% of
the N = 20,000 tubes in the heat exchanger (heat exchangers are typically
designed to have from 5% to 10% excess capacity to allow cracked tubes to
be taken out of service without having to replace the entire heat exchanger).
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Figure 2: 90% prediction intervals for the added number of cracked heat
exchanger tubes, assuming N = 20,000, X = 8, tc = 3 years, tw = 10 years.

6 Evaluation of coverage probabilities for each pre-

diction interval procedure

As described in Section 3, we are interested in evaluating and comparing
the unconditional coverage probabilities of prediction intervals (or predic-
tion bounds) produced by each of Nelson's (2000) three procedures. The
cumulative number of failures X by time tc has a BINOMIAL(N; p) distri-
bution and, conditioned on X , Y has a BINOMIAL(N �X; �) distribution
with the conditional probability � = q=(1� p) from (2). Given a value of
0 � X � N � 1, we use one of the procedures to construct an approximate
100(1� �)% lower or upper prediction bound, denoted by Y

eX;�
or ~YX;� [as

a function of X and (1��)]. If X = N , there is no uncertainty in prediction
because Pr(Y = 0) = 1.

As suggested to us by Nelson in a private communication, the uncondi-
tional coverage probability of an approximate one-sided lower 100(1� �)%
prediction interval can be computed analytically. The needed expressions
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are

CP[PI(1� �);N; p; q] =
NX
k=0

�
Pr (X = k)Pr

�
Y � Y

e k;�
j X = k

��

=
N�1X
k=0

264�N
k

�
pk(1� p)N�k

0B@ N�kX
j=Y

e k;�

�
N � k

j

�
�j(1� �)N�k�j

1CA
375+ pN :

The coverage probability of the corresponding one-sided upper 100(1��)%
prediction interval can be found by replacing the inner summation above
with

Pr
�
Y � ~Yk;� j X = k

�
=

~Yk;�X
j=0

�
N � k

j

�
�j(1� �)N�k�j :

For an observed value of X and a speci�ed con�dence level, both prob-
ability ratio-based procedures require only the factor (tw=tc)

� to compute a
prediction bound. This can be seen from (11). The likelihood ratio-based
procedure requires speci�cation of both (tw=tc)

� and N .
The dependence of the likelihood procedure on the values of N and

(tw=tc)� can be justi�ed as follows. Any time scale can be transformed (di-
vided by tc) so that the \standardized" censoring time t0c = 1, the \standard-
ized" prediction time t0w = tw=tc, and the \standardized" scale parameter
�0 = �=tc; this re-scaling of time will not change the Weibull probabilities
p, q, and r from (1) or the shape parameter �. The likelihood ratio-based
procedure requires values for tc, tw , and � only when maximizing the con-
strained Weibull likelihood (15) with respect to �. Alternatively, we may
obtain the same maximum value of (15) by optimizing with respect to (�0)�

on a tc-transformed time scale once we know (t0w)
� : Hence, besides the ob-

served value of X , we need only specify N and (tw=tc)
� to use the likelihood

ratio procedure.
Noting that

(tw=tc)
� =

log(1� p� q)

log(1� p)
;

we may completely determine an unconditional coverage probability for any
of the three procedures by specifying a sample size N and values for the
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Weibull probabilities p and q. These three \parameters" allow the compu-
tation of both a prediction interval given any 0 � X � N and the uncondi-
tional coverage probability (the expected value of the conditional coverage
probabilities) for a procedure.

7 Comparison of Coverage Probabilities of the Pre-

diction Procedures

7.1 Design of the analytical experiment

An analytical experiment was designed to study the e�ect that the following
factors have on the coverage probability of the di�erent prediction interval
procedures.

� p: the (Weibull) probability that a sample unit fails by the censoring
time, tc.

� Np: the expected number of failures by tc.

� q=p: the ratio of the true proportions failing in the intervals (tc; tw)
and (0; tc], respectively.

We use this particular \parameterization" of (N; p; q) for two reasons: 1)
each prediction interval procedure depends on the \known" quantity (tw=tc)

��
1, which is an approximation of q=p by (8); 2) often with reliability data,
the expected number of failures by the censoring time (i.e. Np) heavily
inuences the accuracy of large-sample approximations.

Any combination of the three above factors that results in plausible
values for (N; p; q) [i.e. 0 < p < 1, q=p < (1� p)=p, and (Np)=p an integer]
admits an unconditional coverage probability for a given prediction interval
procedure. In our experiment, the level combinations used were p = 0.05,
0.005, 0.0005; q=p = 1, 10, 100; and Np 2 fn=2 j n 2 N; n � 30 or n =
10j; j = 4; : : : ; 10g. Note that having both p = 0.05 and q=p = 100 is
impossible.

Interest focused on each procedure's coverage probability for one-sided
prediction bounds, because most practical problems tend to be one-sided
(with a prediction error on one side costing much more than on the other).
We compare actual coverage probabilities with nominal values to assess the
adequacy of the approximations.

Using formulas from Section 6, we calculated unconditional coverage
probabilities for upper and lower approximate 95% prediction bounds pro-
duced with the likelihood ratio (LR), probability ratio (PR), and simpli�ed
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Table 2: (tw=tc)
� for several values of p and q=p. The percent error in using�

(tw=tc)
� � 1

�
�1

to approximate p=q is shown inside parentheses.

q=p

1 10 100

0.05 2.054 (5.1) 15.567 (31.4) {
p 0.005 2.005 (0.5) 11.286 (2.8) 140.288 (28.2)

0.0005 2.000 (0.1) 11.028 (0.3) 103.613 (2.6)

probability ratio (SPR) procedures. A program was written in Fortran to
compute all coverage probabilities with calculations performed in double
precision. The accuracy of each calculated probability was approximately 5
signi�cant digits.

7.2 Results of the analytical experiment

Various numerical and graphical methods were used to explore and sum-
marize the results of the analytical study. We present a few of the most
interesting and informative graphical displays.

Figure 3 shows plots of unconditional coverage probabilities for one-sided
95% prediction bounds (from the LR, PR, and SPR procedures) versus the
expected number of failures (Np) by tc when p = 0:0005 and q=p = 1; 10; 100.
Figures 4 and 5 provide the same type of plots with p = 0:005 and p = 0:05,
respectively. Table 2 shows the value of (tw=tc)

� as determined by the factors
p and q=p from each �gure and also the percent error of the approximation�
(tw=tc)

� � 1
�
�1

for p=q (namely, 100� (1� q=p
�
(tw=tc)

� � 1
�
�1
)).

Let LPB (UPB) denote a lower (upper) prediction bound. Some obser-
vations from Figures 3 to 5 and Table 2 are:

� With each procedure, the coverage probabilities of the one-sided bounds
tend to oscillate as a function of Np. The uctuation is most apparent
when Np � 10 (and when q=p is large). This characteristic of the cov-
erage probabilities is due to the conditional binomial distribution of Y
given X , and it can be seen in other intervals involving discrete dis-
tributions. Agresti and Coull (1998) and Vollset (1993) present plots
of coverage probabilities (for binomial parameter con�dence intervals)
that exhibit similar behavior.

� For the LR procedure, the coverage probabilities of both the LPBs
and UPBs converge asymptotically and often quickly to the nominal
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95% con�dence level as Np increases (for all values of p and q=p). For
each value of p in the �gures, the rate of convergence to the nominal
level grows as q=p increases (so that the expected number of failures
in (tc; tw), namely Nq, becomes larger). This seems natural; as the
expected number of failures increases, the large-sample approximation
should be better.

� With the PR and SPR procedures, the coverage probability of the
LPBs and UPBs is generally much closer to the nominal con�dence
level for small values of p and q.

� At each value of p, the coverage probabilities for the PR and SPR
UPBs become quite conservative when q=p [and consequently (tw=tc)

�]
assumes its highest level. These coverage probabilities often equal 1
in the two cases where q = (q=p) � p = 0.5 and the approximation
of p=q has the greatest percent error (from Table 2). The coverage
probabilities of the corresponding LPBs drop, often far, below the
nominal con�dence level in the same situation. This indicates that,
for each value of Np, both the PR and SPR procedures may produce
strongly biased upward UPBs and LPBs on a region of X-values that
has substantial probability.

� When q=p is largest for its corresponding level of p, the coverage proba-
bilities associated with the PR and SPR procedures are nearly indistin-
guishable for both UPBs and LPBs; the procedures generate almost
identical LPBs and UPBs. As described in Section 4.3, the bounds
from both procedures will agree as the expected number of failures in
the interval (tc; tw) increases.

� The LR LPBs always appear to be conservative. In cases where q=p �
10, the LR UPBs are anticonservative for Np > 1 and conservative for
Np � 1. When q=p = 1, the UPBs from the LR procedure seem to be
conservative.

� For every level of p, q=p, and Np, the coverage probabilities corre-
sponding to the UPBs and LPBs from the PR procedure are at least
as great as those of the SPR bounds. The approximate one-sided 95%
PR prediction intervals tend to be wider than those from the SPR
procedure.

� In general, the UPBs and LPBs from the LR procedure have coverage
probabilities closer to the nominal con�dence level than the bounds
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from the PR and SPR procedures.

For a given sample size N , the PR and SPR procedures will generally
produce prediction bounds greater than N � X for X � X�[(tw=tc)

�], an
integer value that depends on the factor (tw=tc)

�. The appendix describes
this event in detail. (In this case, we de�ne the lower bounds, Y

e pr
and Y

e spr
,

to be N �X�1 and the upper bounds, ~Ypr and ~Yspr, to be N�X .) The LR
procedure also will eventually (when X is su�ciently sizable) generate the
lower and upper prediction bounds, N�X�1 and N�X , but never bounds
outside the range of Y . However, the PR and SPR procedures yield extreme
bounds for much smaller values of X compared to the LR procedure. That
is, there will often exist a subset of the sample space of X , of considerable
probability, on which only the PR and SPR procedures will create prediction
bounds outside the sample space of Y .

The quantity
�
(tw=tc)

� � 1
�
�1

is always less than p=q (as the appendix
shows) and the approximation error may be severe when either p or q is rel-
atively large. For a �xed sample size, as (tw=tc)

� increases and the approxi-
mation in (8) breaks down, X�[(tw=tc)

�] decreases to zero. In this situation,
the PR and SPR bounds, both lower and upper, will become strongly biased
upward. This may then reduce (increase) the actual coverage probability
of the PR and SPR LPBs (UPBs). The potential danger of an inadequate
approximation of p=q is demonstrated in the coverage probability plots for
(p; q=p) = (0.005,100) and (0.05,10) in Figures 4 and 5, respectively. From
Table 2, the relative error in the approximation of p=q is quite large in these
cases and dramatically a�ects the coverage probabilities of the PR/SPR
bounds. In general, the PR and SPR procedures are not suitable for large
values of p; q (e.g., when p; q > 0:001).

The LR procedure doesn't depend on (tw=tc)
� as an approximation of

q=p, and its performance is less sensitive to changes in the value of this factor.
Instead, the convergence of the LR coverage probabilities to the nominal
con�dence level depends mostly on Np. The LR approximate bounds proved
to be adequate, and often excellent, in most of our numerical studies (usually
when Np � 10).

Figures 3 to 5 fail to reveal if the coverage probabilities for the PR/SPR
prediction bounds coverage asymptotically, as a function of Np, to any con-
sistent limit. Large sample theory can explain the asymptotic convergence of
the LR coverage probabilities to the nominal con�dence level, for each value
of p and q=p. But it is di�cult to determine analytically if the coverage prob-
abilities associated with PR and SPR procedures converge de�nitively (for
any p and q), because of the discrete joint distribution of (X; Y ). However,
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Figure 3: Plots of unconditional coverage probability versus expected number of failures (Np) for upper and lower

one-sided approximate 95% prediction bounds from the probability ratio (PR), simpli�ed probability ratio (SPR),

and likelihood ratio (LR) procedures. p = 0.0005 and q=p = 1, 10, 100.
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Figure 4: Plots of unconditional coverage probability versus expected number of failures (Np) for upper and lower

one-sided approximate 95% prediction bounds from the probability ratio (PR), simpli�ed probability ratio (SPR),

and likelihood ratio (LR) procedures. p = 0.005 and q=p = 1, 10, 100.
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Figure 5: Plots of unconditional coverage probability versus expected number of failures (Np) for upper and lower

one-sided approximate 95% prediction bounds from the probability ratio (PR), simpli�ed probability ratio (SPR),

and likelihood ratio (LR) procedures. p = 0.05 and q=p = 1, 10.
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Table 3: Unconditional coverage probabilities of one-sided approximate 95%
prediction bounds for several values of Np when p = q = 0.1. PR, SPR,
and LR denote probability ratio, simpli�ed probability ratio, and likelihood
ratio procedures.

Approx. 95% Lower Bounds Approx. 95% Upper Bounds
Np

PR SPR LR PR SPR LR

5 0.96017 0.93452 0.97617 0.99283 0.98552 0.96019
10 0.93308 0.88983 0.96670 0.99142 0.98357 0.95795
15 0.90858 0.86376 0.96438 0.99230 0.98512 0.95779
20 0.88921 0.83151 0.96291 0.99294 0.98694 0.95623
30 0.84288 0.78431 0.95953 0.99487 0.98963 0.95537
50 0.78142 0.69469 0.95798 0.99707 0.99373 0.95511
100 0.62500 0.52271 0.95581 0.99913 0.99796 0.95343
300 0.22481 0.15487 0.95320 0.99998 0.99994 0.95205
500 0.06983 0.04114 0.95249 1.00000 1.00000 0.95162
750 0.01416 0.00707 0.95207 1.00000 1.00000 0.95137

other numerical studies have shown that, for p; q > :01, the PR and SPR
LPBs have coverage probabilities that quickly converge to 0 as Np increases,
while the coverage probabilities for the UPBs converge to 1. Table 3 illus-
trates this relationship between Np and the PR/SPR coverage probabilities
when p = q = 0.1, listing coverage probabilities of one-sided approximate
95% UPBs and LPBs for each procedure.

8 Conclusions

The performance of the new prediction interval procedures may be charac-
terized as follows:

� The LR procedure provides adequate approximate bounds with mod-
erately large values of Np for any values of p and q. The associated
coverage probabilities converge to the nominal con�dence level as Np
increases.

� The PR and SPR prediction interval procedures are appropriate only
for small values of p and q [typically, small (tw=tc)

�]. For given p and
q, the approximation does not improve with increasing Np.

� The performance of the PR and SPR procedures greatly depends on
(tw=tc)� providing an adequate approximation for p=q; the accuracy of
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LR procedure is not sensitive to the adequacy of this approximation.

The PR and SPR intervals are relatively easy to compute. In particular,
the SPR bounds can be computed directly from chi-square quantiles. With
modern computing, however, the LR prediction bounds are not too di�cult
to calculate and should be recommended when computing facilities can be
used.
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Appendix

Boundary properties of Nelson's (2000) prediction bounds

The approximate 100(1��2)% upper prediction bound from the probability
ratio (PR) procedure in Section 4.2 is the \ceiling" of the real y such that

gU(y;X; �2) =
1

(tw=tc)� � 1
: (18)

An analogous statement holds for the PR lower prediction bound. For �xed
X and 0 < � < 1, both gU(y;X; �) and gL(y;X; �) are decreasing functions
of y such that gU(y;X; �) = O (X=y) and [assuming X 6= 0] gL(y;X; �) =
O (X=y). When the number of failures X or the factor (tw=tc)

� � 1 is
relatively large, it may be the case that gU(N � X;X; �2) > 0 or gL(N �
X;X; �1) > 0. That is, the PR procedure may produce an upper prediction
bound (and indeed even a lower bound) for the number of failures in (tc; tw)
that is greater thanN�X . An identical situation may arise with the simpler
probability ratio-based bounds in (12), since they are derived from limiting
forms of gL(y;X; �1) and gU(y;X; �2).

An intuitive explanation for the di�culties with the probability ratio-
based procedures, in these extreme cases, follows. If X and Y are the num-
bers of failures in the intervals (0; tc] and (tc; tw) respectively, the maximum
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likelihood estimator for the ratio q=p is

b� = Y=X:

If we knew the true value of q=p, we could obtain a simple prediction for the
future realization of Y as

_Y = X � q=p (19)

by equating the probability ratio q=p to b�. Equivalently, _Y is simply the
real-y such that

X=y � p=q = 0: (20)

If N sample units are initially on trial, _Y may potentially fall outside the
sample space for su�ciently large X . As X approaches N , the prediction _Y
becomes increasingly larger, even though Y � N �X with probability 1.

A prediction bound resulting from the probability ratio procedure be-
haves much like _Y . The PR prediction bound for Y is the real value at
which a univariate function resembling X=y in form equals an approxima-
tion for p=q (18). As with _Y , a PR bound is less likely to fall outside the
sample space of Y for su�ciently small (tw=tc)

� (corresponding to a small
ratio q=p).

For illustration, reconsider the heat exchanger example from Section 5
in which we wished to �nd prediction bounds for the additional number
of exchanger tubes cracking (failing) in the span of tc = 3 to tw = 10
years. As before, we will use N = 20,000 and � = 3:3. When deriving an
approximate lower 95% prediction bound for the added number of defective
tubes, both Y

e pr
and Y

e spr
would be greater than N � X for X � 417. As

for an approximate upper 95% bound, both ~Ypr and ~Yspr would be greater
than N �X if X � 351.

An extreme prediction bound can also result from the likelihood ratio
procedure. For (�xed) nonzero X , it can be shown that the log likelihood
ratio test statistic Q(X; y) in (16), as a function of y, attains a minimum of
zero at

ymin = N
�
[1� (X=N)]� [1� (X=N)](tw=tc)

�
�

= bY ;
where bY is from (6).
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We also have that

lim
X!N�

[1� (X=N)](tw=tc)
�

[1� (X=N)]
= 0:

Depending on (tw=tc)
� , the convergence of [1 � (X=N)](tw=tc)

�

to zero may
be rapid. Hence, for su�ciently large X , N�X�1 < ymin � N�X . This
implies that the likelihood ratio-based upper prediction bound ~Ylr may be
N �X if X is large (as may be expected). Also, Q(X; y) tends to increase
rapidly from its minimum at ymin with large X . In this case, the lower
prediction bound produced by the likelihood ratio procedure will be close
to N �X and eventually equal N �X � 1.

When using the likelihood ratio procedure to obtain an approximate
upper 95% prediction bound for the future added number of cracked heat
exchanger tubes with N = 20,000 and � = 3:3, ~Ylr would equal N � X if
X � 2962. The approximate lower 95% prediction bound Y

e lr
for the added

number of defective tubes would equal N �X � 1 if X � 3904.

Likelihood ratio prediction bounds when X = 0

If there are no observed failures by tc, it is possible that, for all real y 2 (0; N ],

Q(X = 0; y) > �2(1� �; 1):

In this event, we let Y
e lr

= 0 and ~Ylr = N . This cannot happen for nonzero

X since Q(X 6= 0; y = ymin) = 0.
(Note also that Q(x = 0; y = 0) does not exist; when x and y equal zero,

the constrained Weibull likelihood, K(x = 0; y = 0 j �) = exp
�
�N(tw=�)

�
�
,

does not have a maximum with respect to � > 0.)

Proof that
�
(tw=tc)� � 1

�
�1

is less than p=q

Given probabilities 0 < p; q < 1 from (1),

1

(tw=tc)� � 1
=

1
log(1�p�q)
log(1�p) � 1

=
log(1� p)

log(1� q
1�p)

<
p

q
,

q log(1� p)

p log(1� q
1�p)

< 1:

Fix p 2 (0; 1). Then for q 2 (0; 1� p),

d

dq

 
q log(1� p)

p log(1� q
1�p)

!
=

�
log(1� p)

p

�0B@ log(1�p�q1�p ) + 1�p
1�p�q � 1h

log(1� q
1�p)

i2
1CA < 0;
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since log(x)+x�1 > 1 for x 2 (0; 1)�. The above function of q is decreasing.
For q 2 (0; 1� p),

q log(1� p)

p log(1� q
1�p)

� lim
q!0+

q log(1� p)

p log(1� q
1�p)

= log(1� p)

�
1�

1

p

�
< 1;

using �(1� x) log(1� x) < x for x 2 (0; 1)��.
� and �� can be shown with a �rst order Taylor expansion of log(x)+x�1

around 1 and �(1� x) log(1� x) around 0. 2
Thus,

q log(1� p)

p log(1� q
1�p)

< 1

for all values of p; q from (1), implying that approximation
�
(tw=tc)

� � 1
�
�1

is always less than the true probability ratio p=q.
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